1
|
Dell'isola GB, Verrotti A, Sciaccaluga M, Roberti R, Parnetti L, Russo E, Costa C. Evaluating bexicaserin for the treatment of developmental epileptic encephalopathies. Expert Opin Pharmacother 2024; 25:1121-1130. [PMID: 38916481 DOI: 10.1080/14656566.2024.2373350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 06/24/2024] [Indexed: 06/26/2024]
Abstract
INTRODUCTION Developmental epileptic encephalopathies (DEEs) pose significant challenges due to their refractory nature and limited treatment options. Despite advancements in genetic understanding, effective therapies targeting underlying pathophysiology are lacking. Serotoninergic dysfunction has been implicated in epilepsy, sparking interest in serotonin as a therapeutic target. AREA COVERED This article explores the potential of bexicaserin, a selective 5-HT2C receptor agonist, as an adjunctive antiseizure medication in DEEs. Bexicaserin is thought to modulate GABAergic neurotransmission, suppressing central hyperexcitability. Preclinical studies demonstrate its efficacy across various seizure models. Clinical trials, including the Pacific Study, reveal promising results in reducing motor seizures. However, challenges such as adverse effects and treatment discontinuation underscore the need for further investigation. EXPERT OPINION The efficacy of 5-HT2C serotoninergic agonists, validated in preclinical and clinical studies, highlights serotonin's role in DEEs. Bexicaserin offers new therapeutic possibilities, potentially synergizing with existing antiseizure medications. Polypharmacotherapy, targeting distinct pathways, may enhance therapeutic outcomes. Monitoring pharmacological interactions and addressing central nervous system comorbidities are crucial for optimizing treatment strategies. Further research is needed to elucidate bexicaserin's mechanisms and potential antiepileptogenic effects.
Collapse
Affiliation(s)
| | | | - Miriam Sciaccaluga
- Section of Neurology, Laboratory of Experimental Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
- Mauro Baschirotto Rare Disease Foundation BIRD Onlus, Longare, VI, Italy
| | - Roberta Roberti
- Science of Health Department, University Magna Grecia of Catanzaro, Catanzaro, Italy
| | - Lucilla Parnetti
- Section of Neurology, Laboratory of Experimental Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Emilio Russo
- Science of Health Department, University Magna Grecia of Catanzaro, Catanzaro, Italy
| | - Cinzia Costa
- Section of Neurology, Laboratory of Experimental Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
2
|
Nomiya H, Sakurai K, Miyamoto Y, Oka M, Yoneda Y, Hikida T, Yamada M. A Kpna1-deficient psychotropic drug-induced schizophrenia model mouse for studying gene-environment interactions. Sci Rep 2024; 14:3376. [PMID: 38336912 PMCID: PMC10858057 DOI: 10.1038/s41598-024-53237-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
KPNA1 is a mediator of nucleocytoplasmic transport that is abundantly expressed in the mammalian brain and regulates neuronal differentiation and synaptic function. De novo mutations in Kpna1 have been identified using genome-wide association studies in humans with schizophrenia; however, it remains unclear how KPNA1 contributes to schizophrenia pathogenesis. Recent studies have suggested a complex combination of genetic and environmental factors that are closely related to psychiatric disorders. Here, we found that subchronic administration of phencyclidine, a psychotropic drug, induced vulnerability and behavioral abnormalities consistent with the symptoms of schizophrenia in Kpna1-deficient mice. Microarray assessment revealed that the expression levels of dopamine d1/d2 receptors, an RNA editing enzyme, and a cytoplasmic dynein component were significantly altered in the nucleus accumbens brain region in a gene-environment (G × E) interaction-dependent manner. Our findings demonstrate that Kpna1-deficient mice may be useful as a G × E interaction mouse model for psychiatric disorders and for further investigation into the pathogenesis of such diseases and disorders.
Collapse
Affiliation(s)
- Hirotaka Nomiya
- Department of Cell Biology and Biochemistry, Division of Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan
| | - Koki Sakurai
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Yoichi Miyamoto
- Laboratory of Nuclear Transport Dynamics, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan
| | - Masahiro Oka
- Laboratory of Nuclear Transport Dynamics, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan
| | - Yoshihiro Yoneda
- The Research Foundation for Microbial Diseases Osaka University, Integrated Life Science Building, Osaka University, 3-1 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Takatoshi Hikida
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Osaka, 565-0871, Japan.
- Department of Research and Drug Discovery, Medical Innovation Center, Kyoto University Graduate School of Medicine, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8397, Japan.
| | - Masami Yamada
- Department of Cell Biology and Biochemistry, Division of Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan.
- Life Science Innovation Center, University of Fukui, 3-9-1, Bunkyo, Fukui-City, Fukui, 910-8507, Japan.
| |
Collapse
|
3
|
De Deurwaerdère P, Chagraoui A, Di Giovanni G. Serotonin/dopamine interaction: Electrophysiological and neurochemical evidence. PROGRESS IN BRAIN RESEARCH 2021; 261:161-264. [PMID: 33785130 DOI: 10.1016/bs.pbr.2021.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The interaction between serotonin (5-HT) and dopamine (DA) in the central nervous system (CNS) plays an important role in the adaptive properties of living animals to their environment. These are two modulatory, divergent systems shaping and regulating in a widespread manner the activity of neurobiological networks and their interaction. The concept of one interaction linking these two systems is rather elusive when looking at the mechanisms triggered by these two systems across the CNS. The great variety of their interacting mechanisms is in part due to the diversity of their neuronal origin, the density of their fibers in a given CNS region, the distinct expression of their numerous receptors in the CNS, the heterogeneity of their intracellular signaling pathway that depend on the cellular type expressing their receptors, and the state of activity of neurobiological networks, conditioning the outcome of their mutual influences. Thus, originally conceptualized as inhibition of 5-HT on DA neuron activity and DA neurotransmission, this interaction is nowadays considered as a multifaceted, mutual influence of these two systems in the regulation of CNS functions. These new ways of understanding this interaction are of utmost importance to envision the consequences of their dysfunctions underlined in several CNS diseases. It is also essential to conceive the mechanism of action of psychotropic drugs directly acting on their function including antipsychotic, antidepressant, antiparkinsonian, and drug of abuse together with the development of therapeutic strategies of Alzheimer's diseases, epilepsy, obsessional compulsive disorders. The 5-HT/DA interaction has a long history from the serendipitous discovery of antidepressants and antipsychotics to the future, rationalized treatments of CNS disorders.
Collapse
Affiliation(s)
- Philippe De Deurwaerdère
- Centre National de la Recherche Scientifique, Institut des Neurosciences Intégratives et Cognitives d'Aquitaine, UMR 5287, Bordeaux, France.
| | - Abdeslam Chagraoui
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine of Normandy (IRIB), Normandie University, UNIROUEN, INSERM U1239, Rouen, France; Department of Medical Biochemistry, Rouen University Hospital, Rouen, France
| | - Giuseppe Di Giovanni
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta; Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, United Kingdom.
| |
Collapse
|
4
|
De Deurwaerdère P, Di Giovanni G. Serotonergic modulation of the activity of mesencephalic dopaminergic systems: Therapeutic implications. Prog Neurobiol 2016; 151:175-236. [PMID: 27013075 DOI: 10.1016/j.pneurobio.2016.03.004] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 03/13/2016] [Accepted: 03/14/2016] [Indexed: 12/14/2022]
Abstract
Since their discovery in the mammalian brain, it has been apparent that serotonin (5-HT) and dopamine (DA) interactions play a key role in normal and abnormal behavior. Therefore, disclosure of this interaction could reveal important insights into the pathogenesis of various neuropsychiatric diseases including schizophrenia, depression and drug addiction or neurological conditions such as Parkinson's disease and Tourette's syndrome. Unfortunately, this interaction remains difficult to study for many reasons, including the rich and widespread innervations of 5-HT and DA in the brain, the plethora of 5-HT receptors and the release of co-transmitters by 5-HT and DA neurons. The purpose of this review is to present electrophysiological and biochemical data showing that endogenous 5-HT and pharmacological 5-HT ligands modify the mesencephalic DA systems' activity. 5-HT receptors may control DA neuron activity in a state-dependent and region-dependent manner. 5-HT controls the activity of DA neurons in a phasic and excitatory manner, except for the control exerted by 5-HT2C receptors which appears to also be tonically and/or constitutively inhibitory. The functional interaction between the two monoamines will also be discussed in view of the mechanism of action of antidepressants, antipsychotics, anti-Parkinsonians and drugs of abuse.
Collapse
Affiliation(s)
- Philippe De Deurwaerdère
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5293, 33076 Bordeaux Cedex, France.
| | - Giuseppe Di Giovanni
- Department of Physiology & Biochemistry, Faculty of Medicine and Surgery, University of Malta, Malta; Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, UK.
| |
Collapse
|
5
|
Bonasera SJ, Schenk AK, Luxenberg EJ, Wang X, Basbaum A, Tecott LH. Mice Lacking Serotonin 2C Receptors Have increased Affective Responses to Aversive Stimuli. PLoS One 2015; 10:e0142906. [PMID: 26630489 PMCID: PMC4667991 DOI: 10.1371/journal.pone.0142906] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 10/28/2015] [Indexed: 01/01/2023] Open
Abstract
Although central serotonergic systems are known to influence responses to noxious stimuli, mechanisms underlying serotonergic modulation of pain responses are unclear. We proposed that serotonin 2C receptors (5-HT2CRs), which are expressed within brain regions implicated in sensory and affective responses to pain, contribute to the serotonergic modulation of pain responses. In mice constitutively lacking 5-HT2CRs (2CKO mice) we found normal baseline sensory responses to noxious thermal, mechanical and chemical stimuli. In contrast, 2CKO mice exhibited a selective enhancement of affect-related ultrasonic afterdischarge vocalizations in response to footshock. Enhanced affect-related responses to noxious stimuli were also exhibited by 2CKO mice in a fear-sensitized startle assay. The extent to which a brief series of unconditioned footshocks produced enhancement of acoustic startle responses was markedly increased in 2CKO mice. As mesolimbic dopamine pathways influence affective responses to noxious stimuli, and these pathways are disinhibited in 2CKO mice, we examined the sensitivity of footshock-induced enhancement of startle to dopamine receptor blockade. Systemic administration of the dopamine D2/D3 receptor antagonist raclopride selectively reduced footshock-induced enhancement of startle without influencing baseline acoustic startle responses. We propose that 5-HT2CRs regulate affective behavioral responses to unconditioned aversive stimuli through mechanisms involving the disinhibition of ascending dopaminergic pathways.
Collapse
MESH Headings
- Animals
- Dopamine Antagonists/pharmacology
- Fear/physiology
- Female
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Raclopride/pharmacology
- Receptor, Serotonin, 5-HT2C/physiology
- Receptors, Dopamine D2/chemistry
- Reflex, Startle/drug effects
- Reflex, Startle/physiology
- Ultrasonics
- Vocalization, Animal/drug effects
- Vocalization, Animal/physiology
- Vocalization, Animal/radiation effects
Collapse
Affiliation(s)
- Stephen J. Bonasera
- Division of Geriatrics, Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - A. Katrin Schenk
- Department of Psychiatry, University of California San Francisco, San Francisco, California, United States of America
| | - Evan J. Luxenberg
- Division of Geriatrics, Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Xidao Wang
- Department of Anatomy, University of California San Francisco, San Francisco, California, United States of America
| | - Allan Basbaum
- Department of Anatomy, University of California San Francisco, San Francisco, California, United States of America
| | - Laurence H. Tecott
- Department of Psychiatry, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
6
|
Di Giovanni G, De Deurwaerdère P. New therapeutic opportunities for 5-HT2C receptor ligands in neuropsychiatric disorders. Pharmacol Ther 2015; 157:125-62. [PMID: 26617215 DOI: 10.1016/j.pharmthera.2015.11.009] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The 5-HT2C receptor (R) displays a widespread distribution in the CNS and is involved in the action of 5-HT in all brain areas. Knowledge of its functional role in the CNS pathophysiology has been impaired for many years due to the lack of drugs capable of discriminating among 5-HT2R subtypes, and to a lesser extent to the 5-HT1B, 5-HT5, 5-HT6 and 5-HT7Rs. The situation has changed since the mid-90s due to the increased availability of new and selective synthesized compounds, the creation of 5-HT2C knock out mice, and the progress made in molecular biology. Many pharmacological classes of drugs including antipsychotics, antidepressants and anxiolytics display affinities toward 5-HT2CRs and new 5-HT2C ligands have been developed for various neuropsychiatric disorders. The 5-HT2CR is presumed to mediate tonic/constitutive and phasic controls on the activity of different central neurobiological networks. Preclinical data illustrate this complexity to a point that pharmaceutical companies developed either agonists or antagonists for the same disease. In order to better comprehend this complexity, this review will briefly describe the molecular pharmacology of 5-HT2CRs, as well as their cellular impacts in general, before addressing its central distribution in the mammalian brain. Thereafter, we review the preclinical efficacy of 5-HT2C ligands in numerous behavioral tests modeling human diseases, highlighting the multiple and competing actions of the 5-HT2CRs in neurobiological networks and monoaminergic systems. Notably, we will focus this evidence in the context of the physiopathology of psychiatric and neurological disorders including Parkinson's disease, levodopa-induced dyskinesia, and epilepsy.
Collapse
Affiliation(s)
- Giuseppe Di Giovanni
- Department of Physiology & Biochemistry, Faculty of Medicine and Surgery, University of Malta; Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, UK.
| | - Philippe De Deurwaerdère
- Centre National de la Recherche Scientifique (Unité Mixte de Recherche 5293) 33076 Bordeaux Cedex, France.
| |
Collapse
|
7
|
Avlar B, Kahn JB, Jensen G, Kandel ER, Simpson EH, Balsam PD. Improving temporal cognition by enhancing motivation. Behav Neurosci 2015; 129:576-88. [PMID: 26371378 DOI: 10.1037/bne0000083] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Increasing motivation can positively impact cognitive performance. Here we employed a cognitive timing task that allows us to detect changes in cognitive performance that are not influenced by general activity or arousal factors such as the speed or persistence of responding. This approach allowed us to manipulate motivation using three different methods; molecular/genetic, behavioral and pharmacological. Increased striatal D2Rs resulted in deficits in temporal discrimination. Switching off the transgene improved motivation in earlier studies, and here partially rescued the temporal discrimination deficit. To manipulate motivation behaviorally, we altered reward magnitude and found that increasing reward magnitude improved timing in control mice and partially rescued timing in the transgenic mice. Lastly, we manipulated motivation pharmacologically using a functionally selective 5-HT2C receptor ligand, SB242084, which we previously found to increase incentive motivation. SB242084 improved temporal discrimination in both control and transgenic mice. Thus, while there is a general intuitive belief that motivation can affect cognition, we here provide a direct demonstration that enhancing motivation, in a variety of ways, can be an effective strategy for enhancing temporal cognition. Understanding the interaction of motivation and cognition is of clinical significance since many psychiatric disorders are characterized by deficits in both domains.
Collapse
Affiliation(s)
| | | | - Greg Jensen
- Department of Psychology, Columbia University
| | - Eric R Kandel
- Department of Neuroscience, Columbia University, Howard Hughes Medical Institute
| | | | - Peter D Balsam
- Department of Psychiatry, Columbia University, New York State Psychiatric Institute
| |
Collapse
|
8
|
Carli M, Invernizzi RW. Serotoninergic and dopaminergic modulation of cortico-striatal circuit in executive and attention deficits induced by NMDA receptor hypofunction in the 5-choice serial reaction time task. Front Neural Circuits 2014; 8:58. [PMID: 24966814 PMCID: PMC4052821 DOI: 10.3389/fncir.2014.00058] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 05/14/2014] [Indexed: 01/13/2023] Open
Abstract
Executive functions are an emerging propriety of neuronal processing in circuits encompassing frontal cortex and other cortical and subcortical brain regions such as basal ganglia and thalamus. Glutamate serves as the major neurotrasmitter in these circuits where glutamate receptors of NMDA type play key role. Serotonin and dopamine afferents are in position to modulate intrinsic glutamate neurotransmission along these circuits and in turn to optimize circuit performance for specific aspects of executive control over behavior. In this review, we focus on the 5-choice serial reaction time task which is able to provide various measures of attention and executive control over performance in rodents and the ability of prefrontocortical and striatal serotonin 5-HT1A, 5-HT2A, and 5-HT2C as well as dopamine D1- and D2-like receptors to modulate different aspects of executive and attention disturbances induced by NMDA receptor hypofunction in the prefrontal cortex. These behavioral studies are integrated with findings from microdialysis studies. These studies illustrate the control of attention selectivity by serotonin 5-HT1A, 5-HT2A, 5-HT2C, and dopamine D1- but not D2-like receptors and a distinct contribution of these cortical and striatal serotonin and dopamine receptors to the control of different aspects of executive control over performance such as impulsivity and compulsivity. An association between NMDA antagonist-induced increase in glutamate release in the prefrontal cortex and attention is suggested. Collectively, this review highlights the functional interaction of serotonin and dopamine with NMDA dependent glutamate neurotransmission in the cortico-striatal circuitry for specific cognitive demands and may shed some light on how dysregulation of neuronal processing in these circuits may be implicated in specific neuropsychiatric disorders.
Collapse
Affiliation(s)
- Mirjana Carli
- Laboratory of Neurochemistry and Behavior, Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri" Milano, Italy
| | - Roberto W Invernizzi
- Laboratory of Neurochemistry and Behavior, Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri" Milano, Italy
| |
Collapse
|
9
|
Adams WK, Halberstadt AL, van den Buuse M. Hippocampal serotonin depletion unmasks differences in the hyperlocomotor effects of phencyclidine and MK-801: quantitative versus qualitative analyses. Front Pharmacol 2013; 4:109. [PMID: 24009584 PMCID: PMC3756227 DOI: 10.3389/fphar.2013.00109] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 08/09/2013] [Indexed: 11/21/2022] Open
Abstract
Antagonism of N-methyl-D-aspartate (NMDA) receptors by phencyclidine (PCP) is thought to underlie its ability to induce a schizophrenia-like syndrome in humans, yet evidence indicates it has a broader pharmacological profile. Our previous lesion studies highlighted a role for serotonergic projections from the median, but not dorsal, raphe nucleus in mediating the hyperlocomotor effects of PCP, without changing the action of the more selective NMDA receptor antagonist, MK-801. Here we compared locomotor responses to PCP and MK-801 in rats that were administered 5,7-dihydroxytryptamine (5,7-DHT) into either the dorsal or ventral hippocampus, which are preferentially innervated by median and dorsal raphe, respectively. Dorsal hippocampus lesions potentiated PCP-induced hyperlocomotion (0.5, 2.5 mg/kg), but not the effect of MK-801 (0.1 mg/kg). Ventral hippocampus lesions did not alter the hyperlocomotion elicited by either compound. Given that PCP and MK-801 may induce different spatiotemporal patterns of locomotor behavior, together with the known role of the dorsal hippocampus in spatial processing, we also assessed whether the 5,7-DHT-lesions caused any qualitative differences in locomotor responses. Treatment with PCP or MK-801 increased the smoothness of the path traveled (reduced spatial d) and decreased the predictability of locomotor patterns within the chambers (increased entropy). 5,7-DHT-lesions of the dorsal hippocampus did not alter the effects of PCP on spatial d or entropy – despite potentiating total distance moved – but caused a slight reduction in levels of MK-801-induced entropy. Taken together, serotonergic lesions targeting the dorsal hippocampus unmask a functional differentiation of the hyperlocomotor effects of PCP and MK-801. These findings have implications for studies utilizing NMDA receptor antagonists in modeling glutamatergic dysfunction in schizophrenia.
Collapse
Affiliation(s)
- Wendy K Adams
- Behavioural Neuroscience Laboratory, Florey Institute for Neuroscience and Mental Health, University of Melbourne Melbourne, VIC, Australia ; Centre for Neuroscience, University of Melbourne Melbourne, VIC, Australia
| | | | | |
Collapse
|
10
|
Serotonin2C receptors and drug addiction: focus on cocaine. Exp Brain Res 2013; 230:537-45. [PMID: 23748692 DOI: 10.1007/s00221-013-3593-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 05/22/2013] [Indexed: 12/20/2022]
Abstract
This review provides an overview of the role of central serotonin2C (5-HT2C) receptors in drug addiction, specifically focusing on their impact on the neurochemical and behavioral effects of cocaine, one of the most worldwide abused drug. First, we described the neurochemical and electrophysiological mechanisms underlying the interaction between 5-HT2C receptors and the mesocorticolimbic dopaminergic network, in keeping with the key role of this system in drug abuse and dependence. Thereafter, we focused on the role of 5-HT2C receptors in the effects of cocaine in various preclinical behavioral models used in drug addiction research, such as locomotor hyperactivity, locomotor sensitization, drug discrimination, and self-administration, to end with an overview of the neurochemical mechanisms underlying the interactions between 5-HT2C receptors, mesocorticolimbic dopamine system, and cocaine. On their whole, the presented data provide compelling preclinical evidence that 5-HT2C receptor agonists may have efficacy in the treatment of cocaine abuse and dependence, thereby underlying the need for additional clinical studies to ascertain whether preclinical data translate to the human.
Collapse
|
11
|
Abstract
Although the serotonin (5-hydroxytryptamine, 5-HT) neurotransmitter system has been implicated in modulating executive control processes such as attention, response inhibition, and behavioral flexibility, the contributions of particular serotonin receptors remain unclear. Here, using operant-based behavioral paradigms, we demonstrate that mice with genetically ablated 5-HT2C receptors (2CKO mice) display deficits in executive functions. 2CKO mice were impaired in the acquisition of a visuospatial attention task as assessed in the 5-choice serial reaction time task (5-CSRTT). In this task, 2CKO mice exhibited marked impairment of attentional processes, with normal response inhibition. We assessed dynamic changes in neurotransmitter levels within the nucleus accumbens (NAc) by in vivo microdialysis in task-performing animals. Extracellular dopamine concentrations were elevated in the NAc of 2CKO mice during task performance, indicating that 5-HT2C receptors impact dopamine homeostasis during a visuospatial attention task. These findings raise the possibility that disinhibition of mesolimbic dopamine pathways contributes to impaired attention and perturbed task performance in 2CKO mice. Additionally, in a spatial reversal learning task, 2CKO mice failed to improve their performance over a series of reversals, indicating that intact 5-HT2C receptor signaling is required to accurately respond to repeated changes in reward contingencies. In contrast to the 2CKO phenotype in the 5-CSRTT, wild-type mice treated with the 5-HT2C receptor antagonist SB242084 exhibited diminished response inhibition, suggesting differing effects of acute pharmacological blockade and constitutive loss of 5-HT2C receptor activity. Altogether, these findings provide insights into the serotonergic regulation of executive control processes and suggest that impaired 5-HT2C receptor signaling during development may predispose to executive function disorders.
Collapse
|
12
|
Multiple controls exerted by 5-HT2C receptors upon basal ganglia function: from physiology to pathophysiology. Exp Brain Res 2013; 230:477-511. [PMID: 23615975 DOI: 10.1007/s00221-013-3508-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 03/28/2013] [Indexed: 10/26/2022]
Abstract
Serotonin2C (5-HT2C) receptors are expressed in the basal ganglia, a group of subcortical structures involved in the control of motor behaviour, mood and cognition. These receptors are mediating the effects of 5-HT throughout different brain areas via projections originating from midbrain raphe nuclei. A growing interest has been focusing on the function of 5-HT2C receptors in the basal ganglia because they may be involved in various diseases of basal ganglia function notably those associated with chronic impairment of dopaminergic transmission. 5-HT2C receptors act on numerous types of neurons in the basal ganglia, including dopaminergic, GABAergic, glutamatergic or cholinergic cells. Perhaps inherent to their peculiar molecular properties, the modality of controls exerted by 5-HT2C receptors over these cell populations can be phasic, tonic (dependent on the 5-HT tone) or constitutive (a spontaneous activity without the presence of the ligand). These controls are functionally organized in the basal ganglia: they are mainly localized in the input structures and preferentially distributed in the limbic/associative territories of the basal ganglia. The nature of these controls is modified in neuropsychiatric conditions such as Parkinson's disease, tardive dyskinesia or addiction. Most of the available data indicate that the function of 5-HT2C receptor is enhanced in cases of chronic alterations of dopamine neurotransmission. The review illustrates that 5-HT2C receptors play a role in maintaining continuous controls over the basal ganglia via multiple diverse actions. We will discuss their interest for treatments aimed at ameliorating current pharmacotherapies in schizophrenia, Parkinson's disease or drugs abuse.
Collapse
|
13
|
Kusljic S, Van Den Buuse M. Differential role of serotonin projections from the dorsal and median raphe nuclei in phencyclidine-induced hyperlocomotion and fos-like immunoreactivity in rats. Synapse 2012; 66:885-92. [DOI: 10.1002/syn.21580] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 06/13/2012] [Accepted: 06/14/2012] [Indexed: 11/07/2022]
|
14
|
Pharmacological and genetic interventions in serotonin (5-HT)(2C) receptors to alter drug abuse and dependence processes. Brain Res 2012; 1476:132-53. [PMID: 22494568 DOI: 10.1016/j.brainres.2012.03.035] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 03/13/2012] [Accepted: 03/15/2012] [Indexed: 11/22/2022]
Abstract
The present review provides an overview on serotonin (5-hydroxytryptamine; 5-HT)(2C) receptors and their relationship to drug dependence. We have focused our discussion on the impact of 5-HT(2C) receptors on the effects of different classes of addictive drugs, illustrated by reference to data using pharmacological and genetic tools. The neurochemical mechanism of the interaction between 5-HT(2C) receptors, with focus on the mesocorticolimbic dopaminergic system, and drugs of abuse (using cocaine as an example) is discussed. Finally, we integrate recent nonclinical and clinical research and information with marketed products possessing 5-HT(2C) receptor binding affinities. Accordingly, available nonclinical data and some clinical observations targeting 5-HT(2C) receptors may offer innovative translational strategies for combating drug dependence.This article is part of a Special Issue entitled: Brain Integration.
Collapse
|
15
|
Andrade A, Abrahao K, Goeldner F, Souza-Formigoni M. Administration of the 5-HT2C receptor antagonist SB-242084 into the nucleus accumbens blocks the expression of ethanol-induced behavioral sensitization in Albino Swiss mice. Neuroscience 2011; 189:178-86. [DOI: 10.1016/j.neuroscience.2011.05.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 04/23/2011] [Accepted: 05/12/2011] [Indexed: 11/30/2022]
|
16
|
McCorvy JD, Harland AA, Maglathlin R, Nichols DE. A 5-HT(2C) receptor antagonist potentiates a low dose amphetamine-induced conditioned place preference. Neurosci Lett 2011; 505:10-3. [PMID: 21827831 DOI: 10.1016/j.neulet.2011.07.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 07/22/2011] [Accepted: 07/25/2011] [Indexed: 11/25/2022]
Abstract
This study was designed to determine whether a 5-HT(2C) receptor antagonist could induce a conditioned place preference indicative of reward and/or abuse potential. Here, we present the first evidence that a selective 5-HT(2C) receptor antagonist, 6-chloro-5-ethoxy-N-(pyridin-2-yl)indoline-1-carboxamide hydrochloride (CEPC), can potentiate a low dose (0.5 mg/kg) amphetamine-induced positive conditioned place preference (CPP). CEPC did not produce any CPP given alone at doses of either 2.0 or 4.0 mg/kg, whereas low dose amphetamine alone produced only a slight, but statistically nonsignificant, place preference. These studies suggest that 5-HT(2C) receptor antagonists can indirectly potentiate the rewarding effects of amphetamine, and perhaps other psychostimulants. If the results can be translated to man, putative 5-HT(2C) receptor antagonist treatments for anxiety or depression may enhance or potentiate the rewarding effects of drugs of abuse such as amphetamine, which release dopamine.
Collapse
Affiliation(s)
- John D McCorvy
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | |
Collapse
|
17
|
The role of serotonin in the NMDA receptor antagonist models of psychosis and cognitive impairment. Psychopharmacology (Berl) 2011; 213:289-305. [PMID: 21212939 DOI: 10.1007/s00213-010-2137-8] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 12/02/2010] [Indexed: 12/26/2022]
Abstract
OBJECTIVE To review the evidence that agents which preferentially affect serotonin (5-HT) attenuate the ability of N-methyl-D-aspartate (NMDA) receptor non-competitive antagonists (NMDA-RA), e.g., phencyclidine (PCP), dizocilpine (MK-801), and ketamine, to stimulate locomotor activity (LA), and to impair novel object recognition (NOR). RATIONALE NMDA-RA-induced increased LA and impairment of NOR are widely used models of the pathophysiology of schizophrenia, the mechanism of action of antipsychotic drugs (APDs), and the identification of novel treatments. Serotonin (5-HT) plays an important role in attenuating these effects of NMDA-RA. RESULTS Selective 5-HT(2A) inverse agonists, e.g., M100907 and ACP-103, and atypical APDs, which are more potent 5-HT(2A) than D(2) antagonists, e.g., clozapine and lurasidone, are more effective than selective D(2) receptor antagonists to attenuate NMDA-RA-induced increased LA. 5-HT(2A) inverse agonists alone are not effective to improve NMDA-RA-impaired NOR, but augment the effects of atypical, but not typical APDs, to improve NOR. The 5-HT(1A) receptor partial agonist tandospirone alone and the 5-HT(1A) agonist effects of atypical APDs may substitute for, or contribute to, the effects of D(2) and 5-HT(2A) receptor antagonism to reverse the NMDA-RA impairment in NOR. 5-HT(6) and 5-HT(7) receptor antagonists may also attenuate these NMDA-RA-induced behaviors. 5-HT(2C) receptor inverse agonist, but not neutral antagonists, block NOR in naïve rats and the effects of atypical APDs to restore NOR in PCP-treated rats, suggesting the importance of the constitutive activity of 5-HT(2C) receptors in NOR. CONCLUSIONS Multiple 5-HT receptors contribute to effective treatments to reverse adverse effects of NMDA-RA which model psychosis and cognitive impairment.
Collapse
|
18
|
The Constitutive Activity of 5-HT2C Receptors as an Additional Modality of Interaction of the Serotonergic System. 5-HT2C RECEPTORS IN THE PATHOPHYSIOLOGY OF CNS DISEASE 2011. [DOI: 10.1007/978-1-60761-941-3_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
19
|
Abstract
The interaction between serotonin (5-HT) and dopamine (DA)-containing neurons in the brain is a research topic that has raised the interest of many scientists working in the field of neuroscience since the first demonstration of the presence of monoamine-containing neurons in the mid 1960. The bulk of neuroanatomical data available clearly indicate that DA-containing neurons in the brain receive a prominent innervation from serotonin (5-hydroxytryptamine, 5-HT) originating in the raphe nuclei of the brainstem. Compelling electrophysiological and neurochemical data show that 5-HT can exert complex effects on the activity of midbrain DA neurons mediated by its various receptor subtypes. The main control seems to be inhibitory, this effect being more marked in the mesocorticolimbic DA system as compared to the DA nigrostriatal system. In spite of a direct effect of 5-HT by its receptors located on DA cells, 5-HT can modulate their activity indirectly, modifying gamma-aminobutyric (GABA)-ergic and glutamatergic input to the ventral tegmental area (VTA) and substantia nigra pars compacta (SNc). Although 5-HT/DA interaction in the brain has been extensively studied, much work remains to be done to clarify this issue. The recent development of subtype-selective ligands for 5-HT receptors will not only allow a detailed understanding of this interaction but also will lead to the development of new treatment strategies, appropriate for those neuropsychiatric disorders in which an alteration of the 5-HT/DA balance is supposed.
Collapse
Affiliation(s)
- Giuseppe Di Giovanni
- Department of Physiology and Biochemistry, University of Malta, Msida MSD, Malta
| | - Ennio Esposito
- Istituto di Ricerche Farmacologiche “Mario Negri,” Consorzio Mario Negri Sud, Santa Maria Imbaro, CH, Italy
| | - Vincenzo Di Matteo
- Istituto di Ricerche Farmacologiche “Mario Negri,” Consorzio Mario Negri Sud, Santa Maria Imbaro, CH, Italy
| |
Collapse
|
20
|
Gozzi A, Crestan V, Turrini G, Clemens M, Bifone A. Antagonism at serotonin 5-HT(2A) receptors modulates functional activity of frontohippocampal circuit. Psychopharmacology (Berl) 2010; 209:37-50. [PMID: 20111859 DOI: 10.1007/s00213-009-1772-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Accepted: 12/20/2009] [Indexed: 12/22/2022]
Abstract
RATIONALE Several second-generation antipsychotics are characterised by a significant antagonistic effect at serotonin 5-HT(2A) receptors (5-HT(2A)R), a feature that has been associated with lower incidence of extra-pyramidal symptoms and a putative amelioration of positive and negative symptoms experienced by schizophrenic patients. However, the neurofunctional substrate of 5-HT(2A) antagonism and its exact contribution to the complex pharmacological profile of these drugs remain to be elucidated. OBJECTIVES Here, we used pharmacological magnetic resonance imaging to map the modulatory effects of the selective 5-HT(2A)R antagonist Ml00907 on the spatiotemporal patterns of brain activity elicited by acute phencyclidine (PCP) challenge in the rat. PCP is a non-competitive NMDA receptor antagonist that induces dysregulation of corticolimbic glutamatergic neurotransmission and produces cognitive impairment and psychotic-like symptoms reminiscent of those observed in schizophrenia. RESULTS Pre-administration of M100907 produced focal and region-dependent attenuation of PCP-induced response in frontoseptohippocampal areas. As early studies highlighted a permissive role of 5-HT(2A)R on frontal dopamine release, the role of post-synaptic dopamine D(1) receptors on PCP-induced response was examined by using the potent antagonist SCH23390. Interestingly, SCH23390 did not affect PCP's response in any of the regions examined. This finding rules out a significant contribution of dopamine in the functional changes mapped and, indirectly, the inhibitory effect of M100907, in favour of a glutamatergic origin. CONCLUSIONS Our data expand recent evidence suggesting a key role of 5-HT(2A)R in modulating glutamate-mediated cognitive performance in the prefrontal cortex and highlight the whole frontoseptohippocampal circuit as a key functional substrate of 5-HT(2A)R antagonism in normal and disease states.
Collapse
Affiliation(s)
- Alessandro Gozzi
- Biology, Neurosciences CEDD, GlaxoSmithKline Medicines Research Centre, Verona, Italy
| | | | | | | | | |
Collapse
|
21
|
Dome P, Lazary J, Kalapos MP, Rihmer Z. Smoking, nicotine and neuropsychiatric disorders. Neurosci Biobehav Rev 2009; 34:295-342. [PMID: 19665479 DOI: 10.1016/j.neubiorev.2009.07.013] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 07/23/2009] [Accepted: 07/30/2009] [Indexed: 12/20/2022]
Abstract
Tobacco smoking is an extremely addictive and harmful form of nicotine (NIC) consumption, but unfortunately also the most prevalent. Although disproportionately high frequencies of smoking and its health consequences among psychiatric patients are widely known, the neurobiological background of this epidemiological association is still obscure. The diverse neuroactive effects of NIC and some other major tobacco smoke constituents in the central nervous system may underlie this association. This present paper summarizes the pharmacology of NIC and its receptors (nAChR) based on a systematic review of the literature. The role of the brain's reward system(s) in NIC addiction and the results of functional and structural neuroimaging studies on smoking-related states and behaviors (i.e. dependence, craving, withdrawal) are also discussed. In addition, the epidemiological, neurobiological, and genetic aspects of smoking in several specific neuropsychiatric disorders are reviewed and the clinical relevance of smoking in these disease states addressed.
Collapse
Affiliation(s)
- Peter Dome
- Department of Clinical and Theoretical Mental Health, Kutvolgyi Clinical Center, Semmelweis University, Faculty of Medicine, Kutvolgyi ut 4, 1125 Budapest, Hungary.
| | | | | | | |
Collapse
|
22
|
Boulougouris V, Glennon JC, Robbins TW. Dissociable effects of selective 5-HT2A and 5-HT2C receptor antagonists on serial spatial reversal learning in rats. Neuropsychopharmacology 2008; 33:2007-19. [PMID: 17957219 DOI: 10.1038/sj.npp.1301584] [Citation(s) in RCA: 169] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Serotonin (5-hydroxytryptamine, or 5-HT) is strongly implicated in the ability to shift behavior in response to changing stimulus-reward contingencies. However, there is little information on the contribution of different 5-HT receptors in reversal learning. Thus, we investigated the effects of systemic administration of the 5-HT(2A) antagonist M100907 (0, 0.01, 0.03, and 0.1 mg/kg, i.p.) and the 5-HT(2C) antagonist SB 242084 (0, 0.1, 0.3, and 1.0 mg/kg, i.p.) on the performance of an instrumental two-lever spatial discrimination and serial spatial reversal learning task, where both levers were presented and only one was reinforced. The rat was required to respond on the reinforced lever under a fixed ratio 3 schedule of reinforcement. Following attainment of criterion, a series of within-session reversals was presented. Neither M100907 nor SB 242084 altered performance during spatial discrimination and retention of the previously reinforced contingencies. M100907 significantly impaired reversal learning by increasing both trials to criterion (only at the highest dose) and incorrect responses to criterion in Reversal 1, a pattern of behavior manifested as increased perseverative responding on the previously reinforced lever. In contrast, SB 242084 improved reversal learning by decreasing trials and incorrect responses to criterion in Reversal 1, with significantly fewer perseverative responses. These data support the view that 5-HT(2A) and 5-HT(2C) receptors have distinct roles in cognitive flexibility and response inhibition. The improved performance in reversal learning observed following 5-HT(2C) receptor antagonism suggests these receptors may offer the potential for therapeutic advances in a number of neuropsychiatric disorders where cognitive deficits are a feature, including obsessive-compulsive disorder.
Collapse
Affiliation(s)
- Vasileios Boulougouris
- Department of Experimental Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK.
| | | | | |
Collapse
|
23
|
Berg KA, Clarke WP, Cunningham KA, Spampinato U. Fine-tuning serotonin2c receptor function in the brain: molecular and functional implications. Neuropharmacology 2008; 55:969-76. [PMID: 18602407 DOI: 10.1016/j.neuropharm.2008.06.014] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Revised: 06/05/2008] [Accepted: 06/09/2008] [Indexed: 10/21/2022]
Abstract
The serotonin(2C) receptor (5-HT(2C)R) is a member of the serotonin(2) family of 7-transmembrane-spanning (7-TMS) receptors, which possesses unique molecular and pharmacological properties such as constitutive activity and RNA editing. The 5-HT(2C)R is widely expressed within the central nervous system, where is thought to play a major role in the regulation of neuronal network excitability. In keeping with its ability to modulate dopamine (DA) neuron function in the brain, the 5-HT(2C)R is currently considered as a major target for improved treatments of neuropsychiatric disorders related to DA neuron dysfunction, such as depression, schizophrenia, Parkinson's disease or drug addiction. The aim of this review is to provide an update of the functional status of the central 5-HT(2C)R, covering molecular, cellular, anatomical, biochemical and behavioral aspects to highlight its distinctive regulatory properties, the emerging functional significance of constitutive activity and RNA editing in vivo, and the therapeutic potential of inverse agonism.
Collapse
Affiliation(s)
- Kelly A Berg
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | | | | | | |
Collapse
|
24
|
Oades RD. Function and dysfunction of monoamine interactions in children and adolescents with AD/HD. EXS 2006; 98:207-44. [PMID: 17019890 DOI: 10.1007/978-3-7643-7772-4_11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Robert D Oades
- Biopsychology Research Group, University Clinic for Child and Adolescent Psychiatry, Virchowstr 174, 45147 Essen, Germany.
| |
Collapse
|
25
|
Alex KD, Pehek EA. Pharmacologic mechanisms of serotonergic regulation of dopamine neurotransmission. Pharmacol Ther 2006; 113:296-320. [PMID: 17049611 PMCID: PMC2562467 DOI: 10.1016/j.pharmthera.2006.08.004] [Citation(s) in RCA: 434] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2006] [Accepted: 08/24/2006] [Indexed: 01/19/2023]
Abstract
The neurotransmitter dopamine (DA) has a long association with normal functions such as motor control, cognition, and reward, as well as a number of syndromes including drug abuse, schizophrenia, and Parkinson's disease. Studies show that serotonin (5-HT) acts through several 5-HT receptors in the brain to modulate DA neurons in all 3 major dopaminergic pathways. There are at least fourteen 5-HT receptor subtypes, many of which have been shown to play some role in mediating 5-HT/DA interactions. Several subtypes, including the 5-HT1A, 5-HT1B, 5-HT2A, 5-HT3 and 5-HT4 receptors, act to facilitate DA release, while the 5-HT2C receptor mediates an inhibitory effect of 5-HT on DA release. Most 5-HT receptor subtypes only modulate DA release when 5-HT and/or DA neurons are stimulated, but the 5-HT2C receptor, characterized by high levels of constitutive activity, inhibits tonic as well as evoked DA release. This review summarizes the anatomical evidence for the presence of each 5-HT receptor subtype in dopaminergic regions of the brain and the neuropharmacological evidence demonstrating regulation of each DA pathway. The relevance of 5-HT receptor modulation of DA systems to the development of therapeutics used to treat schizophrenia, depression, and drug abuse is discussed. Lastly, areas are highlighted in which future research would be maximally beneficial to the treatment of these disorders.
Collapse
Affiliation(s)
- K D Alex
- Department of Neurosciences, Case Western Reserve School of Medicine, Cleveland, OH 44106, USA
| | | |
Collapse
|
26
|
Fletcher PJ, Sinyard J, Higgins GA. The effects of the 5-HT(2C) receptor antagonist SB242084 on locomotor activity induced by selective, or mixed, indirect serotonergic and dopaminergic agonists. Psychopharmacology (Berl) 2006; 187:515-25. [PMID: 16832658 DOI: 10.1007/s00213-006-0453-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Accepted: 05/20/2006] [Indexed: 11/26/2022]
Abstract
RATIONALE The 5-HT(2C) receptor modulates mesolimbic dopamine (DA) function and the expression of DA-dependent behaviors, including stimulant-induced hyperactivity. The 5-HT(2C) receptor may also be involved in drug-induced locomotion that is 5-HT-dependent. OBJECTIVES This study investigated the effects of the 5-HT(2C) receptor antagonist 6-chloro-5-methyl-1-[[2-[(2-methyl-3-pyridyl)oxy]-5-pyridyl]carbamoyl]-indoline (SB242084) on hyperlocomotion induced by psychomotor stimulants with selective, or mixed, actions on serotonergic and/or dopaminergic systems. MATERIALS AND METHODS Male Sprague-Dawley rats were treated in the presence or absence of SB242084 with releasers/reuptake inhibitors of DA (amphetamine and methylphenidate), 5-HT (fenfluramine and citalopram), or both 5-HT and DA (MDMA and cocaine). In addition, the effects of SB242084 combined with nicotine, morphine, or the 5-HT(1A/1B) receptor agonist RU24969 were examined. Locomotor activity was recorded for 2 h. RESULTS SB242084 potentiated hyperactivity induced by MDMA (2.5-5 mg/kg), amphetamine (0.5 mg/kg), fenfluramine (5 mg/kg), cocaine (10 mg/kg), and methylphenidate (5 mg/kg). SB242084 modestly potentiated nicotine-induced (0.2-0.4 mg/kg) and morphine-induced (2.5 mg/kg) hyperactivity. SB242084 failed to influence hyperactivity induced by RU24969 (0.5-1 mg/kg) or citalopram (10-20mg/kg). CONCLUSION SB242084 potentiated the locomotor stimulant effects of both indirect DA and 5-HT agonists. This potentiation may reflect two distinct mechanisms. The first involves direct enhancement of DA activity as shown by potentiation of the effects of amphetamine and methylphenidate. The second mechanism reflects an unmasking of stimulatory 5-HT receptors activated by 5-HT releasers (possibly 5-HT(1B/2A)) through blockade of inhibitory 5-HT(2C) receptors. The failure of SB242084 to potentiate the effect of citalopram might reflect differences between changes in synaptic levels of 5-HT produced by release compared to reuptake inhibition.
Collapse
Affiliation(s)
- Paul J Fletcher
- Section of Biopsychology, Centre for Addiction and Mental Health, Toronto, ON, Canada.
| | | | | |
Collapse
|
27
|
Siuciak JA, Chapin DS, McCarthy SA, Guanowsky V, Brown J, Chiang P, Marala R, Patterson T, Seymour PA, Swick A, Iredale PA. CP-809,101, a selective 5-HT2C agonist, shows activity in animal models of antipsychotic activity. Neuropharmacology 2006; 52:279-90. [PMID: 16949622 DOI: 10.1016/j.neuropharm.2006.07.024] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2006] [Revised: 07/12/2006] [Accepted: 07/17/2006] [Indexed: 10/24/2022]
Abstract
CP-809,101 is a potent, functionally selective 5-HT(2C) agonist that displays approximately 100% efficacy in vitro. The aim of the present studies was to assess the efficacy of a selective 5-HT(2C) agonist in animal models predictive of antipsychotic-like efficacy and side-effect liability. Similar to currently available antipsychotic drugs, CP-809,101 dose-dependently inhibited conditioned avoidance responding (CAR, ED(50)=4.8 mg/kg, sc). The efficacy of CP-809,101 in CAR was completely antagonized by the concurrent administration of the 5-HT(2C) receptor antagonist, SB-224,282. CP-809,101 antagonized both PCP- and d-amphetamine-induced hyperactivity with ED(50) values of 2.4 and 2.9 mg/kg (sc), respectively and also reversed an apomorphine induced-deficit in prepulse inhibition. At doses up to 56 mg/kg, CP-809,101 did not produce catalepsy. Thus, the present results demonstrate that the 5-HT(2C) agonist, CP-809,101, has a pharmacological profile similar to that of the atypical antipsychotics with low extrapyramidal symptom liability. CP-809,101 was inactive in two animal models of antidepressant-like activity, the forced swim test and learned helplessness. However, CP-809,101 was active in novel object recognition, an animal model of cognitive function. These data suggest that 5-HT(2C) agonists may be a novel approach in the treatment of psychosis as well as for the improvement of cognitive dysfunction associated with schizophrenia.
Collapse
Affiliation(s)
- Judith A Siuciak
- CNS Discovery, Pfizer Global Research and Development, Eastern Point Road, Groton, CT 06340, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Horacek J, Bubenikova-Valesova V, Kopecek M, Palenicek T, Dockery C, Mohr P, Höschl C. Mechanism of action of atypical antipsychotic drugs and the neurobiology of schizophrenia. CNS Drugs 2006; 20:389-409. [PMID: 16696579 DOI: 10.2165/00023210-200620050-00004] [Citation(s) in RCA: 316] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Atypical antipsychotics have greatly enhanced the treatment of schizophrenia. The mechanisms underlying the effectiveness and adverse effects of these drugs are, to date, not sufficiently explained. This article summarises the hypothetical mechanisms of action of atypical antipsychotics with respect to the neurobiology of schizophrenia.When considering treatment models for schizophrenia, the role of dopamine receptor blockade and modulation remains dominant. The optimal occupancy of dopamine D(2) receptors seems to be crucial to balancing efficacy and adverse effects - transient D(2) receptor antagonism (such as that attained with, for example, quetiapine and clozapine) is sufficient to obtain an antipsychotic effect, while permanent D(2) receptor antagonism (as is caused by conventional antipsychotics) increases the risk of adverse effects such as extrapyramidal symptoms. Partial D(2) receptor agonism (induced by aripiprazole) offers the possibility of maintaining optimal blockade and function of D(2) receptors. Balancing presynaptic and postsynaptic D(2) receptor antagonism (e.g. induced by amisulpride) is another mechanism that can, through increased release of endogenous dopamine in the striatum, protect against excessive blockade of D(2) receptors. Serotonergic modulation is associated with a beneficial increase in striatal dopamine release. Effects on the negative and cognitive symptoms of schizophrenia relate to dopamine release in the prefrontal cortex; this can be modulated by combined D(2) and serotonin 5-HT(2A) receptor antagonism (e.g. by olanzapine and risperidone), partial D(2) receptor antagonism or the preferential blockade of inhibitory dopamine autoreceptors. In the context of the neurodevelopmental disconnection hypothesis of schizophrenia, atypical antipsychotics (in contrast to conventional antipsychotics) induce neuronal plasticity and synaptic remodelling, not only in the striatum but also in other brain areas such as the prefrontal cortex and hippocampus. This mechanism may normalise glutamatergic dysfunction and structural abnormalities and affect the core pathophysiological substrates for schizophrenia.
Collapse
Affiliation(s)
- Jiri Horacek
- Prague Psychiatric Centre, Prague, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
29
|
Navailles S, De Deurwaerdère P, Spampinato U. Clozapine and haloperidol differentially alter the constitutive activity of central serotonin2C receptors in vivo. Biol Psychiatry 2006; 59:568-75. [PMID: 16182256 DOI: 10.1016/j.biopsych.2005.07.035] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2005] [Revised: 07/18/2005] [Accepted: 07/25/2005] [Indexed: 11/16/2022]
Abstract
BACKGROUND Central serotonin2C (5-HT2C) receptors are known to play a role in the mechanism of action of the antipsychotic drugs (APDs) clozapine and haloperidol. However, evidence for the involvement of the constitutive activity of 5-HT2C receptors in the dopamine (DA)ergic effects of APDs is lacking in vivo. METHODS Using in vivo microdialysis in halothane-anesthetized rats, we assessed the ability of selective 5-HT2C compounds to modulate the release of DA induced by haloperidol and clozapine in the nucleus accumbens and striatum. RESULTS Both APDs induced a dose-dependent increase in accumbal and striatal DA extracellular levels. The effect of .01 mg/kg haloperidol was potentiated by the 5-HT2C inverse agonist SB 206553 (5 mg/kg) but unaltered by the 5-HT2C antagonists SB 243213 and SB 242084 (1 mg/kg). Conversely, the effect of 1 mg/kg clozapine, a dose able to reverse the decrease in DA outflow induced by the 5-HT2C agonist Ro 60-0175 (3 mg/kg), was unaffected by SB 206553 but blocked by SB 243213 (1 mg/kg) and SB 242084 (.3 and 1 mg/kg). CONCLUSIONS These results show that clozapine and haloperidol differentially alter the constitutive activity of 5-HT2C receptors and suggest that clozapine behaves as a 5-HT2C inverse agonist in vivo.
Collapse
Affiliation(s)
- Sylvia Navailles
- Unité Mixte de Recherche-Centre National de la Recherche Scientifique, Bordeaux Cedex, France
| | | | | |
Collapse
|
30
|
Garrett JE, Kim I, Wilson RE, Wellman CL. Effect of N-methyl-d-aspartate receptor blockade on plasticity of frontal cortex after cholinergic deafferentation in rat. Neuroscience 2006; 140:57-66. [PMID: 16529871 DOI: 10.1016/j.neuroscience.2006.01.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2005] [Revised: 01/16/2006] [Accepted: 01/26/2006] [Indexed: 10/24/2022]
Abstract
Cholinergic projections from the nucleus basalis play a critical role in cortical plasticity. For instance, cholinergic deafferentation increases dendritic spine density and expression of the GluR1 subunit of the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate receptor in frontal cortex. Acetylcholine modulates glutamatergic activity in cortex, and the N-methyl-d-aspartate subtype of glutamate receptor plays a role in many forms of synaptic plasticity. To assess whether N-methyl-d-aspartate receptors mediate the increase in GluR1 and spine density resulting from cholinergic deafferentation, we examined the effect of N-methyl-d-aspartate receptor blockade on nucleus basalis lesion-induced upregulation of GluR1 and dendritic spines. Rats received unilateral sham or 192 IgG saporin lesions of the nucleus basalis. Half of the rats in each group were treated with the N-methyl-d-aspartate antagonist MK-801 or phosphate-buffered saline. Two weeks later, brains were processed for either immunohistochemical staining of the GluR1 subunit or Golgi histology. In layer II-III of frontal cortex, neuronal GluR1 expression was assessed using an unbiased stereological technique, and spine density was assessed on basilar branches of pyramidal neurons. GluR1 expression was increased after nucleus basalis lesion, but this increase was prevented with MK-801. Similarly, nucleus basalis-lesioned animals had significantly higher spine densities, and this effect was also prevented by treatment with MK-801. Thus, N-methyl-d-aspartate receptor blockade prevented both GluR1 and spine density upregulation following cholinergic deafferentation, suggesting that these effects are N-methyl-d-aspartate receptor-mediated.
Collapse
Affiliation(s)
- J E Garrett
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | | | | | | |
Collapse
|
31
|
Li Z, Ichikawa J, Huang M, Prus AJ, Dai J, Meltzer HY. ACP-103, a 5-HT2A/2C inverse agonist, potentiates haloperidol-induced dopamine release in rat medial prefrontal cortex and nucleus accumbens. Psychopharmacology (Berl) 2005; 183:144-53. [PMID: 16220333 DOI: 10.1007/s00213-005-0170-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2004] [Accepted: 08/03/2005] [Indexed: 10/25/2022]
Abstract
RATIONALE Atypical antipsychotic drugs (APDs) such as clozapine, olanzapine, quetiapine, risperidone, and ziprasidone are serotonin (5-HT)(2A) antagonists and relatively weaker dopamine (DA) D(2) antagonists, with variable 5-HT(2C) antagonist properties. The ability of atypical APDs to preferentially increase DA release in the cortex compared to the limbic system is believed to be due in part to their antagonism of 5-HT(2A) and D(2) receptors and believed to contribute to their beneficial effects on cognition, negative, and psychotic symptoms. Previous studies from this laboratory using microdialysis have shown that pretreatment of the 5-HT(2A) antagonist M100907 with the typical APD and D(2) antagonist haloperidol produced an increase in the medial prefrontal cortex (mPFC), but not in the nucleus accumbens (NAC), DA release. However, pretreatment with the 5-HT(2A/2C) receptor antagonist SR46349-B with haloperidol increased both mPFC and NAC DA release, suggesting that both 5-HT(2A) and 5-HT(2C) properties may be important for atypical APD effects. OBJECTIVE The purpose of this study was to examine the effects of a novel putative atypical APD ACP-103 on mPFC and NAC DA release using in vivo microdialysis in freely moving rats that are awake. ACP-103 is an inverse agonist at both 5-HT(2A) and 5-HT(2C) receptors and has intermediate affinities for 5-HT(2C) receptors relative to their affinities for 5-HT(2A) receptors compared to M100907 and SR46349-B. In addition, the effects of ACP-103 were compared to M100907 and SR46349-B, and ACP-103 was also coadministered with haloperidol. RESULTS ACP-103 10.0 mg/kg, but not 3.0 mg/kg, increased DA release in the mPFC, while neither dose increased DA release in the NAC. Like M100907, ACP-103 (3.0 mg/kg) potentiated 0.1 mg/kg haloperidol-induced DA release in the mPFC while inhibiting that in the NAC. However, ACP-103 (3.0 mg/kg), similar to SR46349-B, potentiated a high dose of haloperidol (1.0 mg/kg)-induced DA release in both regions. The potent 5-HT(2C) antagonist SB242084 1.0 mg/kg significantly potentiated 0.1 mg/kg haloperidol-induced DA release in both the mPFC and NAC. However, SB242084, at 0.2 mg/kg, significantly potentiated DA release only in the NAC. Moreover, SB242084 0.2 mg/kg potentiated DA release in the NAC produced by the combination treatment of 3 mg/kg ACP-103 and 0.1 mg/kg haloperidol. CONCLUSION These data suggest that the relative extent of 5-HT(2A) and 5-HT(2C) antagonism, as well as the extent of D(2) receptor blockade, has a critical influence on DA release in the mPFC and NAC and may be a determining factor in the action of this class of atypical APDs on these two potentially clinically relevant parameters.
Collapse
Affiliation(s)
- Zhu Li
- Psychiatry Department, Psychopharmacology Division, Vanderbilt University School of Medicine, Suite 306, 1601 23rd Ave. S., Nashville, TN 37212, USA.
| | | | | | | | | | | |
Collapse
|
32
|
Terry AV, Buccafusco JJ, Bartoszyk GD. Selective serotonin 5-HT2A receptor antagonist EMD 281014 improves delayed matching performance in young and aged rhesus monkeys. Psychopharmacology (Berl) 2005; 179:725-32. [PMID: 15619109 DOI: 10.1007/s00213-004-2114-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2004] [Accepted: 09/22/2004] [Indexed: 10/26/2022]
Abstract
RATIONALE The superior cognitive effects of atypical neuroleptics over typical agents reported in the schizophrenia literature are often attributed to the more prominent antagonist activity of the atypical drugs at serotonin 5HT(2A) receptors. However, atypical neuroleptics also have activity at many additional neurotransmitter receptors and few studies have specifically (and prospectively) tested the hypothesis that 5HT(2A) antagonism alone results in enhanced cognitive function. OBJECTIVES The purpose of this study was to evaluate the selective 5-HT(2A) antagonist, 7-{4-[2-(4-fluoro-phenyl)-ethyl]-piperazine-1-carbonyl}-1H-indole-3-carbonitrile HCl (EMD 281014) in young and aged monkeys in a test designed to assess working memory function. METHODS Four oral doses (0.1, 1.0, 3.0, and 10.0 mg/kg) of EMD 281014 were evaluated in six young adult (mean age=9.2 years) and eight aged rhesus macaques (mean age=24.9 years) trained to perform a computer-assisted delayed matching-to-sample (DMTS) task. RESULTS Depending on dose, EMD 281014 improved DMTS accuracy in young and aged monkeys primarily at either the medium or long retention intervals. While the latencies associated with incorrect color selections (choices latencies) tended to be longer than those associated with correct selections (particularly in the aged subjects) under baseline conditions, there were no significant effects of EMD 281014 on either sample or choice latencies in either age group. In addition, no adverse effects were observed across the range of doses evaluated in either cohort of animals. CONCLUSION These experiments, conducted in a non-human primate model, suggest that selective 5HT(2A) antagonists such as EMD 281014 could offer therapeutic benefit to younger and older psychiatric patients by improving working memory function.
Collapse
Affiliation(s)
- Alvin V Terry
- Program in Clinical and Experimental Therapeutics, CJ-1020 The Medical College of Georgia, University of Georgia College of Pharmacy (Augusta Campus), Augusta, GA 30912, USA.
| | | | | |
Collapse
|
33
|
Mamo D, Sedman E, Tillner J, Sellers EM, Romach MK, Kapur S. EMD 281014, a specific and potent 5HT2 antagonist in humans: a dose-finding PET study. Psychopharmacology (Berl) 2004; 175:382-8. [PMID: 15007535 DOI: 10.1007/s00213-004-1817-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
While serotonin 5HT2-receptors have been implicated in the etiology and pharmacological treatment of a number of neuropsychiatric conditions, there are few potent and specific agents available for use in human clinical studies. EMD 281014 is a highly specific 5HT2-receptor antagonist that is currently under development. To find optimal doses for early clinical studies, we conducted a PET study using [18F]setoperone in nine healthy subjects scanned at baseline and following the administration of 1, 3, and 7 mg EMD 281014. The study drug was well tolerated by all study participants, and all doses resulted in > or =70% occupancy at frontal 5HT2-receptors 3 h after drug administration. The data suggest that daily dosing of > or =3 mg EMD 281014 should be sufficient to provide sustained high levels of 5HT2-receptor occupancy in future clinical trials.
Collapse
Affiliation(s)
- David Mamo
- Department of Psychiatry, University of Toronto, Toronto, Canada
| | | | | | | | | | | |
Collapse
|
34
|
|
35
|
Abstract
Pharmacological manipulation of the 5-hydroxytryptamine (5-HT; serotonin) system has long been associated with a regulation of feeding behaviour, however, the initial part of this article reviews evidence that central 5-HT systems similarly modulate reward-related behaviours, particularly drug reward. The second part of this article considers what we believe to be strong emerging pharmacological and genetic evidence that many of these effects are mediated through 5-HT(2C) receptor signalling mechanisms. Finally, we consider the potential for selective 5-HT(2C) agonists as therapies for substance abuse disorders and the medical implications for different 5-HT(2C) receptor isoforms generated by RNA editing.
Collapse
Affiliation(s)
- Guy A Higgins
- Schering-Plough Research Institute, K15-2-2600, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA.
| | | |
Collapse
|
36
|
Navailles S, De Deurwaerdère P, Porras G, Spampinato U. In vivo evidence that 5-HT2C receptor antagonist but not agonist modulates cocaine-induced dopamine outflow in the rat nucleus accumbens and striatum. Neuropsychopharmacology 2004; 29:319-26. [PMID: 14560323 DOI: 10.1038/sj.npp.1300329] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
During recent years, much attention has been devoted at investigating the modulatory role of central 5-HT(2C) receptors on dopamine (DA) neuron activity, and it has been proposed that these receptors modulate selectively DA exocytosis associated with increased firing of DA neurons. In the present study, using in vivo microdialysis in the nucleus accumbens (NAc) and the striatum of halothane-anesthetized rats, we addressed this hypothesis by assessing the ability of 5-HT(2C) agents to modulate the increase in DA outflow induced by haloperidol and cocaine, of which the effects on DA outflow are associated or not with an increase in DA neuron firing, respectively. The intraperitoneal administration of cocaine (10-30 mg/kg) induced a dose-dependent increase in DA extracellular levels in the NAc and the striatum. The effect of 15 mg/kg cocaine was potentiated by the mixed 5-HT(2C/2B) antagonist SB 206553 (5 mg/kg i.p.) and the selective 5-HT(2C) antagonist SB 242084 (1 mg/kg i.p.) in both brain regions. The mixed 5-HT(2C/2B) agonist, Ro 60-0175 (1 mg/kg i.p.), failed to affect cocaine-induced DA outflow, but reduced significantly the increase in DA outflow induced by the subcutaneous administration of 0.1 mg/kg haloperidol. The obtained results provide evidence that 5-HT(2C) receptors exert similar effects in both the NAc and the striatum, and they modulate DA exocytosis also when its increase occurs independently from an increase in DA neuron impulse activity. Furthermore, they show that 5-HT(2C) agonists, at variance with 5-HT(2C) antagonists, exert a preferential control on the impulse-stimulated release of DA.
Collapse
Affiliation(s)
- Sylvia Navailles
- UMR CNRS, 5541-Université Victor Segalen Bordeaux 2, Bordeaux Cedex, France
| | | | | | | |
Collapse
|
37
|
Pierucci M, Di Matteo V, Esposito E. Stimulation of serotonin2C receptors blocks the hyperactivation of midbrain dopamine neurons induced by nicotine administration. J Pharmacol Exp Ther 2004; 309:109-18. [PMID: 14722316 DOI: 10.1124/jpet.103.062208] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In vivo electrophysiological techniques were used to study the effect of nicotine on the basal activity of dopamine (DA)-containing neurons in the substantia nigra pars compacta (SNc) and the ventral tegmental area (VTA) of chloral hydrate-anesthetized rats. Acute i.v. injections of nicotine (25-400 microg/kg) caused a dose-dependent increase of the firing rate and the bursting activity of DA neurons both in the SNc and the VTA. Repeated daily injection of nicotine (1 mg/kg i.p.) for 10 consecutive days did not cause any significant change in the basal activity of DA neurons in the SNc and the VTA. Acute challenge with nicotine (25-400 microg/kg i.v.) in animals treated repeatedly with this drug caused a dose-related excitation of DA neurons in both areas. To test the hypothesis that stimulation of 5-hydroxytryptamine (5-HT, serotonin)(2C) receptors could affect nicotine-induced stimulation of DA neuronal activity, the selective 5-HT(2C) receptor agonist RO 60-0175 was used. Pretreatment with 100 microg/kg i.v. (S)-2-(chloro-5-fluoro-indo-l-yl)-l-methylethylamine 1:1 C(4)H(4)O(4) (RO 60-0175) prevented the enhancement in DA neuronal firing rate elicited by acute nicotine (25-400 microg/kg i.v.) in the SNc of both drug naive and chronically treated rats but was devoid of any significant effect in the VTA. Moreover, the dose of 300 microg/kg i.v. RO 60-0175 significantly reduced the stimulatory effect of VTA DA neurons induced by acute challenge with nicotine (25-400 microg/kg i.v.) both in drug naive and chronically treated rats. It is concluded that selective activation of 5-HT(2C) receptors can block the stimulatory action of nicotine on midbrain DA neuronal activity.
Collapse
Affiliation(s)
- Massimo Pierucci
- Istituto di Ricerche Farmacologiche Mario Negri, Consorzio Mario Negri Sud, 66030 Santa Maria Imbaro, Chieti, Italy
| | | | | |
Collapse
|
38
|
Frankel PS, Cunningham KA. m-Chlorophenylpiperazine (mCPP) Modulates the Discriminative Stimulus Effects of Cocaine Through Actions at the 5-HT₂C Receptor. Behav Neurosci 2004; 118:157-62. [PMID: 14979792 DOI: 10.1037/0735-7044.118.1.157] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Agonists acting at the serotonin-1B receptor (5-HT1BR) and 5-HT2CR have been reported to potentiate and block, respectively, the discriminative stimulus effects of cocaine. The present investigation reassessed the antagonistic effects of the mixed 5-H2C/1BR agonist m-chlorophenylpiperazine (mCPP) on the discriminative stimulus effects of cocaine in the presence or absence of selective antagonism of the 5-HT1BR or 5-HT2CR. The stimulus effects of cocaine were attenuated by mCPP at doses that reduced response rates. The selective 5-HT2CR antagonist SB 242084, but not the selective 5-HT1BR antagonist GR 127935, reversed the mCPP-evoked attenuation of the cocaine cue and the suppression of response rates. These results demonstrate that the suppressive effects of mCPP on cocaine discrimination are related to stimulation of the HT2CR.
Collapse
Affiliation(s)
- Paul S Frankel
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, TX 77555-1031, USA
| | | |
Collapse
|
39
|
Kusljic S, Copolov DL, van den Buuse M. Differential role of serotonergic projections arising from the dorsal and median raphe nuclei in locomotor hyperactivity and prepulse inhibition. Neuropsychopharmacology 2003; 28:2138-47. [PMID: 12888784 DOI: 10.1038/sj.npp.1300277] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
While an involvement of brain serotonin systems in schizophrenia has been suggested by many studies, the relative role of different serotonergic projections in the brain remains unclear. We therefore examined the effects of selective brain serotonin depletion on psychotropic drug-induced locomotor hyperactivity and prepulse inhibition, two animal models of aspects of schizophrenia. Pentobarbital-anesthetized (60 mg/kg, i.p.) male Sprague-Dawley rats were stereotaxically microinjected with 1 microl of a 5 microg/microl solution of the serotonergic neurotoxin 5,7-dihydroxytryptamine (5,7-DHT) into either the dorsal or median raphe nucleus. At 2 weeks after the surgery, rats with dorsal raphe lesions did not show changes in psychotropic drug-induced locomotor hyperactivity, but displayed partial disruption of prepulse inhibition. In contrast, rats with median raphe lesions showed significant enhancement of phencyclidine-induced, but not amphetamine-induced locomotor hyperactivity and a marked disruption of prepulse inhibition. These results provide evidence for differential involvement of serotonergic projections in locomotor hyperactivity and prepulse inhibition. This study may help to explain the role of different serotonin projections in the brain in the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Snezana Kusljic
- Behavioural Neuroscience Laboratory, Mental Health Research Institute of Victoria, Parkville, Australia
| | | | | |
Collapse
|
40
|
Pesić V, Janać B, Milanović D, Tomić M, Veskov R, Rakić L. Motor effects of amphetamine in rats pretreated with either dizocilpine or phencyclidine. Behav Brain Res 2003; 147:211-5. [PMID: 14659587 DOI: 10.1016/s0166-4328(03)00142-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The aim of the present study was to examine motor effects of amphetamine (AMPH) in rats pretreated with either dizocilpine (MK-801) or phencyclidine (PCP), and to estimate possible differences in these effects. Our results showed that AMPH increases the duration of motor effects of PCP, while it does not change motor effects of MK-801. These findings may reflect different mechanisms of action of MK-801 and PCP, as well as selective influence of AMPH on metabolism of these drugs.
Collapse
Affiliation(s)
- Vesna Pesić
- Laboratory of Electrophysiology and Behavior, Department of Neurobiology and Immunology, Institute for Biological Research, 29 Novembra 142, 11060 Belgrade, Yugoslavia.
| | | | | | | | | | | |
Collapse
|
41
|
Higgins GA, Enderlin M, Haman M, Fletcher PJ. The 5-HT2A receptor antagonist M100,907 attenuates motor and 'impulsive-type' behaviours produced by NMDA receptor antagonism. Psychopharmacology (Berl) 2003; 170:309-319. [PMID: 12904968 DOI: 10.1007/s00213-003-1549-0] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2003] [Accepted: 05/25/2003] [Indexed: 10/26/2022]
Abstract
In the present series of studies, we have investigated the effects of antagonists selective for the 5-HT(2A), 5-HT(2B) and 5-HT(2C) receptors on motor and 'impulsive'-type behaviours elicited by the non-competitive N-methyl- d-aspartate (NMDA) antagonist dizocilpine. The selective 5-HT(2A) receptor antagonist M100,907 (0.5 mg/kg) attenuated the hyperlocomotion and stereotypy produced by dizocilpine (0.1-0.3 mg/kg). The selective 5-HT(2B) receptor antagonist SB215,505 (3 mg/kg) and the selective 5-HT(2C) receptor antagonist SB242,084 (0.5 mg/kg) had no effect against either measure, except that SB242,084 produced a small potentiation of the hyperactivity response. Dizocilpine (0.03 mg/kg) increased premature responding in rats performing the 5-choice serial reaction time task (5-CSRTT), and increased response frequency consequently reducing the mean inter-response time (IRT) and efficiency of responding in a DRL24 task. M100,907 (0.5 mg/kg) attenuated each of these effects, as well as the increased premature responding produced by the NMDA NR2B selective antagonist Ro 63-1908 (1 mg/kg) in the 5-CSRTT. In contrast SB242,084 (0.5 mg/kg) did not attenuate the dizocilpine-induced premature responding or increased responding in the DRL24 task. Rather, SB242,084 (0.05-0.5 mg/kg) produced qualitatively similar effects to dizocilpine, increasing premature responding and reducing IRT. The results suggest that 5-HT(2A) receptor antagonists may normalise certain 'impulsive' behaviours produced by NMDA receptor hypofunction. The 5-HT(2C) receptor antagonist SB242,084 failed to exert equivalent effects, rather a trend toward exacerbation of the behavioural changes produced by dizocilpine was apparent.
Collapse
Affiliation(s)
- Guy A Higgins
- PRBN, F. Hoffmann-La Roche Ltd., Basel, Switzerland.
- Schering-Plough Research Institute, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA.
| | | | - Marie Haman
- PRBN, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Paul J Fletcher
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| |
Collapse
|
42
|
Le Pen G, Grottick AJ, Higgins GA, Moreau JL. Phencyclidine exacerbates attentional deficits in a neurodevelopmental rat model of schizophrenia. Neuropsychopharmacology 2003; 28:1799-809. [PMID: 12784101 DOI: 10.1038/sj.npp.1300208] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Schizophrenia is characterized by severe abnormalities in cognition, including disordered attention. In the rat, neonatal ventral hippocampal (NVH) lesions induce behavioral abnormalities at adulthood thought to simulate some aspects of the symptomatology of schizophrenia. Here, we compared the effects of NVH and adult ventral hippocampal (AVH) lesions on attentional performance as assessed by the five-choice serial reaction time task (5-CSRTT). NVH-lesioned rats were slower to acquire the task than AVH-lesioned and control animals. When training was complete, NVH- and AVH-lesioned animals exhibited stable but disrupted performance under standard conditions, thus emphasizing an implication of VH in visual attentional processes. Variations in task parameters induced a significantly greater disruption in NVH- and AVH-lesioned groups as compared to controls. NVH-lesioned rats were also hyper-responsive to the disruptive effects of a high dose of phencyclidine (PCP) (3 mg/kg). In contrast, amphetamine (0.4-0.8 mg/kg) had a similar effect in control and VH-lesioned rats. Thus, NVH-lesioned rats were impaired in the acquisition of stable performance in the 5-CSRTT, and were hypersensitive to the cognitive-impairing effects of PCP.
Collapse
|
43
|
Bartoszyk GD, van Amsterdam C, Böttcher H, Seyfried CA. EMD 281014, a new selective serotonin 5-HT2A receptor antagonist. Eur J Pharmacol 2003; 473:229-30. [PMID: 12892843 DOI: 10.1016/s0014-2999(03)01992-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The 5-HT2A receptor ligand 7-[4-[2-(4-fluoro-phenyl)-ethyl]-piperazine-1-carbonyl]-1H-indole-3-carbonitrile HCl (EMD 281014) selectively binds to human (h) and rat 5-HT2A receptors (IC50 values 0.35 and 1 nM, respectively; vs. 1334 nM for h5-HT2C) and inhibited 5-HT-stimulated [35S]guanosine 5'-O-3-thiotriphosphate (GTPgammaS)-accumulation in h5-HT2A transfected Chinese hamster ovary cells (IC50 9.3 nM). EMD 28014 counteracted the N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ)-induced decrease of [3H]ketanserin binding in rat frontal cortex (ID50 0.4 mg/kg p.o.) and R-(-)-1-(2,5-dimethoxy-4-iodophenyl)-aminopropane (DOI)-induced head-twitch behaviour in mice (ID50 0.01 mg/kg s.c., 0.06 mg/kg p.o.), demonstrating unique selectivity and efficacy.
Collapse
Affiliation(s)
- Gerd D Bartoszyk
- Department of CNS Research, Preclinical Research Merck KGaA, 64271 Darmstadt, Germany.
| | | | | | | |
Collapse
|
44
|
Abstract
The current investigation was undertaken to explore further the interactions between ethanol and the phencyclidine analog dizocilpine maleate (MK-801) on behaviors in male and female rats. It was previously found that ethanol dependence conferred cross-tolerance to the behaviorally activating effects of dizocilpine. The current set of studies was designed to assay the interactions between dizocilpine and ethanol in ethanol-naive animals by measuring open field behaviors. I also tested interactions between dizocilpine and rimcazole, a sigma receptor antagonist. In agreement with previous reports, I found significant effects of dizocilpine on several open field behaviors. In general, female rats displayed a lower level of hyperlocomotion and higher level of stereotypies than did male rats. Co-administration of ethanol delayed time to peak hyperlocomotion in male rats. It reduced locomotion in female rats compared with findings for administration of dizocilpine alone. Co-administration of ethanol with dizocilpine increased stereotypies in both sexes. Administration of ethanol increased locomotion to a greater degree in female than in male rats. In contrast, co-administration of rimcazole with dizocilpine had little effect on hyperlocomotion in male rats while increasing levels in female rats. Rimcazole increased dizocilpine-induced stereotypies to a greater extent in male than in female rats. Results of receptor-binding studies revealed small differences for cerebral cortical sigma receptors between male and female rats. Dizocilpine was unable to compete for sigma receptor-binding sites. This is in contrast to phencyclidine, which acts at both N-methyl-D-aspartate (NMDA) and sigma receptors. These findings extend previous evidence of interactions between ethanol and dizocilpine, but highlight that responses vary by measure, sex, and length of ethanol exposure. In addition, findings from the current study uncovered sex-selective interactions between dizocilpine and a sigma receptor ligand, providing further evidence for complex actions and interactions of this noncompetitive NMDA receptor antagonist with multiple sites in brain.
Collapse
Affiliation(s)
- Leslie L Devaud
- Department of Pharmaceutical Sciences, College of Pharmacy, Idaho State University, Pocatello, ID 83209-8334, USA.
| |
Collapse
|
45
|
Hanania T, McCreary AC, Haughey HM, Salaz DO, Zahniser NR. MK-801- and ethanol-induced activity in inbred long-sleep and short-sleep mice: dopamine and serotonin systems. Eur J Pharmacol 2002; 457:125-35. [PMID: 12464358 DOI: 10.1016/s0014-2999(02)02685-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Low doses of (5R,10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine (MK-801; dizocilpine) or ethanol induce less locomotor activation in inbred long-sleep (ILS) than short-sleep (ISS) mice. These differences may involve altered dopamine and/or 5-hydroxytryptamine (serotonin; 5-HT) neurotransmission. To address this possibility, the dopaminergic and serotonergic mechanisms underlying the locomotor-stimulant effects of MK-801 and ethanol in ILS and ISS mice were studied. Dopamine D1, D2 and 5-HT(2A) receptor antagonists reduced MK-801-stimulated activity in ILS mice without having any effect in ISS mice. The 5-HT reuptake inhibitor fluoxetine potentiated MK-801-stimulated activity selectively in ILS mice. Strain differences in 5-HT transporters do not explain this selective effect of fluoxetine in ILS mice since [3H]citalopram binding and [3H]5-HT uptake studies found no differences in the affinity, number or function of 5-HT transporters between ILS and ISS mice. Ethanol-induced activity in ISS mice was depressed by dopamine D2 and 5-HT(2C) receptor antagonists and enhanced by a 5-HT(1A) receptor antagonist. These results suggest that in ILS mice the locomotor-stimulant effects of MK-801 require increased dopamine and/or 5-HT neurotransmission. Conversely, in ISS mice, the effects of MK-801 appear to be monoamine-independent. Thus, even though both MK-801 and ethanol inhibit N-methyl-D-aspartate receptors, their stimulant effects appear to involve different neuronal systems.
Collapse
Affiliation(s)
- Taleen Hanania
- Department of Pharmacology C-236, University of Colorado Health Sciences Center, 4200 E. Ninth Avenue, Denver, CO 80262, USA.
| | | | | | | | | |
Collapse
|
46
|
Pozzi L, Acconcia S, Ceglia I, Invernizzi RW, Samanin R. Stimulation of 5-hydroxytryptamine (5-HT(2C) ) receptors in the ventrotegmental area inhibits stress-induced but not basal dopamine release in the rat prefrontal cortex. J Neurochem 2002; 82:93-100. [PMID: 12091469 DOI: 10.1046/j.1471-4159.2002.00947.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The present study investigated whether 5-HT(2C) receptors in the ventrotegmental area and prefrontal cortex regulate basal and stimulus-evoked dopamine release in the prefrontal cortex. Using the in vivo microdialysis technique in conscious rats, we studied the effect of a selective 5-HT(2C) receptor agonist, Ro60-0175, on basal and immobilization stress-induced dopamine release in the prefrontal cortex. Ro60-0175 intraperitoneally (2.5 mg/kg) and into the ventrotegmental area (10 microg/0.5 microL) completely antagonized the effect of stress on extracellular dopamine without altering basal levels. Infusion of 10 microm Ro60-0175 through the cortical probe had no significant effect on basal and stress-induced dopamine release. SB242084 (10 mg/kg), a selective antagonist of 5-HT(2C) receptors, significantly increased basal extracellular dopamine and completely prevented the effect of intraperitoneal and intraventrotegmental Ro60-0175 on the stress-induced rise of extracellular dopamine, but had no effect itself in stressed rats. The results show that Ro60-0175 suppresses cortical dopamine release induced by immobilization stress through the stimulation of 5-HT(2C) receptors in the ventrotegmental area. While confirming that endogenous 5-HT acting on 5-HT(2C) receptors tonically inhibit basal dopamine release in the prefrontal cortex, the present findings suggest that the stimulation of 5-HT(2C) receptors with an exogenous agonist preferentially inhibit stimulated release.
Collapse
Affiliation(s)
- Laura Pozzi
- Mario Negri Institute of Pharmacological Research, Via Eritrea 62, 20157 Milan, Italy
| | | | | | | | | |
Collapse
|
47
|
Breese GR, Knapp DJ, Moy SS. Integrative role for serotonergic and glutamatergic receptor mechanisms in the action of NMDA antagonists: potential relationships to antipsychotic drug actions on NMDA antagonist responsiveness. Neurosci Biobehav Rev 2002; 26:441-55. [PMID: 12204191 DOI: 10.1016/s0149-7634(02)00011-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
NMDA receptor antagonists worsen symptoms in schizophrenia and induce schizophrenic-like symptoms in normal individuals. In animals, NMDA antagonist-induced behavioral responses include increased activity, head weaving, deficits in paired pulse inhibition and social interaction, and increased forced swim immobility. Repeated exposure to NMDA antagonists in animals results in behavioral sensitization-a phenomenon accentuated in rats with dopaminergic neurons lesioned during development. In keeping with an involvement of serotonin and glutamate release in NMDA antagonist action, selected behaviors induced by NMDA antagonists are minimized by 5-HT(2A) receptor antagonists and mGLU2 receptor agonists. These observations provide promising new approaches for treating acute NMDA antagonist-induced psychosis. Further, acute atypical antipsychotic drugs also minimize NMDA antagonist actions to a greater degree than typical antipsychotics. However, because knowledge concerning acute versus chronic effectiveness of various antipsychotic drugs against NMDA antagonist neuropathology is limited, future studies to define more fully the basis of their differences in efficacy after chronic treatment could provide an understanding of their actions on neural mechanisms responsible for the core pathogenesis of schizophrenia.
Collapse
Affiliation(s)
- George R Breese
- Department of Psychiatry, UNC School of Medicine, University of North Carolina, 3007 Thurston-Bowles Bldg, Chapel Hill, NC 27599-7178, USA.
| | | | | |
Collapse
|
48
|
Gotoh L, Kawanami N, Nakahara T, Hondo H, Motomura K, Ohta E, Kanchiku I, Kuroki T, Hirano M, Uchimura H. Effects of the adenosine A(1) receptor agonist N(6)-cyclopentyladenosine on phencyclidine-induced behavior and expression of the immediate-early genes in the discrete brain regions of rats. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2002; 100:1-12. [PMID: 12008016 DOI: 10.1016/s0169-328x(02)00136-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Because of the possible interaction between adenosine receptors and dopaminergic functions, the compound acting on the specific adenosine receptor subtype may be a candidate for novel antipsychotic drugs. To elucidate the antipsychotic potential of the selective adenosine A(1) receptor agonist N(6)-cyclopentyladenosine (CPA), we examined herein the effects of CPA on phencyclidine (PCP)-induced behavior and expression of the immediate-early genes (IEGs), arc, c-fos and jun B, in the discrete brain regions of rats. PCP (7.5 mg/kg, s.c.) increased locomotor activity and head weaving in rats and this effect was significantly attenuated by pretreatment with CPA (0.5 mg/kg, s.c.). PCP increased the mRNA levels of c-fos and jun B in the medial prefrontal cortex, nucleus accumbens and posterior cingulate cortex, while leaving the striatum and hippocampus unaffected. CPA pretreatment significantly attenuated the PCP-induced increase in c-fos mRNA levels in the medial prefrontal cortex and nucleus accumbens. CPA also significantly attenuated the PCP-induced arc expression in the medial prefrontal cortex and posterior cingulate cortex. When administered alone, CPA decreased the mRNA levels of all IEGs examined in the nucleus accumbens, but not in other brain regions. Based on the ability of CPA to inhibit PCP-induced hyperlocomotion and its interaction with neural systems in the medial prefrontal cortex, posterior cingulate cortex and nucleus accumbens, the present results provide further evidence for a significant antipsychotic effect of the adenosine A(1) receptor agonist.
Collapse
Affiliation(s)
- Leo Gotoh
- Department of Chemistry, Faculty of Science, Kyushu University, Ropponmatsu, Fukuoka 810-8560, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Martin JR, Ballard TM, Higgins GA. Influence of the 5-HT2C receptor antagonist, SB-242084, in tests of anxiety. Pharmacol Biochem Behav 2002; 71:615-25. [PMID: 11888553 DOI: 10.1016/s0091-3057(01)00713-4] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The 5-HT2C antagonist SB-242084 was examined in various anxiety tests at doses based on reversal of mCPP-induced hypoactivity (0.1--3 mg/kg ip). In the elevated plus-maze task, SB-242084 exhibited signs of anxiolysis (time spent, distance travelled, and entries into open arms), but this was potentially confounded by its general increase of locomotion; alprazolam selectively affected open-arm parameters. In a Geller--Seifter conflict test, SB-242084 produced a modest, nonsignificant increase in punished responding compared to the significant effect produced by diazepam. None of the treatments significantly affected unpunished responding. In the conditioned emotional response (CER) test, SB-242084 produced an increase in the suppression ratio (SR, smaller than diazepam). Since this 5-HT2C antagonist also increased lever pressing, an additional test was conducted with amphetamine that stimulated lever pressing but, nonetheless, failed to produce any change in SR. In the fear-potentiated startle task, SB-242084 was inactive in comparison to a significant effect of diazepam. The previously described reduction of schedule-induced polydipsia by fluoxetine and 5-HT2C receptor agonist Ro60-0175 was attenuated by SB-242084 pretreatment, however, the latter compound exhibited a potent increase in polydipsia when given alone. The present results demonstrate an anxiolytic potential of SB-242084, as well as an intrinsic response-enhancing property, however, both of these effects are task dependent.
Collapse
Affiliation(s)
- James R Martin
- Neuroscience Department, Pharma Division, F. Hoffmann-La Roche Ltd., CH-4070, Basel, Switzerland.
| | | | | |
Collapse
|
50
|
Tomkins DM, Joharchi N, Tampakeras M, Martin JR, Wichmann J, Higgins GA. An investigation of the role of 5-HT(2C) receptors in modifying ethanol self-administration behaviour. Pharmacol Biochem Behav 2002; 71:735-44. [PMID: 11888565 DOI: 10.1016/s0091-3057(01)00710-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have previously reported that the 5-HT uptake blocker and releaser, dexfenfluramine, attenuates ethanol intake, and that this may be mediated via a 5-HT(2C) receptor mechanism. Our goals were to further determine the contribution made by this receptor subtype in mediating the reduction in ethanol self-administration induced by dexfenfluramine using the selective 5-HT(2C) antagonist, SB242,084. Additionally, we wanted to compare dexfenfluramine's effects on ethanol motivated responding with those elicited by the 5-HT(2C) receptor agonist Ro60-0175. In male Wistar rats trained to self-administer a 12% w/v ethanol solution on an FR-4 schedule, both dexfenfluramine (0.05--2.5 mg/kg ip) and Ro60-0175 (0.1--1 mg/kg sc) produced a significant dose-dependent reduction in ethanol self-administration, which was reversed by SB242,084 (0.5 mg/kg ip). Interestingly, SB242,084 alone (0.1--1 mg/kg ip) significantly increased ethanol motivated responding in both high and low ethanol drinking animals. While dexfenfluramine had no effect on ethanol's kinetic profile, the selective 5-HT(2C) agents used had opposing effects, with the agonist Ro60-0175 decreasing and the antagonist SB242,084 increasing blood ethanol levels. Since there were incongruent drug effects on ethanol self-administration and blood ethanol levels, these data support a role for 5-HT(2C) receptors in modifying ethanol intake independent of their effects on blood ethanol kinetics. Furthermore, 5-HT(2C) receptors may exert a tonic control over ethanol self-administration behaviour, since agonist and antagonist administration had opposing effects on this behaviour.
Collapse
Affiliation(s)
- Denise M Tomkins
- Biobehavioural Pharmacology, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.
| | | | | | | | | | | |
Collapse
|