1
|
Brembach TC, Sabat R, Witte K, Schwerdtle T, Wolk K. Molecular and functional changes in neutrophilic granulocytes induced by nicotine: a systematic review and critical evaluation. Front Immunol 2023; 14:1281685. [PMID: 38077313 PMCID: PMC10702484 DOI: 10.3389/fimmu.2023.1281685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023] Open
Abstract
Background Over 1.1 billion people smoke worldwide. The alkaloid nicotine is a prominent and addictive component of tobacco. In addition to tumors and cardiovascular disorders, tobacco consumption is associated with a variety of chronic-inflammatory diseases. Although neutrophilic granulocytes (neutrophils) play a role in the pathogenesis of many of these diseases, the impact of nicotine on neutrophils has not been systematically reviewed so far. Objectives The aim of this systematic review was to evaluate the direct influence of nicotine on human neutrophil functions, specifically on cell death/damage, apoptosis, chemotaxis, general motility, adhesion molecule expression, eicosanoid synthesis, cytokine/chemokine expression, formation of neutrophil extracellular traps (NETs), phagocytosis, generation of reactive oxygen species (ROS), net antimicrobial activity, and enzyme release. Material and methods This review was conducted according to the PRISMA guidelines. A literature search was performed in the databases NCBI Pubmed® and Web of Science™ in February 2023. Inclusion criteria comprised English written research articles, showing in vitro studies on the direct impact of nicotine on specified human neutrophil functions. Results Of the 532 originally identified articles, data from 34 articles were finally compiled after several evaluation steps. The considered studies highly varied in methodological aspects. While at high concentrations (>3 mmol/l) nicotine started to be cytotoxic to neutrophils, concentrations typically achieved in blood of smokers (in the nmol/l range) applied for long exposure times (24-72h) supported the survival of neutrophils. Smoking-relevant nicotine concentrations also increased the chemotaxis of neutrophils towards several chemoattractants, elevated their production of elastase, lipocalin-2, CXCL8, leukotriene B4 and prostaglandin E2, and reduced their integrin expression. Moreover, while nicotine impaired the neutrophil phagocytotic and anti-microbial activity, a range of studies demonstrated increased NET formation. However, conflicting effects were found on ROS generation, selectin expression and release of β-glucuronidase and myeloperoxidase. Conclusion Nicotine seems to support the presence in the tissue and the inflammatory and selected tissue-damaging activity of neutrophils and reduces their antimicrobial functions, suggesting a direct contribution of nicotine to the pathogenesis of chronic-inflammatory diseases via influencing the neutrophil biology.
Collapse
Affiliation(s)
- Theresa-Charlotte Brembach
- Psoriasis Research and Treatment Center, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Robert Sabat
- Psoriasis Research and Treatment Center, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Katrin Witte
- Psoriasis Research and Treatment Center, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Tanja Schwerdtle
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
- German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Kerstin Wolk
- Psoriasis Research and Treatment Center, Charité – Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
2
|
van Dongen J, Willemsen G, de Geus EJC, Boomsma DI, Neale MC. Effects of smoking on genome-wide DNA methylation profiles: A study of discordant and concordant monozygotic twin pairs. eLife 2023; 12:e83286. [PMID: 37643467 PMCID: PMC10501767 DOI: 10.7554/elife.83286] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 08/08/2023] [Indexed: 08/31/2023] Open
Abstract
Background Smoking-associated DNA methylation levels identified through epigenome-wide association studies (EWASs) are generally ascribed to smoking-reactive mechanisms, but the contribution of a shared genetic predisposition to smoking and DNA methylation levels is typically not accounted for. Methods We exploited a strong within-family design, that is, the discordant monozygotic twin design, to study reactiveness of DNA methylation in blood cells to smoking and reversibility of methylation patterns upon quitting smoking. Illumina HumanMethylation450 BeadChip data were available for 769 monozygotic twin pairs (mean age = 36 years, range = 18-78, 70% female), including pairs discordant or concordant for current or former smoking. Results In pairs discordant for current smoking, 13 differentially methylated CpGs were found between current smoking twins and their genetically identical co-twin who never smoked. Top sites include multiple CpGs in CACNA1D and GNG12, which encode subunits of a calcium voltage-gated channel and G protein, respectively. These proteins interact with the nicotinic acetylcholine receptor, suggesting that methylation levels at these CpGs might be reactive to nicotine exposure. All 13 CpGs have been previously associated with smoking in unrelated individuals and data from monozygotic pairs discordant for former smoking indicated that methylation patterns are to a large extent reversible upon smoking cessation. We further showed that differences in smoking level exposure for monozygotic twins who are both current smokers but differ in the number of cigarettes they smoke are reflected in their DNA methylation profiles. Conclusions In conclusion, by analysing data from monozygotic twins, we robustly demonstrate that DNA methylation level in human blood cells is reactive to cigarette smoking. Funding We acknowledge funding from the National Institute on Drug Abuse grant DA049867, the Netherlands Organization for Scientific Research (NWO): Biobanking and Biomolecular Research Infrastructure (BBMRI-NL, NWO 184.033.111) and the BBRMI-NL-financed BIOS Consortium (NWO 184.021.007), NWO Large Scale infrastructures X-Omics (184.034.019), Genotype/phenotype database for behaviour genetic and genetic epidemiological studies (ZonMw Middelgroot 911-09-032); Netherlands Twin Registry Repository: researching the interplay between genome and environment (NWO-Groot 480-15-001/674); the Avera Institute, Sioux Falls (USA), and the National Institutes of Health (NIH R01 HD042157-01A1, MH081802, Grand Opportunity grants 1RC2 MH089951 and 1RC2 MH089995); epigenetic data were generated at the Human Genomics Facility (HuGe-F) at ErasmusMC Rotterdam. Cotinine assaying was sponsored by the Neuroscience Campus Amsterdam. DIB acknowledges the Royal Netherlands Academy of Science Professor Award (PAH/6635).
Collapse
Affiliation(s)
- Jenny van Dongen
- Department of Biological Psychology, Vrije Universiteit AmsterdamAmsterdamNetherlands
- Amsterdam Public Health Research InstituteAmsterdamNetherlands
- Amsterdam Reproduction and Development (AR&D) Research InstituteAmsterdamNetherlands
| | - Gonneke Willemsen
- Department of Biological Psychology, Vrije Universiteit AmsterdamAmsterdamNetherlands
- Amsterdam Public Health Research InstituteAmsterdamNetherlands
| | - Eco JC de Geus
- Department of Biological Psychology, Vrije Universiteit AmsterdamAmsterdamNetherlands
- Amsterdam Public Health Research InstituteAmsterdamNetherlands
| | - Dorret I Boomsma
- Department of Biological Psychology, Vrije Universiteit AmsterdamAmsterdamNetherlands
- Amsterdam Public Health Research InstituteAmsterdamNetherlands
- Amsterdam Reproduction and Development (AR&D) Research InstituteAmsterdamNetherlands
| | - Michael C Neale
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth UniversityRichmondUnited States
| |
Collapse
|
3
|
Kolli AR. Plasma Protein Binding and Tissue Retention Kinetics Influence the Rate and Extent of Nicotine Delivery to the Brain. Toxicol Lett 2023; 380:69-74. [PMID: 37068696 DOI: 10.1016/j.toxlet.2023.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/24/2023] [Accepted: 04/14/2023] [Indexed: 04/19/2023]
Abstract
Nicotine from inhaled combustible cigarette smoke is delivered rapidly to the brain, and sufficient unbound nicotine concentrations exert pharmacological effects. In addition to nicotine, combustible cigarette smoke also contains a significant number of toxicants that trigger perturbations, leading to an altered steady state due to differential expression of proteins. In this study, a physiologically based pharmacokinetic (PBPK) model for inhaled nicotine was used to simulate the influence of lysosomal change-driven tissue retention and plasma protein binding levels on nicotine pharmacokinetics (PK). A 3× increase in tissue lysosomal volumes lowered the nicotine brain maximum concentration (Cmax) by 20.8%. Similarly, a 50% increase in plasma protein binding also lowered the unbound plasma arterial nicotine Cmax by 39.4%. Such fundamental changes in nicotine disposition due to physiological changes in combustible cigarette smokers will lead to altered nicotine consumption and exposure-responses of other weakly basic drugs. Literature reports indicate that nicotine consumed from non-combustible products do not alter drug exposures, indicating fewer or less severe toxicant-driven perturbations with the use of these products. Although several other parameters influence nicotine PK, this PBPK modeling study shows that increased tissue retention and plasma protein binding reduce nicotine delivery to the brain and could lead to differential consumption of combustible cigarettes. These differences in physiological states among combustible cigarette smokers need to be evaluated and should be considered during therapeutic interventions. DATA AVAILABILITY: The model code is provided in supplementary information.
Collapse
Affiliation(s)
- Aditya R Kolli
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland.
| |
Collapse
|
4
|
Costantini E, Carrarini C, Borrelli P, De Rosa M, Calisi D, Consoli S, D’Ardes D, Cipollone F, Di Nicola M, Onofrj M, Reale M, Bonanni L. Different peripheral expression patterns of the nicotinic acetylcholine receptor in dementia with Lewy bodies and Alzheimer's disease. Immun Ageing 2023; 20:3. [PMID: 36647139 PMCID: PMC9843938 DOI: 10.1186/s12979-023-00329-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/26/2022] [Indexed: 01/18/2023]
Abstract
BACKGROUND The diffuse distribution of nicotinic cholinergic receptors (nAChRs) in both brain and peripheral immune cells points out their involvement in several pathological conditions. Indeed, the deregulated function of the nAChR was previously correlated with cognitive decline and neuropsychiatric symptoms in Alzheimer's disease (AD) and Dementia with Lewy bodies (DLB). The evaluation in peripheral immune cells of nAChR subtypes, which could reflect their expression in brain regions, is a prominent investigation area. OBJECTIVES This study aims to evaluate the expression levels of both the nAChR subunits and the main known inflammatory cytokines in peripheral blood mononuclear cells (PBMCs) of patients with DLB and AD to better characterize their involvement in these two diseases. RESULTS Higher gene expression levels of TNFα, IL6 and IL1β were observed in DLB and AD patients in comparison with healthy controls (HC). In our cohort, a reduction of nAChRα4, nAChRβ2 and nAChRβ4 was detected in both DLB and AD with respect to HC. Considering nAChR gene expressions in DLB and AD, significant differences were observed for nAChRα3, nAChRα4, nAChRβ2 and nAChRβ4 between the two groups. Moreover, the acetylcholine esterase (AChE) gene expression was significantly higher in DLB than in AD. Correlation analysis points out the relation between different nAChR subtype expressions in DLB (nAChRβ2 vs nAChRα3; nAChRα4 vs nAChRα3) and AD (nAChRα4 vs nAChRα3; nAChRα4 vs nAChRβ4; nAChRα7 vs nAChRα3; nAChRα7 vs nAChRα4). CONCLUSIONS Different gene expressions of both pro-inflammatory cytokines and nAChR subtypes may represent a peripheral link between inflammation and neurodegeneration. Inflammatory cytokines and different nAChRs should be valid and accurate peripheral markers for the clinical diagnosis of DLB and AD. However, although nAChRs show a great biological role in the regulation of inflammation, no significant correlation was detected between nAChR subtypes and the examined cytokines in our cohort of patients.
Collapse
Affiliation(s)
- E. Costantini
- grid.412451.70000 0001 2181 4941Department of Medicine and Aging Sciences, University “G. d’Annunzio”, Via dei Vestini, 66100 Chieti, Italy
| | - C. Carrarini
- grid.412451.70000 0001 2181 4941Department of Neuroscience, Imaging, and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - P. Borrelli
- grid.412451.70000 0001 2181 4941Department of Medical, Oral and Biotechnological Sciences, Laboratory of Biostatistics, University “G. d’Annunzio”, Via dei Vestini, 66100 Chieti, Italy
| | - M. De Rosa
- grid.412451.70000 0001 2181 4941Department of Neuroscience, Imaging, and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - D. Calisi
- grid.412451.70000 0001 2181 4941Department of Neuroscience, Imaging, and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - S. Consoli
- grid.412451.70000 0001 2181 4941Department of Neuroscience, Imaging, and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - D. D’Ardes
- grid.412451.70000 0001 2181 4941Department of Medicine and Aging Sciences, University “G. d’Annunzio”, Via dei Vestini, 66100 Chieti, Italy
| | - F. Cipollone
- grid.412451.70000 0001 2181 4941Department of Medicine and Aging Sciences, University “G. d’Annunzio”, Via dei Vestini, 66100 Chieti, Italy
| | - M. Di Nicola
- grid.412451.70000 0001 2181 4941Department of Medical, Oral and Biotechnological Sciences, Laboratory of Biostatistics, University “G. d’Annunzio”, Via dei Vestini, 66100 Chieti, Italy
| | - M. Onofrj
- grid.412451.70000 0001 2181 4941Department of Neuroscience, Imaging, and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - M. Reale
- grid.412451.70000 0001 2181 4941Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio”, Via dei Vestini, 66100 Chieti, Italy
| | - L. Bonanni
- grid.412451.70000 0001 2181 4941Department of Medicine and Aging Sciences, University “G. d’Annunzio”, Via dei Vestini, 66100 Chieti, Italy
| |
Collapse
|
5
|
Tyagi A, Wu SY, Sharma S, Wu K, Zhao D, Deshpande R, Singh R, Li W, Topaloglu U, Ruiz J, Watabe K. Exosomal miR-4466 from nicotine-activated neutrophils promotes tumor cell stemness and metabolism in lung cancer metastasis. Oncogene 2022; 41:3079-3092. [PMID: 35461327 PMCID: PMC9135627 DOI: 10.1038/s41388-022-02322-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 01/28/2023]
Abstract
Smoking is associated with lung cancer and has a profound impact on tumor immunity. Nicotine, the addictive and non-carcinogenic smoke component, influences various brain cells and the immune system. However, how long-term use of nicotine affects brain metastases is poorly understood. We, therefore, examined the mechanism by which nicotine promotes lung cancer brain metastasis. In this study, we conducted a retrospective analysis of 810 lung cancer patients with smoking history and assessed brain metastasis. We found that current smoker's lung cancer patients have significantly higher brain metastatic incidence compared to the never smokers. We also found that chronic nicotine exposure recruited STAT3-activated N2-neutrophils within the brain pre-metastatic niche and secreted exosomal miR-4466 which promoted stemness and metabolic switching via SKI/SOX2/CPT1A axis in the tumor cells in the brain thereby enabling metastasis. Importantly, exosomal miR-4466 levels were found to be elevated in serum/urine of cancer-free subjects with a smoking history and promote tumor growth in vivo, suggesting that exosomal miR-4466 may serve as a promising prognostic biomarker for predicting increased risk of metastatic disease among smoker(s). Our findings suggest a novel pro-metastatic role of nicotine-induced N2-neutrophils in the progression of brain metastasis. We also demonstrated that inhibiting nicotine-induced STAT3-mediated neutrophil polarization effectively abrogated brain metastasis in vivo. Our results revealed a novel mechanistic insight on how chronic nicotine exposure contributes to worse clinical outcome of metastatic lung cancer and implicated the risk of using nicotine gateway for smoking cessation in cancer patients.
Collapse
Affiliation(s)
- Abhishek Tyagi
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, United States
| | - Shih-Ying Wu
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, United States
| | - Sambad Sharma
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, United States
| | - Kerui Wu
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, United States
| | - Dan Zhao
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, United States
| | - Ravindra Deshpande
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, United States
| | - Ravi Singh
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, United States
| | - Wencheng Li
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, United States
| | - Umit Topaloglu
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, United States
| | - Jimmy Ruiz
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, United States
| | - Kounosuke Watabe
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, United States.
| |
Collapse
|
6
|
May SM, Chiang E, Reyes A, Martir G, Patel A, Karmali S, Patel S, West S, Del Arroyo AG, Gourine AV, Ackland GL. Neuromodulation of innate immunity by remote ischaemic conditioning in humans: Experimental cross-over study. Brain Behav Immun Health 2021; 16:100299. [PMID: 34589791 PMCID: PMC8417773 DOI: 10.1016/j.bbih.2021.100299] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 07/12/2021] [Indexed: 02/04/2023] Open
Abstract
Experimental animal studies on the mechanisms of remote ischaemic conditioning (RIC)-induced cardioprotection against ischaemia/reperfusion injury demonstrate involvement of both neuronal and humoral pathways. Autonomic parasympathetic (vagal) pathways confer organ protection through both direct innervation and/or immunomodulation, but evidence in humans is lacking. During acute inflammation, vagal release of acetylcholine suppresses CD11b expression, a critical β2-integrin regulating neutrophil adhesion to the endothelium and transmigration to sites of injury. Here, we tested the hypothesis that RIC recruits vagal activity in humans and has an anti-inflammatory effect by reducing neutrophil CD11b expression. Participants (age:50 ± 19 years; 53% female) underwent ultrasound-guided injection of local anaesthetic within the brachial plexus before applying 3 × 8 min cycles of brachial artery occlusion using a blood pressure cuff (RICblock). RIC was repeated 6 weeks later without brachial plexus block. Masked analysers quantified vagal activity (heart rate, heart rate variability (HRV)) before, and 10 min after, the last cycle of RIC. RR-interval increased after RIC (reduced heart rate) by 40 ms (95% confidence intervals (95%CI):13–66; n = 17 subjects; P = 0.003). RR-interval did not change after brachial plexus blockade (mean difference: 20 ms (95%CI:-11 to 50); P = 0.19). The high-frequency component of HRV was reduced after RICblock, but remained unchanged after RIC (P < 0.001), indicating that RIC preserved vagal activity. LPS-induced CD16+CD11b+ expression in whole blood (measured by flow cytometry) was reduced by RIC (3615 median fluorescence units (95%CI:475-6754); P = 0.026), compared with 2331 units (95%CI:-3921 to 8582); P = 0.726) after RICblock. These data suggest that in humans RIC recruits vagal cardiac and anti-inflammatory mechanisms via ischaemia/reperfusion-induced activation of sensory nerve fibres that innervate the organ undergoing RIC.
Collapse
Affiliation(s)
- Shaun M May
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, UK
| | - Eric Chiang
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, UK
| | - Anna Reyes
- University College Hospital NHS Trust, London, UK
| | | | - Amour Patel
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, UK
| | - Shamir Karmali
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, UK
| | - Sanjiv Patel
- University College Hospital NHS Trust, London, UK
| | - Simeon West
- University College Hospital NHS Trust, London, UK
| | - Ana Gutierrez Del Arroyo
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, UK
| | - Alexander V Gourine
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology & Pharmacology, University College London, UK
| | - Gareth L Ackland
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, UK
| |
Collapse
|
7
|
Serov D, Tikhonova I, Safronova V, Astashev M. Calcium activity in response to nAChR ligands in murine bone marrow granulocytes with different Gr-1 expression. Cell Biol Int 2021; 45:1533-1545. [PMID: 33739565 DOI: 10.1002/cbin.11593] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 03/12/2021] [Accepted: 03/14/2021] [Indexed: 12/12/2022]
Abstract
Polymorphonuclear neutrophilic granulocytes (PMNs) are the largest proportion of leukocytes in adult human blood that perform numerous functions, including phagocytosis, degranulation, generation of reactive oxygen species, and NETosis. Excessive neutrophil activity associates with hyperinflammation and tissue damage during pathologies such as inflammatory bowel disease, diabetes mellitus, tuberculosis, and coronavirus disease 2019. Nicotinic acetylcholine receptors (nAChRs) can modulate immune cells, including neutrophils, functions, therefore, nAChR ligands are considered as the potent agents for therapy of inflammation. Earlier it was shown, that about 30% of PMNs from the acute inflammatory site responded to nicotine by calcium spikes. In this study, we studied the generation of calcium spikes in murine granulocytes with different maturity level (evaluated by Gr-1 expression) isolated from bone marrow in response to ligands of nAChRs in control and under chronic nicotine consumption. It was found that nearly 20%-25% cells in the granulocyte population responded to nicotine or selective antagonists of different type of nAChRs (α-cobratoxin, GIC, and Vc1.1). We demonstrated that in the control group Ca2+ -mobilizing activity was regulated through α7 and α9α10 nAChRs in immature granulocytes (Gr-1int ), whereas in mature granulocytes (Gr-1hi ) it was regulated through α7, α3β2, and α9-contained nAChRs. Sensitivity of PMNs to nicotine depended on their maturity level after chronic nicotine consumption. Gr-1int cells responded to nicotine through α7 and α9-contained nAChRs, while Gr-1hi did not respond to nicotine. Thus, calcium response to nAChR ligands in bone marrow PMNs depends on their maturity level.
Collapse
Affiliation(s)
- Dmitriy Serov
- Institute of Cell Biophysics of the Russian Academy of Sciences, Pushchino, Russia
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Russia
| | - Irina Tikhonova
- Institute of Cell Biophysics of the Russian Academy of Sciences, Pushchino, Russia
| | - Valentina Safronova
- Institute of Cell Biophysics of the Russian Academy of Sciences, Pushchino, Russia
| | - Maksim Astashev
- Institute of Cell Biophysics of the Russian Academy of Sciences, Pushchino, Russia
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Russia
| |
Collapse
|
8
|
Nicotine promotes breast cancer metastasis by stimulating N2 neutrophils and generating pre-metastatic niche in lung. Nat Commun 2021; 12:474. [PMID: 33473115 PMCID: PMC7817836 DOI: 10.1038/s41467-020-20733-9] [Citation(s) in RCA: 113] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/17/2020] [Indexed: 12/12/2022] Open
Abstract
Smoking has a profound impact on tumor immunity, and nicotine, which is the major addictive component of smoke, is known to promote tumor progression despite being a non-carcinogen. In this study, we demonstrate that chronic exposure of nicotine plays a critical role in the formation of pre-metastatic niche within the lungs by recruiting pro-tumor N2-neutrophils. This pre-metastatic niche promotes the release of STAT3-activated lipocalin 2 (LCN2), a secretory glycoprotein from the N2-neutrophils, and induces mesenchymal-epithelial transition of tumor cells thereby facilitating colonization and metastatic outgrowth. Elevated levels of serum and urine LCN2 is elevated in early-stage breast cancer patients and cancer-free females with smoking history, suggesting that LCN2 serve as a promising prognostic biomarker for predicting increased risk of metastatic disease in female smoker(s). Moreover, natural compound, salidroside effectively abrogates nicotine-induced neutrophil polarization and consequently reduced lung metastasis of hormone receptor-negative breast cancer cells. Our findings suggest a pro-metastatic role of nicotine-induced N2-neutrophils for cancer cell colonization in the lungs and illuminate the therapeutic use of salidroside to enhance the anti-tumor activity of neutrophils in breast cancer patients. Smoking is known to impact tumor immunity and promote tumor progression. Here, the authors show that chronic nicotine exposure promotes the lung pre-metastatic niche formation by recruiting pro-tumor N2-neutrophils that release lipocalin-2.
Collapse
|
9
|
Safronova VG, Vulfius CA, Astashev ME, Tikhonova IV, Serov DA, Jirova EA, Pershina EV, Senko DA, Zhmak MN, Kasheverov IE, Tsetlin VI. α9α10 nicotinic acetylcholine receptors regulate murine bone marrow granulocyte functions. Immunobiology 2020; 226:152047. [PMID: 33340828 DOI: 10.1016/j.imbio.2020.152047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/16/2020] [Accepted: 11/29/2020] [Indexed: 02/06/2023]
Abstract
Polymorphonuclear neutrophilic granulocytes (PMNs) are extremely important in defense of the organism against infections and in inflammatory processes including neuroinflammation and pain sensation. Different subtypes of nicotinic acetylcholine receptors (nAChRs) are involved in modulation of PMN activities. Earlier we determined expression of α2-7, α9, β3, β4 subunits and regulatory role of α7 and α3β2 nAChR subtypes in functions of inflammatory PMNs. Other authors detected mRNA of α9 subunit in bone marrow neutrophils (BM-PMNs). Murine BM-PMNs coming out from the bone marrow, where they develop, to blood were characterized as mature. There was no data for α10 and for the presence of functionally active α9α10 nAChRs in BM-PMNs. Here we detected for the first time mRNA expression of the α10 nAChR subunit in BM-PMNs and confirmed the expression of mRNA for α9 nAChR. With the help of α-conotoxins RgIA and Vc1.1, highly selective antagonists of α9α10 nAChRs, we have revealed participation of α9 and/or α9α10 nAChRs in regulation of cytosolic Ca2+ concentration, cell adhesion, and in generation of reactive oxygen species (ROS). Nicotine, choline, RgIA, and Vc1.1 induced Ca2+ transients in BM-PMNs, enhanced cell adhesiveness and decreased production of ROS indicating involvement of α9, possibly co-assembled with α10, nAChRs in the BM-PMN activity for recruitment and cytotoxicity.
Collapse
Affiliation(s)
- Valentina G Safronova
- Institute of Cell Biophysics, Russian Academy of Sciences, Institutskaya St., 3, 142290 Pushchino, Russia.
| | - Catherine A Vulfius
- Institute of Cell Biophysics, Russian Academy of Sciences, Institutskaya St., 3, 142290 Pushchino, Russia.
| | - Maxim E Astashev
- Institute of Cell Biophysics, Russian Academy of Sciences, Institutskaya St., 3, 142290 Pushchino, Russia.
| | - Irina V Tikhonova
- Institute of Cell Biophysics, Russian Academy of Sciences, Institutskaya St., 3, 142290 Pushchino, Russia.
| | - Dmitriy A Serov
- Institute of Cell Biophysics, Russian Academy of Sciences, Institutskaya St., 3, 142290 Pushchino, Russia.
| | - Elina A Jirova
- Institute of Cell Biophysics, Russian Academy of Sciences, Institutskaya St., 3, 142290 Pushchino, Russia.
| | - Ekaterina V Pershina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya St., 3, 142290 Pushchino, Russia.
| | - Dmitry A Senko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St., 16/10, 117997 Moscow, Russia; Lomonosov Moscow State University, 119991 Moscow, Russia.
| | - Maxim N Zhmak
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St., 16/10, 117997 Moscow, Russia.
| | - Igor E Kasheverov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St., 16/10, 117997 Moscow, Russia.
| | - Victor I Tsetlin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St., 16/10, 117997 Moscow, Russia.
| |
Collapse
|
10
|
Santos JR, Tomaz PRX, Scholz JR, Gaya PV, Abe TO, Krieger JE, Pereira AC, Santos PCJDL. Profile of the Nicotinic Cholinergic Receptor Alpha 7 Subunit Gene Expression is Associated with Response to Varenicline Treatment. Genes (Basel) 2020; 11:E746. [PMID: 32640505 PMCID: PMC7397196 DOI: 10.3390/genes11070746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/15/2020] [Accepted: 06/25/2020] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Smoking is considered the leading cause of preventable morbidity and mortality worldwide. Studies have sought to identify predictors of response to smoking cessation treatments. The aim of this study was to analyze a possible association of target gene expression for smoking cessation with varenicline. METHODS We included 74 smokers starting treatment with varenicline. Gene expression analysis was performed through the custom RT² Profiler qPCR array assay, including 17 genes. Times for sample collection were before the start of therapy (T0) and two weeks (T2) and four weeks (T4) after the start of treatment. RESULTS For gene expression analysis, we selected 14 patients who had success and 13 patients resistant to varenicline treatment. Success was considered to be when a patient achieved tobacco abstinence until the fourth week of treatment and resistant was when a patient had not stopped smoking as of the fourth week of treatment. We observed a significant difference for CHRNA7 gene expression: in the resistant group, samples from T2 and T4 had lower expression compared with T0 (fold change: 0.38, P = 0.007; fold change: 0.67, P = 0.004; respectively). CONCLUSION This exploratory clinical study, searching for a possible predictor of effectiveness for varenicline, reaffirmed the association of the α7 nAChR subunit for nicotine dependence and smoking therapy effectiveness with varenicline.
Collapse
Affiliation(s)
- Juliana Rocha Santos
- Laboratory of Genetics and Molecular Cardiology, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-904, Brazil; (J.R.S.); (P.R.X.T.); (J.E.K.); (A.C.P.)
| | - Paulo Roberto Xavier Tomaz
- Laboratory of Genetics and Molecular Cardiology, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-904, Brazil; (J.R.S.); (P.R.X.T.); (J.E.K.); (A.C.P.)
| | - Jaqueline Ribeiro Scholz
- Smoking Cessation Program Department, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-904, Brazil; (J.R.S.); (P.V.G.); (T.O.A.)
| | - Patrícia Viviane Gaya
- Smoking Cessation Program Department, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-904, Brazil; (J.R.S.); (P.V.G.); (T.O.A.)
| | - Tânia Ogawa Abe
- Smoking Cessation Program Department, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-904, Brazil; (J.R.S.); (P.V.G.); (T.O.A.)
| | - José Eduardo Krieger
- Laboratory of Genetics and Molecular Cardiology, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-904, Brazil; (J.R.S.); (P.R.X.T.); (J.E.K.); (A.C.P.)
| | - Alexandre Costa Pereira
- Laboratory of Genetics and Molecular Cardiology, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-904, Brazil; (J.R.S.); (P.R.X.T.); (J.E.K.); (A.C.P.)
| | | |
Collapse
|
11
|
Kanashiro A, Hiroki CH, da Fonseca DM, Birbrair A, Ferreira RG, Bassi GS, Fonseca MD, Kusuda R, Cebinelli GCM, da Silva KP, Wanderley CW, Menezes GB, Alves-Fiho JC, Oliveira AG, Cunha TM, Pupo AS, Ulloa L, Cunha FQ. The role of neutrophils in neuro-immune modulation. Pharmacol Res 2019; 151:104580. [PMID: 31786317 DOI: 10.1016/j.phrs.2019.104580] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/07/2019] [Accepted: 11/27/2019] [Indexed: 01/10/2023]
Abstract
Neutrophils are peripheral immune cells that represent the first recruited innate immune defense against infections and tissue injury. However, these cells can also induce overzealous responses and cause tissue damage. Although the role of neutrophils activating the immune system is well established, only recently their critical implications in neuro-immune interactions are becoming more relevant. Here, we review several aspects of neutrophils in the bidirectional regulation between the nervous and immune systems. First, the role of neutrophils as a diffuse source of acetylcholine and catecholamines is controversial as well as the effects of these neurotransmitters in neutrophil's functions. Second, neutrophils contribute for the activation and sensitization of sensory neurons, and thereby, in events of nociception and pain. In addition, nociceptor activation promotes an axon reflex triggering a local release of neural mediators and provoking neutrophil activation. Third, the recruitment of neutrophils in inflammatory responses in the nervous system suggests these immune cells as innovative targets in the treatment of central infectious, neurological and neurodegenerative disorders. Multidisciplinary studies involving immunologists and neuroscientists are required to define the role of the neurons-neutrophils communication in the pathophysiology of infectious, inflammatory, and neurological disorders.
Collapse
Affiliation(s)
- Alexandre Kanashiro
- Department of Neurosciences and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil; Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.
| | - Carlos Hiroji Hiroki
- Department of Immunology and Biochemistry, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Denise Morais da Fonseca
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Alexander Birbrair
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Raphael Gomes Ferreira
- Araguaína Medical School, Federal University of Tocantins, Avenida Paraguai s/n, 77824-838, Araguaína, TO, Brazil
| | - Gabriel Shimizu Bassi
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University, Durham, NC, 27710, USA
| | - Mirian D Fonseca
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Ricardo Kusuda
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Katiussia Pinho da Silva
- Department of Pharmacology, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, SP, Brazil
| | - Carlos Wagner Wanderley
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - José Carlos Alves-Fiho
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - André Gustavo Oliveira
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Thiago M Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - André Sampaio Pupo
- Department of Pharmacology, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, SP, Brazil
| | - Luis Ulloa
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University, Durham, NC, 27710, USA.
| | - Fernando Queiroz Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
12
|
Polycyclic aromatic hydrocarbons exposure and hematotoxicity in occupational population: A two-year follow-up study. Toxicol Appl Pharmacol 2019; 378:114622. [DOI: 10.1016/j.taap.2019.114622] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/13/2019] [Accepted: 06/07/2019] [Indexed: 01/29/2023]
|
13
|
Eduardo CRC, Alejandra TIG, Guadalupe DRKJ, Herminia VRG, Lenin P, Enrique BV, Evandro BM, Oscar B, Iván GPM. Modulation of the extraneuronal cholinergic system on main innate response leukocytes. J Neuroimmunol 2019; 327:22-35. [PMID: 30683425 DOI: 10.1016/j.jneuroim.2019.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/15/2019] [Accepted: 01/15/2019] [Indexed: 12/17/2022]
Abstract
The expression of elements of the cholinergic system has been demonstrated in non-neuronal cells, such as immune cells, where acetylcholine modulates innate and adaptive responses. However, the study of the non-neuronal cholinergic system has focused on lymphocyte cholinergic mechanisms, with less attention to its role of innate cells. Considering this background, the aims of this review are 1) to review information regarding the cholinergic components of innate immune system cells; 2) to discuss the effect of cholinergic stimuli on cell functions; 3) and to describe the importance of cholinergic stimuli on host immunocompetence, in order to set the base for the design of intervention strategies in the biomedical field.
Collapse
Affiliation(s)
- Covantes-Rosales Carlos Eduardo
- Universidad Autónoma de Nayarit, Secretaría de Investigación y Posgrado, Laboratorio de Inmunotoxicología, Boulevard Tepic-Xalisco s/n, Cd de la Cultura Amado Nervo, C.P. 63000 Tepic, Nayarit, Mexico
| | - Toledo-Ibarra Gladys Alejandra
- Universidad Autónoma de Nayarit, Secretaría de Investigación y Posgrado, Laboratorio de Inmunotoxicología, Boulevard Tepic-Xalisco s/n, Cd de la Cultura Amado Nervo, C.P. 63000 Tepic, Nayarit, Mexico; Centro Nayarita de Innovación y Transferencia de Tecnología A.C. Laboratorio Nacional para la Investigación en Inocuidad Alimentaria-Unidad Nayarit, Calle Tres s/n. Cd Industrial, Tepic, Nayarit, Mexico
| | - Díaz-Resendiz Karina Janice Guadalupe
- Universidad Autónoma de Nayarit, Secretaría de Investigación y Posgrado, Laboratorio de Inmunotoxicología, Boulevard Tepic-Xalisco s/n, Cd de la Cultura Amado Nervo, C.P. 63000 Tepic, Nayarit, Mexico
| | - Ventura-Ramón Guadalupe Herminia
- Universidad Autónoma de Nayarit, Secretaría de Investigación y Posgrado, Laboratorio de Inmunotoxicología, Boulevard Tepic-Xalisco s/n, Cd de la Cultura Amado Nervo, C.P. 63000 Tepic, Nayarit, Mexico; Centro Nayarita de Innovación y Transferencia de Tecnología A.C. Laboratorio Nacional para la Investigación en Inocuidad Alimentaria-Unidad Nayarit, Calle Tres s/n. Cd Industrial, Tepic, Nayarit, Mexico
| | - Pavón Lenin
- Instituto Nacional de Psiquiatría "Ramón de la Fuente", Laboratorio de Psicoinmunología, Calzada México-Xochimilco 101, Col. San Lorenzo Huipulco, Tlalpan, 14370 México City, DF, Mexico
| | - Becerril-Villanueva Enrique
- Instituto Nacional de Psiquiatría "Ramón de la Fuente", Laboratorio de Psicoinmunología, Calzada México-Xochimilco 101, Col. San Lorenzo Huipulco, Tlalpan, 14370 México City, DF, Mexico
| | - Bauer Moisés Evandro
- Pontifícia Universidade Católica do Rio Grande do Sul, Instituto de Pesquisas Biomédicas, Laboratório de Imunologia do Envelhecimento, 90610-000 Porto Alegre, RS, Brazil
| | - Bottaso Oscar
- Universidad Nacional de Rosario-Consejo Nacional de Investigaciones Científicas y Técnicas (UNR-CONICET), Instituto de Inmunología Clínica y Experimental de Rosario, Rosario, Argentina
| | - Girón-Pérez Manuel Iván
- Universidad Autónoma de Nayarit, Secretaría de Investigación y Posgrado, Laboratorio de Inmunotoxicología, Boulevard Tepic-Xalisco s/n, Cd de la Cultura Amado Nervo, C.P. 63000 Tepic, Nayarit, Mexico; Centro Nayarita de Innovación y Transferencia de Tecnología A.C. Laboratorio Nacional para la Investigación en Inocuidad Alimentaria-Unidad Nayarit, Calle Tres s/n. Cd Industrial, Tepic, Nayarit, Mexico.
| |
Collapse
|
14
|
Mulcahy MJ, Lester HA. Granulocytes as models for human protein marker identification following nicotine exposure. J Neurochem 2017; 142 Suppl 2:151-161. [PMID: 28791704 PMCID: PMC6057152 DOI: 10.1111/jnc.14010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 02/28/2017] [Accepted: 03/01/2017] [Indexed: 12/23/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are pentameric cation channels expressed in the mammalian CNS, in the peripheral nervous system, and in skeletal muscle. Neuronal-type nAChRs are also found in several non-neuronal cell types, including leukocytes. Granulocytes are a subtype of leukocytes that include basophils, eosinophils, and neutrophils. Granulocytes, also known as polymorphonuclear leukocytes, are characterized by their ability to produce, store, and release compounds from intracellular granules. Granulocytes are the most abundant type of leukocyte circulating in the peripheral blood. Granulocyte abundance, nAChR expression, and nAChR upregulation following chronic nicotine administration makes granulocytes interesting models for identifying protein markers of nicotine exposure. Nicotinic receptor subunits and several non-nAChR proteins have been identified as protein markers of granulocyte nicotine exposure. We review methods to isolate granulocytes from human tissue, summarize present data about the expression of nAChRs in the three granulocyte cell types (basophils, eosinophils, and neutrophils), describe current knowledge of the effects of nicotine exposure on human granulocyte protein expression, and highlight areas of interest for future investigation. This is an article for the special issue XVth International Symposium on Cholinergic Mechanisms.
Collapse
Affiliation(s)
- Matthew J Mulcahy
- Department of Biology, California Institute of Technology, Pasadena, California, USA
| | - Henry A Lester
- Department of Biology, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
15
|
Cuny H, Yu R, Tae HS, Kompella SN, Adams DJ. α-Conotoxins active at α3-containing nicotinic acetylcholine receptors and their molecular determinants for selective inhibition. Br J Pharmacol 2017; 175:1855-1868. [PMID: 28477355 DOI: 10.1111/bph.13852] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 04/13/2017] [Accepted: 04/24/2017] [Indexed: 01/22/2023] Open
Abstract
Neuronal α3-containing nicotinic acetylcholine receptors (nAChRs) in the peripheral nervous system (PNS) and non-neuronal tissues are implicated in a number of severe disease conditions ranging from cancer to cardiovascular diseases and chronic pain. However, despite the physiological characterization of mouse models and cell lines, the precise pathophysiology of nAChRs outside the CNS remains not well understood, in part because there is a lack of subtype-selective antagonists. α-Conotoxins isolated from cone snail venom exhibit characteristic individual selectivity profiles for nAChRs and, therefore, are excellent tools to study the determinants for nAChR-antagonist interactions. Given that human α3β4 subtype selective α-conotoxins are scarce and this is a major nAChR subtype in the PNS, the design of new peptides targeting this nAChR subtype is desirable. Recent studies using α-conotoxins RegIIA and AuIB, in combination with nAChR site-directed mutagenesis and computational modelling, have shed light onto specific nAChR residues, which determine the selectivity of the α-conotoxins for the human α3β2 and α3β4 subtypes. Publications describing the selectivity profile and binding sites of other α-conotoxins confirm that subtype-selective nAChR antagonists often work through common mechanisms by interacting with the same structural components and sites on the receptor. LINKED ARTICLES This article is part of a themed section on Nicotinic Acetylcholine Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.11/issuetoc.
Collapse
Affiliation(s)
- Hartmut Cuny
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW, Australia.,Victor Chang Cardiac Research Institute, Developmental and Stem Cell Biology Division, Sydney, NSW, Australia
| | - Rilei Yu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Han-Shen Tae
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW, Australia
| | - Shiva N Kompella
- Faculty of Pharmacy, University of Sydney, Sydney, NSW, Australia
| | - David J Adams
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
16
|
Potential of α7 nicotinic acetylcholine receptor PET imaging in atherosclerosis. Methods 2017; 130:90-104. [PMID: 28602809 DOI: 10.1016/j.ymeth.2017.06.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 06/02/2017] [Accepted: 06/06/2017] [Indexed: 02/07/2023] Open
Abstract
Atherosclerotic events are usually acute and often strike otherwise asymptomatic patients. Although multiple clinical risk factors have been associated with atherosclerosis, as of yet no further individual prediction can be made as to who will suffer from its consequences based on biomarker analysis or traditional imaging methods like CT, MRI or angiography. Previously, non-invasive imaging with 18F-fluorodeoxyglucose (18F-FDG) PET was shown to potentially fill this niche as it offers high sensitive detection of metabolic processes associated with inflammatory changes in atherosclerotic plaques. However, 18F-FDG PET imaging of arterial vessels suffers from non-specificity and has still to be proven to reliably identify vulnerable plaques, carrying a high risk of rupture. Therefore, it may be regarded only as a secondary marker for monitoring treatment effects and it does not offer alternative treatment options or direct insight in treatment mechanisms. In this review, an overview is given of the current status and the potential of PET imaging of inflammation and angiogenesis in atherosclerosis in general and special emphasis is given to imaging of α7 nicotinic acetylcholine receptors (α7 nAChRs). Due to the gaps that still exist in our understanding of atherogenesis and the limitations of the available PET tracers, the search continues for a more specific radioligand, able to differentiate between stable atherosclerosis and plaques prone to rupture. The potential role of the α7 nAChR as imaging marker for plaque vulnerability is explored. Today, strong evidence exists that nAChRs are involved in the atherosclerotic disease process. They are suggested to mediate the deleterious effects of the major tobacco component, nicotine, a nAChR agonist. Mainly based on in vitro data, α7 nAChR stimulation might increase plaque burden via increased neovascularization. However, in animal studies, α7 nAChR manipulation appears to reduce plaque size due to its inhibitory effects on inflammatory cells. Thus, reliable identification of α7 nAChRs by in vivo imaging is crucial to investigate the exact role of α7 nAChR in atherosclerosis before any therapeutic approach in the human setting can be justified. In this review, we discuss the first experience with α7 nAChR PET tracers and developmental considerations regarding the "optimal" PET tracer to image vascular nAChRs.
Collapse
|
17
|
Nicotinic receptor involvement in regulation of functions of mouse neutrophils from inflammatory site. Immunobiology 2016; 221:761-72. [DOI: 10.1016/j.imbio.2016.01.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/30/2016] [Indexed: 01/08/2023]
|
18
|
Sinkus ML, Graw S, Freedman R, Ross RG, Lester HA, Leonard S. The human CHRNA7 and CHRFAM7A genes: A review of the genetics, regulation, and function. Neuropharmacology 2015; 96:274-88. [PMID: 25701707 PMCID: PMC4486515 DOI: 10.1016/j.neuropharm.2015.02.006] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 02/04/2015] [Accepted: 02/06/2015] [Indexed: 01/16/2023]
Abstract
The human α7 neuronal nicotinic acetylcholine receptor gene (CHRNA7) is ubiquitously expressed in both the central nervous system and in the periphery. CHRNA7 is genetically linked to multiple disorders with cognitive deficits, including schizophrenia, bipolar disorder, ADHD, epilepsy, Alzheimer's disease, and Rett syndrome. The regulation of CHRNA7 is complex; more than a dozen mechanisms are known, one of which is a partial duplication of the parent gene. Exons 5-10 of CHRNA7 on chromosome 15 were duplicated and inserted 1.6 Mb upstream of CHRNA7, interrupting an earlier partial duplication of two other genes. The chimeric CHRFAM7A gene product, dupα7, assembles with α7 subunits, resulting in a dominant negative regulation of function. The duplication is human specific, occurring neither in primates nor in rodents. The duplicated α7 sequence in exons 5-10 of CHRFAM7A is almost identical to CHRNA7, and thus is not completely queried in high throughput genetic studies (GWAS). Further, pre-clinical animal models of the α7nAChR utilized in drug development research do not have CHRFAM7A (dupα7) and cannot fully model human drug responses. The wide expression of CHRNA7, its multiple functions and modes of regulation present challenges for study of this gene in disease. This article is part of the Special Issue entitled 'The Nicotinic Acetylcholine Receptor: From Molecular Biology to Cognition'.
Collapse
Affiliation(s)
- Melissa L Sinkus
- Department of Psychiatry, University of Colorado Denver, Aurora, CO 80045, USA.
| | - Sharon Graw
- Department of Psychiatry, University of Colorado Denver, Aurora, CO 80045, USA.
| | - Robert Freedman
- Department of Psychiatry, University of Colorado Denver, Aurora, CO 80045, USA; Veterans Affairs Medical Research Center, Denver, CO 80262, USA.
| | - Randal G Ross
- Department of Psychiatry, University of Colorado Denver, Aurora, CO 80045, USA.
| | - Henry A Lester
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA.
| | - Sherry Leonard
- Department of Psychiatry, University of Colorado Denver, Aurora, CO 80045, USA; Veterans Affairs Medical Research Center, Denver, CO 80262, USA.
| |
Collapse
|
19
|
Pecaut MJ, Mehrotra S, Luo-Owen X, Bayeta EJM, Bellinger DL, Gridley DS. Chlorisondamine, a sympathetic ganglionic blocker, moderates the effects of whole-body irradiation (WBI) on early host defense to a live bacterial challenge. Immunol Lett 2015; 167:103-15. [PMID: 26235133 DOI: 10.1016/j.imlet.2015.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 07/08/2015] [Accepted: 07/27/2015] [Indexed: 11/16/2022]
Abstract
There is a growing consensus that long-term deficits in the brain are due to dynamic interactions between multiple neural and immune cell types. Specifically, radiation induces an inflammatory response, including changes in neuromodulatory pro- and anti-inflammatory cytokine secretion. The purpose of this study was to establish that there is sympathetic involvement in radiation-induced decrements early in in vivo immune function host defense. Female, 8-9 week-old C57BL/6J mice were exposed to whole-body irradiation (WBI). There were 8 groups with radiation (0 vs. 3 Gy protons), immune challenge (Escherichia coli) and exposure to the sympathetic ganglionic blocker, chlorisondamine (1 mg/kg weight, i.p.), as independent variables. Ten days post-irradiation, mice were inoculated with E. coli intraperitoneally and sacrificed 90-120 min later. The data suggest that radiation-induced changes in immune function may in part be mediated by the sympathetic nervous system. Briefly, we found that radiation augments the bacteria-induced inflammatory cytokine response, particularly those cytokines involved in innate immunity. However, this augmentation can be reduced by the ganglionic blockade.
Collapse
Affiliation(s)
- Michael J Pecaut
- Department of Basic Sciences, Loma Linda University and Medical Center, Loma Linda, 92354 CA, United States; Division of Radiation Research, Loma Linda University and Medical Center, Loma Linda, 92354 CA, United States; Division of Biochemistry and Microbiology, Loma Linda University and Medical Center, Loma Linda, 92354 CA, United States.
| | - Shalini Mehrotra
- Department of Basic Sciences, Loma Linda University and Medical Center, Loma Linda, 92354 CA, United States
| | - Xian Luo-Owen
- Division of Trauma Services, Loma Linda University and Medical Center, Loma Linda, 92354 CA, United States
| | - Erben J M Bayeta
- Department of Basic Sciences, Loma Linda University and Medical Center, Loma Linda, 92354 CA, United States
| | - Denise L Bellinger
- Department of Pathology and Human Anatomy, Loma Linda University and Medical Center, Loma Linda, 92354 CA, United States
| | - Daila S Gridley
- Department of Basic Sciences, Loma Linda University and Medical Center, Loma Linda, 92354 CA, United States; Division of Radiation Research, Loma Linda University and Medical Center, Loma Linda, 92354 CA, United States; Division of Biochemistry and Microbiology, Loma Linda University and Medical Center, Loma Linda, 92354 CA, United States
| |
Collapse
|
20
|
Expression of acetylcholine receptors by experimental rat renal allografts. BIOMED RESEARCH INTERNATIONAL 2014; 2014:289656. [PMID: 25121092 PMCID: PMC4119892 DOI: 10.1155/2014/289656] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 06/06/2014] [Indexed: 12/13/2022]
Abstract
Chronic allograft injury (CAI) is a major cause for renal allograft dysfunction and characterized by vasculopathies, tubular atrophy, and fibrosis. We demonstrated that numerous leukocytes interact with vascular endothelial cells of allografts and produce acetylcholine, which contributes to vascular remodeling. The cholinergic system might be a promising target for the development of novel therapies. However, neither the cellular mechanisms nor the acetylcholine receptors involved in CAI are known. Kidney transplantation was performed in the Lewis to Lewis and in the Fischer-334 to Lewis rat strain combination, which is an established experimental model for CAI. Expression of nicotinic and muscarinic acetylcholine receptors mRNA was quantified in renal tissue by real-time RT-PCR on days 9 and 42 after surgery. We detected CHRNA2-7, CHRNA10, CHRNB2, CHRNB4, and CHRM1-3 mRNA in normal kidneys and in renal transplants. In contrast, CHRNA9, CHRM4, and CHRM5 mRNA remained below the threshold of detection. In renal allografts, CHRNA3 and CHRNB4 mRNA expression were dramatically reduced compared to isografts. In conclusion, we demonstrated that most acetylcholine receptor subtypes are expressed by normal and transplanted kidneys. Allograft rejection downmodulates CHRNA3 and CHRNB4 mRNA. The role of different acetylcholine receptor subtypes in the development of CAI remains to be established.
Collapse
|
21
|
Nicotine induces chromatin remodelling through decreases in the methyltransferases GLP, G9a, Setdb1 and levels of H3K9me2. Int J Neuropsychopharmacol 2013; 16:1129-38. [PMID: 23067581 DOI: 10.1017/s1461145712001101] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Studies examining the epigenetic effects of nicotine are limited, but indicate that nicotine can promote a transcriptionally permissive chromatin environment by increasing acetylation of histone H3 and H4. To further explore nicotine-induced histone modifications, we measured histone methyltransferase (HMT) mRNA expression as well as total and promoter-specific H3K9me2 levels. Following administration of nicotine, HMT mRNA and H3K9me2 levels were examined in mouse primary cortical neuronal culture and cortex extracted from mice injected intraperitoneally, as well as in human lymphocyte culture. Furthermore, Bdnf/BDNF mRNA levels were examined as an epigenetically regulated read-out of gene expression. There was a significant decrease of the HMT GLP, G9a and Setdb1 mRNA expression in the nicotine-treated tissue examined, with significant decreases seen in both total and promoter-specific H3K9me2 levels. Increasing doses of nicotine resulted in significant decreases in Bdnf/BDNF promoter specific H3K9me2 binding, leading to enhanced Bdnf/BDNF transcription. Taken together, our data suggest that nicotine reduces markers of a restrictive epigenomic state, thereby leading to a more permissive epigenomic environment.
Collapse
|
22
|
Aubin HJ, Rollema H, Svensson TH, Winterer G. Smoking, quitting, and psychiatric disease: A review. Neurosci Biobehav Rev 2012; 36:271-84. [DOI: 10.1016/j.neubiorev.2011.06.007] [Citation(s) in RCA: 173] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 06/14/2011] [Accepted: 06/15/2011] [Indexed: 11/25/2022]
|
23
|
Nicotinic acetylcholine receptor expression on B-lymphoblasts of healthy versus schizophrenic subjects stratified for smoking: [3H]-nicotine binding is decreased in schizophrenia and correlates with negative symptoms. J Neural Transm (Vienna) 2011; 119:587-95. [DOI: 10.1007/s00702-011-0743-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 11/20/2011] [Indexed: 10/14/2022]
|
24
|
Abstract
Neutrophils (also called polymorphonuclear leukocytes) are the most abundant leukocytes whose primary purpose as anti-microbial professional phagocytes is to kill extracellular pathogens. Neutrophils and macrophages are phagocytic cell types that along with other cells effectively link the innate and adaptive arms of the immune response, and help promote inflammatory resolution and tissue healing. Found extensively within the gingival crevice and epithelium, neutrophils are considered the key protective cell type in the periodontal tissues. Histopathology of periodontal lesions indicates that neutrophils form a 'wall' between the junctional epithelium and the pathogen-rich dental plaque which functions as a robust anti-microbial secretory structure and as a unified phagocytic apparatus. However, neutrophil protection is not without cost and is always considered a two-edged sword in that overactivity of neutrophils can cause tissue damage and prolong the extent and severity of inflammatory periodontal diseases. This review will cover the innate and inflammatory functions of neutrophils, and describe the importance and utility of neutrophils to the host response and the integrity of the periodontium in health and disease.
Collapse
Affiliation(s)
- David A Scott
- Center for Oral Health and Systemic Disease, University of Louisville, Louisville, KY, USA.
| | | |
Collapse
|
25
|
Chang E, Forsberg EC, Wu J, Bingyin Wang, Prohaska SS, Allsopp R, Weissman IL, Cooke JP. Cholinergic activation of hematopoietic stem cells: role in tobacco-related disease? Vasc Med 2011; 15:375-85. [PMID: 20926497 DOI: 10.1177/1358863x10378377] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Tobacco use is associated with an increase in the white blood cell (WBC) count. This association has been attributed to bronchopulmonary inflammation and/or infection. It is not known if nicotine itself may play a role. The objective of this study was to determine whether nicotine itself could affect the WBC count, and to determine whether this was due to a direct effect on hematopoietic stem cells (HSC). C57Bl6J mice received nicotine orally, and measurements of the WBC count, bone marrow and spleen cellularity, and HSC count were made. To determine the functionality of HSCs, irradiated animals received bone marrow transplants from vehicle or nicotine-treated mice. Nicotine increased leukocytes in the peripheral blood, bone marrow and spleen. The peripheral red cell and platelet count were unaffected. Nicotine increased the frequency of HSC in the bone marrow. Isolated long-term HSCs from nicotine-treated mice transplanted into irradiated mice regenerated all hematopoietic cell lineages, demonstrating the functional competence of those HSCs. HSCs expressed nicotinic acetylcholine receptors (nAChRs), as documented by FITC-conjugated alpha-bungarotoxin binding. Nicotine increased soluble Kit ligand, consistent with stem cell activation. In conclusion, the data suggest a new mechanism for the increased WBC associated with tobacco use. The effect of nicotine to activate hematopoiesis may contribute to tobacco-related diseases.
Collapse
Affiliation(s)
- Edwin Chang
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Bencherif M, Lippiello PM, Lucas R, Marrero MB. Alpha7 nicotinic receptors as novel therapeutic targets for inflammation-based diseases. Cell Mol Life Sci 2010; 68:931-49. [PMID: 20953658 DOI: 10.1007/s00018-010-0525-1] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 08/24/2010] [Accepted: 08/30/2010] [Indexed: 12/19/2022]
Abstract
In recent years the etiopathology of a number of debilitating diseases such as type 2 diabetes, arthritis, atherosclerosis, psoriasis, asthma, cystic fibrosis, sepsis, and ulcerative colitis has increasingly been linked to runaway cytokine-mediated inflammation. Cytokine-based therapeutic agents play a major role in the treatment of these diseases. However, the temporospatial changes in various cytokines are still poorly understood and attempts to date have focused on the inhibition of specific cytokines such as TNF-α. As an alternative approach, a number of preclinical studies have confirmed the therapeutic potential of targeting alpha7 nicotinic acetylcholine receptor-mediated anti-inflammatory effects through modulation of proinflammatory cytokines. This "cholinergic anti-inflammatory pathway" modulates the immune system through cholinergic mechanisms that act on alpha7 receptors expressed on macrophages and immune cells. If the preclinical findings translate into human efficacy this approach could potentially provide new therapies for treating a broad array of intractable diseases and conditions with inflammatory components.
Collapse
|
27
|
Hao J, Simard AR, Turner GH, Wu J, Whiteaker P, Lukas RJ, Shi FD. Attenuation of CNS inflammatory responses by nicotine involves α7 and non-α7 nicotinic receptors. Exp Neurol 2010; 227:110-9. [PMID: 20932827 DOI: 10.1016/j.expneurol.2010.09.020] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 09/17/2010] [Accepted: 09/25/2010] [Indexed: 11/30/2022]
Abstract
A considerable number of in vivo studies have demonstrated that the cholinergic system can dampen the peripheral immune response, and it is thought that the α7-nicotinic acetylcholine receptor (nAChR) subtype is a key mediator of this process. The goal of the present study was to determine if nicotine modulates immunological mechanisms known to be involved in the development of experimental autoimmune encephalomyelitis (EAE), a mouse model for CNS autoimmune disease, via α7-nAChRs. Here we show that nicotine exposure attenuates EAE severity and that this effect is largely abolished in nAChR α7 subunit knock-out mice. However, nicotine exposure partially retains the ability to reduce lymphocyte infiltration into the CNS, inhibit auto-reactive T cell proliferation and helper T cell cytokine production, down-regulate co-stimulatory protein expression on myeloid cells, and increase the differentiation and recruitment of regulatory T cells, even in the absence of α7-nAChRs. Diverse effects of nicotine on effector and regulatory T cells, as well as antigen-presenting cells, may be linked to differential expression patterns of nAChR subunits across these cell types. Taken together, our data show that although α7-nAChRs indeed seem to play an important role in nicotine-conferred reduction of the CNS inflammatory response and protection against EAE, other nAChR subtypes also are involved in the anti-inflammatory properties of the cholinergic system.
Collapse
Affiliation(s)
- Junwei Hao
- Division of Neurology, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Evidence of alpha 7 nicotinic acetylcholine receptor expression in retinal pigment epithelial cells. Vis Neurosci 2010; 27:139-47. [DOI: 10.1017/s0952523810000246] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractSome evidence suggests that retinal pigment epithelium (RPE) can express nicotinic acetylcholine receptors (nAChRs) as described for other epithelial cells, where nAChRs have been involved in processes such as cell development, cell death, cell migration, and angiogenesis. This study is designed to determine the expression and activity of α7 nAChRs in RPE cells. Reverse transcriptase (RT)-PCR was performed to test the expression of nicotinic α7 subunit in bovine RPE cells. Protein expression was determined by Western blot and by immunocytochemistry. Expression of nicotinic α7 subunits was also analyzed in cryostat sections of albino rat retina. Changes in protein expression were tested under hypoxic conditions. Functional nAChRs were studied by examining the Ca2+transients elicited by nicotine and acetylcholine stimulation in fura-2–loaded cells. Expression of endogenous modulators of nAChRs was analyzed by RT-PCR and Western blot in retina and RPE. Cultured bovine RPE cells expressed nicotinic receptors containing α7 subunit. RT-PCR amplified the expected specific α7 fragment. Western blotting showed expression at the protein level, with a specific band being found at 57 kDa in both cultured and freshly isolated RPE cells. Expression of nAChRs was confirmed for cultured cells by immunofluorescence. Immunohistochemistry confirmed α7 receptor expression in rat RPE retina. α7 receptor expression was down-regulated by long-term hypoxia. A small subpopulation of RPE cultured cells showed functional nAChRs, as evidenced by the selective response elicited by nicotine and acetylcholine stimulation. Expression of the endogenous nicotinic receptors’ modulator lynx1 was confirmed in bovine retina and RPE, and expression of lynx1 and other endogenous nicotinic receptor modulators (SLURP1 and RGD1308195) were also confirmed in rat retina. These results suggest that nAChRs could have a significant role in RPE, which may not be related to the traditional role in nerve transmission but could more likely be related to the nonneuronal cholinergic system in the eye.
Collapse
|
29
|
Pillai SG, Kong X, Edwards LD, Cho MH, Anderson WH, Coxson HO, Lomas DA, Silverman EK. Loci identified by genome-wide association studies influence different disease-related phenotypes in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2010; 182:1498-505. [PMID: 20656943 DOI: 10.1164/rccm.201002-0151oc] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Genome-wide association studies have shown significant associations between variants near hedgehog interacting protein HHIP, FAM13A, and cholinergic nicotinic acetylcholine receptor CHRNA3/5 with increased risk of chronic obstructive pulmonary disease (COPD) in smokers; however, the disease mechanisms behind these associations are not well understood. OBJECTIVES To identify the association between replicated loci and COPD-related phenotypes in well-characterized patient populations. METHODS The relationship between these three loci and COPD-related phenotypes was assessed in the Evaluation of COPD Longitudinally to Identify Predictive Surrogate End-point (ECLIPSE) cohort. The results were validated in the family-based International COPD Genetics Network (ICGN). MEASUREMENTS AND MAIN RESULTS The CHRNA3/5 locus was significantly associated with pack-years of smoking (P = 0.002 and 3 × 10⁻⁴), emphysema assessed by a radiologist using high-resolution computed tomography (P = 2 × 10⁻⁴ and 4.8 × 10⁻⁵), and airflow obstruction (P = 0.004 and 1.8 × 10⁻⁵) in the ECLIPSE and ICGN populations, respectively. However, variants in the IREB2 gene were only significantly associated with FEV₁. The HHIP locus was not associated with smoking intensity but was associated with FEV₁/FVC (P = 1.9 × 10⁻⁴ and 0.004 in the ECLIPSE and ICGN populations). The HHIP locus was also associated with fat-free body mass (P = 0.007) and with both retrospectively (P = 0.015) and prospectively (P = 0.024) collected COPD exacerbations in the ECLIPSE cohort. Single-nucleotide polymorphisms in the FAM13A locus were associated with lung function. CONCLUSIONS The CHRNA3/5 locus was associated with increased smoking intensity and emphysema in individuals with COPD, whereas the HHIP and FAM13A loci were not associated with smoking intensity. The HHIP locus was associated with the systemic components of COPD and with the frequency of COPD exacerbations. FAM13A locus was associated with lung function.
Collapse
|
30
|
Improgo MRD, Scofield MD, Tapper AR, Gardner PD. The nicotinic acetylcholine receptor CHRNA5/A3/B4 gene cluster: dual role in nicotine addiction and lung cancer. Prog Neurobiol 2010; 92:212-26. [PMID: 20685379 DOI: 10.1016/j.pneurobio.2010.05.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 05/15/2010] [Accepted: 05/27/2010] [Indexed: 01/19/2023]
Abstract
More than 1 billion people around the world smoke, with 10 million cigarettes sold every minute. Cigarettes contain thousands of harmful chemicals including the psychoactive compound, nicotine. Nicotine addiction is initiated by the binding of nicotine to nicotinic acetylcholine receptors, ligand-gated cation channels activated by the endogenous neurotransmitter, acetylcholine. These receptors serve as prototypes for all ligand-gated ion channels and have been extensively studied in an attempt to elucidate their role in nicotine addiction. Many of these studies have focused on heteromeric nicotinic acetylcholine receptors containing α4 and β2 subunits and homomeric nicotinic acetylcholine receptors containing the α7 subunit, two of the most abundant subtypes expressed in the brain. Recently however, a series of linkage analyses, candidate-gene analyses and genome-wide association studies have brought attention to three other members of the nicotinic acetylcholine receptor family: the α5, α3 and β4 subunits. The genes encoding these subunits lie in a genomic cluster that contains variants associated with increased risk for several diseases including nicotine dependence and lung cancer. The underlying mechanisms for these associations have not yet been elucidated but decades of research on the nicotinic receptor gene family as well as emerging data provide insight on how these receptors may function in pathological states. Here, we review this body of work, focusing on the clustered nicotinic acetylcholine receptor genes and evaluating their role in nicotine addiction and lung cancer.
Collapse
Affiliation(s)
- Ma Reina D Improgo
- Brudnick Neuropsychiatric Research Institute, Department of Psychiatry, University of Massachusetts Medical School, 303 Belmont Street, Worcester, MA 01604, United States
| | | | | | | |
Collapse
|
31
|
Fumarulo R, Cassano A, Mariggiò MA. Exogenous factors in the immunotoxicity of oral PMN. Immunopharmacol Immunotoxicol 2010; 33:1-10. [PMID: 20373855 DOI: 10.3109/08923971003762782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Current evidence indicates that periodontal disease is frequently due to inappropriate levels of gingival granulocyte functions. Reason of this failure may be the toxic effects of a number of local or systemic exogenous factors, capable of spreading through the gingival crevice environment, and strongly conditioning the granulocyte activities. The wide list includes bacteria and granulotoxic products, hedonistic drugs (mainly tobacco), and chemotherapeutic agents (especially antimicrobials used for preventing or reducing the accumulation of dental plaque). Almost always, their presence induces a time- and/or dose-dependent toxicity.
Collapse
Affiliation(s)
- Ruggiero Fumarulo
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy.
| | | | | |
Collapse
|
32
|
Oloris SCS, Frazer-Abel AA, Jubala CM, Fosmire SP, Helm KM, Robinson SR, Korpela DM, Duckett MM, Baksh S, Modiano JF. Nicotine-mediated signals modulate cell death and survival of T lymphocytes. Toxicol Appl Pharmacol 2009; 242:299-309. [PMID: 19896492 DOI: 10.1016/j.taap.2009.10.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 10/12/2009] [Accepted: 10/26/2009] [Indexed: 01/16/2023]
Abstract
The capacity of nicotine to affect the behavior of non-neuronal cells through neuronal nicotinic acetylcholine receptors (nAChRs) has been the subject of considerable recent attention. Previously, we showed that exposure to nicotine activates the nuclear factor of activated T cells (NFAT) transcription factor in lymphocytes and endothelial cells, leading to alterations in cellular growth and vascular endothelial growth factor production. Here, we extend these studies to document effects of nicotine on lymphocyte survival. The data show that nicotine induces paradoxical effects that might alternatively enforce survival or trigger apoptosis, suggesting that depending on timing and context, nicotine might act both as a survival factor or as an inducer of apoptosis in normal or transformed lymphocytes, and possibly other non-neuronal cells. In addition, our results show that, while having overlapping functions, low and high affinity nAChRs also transmit signals that promote distinct outcomes in lymphocytes. The sum of our data suggests that selective modulation of nAChRs might be useful to regulate lymphocyte activation and survival in health and disease.
Collapse
Affiliation(s)
- Silvia C S Oloris
- Integrated Department of Immunology, School of Medicine, University of Colorado, Denver, Denver, CO, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Paulo JA, Brucker WJ, Hawrot E. Proteomic analysis of an alpha7 nicotinic acetylcholine receptor interactome. J Proteome Res 2009; 8:1849-58. [PMID: 19714875 DOI: 10.1021/pr800731z] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The alpha7 nicotinic acetylcholine receptor (nAChR) is well established as the principal high-affinity alpha-bungarotoxin-binding protein in the mammalian brain. We isolated carbachol-sensitive alpha-bungarotoxin-binding complexes from total mouse brain tissue by affinity immobilization followed by selective elution, and these proteins were fractionated by SDS-PAGE. The proteins in subdivided gel lane segments were tryptically digested, and the resulting peptides were analyzed by standard mass spectrometry. We identified 55 proteins in wild-type samples that were not present in comparable brain samples from alpha7 nAChR knockout mice that had been processed in a parallel fashion. Many of these 55 proteins are novel proteomic candidates for interaction partners of the alpha7 nAChR, and many are associated with multiple signaling pathways that may be implicated in alpha7 function in the central nervous system. The newly identified potential protein interactions, together with the general methodology that we introduce for alpha-bungarotoxin-binding protein complexes, form a new platform for many interesting follow-up studies aimed at elucidating the physiological role of neuronal alpha7 nAChRs.
Collapse
Affiliation(s)
- Joao A Paulo
- Graduate Program in Molecular Biology, Cell Biology and Biochemistry and Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, Rhode Island 02912, USA
| | | | | |
Collapse
|
34
|
Henningfield JE, Shiffman S, Ferguson SG, Gritz ER. Tobacco dependence and withdrawal: science base, challenges and opportunities for pharmacotherapy. Pharmacol Ther 2009; 123:1-16. [PMID: 19362108 PMCID: PMC3353657 DOI: 10.1016/j.pharmthera.2009.03.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Accepted: 03/20/2009] [Indexed: 01/16/2023]
Abstract
Several pharmacotherapies for tobacco dependence and withdrawal have been approved by the Food and Drug Administration to aid smoking cessation. These medicines double to triple the odds of cessation compared to placebo, with the diversity in chemical entity (e.g., nicotine, varenicline, bupropion) and route (e.g., nicotine gum and transdermal patch) providing options for people who find a given medication unacceptable or ineffective. Treatments in development include vaccines, combinations of existing products, and new indications, such as reduced tobacco use and exposure. These therapies have been developed on the foundation of research on the neuropharmacology of tobacco dependence and withdrawal. Ongoing research is expected to contribute to more efficacious use of existing therapies and the development of new approaches. This article addresses these developments as well as the challenges to medication development. Challenges include understanding the population-based and individual differences in the vulnerability to dependence and responsiveness to various treatment options, which could contribute to effective treatment to patient matching. Research on the CNS effects of administration and withdrawal of nicotine and other tobacco product constituents is expanding, providing the basis for more effective therapeutic approaches and new medications development. Additionally, whereas medications are approved on the basis of standardized assessments of efficacy and safety in clinical trials, the public health impact of medications depends also on their appeal to smokers and their effectiveness in actual use settings. Research on more effective medication use along with policies that support improved access and utilization are vital to conquering the tobacco epidemic.
Collapse
|
35
|
Glutamate is the chemotaxis-inducing factor in placental extracts. Amino Acids 2008; 37:359-66. [DOI: 10.1007/s00726-008-0162-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Accepted: 06/27/2008] [Indexed: 12/21/2022]
|
36
|
Gupta R, Chattopadhyay D. Glutamate is the chemotaxis-inducing factor in placental extracts. Amino Acids 2008; 37:271-7. [PMID: 18642106 DOI: 10.1007/s00726-008-0143-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Accepted: 06/27/2008] [Indexed: 01/25/2023]
Abstract
Human placental extracts are known to help wound healing. Rapid migration of neutrophils to the wound site is a prerequisite to the wound healing process. Gel filtration analysis of heat-treated placental extract gave the initial cue to the small nature of the migration promoting factor of the extract. HPLC analysis of the extract revealed glutamate to be the predominant free amino acid. Our studies show that glutamate at an optimum concentration of 8 muM induced phenotypic neutrophil chemotaxis, as seen in the time lapse- and transwell assays. Glutamate was also found to induce chemokinesis of the neutrophil, though the stimulation of chemotaxis was more pronounced. The glutamate induced chemotaxis was accompanied by polarization of the actin cytoskeleton, and by polymerization of F-actin. These data indicate that glutamate has a strong chemotactic functionality in the neutrophil, which could be of interest both therapeutically and in further investigation of the molecular basis of chemotaxis.
Collapse
Affiliation(s)
- Rahul Gupta
- Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology, Department of Biochemistry, University of Calcutta, 35 B. C. Road, Kolkata 700019, West Bengal, India
| | | |
Collapse
|
37
|
Cecconi D, Tessari M, Willé DR, Zoli M, Domenici E, Righetti PG, Carboni L. Serum proteomic analysis during nicotine self-administration, extinction and relapse in rats. Electrophoresis 2008; 29:1525-33. [DOI: 10.1002/elps.200700388] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
38
|
Skok MV. Non-neuronal nicotinic acetylcholine receptors: Cholinergic regulation of the immune processes. NEUROPHYSIOLOGY+ 2007. [DOI: 10.1007/s11062-007-0037-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
39
|
Staley JK, Krishnan-Sarin S, Cosgrove KP, Krantzler E, Frohlich E, Perry E, Dubin JA, Estok K, Brenner E, Baldwin RM, Tamagnan GD, Seibyl JP, Jatlow P, Picciotto MR, London ED, O'Malley S, van Dyck CH. Human tobacco smokers in early abstinence have higher levels of beta2* nicotinic acetylcholine receptors than nonsmokers. J Neurosci 2006; 26:8707-14. [PMID: 16928859 PMCID: PMC6674379 DOI: 10.1523/jneurosci.0546-06.2006] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2006] [Revised: 06/16/2006] [Accepted: 07/05/2006] [Indexed: 11/21/2022] Open
Abstract
Nicotine, the addictive chemical in tobacco smoke, initiates its actions in brain through nicotinic acetylcholine receptors (nAChRs). In particular, nAChRs containing beta2-subunits (beta2*-nAChRs) the most prevalent subtype, mediate the reinforcing properties of nicotine. We hypothesized that abnormal numbers of beta2*-nAChRs during early abstinence contribute to the perpetuation of addiction to tobacco smoking. Using molecular imaging, specifically single-photon emission computed tomography with the nAChR agonist radiotracer [123I]5-IA-85380 ([123I]5-IA), we imaged beta2*-nAChR availability in human smokers. First, using nonhuman primates treated chronically with nicotine, we estimated the time interval necessary for smokers to abstain from smoking so that residual nicotine would not interfere with [123I]5-IA binding to the beta2*-nAChR as approximately 7 d. Thus, we imaged human smokers at 6.8 +/- 1.9 d (mean +/- SD) of abstinence. Abstinence was confirmed by daily assessments of urinary cotinine and expired carbon monoxide levels. In smokers, [123I]5-IA uptake was significantly higher throughout the cerebral cortex (26-36%) and in the striatum (27%) than in nonsmokers, suggesting higher beta2*-nAChR in recently abstinent smokers. Beta2*-nAChR availability in recently abstinent smokers correlated with the days since last cigarette and the urge to smoke to relieve withdrawal symptoms but not the severity of nicotine dependence, severity of nicotine withdrawal, or the desire to smoke. Higher brain beta2*-nAChR during early abstinence indicates that, when smokers quit smoking, they do so in the face of a significant increase in the receptors normally activated by nicotine. Greater beta2*-nAChR availability during early abstinence may impact the ability of smokers to maintain abstinence.
Collapse
Affiliation(s)
- Julie K Staley
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut 06511, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Leonard S, Freedman R. Genetics of chromosome 15q13-q14 in schizophrenia. Biol Psychiatry 2006; 60:115-22. [PMID: 16843094 DOI: 10.1016/j.biopsych.2006.03.054] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2005] [Revised: 03/14/2006] [Accepted: 03/16/2006] [Indexed: 01/28/2023]
Abstract
Positive genetic linkage to the 15q13-q14 region has been found in 11 studies, and several association reports support this locus as a candidate region for schizophrenia. The locus is unusual in that it was first linked to an endophenotype found in schizophrenia, the P50 deficit, and subsequently to schizophrenia. There is also biological data showing that a candidate gene in the region, the alpha7 nicotinic receptor CHRNA7, plays a seminal role in the linked endophenotype, and is decreased in expression in the patient population. The 15q13-q14 region is complicated by a partial duplication of the CHRNA7 gene that includes exons 5-10 and considerable sequence downstream. Evidence from multiple studies supports a broad region of genetic linkage around the marker D15S1360.
Collapse
Affiliation(s)
- Sherry Leonard
- Department of Psychiatry, University of Colorado at Denver and Health Sciences Center, Fitzsimmons Campus, Aurora, Colorado 80045, USA.
| | | |
Collapse
|
41
|
van Westerloo DJ, Giebelen IA, Florquin S, Bruno MJ, Larosa GJ, Ulloa L, Tracey KJ, van der Poll T. The vagus nerve and nicotinic receptors modulate experimental pancreatitis severity in mice. Gastroenterology 2006; 130:1822-30. [PMID: 16697744 DOI: 10.1053/j.gastro.2006.02.022] [Citation(s) in RCA: 290] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2004] [Accepted: 01/25/2006] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS The nervous system, through the vagus nerve, controls inflammation by decreasing the release of tumor necrosis factor-alpha from endotoxin stimulated macrophages. This anti-inflammatory effect is mediated by an interaction of acetylcholine, the principal neurotransmitter of the vagus nerve, with macrophage cholinergic nicotinic receptors expressing the alpha7 subunit. METHODS To determine the role of this "nicotinic anti-inflammatory pathway" in experimental pancreatitis, we induced pancreatitis in mice by 12 hourly intraperitoneal injections of cerulein. Pancreatitis was preceded by unilateral left cervical vagotomy or pretreatment with the nicotinic receptor antagonist mecamylamine or by pretreatment with the selective alpha7 nicotinic receptor agonist 3-(2,4-dimethoxybenzylidene) anabaseine (GTS-21). RESULTS Vagotomy or pretreatment with mecamylamine resulted in an enhanced severity of pancreatitis, as reflected by histology, edema, plasma hydrolases, and interleukin-6 levels. Furthermore, the number of neutrophils migrated to the pancreas was increased in these mice, as shown by myeloperoxidase content and intrapancreatic staining of neutrophils. Conversely, GTS-21 pretreatment strongly decreased the severity of pancreatitis. Pancreatitis-associated pulmonary inflammation was independent of the integrity of the vagus nerve and nicotinic receptors. CONCLUSIONS This study provides the first evidence for a therapeutic potential of the vagus nerve and the "nicotinic anti-inflammatory pathway" in attenuating inflammation and injury during experimental pancreatitis.
Collapse
Affiliation(s)
- David J van Westerloo
- Laboratory of Experimental Internal Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Racké K, Juergens UR, Matthiesen S. Control by cholinergic mechanisms. Eur J Pharmacol 2006; 533:57-68. [PMID: 16458288 DOI: 10.1016/j.ejphar.2005.12.050] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2005] [Indexed: 01/11/2023]
Abstract
In the respiratory tract acetylcholine is neurotransmitter in ganglia and postganglionic parasympathetic nerves, but in addition is paracrine mediator released from various non-neuronal cells. Almost every cell type present in the respiratory tract expresses nicotinic and muscarinic receptors and therefore appears to be a target for acetylcholine. The present review describes the mechanisms of synthesis and release of acetylcholine from neuronal and non-neuronal cells and the differential control mechanisms. The different cholinoceptors, multiple nicotinic and muscarinic receptors and their signalling are outlined and their involvement in the modulation of the function of various target cells, smooth muscles, nerves, surface epithelial, secretory cells, fibroblasts and inflammatory cells is discussed in detail.
Collapse
Affiliation(s)
- Kurt Racké
- Institute of Pharmacology and Toxicology, University of Bonn, Reuterstrasse 2b, D-53113 Bonn, Germany.
| | | | | |
Collapse
|
43
|
Alam S, Laughton DL, Walding A, Wolstenholme AJ. Human peripheral blood mononuclear cells express GABAA receptor subunits. Mol Immunol 2005; 43:1432-42. [PMID: 16213022 DOI: 10.1016/j.molimm.2005.07.025] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2005] [Indexed: 11/29/2022]
Abstract
The polymerase chain reaction was used to screen human peripheral blood mononuclear cells (PBMC) and Jurkat cells for the presence of GABAA receptor subunit mRNAs. Positive signals were detected for the alpha1, alpha3, beta2, beta3, delta and epsilon subunit mRNAs in both cell populations, with the Jurkat cells giving a positive signal for some additional species. Real-time PCR was used to confirm that PBMC, lymphocytes and monocytes contained significant levels of the alpha1 subunit mRNA and that PBMC and lymphocytes contained low levels of beta2 mRNA. The alpha1 subunit was detected in PBMC and fractionated T-cell populations, as well as Jurkat and HL-60 cell lines, by Western blotting and immunofluorescence using a specific antibody. The application of 1mM GABA reduced the specific increase in intracellular PBMC Ca2+ levels produced by addition of 1 nM fMLP: this effect was mimicked by muscimol, but not glycine, and was blocked by bicuculline. The inhibitory effect of GABA was limited to a subset of PBMC. We conclude that cells within the human PBMC population, including lymphocytes, express functional GABAA receptors and these receptors may modulate immune responses.
Collapse
Affiliation(s)
- Sabina Alam
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | | | | | | |
Collapse
|
44
|
Chu LW, Ma ESK, Lam KKY, Chan MF, Lee DHS. Increased alpha 7 nicotinic acetylcholine receptor protein levels in Alzheimer's disease patients. Dement Geriatr Cogn Disord 2005; 19:106-12. [PMID: 15591800 DOI: 10.1159/000082661] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/23/2004] [Indexed: 01/16/2023] Open
Abstract
We compared the intact alpha7 nicotinic acetylcholine receptor (alpha7nAChR) protein levels in the peripheral blood leukocytes in 15 Alzheimer's disease (AD) patients and 13 normal elderly control subjects. Demographic data and Mini-Mental State Examination (MMSE) scores were obtained. Western blot analysis for alpha7nAChR protein levels in peripheral blood leukocytes was performed. There were no significant differences in sex and age between the AD and control groups. The mean MMSE score of the AD subjects was significantly lower than that of the normal control subjects (15.4 +/- 5.5 vs. 28.5 +/- 1.9 respectively; p < 0.001). The median value of normalized alpha7nAChR protein levels (optical density, arbitrary unit) of the AD group was significantly higher than that of the normal control group (0.6923 vs. 0.4803 respectively; p = 0.045, Mann-Whitney U test). The normalized alpha7nAChR protein levels showed a significant inverse correlation with the MMSE scores (Spearman rho = -0.45; p = 0.016; n = 28). Receiver Operating Characteristic curve analyses showed that the area under curve was 0.72 (95% CI 0.52- 0.87). If the cut-off of the alpha7nAChR protein level was >0.312, the sensitivity, specificity, positive predictive value and negative predictive value would be 80, 39, 60 and 63%, respectively. These findings showed that the alpha7nAChR protein levels would be a potentially useful diagnostic marker for AD.
Collapse
Affiliation(s)
- L W Chu
- Division of Geriatric Medicine, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, China.
| | | | | | | | | |
Collapse
|
45
|
Gotti C, Clementi F. Neuronal nicotinic receptors: from structure to pathology. Prog Neurobiol 2005; 74:363-96. [PMID: 15649582 DOI: 10.1016/j.pneurobio.2004.09.006] [Citation(s) in RCA: 714] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2004] [Accepted: 09/29/2004] [Indexed: 02/07/2023]
Abstract
Neuronal nicotinic receptors (NAChRs) form a heterogeneous family of ion channels that are differently expressed in many regions of the central nervous system (CNS) and peripheral nervous system. These different receptor subtypes, which have characteristic pharmacological and biophysical properties, have a pentameric structure consisting of the homomeric or heteromeric combination of 12 different subunits (alpha2-alpha10, beta2-beta4). By responding to the endogenous neurotransmitter acetylcholine, NAChRs contribute to a wide range of brain activities and influence a number of physiological functions. Furthermore, it is becoming evident that the perturbation of cholinergic nicotinic neurotransmission can lead to various diseases involving nAChR dysfunction during development, adulthood and ageing. In recent years, it has been discovered that NAChRs are present in a number of non-neuronal cells where they play a significant functional role and are the pathogenetic targets in several diseases. NAChRs are also the target of natural ligands and toxins including nicotine (Nic), the most widespread drug of abuse. This review will attempt to survey the major achievements reached in the study of the structure and function of NAChRs by examining their regional and cellular localisation and the molecular basis of their functional diversity mainly in pharmacological and biochemical terms. The recent availability of mice with the genetic ablation of single or double nicotinic subunits or point mutations have shed light on the role of nAChRs in major physiological functions, and we will here discuss recent data relating to their behavioural phenotypes. Finally, the role of NAChRs in disease will be considered in some details.
Collapse
Affiliation(s)
- C Gotti
- CNR, Institute of Neuroscience, Cellular and Molecular Pharmacology Section, Department of Medical Pharmacology and Center of Excellence on Neurodegenerative Diseases, University of Milan, Via Vanvitelli 32, 20129 Milan, Italy
| | | |
Collapse
|
46
|
Abstract
Epidemiological studies associate smoking with reduced insulin secretion. We hypothesized that nicotine could negatively affect pancreatic beta-cell function. Acute or 48-hour exposures to nicotine (10(-4) to 10(-6) mol/L) moderately inhibited insulin release at basal (3.3 mmol/L) and/or elevated (27 mmol/L) glucose in rat and human islets. Acute exposure to nicotine (10(-6) mol/L) inhibited tolbutamide (200 micromol/L)-induced insulin release by 41% (P < .05), but did not affect secretion induced by KCl (20 mmol/L) or 3-isobutyl-1-methylxanthine (1 mmol/L) (tested in rat islets). Specific binding of [3H]nicotine was demonstrated in rat islets and in a beta -cell line of rat origin, INS-1. Such binding was enhanced by 48 hours of coculture with nicotine (10(-7) mol/L). Expression of mRNA for the nicotinic receptor subunits alpha 2, alpha 3, alpha 4, alpha 5, alpha 7, and beta 2 was detected in INS-1 cells by reverse transcriptase polymerase chain reaction. Acute exposure to cytisine (10(-6) mol/L), an agonist of alpha 4, beta 2 subunits, partially inhibited tolbutamide-induced insulin release. Specific binding of alpha bungarotoxin (10(-10) mol/L), an antagonist of the alpha 7 subunit, could be demonstrated in INS-1 cells, and culture with alpha bungarotoxin modestly increased insulin release in postculture incubations at basal and elevated glucose, P < .05. Our data indicate that functional nicotinic receptors are present in pancreatic islets and beta cells.
Collapse
Affiliation(s)
- Hiroyasu Yoshikawa
- Endocrine Section, Department of Medicine, Norwegian University of Science and Technology, Trondheim N-7489, Norway
| | | | | |
Collapse
|
47
|
Palmer RM, Wilson RF, Hasan AS, Scott DA. Mechanisms of action of environmental factors--tobacco smoking. J Clin Periodontol 2005; 32 Suppl 6:180-95. [PMID: 16128837 DOI: 10.1111/j.1600-051x.2005.00786.x] [Citation(s) in RCA: 310] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
AIM To review the potential biological mechanisms underlying the effects of tobacco smoking on periodontitis. MAIN FINDINGS Smoking has major effects on the host response, but there are also a number of studies that show some microbiological differences between smokers and non-smokers. Smoking has a long-term chronic effect on many important aspects of the inflammatory and immune responses. Histological studies have shown alterations in the vasculature of the periodontal tissues in smokers. Smoking induces a significant systemic neutrophilia, but neutrophil transmigration across the periodontal microvasculature is impeded. The suppression of neutrophil cell spreading, chemokinesis, chemotaxis and phagocytosis have been described. Protease release from neutrophils may be an important mechanism in tissue destruction. Tobacco smoke has been found to affect both cell-mediated immunity and humoral immunity. Research on gingival crevicular fluid has demonstrated that there are lower levels of cytokines, enzymes and possibly polymorphonuclear cells in smokers. In vitro studies have shown detrimental effects of nicotine and some other tobacco compounds on fibroblast function, including fibroblast proliferation, adhesion to root surfaces and cytotoxicity. CONCLUSION Tobacco smoking has widespread systemic effects, many of which may provide mechanisms for the increased susceptibility to periodontitis and the poorer response to treatment.
Collapse
Affiliation(s)
- Richard M Palmer
- King's College London, Guy's Hospital Campus, London Bridge, London SE1 9RT, UK.
| | | | | | | |
Collapse
|
48
|
Racké K, Matthiesen S. The airway cholinergic system: physiology and pharmacology. Pulm Pharmacol Ther 2004; 17:181-98. [PMID: 15219263 DOI: 10.1016/j.pupt.2004.03.001] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2003] [Revised: 01/23/2004] [Accepted: 03/16/2004] [Indexed: 11/22/2022]
Abstract
The present review summarizes the current knowledge of the cholinergic systems in the airways with special emphasis on the role of acetylcholine both as neurotransmitter in ganglia and postganglionic parasympathetic nerves and as non-neuronal paracrine mediator. The different cholinoceptors, various nicotinic and muscarinic receptors, as well as their signalling mechanisms are presented. The complex ganglionic and prejunctional mechanisms controlling the release of acetylcholine are explained, and it is discussed whether changes in transmitter release could be involved in airway dysfunctions. The effects of acetylcholine on different target cells, smooth muscles, nerves, surface epithelial and secretory cells as well as mast cells are described in detail, including the receptor subtypes involved in signal transmission.
Collapse
Affiliation(s)
- K Racké
- Institute of Pharmacology and Toxicology, University of Bonn, Reuterstrasse 2b, D-53113 Bonn, Germany.
| | | |
Collapse
|
49
|
Carlsson S, Midthjell K, Grill V. Smoking is associated with an increased risk of type 2 diabetes but a decreased risk of autoimmune diabetes in adults: an 11-year follow-up of incidence of diabetes in the Nord-Trøndelag study. Diabetologia 2004; 47:1953-6. [PMID: 15558231 DOI: 10.1007/s00125-004-1554-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2004] [Accepted: 07/28/2004] [Indexed: 11/26/2022]
Abstract
AIMS/HYPOTHESIS We compared the association between smoking habits and later occurrence of type 2 diabetes on the one hand and between smoking and diabetes with autoimmunity on the other hand. METHODS We used data from a prospective study of 11-year cumulative incidence of diabetes in the Nord-Trøndelag Health Survey. RESULTS Confirming previous reports, heavy smoking (>/=20 cigarettes per day) carried an increased relative risk (RR) of type 2 diabetes (n=738, RR=1.64, 95% CI: 1.12-2.39). In contrast, smoking reduced the risk of latent autoimmune diabetes in adults (LADA) and of traditional type 1 diabetes (LADA n= 81, RR=0.25, 95% CI: 0.11-0.60; type 1 diabetes, n=18, RR=0.17, 95% CI: 0.04-0.73). CONCLUSIONS/INTERPRETATIONS The results indicate that nicotine influences autoimmune processes in human diabetes.
Collapse
Affiliation(s)
- S Carlsson
- Division of Epidemiology, Stockholm Centre of Public Health and Department of Epidemiology, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | | | | |
Collapse
|
50
|
Frazer-Abel AA, Baksh S, Fosmire SP, Willis D, Pierce AM, Meylemans H, Linthicum DS, Burakoff SJ, Coons T, Bellgrau D, Modiano JF. Nicotine activates nuclear factor of activated T cells c2 (NFATc2) and prevents cell cycle entry in T cells. J Pharmacol Exp Ther 2004; 311:758-69. [PMID: 15231866 DOI: 10.1124/jpet.104.070060] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
We used primary peripheral blood T cells, a population that exists in G(0) and can be stimulated to enter the cell cycle synchronously, to define more precisely the effects of nicotine on pathways that control cell cycle entry and progression. Our data show that nicotine decreased the ability of T cells to transit through the G(0)/G(1) boundary (acquire competence) and respond to progression signals. These effects were due to nuclear factor of activated T cells c2 (NFATc2)-dependent repression of cyclin-dependent kinase 4 (CDK4) expression. Growth arrest at the G(0)/G(1) boundary was further enforced by inhibition of cyclin D2 expression and by increased expression and stabilization of p27Kip1. Intriguingly, T cells from habitual users of tobacco products and from NFATc2-deficient mice constitutively expressed CDK4 and were resistant to the antiproliferative effects of nicotine. These results indicate that nicotine impairs T cell cycle entry through NFATc2-dependent mechanisms and suggest that, in the face of chronic nicotine exposure, selection may favor cells that can evade these effects. We postulate that cross talk between nicotinic acetylcholine receptors and growth factor receptor-activated pathways offers a novel mechanism by which nicotine may directly impinge on cell cycle progression. This offers insight into possible reasons that underlie the unique effects of nicotine on distinct cell types and identifies new targets that may be useful control tobacco-related diseases.
Collapse
Affiliation(s)
- Ashley A Frazer-Abel
- Integrated Department of Immunology, University of Colorado Health Sciences Center, AMC Cancer Center, 2-Diamond Building, 1600 Pierce Street, Denver, CO 80214, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|