1
|
Işık M, Köse F, Budak Ö, Özbayer C, Kaya RK, Aydın S, Küçük AC, Demirci MA, Doğanay S, Bağcı C. Probiotic Bactolac alleviates depression-like behaviors by modulating BDNF, NLRP3 and MC4R levels, reducing neuroinflammation and promoting neural repair in rat model. Pflugers Arch 2025; 477:797-814. [PMID: 40281288 DOI: 10.1007/s00424-025-03084-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/16/2025] [Accepted: 03/30/2025] [Indexed: 04/29/2025]
Abstract
Depression, a prevalent psychiatric disorder, exerts severe and debilitating impacts on an individual's mental and physical well-being, and it is considered a chronic mental illness. Chronic stress plays an important role in the pathophysiology of depression. Lactobacillus plantarum and Streptococcus thermophilus are psychobiotic bacteria and synthesize some neurotransmitters that play a role in the pathogenesis of depression. In this study, we aimed to investigate the therapeutic effects of Bactolac (Lactobacillus plantarum NBIMCC 8767 + Streptococcus thermophilus NBIMCC 8258) on chronic stress-induced depression in rats. Behavioral tests, including the sucrose preference test, elevated plus maze test, forced swim test, and three-chamber sociability test, were employed to assess depressive and anxiety-like behaviors. The expression level of the 5-HT1A, DRD1, ADRA-2A, GABA-A α1, CNR1, NR3C2, NOD1, NLRP3 and MC4R; BDNF levels, glial activity and intestinal permeability were determined in chronic stress-induced depression in rats. In conclusions, chronic stress decreased the expression levels of 5-HT1A, DRD1, ADRA-2A, GABA-A α1, CNR1, NR3C2, NOD1 and BDNF level; increased the expression levels of NLRP3 and MC4R, caused neurodegeneration and glial activity, ultimately led to depressive effects. Bactolac was effective in reducing depressive-like behaviors according to the results of behavioral tests. Bactolac treatment provided high neuronal survival rate increasing BDNF level, prevented the excessive release of pro-inflammatory cytokines by reducing the expression levels of NLRP3 and MC4R, therefore, prevented the excessive activation of the hypothalamus-pituitary-adrenal (HPA) axis and accordingly, reduced neurodegeneration and glial cell activation in depressed rats. We can suggest that Bactolac supplementation may be beneficial in coping with stress, alleviate the effects of chronic stress and help to protect mental health.
Collapse
Affiliation(s)
- Musab Işık
- Department of Physiology, İstanbul Aydın University Medical Faculty, Istanbul, Turkey.
| | - Fadime Köse
- Department of Physiology, Sakarya University Medical Faculty, Sakarya, Turkey
| | - Özcan Budak
- Department of Hıstology-Embryology, Sakarya University Medical Faculty, Sakarya, Turkey
| | - Cansu Özbayer
- Department of Medical Biology, Medical Faculty, Kütahya Health Sciences University, Kutahya, Turkey
| | - Rumeysa Keleş Kaya
- Department of Medical Pharmacology, University of Health Sciences Hamidiye International School of Medicine, Istanbul, Turkey.
| | - Sevda Aydın
- Department of Hıstology-Embryology, Sakarya University Medical Faculty, Sakarya, Turkey
| | - Aleyna Ceren Küçük
- Department of Hıstology-Embryology, Sakarya University Medical Faculty, Sakarya, Turkey
| | - Mehmet Arif Demirci
- Department of Health Systems Management, Muş Alparslan University, Faculty of Health Sciences, Muş, Turkey
| | - Songül Doğanay
- Department of Physiology, Sakarya University Medical Faculty, Sakarya, Turkey
| | - Cahit Bağcı
- Department of Physiology, Sakarya University Medical Faculty, Sakarya, Turkey
| |
Collapse
|
2
|
Kim K, Byun MS, Yi D, Jung JH, Sohn BK, Jung G, Ahn H, Lee JY, Lee YS, Kim YK, Nho K, Lee DY, KBASE Research Group. Serum BDNF and progression to MCI in cognitively normal older adults: A prospective cohort study. J Prev Alzheimers Dis 2025:100210. [PMID: 40414756 DOI: 10.1016/j.tjpad.2025.100210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 04/09/2025] [Accepted: 05/19/2025] [Indexed: 05/27/2025]
Abstract
BACKGROUND Brain-derived neurotrophic factor (BDNF) is the most abundant neurotrophin in the mammalian brain. Preclinical studies suggest that BDNF influences the pathophysiology of Alzheimer's disease. In humans, higher blood BDNF levels have been associated with a lower risk of dementia. However, the relationship between serum BDNF levels and the progression to mild cognitive impairment (MCI) in cognitively normal (CN) individuals remains uncertain. OBJECTIVES To examine whether higher serum BDNF levels in CN older adults are associated with a reduced incidence of MCI over a 4-year follow-up period and to identify potential moderators of this relationship. DESIGN Longitudinal analyses were conducted using follow-up data from the Korean Brain Aging Study for Early Diagnosis and Prediction of Alzheimer's Disease, an ongoing prospective cohort study. Data were collected from January 1, 2014, to May 31, 2021, and analyzed from May 1, 2023, to September 30, 2023. SETTING Community and memory clinic setting. PARTICIPANTS A total of 274 CN older adults aged 55-90 years were included at baseline. MEASUREMENT Progression to MCI over the 4-year follow-up period. RESULTS Among the 274 participants, 26 developed MCI during follow-up. The high BDNF group had a significantly lower incidence of MCI compared to the low BDNF group (hazard ratio [HR], 0.27; 95 % confidence interval [CI], 0.11-0.69; P = 0.006). This association persisted even after adjusting for BDNF Val66Met polymorphism, amyloid PET positivity, vascular risk factors, cholesterol levels, triglycerides, homocysteine, BMI, smoking, alcohol, TBI history, CES-D, and MMSE scores (HR, 0.14; 95 % CI, 0.05-0.40; P < 0.001). Subgroup analyses further revealed that the association was significant only in women (HR, 0.12; 95 % CI, 0.03-0.48; P = 0.002), individuals aged <75 years (HR, 0.16; 95 % CI, 0.03-0.77; P = 0.022), those with less than a college degree (HR, 0.23; 95 % CI, 0.07-0.74; P = 0.013), and amyloid PET-negative (HR, 0.29; 95 % CI, 0.11-0.72; P = 0.014) individuals. CONCLUSIONS These findings suggest a protective role of BDNF against clinical progression to MCI in cognitively healthy older individuals. This effect appears to be more prominent in women, as well as in relatively younger, less educated, and amyloid PET-negative individuals.
Collapse
Affiliation(s)
- Kyungtae Kim
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea.
| | - Min Soo Byun
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea; Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dahyun Yi
- Institute of Human Behavioral Medicine, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Joon Hyung Jung
- Department of Psychiatry, Chungbuk National University Hospital, Cheongju, Republic of Korea.
| | - Bo Kyung Sohn
- Department of Psychiatry, Inje University Sanggye Paik Hospital, Seoul, Republic of Korea.
| | - Gijung Jung
- Institute of Human Behavioral Medicine, Medical Research Center, Seoul National University, Seoul, Republic of Korea.
| | - Hyejin Ahn
- Interdisciplinary program of cognitive science, Seoul National University, Seoul, Republic of Korea
| | - Jun-Young Lee
- Department of Neuropsychiatry, SMG-SNU Boramae Medical Center, Republic of Korea.
| | - Yun-Sang Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Yu Kyeong Kim
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Kwangsik Nho
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, USA; Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, USA.
| | - Dong Young Lee
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea; Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Human Behavioral Medicine, Medical Research Center, Seoul National University, Seoul, Republic of Korea; Interdisciplinary program of cognitive science, Seoul National University, Seoul, Republic of Korea.
| | | |
Collapse
|
3
|
Liang SY, Li LJ, Huang YR, Zhu J, Cui F, Du XY, Zhang L, Jia YB, Hou SJ, Niu XY, Yang JJ, Lu S, Liu RT. In Situ synNotch-Programmed Astrocytes Sense and Attenuate Neuronal Apoptosis. Int J Mol Sci 2025; 26:4343. [PMID: 40362583 PMCID: PMC12072468 DOI: 10.3390/ijms26094343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2025] [Revised: 04/24/2025] [Accepted: 04/29/2025] [Indexed: 05/15/2025] Open
Abstract
Neuronal apoptosis is an early and critical pathological hallmark of many chronic neurodegenerative diseases, often occurring silently long before the appearance of overt clinical symptoms. In this study, we engineered astrocytes utilizing a dual-biomarker recognition synNotch system (dual-synNotch). This system is designed to specifically identify neuronal apoptosis through the 'AND Gate' activation mechanism, which is triggered by the simultaneous sensing of the apoptotic signal phosphatidylserine (PS) and the neuronal signal ganglioside Gt1b. Upon detection of these neuronal apoptotic signals, the synNotch receptors are activated, inducing the expression of two key molecules: secreted Gaussia luciferase (GLuc), a highly detectable reporter that can cross the blood-brain barrier (BBB), and brain-derived neurotrophic factor (BDNF), a neuroprotective molecule that promotes neuronal survival by inhibiting apoptosis and enhancing memory and cognitive function. This engineered system effectively converts and amplifies early, imperceptible neuronal apoptotic signals into detectable outputs, enabling convenient in vitro monitoring and diagnosis. Therefore, it represents a promising strategy for the early detection and intervention of neurodegenerative diseases associated with neuronal apoptosis.
Collapse
Affiliation(s)
- Shi-Yu Liang
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (S.-Y.L.); (L.-J.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ling-Jie Li
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (S.-Y.L.); (L.-J.L.)
| | - Ya-Ru Huang
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (S.-Y.L.); (L.-J.L.)
| | - Jie Zhu
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (S.-Y.L.); (L.-J.L.)
| | - Fang Cui
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (S.-Y.L.); (L.-J.L.)
| | - Xiao-Yu Du
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (S.-Y.L.); (L.-J.L.)
| | - Lun Zhang
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (S.-Y.L.); (L.-J.L.)
| | - Ying-Bo Jia
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (S.-Y.L.); (L.-J.L.)
| | - Sheng-Jie Hou
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (S.-Y.L.); (L.-J.L.)
| | - Xiao-Yun Niu
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (S.-Y.L.); (L.-J.L.)
| | - Jin-Ju Yang
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (S.-Y.L.); (L.-J.L.)
| | - Shuai Lu
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (S.-Y.L.); (L.-J.L.)
| | - Rui-Tian Liu
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (S.-Y.L.); (L.-J.L.)
| |
Collapse
|
4
|
Michael HU, Rapulana AM, Smit T, Xulu N, Danaviah S, Ramlall S, Oosthuizen F. Serum Mature and Precursor Brain-Derived Neurotrophic Factors and Their Association with Neurocognitive Function in ART-Naïve Adults Living with HIV in Sub-Saharan Africa. Mol Neurobiol 2025; 62:5442-5451. [PMID: 39548055 PMCID: PMC11953136 DOI: 10.1007/s12035-024-04599-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 10/26/2024] [Indexed: 11/17/2024]
Abstract
This study investigates the association between serum mature brain-derived neurotrophic factor (mBDNF), its precursor proBDNF, and neurocognitive function in ART-naïve adults with HIV in sub-Saharan Africa, exploring the distinct roles of these neurotrophic factors in cognitive health. This cross-sectional analysis utilized stored baseline serum samples and neuropsychological test data from participants in the AIDS Clinical Trials Group (ACTG) A5199 study in the Johannesburg and Harare sites. Serum concentrations of mBDNF and proBDNF were quantified using ELISA. Neurocognitive function was assessed via standardized tests, with results adjusted for site-specific demographics. Linear and quantile regression models examined the relationship of mBDNF and proBDNF with a composite cognitive score (NPZ-6), and structural equation modeling (SEM) explored their association with individual cognitive test outcomes. The analysis involved 157 ART-naïve adults with HIV. Increased serum mBDNF levels showed a significant positive association with cognitive performance (β = 1.30, p = 0.02), while elevated proBDNF levels were linked to poorer outcomes, particularly affecting fine motor skills and speed (β = - 0.29 to - 0.38, p ≤ 0.01). Quantile regression analysis highlighted mBDNF's stronger positive impact at higher cognitive performance percentiles (β = 1.04 (0.01, 2.06) at the 75th percentile), while proBDNF showed significant negative association at the 75th percentile (β = - 0.26 (- 0.47, - 0.06)). The study highlights the positive association of mature BDNF and the negative association of proBDNF with cognitive function in HIV. These findings emphasize the need for longitudinal research to understand the temporal dynamics of neurotrophic factors during ART initiation and their potential as targets for neurocognitive interventions in HIV.
Collapse
Affiliation(s)
- Henry U Michael
- Discipline of Pharmaceutical Sciences, School of Health Science, University of KwaZulu-Natal, Durban, South Africa.
- Division of Clinical and Translational Research, McGill University, Montreal, QC, Canada.
- Centre for Outcomes Research & Evaluation, Research Institute of McGill University Health Centre (RI-MUHC), Montreal, QC, Canada.
| | - Antony M Rapulana
- Africa Health Research Institute, Durban, South Africa
- School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban, South Africa
- UCL Centre for Clinical for Clinical Microbiology, Division of Infection & Immunity, University College London, London, England
| | - Theresa Smit
- Africa Health Research Institute, Durban, South Africa
| | - Njabulo Xulu
- Africa Health Research Institute, Durban, South Africa
| | | | - Suvira Ramlall
- Department of Psychiatry, University of KwaZulu-Natal, Durban, South Africa
| | - Frasia Oosthuizen
- Discipline of Pharmaceutical Sciences, School of Health Science, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
5
|
Heidari A, Hajikarim-Hamedani A, Asefi M, Soltani H, Zamani MS, Ghane Y, Rassa S, Sadat-Shirazi M, Zarrindast MR. Impact of parental ethanol exposure on offspring memory: Sex differences in spatial and passive avoidance tasks. Alcohol 2025; 124:13-21. [PMID: 39904476 DOI: 10.1016/j.alcohol.2025.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/26/2025] [Accepted: 01/31/2025] [Indexed: 02/06/2025]
Abstract
The impact of parental alcohol exposure on subsequent generations recently gained significant attention. Ethanol, widely consumed by humans, is known for its anxiolytic effects upon initial use. However, repeated ethanol consumption leads to cognitive dysfunction, dependence, and other physical abnormalities. In line with recent publications from our group, this study investigated the role of parental ethanol exposure-10 days prior to gestation-on learning and memory, which are critical cognitive abilities, in male and female offspring. Adult male and female Wistar rats (n = 12) were exposed to ethanol (in drinking water) for 30 days, followed by a 10-day ethanol-free period. Each rat was then paired to mate with either an ethanol-naïve (control, n = 12) or ethanol-exposed rat, resulting in four distinct groups: (1) control male and female, (2) ethanol-exposed male and control female (P.EE), (3) ethanol-exposed female and control male (M.EE), and (4) ethanol-exposed male and female (P + M.EE). Adult male and female offspring were tested for spatial learning and memory (Morris Water Maze) and passive avoidance memory. Additionally, brain-derived neurotrophic factor (BDNF) levels in the cerebrospinal fluid were evaluated. Results showed that spatial memory was negatively affected by parental ethanol consumption in both male and female offspring, while spatial learning was impaired only in female offspring of ethanol-exposed dams. In the passive avoidance paradigm, memory retrieval was impaired in ethanol-exposed male offspring, whereas in females, only the P + M.EE group showed a deficit in memory retention. While BDNF levels decreased in male offspring, an enhancement in BDNF was observed in female offspring of the P. EE group. In conclusion, our findings suggest that parental ethanol exposure before conception has differential impacts on learning and memory, depending on the offspring's sex and the type of memory tested. Spatial memory was affected in both sexes (except for females in the P. EE group), while memory retrieval in the passive avoidance task remained unaffected in female offspring of the P. EE and M. EE groups. Conversely, male offspring of ethanol-exposed sires and dams exhibited deficits in passive avoidance memory. This may suggest that in memory tasks involving inhibitory cues, such as passive avoidance, female offspring of ethanol-exposed dams or sires are more resilient to memory deficits compared to male offspring. This resilience could possibly be attributed to their higher anxiety levels relative to males.
Collapse
Affiliation(s)
- Amirhossein Heidari
- Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Arman Hajikarim-Hamedani
- Cognitive Neurology, Dementia and Neuropsychiatry Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - MohammadBasir Asefi
- Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
| | - Haniyeh Soltani
- Institute for Cognitive Science Studies (ICSS), Tehran, Iran
| | | | - Yekta Ghane
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Setareh Rassa
- Cognitive Neurology, Dementia and Neuropsychiatry Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mitra Sadat-Shirazi
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad-Reza Zarrindast
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran; Institute for Cognitive Science Studies (ICSS), Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Farmand S, Du Preez A, Kim C, de Lucia C, Ruepp MD, Stubbs B, Thuret S. Cognition on the move: Examining the role of physical exercise and neurogenesis in counteracting cognitive aging. Ageing Res Rev 2025; 107:102725. [PMID: 40064399 DOI: 10.1016/j.arr.2025.102725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 03/16/2025]
Abstract
Structural and functional aspects of the hippocampus have been shown to be sensitive to the aging process, resulting in deficits in hippocampal-dependent cognition. Similarly, adult hippocampal neurogenesis (AHN), described as the generation of new neurons from neural stem cells in the hippocampus, has shown to be negatively affected by aging throughout life. Extensive research has highlighted the role of physical exercise (PE) in positively regulating hippocampal-dependent cognition and AHN. Here, by critically reviewing preclinical and clinical studies, we discuss the significance of PE in reversing age-associated changes of the hippocampus via modulation of AHN. We indicate that PE-induced changes operate on two main levels. On the first level, PE can potentially cause structural modifications of the hippocampus, and on the second level, it regulates the molecular and cellular pathways involved. These changes result in the vascular remodelling of the neurogenic niche, as well as the secretion of neurotrophic and antioxidant factors, which can in turn activate quiescent neural stem cells, while restoring their proliferation capacity and boosting their survival - features which are negatively impacted during aging. Understanding these mechanisms will allow us to identify new targets to tackle cognitive aging and improve quality of life.
Collapse
Affiliation(s)
- Sahand Farmand
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Andrea Du Preez
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Curie Kim
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Chiara de Lucia
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; Centre for Healthy Brain Ageing, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; Centre for Age-Related Medicine (SESAM), Stavanger University Hospital, Stavanger, Norway
| | - Marc-David Ruepp
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; UK Dementia Research Institute at King's College London, London, United Kingdom
| | - Brendon Stubbs
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Sandrine Thuret
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.
| |
Collapse
|
7
|
Zhang H, Geater AF, Chongsuvivatwong V, Zhu G, Meng Y, Duan W, Pu L. Relationship between serum mature brain-derived neurotrophic factor level and coronary slow flow phenomenon: a cross-sectional study. Sci Rep 2025; 15:14990. [PMID: 40301477 PMCID: PMC12041262 DOI: 10.1038/s41598-025-98213-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 04/10/2025] [Indexed: 05/01/2025] Open
Abstract
Brain-derived neurotrophic factor (BDNF) has been implicated in cardiovascular disease. However, the role of BDNF in coronary slow flow phenomenon (CSFP) remains unclear. This study explored the relationship between serum mature BDNF (mBDNF) levels and thrombolysis-in-myocardial-infarction frame count (TFC) as a measure of CSFP. Serum mBDNF was measured in 125 patients (mean age 60.2 years, 57% women) with suspected coronary artery disease before undergoing coronary angiography. Based on the corrected TFC, 77 patients were categorized as having CSFP and 48 normal coronary flow (NCF). The relationship of mTFC (mTFC) and CSFP with serum mBDNF was analysed using multivariable linear and logistic regression. mTFC ranged from 15.9 to 68.5 and mBDNF from 13.2 to 60.6 ng/mL. Serum mBDNF was inversely correlated with mTFC (Spearman rho - 0.327, P < 0.001) and reduced in CSFP (median 25.9 ng/mL IQR 20.6, 32.2 vs. 34.5 ng/mL IQR 27.4, 41.6, P < 0.001). Multivariable linear and logistic regression analyses indicated that log2(mBDNF in ng/mL) has an inverse association with log2(mTFC) (coefficient - 0.332,95% CI -0.513, -0.151; P < 0.001) and reduced odds of CSFP (odds ratio 0.188, 95% CI 0.062, 0.573; P = 0.003). This suggests that BDNF may serve as a biomarker of CSFP, and provides new insights into its pathophysiology.
Collapse
Affiliation(s)
- Hongshan Zhang
- Department of Cardiac Function, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, Yunnan Province, China
- Department of Epidemiology, Faculty of Medicine, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand
| | - Alan Frederick Geater
- Department of Epidemiology, Faculty of Medicine, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand.
| | - Virasakdi Chongsuvivatwong
- Department of Epidemiology, Faculty of Medicine, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand
| | - Guofu Zhu
- Department of Cardiology, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, Yunnan Province, China
| | - Yong Meng
- Department of Cardiology, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, Yunnan Province, China
| | - Wenxiang Duan
- Department of Cardiac Function, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, Yunnan Province, China
| | - Lijin Pu
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Xichang Road No. 295, Kunming, 650032, Yunnan Province, China.
| |
Collapse
|
8
|
Sun Y, Shi X, Ohm M, Korte M, Zagrebelsky M. Deciphering genetic causality between plasma BDNF and 91 circulating inflammatory proteins through bidirectional mendelian randomization. Sci Rep 2025; 15:10312. [PMID: 40133606 PMCID: PMC11937598 DOI: 10.1038/s41598-025-95546-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 03/21/2025] [Indexed: 03/27/2025] Open
Abstract
Prior studies reported an association between the levels of brain-derived neurotrophic factor (BDNF) circulating in the bloodstream and those of different inflammatory factors. However, their causal relationship remains unclear. Here, we performed a Mendelian randomization (MR) study to investigate the causal relationships between plasma BDNF levels and 91 circulating inflammatory proteins to shed light on the possible role of BDNF in the pathogenesis and progression of inflammation-related neurological diseases in order to distinguish correlation from possible causal effects. Data for plasma BDNF levels were derived from a genome-wide association study (GWAS) encompassing 3,301 European participants. Genetic association estimates for 91 inflammation proteins were extracted from a GWAS meta-analysis that enrolled 14,824 European participants. The primary MR analysis employed the inverse variance weighted (IVW) method and was corroborated by additional methods including MR-Egger, weighted median, weighted mode, and simple mode. Analyses of sensitivity were performed by evaluating the heterogeneity, horizontal pleiotropy, and robustness of the results. Genetic evidence indicated that elevated plasma BDNF levels possibly contribute to decreased concentrations of 13 inflammation proteins (OR: 0.951-0.977), including beta-nerve growth factor (Beta-NGF), caspase 8 (CASP-8), interleukin-15 receptor subunit alpha (IL-15RA), interleukin-17 A (IL-17 A), interleukin-17 C (IL-17 C), interleukin-2 (IL-2), interleukin-20 (IL-20), interleukin-20 receptor subunit alpha (IL-20RA), interleukin-24 (IL-24), interleukin-33 (IL-33), leukemia inhibitory factor (LIF), neurturin (NRTN), as well as neurotrophin-3 (NT-3). The associations between BDNF and IL-33 remained statistically significant after FDR correction (FDR > 0.05). Furthermore, reverse MR analysis showed that C-C motif chemokine 23 (CCL23), CUB domain-containing protein 1 (CDCP1), and NRTN is suggestive for a positive causal effect on BDNF plasma levels (OR: 1.240-1.422). Moreover, 5 proteins are likely to be associated with lower plasma levels of BDNF (OR: 0.742-0.971), including adenosine deaminase (ADA), cystatin D (CST5), interleukin-13 (IL-13), interleukin-17 A (IL-17 A), and vascular endothelial growth factor A (VEGF-A). Genetically determined plasma BDNF levels influence IL-33 and are possibly associated with 12 circulating inflammatory proteins. The data suggest that 8 inflammatory proteins exhibit either negative or protective roles to BDNF levels, respectively. Of these, 5 are negatively associated with BDNF levels, while 3 play protective roles. These findings may offer new theoretical and empirical insights into the pathogenesis and progression of inflammation-related neurological diseases.
Collapse
Affiliation(s)
- Yesheng Sun
- Division of Cellular Neurobiology, Zoological Institute, TU Braunschweig, Braunschweig, Germany
| | - Xizi Shi
- Division of Cellular Neurobiology, Zoological Institute, TU Braunschweig, Braunschweig, Germany
- Research Group Neuroinflammation and Neurodegeneration, Helmholtz Centre for Infection Research, AG NIND, Braunschweig, Germany
| | - Melanie Ohm
- Division of Cellular Neurobiology, Zoological Institute, TU Braunschweig, Braunschweig, Germany
| | - Martin Korte
- Division of Cellular Neurobiology, Zoological Institute, TU Braunschweig, Braunschweig, Germany
- Research Group Neuroinflammation and Neurodegeneration, Helmholtz Centre for Infection Research, AG NIND, Braunschweig, Germany
| | - Marta Zagrebelsky
- Division of Cellular Neurobiology, Zoological Institute, TU Braunschweig, Braunschweig, Germany.
| |
Collapse
|
9
|
Pourteymour S, Majhi RK, Norheim FA, Drevon CA. Exercise Delays Brain Ageing Through Muscle-Brain Crosstalk. Cell Prolif 2025:e70026. [PMID: 40125692 DOI: 10.1111/cpr.70026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/25/2025] [Accepted: 03/05/2025] [Indexed: 03/25/2025] Open
Abstract
Ageing is often accompanied by cognitive decline and an increased risk of dementia. Exercise is a powerful tool for slowing brain ageing and enhancing cognitive function, as well as alleviating depression, improving sleep, and promoting overall well-being. The connection between exercise and healthy brain ageing is particularly intriguing, with exercise-induced pathways playing key roles. This review explores the link between exercise and brain health, focusing on how skeletal muscle influences the brain through muscle-brain crosstalk. We examine the interaction between the brain with well-known myokines, including brain-derived neurotrophic factor, macrophage colony-stimulating factor, vascular endothelial growth factor and cathepsin B. Neuroinflammation accumulates in the ageing brain and leads to cognitive decline, impaired motor skills and increased susceptibility to neurodegenerative diseases. Finally, we examine the evidence on the effects of exercise on neuronal myelination in the central nervous system, a crucial factor in maintaining brain health throughout the lifespan.
Collapse
Affiliation(s)
- Shirin Pourteymour
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Rakesh Kumar Majhi
- Tissue Restoration Lab, Department of Biological Sciences and Bioengineering, Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, India
- Center of Excellence in Cancer, Gangwal School of Medical Science and Technology, Indian Institute of Technology Kanpur, Kanpur, India
| | - Frode A Norheim
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Christian A Drevon
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
- Vitas Ltd, Oslo, Norway
| |
Collapse
|
10
|
Li W, Li W, Wen Y, Wu J. Repetitive transcranial magnetic stimulation elevates the serum levels of neurotrophic factors and serotonin and its metabolites in patients with ischemic stroke. Front Neurol 2025; 16:1513131. [PMID: 40109842 PMCID: PMC11919663 DOI: 10.3389/fneur.2025.1513131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/17/2025] [Indexed: 03/22/2025] Open
Abstract
Objective Repetitive transcranial magnetic stimulation (rTMS) can effectively treat cognitive impairment in stroke patients; however, its mechanism of action remains unclear. The aim of this study was to investigate whether rTMS improves cognitive function by regulating the levels of brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), 5-hydroxytryptamine (5-HT), and 5-hydroxyindoleacetic acid (5-HIAA). Methods In a 4-week study, 70 patients with ischemic stroke were randomly assigned to two groups: one received rTMS (n = 35) and the other received sham-stimulation (n = 35) in addition to conventional medication and rehabilitation training. Patients in the rTMS group were treated with rTMS at 10 Hz for 20 min per session. The Montreal Cognitive Assessment (MoCA) and response time in the n-back task were used to assess the severity of the disease. Fasting venous blood was collected in the early morning, both before and after the treatment. The peripheral blood levels of BDNF, NGF, 5-HT, and 5-HIAA were measured using the enzyme-linked immunosorbent assay (ELISA). Results The levels of BDNF and NGF were higher in the rTMS group than in the sham group (p = 0.017, p = 0.008), after the rTMS treatment, and the levels of 5-HT and 5-HIAA were also elevated in the rTMS group (p = 0.049, p = 0.004). The changes in serum 5-HT and 5-HIAA levels after the rTMS treatment correlated with the changes in the MoCA and response time in the n-back task. There was a positive correlation between the serum 5-HT and BDNF levels (r = 0.4034). Conclusion Our results showed that the BDNF, NGF, 5-HT, and 5-HIAA levels were upregulated after the rTMS treatment, which likely contributed to improvements in cognitive function and quality of life in the patients with stroke. Clinical trial registration https://www.chictr.org.cn/showproj.html?proj=216761, ChiCTR2400082383.
Collapse
Affiliation(s)
- Wei Li
- Department of Clinical Medicine, Shanxi Medical University, Taiyuan, China
- Department of Rehabilitation Medicine, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Wenyan Li
- Department of Rehabilitation Medicine, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yinghua Wen
- Department of Rehabilitation Medicine, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Junying Wu
- Department of Rehabilitation Medicine, The First Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
11
|
Tsai CL. Acute effects of high-intensity interval exercise plus whole-body vibration on bone turnover markers, BDNF, irisin, and neurocognitive performance in postmenopausal women. Biol Psychol 2025; 196:109029. [PMID: 40209895 DOI: 10.1016/j.biopsycho.2025.109029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 04/07/2025] [Accepted: 04/08/2025] [Indexed: 04/12/2025]
Abstract
The acute effects of exercise can elucidate the molecular and psychophysiological mechanisms underlying exercise's benefits in several systems (e.g., the brain, muscle, and bone). In this study, a single 30-minute session of high-intensity interval aerobic exercise (HIIAE) administered in conjunction with isometric resistance exercise on a whole-body vibration (WBV) platform (HIIAE+WBV) was compared with HIIAE alone in their effects on molecular and neurocognitive indices among 63 sedentary, healthy postmenopausal women who were randomly assigned to HIIAE (n = 20), HIIAE+WBV (n = 20), and Control (n = 23) groups. The assessed molecular indices were serum levels of osteocalcin (OC), uncarboxylated OC (ucOC), carboxylated OC (cOC), brain-derived neurotrophic factor (BDNF), and irisin, and the assessed neurocognitive indices were the accuracy rate (AR), reaction time (RT), and electroencephalography event-related potentials (ERPs) of P2 and P3 components in a visuospatial working memory task. Data on these indices before versus after an acute bout of HIIAE or HIIAE+WBV or after a resting session were compared. An HIIAE or HIIAE+WBV intervention yielded no significant change in ERP P2 latency/amplitude and P3 latency but yielded significantly higher ARs, shorter RTs, larger ERP P3 amplitudes, and higher OC, cOC, BDNF, and irisin levels in the postmenopausal women. HIIAE+WBV outperformed HIIAE alone in AR, ucOC, and BDNF. However, the changes in these molecular and neurocognitive indices induced by the two exercise modes did not show any significant correlations in the present study. The present findings suggest that HIIAE and HIIAE+WBV have the potential to acutely influence markers of bone and brain health, with HIIAE+WBV showing greater effectiveness than HIIAE alone. These interventions should be further investigated in future randomized controlled trials involving postmenopausal women.
Collapse
Affiliation(s)
- Chia-Liang Tsai
- Institute of Physical Education, Health and Leisure Studies, National Cheng Kung University, Taiwan; Department of Psychology, National Cheng Kung University, Taiwan.
| |
Collapse
|
12
|
Quigley BL, Wellington N, Levenstein JM, Dutton M, Bouças AP, Forsyth G, Gallay CC, Hajishafiee M, Treacy C, Lagopoulos J, Andrews SC, Can AT, Hermens DF. Circulating biomarkers and neuroanatomical brain structures differ in older adults with and without post-traumatic stress disorder. Sci Rep 2025; 15:7176. [PMID: 40021745 PMCID: PMC11871017 DOI: 10.1038/s41598-025-91840-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 02/24/2025] [Indexed: 03/03/2025] Open
Abstract
The aim of this study was to advance post-traumatic stress disorder (PTSD) understanding in older adults (48-77 years) by determining if circulating cytokines (IL-1β, IL-2, IL-4, IL-6, IL-12p70, IL17A and TNFα), brain-derived neurotrophic factor (BDNF), vascular endothelial growth factor (VEGF-A) and neuroanatomical brain volumes (grey and white matter, hippocampus, and amygdala) significantly differed in those with versus without PTSD. While none of the tested cytokines showed a significant difference, serum BDNF and VEGF-A levels were found to be significantly higher in the PTSD cohort. The assay used for BDNF quantification was important, with differences in general BDNF detected, but not when pro- and mature BDNF were measured specifically. Additionally, BDNF genotyping revealed a significant difference in Val66Met genotype distribution by PTSD diagnosis, with Val66Met carriers generally having lower circulating levels of BDNF compared to their Val66Val counterparts, regardless of PTSD diagnosis. Neuroanatomically, an all-female subset was examined to find total grey and white matter volumes and left and right hippocampal volumes were significantly smaller in those with PTSD. Collectively, these results show that both novel (VEGF-A) and established targets (BDNF and neuroimaging) may serve as useful biomarkers for older adults with PTSD.
Collapse
Affiliation(s)
- Bonnie L Quigley
- National PTSD Research Centre at the Thompson Institute, University of the Sunshine Coast, 12 Innovation Parkway, Birtinya, QLD, 4575, Australia.
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia.
- Sunshine Coast Hospital and Health Service, Sunshine Coast Health Institute, Birtinya, QLD, 4575, Australia.
| | - Nathan Wellington
- National PTSD Research Centre at the Thompson Institute, University of the Sunshine Coast, 12 Innovation Parkway, Birtinya, QLD, 4575, Australia
- Sunshine Coast Hospital and Health Service, Sunshine Coast Health Institute, Birtinya, QLD, 4575, Australia
| | - Jacob M Levenstein
- National PTSD Research Centre at the Thompson Institute, University of the Sunshine Coast, 12 Innovation Parkway, Birtinya, QLD, 4575, Australia
| | - Megan Dutton
- National PTSD Research Centre at the Thompson Institute, University of the Sunshine Coast, 12 Innovation Parkway, Birtinya, QLD, 4575, Australia
| | - Ana P Bouças
- National PTSD Research Centre at the Thompson Institute, University of the Sunshine Coast, 12 Innovation Parkway, Birtinya, QLD, 4575, Australia
| | - Grace Forsyth
- National PTSD Research Centre at the Thompson Institute, University of the Sunshine Coast, 12 Innovation Parkway, Birtinya, QLD, 4575, Australia
| | - Cyrana C Gallay
- National PTSD Research Centre at the Thompson Institute, University of the Sunshine Coast, 12 Innovation Parkway, Birtinya, QLD, 4575, Australia
| | - Maryam Hajishafiee
- National PTSD Research Centre at the Thompson Institute, University of the Sunshine Coast, 12 Innovation Parkway, Birtinya, QLD, 4575, Australia
| | - Ciara Treacy
- National PTSD Research Centre at the Thompson Institute, University of the Sunshine Coast, 12 Innovation Parkway, Birtinya, QLD, 4575, Australia
| | - Jim Lagopoulos
- Thompson Brain and Mind Healthcare, Sunshine Plaza, Box 1544, Maroochydore, QLD, 4558, Australia
| | - Sophie C Andrews
- National PTSD Research Centre at the Thompson Institute, University of the Sunshine Coast, 12 Innovation Parkway, Birtinya, QLD, 4575, Australia
| | - Adem T Can
- National PTSD Research Centre at the Thompson Institute, University of the Sunshine Coast, 12 Innovation Parkway, Birtinya, QLD, 4575, Australia
| | - Daniel F Hermens
- National PTSD Research Centre at the Thompson Institute, University of the Sunshine Coast, 12 Innovation Parkway, Birtinya, QLD, 4575, Australia
| |
Collapse
|
13
|
Khalil MH. The Impact of Walking on BDNF as a Biomarker of Neuroplasticity: A Systematic Review. Brain Sci 2025; 15:254. [PMID: 40149776 PMCID: PMC11940261 DOI: 10.3390/brainsci15030254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/11/2025] [Accepted: 02/26/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND/OBJECTIVES The brain-derived neurotrophic factor (BDNF) is a critical exercise-induced modulator of various neuroplasticity processes, including adult hippocampal neurogenesis. Environmental affordance for physical activity is a novel theory that aims to increase the BDNF through walking or climbing stairs, stimulated by the urban and interior environment. In a systematic review, this paper explores the association between walking, as a structured or free-living form of physical activity, and changes in the BDNF in humans with healthy locomotion. METHOD A systematic review with a registered protocol, INPLASY2024110093, and following the PRISMA guidelines, includes English-language original research articles on adult and older adult human subjects who are locomotor-healthy, studies on walking as a structured exercise or free-living physical activity that is presented in a non-combined intervention, and must report changes in the BDNF as a dependent variable. The search was conducted using three databases: PubMed, Web of Science, and Scopus, resulting in 21 eligible studies. RESULTS This systematic review finds that the impact of walking on the BDNF is evidenced, but subject to moderate to high intensities in single bouts. At the same time, the long-term effects are yet to be fully understood, potentially due to the uptake of the BDNF for functional brain improvements, neuroplasticity processes, or muscle repair, instead of an accumulation of the BDNF itself, yet still confirm the important role of the BDNF for neurosustainability. Age and environmental factors such as heat are also found to affect the increase in the BDNF. The narrative synthesis provides elaborate explanations for understanding those complex dynamics before reaching future conclusions on the impact of walking or environmental affordance for physical activity on the changes in the BDNF concentrations. CONCLUSIONS This systematic review highlights the potential role played by moderate- and high-intensity walking as a lifestyle intervention that can be utilised through the built environment to promote adaptive brain changes, through the sustainable regulation of the BDNF.
Collapse
|
14
|
Bioque M, Llorca-Bofí V, MacDowell KS, Amoretti S, Mezquida G, Cuesta MJ, Diaz-Caneja CM, Ibáñez Á, Segarra R, González-Pinto A, Roldán A, Sáiz PA, Mané A, Lobo A, Martínez-Pinteño A, Cano-Escalera G, Berrocoso E, Bernardo M. Impact of Relapse in BDNF Receptors Expression in Patients With a First Episode of Schizophrenia. Schizophr Bull 2025:sbaf012. [PMID: 39977257 DOI: 10.1093/schbul/sbaf012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
BACKGROUND AND HYPOTHESIS Relapsing after a first episode of schizophrenia (FES) is a main predictor of clinical and functional prognosis. Brain-derived neurotrophic factor (BDNF) plays a critical role in neuronal development and plasticity, and its signaling may be altered by successive relapses. DESIGN We assessed the impact of first relapse in the expression of the 2 isoforms of the BDNF tropomyosin-related kinase B (TrkB) receptor (active full-length TrkB-F and inactive truncated TrkB-T) in peripheral blood mononuclear cells from 53 FES patients in clinical remission followed up for 3 years. RESULTS The group of participants that relapsed (n = 24) during the follow-up presented a significant decrease in the expression of the active TrkB-F receptor compared to baseline (M = 100 ± 28.13 vs. M = 83.42 ± 33.84, t = 2.5, P = .02), with no changes in the inactive TrkB-T receptor expression nor in BDNF plasma levels. This decrease also led to a significant decline in the F/T ratio (M = 1.13 ± 0.38 vs. 0.94 ± 0.36, t = 2.17, P = .041). No significant differences were found in the receptors' expression nor in plasma levels in the group of cases that remained in remission (n = 29). These results were not associated with baseline differences between the groups in terms of the BDNF signaling pathway biomarkers, clinical or treatment variables. CONCLUSIONS These findings highlight the biological impact that a relapse produces over the systemic BDNF-TrkB signaling pathway, potentially undermining crucial neuronal functions. Identifying the actors involved can help design specific interventions for relapse prevention and improve the functional prognosis of people in the early stages of schizophrenia.
Collapse
Affiliation(s)
- Miquel Bioque
- Barcelona Clínic Schizophrenia Unit (BCSU), Neuroscience Institute, Hospital Clínic de Barcelona, 08036 Barcelona, Spain
- Departament de Medicina, Institut de Neurociències (UBNeuro), Universitat de Barcelona (UB), 08036 Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en red en salud Mental (CIBERSAM), ISCIII, 08036 Barcelona, Spain
| | - Vicent Llorca-Bofí
- Barcelona Clínic Schizophrenia Unit (BCSU), Neuroscience Institute, Hospital Clínic de Barcelona, 08036 Barcelona, Spain
- Departament de Medicina, Institut de Neurociències (UBNeuro), Universitat de Barcelona (UB), 08036 Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en red en salud Mental (CIBERSAM), ISCIII, 08036 Barcelona, Spain
| | - Karina S MacDowell
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Psychiatry Department, 28041 Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica (IUIN), Departamento de Farmacología y Toxicología, 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM), 28040 Madrid, Spain
| | - Sílvia Amoretti
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
- Group of Psychiatry, Mental Health and Addictions, Psychiatric Genetics Unit, Vall d'Hebron Research Institute (VHIR), 08035 Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), 08035 Barcelona, Spain
| | - Gisela Mezquida
- Department of Basic Clinal Practice, Pharmacology Unit, University of Barcelona, 08036 Barcelona, Spain
- Barcelona Clínic Schizophrenia Unit (BCSU), Neuroscience Institute, Hospital Clínic de Barcelona, 08036 Barcelona, Spain
- Institut de Neurociències (UBNeuro), Neuroscience Department, 08036 Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, 08036 Barcelona, Spain
- Centro de Investigación Biomédica en red en salud Mental (CIBERSAM)-ISCIII, 08036 Barcelona, Spain
| | - Manuel J Cuesta
- Hospital Universitario de Navarra, Psychiatry Department, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Psychiatry Department, 31008 Pamplona, Spain
| | - Covadonga M Diaz-Caneja
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), CIBERSAM, ISCIII, School of Medicine, Universidad Complutense, 28007 Madrid, Spain
| | - Ángela Ibáñez
- Department of Psychiatry, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Universidad de Alcalá, 28801 Madrid, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, 28007 Madrid, Spain
| | - Rafael Segarra
- Cruces University Hospital, BIOBIZKAIA, CIBERSAM, 48903 Barakaldo, Spain
| | - Ana González-Pinto
- Department of Psychiatry, Hospital Universitario de Alava, CIBERSAM, UPV/EHU, BIORABA, 01009 Vitoria, Spain
| | - Alexandra Roldán
- Psychiatry Department, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona, 08025 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain, 08025 Barcelona, Spain
| | - Pilar A Sáiz
- Department of Psychiatry, Universidad de Oviedo, CIBERSAM, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Neurociencias del Principado de Asturias (INEUROPA), Servicio de Salud del Principado de Asturias (SESPA), 33003 Oviedo, Spain
| | - Anna Mané
- Institut de Salut Mental, Hospital del Mar, Psychiatry Department, 08003 Barcelona, Spain
- Hospital del Mar Medical Research Institute (IMIM), Psychiatry Department, 08003 Barcelona, Spain
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, 08003 Barcelona, Spain
- Centro de Investigación Biomédica en Red, Área de Salud Mental (CIBERSAM), 08003 Barcelona, Spain
| | - Antonio Lobo
- Department of Medicine and Psychiatry, Universidad de Zaragoza, 50009 Zaragoza, Spain
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Psychiatry Department, 50009 Zaragoza, Spain
- CIBERSAM, Madrid, Spain, 50009 Zaragoza, Spain
| | - Albert Martínez-Pinteño
- Department of Basic Clinical Practice, Unit of Pharmacology, University of Barcelona, 08036 Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Grup Esquizofrènia Clínic, 08036 Barcelona, Spain
| | - Guillermo Cano-Escalera
- Department of Psychiatry, Hospital Universitario de Alava, CIBERSAM, UPV/EHU, BIORABA, 01009 Vitoria, Spain
| | - Esther Berrocoso
- Department of Neuroscience, Neuropsychopharmacology and Psychobiology Research Group, University of Cádiz, 11003 Cádiz, Spain
- Ciber of Mental Health (CIBERSAM), ISCIII, 28029 Madrid, Spain
- Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, 11003 Cádiz, Spain
| | - Miquel Bernardo
- Barcelona Clínic Schizophrenia Unit (BCSU), Neuroscience Institute, Hospital Clínic de Barcelona, 08036 Barcelona, Spain
- Departament de Medicina, Institut de Neurociències (UBNeuro), Universitat de Barcelona (UB), 08036 Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en red en salud Mental (CIBERSAM), ISCIII, 08036 Barcelona, Spain
| |
Collapse
|
15
|
Zhang Y, Guo Y, Du L, Zhao J, Ci X, Yin J, Niu Q, Mo Y, Zhang Q, Nie J. Maternal Exposure of SD Rats to Benzo[a]Pyrene Impairs Neurobehavior and Hippocampal Synaptic Ultrastructure in Offspring via Downregulating Synaptic-Associated Factors. ENVIRONMENTAL TOXICOLOGY 2025. [PMID: 39967322 DOI: 10.1002/tox.24489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/26/2024] [Accepted: 02/06/2025] [Indexed: 02/20/2025]
Abstract
Benzo[a]pyrene (B[a]P) is a carcinogenic contaminant widely present in the environment. Recently, increasing studies have paid attention to the developmental neurotoxicity of B[a]P in offspring in their early life stages; however, the underlying molecular mechanisms have not been clearly elucidated. In this study, we aimed to evaluate the effects of prenatal B[a]P exposure on neurobehavior of pups during their brain growth spurt (BGS) period and also explore the potential underlying mechanisms. Pregnant Sprague-Dawley (SD) rats were intraperitoneally exposed to 0, 10, 20, or 40 mg/kg-bw B[a]P for three consecutive days during embryonic days 17-19. The physiological development index of pups was observed, and a series of neurobehavioral tests assessing sensory and motor maturation were performed. The complexity of dendritic branches and the basal dendritic spine density of CA1 pyramidal neurons were examined using Golgi-Cox staining during PND 1-14. In addition, the mRNA and protein expression levels of hippocampal BDNF, SYP, Arc, PSD-95, DNMT1, and DNMT3a, and the level of 5-mC were detected using RT-qPCR, Western blotting, or immunohistochemical staining, respectively. We noted that prenatal B[a]P exposure induced body weight loss and neurobehavioral impairments in the early life stages. Furthermore, this study firstly revealed that maternal exposure to B[a]P impaired the dendritic arborization and complexity of pyramidal neurons in the hippocampus CA1 subfield in offspring during the early postnatal period, and the damage of B[a]P to basal dendritic spine density was also observed in a dose-dependent manner. Correspondingly, maternal exposure to B[a]P markedly reduced BDNF, Arc, SYP, and PSD-95 mRNA and protein levels in the offspring hippocampus. Meanwhile, the levels of hippocampal DNMT1, DNMT3a, and 5-mC significantly increased in the offspring prenatally exposed to B[a]P. In summary, this study firstly demonstrated that maternal B[a]P exposure induced neurobehavioral deficits by destroying the hippocampal synaptic ultrastructure, which was possibly associated with the downregulation of BDNF, Arc, SYP, and PSD95 in the hippocampus through increased DNMTs-mediated DNA methylation in offspring during the BGS period.
Collapse
Affiliation(s)
- Yu Zhang
- Shanxi Health Commission Key Laboratory of Nervous System Disease Prevention and Treatment, Sinopharm Tongmei General Hospital, Datong, Shanxi, People's Republic of China
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention at Shanxi Medical University, Ministry of Education, People's Republic of China
| | - Yuting Guo
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention at Shanxi Medical University, Ministry of Education, People's Republic of China
| | - Linhu Du
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention at Shanxi Medical University, Ministry of Education, People's Republic of China
| | - Junxiu Zhao
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention at Shanxi Medical University, Ministry of Education, People's Republic of China
| | - Xiaorui Ci
- Shanxi Health Commission Key Laboratory of Nervous System Disease Prevention and Treatment, Sinopharm Tongmei General Hospital, Datong, Shanxi, People's Republic of China
| | - Jinzhu Yin
- Shanxi Health Commission Key Laboratory of Nervous System Disease Prevention and Treatment, Sinopharm Tongmei General Hospital, Datong, Shanxi, People's Republic of China
| | - Qiao Niu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention at Shanxi Medical University, Ministry of Education, People's Republic of China
| | - Yiqun Mo
- Department of Epidemiology and Population Health, University of Louisville, Louisville, Kentucky, USA
| | - Qunwei Zhang
- Department of Epidemiology and Population Health, University of Louisville, Louisville, Kentucky, USA
| | - Jisheng Nie
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention at Shanxi Medical University, Ministry of Education, People's Republic of China
| |
Collapse
|
16
|
Alves LG, Pacheco-Barrios K, Lacerda GJM, Fregni F. The Association of Pain Medication Usage and Quantitative Sensory Testing Outcomes in Fibromyalgia Patients: A Secondary Data Analysis. NEUROSCI 2025; 6:15. [PMID: 39982267 PMCID: PMC11843844 DOI: 10.3390/neurosci6010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 01/30/2025] [Accepted: 02/06/2025] [Indexed: 02/22/2025] Open
Abstract
BACKGROUND Fibromyalgia syndrome (FMS), a chronic pain syndrome affecting 0.2-6.6% of the general population, is known for its challenging diagnosis and treatment. The known dysregulation in the Endogenous Pain Modulatory System (EPMS) characteristic of the pathology contributes to enhanced pain sensitivity. Fibromyalgia patients, who are often overmedicated, may experience, in addition to the drug-related known adverse effects, effects on fibromyalgia sensory-related outcomes. Therefore, the focus of this analysis is to explore the bidirectional drug-sensory outcome interactions, indexed by the conditioned pain modulation (CPM), an important assessment element in regard to an EPMS's efficacy. METHODS Baseline data from a randomized, double-blind, single-center (Boston-based tertiary hospital) clinical trial (NCT03371225) were analyzed. Participants aged 18-65 with an FMS diagnosis and resistance to common analgesics were included. Demographic, clinical, and sensory variables, including CPM, temporal summation, and Pain-60 outcomes, were collected alongside a pain medication diary. Multivariable regression models adjusted for confounders were applied to explore associations between medication classes and quantitative sensory outcomes. RESULTS Out of 101 recruited FMS patients, we categorized the use of the following medications: antidepressants with 50% use (n = 50), muscle relaxants with 26% use (n = 26), and gabapentin with 25% use (n = 25). The results showed that antidepressant use correlated with worsened CPM, Odds Ratio = 0.39 (95% CI = 0.17-0.91), while muscle relaxants were linked to increased TSPS, β coefficient = 0.72 (95% CI = 0.0021-1.4431). On the other hand, gabapentin use was associated with elevated Pain-60, OR = 2.68 (95% CI = 0.98-7.31). Interestingly, the use of low doses of opioids was not associated with altered sensory measures. CONCLUSION This cross-sectional analysis suggests that common pain medications may affect quantitative sensory outcomes in FMS patients. We provided important insights into bidirectional drug-sensory outcome interactions and their influence on pain medicine.
Collapse
Affiliation(s)
- Luana Gola Alves
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA 02138, USA; (L.G.A.); (G.J.M.L.)
| | - Kevin Pacheco-Barrios
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA 02138, USA; (L.G.A.); (G.J.M.L.)
- Vicerrectorado de Investigación, Unidad de Investigación para la Generación y Síntesis de Evidencias en Salud, Universidad San Ignacio de Loyola, Lima 15024, Peru
| | - Guilherme J. M. Lacerda
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA 02138, USA; (L.G.A.); (G.J.M.L.)
| | - Felipe Fregni
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA 02138, USA; (L.G.A.); (G.J.M.L.)
| |
Collapse
|
17
|
Yang Y, Wang Y, Chen Q, Li L, Jia W. The Association Between Low Muscle Mass and the Risk of Depressive Symptoms: A Cross-Sectional Study Based on the Chinese Longitudinal Health Longevity Survey (CLHLS). Brain Behav 2025; 15:e70267. [PMID: 39910822 PMCID: PMC11799061 DOI: 10.1002/brb3.70267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/25/2024] [Accepted: 10/16/2024] [Indexed: 02/07/2025] Open
Abstract
BACKGROUND Many studies have shown a strong link between sarcopenia and depression, and low muscle mass (LMM) is an important component in the diagnosis of sarcopenia; however, there have been no studies on the relationship between LMM and depressive symptoms in the Chinese elderly population. To estimate the potential relationship between LMM and depressive symptoms among older adults, a cross-sectional analysis was conducted utilizing data from the Chinese Longitudinal Health Longevity Survey (CLHLS). METHOD The study sample comprised 11,711 individuals aged 65 years or older (mean age 83.0 ± 10.9) from the CLHLS database in 2018. We used the corrected appendicular skeletal muscle mass (ASM) prediction formula to assess muscle mass and the 10-item Center for Epidemiological Studies-Depression Scale (CES-D-10) to assess depressive symptoms. A multivariate logistic regression model and restricted cubic spline (RCS) curves were employed to investigate the association between LMM and depressive symptoms. RESULTS The study findings revealed a 1.16-fold higher risk of depressive symptoms in the LMM group compared to the control group (adjusted odds ratio [aOR]: 1.16, 95% confidence intervals [95% CI]: 1.05-1.29, p < 0.001). Furthermore, for every one-point decrease in LMM score below 7.87, the risk of depressive symptoms increased by 8%, with statistical significance. However, when the LMM score was greater than or equal to 7.87, the decrease in the LMM score did not significantly increase the risk of depressive symptoms. CONCLUSION Our study suggests LMM is a risk factor for depressive symptoms in the elderly Chinese population, and within a certain range, the risk of depressive symptoms increases as the LMM score decreases. Physical exercise may be an effective strategy to maintain optimal muscle mass and help the mental health of the elderly.
Collapse
Affiliation(s)
- Yuting Yang
- Department of Medical Psychology, Daping HospitalArmy Medical UniversityChongqingChina
| | - Yan Wang
- Department of Medical Psychology, Daping HospitalArmy Medical UniversityChongqingChina
| | - Qiao Chen
- Department of Combat Casualty and Health Service, Daping HospitalArmy Medical UniversityChongqingChina
| | - Ling Li
- Department of Medical Psychology, Daping HospitalArmy Medical UniversityChongqingChina
| | - Wangping Jia
- Department of Wound Infection and Drug, Daping HospitalArmy Medical UniversityChongqingChina
| |
Collapse
|
18
|
Oyovwi MO, Ogenma UT, Onyenweny A. Exploring the impact of exercise-induced BDNF on neuroplasticity in neurodegenerative and neuropsychiatric conditions. Mol Biol Rep 2025; 52:140. [PMID: 39832087 DOI: 10.1007/s11033-025-10248-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 01/10/2025] [Indexed: 01/22/2025]
Abstract
This review investigates the intricate relationship between exercise, brain-derived neurotrophic factor (BDNF), neuroplasticity, and cognitive function, with a focus on implications for neuropsychiatric and neurodegenerative disorders. A systematic review was conducted by searching various databases for relevant studies that explored the connections between exercise, BDNF, neuroplasticity, and cognitive health. The analysis of eligible studies revealed that exercise increases BDNF levels in the brain, promoting neuroplasticity and enhancing cognitive functions. Furthermore, we discuss the protective effects of exercise against cognitive decline and neurological disorders, suggesting that BDNF plays a critical role in mediating these effects. Regular physical activity not only elevates BDNF levels but also fosters memory and learning, offering important implications for the prevention and treatment of neuropsychiatric and neurodegenerative conditions. Our findings underscore the necessity of incorporating exercise into a healthy lifestyle to optimize brain health. Future research is essential to elucidate the underlying mechanisms of this relationship and to refine exercise interventions for improved cognitive outcomes.
Collapse
Affiliation(s)
- Mega Obukohwo Oyovwi
- Department of Physiology, Faculty of Basic Medical Sciences, Adeleke University, Ede, Osun State, Nigeria.
| | - Ugushida Thankgod Ogenma
- Department of Public Health, Faculty of Basic Medical Sciences, Adeleke University, Ede, Osun State, Nigeria
| | - Anthonia Onyenweny
- Department of Nursing Science, Faculty of Basic Medical Sciences, Adeleke University, Ede, Osun State, Nigeria
| |
Collapse
|
19
|
Mikulic FL, Sagud M, Nikolac Perkovic M, Kudlek Mikulic S, Ganoci L, Bajs Janovic M, Janovic S, Filipcic Simunovic I, Mihaljevic Peles A, Bozicevic M, Bradas Z, Pivac N. Long-term effects of antipsychotics on serum BDNF levels in patients with schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111240. [PMID: 39743169 DOI: 10.1016/j.pnpbp.2024.111240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/05/2024] [Accepted: 12/29/2024] [Indexed: 01/04/2025]
Abstract
Brain-derived neurotrophic factor (BDNF) is implicated in the etiology of schizophrenia, and peripheral BDNF levels are affected by the short-term antipsychotic treatment. However, the data on their long-term effects on BDNF levels are scarce, and there is no information whether BDNF levels change during sustained remission in relation to values in healthy individuals. The aim of the present study was to compare serum BDNF levels in patients in long-term remission and healthy controls. This study is an extension of our previous research on the effects of olanzapine and risperidone on serum BDNF in acute-episode patients with schizophrenia. Patients who remained in remission for at least 3 years on the same antipsychotic regimen (40 % of the initial cohort) were included. Symptoms were assessed by the Positive and Negative Syndrome Scale (PANSS). Serum BDNF levels were measured by ELISA in patients in remission (N = 20), evaluated at baseline, after 6 weeks of treatment and after 3 years of treatment, and in healthy individuals (N = 40). At baseline (p = 0.046) and after 6 weeks of treatment (p = 0.028), patients had significantly lower BDNF levels than controls. However, after 3 years of continuous antipsychotic maintenance treatment, serum BDNF levels were increased compared to baseline and values after 6 weeks of treatment in remitted patients, and were also significantly higher in patients than in healthy controls (p = 0.002). Antipsychotic medications appear to have distinct effects on serum BDNF levels in short-and long-term treatment. It remains to be determined if such finding may be related to potential neuroprotective effects of antipsychotic maintenance treatment.
Collapse
Affiliation(s)
- F L Mikulic
- University Hospital Centre Zagreb, Department of Emergency Medicine, Croatia
| | - M Sagud
- School of Medicine, University of Zagreb, Croatia; University Hospital Center Zagreb, Department of Psychiatry and Psychological Medicine, Zagreb, Croatia
| | - M Nikolac Perkovic
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| | - S Kudlek Mikulic
- University Hospital Center Zagreb, Department of Psychiatry and Psychological Medicine, Zagreb, Croatia
| | - L Ganoci
- University Hospital Centre Zagreb, Division of Pharmacogenomics and Therapy Individualization, Department of Laboratory Diagnostics, Zagreb, Croatia
| | - M Bajs Janovic
- School of Medicine, University of Zagreb, Croatia; University Hospital Center Zagreb, Department of Psychiatry and Psychological Medicine, Zagreb, Croatia
| | - S Janovic
- University Centre Varazdin, University North, Varazdin, Croatia
| | - I Filipcic Simunovic
- University Hospital Center Zagreb, Department of Psychiatry and Psychological Medicine, Zagreb, Croatia; Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - A Mihaljevic Peles
- School of Medicine, University of Zagreb, Croatia; University Hospital Center Zagreb, Department of Psychiatry and Psychological Medicine, Zagreb, Croatia
| | - M Bozicevic
- University Hospital Center Zagreb, Department of Psychiatry and Psychological Medicine, Zagreb, Croatia
| | - Z Bradas
- University Hospital Center Zagreb, Department of Psychiatry and Psychological Medicine, Zagreb, Croatia
| | - N Pivac
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia; University of Applied Sciences Hrvatsko Zagorje Krapina, Krapina, Croatia.
| |
Collapse
|
20
|
Nakajima K, Idegami A, Oiso S. Preventive Effects of Hochuekkito on Decline in Brain-Derived Neurotrophic Factor Serum Levels in Senescence-Accelerated Mouse Prone 10. J Oleo Sci 2025; 74:429-434. [PMID: 40175123 DOI: 10.5650/jos.ess24328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025] Open
Abstract
The reduction of brain-derived neurotrophic factor (BDNF) is associated with Alzheimer's disease and depression. Senescence-accelerated mouse prone 10 (SAMP10), a rapid aging animal model, exhibits age-related cognitive deficits and depression-like behavior; however, it is unclear the variation of serum BDNF levels. Here, we showed that serum BDNF levels in SAMP10 were lower than those in the normal aging characteristics mouse SAM-resistant 1 (SAMR1), and Hochuekkito suppressed the decline of serum BDNF levels in SAMP10. These results suggest that SAMP10 may be used as an animal model in decreasing serum BDNF levels and Hochuekkito could prevent the age-related BDNF decline.
Collapse
Affiliation(s)
- Kensuke Nakajima
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, Nagasaki International University
| | - Aimi Idegami
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, Nagasaki International University
| | - Shigeru Oiso
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, Nagasaki International University
- Graduate School of Pharmaceutical Sciences, Nagasaki International University
| |
Collapse
|
21
|
Gholami F, Mesrabadi J, Iranpour M, Donyaei A. Exercise training alters resting brain-derived neurotrophic factor concentration in older adults: A systematic review with meta-analysis of randomized-controlled trials. Exp Gerontol 2025; 199:112658. [PMID: 39674562 DOI: 10.1016/j.exger.2024.112658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/29/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
This systematic review with meta-analysis investigated the effects of exercise training on brain-derived neurotrophic factor (BDNF) in older adults. Electronic databases of PubMed, Web of Science and Scopus were searched for studies investigating the effect of exercise training ≥4 weeks on resting BDNF levels in older adults. A standardized mean difference (SMD) was generated through random effects model. Thirty-five randomized-controlled trials met the inclusion criteria. Exercise training significantly increased resting BDNF levels [SMD = 0.56 (95 % CI 0.28 to 0.85)] both in plasma (SMD = 0.63) and serum (SMD = 0.54). Regarding exercise modality, aerobic (SMD = 0.48), resistance (SMD = 0.76) and combined exercise training (SMD = 0.55) increased BDNF levels. Exercise training with the duration of 12 weeks (SMD =0.65), moderate-to-vigorous (SMD = 0.83) and vigorous intensity (SMD = 0.71), and 3-4 sessions per week frequency (SMD = 0.78) yielded the largest effects on BDNF elevation. Since BDNF represents a fundamental contribution in neuronal processes and is linked to brain health, exercise training may help delay aging-related neuro-degenerative processes. REGISTRATION NUMBER: CRD42024499195.
Collapse
Affiliation(s)
- Farhad Gholami
- Department of Physical Education and Sport Sciences, Faculty of Physical Education, Shahrood University of Technology, Shahrood, Semnan, Iran.
| | - Javad Mesrabadi
- Department of Educational Psychology, Psychology and Educational Science Faculty, University of Azarbai-jan Shahid Madani, Tabriz, Iran
| | - Mohadeseh Iranpour
- Department of Physical Education and Sport Sciences, Faculty of Physical Education, Shahrood University of Technology, Shahrood, Semnan, Iran
| | - Adel Donyaei
- Department of Physical Education and Sport Sciences, Faculty of Physical Education, Shahrood University of Technology, Shahrood, Semnan, Iran
| |
Collapse
|
22
|
Ricci V, De Berardis D, Martinotti G, Maina G. Glial Derived Neurotrophic Factor and Schizophrenia Spectrum Disorders: A Scoping Review. Curr Neuropharmacol 2025; 23:564-578. [PMID: 39679463 DOI: 10.2174/011570159x340124241205095729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/24/2024] [Accepted: 06/28/2024] [Indexed: 12/17/2024] Open
Abstract
BACKGROUND Psychotic disorders, characterized by altered brain function, significantly impair reality perception. The neurodevelopmental hypothesis suggests these disorders originate from early brain development disruptions. Glial-derived neurotrophic factor (GDNF) is crucial for neuronal survival and differentiation, especially in dopaminergic neurons, and shows promise in neurodegenerative and neuropsychiatric conditions. OBJECTIVES This scoping review aims to examine the role of GDNF in schizophrenia spectrum disorders and substance-induced psychoses, integrating knowledge on the neurobiological mechanisms and therapeutic potential of GDNF. METHODS A comprehensive literature search was conducted using PubMed and Scopus databases from January 2001 onwards. Data extraction focused on GDNF levels, cognitive function, antipsychotic treatment effects, and genetic studies. RESULTS The review included 25 studies (18 human, 7 animal). While some studies demonstrated inconsistent results regarding GDNF serum levels in schizophrenic patients, the majority reported correlations between GDNF levels and cognitive functions. Animal studies underscored GDNF's role in stress response, drug-induced neurotoxicity, and dopamine signaling abnormalities. Genetic studies revealed potential associations between GDNF gene polymorphisms and schizophrenia susceptibility, though findings were mixed. DISCUSSION GDNF plays a significant role in cognitive functions and neuroprotection in schizophrenia. The variability in study results underscores the complexity of GDNF's involvement. The therapeutic potential of GDNF in psychotic disorders remains unclear, necessitating further research to clarify its efficacy and safety. CONCLUSION This review emphasizes the importance of integrated biomarker strategies, gene therapy approaches, and precision medicine in advancing the understanding and treatment of psychotic disorders.
Collapse
Affiliation(s)
- Valerio Ricci
- Ospedale San Luigi Gonzaga, Università degli Studi di Torino, Italia; Regione Gonzole, 10, Orbassano 10043, Torino, Italia
| | - Domenico De Berardis
- Dipartimento di Salute Mentale, Servizio Psichiatrico di Diagnosi e Cura, Ospedale "Giuseppe Mazzini", Azienda Sanitaria Locale 4, 64100 Teramo, Italia
| | - Giovanni Martinotti
- Dipartimento di Neuroscienze, Imaging e Scienze Cliniche, Università degli Studi Gabriele d'Annunzio Chieti-Pescara, 66100 Chieti, Italia
| | - Giuseppe Maina
- Ospedale San Luigi Gonzaga, Università degli Studi di Torino, Italia; Regione Gonzole, 10, Orbassano 10043, Torino, Italia
- Dipartimento di Neuroscienze "Rita Levi Montalcini", Università degli Studi di Torino, Torino, Italia
| |
Collapse
|
23
|
Krishnamurthy R, Krishnamoorthy C, Dietsch AM, Natarajan SK. Molecular biomarkers of dysphagia targeted exercise induced neuroplasticity: A review of mechanistic processes and preliminary data on detraining effects. Brain Res 2025; 1846:149287. [PMID: 39437875 DOI: 10.1016/j.brainres.2024.149287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/27/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
While molecular adaptations accompanying neuroplasticity during physical exercises are well-established, little is known about adaptations during dysphagia-targeted exercises. This research article has two primary purposes. First, we aim to review the existing literature on the intersection between resistance (strength) training, molecular markers of neuroplasticity, and dysphagia rehabilitation. Specifically, we discuss the molecular mechanisms of two potential molecular markers: brain-derived neurotrophic factor (BDNF) and insulin-like growth factor-1 (IGF-1) in exercise-induced neuroplasticity. Second, we present preliminary data on the effects of two weeks of detraining on circulating serum BDNF, IGF-1 levels, and expiratory muscle strength. This subset is a part of our more extensive studies related to dysphagia-targeted resistance exercise and neuroplasticity. Five young adult males underwent four weeks of expiratory muscle strength training, followed by two weeks of detraining. We measured expiratory strength, circulating levels of BDNF, and IGF-1 at post-training and detraining conditions. Our results show that expiratory muscle strength, serum BDNF, and IGF-1 levels decreased after detraining; however, this effect was statistically significant only for serum BDNF levels. Oropharyngeal and upper airway musculature involved in swallowing undergoes similar adaptation patterns to skeletal muscles during physical exercise. To fully comprehend the mechanisms underlying the potential neuroplastic benefits of targeted exercise on swallowing functions, mechanistic studies (models) investigating neuroplasticity induced by exercises addressing dysphagia are critical. Such models would ensure that interventions effectively and efficiently achieve neuroplastic benefits and improve patient outcomes, ultimately advancing our understanding of dysphagia-targeted exercise-induced neuroplasticity.
Collapse
Affiliation(s)
- Rahul Krishnamurthy
- Department of Neurosurgery, University of Nebraska Medical Center, Omaha, United States; Department of Special Education and Communication Disorders, University of Nebraska-Lincoln, Lincoln, United States.
| | - Chandan Krishnamoorthy
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, United States
| | - Angela M Dietsch
- Department of Special Education and Communication Disorders, University of Nebraska-Lincoln, Lincoln, United States; Center for Brain, Biology, and Behavior, University of Nebraska-Lincoln, Lincoln, United States
| | - Sathish Kumar Natarajan
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, United States
| |
Collapse
|
24
|
He J, Liu F, Xu P, Xu T, Yu H, Wu B, Wang H, Chen J, Zhang K, Zhang J, Meng K, Yan X, Yang Q, Zhang X, Sun D, Chen X. Aerobic Exercise Improves the Overall Outcome of Type 2 Diabetes Mellitus Among People With Mental Disorders. Depress Anxiety 2024; 2024:6651804. [PMID: 40226688 PMCID: PMC11918971 DOI: 10.1155/da/6651804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 12/09/2024] [Indexed: 04/15/2025] Open
Abstract
The escalating global prevalence of type 2 diabetes mellitus (T2DM) and mental disorder (MD) including schizophrenia, bipolar disorder, major depressive disorder, and anxiety highlights the urgency for comprehensive therapeutic strategies. Aerobic exercise (AE) is a viable adjunct therapy, providing significant benefits for individuals dealing with both T2DM and MD. This review consolidates evidence on AE's role in alleviating the physiological and psychological effects of these comorbid conditions. It delves into the pathophysiological connections between T2DM and various MD, including depression, schizophrenia, anxiety, and bipolar disorder-emphasizing their reciprocal exacerbation. Key neurophysiological mechanisms through which AE confers benefits are explored, including neuroinflammation modulation, brain structure and neuroplasticity enhancement, growth factor expression regulation, and hypothalamic-pituitary-adrenal (HPA)/microbiota-gut-brain (MGB) axis normalization. Clinical results indicate that AE significantly improves both metabolic and psychological parameters in patients with T2DM and MD, providing a substantial argument for integrating AE into comprehensive treatment plans. Future research should aim to establish detailed, personalized exercise prescriptions and explore the long-term benefits of AE in this population. This review underscores the potential of AE to complement existing therapeutic modalities and enhance the management of patients with T2DM and MD.
Collapse
Affiliation(s)
- Jiaxuan He
- Institute of Life Sciences and Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Fan Liu
- Institute of Life Sciences and Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Peiye Xu
- Institute of Life Sciences and Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Ting Xu
- Institute of Life Sciences and Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Haiyang Yu
- Institute of Life Sciences and Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Baihui Wu
- Institute of Life Sciences and Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Hanbing Wang
- Department of Biotechnology, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Jia Chen
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 611100, China
| | - Kun Zhang
- Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Junbei Zhang
- Department of Endocrinology, Yiwu Central Hospital, The Affiliated Yiwu Hospital of Wenzhou Medical University, Yiwu 322000, China
| | - Kaikai Meng
- Department of Endocrinology, Yiwu Central Hospital, The Affiliated Yiwu Hospital of Wenzhou Medical University, Yiwu 322000, China
| | - Xiaoqing Yan
- The Chinese-American Research Institute for Diabetic Complications, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Xingxing Zhang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Da Sun
- Institute of Life Sciences and Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
- Department of Endocrinology, Yiwu Central Hospital, The Affiliated Yiwu Hospital of Wenzhou Medical University, Yiwu 322000, China
| | - Xia Chen
- Department of Endocrinology, Yiwu Central Hospital, The Affiliated Yiwu Hospital of Wenzhou Medical University, Yiwu 322000, China
| |
Collapse
|
25
|
Kostka M, Morys J, Małecki A, Nowacka-Chmielewska M. Muscle-brain crosstalk mediated by exercise-induced myokines - insights from experimental studies. Front Physiol 2024; 15:1488375. [PMID: 39687518 PMCID: PMC11647023 DOI: 10.3389/fphys.2024.1488375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Over the past couple of decades, it has become apparent that skeletal muscles might be engaged in endocrine signaling, mostly as a result of exercise or physical activity in general. The importance of this phenomenon is currently studied in terms of the impact that exercise- or physical activity -induced signaling factors have, in the interaction of the "muscle-brain crosstalk." So far, skeletal muscle-derived myokines were demonstrated to intercede in the connection between muscles and a plethora of various organs such as adipose tissue, liver, or pancreas. However, the exact mechanism of muscle-brain communication is yet to be determined. It is speculated that, in particular, brain-derived neurotrophic factor (BDNF), irisin, cathepsin B (CTSB), interleukin 6 (IL-6), and insulin-like growth factor-1 (IGF-1) partake in this crosstalk by promoting neuronal proliferation and synaptic plasticity, also resulting in improved cognition and ameliorated behavioral alterations. Researchers suggest that myokines might act directly on the brain parenchyma via crossing the blood-brain barrier (BBB). The following article reviews the information available regarding rodent studies on main myokines determined to cross the BBB, specifically addressing the association between exercise-induced myokine release and central nervous system (CNS) impairments. Although the hypothesis of skeletal muscles being critical sources of myokines seems promising, it should not be forgotten that the origin of these factors might vary, depending on the cell types engaged in their synthesis. Limited amount of research providing information on alterations in myokines expression in various organs at the same time, results in taking them only as circumstantial evidence on the way to determine the actual involvement of skeletal muscles in the overall state of homeostasis. The following article reviews the information available regarding rodent studies on main myokines determined to cross the BBB, specifically addressing the association between exercise-induced myokine release and CNS impairments.
Collapse
Affiliation(s)
| | | | | | - Marta Nowacka-Chmielewska
- Laboratory of Molecular Biology, Institute of Physiotherapy and Health Sciences, Academy of Physical Education, Katowice, Poland
| |
Collapse
|
26
|
Khalil MH. The BDNF-Interactive Model for Sustainable Hippocampal Neurogenesis in Humans: Synergistic Effects of Environmentally-Mediated Physical Activity, Cognitive Stimulation, and Mindfulness. Int J Mol Sci 2024; 25:12924. [PMID: 39684635 DOI: 10.3390/ijms252312924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
This paper bridges critical gaps through proposing a novel, environmentally mediated brain-derived neurotrophic factor (BDNF)-interactive model that promises to sustain adult hippocampal neurogenesis in humans. It explains how three environmental enrichment mechanisms (physical activity, cognitive stimulation, and mindfulness) can integratively regulate BDNF and other growth factors and neurotransmitters to support neurogenesis at various stages, and how those mechanisms can be promoted by the physical environment. The approach enables the isolation of specific environmental factors and their molecular effects to promote sustainable BDNF regulation by testing the environment's ability to increase BDNF immediately or shortly before it is consumed for muscle repair or brain update. This model offers a novel, feasible method to research environment enrichment and neurogenesis dynamics in real-world human contexts at the immediate molecular level, overcoming the confounds of complex environment settings and challenges of long-term exposure and structural plasticity changes. The model promises to advance understanding of environmental influences on the hippocampus to enhance brain health and cognition. This work bridges fundamental gaps in methodology and knowledge to facilitate more research on the enrichment-neuroplasticity interplay for humans without methodological limitations.
Collapse
|
27
|
Gorji FS, Mahdavian SF, Khodashenas S, Kiasari ZR, Valadan R, Khalili S, Mahdavi MR. Exosomes with Engineered Brain Derived Neurotrophic Factor on Their Surfaces Can Proliferate Menstrual Blood Derived Mesenchymal Stem Cells: Targeted Delivery for a Protein Drug. Protein J 2024; 43:1070-1082. [PMID: 39397145 DOI: 10.1007/s10930-024-10234-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2024] [Indexed: 10/15/2024]
Abstract
Despite the efficacy of brain derived neurotrophic factor (BDNF) in neuro-regenerative medicine, it can't pass the blood-brain barrier. Recently, exosomes have been harnessed for targeted delivery of therapeutics into brain. Given these facts, an engineered exosome capable of BDNF expression on the surface would be an amenable tool for drug delivery. The BDNF gene was cloned into a plex-lamp lentiviral vector and virus particles were packaged using the Torano method. HEK293T cells were transduced by the purified viruses to produce and purify recombinant exosomes displaying the fusion protein on their surfaces. Western blot, Zeta sizer, TEM, and ELISA methods were used for exosome characterization. The effect of engineered exosomes on menstrual blood-derived mesenchymal stem cells (Mens-MSCs) proliferation was evaluated by cell counting assay, MTT assay, and qPCR on the bcl2 and nestin genes. Approximately, 1.8 × 108 TdU/ml of the viral particles was purified from the transfected cells and transduced into the HEK293T. Western blot and ELISA methods confirmed the surface display of the LAMP-BDNF fusion. TEM graphs and Zeta sizer results confirmed the morphology and the size of purified exosomes. Treatment of Mens-MSCs with the targeted exosomes augmented the expression level of bcl2 and nestin genes, increased the cell proliferation, and elevated the cell number. Chimeric BDNF on the exosome surface could retain its biological activity and elevate the expression of bcl2 and nestin genes. Moreover, these exosomes are capable of elevating the Mens-MSCs proliferation.
Collapse
Affiliation(s)
| | - Seyedeh Farzaneh Mahdavian
- Medical Biotechnology, School of Advance Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shabanali Khodashenas
- Medical Biotechnology, School of Advance Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
- Thalassemia Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Zeinab Rezaee Kiasari
- Medical Biotechnology, School of Advance Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Reza Valadan
- Department of Immunology, Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| | - Mohammad Reza Mahdavi
- Thalassemia Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Laboratory Sciences, Faculty of Allied Medical Sciences, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
28
|
Behrendt T, Quisilima JI, Bielitzki R, Behrens M, Glazachev OS, Brigadski T, Leßmann V, Schega L. Brain-Derived neurotrophic factor and inflammatory biomarkers are unaffected by acute and chronic intermittent hypoxic-hyperoxic exposure in geriatric patients: a randomized controlled trial. Ann Med 2024; 56:2304650. [PMID: 38253008 PMCID: PMC10810628 DOI: 10.1080/07853890.2024.2304650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/24/2023] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Animal and human studies have shown that exposure to hypoxia can increase brain-derived neurotrophic factor (BDNF) protein transcription and reduce systematic inflammatory cytokine response. Therefore, the aim of this study was to investigate the acute and chronic effects of intermittent hypoxic-hyperoxic exposure (IHHE) prior to aerobic exercise on BDNF, interleukin-6 (IL-6), and C-reactive protein (CRP) blood levels in geriatric patients. PATIENTS AND METHODS Twenty-five geriatric patients (83.1 ± 5.0 yrs, 71.1 ± 10.0 kg, 1.8 ± 0.9 m) participated in a placebo-controlled, single-blinded trial and were randomly assigned to either an intervention (IG) or control group (CG) performing an aerobic cycling training (17 sessions, 20 min·session-1, 3 sessions·week-1). Prior to aerobic cycling exercise, the IG was additionally exposed to IHHE for 30 min, whereas the CG received continuous normoxic air. Blood samples were taken immediately before (pre-exercise) and 10 min (post-exercise) after the first session as well as 48 h (post-training) after the last session to determine serum (BDNFS) and plasma BDNF (BDNFP), IL-6, and CRP levels. Intervention effects were analyzed using a 2 x 2 analysis of covariance with repeated measures. Results were interpreted based on effect sizes with a medium effect considered as meaningful (ηp2 ≥ 0.06, d ≥ 0.5). RESULTS CRP was moderately higher (d = 0.51) in the CG compared to the IG at baseline. IHHE had no acute effect on BDNFS (ηp2 = 0.01), BDNFP (ηp2 < 0.01), BDNF serum/plasma-ratio (ηp2 < 0.01), IL-6 (ηp2 < 0.01), or CRP (ηp2 = 0.04). After the 6-week intervention, an interaction was found for BDNF serum/plasma-ratio (ηp2 = 0.06) but not for BDNFS (ηp2 = 0.04), BDNFP (ηp2 < 0.01), IL-6 (ηp2 < 0.01), or CRP (ηp2 < 0.01). BDNF serum/plasma-ratio increased from pre-exercise to post-training (d = 0.67) in the CG compared to the IG (d = 0.51). A main effect of time was found for BDNFP (ηp2 = 0.09) but not for BDNFS (ηp2 = 0.02). Within-group post-hoc analyses revealed a training-related reduction in BDNFP in the IG and CG by 46.1% (d = 0.73) and 24.7% (d = 0.57), respectively. CONCLUSION The addition of 30 min IHHE prior to 20 min aerobic cycling seems not to be effective to increase BDNFS and BDNFP or to reduce IL-6 and CRP levels in geriatric patients after a 6-week intervention.The study was retrospectively registered at drks.de (DRKS-ID: DRKS00025130).
Collapse
Affiliation(s)
- Tom Behrendt
- Department of Sport Science, Chair for Health and Physical Activity, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Jessica Ibanez Quisilima
- Department of Sport Science, Chair for Health and Physical Activity, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Robert Bielitzki
- Department of Sport Science, Chair for Health and Physical Activity, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Martin Behrens
- University of Applied Sciences for Sport and Management Potsdam, Potsdam, Germany
| | - Oleg S. Glazachev
- Department of Human Physiology, Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Tanja Brigadski
- Department of Informatics and Microsystem Technology, University of Applied Sciences Kaiserslautern, Zweibrücken, Germany
| | - Volkmar Leßmann
- Institute of Physiology, Otto-von-Guericke University Magdeburg, Medical Faculty, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Lutz Schega
- Department of Sport Science, Chair for Health and Physical Activity, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
29
|
Rehman M, Agarwal V, Chaudhary R, Kaushik AS, Srivastava S, Srivastava S, Kumar A, Singh S, Mishra V. Pharmacological inhibition of histone deacetylase alleviates chronic unpredictable stress induced atherosclerosis and endothelial dysfunction via upregulation of BDNF. Biochem Biophys Res Commun 2024; 735:150485. [PMID: 39098273 DOI: 10.1016/j.bbrc.2024.150485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
Long-term stress is a significant risk factor for cardiovascular diseases, including atherosclerosis and endothelial dysfunction. Moreover, prolonged stress has shown to negatively regulate central BDNF expression. The role of central BDNF in CNS disorders is well studied until recently the peripheral BDNF was also found to be involved in endothelial function regulation and atherosclerosis. The peripheral BDNF and its role in chronic stress-induced atherosclerosis and endothelial dysfunction remain unclear. Therefore, we aimed to elucidate the role of BDNF and its modulation by the HDAC inhibitor valproic acid (VA) in chronic unpredictable stress (CUS)-induced atherosclerosis and endothelial dysfunction. We demonstrated that a 10-week CUS mouse model substantially decreases central and peripheral BDNF expression, resulting in enhanced serum lipid indices, plaque deposition, fibrosis, and CD68 expression in thoracic aortas. Further, parameters associated with endothelial dysfunction such as increased levels of endothelin-1 (ET-1), adhesion molecules like VCAM-1, M1 macrophage markers, and decreased M2 macrophage markers, eNOS expression, and nitrite levels in aortas, were also observed. VA (50 mg/kg, 14 days, i. p.) was administered to mice following 8 weeks of CUS exposure until the end of the experimental procedure. VA significantly prevented the decrease in BDNF, eNOS and nitrite levels, reduced lesion formation and fibrosis in thoracic aortas and increased ET-1, and VCAM-1 followed by M2 polarization in VA-treated mice. The study highlights the potential of epigenetic modulation of BDNF as a therapeutic target, in stress-induced cardiovascular pathologies and suggests that VA could be a promising agent for mitigating CUS-induced endothelial dysfunction and atherosclerosis by BDNF modulation.
Collapse
Affiliation(s)
- Mujeeba Rehman
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226025, India
| | - Vipul Agarwal
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226025, India
| | - Rishabh Chaudhary
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226025, India
| | - Arjun Singh Kaushik
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226025, India
| | - Siddhi Srivastava
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226025, India
| | - Sukriti Srivastava
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226025, India
| | - Anand Kumar
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226025, India
| | - Sanjay Singh
- Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226025, India.
| | - Vikas Mishra
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226025, India.
| |
Collapse
|
30
|
Khalil MH. Environmental Affordance for Physical Activity, Neurosustainability, and Brain Health: Quantifying the Built Environment's Ability to Sustain BDNF Release by Reaching Metabolic Equivalents (METs). Brain Sci 2024; 14:1133. [PMID: 39595896 PMCID: PMC11592236 DOI: 10.3390/brainsci14111133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Background/Objectives: Unlike enriched environments for rodents, human-built environments often hinder neuroplasticity through sedentary lifestyles, to which exercise can merely overcome its adverse effects. This paper introduces "environmental affordance for physical activity" to quantify the potential of spatial layout designs to stimulate activity and sustain neuroplasticity, mainly hippocampal neurogenesis. Methods: A novel framework links metabolic equivalents (METs) that can be afforded by the spatial layout of the built environment to its role in increasing the brain-derived neurotrophic factor (BDNF)-a biomarker that promotes and sustains adult hippocampal neurogenesis and synaptic plasticity. Equations are developed to assess the built environment's affordance for physical activity through BDNF changes measurable after brief exposure to the built environment for 20-35 min. Results: The developed equations are evidenced to be feasible to cause BDNF release through low- to moderate-intensity physical activity. This model provides a feasible assessment tool to test the built environment's effectiveness towards neurosustainability. Conclusions: By sustaining neurogenesis, the environmental affordance for physical activity holds promise for improving mental health and preventing cognitive decline.
Collapse
|
31
|
Abdelsalam HM, Samy A, Mosaleem EEA, Abdelhamid MS. The ameliorative potential of platelet-rich plasma and exosome on renal ischemia/reperfusion-induced uremic encephalopathy in rats. Sci Rep 2024; 14:26888. [PMID: 39505968 PMCID: PMC11541720 DOI: 10.1038/s41598-024-77094-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/18/2024] [Indexed: 11/08/2024] Open
Abstract
Uremic Encephalopathy results from the elevation of toxins and blood-brain barrier (BBB) disruption. Renal Ischemia/Reperfusion (I/R) injury is the principal cause of acute kidney injury and brain tissue injury. The present study was crafted to estimate the restorative impact of platelet-rich plasma (PRP) and exosome injection before the reperfusion phase on the kidney following renal I/R injury and its influence on brain tissue by tracking the histopathological, biochemical, and Doppler ultrasonography alternations in both kidney and brain tissue. Forty mature male rats were divided into five groups as follows: control, I/R, PRP, exosome, and Exosome + PRP. Renal Doppler ultrasonography was traced for all rats. Serum kidney functions and acetylcholine esterase enzyme (AchE) were evaluated. Both Gamma-aminobutyric acid (GABA) and glutamate were assessed in brain tissues. The oxidative stress (malondialdehyde), anti-oxidative (glutathione and catalase), and pro-inflammatory (Tumor necrosis factor- α and interleukin-6) markers were estimated in renal tissues. Additionally, morphometric histological examination was performed in both renal and brain tissues. Both PRP and exosome-received rats exhibited a significant improvement in both serum kidney functions and AchE compared to I/R rats. There was a 3.39-fold increase in GABA and a 2.27-fold decrease in glutamate levels in the brain tissue of PRP rats compared to the I/R rats. A significant elevation (P ≤ 0.0001) of glutathione and catalase besides a significant reduction in the expression of TNF-α and IL-6 was observed in renal tissue compared to I/R rats. A significant severe reduction (P < 0.0001) in the number of Purkinje cells, pyramidal cells in the cerebellar cortex, and the CA1 region in the hippocampus was observed in I/R rats which was significantly alleviated by both PRP and exosome. Furthermore, there was a significant improvement in Doppler parameters. PRP exerted a significant superior impact on the restoration of kidney functions and repairing uremic-induced damage in brain tissue.
Collapse
Affiliation(s)
- Hani M Abdelsalam
- Department of Zoology, Faculty of Science, Zagazig University, Zagazig, Sharkia, 44519, Egypt.
| | - Alaa Samy
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, University of Mansoura, Mansoura, Egypt
| | - Engy E A Mosaleem
- Department of Biochemistry, Faculty of Science, Zagazig University, Zagazig, Egypt
| | | |
Collapse
|
32
|
Veltri A, Nicolì V, Marino R, Rea F, Corsi M, Chiumiento M, Giangreco M, Caldi F, Guglielmi G, Foddis R, Coppedè F, Silvestri R, Buselli R. Plasma Brain-Derived Neurotrophic Factor (BDNF) Levels and BDNF Promoters' DNA Methylation in Workers Exposed to Occupational Stress and Suffering from Psychiatric Disorders. Brain Sci 2024; 14:1106. [PMID: 39595869 PMCID: PMC11592044 DOI: 10.3390/brainsci14111106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024] Open
Abstract
INTRODUCTION Decreased plasma BDNF (pBDNF) levels have been proposed as a biomarker in the illness phases of mood disorders. This cross-sectional study aimed to evaluate the pBDNF and BDNF promoters' DNA methylation levels in workers exposed to occupational stress and suffering from work-related stress disorders. METHODS the pBDNF and BDNF exon I and IV promoters' methylation levels were measured by specific immunoassays and methylation-sensitive high-resolution melting (MS-HRM) in 62 patients with adjustment disorders (AD), 79 patients with major depressive disorder (MDD) and 44 healthy controls. Occupational stress was evaluated in the patients and controls using the Job Content Questionnaire (JCQ). RESULTS the pBDNF levels were significantly higher in the MDD (p < 0.001) and AD (p < 0.0001) patients than in the controls. The MDD patients showed significantly lower pBDNF levels than the AD ones (p = 0.01). The BDNF exon I and IV promoters' methylation levels were significantly higher in the MDD patients than in the AD ones (exon I promoter: p = 0.0001, exon IV promoter: p < 0.0001) and controls (exon I promoter: p = 0.0001, exon IV promoter: p < 0.0001). In the patients, but not in the controls, the BDNF promoters' methylation levels showed significant negative correlations with occupational stress. CONCLUSIONS BDNF could play a key role in the pathophysiology of stress-related disorders and the peripheral elevation of it observed in patients exposed to occupational stress could suggest a protective mechanism for neurons from stress-mediated damage. The elevation of the pBDNF levels, even in MDD, may characterize a "reactive" subtype of depressive episode, while the significant elevation of the BDNF promoters' methylation levels in depressed patients could indicate a predisposition to more severe illness under stress. Further research is needed, focusing on biomarkers for stress-related disorders as a potential tool for the diagnosis and prevention of occupational diseases.
Collapse
Affiliation(s)
- Antonello Veltri
- Center for Work-Related Stress and Occupational Mental Disorders, Azienda Ospedaliero-Universitaria Pisana, 56124 Pisa, Italy
- Occupational Health Unit, Azienda Ospedaliero-Universitaria Pisana, 56124 Pisa, Italy
| | - Vanessa Nicolì
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy
| | - Riccardo Marino
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy
| | - Filomena Rea
- Department of Surgical, Medical, Molecular and Critical Area Pathology, University of Pisa, 56124 Pisa, Italy
| | - Martina Corsi
- Center for Work-Related Stress and Occupational Mental Disorders, Azienda Ospedaliero-Universitaria Pisana, 56124 Pisa, Italy
- Occupational Health Unit, Azienda Ospedaliero-Universitaria Pisana, 56124 Pisa, Italy
| | - Martina Chiumiento
- Center for Work-Related Stress and Occupational Mental Disorders, Azienda Ospedaliero-Universitaria Pisana, 56124 Pisa, Italy
- Occupational Health Unit, Azienda Ospedaliero-Universitaria Pisana, 56124 Pisa, Italy
| | - Marianna Giangreco
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy
| | - Fabrizio Caldi
- Occupational Health Unit, Azienda Ospedaliero-Universitaria Pisana, 56124 Pisa, Italy
| | - Giovanni Guglielmi
- Occupational Health Unit, Azienda Ospedaliero-Universitaria Pisana, 56124 Pisa, Italy
| | - Rudy Foddis
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy
| | - Fabio Coppedè
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy
| | | | - Rodolfo Buselli
- Center for Work-Related Stress and Occupational Mental Disorders, Azienda Ospedaliero-Universitaria Pisana, 56124 Pisa, Italy
- Occupational Health Unit, Azienda Ospedaliero-Universitaria Pisana, 56124 Pisa, Italy
| |
Collapse
|
33
|
Li R, Qu P, Hu X, Li X, Zeng H, Gao B, Sun Z. Assessing acute effects of two motor-cognitive training modalities on cognitive functions, postural control, and gait stability in older adults: a randomized crossover study. PeerJ 2024; 12:e18306. [PMID: 39465165 PMCID: PMC11505978 DOI: 10.7717/peerj.18306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/23/2024] [Indexed: 10/29/2024] Open
Abstract
Background The process of aging often accompanies a decline in cognitive function, postural control, and gait stability, consequently increasing the susceptibility to falls among older individuals. In response to these challenges, motor-cognitive training has emerged as a potential intervention to mitigate age-related declines. Objective This study aims to assess the acute effects of two distinct motor-cognitive training modalities, treadmill dual-task training (TMDT) and interactive motor-cognitive training (IMCT), on cognitive function, postural control, walking ability, and dual-task performance in the elderly population. Method In this randomized crossover study, 35 healthy elderly individuals (aged 60-75) participated in three acute training sessions involving TMDT, IMCT, and a control reading condition. Assessments of executive function, postural control, gait performance, and cognitive accuracy were conducted both before and after each session. Results Both TMDT and IMCT improved executive functions. Notably, IMCT resulted in a significant enhancement in correct response rates and a reduction in reaction times in the Stroop task (p < 0.05) compared to TMDT and the control condition. IMCT also led to an increase in dual-task gait speed (p < 0.001) and showed a trend towards improved cognitive accuracy (p = 0.07). Conversely, TMDT increased postural sway with eyes open (p = 0.013), indicating a potential detriment to postural control. Conclusion The findings suggest that IMCT holds greater immediate efficacy in enhancing cognitive function and gait stability among older adults compared to TMDT, with a lesser adverse impact on postural control. This underscores the potential of IMCT as a preferred approach for mitigating fall risk and enhancing both cognitive and physical functions in the elderly population.
Collapse
Affiliation(s)
- Ran Li
- School of Exercise and Health, Shandong Sport University, Jinan, China
| | - Ping Qu
- Department of Physical Education, Sun Yat-sen University, Guangzhou, China
| | - Xue Hu
- School of Athletic Performance, Shanghai University of Sport, Shanghai, China
| | - Xiaojing Li
- School of Exercise and Health, Shandong Sport University, Jinan, China
| | - Haiqing Zeng
- School of Exercise and Health, Shandong Sport University, Jinan, China
| | - Binghong Gao
- School of Athletic Performance, Shanghai University of Sport, Shanghai, China
| | - Zhiyuan Sun
- School of Exercise and Health, Shandong Sport University, Jinan, China
| |
Collapse
|
34
|
Madsen CA, Navarro ML, Elfving B, Kessing LV, Castrén E, Mikkelsen JD, Knudsen GM. The effect of antidepressant treatment on blood BDNF levels in depressed patients: A review and methodological recommendations for assessment of BDNF in blood. Eur Neuropsychopharmacol 2024; 87:35-55. [PMID: 39079257 DOI: 10.1016/j.euroneuro.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 09/11/2024]
Abstract
Major depressive disorder (MDD) is a highly prevalent psychiatric disorder and a leading cause of disability worldwide. Brain-derived neurotrophic factor (BDNF), a signaling protein responsible for promoting neuroplasticity, is highly expressed in the central nervous system but can also be found in the blood. Since impaired brain plasticity is considered a cornerstone in the pathophysiology of MDD, measurement of BDNF in blood has been proposed as a potential biomarker in MDD. The aim of our study is to systematically review the literature for the effects of antidepressant treatments on blood BDNF levels in MDD and the suitability of blood BDNF as a biomarker for depression severity and antidepressant response. We searched Pubmed® and Cochrane library up to March 2024 in a systematic manner using Medical Subject Headings (MeSH). The search resulted in a total of 42 papers, of which 30 were included in this systematic review. Generally, we found that patients with untreated MDD have a lower blood BDNF level than healthy controls. Antidepressant treatments increase blood BDNF levels, and more evidently after pharmacological than non-pharmacological treatment. Neither baseline nor change in the blood BDNF level correlates with depression severity or treatment outcome, which undermines its use as a biomarker in MDD. Our review also highlights the importance of considering factors influencing the accuracy and reproducibility of BDNF measurements. We summarize considerations to help obtain more robust blood BDNF values and compile a list of recommendations to help streamline assessment of blood BDNF levels in future studies.
Collapse
Affiliation(s)
- Clara A Madsen
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Miriam L Navarro
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Betina Elfving
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Denmark
| | - Lars V Kessing
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Psychiatric Centre Copenhagen, Mental Health Services Capital Region, Copenhagen, Denmark
| | - Eero Castrén
- Neuroscience Center / HiLIFE, University of Helsinki, Helsinki, Finland
| | - Jens D Mikkelsen
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Institute of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Gitte M Knudsen
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
35
|
Leung WKC, Yau SY, Yang Y, Kwok AWL, Wong EML, Cheung JKM, Shum EWC, Lam SC, Suen LKP. Effects of exercise interventions on brain-derived neurotrophic factor levels in overweight and obesity: A systematic review and meta-analysis. J Exerc Sci Fit 2024; 22:278-287. [PMID: 38618555 PMCID: PMC11015502 DOI: 10.1016/j.jesf.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 04/16/2024] Open
Abstract
Background /Objective. An explosion in global obesity epidemic poses threats to the healthcare system by provoking risks of many debilitating diseases, including cognitive dysfunction. Physical activity has been shown to alleviate the deleterious effects of obesity-associated cognitive deficits across the lifespan. Given the strong neuroprotective role of brain-derived neurotrophic factor (BDNF) and exercise training as a known modulator for its elevation, this systematic review sought to examine the strength of the association between exercise and BDNF levels in healthy people with overweight and obesity. Methods Six electronic databases (PubMed, MEDLINE, EMBASE, Web of Science, Ovid Nursing Database, and SPORTDiscus) were searched from their inceptions through December 2022. The primary outcome of interest was BDNF levels. Interventional studies (randomized and quasi-experimental) with English full text available were included. Risk of bias of the included studies was assessed using the Physiotherapy Evidence Database Scale. Data were extracted for meta-analyses by random-effects models. Results Thirteen studies (n = 750), of which 69.2% (9/13) had low risk of bias, were included. In the meta-analysis, exercise interventions had no significant effect on resting BDNF levels (standardized mean difference: -0.30, 95% CI -0.80 to 0.21, P = 0.25). Subgroup analyses also indicated no effects of age and types of control groups being compared on moderating the association. Conclusion To further inform the role of BDNF in obesity-related cognitive functioning, rigorous studies with larger samples of participants and raw data available were imperatively deserved.
Collapse
Affiliation(s)
- Wilson KC. Leung
- School of Nursing, Tung Wah College, 16/F, Ma Kam Chan Memorial Building, 31 Wylie Road, Kowloon, Hong Kong SAR, China
- Department of Sports Science and Physical Education, Faculty of Education, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, China
| | - Suk-yu Yau
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Yijian Yang
- Department of Sports Science and Physical Education, Faculty of Education, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, China
| | - Anthony WL. Kwok
- School of Medical and Health Sciences, Tung Wah College, 10/F, Ma Kam Chan Memorial Building, 31 Wylie Road, Kowloon, Hong Kong SAR, China
| | - Eliza ML. Wong
- School of Nursing, Tung Wah College, 16/F, Ma Kam Chan Memorial Building, 31 Wylie Road, Kowloon, Hong Kong SAR, China
| | - Jasmine KM. Cheung
- School of Nursing, Tung Wah College, 16/F, Ma Kam Chan Memorial Building, 31 Wylie Road, Kowloon, Hong Kong SAR, China
| | - Edward WC. Shum
- School of Nursing, Tung Wah College, 16/F, Ma Kam Chan Memorial Building, 31 Wylie Road, Kowloon, Hong Kong SAR, China
| | - Simon C. Lam
- School of Nursing, Tung Wah College, 16/F, Ma Kam Chan Memorial Building, 31 Wylie Road, Kowloon, Hong Kong SAR, China
| | - Lorna KP. Suen
- School of Nursing, Tung Wah College, 16/F, Ma Kam Chan Memorial Building, 31 Wylie Road, Kowloon, Hong Kong SAR, China
| |
Collapse
|
36
|
Mitchell AK, Bliss RR, Church FC. Exercise, Neuroprotective Exerkines, and Parkinson's Disease: A Narrative Review. Biomolecules 2024; 14:1241. [PMID: 39456173 PMCID: PMC11506540 DOI: 10.3390/biom14101241] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative disease in which treatment often includes an exercise regimen. Exercise is neuroprotective in animal models of PD, and, more recently, human clinical studies have verified exercise's disease-modifying effect. Aerobic exercise and resistance training improve many of PD's motor and non-motor symptoms, while neuromotor therapy and stretching/flexibility exercises positively contribute to the quality of life in people with PD. Therefore, understanding the role of exercise in managing this complex disorder is crucial. Exerkines are bioactive substances that are synthesized and released during exercise and have been implicated in several positive health outcomes, including neuroprotection. Exerkines protect neuronal cells in vitro and rodent PD models in vivo. Aerobic exercise and resistance training both increase exerkine levels in the blood, suggesting a role for exerkines in the neuroprotective theory. Many exerkines demonstrate the potential for protecting the brain against pathological missteps caused by PD. Every person (people) with Parkinson's (PwP) needs a comprehensive exercise plan tailored to their unique needs and abilities. Here, we provide an exercise template to help PwP understand the importance of exercise for treating PD, describe barriers confronting many PwP in their attempt to exercise, provide suggestions for overcoming these barriers, and explore the role of exerkines in managing PD. In conclusion, exercise and exerkines together create a powerful neuroprotective system that should contribute to slowing the chronic progression of PD.
Collapse
Affiliation(s)
- Alexandra K. Mitchell
- Department of Health Sciences, Division of Physical Therapy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | | | - Frank C. Church
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
37
|
Ramawat RB, Quraishi R, Deep R, Kumar R, Mishra AK, Jain R. An Observational Case-control Study for BDNF Val66Met Polymorphism and Serum BDNF in Patients with Major Depressive Disorder (MDD). Indian J Psychol Med 2024:02537176241280050. [PMID: 39564320 PMCID: PMC11572419 DOI: 10.1177/02537176241280050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2024] Open
Abstract
Background The brain-derived neurotrophic factor (BDNF) has an important role in the growth of neurons and synaptic transmission. The BDNF gene Val66Met polymorphism (G/A) is associated with depression, but findings have not been consistently replicated. This study adopts a case-control design with an aim to investigate the association of Val66Met polymorphism and peripheral BDNF (serum) levels in patients of major depressive disorder (MDD) and healthy individuals (controls). Materials and Method This study adopts an observational, case-control design with a total of 174 participants. Cases (n = 87) were currently depressed, having Diagnostic and Statistical Manual of Mental Disorders (DSM-5) MDD, without psychiatric comorbidity. Controls (n = 87) comprised healthy individuals with no family history of psychiatric illness. The cases were evaluated using the NIMH-Life Chart Method, Hamilton Depression Rating Scale (HAM-D), Clinically Useful Depression Outcome Scale (CUDOS), and Clinical Global Impression (CGI). TaqMan assay was used for genotyping, and serum BDNF was measured using Enzyme-linked immunosorbent assay (ELISA). Results The case mean age was 35.32 ± 11.69 years (52% females) and comparable to controls. Allelic distribution was 33% (Met), and genotypic distribution was 17% (Met/Met), 32% (Val/Met), and 51% (Val/Val) for cases. The genotypic distribution did not differ across study groups. Serum BDNF was significantly lower in MDD cases as compared to controls (p < .001). The serum BDNF levels were comparable across the genotypic groups among cases. Conclusion The Val66Met polymorphism has not been associated with a risk for MDD and, interestingly, did not influence the BDNF levels (serum). Significantly low BDNF levels were found in MDD cases. The study findings show that factors other than Val66Met gene polymorphism have a role in modulating serum BDNF levels.
Collapse
Affiliation(s)
- Raja Babu Ramawat
- Dept. of Psychiatry, All India Institute of Medical Sciences (AIIMS), New Delhi, Delhi, India
| | - Rizwana Quraishi
- NDDTC, All India Institute of Medical Sciences (AIIMS), New Delhi, Delhi, India
| | - Raman Deep
- Dept. of Psychiatry, All India Institute of Medical Sciences (AIIMS), New Delhi, Delhi, India
| | - Ram Kumar
- NDDTC, All India Institute of Medical Sciences (AIIMS), New Delhi, Delhi, India
| | | | - Raka Jain
- NDDTC, All India Institute of Medical Sciences (AIIMS), New Delhi, Delhi, India
| |
Collapse
|
38
|
Lu Z, Wang Z, Zhang XA, Ning K. Myokines May Be the Answer to the Beneficial Immunomodulation of Tailored Exercise-A Narrative Review. Biomolecules 2024; 14:1205. [PMID: 39456138 PMCID: PMC11506288 DOI: 10.3390/biom14101205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
Exercise can regulate the immune function, activate the activity of immune cells, and promote the health of the organism, but the mechanism is not clear. Skeletal muscle is a secretory organ that secretes bioactive substances known as myokines. Exercise promotes skeletal muscle contraction and the expression of myokines including irisin, IL-6, BDNF, etc. Here, we review nine myokines that are regulated by exercise. These myokines have been shown to be associated with immune responses and to regulate the proliferation, differentiation, and maturation of immune cells and enhance their function, thereby serving to improve the health of the organism. The aim of this article is to review the effects of myokines on intrinsic and adaptive immunity and the important role that exercise plays in them. It provides a theoretical basis for exercise to promote health and provides a potential mechanism for the correlation between muscle factor expression and immunity, as well as the involvement of exercise in body immunity. It also provides the possibility to find a suitable exercise training program for immune system diseases.
Collapse
Affiliation(s)
| | | | - Xin-An Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, China; (Z.L.); (Z.W.)
| | - Ke Ning
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, China; (Z.L.); (Z.W.)
| |
Collapse
|
39
|
Mishra P, Bhurani D, Nidhi. Elevated neopterin and decreased IL-4, BDNF levels and depression in lymphoma patients receiving R-CHOP chemotherapy. Front Neurol 2024; 15:1392275. [PMID: 39355088 PMCID: PMC11442289 DOI: 10.3389/fneur.2024.1392275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 09/02/2024] [Indexed: 10/03/2024] Open
Abstract
Objective Depression is the most commonly observed psychological manifestation experienced by individuals diagnosed with cancer. The purpose of the study was to investigate the association between levels of IL-4, BDNF, neopterin, and depressive symptoms in lymphoma patients receiving consecutive cycles of chemotherapy. Methods Newly diagnosed lymphoma patients scheduled to receive R-CHOP chemotherapy were enrolled. Effects of R-CHOP on circulatory biomarkers and depressive symptoms were assessed at three-time points [baseline assessment 7 days before the first dose of chemotherapy (TP1), interim assessment after the third cycle of chemotherapy (TP2), and follow-up assessment after the 6th cycle of chemotherapy (TP3)]. Results Seventy lymphoma patients, with a mean age of 44.17 ± 13.67 years, were enrolled. Patients receiving R-CHOP were found significantly increased neopterin levels between given time points TP1 vs. TP2, TP1 vs. TP3, and TP2 vs. TP3 (p < 0.001). However, IL-4 and BDNF levels significantly decreased with consecutive cycles of chemotherapy (p < 0.001). On Patient Health Questionnaire assessment (PHQ-9), scores of items like loss of interest, feeling depressed, sleep problems, loss of energy, and appetite problems were found significantly affected with consecutive cycles of chemotherapy (p < 0.001). The study found weak negative correlations between IL-4, BDNF, and neopterin levels and changes in PHQ-9 scores at both TP2 and TP3, suggesting a potential inverse relationship between these markers and depression symptoms. Conclusion In conclusion, the present study suggests a potential link between elevated neopterin levels, decreased IL-4, and BDNF levels, and the presence of depression in lymphoma patients receiving R-CHOP chemotherapy. This study provides valuable insights into understanding the emotional challenges faced by cancer patients, offering information for more personalized interventions and comprehensive support approaches within the oncology setting.
Collapse
Affiliation(s)
- Pinki Mishra
- Department of Translational and Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Dinesh Bhurani
- Department of Hemato-Oncology and Bone Marrow Transplant, Rajiv Gandhi Cancer Institute and Research Centre, Rohini, India
| | - Nidhi
- Department of Translational and Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| |
Collapse
|
40
|
Shaikh M, Doshi G. Epigenetic aging in major depressive disorder: Clocks, mechanisms and therapeutic perspectives. Eur J Pharmacol 2024; 978:176757. [PMID: 38897440 DOI: 10.1016/j.ejphar.2024.176757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/09/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
Depression, a chronic mental disorder characterized by persistent sadness, loss of interest, and difficulty in daily tasks, impacts millions globally with varying treatment options. Antidepressants, despite their long half-life and minimal effectiveness, leave half of patients undertreated, highlighting the need for new therapies to enhance well-being. Epigenetics, which studies genetic changes in gene expression or cellular phenotype without altering the underlying Deoxyribonucleic Acid (DNA) sequence, is explored in this article. This article delves into the intricate relationship between epigenetic mechanisms and depression, shedding light on how environmental stressors, early-life adversity, and genetic predispositions shape gene expression patterns associated with depression. We have also discussed Histone Deacetylase (HDAC) inhibitors, which enhance cognitive function and mood regulation in depression. Non-coding RNAs, (ncRNAs) such as Long Non-Coding RNAs (lncRNAs) and micro RNA (miRNAs), are highlighted as potential biomarkers for detecting and monitoring major depressive disorder (MDD). This article also emphasizes the reversible nature of epigenetic modifications and their influence on neuronal growth processes, underscoring the dynamic interplay between genetics, environment, and epigenetics in depression development. It explores the therapeutic potential of targeting epigenetic pathways in treating clinical depression. Additionally, it examines clinical findings related to epigenetic clocks and their role in studying depression and biological aging.
Collapse
Affiliation(s)
- Muqtada Shaikh
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, 400 056, India
| | - Gaurav Doshi
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, 400 056, India.
| |
Collapse
|
41
|
Solich J, Kolasa M, Faron-Górecka A, Pabian P, Latocha K, Korlatowicz A, Dziedzicka-Wasylewska M. Modulating Stress Susceptibility and Resilience: Insights from miRNA Manipulation and Neural Mechanisms in Mice. Mol Neurobiol 2024; 61:6135-6147. [PMID: 38280111 DOI: 10.1007/s12035-024-03922-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 01/02/2024] [Indexed: 01/29/2024]
Abstract
This study explored the impact of microRNAs, specifically mmu-miR-1a-3p and mmu-miR-155-5p, on stress susceptibility and resilience in mice of different strains. Previous research had established that C57BL/6J mice were stress-susceptible, while NET-KO and SWR/J mice displayed stress resilience. These strains also exhibited variations in the serum levels of mmu-miR-1a-3p and mmu-miR-155-5p. To investigate this further, we administered antagonistic sequences (Antagomirs) targeting these microRNAs to C57/BL/6J mice and their analogs (Agomirs) to NET-KO and SWR/J mice via intracerebroventricular (i.c.v) injection. The impact of this treatment was assessed using the forced swim test. The results showed that the stress-susceptible C57/BL/6J mice could be transformed into a stress-resilient phenotype through infusion of Antagomirs. Conversely, stress-resilient mice displayed altered behavior when treated with Ago-mmu-miR-1a-3p. The study also examined the expression of mmu-miR-1a-3p in various brain regions, revealing that changes in its expression in the cerebellum (CER) were associated with the stress response. In vitro experiments with the Neuro2a cell line indicated that the Antago/Ago-miR-1a-3p and Antago/Ago-miR-155-5p treatments affected mRNAs encoding genes related to cAMP and Ca2+ signaling, diacylglycerol kinases, and phosphodiesterases. The expression changes of genes such as Dgkq, Bdnf, Ntrk2, and Pde4b in the mouse cerebellum suggested a link between cerebellar function, synaptic plasticity, and the differential stress responses observed in susceptible and resilient mice. In summary, this research highlights the role of mmu-miR-1a-3p and mmu-miR-155-5p in regulating stress susceptibility and resilience in mice and suggests a connection between these microRNAs, cerebellar function, and synaptic plasticity in the context of stress response.
Collapse
Affiliation(s)
- J Solich
- Maj Institute of Pharmacology Polish Academy of Sciences, Smętna Street 12, 31-343, Kraków, Poland.
| | - M Kolasa
- Maj Institute of Pharmacology Polish Academy of Sciences, Smętna Street 12, 31-343, Kraków, Poland
| | - A Faron-Górecka
- Maj Institute of Pharmacology Polish Academy of Sciences, Smętna Street 12, 31-343, Kraków, Poland
| | - P Pabian
- Maj Institute of Pharmacology Polish Academy of Sciences, Smętna Street 12, 31-343, Kraków, Poland
| | - K Latocha
- Maj Institute of Pharmacology Polish Academy of Sciences, Smętna Street 12, 31-343, Kraków, Poland
| | - A Korlatowicz
- Maj Institute of Pharmacology Polish Academy of Sciences, Smętna Street 12, 31-343, Kraków, Poland
| | - M Dziedzicka-Wasylewska
- Maj Institute of Pharmacology Polish Academy of Sciences, Smętna Street 12, 31-343, Kraków, Poland
| |
Collapse
|
42
|
Gredicak M, Nikolac Perkovic M, Nedic Erjavec G, Uzun S, Kozumplik O, Svob Strac D, Pivac N. Association between reduced plasma BDNF concentration and MMSE scores in both chronic schizophrenia and mild cognitive impairment. Prog Neuropsychopharmacol Biol Psychiatry 2024; 134:111086. [PMID: 39002927 DOI: 10.1016/j.pnpbp.2024.111086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/06/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024]
Abstract
Reduced brain derived neurotrophic factor (BDNF) concentration is reported to be associated with a cognitive decline in schizophrenia, depending on the stage of the disease. Aim of the study was to examine the possible association between plasma BDNF and cognitive decline in chronic stable schizophrenia and mild cognitive impairment (MCI). The study included 123 inpatients of both sexes with schizophrenia, 123 patients with MCI and 208 healthy control subjects. Cognitive abilities were assessed using mini mental state examination (MMSE), Clock Drawing test (CDT) and cognitive subscale of the Positive and Negative Syndrome Scale (PANSS). Plasma BDNF concentration was determined using ELISA. BDNF concentration was lower in patients with schizophrenia and MCI compared to age-matched healthy controls and was similar in carriers of different BDNF Val/66Met genotypes. The MMSE and CDT scores were lower in patients with schizophrenia compared to healthy controls and subjects with MCI. Reduced plasma BDNF was significantly associated with lower MMSE scores in all subjects. BDNF concentration in patients with schizophrenia was not affected by clinical and demographic factors. BDNF Val66Met polymorphism was not associated with the MMSE scores in all participants. Further studies should include longitudinal follow-up and other cognitive scales to confirm these results and offer cognition-improving strategies to prevent cognitive decline in chronic schizophrenia.
Collapse
Affiliation(s)
- Martin Gredicak
- General Hospital Zabok and Hospital for the Croatian Veterans, Zabok, Croatia
| | - Matea Nikolac Perkovic
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb.
| | - Gordana Nedic Erjavec
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb.
| | - Suzana Uzun
- Department for Biological Psychiatry and Psychogeriatry, Clinics for Psychiatry Vrapce, Zagreb, Croatia; School of Medicine University of Zagreb, Croatia
| | - Oliver Kozumplik
- Department for Biological Psychiatry and Psychogeriatry, Clinics for Psychiatry Vrapce, Zagreb, Croatia
| | - Dubravka Svob Strac
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb.
| | - Nela Pivac
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb; University of Applied Sciences Hrvatsko Zagorje Krapina, Krapina, Croatia.
| |
Collapse
|
43
|
Çiçek Zekey Ö, Uçar HN, Akyürek F, Arıcı Sağlıyan G, Çetin FH, Türkoğlu S, Altınbaş K. Neurotrophic factor levels and executive functions in children of parents with bipolar disorder: A case controlled study. J Affect Disord 2024; 359:327-332. [PMID: 38795781 DOI: 10.1016/j.jad.2024.05.112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
BACKGROUND In the current study, it was aimed to evaluate neurotrophic factor levels and their relationship with executive functions in high-risk children and adolescents (high-risk group) whose parents were diagnosed with bipolar disorder (BD) but not affected by any psychiatric disease,and in order to determine possible vulnerability factors related to the disease. METHODS The study sample consisted of 32 high-risk group and 34 healthy controls. The Schedule for Affective Disorders and Schizophrenia for School-Age Children-Present and Lifetime Version-Turkish Adaptation (KSADS-PL-T), Stroop Test, Serial Digit Learning Test (SDLT) and Cancellation Test to evaluate executive functions were administered to all participants by the clinician.Serum levels of neurotrophic factors were measured using commercial enzyme linked immunosorbent assay kits. RESULTS Serum BDNF, NT-3, NT-4 levels and SDLT scores were significantly lower in the high-risk group for BD compared to the healthy control group. A moderate negative correlation was found between BDNF levels and the Cancellation Test scores in the high-risk group. In addition to these results, the odds ratios of age, NT-4, SDLT scores for being in the risky group in terms of BD diagnosis were 1.26, 0.99 and 0.86 respectively. LIMITATIONS This was a cross-sectional study. Causality between study results is therefore difficult to establish. The relatively small sample size of the study is another limitation. CONCLUSION The results of the present study suggest that BDNF, NT-3, NT-4 may play a role in the physiopathology of BD and may be associated with impaired executive function areas such as attention and response inhibition in the high-risk group.
Collapse
Affiliation(s)
- Özlem Çiçek Zekey
- Department of Child and Adolescent Psychiatry, Sivas Numune Hospital, Sivas, Turkey.
| | - Halit Necmi Uçar
- Department of Child and Adolescent Psychiatry, Diamind Zihin Akademisi, Konya, Turkey
| | - Fikret Akyürek
- Department of Biochemistry, School of Medicine Selçuk University, Konya, Turkey
| | | | - Fatih Hilmi Çetin
- Department of Child and Adolescent Psychiatry, Diamind Zihin Akademisi, Konya, Turkey
| | - Serhat Türkoğlu
- Department of Child and Adolescent Psychiatry, School of Medicine Selçuk University, Konya, Turkey
| | | |
Collapse
|
44
|
Cao J, Gorwood P, Ramoz N, Viltart O. The Role of Central and Peripheral Brain-Derived Neurotrophic Factor (BDNF) as a Biomarker of Anorexia Nervosa Reconceptualized as a Metabo-Psychiatric Disorder. Nutrients 2024; 16:2617. [PMID: 39203753 PMCID: PMC11357464 DOI: 10.3390/nu16162617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/26/2024] [Accepted: 08/04/2024] [Indexed: 09/03/2024] Open
Abstract
Neurotrophic factors play pivotal roles in shaping brain development and function, with brain-derived neurotrophic factor (BDNF) emerging as a key regulator in various physiological processes. This review explores the intricate relationship between BDNF and anorexia nervosa (AN), a complex psychiatric disorder characterized by disordered eating behaviors and severe medical consequences. Beginning with an overview of BDNF's fundamental functions in neurodevelopment and synaptic plasticity, the review delves into recent clinical and preclinical evidence implicating BDNF in the pathophysiology of AN. Specifically, it examines the impact of BDNF polymorphisms, such as the Val66Met variant, on AN susceptibility, prognosis, and treatment response. Furthermore, the review discusses the interplay between BDNF and stress-related mood disorders, shedding light on the mechanisms underlying AN vulnerability to stress events. Additionally, it explores the involvement of BDNF in metabolic regulation, highlighting its potential implications for understanding the metabolic disturbances observed in AN. Through a comprehensive analysis of clinical data and animal studies, the review elucidates the nuanced role of BDNF in AN etiology and prognosis, emphasizing its potential as a diagnostic and prognostic biomarker. Finally, the review discusses limitations and future directions in BDNF research, underscoring the need for further investigations to elucidate the complex interplay between BDNF signaling and AN pathology.
Collapse
Affiliation(s)
- Jingxian Cao
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université Paris Cité, INSERM UMR-S 1266, F-75014 Paris, France (O.V.)
| | - Philip Gorwood
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université Paris Cité, INSERM UMR-S 1266, F-75014 Paris, France (O.V.)
- GHU Paris Psychiatrie et Neurosciences, CMME, Hôpital Sainte Anne, F-75014 Paris, France
| | - Nicolas Ramoz
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université Paris Cité, INSERM UMR-S 1266, F-75014 Paris, France (O.V.)
- GHU Paris Psychiatrie et Neurosciences, CMME, Hôpital Sainte Anne, F-75014 Paris, France
| | - Odile Viltart
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université Paris Cité, INSERM UMR-S 1266, F-75014 Paris, France (O.V.)
- SCALab Laboratory, PsySEF Faculty, Université de Lille, UMR CNRS 9193, F-59650 Villeneuve d’Ascq, France
| |
Collapse
|
45
|
De Simone S, Alfieri L, Bosco MA, Cantatore S, Carpinteri M, Cipolloni L, Neri M. The forensic aspects of suicide and neurotrophin factors: a research study. Front Pharmacol 2024; 15:1392832. [PMID: 39170712 PMCID: PMC11335659 DOI: 10.3389/fphar.2024.1392832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024] Open
Abstract
Introduction: Suicide represents a significant public health problem whose neurobiology is not yet fully understood. In many cases, suicidal behavior and psychiatric spectrum disorders are linked, in particular, to major depression. An emerging pathophysiological hypothesis underlines the role of neurotrophic factors, proteins involved in neurogenesis, in synaptic plasticity in response to stressors. Our research aims to evaluate the degree of expression of brain neurotrophic factor (BDNF) in brain areas involved in depressive disorder in suicidal subjects. Furthermore, we want to evaluate the expression of glial cell line-derived neurotrophic factor (GDNF) in suicidal subjects. Methods: We selected twenty confirmed cases of suicide among subjects with a clinical history of depressive pathology and possible psychopharmacological treatment, compared to ten controls of individuals who died of non-suicidal causes. For all selected cases and controls, immunohistochemical investigations were performed using a panel of antibodies against the BDNF and GDNF antigens on samples from the various brain areas. Results and discussion: The results show that BDNF was under-expressed in the cerebral parenchyma of subjects who died by suicide compared to controls, while there was an overexpression of GDNF in suicide victims, these data could be useful for a clinical application as potential markers for suicidal risk, to assess the severity of depression and development of specific pharmacological therapies for depression.
Collapse
Affiliation(s)
- Stefania De Simone
- Department of Clinical and Experimental Medicine, Section of Legal Medicine, University of Foggia, Foggia, Italy
| | - Letizia Alfieri
- Department of Medical Sciences, Section of Legal Medicine University of Ferrara, Ferrara, Italy
| | - Maria Antonella Bosco
- Department of Clinical and Experimental Medicine, Section of Legal Medicine, University of Foggia, Foggia, Italy
| | - Santina Cantatore
- Department of Clinical and Experimental Medicine, Section of Legal Medicine, University of Foggia, Foggia, Italy
| | - Michele Carpinteri
- Department of Biomedical, Metabolic and Neural Sciences, Institute of Legal Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Luigi Cipolloni
- Department of Clinical and Experimental Medicine, Section of Legal Medicine, University of Foggia, Foggia, Italy
| | - Margherita Neri
- Department of Medical Sciences, Section of Legal Medicine University of Ferrara, Ferrara, Italy
| |
Collapse
|
46
|
Gejl AK, Bugge A, Ernst MT, Mortensen EL, Gejl KD, Andersen LB. Effects of 9 Weeks of High- or Moderate-Intensity Training on Cardiorespiratory Fitness, Inhibitory Control, and Plasma Brain-Derived Neurotrophic Factor in Danish Adolescents-A Randomized Controlled Trial. Scand J Med Sci Sports 2024; 34:e14703. [PMID: 39054765 DOI: 10.1111/sms.14703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/28/2024] [Accepted: 07/07/2024] [Indexed: 07/27/2024]
Abstract
PURPOSE The primary aims of this study were to examine the effects of 9 weeks of aerobic training, comprising three 30-min sessions per week, on V̇O2max, inhibitory control, and plasma brain-derived neurotrophic factor (BDNF) levels among adolescents aged 16-19 years. METHODS One hundred twenty-one untrained or recreationally active adolescents from a Danish high school were enrolled in the study, with 58 females (17.8 ± 0.8 years) and 27 males (18.0 ± 0.9 years) completing it. Participants were randomly divided into three groups performing aerobic training at either moderate-intensity (MIT: 60%-70% heart rate reserve [HRR]) or high-intensity (HIT: 80%-100% HRR) or a passive control group (CON) continuing their habitual lifestyle. Both the training groups exercised for 3×30 min per week for 9 weeks using a combination of cycling and running. Before and after the intervention period maximal oxygen uptake (V̇O2max) and the primary outcomes (inhibitory control measured by a modified flanker task, and resting plasma levels of BDNF) were evaluated. RESULTS After the intervention period, the HIT group demonstrated a larger increase in V̇O2max compared to both the CON and MIT groups, while no significant effects were observed on inhibitory control or plasma BDNF levels in any training group. However, compared to the CON group, the HIT group exhibited a tendency for greater improvement in the flanker interference score (accuracy), attributable to enhanced accuracy on the incongruent stimuli from pre to post. CONCLUSION Aerobic training in adolescents increased cardiorespiratory fitness in an intensity-dependent manner, but no clear effects were observed on neither inhibitory control nor resting plasma BDNF levels. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov: NCT02075944.
Collapse
Affiliation(s)
- Anne Kær Gejl
- Department of Sports Sciences and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Anna Bugge
- Department of Midwifery, Physiotherapy, Occupational Therapy, and Psychomotor Therapy, University College Copenhagen, Copenhagen, Denmark
| | | | | | - Kasper Degn Gejl
- Department of Sports Sciences and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Lars Bo Andersen
- Faculty of Teacher Education and Sport, Western Norway University of Applied Sciences, Campus Sogndal, Sogndal, Norway
| |
Collapse
|
47
|
Zhao R. Can exercise benefits be harnessed with drugs? A new way to combat neurodegenerative diseases by boosting neurogenesis. Transl Neurodegener 2024; 13:36. [PMID: 39049102 PMCID: PMC11271207 DOI: 10.1186/s40035-024-00428-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 07/01/2024] [Indexed: 07/27/2024] Open
Abstract
Adult hippocampal neurogenesis (AHN) is affected by multiple factors, such as enriched environment, exercise, ageing, and neurodegenerative disorders. Neurodegenerative disorders can impair AHN, leading to progressive neuronal loss and cognitive decline. Compelling evidence suggests that individuals engaged in regular exercise exhibit higher production of proteins that are essential for AHN and memory. Interestingly, specific molecules that mediate the effects of exercise have shown effectiveness in promoting AHN and cognition in different transgenic animal models. Despite these advancements, the precise mechanisms by which exercise mimetics induce AHN remain partially understood. Recently, some novel exercise molecules have been tested and the underlying mechanisms have been proposed, involving intercommunications between multiple organs such as muscle-brain crosstalk, liver-brain crosstalk, and gut-brain crosstalk. In this review, we will discuss the current evidence regarding the effects and potential mechanisms of exercise mimetics on AHN and cognition in various neurological disorders. Opportunities, challenges, and future directions in this research field are also discussed.
Collapse
Affiliation(s)
- Renqing Zhao
- College of Physical Education, Yangzhou University, 88 South Daxue Road, Yangzhou, 225009, China.
| |
Collapse
|
48
|
Gökçe E, Adıgüzel E, Koçak ÖK, Kılınç H, Langeard A, Boran E, Cengiz B. Impact of Acute High-intensity Interval Training on Cortical Excitability, M1-related Cognitive Functions, and Myokines: A Randomized Crossover Study. Neuroscience 2024; 551:290-298. [PMID: 38851379 DOI: 10.1016/j.neuroscience.2024.05.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/21/2024] [Accepted: 05/25/2024] [Indexed: 06/10/2024]
Abstract
High-intensity interval training (HIIT) is a time-efficient, safe, and feasible exercise type that can be utilized across different ages and health status. This randomized cross-over study aimed to investigate the effect of acute HIIT on cortical excitability, M1-related cognitive functions, cognition-related myokines, brain-derived neurotrophic factor (BDNF), and Cathepsin B (CTSB). Twenty-three sedentary young adults (mean age: 22.78 years ± 2.87; 14 female) participated in a cross-over design involving two sessions: either 23 min of HIIT or seated rest. Before and after the sessions, cortical excitability was measured using transcranial magnetic stimulation, and M1-related cognitive functions were assessed by the n-back test and mental rotation test. Serum levels of BDNF and CTSB were assessed using the ELISA method before and after the HIIT intervention. We demonstrated that HIIT improved mental rotation and working memory, and increased serum levels of BDNF and CTSB, whereas cortical excitability did not change. Our findings provide evidence that one session of HIIT is effective on M1-related cognitive functions and cognition-related myokines. Future research is warranted to determine whether such findings are transferable to different populations, such as cognitively at-risk children, adults, and older adults, and to prescribe effective exercise programs.
Collapse
Affiliation(s)
- Evrim Gökçe
- Physical Medicine and Rehabilitation Hospital, Ankara City Hospital, Ankara, Turkey.
| | - Emre Adıgüzel
- Physical Medicine and Rehabilitation Hospital, Ankara City Hospital, Ankara, Turkey
| | - Özlem Kurtkaya Koçak
- Department of Neurology, Faculty of Medicine, Gazi University, Ankara, Turkey; Department of Neurology, Section of Clinical Neurophysiology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Hasan Kılınç
- Department of Neurology, Faculty of Medicine, Gazi University, Ankara, Turkey; Department of Neurology, Section of Clinical Neurophysiology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Antoine Langeard
- Normandie Univ, UNICAEN, INSERM, CYCERON, CHU Caen, COMETE UMR 1075, Caen, France
| | - Evren Boran
- Department of Neurology, Faculty of Medicine, Gazi University, Ankara, Turkey; Department of Neurology, Section of Clinical Neurophysiology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Bülent Cengiz
- Department of Neurology, Faculty of Medicine, Gazi University, Ankara, Turkey; Department of Neurology, Section of Clinical Neurophysiology, Faculty of Medicine, Gazi University, Ankara, Turkey; Neuroscience and Neurotechnology Center of Excellence, Ankara, Turkey
| |
Collapse
|
49
|
Gan Y, Yu Y, Xu H, Piao H. Liposomal Nanomaterials: A Rising Star in Glioma Treatment. Int J Nanomedicine 2024; 19:6757-6776. [PMID: 38983132 PMCID: PMC11232959 DOI: 10.2147/ijn.s470478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 06/22/2024] [Indexed: 07/11/2024] Open
Abstract
Glioma is a primary malignant tumor in the central nervous system. In recent years, the treatment of glioma has developed rapidly, but the overall survival of glioma patients has not significantly improved. Due to the presence of the blood-brain barrier and intracranial tumor barrier, many drugs with good effects to cure glioma in vitro cannot be accurately transported to the corresponding lesions. In order to enable anti-tumor drugs to overcome the barriers and target glioma, nanodrug delivery systems have emerged recently. It is gratifying that liposomes, as a multifunctional nanodrug delivery carrier, which can be compatible with hydrophilic and hydrophobic drugs, easily functionalized by various targeted ligands, biodegradable, and hypoimmunogenic in vivo, has become a quality choice to solve the intractable problem of glioma medication. Therefore, we focused on the liposome nanodrug delivery system, and summarized its current research progress in glioma. Hopefully, this review may provide new ideas for the research and development of liposome-based nanomaterials for the clinical treatment of glioma.
Collapse
Affiliation(s)
- Yu Gan
- Department of Neurosurgery, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, People’s Republic of China
- Central Laboratory, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, People’s Republic of China
| | - Yingying Yu
- Department of Neurosurgery, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, People’s Republic of China
| | - Huizhe Xu
- Central Laboratory, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, People’s Republic of China
| | - Haozhe Piao
- Department of Neurosurgery, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, People’s Republic of China
| |
Collapse
|
50
|
Chang Z, Wang QY, Li LH, Jiang B, Zhou XM, Zhu H, Sun YP, Pan X, Tu XX, Wang W, Liu CY, Kuang HX. Potential Plausible Role of Stem Cell for Treating Depressive Disorder: a Retrospective Review. Mol Neurobiol 2024; 61:4454-4472. [PMID: 38097915 DOI: 10.1007/s12035-023-03843-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/29/2023] [Indexed: 07/11/2024]
Abstract
Depression poses a significant threat to global physical and mental health, impacting around 3.8% of the population with a rising incidence. Current treatment options primarily involve medication and psychological support, yet their effectiveness remains limited, contributing to high relapse rates. There is an urgent need for innovative and more efficacious treatment modalities. Stem cell therapy, a promising avenue in regenerative medicine for a spectrum of neurodegenerative conditions, has recently garnered attention for its potential application in depression. While much of this work remains preclinical, it has demonstrated considerable promise. Identified mechanisms underlying the antidepressant effects of stem cell therapy encompass the stimulation of neurotrophic factors, immune function modulation, and augmented monoamine levels. Nonetheless, these pathways and other undiscovered mechanisms necessitate further investigation. Depression fundamentally manifests as a neurodegenerative disorder. Given stem cell therapy's success in addressing a range of neurodegenerative pathologies, it opens the door to explore its application in depression treatment. This exploration may include repairing damaged nerves directly or indirectly and inhibiting neurotoxicity. Nevertheless, significant challenges must be overcome before stem cell therapies can be applied clinically. Successful resolution of these issues will ultimately determine the feasibility of incorporating stem cell therapies into the clinical landscape. This narrative review provides insights into the progress of research, potential avenues for exploration, and the prevailing challenges in the implementation of stem cell therapy for treatment of depression.
Collapse
Affiliation(s)
- Zhuo Chang
- Heilongjiang University of Chinese Medicine, Heping Road 26, Harbin, Heilongjiang, 150040, China
| | - Qing-Yi Wang
- Heilongjiang University of Chinese Medicine, Heping Road 26, Harbin, Heilongjiang, 150040, China
| | - Lu-Hao Li
- Heilongjiang University of Chinese Medicine, Heping Road 26, Harbin, Heilongjiang, 150040, China
| | - Bei Jiang
- Heilongjiang University of Chinese Medicine, Heping Road 26, Harbin, Heilongjiang, 150040, China
| | - Xue-Ming Zhou
- Heilongjiang University of Chinese Medicine, Heping Road 26, Harbin, Heilongjiang, 150040, China
| | - Hui Zhu
- Heilongjiang University of Chinese Medicine, Heping Road 26, Harbin, Heilongjiang, 150040, China
| | - Yan-Ping Sun
- Heilongjiang University of Chinese Medicine, Heping Road 26, Harbin, Heilongjiang, 150040, China
| | - Xue Pan
- Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xu-Xu Tu
- Heilongjiang University of Chinese Medicine, Heping Road 26, Harbin, Heilongjiang, 150040, China
| | - Wei Wang
- First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Chen-Yue Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hai-Xue Kuang
- Heilongjiang University of Chinese Medicine, Heping Road 26, Harbin, Heilongjiang, 150040, China.
| |
Collapse
|