1
|
Galloway JM, Parsons MB, Ardakani OH, Falck H, Fewster RE, Swindles GT, Sanei H, Palmer MJ, Nasser NA, Patterson RT. Organic matter is a predominant control on total mercury concentration of near-surface lake sediments across a boreal to low Arctic tundra transect in northern Canada. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176466. [PMID: 39332738 DOI: 10.1016/j.scitotenv.2024.176466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/29/2024]
Abstract
Mercury (Hg) is a bioavailable and toxic element with concentrations that are persistently high or rising in some Arctic and subarctic lakes despite reduced atmospheric emissions in North America. This is due to rising Hg emissions to the atmosphere outside of North America, enhanced sequestration of Hg to sediments by climate-mediated increases in primary production, and ongoing release of Hg from terrestrial reservoirs. To evaluate the influence of organic matter and other parameters on Hg accumulation in northern lakes, near-surface sediments were sampled from 60 lakes across a boreal to shrub tundra gradient in the central Northwest Territories, Canada. The organic matter of the lake sediments, assessed using programmed pyrolysis and petrology, is composed of a mixture of terrestrial, aquatic, and inert organic matter. The proportion of algal-derived organic matter is higher in sediments of lakes below treeline relative to shrub tundra sites. Total sedimentary Hg concentration is correlated to all organic matter constituents but is unrelated to latitude or lake position below or above treeline. The concentrations of Ag, Ca, P, S, U, Ti, Y, Cd, and Zn are also strong predictors of total sedimentary Hg concentration, indicating input from a common geogenic source and/or common sequestration pathways associated with organic matter. Catchment area is a strong negative predictor of total sedimentary Hg concentration, particularly in lakes above treeline, possibly due to retention capacity of Hg and other elements in local sinks. This research highlights the complexity of controls on Hg sequestration in sediment and shows that while organic matter is a strong predictor of total sedimentary Hg concentration on a landscape scale and across extreme gradients in climate and associated vegetation and permafrost, other factors such as catchment area and sources from mineralized bedrock are also important.
Collapse
Affiliation(s)
- Jennifer M Galloway
- Natural Resources Canada/Ressources naturelles Canada (NRCan/RNCan), Geological Survey of Canada/Commission géologique du Canada, Calgary, 3303-33rd Street N.W., Calgary, AB T2L 2A7, Canada; Ottawa-Carleton Geoscience Centre and Department of Earth Sciences, Carleton University, Ottawa, ON K1S 5B6, Canada.
| | - Michael B Parsons
- Natural Resources Canada/Ressources naturelles Canada (NRCan/RNCan), Geological Survey of Canada/Commission géologique du Canada, 1 Challenger Drive, Dartmouth, NS B2Y 4A2, Canada
| | - Omid H Ardakani
- Natural Resources Canada/Ressources naturelles Canada (NRCan/RNCan), Geological Survey of Canada/Commission géologique du Canada, Calgary, 3303-33rd Street N.W., Calgary, AB T2L 2A7, Canada
| | - Hendrik Falck
- Diamonds, Royalties and Financial Analysis, Government of the Northwest Territories, P.O. Box 1320, Yellowknife, NT X1A 2L9, Canada
| | - Richard E Fewster
- Geography and Chrono Centre, School of Natural and Built Environment, Queen's University, University Road, Belfast BT7 1NN, United Kingdom
| | - Graeme T Swindles
- Ottawa-Carleton Geoscience Centre and Department of Earth Sciences, Carleton University, Ottawa, ON K1S 5B6, Canada; Geography and Chrono Centre, School of Natural and Built Environment, Queen's University, University Road, Belfast BT7 1NN, United Kingdom
| | - Hamed Sanei
- Department of Geoscience, Aarhus University, Høegh-Guldbergs Gade 2 Building 1671, Aarhus 8000, Denmark
| | - Michael J Palmer
- Aurora Research Institute, Aurora College, 5004-54 St, Yellowknife, NT X1A 2R3, Canada
| | - Nawaf A Nasser
- Ottawa-Carleton Geoscience Centre and Department of Earth Sciences, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - R Timothy Patterson
- Ottawa-Carleton Geoscience Centre and Department of Earth Sciences, Carleton University, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
2
|
Bento B, Hintelmann H. Assessment of mercury methylation and methylmercury demethylation potentials in water and sediments along the Wabigoon River system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175658. [PMID: 39168343 DOI: 10.1016/j.scitotenv.2024.175658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/15/2024] [Accepted: 08/18/2024] [Indexed: 08/23/2024]
Abstract
Monomethylmercury (MMHg) plays a crucial role in the accumulation of mercury (Hg) within aquatic food chains. Since ambient levels of methylmercury are governed by the balance of simultaneous methylation and demethylation processes, determining in situ methylation and demethylation rates is critically important to understand the dynamics of methylmercury in the environment. This is especially important in the Wabigoon River system in Ontario, Canada, which is severely contaminated with Hg by a chlor-alkali facility operating in the 1960s, and still exhibits some of the highest recorded fish mercury concentrations in Canada. This work used a simultaneous addition of isotope enriched Hg and MMHg tracers to ascertain Hg methylation and MMHg demethylation potentials. At the locations investigated for this study, the most favourable conditions for Hg methylation were found at the Hydroelectric dam, being able to transform 4.2 % and 4.4 % of added Hg in water and sediments per day, respectively, to MMHg. This could correspond to 1.9 ng/L and 29 ng/g of new MMHg being produced from current ambient Hg. Clay Lake, which is considered a sink for mercury and exhibiting a seasonal anoxic environment at its bottom waters, also demonstrated significant MMHg generation, being able to produce 2.7 ng/L and 13 ng/g of MMHg per day, respectively. Demethylation rates in sediments of riverbed and wetland locations showed an average half-life for methylmercury of 2.1 days, indicating a rapid turnover of MMHg in the Wabigoon River. However, significantly lower demethylation rates were also measured near the inflow of Clay Lake, where it took up to 144 days for MMHg to decrease by 50 %. Generally, most of the investigated locations downstream of the pollution source displayed the potential to generate methylmercury, which could be distributed throughout the Wabigoon River system and therefore require attention with respect to future remediation activities.
Collapse
Affiliation(s)
- Beatriz Bento
- Environmental and Life Sciences, Trent University, Peterborough, ON, Canada.
| | - Holger Hintelmann
- Department of Chemistry, Trent University, Peterborough, ON, Canada; Water Quality Centre, Trent University, Peterborough, ON, Canada.
| |
Collapse
|
3
|
Cossa D, Dang DH, Knoery J, Patel-Sorrentino N, Tessier E, Démoulin L, Garnier C. Sources, chronology of deposition, and mobility of mercury and methylmercury in the sediments of a contaminated Mediterranean bay. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175021. [PMID: 39094652 DOI: 10.1016/j.scitotenv.2024.175021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/03/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024]
Abstract
Coastal sediments constitute a major reservoir for natural and anthropogenic mercury (Hg) and can be used as geochronological records of past Hg deposition. They may also act as secondary Hg sources for pelagic ecosystems via the efflux of toxic methylmercury (MeHg) diffusing from sediment porewaters and/or mobilized by sediment resuspension. In Toulon Bay sediments, which are known as one of the Hg hot spots of the northwestern Mediterranean Sea, we explored Hg species accumulation and mobility. The total Hg concentrations averaged 0.014 μg g-1 ca. 2000 years ago, then exhibited three major peaks during the Medieval Period, the Early Modern Period of Europe, and the Industrial Era, reaching 0.06, 0.07, and 13 μg g-1, respectively. The Medieval peak is attributed to the massive development of metallurgy in Europe accompanied by the burning of soil and vegetation, the second peak to the optimum of Hg extraction in Europe (Almadén mine), and the resumption of deforestation after the great plague. The third most recent Hg enrichment is associated with Hg-fulminate production, the scuttling of the French navy fleet during World War II, and ship salvaging and removal in the post-war years. Sampling of the dissolved phase at high vertical resolution above and below the sediment-water interface (SWI) enables us to conclude that MeHg was produced in situ by microbiological pathways and its diffusion across the SWI was negligible. On the other hand, ex-situ resuspension experiments showed that sorption and/or photodemethylation restrict MeHg from the dissolved phase.
Collapse
Affiliation(s)
- Daniel Cossa
- Université Grenoble Alpes, ISTerre, CS40700, 38058 Grenoble Cedex 9, France; IFREMER, Contamination Chimique des Ecosystèmes Marins (CCEM), BP21105, 44311 Nantes, France.
| | - Duc Huy Dang
- Laboratoire MIO, Université de Toulon, BP20132, 83957 La Garde, France; Trent University, School of the environment and Department of Chemistry, 1600 W Bank Dr, Peterborough, ON K9L0G2, Canada
| | - Joël Knoery
- IFREMER, Contamination Chimique des Ecosystèmes Marins (CCEM), BP21105, 44311 Nantes, France
| | | | - Erwan Tessier
- Laboratoire MIO, Université de Toulon, BP20132, 83957 La Garde, France
| | - Léo Démoulin
- IFREMER, Contamination Chimique des Ecosystèmes Marins (CCEM), BP21105, 44311 Nantes, France
| | - Cédric Garnier
- Laboratoire MIO, Université de Toulon, BP20132, 83957 La Garde, France
| |
Collapse
|
4
|
Sanz-Sáez I, Bravo AG, Ferri M, Carreras JM, Sánchez O, Sebastian M, Ruiz-González C, Capo E, Duarte CM, Gasol JM, Sánchez P, Acinas SG. Microorganisms Involved in Methylmercury Demethylation and Mercury Reduction are Widely Distributed and Active in the Bathypelagic Deep Ocean Waters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:13795-13807. [PMID: 39046290 PMCID: PMC11308531 DOI: 10.1021/acs.est.4c00663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 07/25/2024]
Abstract
The ocean's mercury (Hg) content has tripled due to anthropogenic activities, and although the dark ocean (>200 m) has become an important Hg reservoir, concentrations of the toxic and bioaccumulative methylmercury (MeHg) are low and therefore very difficult to measure. As a consequence, the current understanding of the Hg cycle in the deep ocean is severely data-limited, and the factors controlling MeHg, as well as its transformation rates, remain largely unknown. By analyzing 52 globally distributed bathypelagic deep-ocean metagenomes and 26 new metatranscriptomes from the Malaspina Expedition, our study reveals the widespread distribution and expression of bacterial-coding genes merA and merB in the global bathypelagic ocean (∼4000 m depth). These genes, associated with HgII reduction and MeHg demethylation, respectively, are particularly prevalent within the particle-attached fraction. Moreover, our results indicate that water mass age and the organic matter composition shaped the structure of the communities harboring merA and merB genes living in different particle size fractions, their abundance, and their expression levels. Members of the orders Corynebacteriales, Rhodobacterales, Alteromonadales, Oceanospirillales, Moraxellales, and Flavobacteriales were the main taxonomic players containing merA and merB genes in the deep ocean. These findings, together with our previous results of pure culture isolates of the deep bathypelagic ocean possessing the metabolic capacity to degrade MeHg, indicated that both methylmercury demethylation and HgII reduction likely occur in the global dark ocean, the largest biome in the biosphere.
Collapse
Affiliation(s)
- Isabel Sanz-Sáez
- Departament
de Biologia Marina i Oceanografia, Institut
de Ciències del Mar, ICM-CSIC, 08003 Barcelona, Catalunya, Spain
| | - Andrea G. Bravo
- Departament
de Biologia Marina i Oceanografia, Institut
de Ciències del Mar, ICM-CSIC, 08003 Barcelona, Catalunya, Spain
| | - Marta Ferri
- Departament
de Biologia Marina i Oceanografia, Institut
de Ciències del Mar, ICM-CSIC, 08003 Barcelona, Catalunya, Spain
| | - Joan-Martí Carreras
- Departament
de Biologia Marina i Oceanografia, Institut
de Ciències del Mar, ICM-CSIC, 08003 Barcelona, Catalunya, Spain
| | - Olga Sánchez
- Departament
de Genètica i Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
| | - Marta Sebastian
- Departament
de Biologia Marina i Oceanografia, Institut
de Ciències del Mar, ICM-CSIC, 08003 Barcelona, Catalunya, Spain
| | - Clara Ruiz-González
- Departament
de Biologia Marina i Oceanografia, Institut
de Ciències del Mar, ICM-CSIC, 08003 Barcelona, Catalunya, Spain
| | - Eric Capo
- Departament
de Biologia Marina i Oceanografia, Institut
de Ciències del Mar, ICM-CSIC, 08003 Barcelona, Catalunya, Spain
| | - Carlos M. Duarte
- Red
Sea Research Center, Division of Biological and Environmental Sciences
and Engineering, King Abdullah University
of Science and Technology, Thuwal 23955-6900,Saudi Arabia
| | - Josep M. Gasol
- Departament
de Biologia Marina i Oceanografia, Institut
de Ciències del Mar, ICM-CSIC, 08003 Barcelona, Catalunya, Spain
| | - Pablo Sánchez
- Departament
de Biologia Marina i Oceanografia, Institut
de Ciències del Mar, ICM-CSIC, 08003 Barcelona, Catalunya, Spain
| | - Silvia G. Acinas
- Departament
de Biologia Marina i Oceanografia, Institut
de Ciències del Mar, ICM-CSIC, 08003 Barcelona, Catalunya, Spain
| |
Collapse
|
5
|
Bhat A, Sharma R, Desigan K, Lucas MM, Mishra A, Bowers RM, Woyke T, Epstein B, Tiffin P, Pueyo JJ, Paape T. Horizontal gene transfer of the Mer operon is associated with large effects on the transcriptome and increased tolerance to mercury in nitrogen-fixing bacteria. BMC Microbiol 2024; 24:247. [PMID: 38971740 PMCID: PMC11227200 DOI: 10.1186/s12866-024-03391-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/19/2024] [Indexed: 07/08/2024] Open
Abstract
BACKGROUND Mercury (Hg) is highly toxic and has the potential to cause severe health problems for humans and foraging animals when transported into edible plant parts. Soil rhizobia that form symbiosis with legumes may possess mechanisms to prevent heavy metal translocation from roots to shoots in plants by exporting metals from nodules or compartmentalizing metal ions inside nodules. Horizontal gene transfer has potential to confer immediate de novo adaptations to stress. We used comparative genomics of high quality de novo assemblies to identify structural differences in the genomes of nitrogen-fixing rhizobia that were isolated from a mercury (Hg) mine site that show high variation in their tolerance to Hg. RESULTS Our analyses identified multiple structurally conserved merA homologs in the genomes of Sinorhizobium medicae and Rhizobium leguminosarum but only the strains that possessed a Mer operon exhibited 10-fold increased tolerance to Hg. RNAseq analysis revealed nearly all genes in the Mer operon were significantly up-regulated in response to Hg stress in free-living conditions and in nodules. In both free-living and nodule environments, we found the Hg-tolerant strains with a Mer operon exhibited the fewest number of differentially expressed genes (DEGs) in the genome, indicating a rapid and efficient detoxification of Hg from the cells that reduced general stress responses to the Hg-treatment. Expression changes in S. medicae while in bacteroids showed that both rhizobia strain and host-plant tolerance affected the number of DEGs. Aside from Mer operon genes, nif genes which are involved in nitrogenase activity in S. medicae showed significant up-regulation in the most Hg-tolerant strain while inside the most Hg-accumulating host-plant. Transfer of a plasmid containing the Mer operon from the most tolerant strain to low-tolerant strains resulted in an immediate increase in Hg tolerance, indicating that the Mer operon is able to confer hyper tolerance to Hg. CONCLUSIONS Mer operons have not been previously reported in nitrogen-fixing rhizobia. This study demonstrates a pivotal role of the Mer operon in effective mercury detoxification and hypertolerance in nitrogen-fixing rhizobia. This finding has major implications not only for soil bioremediation, but also host plants growing in mercury contaminated soils.
Collapse
Affiliation(s)
- Aditi Bhat
- Brookhaven National Laboratory, Upton, USA
| | | | | | | | - Ankita Mishra
- Institute for Advancing Health Through Agriculture, Texas A&M, College Station, TX, USA
| | - Robert M Bowers
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Tanja Woyke
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Brendan Epstein
- Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Peter Tiffin
- Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - José J Pueyo
- Institute of Agricultural Sciences, ICA-CSIC, Madrid, Spain
| | - Tim Paape
- Institute for Advancing Health Through Agriculture, Texas A&M, College Station, TX, USA.
- USDA-ARS Children's Nutrition Research Center, Houston, TX, USA.
| |
Collapse
|
6
|
Wang L, Liu H, Wang F, Wang Y, Xiang Y, Chen Y, Wang J, Wang D, Shen H. The different effects of molybdate on Hg(II) bio-methylation in aerobic and anaerobic bacteria. Front Microbiol 2024; 15:1376844. [PMID: 39015741 PMCID: PMC11249568 DOI: 10.3389/fmicb.2024.1376844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/06/2024] [Indexed: 07/18/2024] Open
Abstract
In nature, methylmercury (MeHg) is primarily generated through microbial metabolism, and the ability of bacteria to methylate Hg(II) depends on both bacterial properties and environmental factors. It is widely known that, as a metabolic analog, molybdate can inhibit the sulfate reduction process and affect the growth and methylation of sulfate-reducing bacteria (SRB). However, after it enters the cell, molybdate can be involved in various intracellular metabolic pathways as a molybdenum cofactor; whether fluctuations in its concentration affect the growth and methylation of aerobic mercury methylating strains remains unknown. To address this gap, aerobic γ-Proteobacteria strains Raoultella terrigena TGRB3 (B3) and Pseudomonas putida TGRB4 (B4), as well as an obligate anaerobic δ-Proteobacteria strain of the SRB Desulfomicrobium escambiense CGMCC 1.3481 (DE), were used as experimental strains. The growth and methylation ability of each strain were analyzed under conditions of 500 ng·L-1 Hg(II), 0 and 21% of oxygen, and 0, 0.25, 0.50, and 1 mM of MoO4 2-. In addition, in order to explore the metabolic specificity of aerobic strains, transcriptomic data of the facultative mercury-methylated strain B3 were further analyzed in an aerobic mercuric environment. The results indicated that: (a) molybdate significantly inhibited the growth of DE, while B3 and B4 exhibited normal growth. (b) Under anaerobic conditions, in DE, the MeHg content decreased significantly with increasing molybdate concentration, while in B3, MeHg production was unaffected. Furthermore, under aerobic conditions, the MeHg productions of B3 and B4 were not influenced by the molybdate concentration. (c) The transcriptomic analysis showed several genes that were annotated as members of the molybdenum oxidoreductase family of B3 and that exhibited significant differential expression. These findings suggest that the differential expression of molybdenum-binding proteins might be related to their involvement in energy metabolism pathways that utilize nitrate and dimethyl sulfoxide as electron acceptors. Aerobic bacteria, such as B3 and B4, might possess distinct Hg(II) biotransformation pathways from anaerobic SRB, rendering their growth and biomethylation abilities unaffected by molybdate.
Collapse
Affiliation(s)
- Lanjing Wang
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Hang Liu
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Feng Wang
- Research Center of Biology, Southwest University, Chongqing, China
| | - Yongmin Wang
- College of Resources and Environment, Southwest University, Chongqing, China
- Chongqing Engineering Research Center for Agricultural Non-Point Source Pollution Control, Chongqing, China
| | - Yuping Xiang
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Yongyi Chen
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Jiwu Wang
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Dingyong Wang
- College of Resources and Environment, Southwest University, Chongqing, China
- Chongqing Engineering Research Center for Agricultural Non-Point Source Pollution Control, Chongqing, China
| | - Hong Shen
- College of Resources and Environment, Southwest University, Chongqing, China
- Research Center of Biology, Southwest University, Chongqing, China
| |
Collapse
|
7
|
Chen H, Gao B, Guo Y, Yu Q, Hu M, Zhang X. Adding carbon sources to the substrates enhances Cr and Ni removal and mitigates greenhouse gas emissions in constructed wetlands. ENVIRONMENTAL RESEARCH 2024; 252:118940. [PMID: 38626871 DOI: 10.1016/j.envres.2024.118940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/29/2024] [Accepted: 04/12/2024] [Indexed: 04/21/2024]
Abstract
Constructed wetlands for wastewater treatment pose challenges related to long-term operational efficiency and greenhouse gas emissions on a global scale. This study investigated the impact of adding peat, humic acid, and biochar into the substrates of constructed wetlands and focused on Cr, and Ni removal, greenhouse gas emissions, and microbial communities in constructed wetlands. Biochar addition treatment achieved the highest removal efficiencies for total Cr (99.96%), Cr (VI) (100%), and total Ni (91.04%). Humic acid and biochar addition both significantly increased the heavy metal content in wetland plant Leersia hexandra and substrates of constructed wetlands. Further analysis of microbial community proportions by high-throughput sequencing revealed that biochar and humic acid treatments enhanced Cr and Ni removal efficiency by increasing the abundance of Bacteroidetes, Geobacter and Ascomycota. Humic acid addition treatment reduced CO2 emissions by decreasing the abundance of Bacteroidetes and increasing that of Basidiomycota. Peat treatment decreased CH4 emissions by reducing the abundance of the Bacteroidetes. Biochar treatment increased the abundance of the Firmicutes, Bacteroidetes, Proteobacteria as well as Basidiomycota, resulting in reduced N2O emissions. Biochar and humic acid treatments efficiently removed heavy metals from wastewater and mitigated greenhouse gas emissions in constructed wetlands by modifying the microbial communities.
Collapse
Affiliation(s)
- Hongxu Chen
- College of Environmental Science and Engineering, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Bo Gao
- College of Tourism & Landscape Architecture, Guilin University of Technology, Guilin, 541004, China; College of Plant and Ecological Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Yuehong Guo
- College of Environmental Science and Engineering, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Qiankui Yu
- College of Environmental Science and Engineering, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Maosheng Hu
- College of Environmental Science and Engineering, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Xingfeng Zhang
- College of Environmental Science and Engineering, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China.
| |
Collapse
|
8
|
Zhang D, Chu B, Yang Q, Zhang X, Fang Y, Liu G, Liang L, Guo Y, Yin Y, Cai Y, Jiang G. Degradation of organic mercury in high salt environments by a marine aerobic bacterium Alteromonas macleodii KD01. BIORESOURCE TECHNOLOGY 2024; 402:130831. [PMID: 38734262 DOI: 10.1016/j.biortech.2024.130831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/13/2024]
Abstract
Mercury (Hg), particularly organic mercury, poses a global concern due to its pronounced toxicity and bioaccumulation. Bioremediation of organic mercury in high-salt wastewater faces challenges due to the growth limitations imposed by elevated Cl- and Na+ concentrations on microorganisms. In this study, an isolated marine bacterium Alteromonas macleodii KD01 was demonstrated to degrade methylmercury (MeHg) efficiently in seawater and then was applied to degrade organic mercury (MeHg, ethylmercury, and thimerosal) in simulated high-salt wastewater. Results showed that A. macleodii KD01 can rapidly degrade organic mercury (within 20 min) even at high concentrations (>10 ng/mL), volatilizing a portion of Hg from the wastewater. Further analysis revealed an increased transcription of organomercury lyase (merB) with rising organic mercury concentrations during the exposure process, suggesting the involvement of mer operon (merA and merB). These findings highlight A. macleodii KD01 as a promising candidate for addressing organic mercury pollution in high-salt wastewater.
Collapse
Affiliation(s)
- Dingxi Zhang
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bowei Chu
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingqing Yang
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyan Zhang
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingying Fang
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangliang Liu
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Lina Liang
- Beijing Zhongke PUYAN Science and Technology Co., Ltd, Beijing 100096, China
| | - Yingying Guo
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Yongguang Yin
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Yong Cai
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
9
|
Maury-Brachet R, Dassié ÉP, Legeay A, Gonzalez P, Feurtet-Mazel A, Gourand F, Dominique Y, Vigouroux R. Influence of a hydroelectric dam on fish mercury contamination along the Sinnamary River (French Guiana). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115771. [PMID: 38100848 DOI: 10.1016/j.ecoenv.2023.115771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 11/14/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023]
Abstract
The Petit Saut hydroelectric dam and the upstream and downstream areas of the Sinnamary River in French Guiana (Amazon basin) have been studied from 1993 to 2020. The nearly thirty-years-long study of the monitoring of total mercury concentration in fish and the physicochemical survey of the environment made it possible to demonstrate the impact of the flooding of the forest and the role of the hydroelectric dam on the methylation of mercury. Results show that the physicochemical modifications generated by the construction of the dam led to a significant production of methylmercury (MeHg) in the anoxic part of the reservoir and downstream of the river leading to a strong spatio-temporal impact of the dam. Seven species of fishes are studied and their mercury concentrations vary according to many parameters: fish diet, position in the water column, site, lake oxycline level and time.
Collapse
Affiliation(s)
| | - Émilie P Dassié
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600 Pessac, France.
| | - Alexia Legeay
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600 Pessac, France
| | - Patrice Gonzalez
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600 Pessac, France
| | | | | | | | | |
Collapse
|
10
|
Zhang X, Guo Y, Liu G, Liu Y, Shi J, Hu L, Zhao L, Li Y, Yin Y, Cai Y, Jiang G. Superoxide-Mediated Extracellular Mercury Reduction by Aerobic Marine Bacterium Alteromonas sp. KD01. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20595-20604. [PMID: 38007712 DOI: 10.1021/acs.est.3c04777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
Microbial reduction plays a crucial role in Hg redox and the global cycle. Although intracellular Hg(II) reduction mediated by MerA protein is well documented, it is still unclear whether or how bacteria reduce Hg(II) extracellularly without its internalization. Herein, for the first time, we discovered the extracellular reduction of Hg(II) by a widely distributed aerobic marine bacterium Alteromonas sp. KD01 through a superoxide-dependent mechanism. The generation of superoxide by Alteromonas sp. KD01 was determined using 3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide and methyl cypridina luciferin analogue as probes via UV-vis and chemiluminescence detection, respectively. The results demonstrated that Hg(II) reduction was inhibited by superoxide scavengers (superoxide dismutase (SOD) and Cu(NO3)2) or inhibitors of reduced nicotinamide adenine dinucleotide (NADH) oxidoreductases. In contrast, the addition of NADH significantly improved superoxide generation and, in turn, Hg(II) reduction. Direct evidence of superoxide-mediated Hg(II) reduction was provided by the addition of superoxide using KO2 in deionized water and seawater. Moreover, we observed that even superoxide at an environmental concentration of 9.6 ± 0.5 nM from Alteromonas sp. KD01 (5.4 × 106 cells mL-1) was capable of significantly reducing Hg(II). Our findings provide a greater understanding of Hg(II) reduction by superoxide from heterotrophic bacteria and eukaryotic phytoplankton in diverse aerobic environments, including surface water, sediment, and soil.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingying Guo
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guangliang Liu
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Yanwei Liu
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lixia Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yanbin Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Yongguang Yin
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Yong Cai
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
11
|
Shen Z, Liu G, Guo Y, Jiang T, Liu Y, Shi J, Hu L, Yin Y, Cai Y, Jiang G. Dissolved organic matter mediated dark- and photo-aging processes of Hg(II): Critical impacts of binding sites and sulfidation on Hg(II) abiotic reduction and microbial methylation. WATER RESEARCH 2023; 242:120294. [PMID: 37429137 DOI: 10.1016/j.watres.2023.120294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 06/25/2023] [Accepted: 06/29/2023] [Indexed: 07/12/2023]
Abstract
Dissolved organic matter (DOM)-mediated divalent mercury (Hg(II)) aging kinetics play a crucial role in controlling Hg(II) transformation and bioavailability in natural aquatic environments. However, the differential environmental behaviors of new and aged Hg(II) in a same reaction system remains unknown. In this study, multi-isotope tracing was used to investigate the impacts of binding site and sulfidation during DOM-mediated Hg(II) aging processes on Hg(II) reduction and microbial methylation in the same reaction system. Stepwise reduction approach and liquid chromatography-inductively coupled plasma mass spectrometry (LC-ICP-MS) demonstrate that DOM-mediated dark aging processes are mainly driven by the rearrangement of DOM binding sites with Hg(II), but not the formation of mercury sulfide nanoparticles (HgSNP). The abundant but weaker RO/N (carboxyl and amino) Hg(II)-binding sites are replaced with stronger RSH (thiol) moieties towards Hg(II) binding with aging, resulting in a decrease in Hg(II) reduction. In contrast, besides reduction, DOM-mediated Hg(II) photoaging induces the formation of HgSNP, as revealed by LC-ICP-MS, which in turn decreases the microbial methylation potential of Hg(II). These findings help better understand and predict the kinetic characteristics of Hg(II) reactivity and its influence on Hg cycle within natural aquatic environments.
Collapse
Affiliation(s)
- Zelin Shen
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
| | - Guangliang Liu
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Yingying Guo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Tao Jiang
- Interdisciplinary Research Centre for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Yanwei Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yongguang Yin
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences (UCAS), Beijing 100049, China; Institute of Environment and Health, Jianghan University, Wuhan 430056, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China.
| | - Yong Cai
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
12
|
Zhang L, Kang-Yun CS, Lu X, Chang J, Liang X, Pierce EM, Semrau JD, Gu B. Adsorption and intracellular uptake of mercuric mercury and methylmercury by methanotrophs and methylating bacteria. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 331:121790. [PMID: 37187279 DOI: 10.1016/j.envpol.2023.121790] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/25/2023] [Accepted: 05/07/2023] [Indexed: 05/17/2023]
Abstract
The cell surface adsorption and intracellular uptake of mercuric Hg(II) and methylmercury (MeHg) are important in determining the fate and transformation of Hg in the environment. However, current information is limited about their interactions with two important groups of microorganisms, i.e., methanotrophs and Hg(II)-methylating bacteria, in aquatic systems. This study investigated the adsorption and uptake dynamics of Hg(II) and MeHg by three strains of methanotrophs, Methylomonas sp. Strain EFPC3, Methylosinus trichosporium OB3b, and Methylococcus capsulatus Bath, and two Hg(II)-methylating bacteria, Pseudodesulfovibrio mercurii ND132 and Geobacter sulfurreducens PCA. Distinctive behaviors of these microorganisms towards Hg(II) and MeHg adsorption and intracellular uptake were observed. The methanotrophs generally took up 60-80% of inorganic Hg(II) inside cells after 24 h incubation, lower than methylating bacteria (>90%). Approximately 80-95% of MeHg was rapidly taken up by all the tested methanotrophs within 24 h. In contrast, after the same time, G. sulfurreducens PCA adsorbed 70% but took up <20% of MeHg, while P. mercurii ND132 only adsorbed 20% but took up negligible amounts of MeHg. These results suggest that microbial surface adsorption and intracellular uptake of Hg(II) and MeHg depend on the specific types of microbes and appear to be related to microbial physiology that requires further detailed investigation. Despite being incapable of methylating Hg(II), methanotrophs play important roles in immobilizing both Hg(II) and MeHg, potentially influencing their bioavailability and trophic transfer. Therefore, methanotrophs are not only important sinks for methane but also for Hg(II) and MeHg and can influence the global cycling of C and Hg.
Collapse
Affiliation(s)
- Lijie Zhang
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA; Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| | - Christina S Kang-Yun
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xia Lu
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Jin Chang
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xujun Liang
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Eric M Pierce
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Jeremy D Semrau
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Baohua Gu
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; Department of Biosystems Engineering and Soil Science, University of Tennesee, Knoxville, TN 37996, USA
| |
Collapse
|
13
|
Schmollinger S, Chen S, Merchant SS. Quantitative elemental imaging in eukaryotic algae. Metallomics 2023; 15:mfad025. [PMID: 37186252 PMCID: PMC10209819 DOI: 10.1093/mtomcs/mfad025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 03/03/2023] [Indexed: 05/17/2023]
Abstract
All organisms, fundamentally, are made from the same raw material, namely the elements of the periodic table. Biochemical diversity is achieved by how these elements are utilized, for what purpose, and in which physical location. Determining elemental distributions, especially those of trace elements that facilitate metabolism as cofactors in the active centers of essential enzymes, can determine the state of metabolism, the nutritional status, or the developmental stage of an organism. Photosynthetic eukaryotes, especially algae, are excellent subjects for quantitative analysis of elemental distribution. These microbes utilize unique metabolic pathways that require various trace nutrients at their core to enable their operation. Photosynthetic microbes also have important environmental roles as primary producers in habitats with limited nutrient supplies or toxin contaminations. Accordingly, photosynthetic eukaryotes are of great interest for biotechnological exploitation, carbon sequestration, and bioremediation, with many of the applications involving various trace elements and consequently affecting their quota and intracellular distribution. A number of diverse applications were developed for elemental imaging, allowing subcellular resolution, with X-ray fluorescence microscopy (XFM, XRF) being at the forefront, enabling quantitative descriptions of intact cells in a non-destructive method. This Tutorial Review summarizes the workflow of a quantitative, single-cell elemental distribution analysis of a eukaryotic alga using XFM.
Collapse
Affiliation(s)
- Stefan Schmollinger
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA
- Departments of Molecular and Cell Biology and Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Si Chen
- X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Sabeeha S Merchant
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA
- Departments of Molecular and Cell Biology and Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
14
|
Protano G, Bianchi S, De Santis M, Di Lella LA, Nannoni F, Salleolini M. New geochemical data for defining origin and distribution of mercury in groundwater of a coastal area in southern Tuscany (Italy). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:50920-50937. [PMID: 36807864 PMCID: PMC10104938 DOI: 10.1007/s11356-023-25897-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 02/08/2023] [Indexed: 04/16/2023]
Abstract
A geochemical study was conducted in a coastal plain in the Orbetello Lagoon area in southern Tuscany (Italy), acquiring new data on groundwater, lagoon water, and stream sediment for insights into the origin, distribution, and behaviour of mercury in a Hg-enriched carbonate aquifer. The main hydrochemical features of the groundwater are ruled by the mixing of Ca-SO4 and Ca-Cl continental fresh waters of the carbonate aquifer and Na-Cl saline waters of the Tyrrhenian Sea and Lagoon of Orbetello. Groundwater had highly variable Hg concentrations (< 0.1-11 μg/L) that were not correlated with the percentage of saline water, depth in the aquifer, or distance from the lagoon. This excluded the possibility that saline water could be the direct source of Hg in groundwater and responsible for release of the element through interaction with the carbonate lithologies of the aquifer. The origin of Hg in groundwater could be ascribed to the Quaternary continental sediments overlying the carbonate aquifer because i) high Hg concentrations were found in the continental sediments of the coastal plain and in the contiguous lagoon sediments; ii) waters from the upper part of aquifer had the highest Hg concentrations; iii) Hg levels in groundwater increased with increasing thickness of the continental deposits. The high Hg content in the continental and lagoon sediments is geogenic due to regional and local Hg anomalies and to sedimentary and pedogenetic processes. It can be assumed that i) water circulating in these sediments dissolves the solid Hg-bearing constituents and mobilises this element mainly as chloride complexes; ii) Hg-enriched water moves from the upper part of the carbonate aquifer due to the cone of depression generated by intense pumping of groundwater by fish farms in the study area.
Collapse
Affiliation(s)
- Giuseppe Protano
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via del Laterino 8, 53100, Siena, Italy.
| | | | - Matteo De Santis
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via del Laterino 8, 53100, Siena, Italy
| | - Luigi Antonello Di Lella
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via del Laterino 8, 53100, Siena, Italy
| | - Francesco Nannoni
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via del Laterino 8, 53100, Siena, Italy
| | - Massimo Salleolini
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via del Laterino 8, 53100, Siena, Italy
| |
Collapse
|
15
|
Singh AD, Khanna K, Kour J, Dhiman S, Bhardwaj T, Devi K, Sharma N, Kumar P, Kapoor N, Sharma P, Arora P, Sharma A, Bhardwaj R. Critical review on biogeochemical dynamics of mercury (Hg) and its abatement strategies. CHEMOSPHERE 2023; 319:137917. [PMID: 36706814 DOI: 10.1016/j.chemosphere.2023.137917] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/21/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Mercury (Hg) is among the naturally occurring heavy metal with elemental, organic, and inorganic distributions in the environment. Being considered a global pollutant, high pools of Hg-emissions ranging from >6000 to 8000 Mg Hg/year get accumulated by the natural and anthropogenic activities in the atmosphere. These toxicants have high persistence, toxicity, and widespread contamination in the soil, water, and air resources. Hg accumulation inside the plant parts amplifies the traces of toxic elements in the linking food chains, leads to Hg exposure to humans, and acts as a potential genotoxic, neurotoxic and carcinogenic entity. However, excessive Hg levels are equally toxic to the plant system and severely disrupt the physiological and metabolic processes in plants. Thus, a plausible link between Hg-concentration and its biogeochemical behavior is highly imperative to analyze the plant-soil interactions. Therefore, it is requisite to bring these toxic contaminants in between the acceptable limits to safeguard the environment. Plants efficiently incorporate or absorb the bioavailable Hg from the soil thus a constructive understanding of Hg uptake, translocation/sequestration involving specific heavy metal transporters, and detoxification mechanisms are drawn. Whereas recent investigations in biological remediation of Hg provide insights into the potential associations between the plants and microbes. Furthermore, intense research on Hg-induced antioxidants, protein networks, metabolic mechanisms, and signaling pathways is required to understand these bioremediations techniques. This review sheds light on the mercury (Hg) sources, pollution, biogeochemical cycles, its uptake, translocation, and detoxification methods with respect to its molecular approaches in plants.
Collapse
Affiliation(s)
- Arun Dev Singh
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India.
| | - Kanika Khanna
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Jaspreet Kour
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Shalini Dhiman
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Tamanna Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Kamini Devi
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Neerja Sharma
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Pardeep Kumar
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Nitika Kapoor
- P.G. Department of Botany, Hans Raj Mahila Maha Vidyalaya, Jalandhar, Punjab, India
| | - Priyanka Sharma
- School of Bioengineering Sciences and Research, MIT-ADT University, Pune, Maharashtra, India
| | - Priya Arora
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Anket Sharma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Renu Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India.
| |
Collapse
|
16
|
Guo Y, Xiang Y, Liu G, Chen Y, Liu Y, Song M, Li Y, Shi J, Hu L, Yin Y, Cai Y, Jiang G. "Trojan Horse" Type Internalization Increases the Bioavailability of Mercury Sulfide Nanoparticles and Methylation after Intracellular Dissolution. ACS NANO 2023; 17:1925-1934. [PMID: 36688800 DOI: 10.1021/acsnano.2c05657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Mercury sulfide nanoparticles (HgSNP), as natural metal-containing nanoparticles, are the dominant Hg species in anoxic zones. Although the microbial Hg methylation of HgSNP has been previously reported, the importance of this process in Hg methylation has yet to be clarified due to the lack of knowledge on the internalization and transformation of HgSNP. Here, we investigated the internalization and transformation of HgSNP in microbial methylator Geobacter sulfurreducens PCA through total Hg analysis and different Hg species quantification in medium and cytoplasm. We found that the microbial uptake of HgSNP, via a passive diffusion pathway, was significantly higher than that of the Hg2+-dissolved organic matter (Hg2+-DOM) complex. Internalized HgSNP were dissolved to Hg2+ in cytoplasm with a maximal dissolution of 41%, suggesting a "Trojan horse" mechanism. The intracellular Hg2+ from HgSNP exposure at the initial stage (8 h) was higher than that in Hg2+-DOM group, which led to higher methylation of HgSNP. Furthermore, no differences in methylmercury (MeHg) production from HgSNP were observed between the hgcAB gene knockout (ΔhgcAB) and wild-type strains, suggesting that HgSNP methylation may occur through HgcAB-independent pathways. Considering the possibility of a broad range of hgcAB-lacking microbes serving as methylators for HgSNP and the ubiquity of HgSNP in anoxic environments, this study highlights the importance of HgSNP internalization and methylation in MeHg production and demonstrates the necessity of understanding the assimilation and transformation of nutrient and toxic metal nanoparticles in general.
Collapse
Affiliation(s)
- Yingying Guo
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 10085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 10085, China
| | - Yuping Xiang
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 10085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 10085, China
| | - Guangliang Liu
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Ying Chen
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 10085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 10085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanwei Liu
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 10085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 10085, China
| | - Maoyong Song
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 10085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 10085, China
| | - Yanbin Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 10085, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 10085, China
| | - Yongguang Yin
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 10085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 10085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Yong Cai
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 10085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 10085, China
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 10085, China
| |
Collapse
|
17
|
Park J, Cho H, Han S, An SU, Choi A, Lee H, Hyun JH. Impacts of the invasive Spartina anglica on C-S-Hg cycles and Hg(II) methylating microbial communities revealed by hgcA gene analysis in intertidal sediment of the Han River estuary, Yellow Sea. MARINE POLLUTION BULLETIN 2023; 187:114498. [PMID: 36603235 DOI: 10.1016/j.marpolbul.2022.114498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
We investigated the impact of invasive vegetation on mercury cycles, and identified microorganisms directly related to Hg(II) methylation using hgcA gene in vegetated mud flats (VMF) inhabited by native Suaeda japonica (SJ) and invasive Spartina anglica (SA), and unvegetated mud flats (UMF) in Ganghwa intertidal sediments. Sulfate reduction rate (SRR) and rate constants of Hg(II) methylation (Km) and methyl-Hg demethylation (Kd) were consistently greater in VMF than in UMF, specifically 1.5, 2 and 11.7 times higher, respectively, for SA. Both Km and Kd were significantly correlated with SRR and the abundance of sulfate-reducing bacteria. These results indicate that the rhizosphere of invasive SA provides a hotspot for Hg dynamics coupled with sulfate reduction. HgcA gene analysis revealed that Hg(II)-methylators were dominated by Deltaproteobacteria, Chloroflexi and Euryarchaeota, comprising 37.9%, 35.8%, and 6.5% of total hgcA gene sequences, respectively, which implies that coastal sediments harbor diverse Hg(II)-methylating microorganisms that previously underrepresented.
Collapse
Affiliation(s)
- Jisu Park
- Department of Marine Sciences and Convergent Technology, Hanyang University (ERICA Campus), 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 15588, South Korea
| | - Hyeyoun Cho
- Department of Marine Sciences and Convergent Technology, Hanyang University (ERICA Campus), 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 15588, South Korea
| | - Seunghee Han
- School of Environmental Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, South Korea
| | - Sung-Uk An
- Department of Marine Sciences and Convergent Technology, Hanyang University (ERICA Campus), 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 15588, South Korea; Korean Institute of Ocean Science & Technology (KIOST), 385 Haeyang-ro, Yeongdo-gu, Busan Metropolitan City 49111, South Korea
| | - Ayeon Choi
- Department of Marine Sciences and Convergent Technology, Hanyang University (ERICA Campus), 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 15588, South Korea; Korean Institute of Ocean Science & Technology (KIOST), 385 Haeyang-ro, Yeongdo-gu, Busan Metropolitan City 49111, South Korea
| | - Hyeonji Lee
- Department of Marine Sciences and Convergent Technology, Hanyang University (ERICA Campus), 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 15588, South Korea
| | - Jung-Ho Hyun
- Department of Marine Sciences and Convergent Technology, Hanyang University (ERICA Campus), 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 15588, South Korea.
| |
Collapse
|
18
|
Wang B, Hu H, Bishop K, Buck M, Björn E, Skyllberg U, Nilsson MB, Bertilsson S, Bravo AG. Microbial communities mediating net methylmercury formation along a trophic gradient in a peatland chronosequence. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130057. [PMID: 36179622 DOI: 10.1016/j.jhazmat.2022.130057] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/05/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Peatlands are generally important sources of methylmercury (MeHg) to adjacent aquatic ecosystems, increasing the risk of human and wildlife exposure to this highly toxic compound. While microorganisms play important roles in mercury (Hg) geochemical cycles where they directly and indirectly affect MeHg formation in peatlands, potential linkages between net MeHg formation and microbial communities involving these microorganisms remain unclear. To address this gap, microbial community composition and specific marker gene transcripts were investigated along a trophic gradient in a geographically constrained peatland chronosequence. Our results showed a clear spatial pattern in microbial community composition along the gradient that was highly driven by peat soil properties and significantly associated with net MeHg formation as approximated by MeHg concentration and %MeHg of total Hg concentration. Known fermentative, syntrophic, methanogenic and iron-reducing metabolic guilds had the strong positive correlations to net MeHg formation, while methanotrophic and methylotrophic microorganisms were negatively correlated. Our results indicated that sulfate reducers did not have a key role in net MeHg formation. Microbial activity as interpreted from 16S rRNA sequences was significantly correlated with MeHg and %MeHg. Our findings shed new light on the role of microbial community in net MeHg formation of peatlands that undergo ontogenetic change.
Collapse
Affiliation(s)
- Baolin Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 550081 Guiyang, China; Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden
| | - Haiyan Hu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 550081 Guiyang, China.
| | - Kevin Bishop
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden
| | - Moritz Buck
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden
| | - Erik Björn
- Department of Chemistry, Umeå University, SE-90187 Umeå, Sweden
| | - Ulf Skyllberg
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE-90183 Umeå, Sweden
| | - Mats B Nilsson
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE-90183 Umeå, Sweden
| | - Stefan Bertilsson
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden
| | - Andrea G Bravo
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM-CSIC), Pg Marítim de la Barceloneta 37-49, E08003 Barcelona, Catalunya, Spain
| |
Collapse
|
19
|
Maillard F, Pflender S, Heckman KA, Chalot M, Kennedy PG. Fungal necromass presents a high potential for Mercury immobilization in soil. CHEMOSPHERE 2023; 311:136994. [PMID: 36332737 DOI: 10.1016/j.chemosphere.2022.136994] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Past industrial activities have generated many contaminated lands from which Mercury (Hg) escapes, primarily by volatilization. Current phytomanagement techniques aim to limit Hg dispersion by increasing its stabilization in soil. Although soil fungi represent a source of Hg emission associated with biovolatilization mechanisms, there is limited knowledge about how dead fungal residues (i.e., fungal necromass) interact with soil Hg. This study determined the Hg biosorption potential of fungal necromass and the chemical drivers of passive Hg binding with dead mycelia. Fungal necromass was incubated under field conditions with contrasting chemical properties at a well-characterized Hg phytomanagement experimental site in France. After four months of incubation in soil, fungal residues passively accumulated substantial quantities of Hg in their recalcitrant fractions ranging from 400 to 4500 μg Hg/kg. In addition, infrared spectroscopy revealed that lipid compounds explained the amount of Hg biosorption to fungal necromass. Based on these findings, we propose that fungal necromass is likely an important factor in Hg immobilization in soil.
Collapse
Affiliation(s)
- François Maillard
- Department of Plant & Microbiology, University of Minnesota, St. Paul, MN, 55108, USA.
| | - Stéphane Pflender
- UMR Chrono-Environnement, CNRS 6249, Université Bourgogne Franche-Comté, 25000, Besançon, France
| | | | - Michel Chalot
- UMR Chrono-Environnement, CNRS 6249, Université Bourgogne Franche-Comté, 25000, Besançon, France; Faculté des Sciences et Technologies, Université de Lorraine, 54000, Nancy, France
| | - Peter G Kennedy
- Department of Plant & Microbiology, University of Minnesota, St. Paul, MN, 55108, USA
| |
Collapse
|
20
|
Bradford MA, Mallory ML, O'Driscoll NJ. The Complex Interactions Between Sediment Geochemistry, Methylmercury Production, and Bioaccumulation in Intertidal Estuarine Ecosystems: A Focused Review. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 110:26. [PMID: 36571620 DOI: 10.1007/s00128-022-03653-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/20/2022] [Indexed: 06/17/2023]
Abstract
Due to their natural geochemistry, intertidal estuarine ecosystems are vulnerable to bioaccumulation of methylmercury (MeHg), a neurotoxin that readily bioaccumulates in organisms. Determining MeHg concentrations in intertidal invertebrates at the base of the food web is crucial in determining MeHg exposure in higher trophic level organisms like fish and birds. The processes that govern the production of MeHg in coastal ecosystems are influenced by many geochemical factors including sulfur species, organic matter, and salinity. The interactions of these factors with mercury are complex, and a wide variety of results have been reported in the literature. This paper reviews conceptual models to better clarify the various geochemical and physical factors that impact MeHg production and bioavailability in intertidal ecosystems.
Collapse
Affiliation(s)
| | - Mark L Mallory
- Biology Department, Acadia University, Wolfville, NS, Canada
| | - Nelson J O'Driscoll
- Earth and Environmental Science Department, Acadia University, Wolfville, NS, Canada
| |
Collapse
|
21
|
Xia J, Wang J, Zhang L, Wang X, Yuan W, Peng T, Zheng L, Tian W, Feng X. Migration and transformation of soil mercury in a karst region of southwest China: Implications for groundwater contamination. WATER RESEARCH 2022; 226:119271. [PMID: 36283232 DOI: 10.1016/j.watres.2022.119271] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Guizhou Province is located in the heart of a karst zone in southwest China, which is one of the largest karst areas in the world. Given the fragile surface ecosystem and highly developed underground karst structure, the migration and transformation of soil Hg may impact groundwater quality in karst environments with high Hg background concentrations. This study examines the vertical migration and transformation of soil mercury (Hg) in two karst catchments, Huilong and Chenqi, with the former containing high Hg contents associated with mineralization and the latter representing regional background Hg. The results show that the soil Hg pool in the Huilong catchment was as high as 44.4 ± 4.2 g m-2, whereas in the Chenqi catchment was only 0.17±0.02 g m-2. Compared with farmland soil, forest soil showed a significant loss of Hg. The results of L3 X-ray absorption near edge structure of Hg indicated that α-HgS, the primary mineral of Hg ore, gradually changed to other mineral types during soil formation. In Huilong catchment, the proportion of organic bound Hg(SR)2 out of total Hg decreased from 44.0% to 20.3% when soil depth increased from 10 cm to 160 cm in farmland soil profile and from 39.3% to 34.5% in forest soil profile, while the proportion of ionic Hg increased with soil depth, from 4.2% to 10.7% in the farmland soil profile and from 6.7% to 11.6% in the forestland soil profile. Results from the triple-mixing isotope model show that soil Hg accounts for more than 80% Hg in groundwater in the two catchments. Results from this study indicate potential risks of soil Hg entering into groundwater in this karst area.
Collapse
Affiliation(s)
- Jicheng Xia
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianxu Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Leiming Zhang
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, ON M3H 5T4, Canada
| | - Xun Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Wei Yuan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Tao Peng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; Puding Karst Ecosystem Research Station, Chinese Academy of Sciences, Puding 562100, China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Weijun Tian
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| |
Collapse
|
22
|
Frey B, Rast BM, Qi W, Stierli B, Brunner I. Long-term mercury contamination does not affect the microbial gene potential for C and N cycling in soils but enhances detoxification gene abundance. Front Microbiol 2022; 13:1034138. [PMID: 36274742 PMCID: PMC9581213 DOI: 10.3389/fmicb.2022.1034138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Soil microorganisms are key transformers of mercury (Hg), a toxic and widespread pollutant. It remains uncertain, however, how long-term exposure to Hg affects crucial microbial functions, such as litter decomposition and nitrogen cycling. Here, we used a metagenomic approach to investigate the state of soil functions in an agricultural floodplain contaminated with Hg for more than 80 years. We sampled soils along a gradient of Hg contamination (high, moderate, low). Hg concentrations at the highly contaminated site (36 mg kg–1 dry soil on average) were approximately 10 times higher than at the moderately contaminated site (3 mg kg–1 dry soil) and more than 100 times higher than at the site with low contamination (0.25 mg kg–1 dry soil; corresponding to the natural background concentration in Switzerland). The analysis of the CAZy and NCyc databases showed that carbon and nitrogen cycling was not strongly affected with high Hg concentrations, although a significant change in the beta-diversity of the predicted genes was observed. The only functional classes from the CAZy database that were significantly positively overrepresented under higher Hg concentrations were genes involved in pectin degradation, and from the NCyc database dissimilatory nitrate reduction and N-fixation. When comparing between low and high Hg concentrations the genes of the EggNOG functional category of inorganic ion transport and metabolism, two genes encoding Hg transport proteins and one gene involved in heavy metal transport detoxification were among those that were highly significantly overrepresented. A look at genes specifically involved in detoxification of Hg species, such as the mer and hgc genes, showed a significant overrepresentation when Hg contamination was increased. Normalized counts of these genes revealed a dominant role for the phylum Proteobacteria. In particular, most counts for almost all mer genes were found in Betaproteobacteria. In contrast, hgc genes were most abundant in Desulfuromonadales. Overall, we conclude from this metagenomic analysis that long-term exposure to high Hg triggers shifts in the functional beta-diversity of the predicted microbial genes, but we do not see a dramatic change or breakdown in functional capabilities, but rather functional redundancy.
Collapse
Affiliation(s)
- Beat Frey
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- *Correspondence: Beat Frey,
| | - Basil M. Rast
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Weihong Qi
- FGCZ Functional Genomics Center Zurich, ETH Zürich and University of Zürich, Zürich, Switzerland
- SIB Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Beat Stierli
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Ivano Brunner
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| |
Collapse
|
23
|
Yin X, Wang L, Liang X, Zhang L, Zhao J, Gu B. Contrary effects of phytoplankton Chlorella vulgaris and its exudates on mercury methylation by iron- and sulfate-reducing bacteria. JOURNAL OF HAZARDOUS MATERIALS 2022; 433:128835. [PMID: 35398798 DOI: 10.1016/j.jhazmat.2022.128835] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Mercury (Hg) is a pervasive environmental pollutant and poses serious health concerns as inorganic Hg(II) can be converted to the neurotoxin methylmercury (MeHg), which bioaccumulates and biomagnifies in food webs. Phytoplankton, representing the base of aquatic food webs, can take up Hg(II) and influence MeHg production, but currently little is known about how and to what extent phytoplankton may impact Hg(II) methylation by itself or by methylating bacteria it harbors. This study investigated whether some species of phytoplankton could produce MeHg and how the live or dead phytoplankton cells and excreted algal organic matter (AOM) impact Hg(II) methylation by several known methylators, including iron-reducing bacteria (FeRB), Geobacter anodireducens SD-1 and Geobacter sulfurreducens PCA, and the sulfate-reducing bacterium (SRB) Desulfovibrio desulfuricans ND132 (or Pseudodesulfovibrio mercurii). Our results indicate that, among the 4 phytoplankton species studied, none were capable of methylating Hg(II). However, the presence of phytoplankton cells (either live or dead) from Chlorella vulgaris (CV) generally inhibited Hg(II) methylation by FeRB but substantially enhanced methylation by SRB D. desulfuricans ND132. Enhanced methylation was attributed in part to CV-excreted AOM, which increased Hg(II) complexation and methylation by ND132 cells. In contrast, inhibition of methylation by FeRB was attributed to these bacteria incapable of competing with phytoplankton for Hg(II) binding and uptake. These observations suggest that phytoplankton could play different roles in affecting Hg(II) methylation by the two groups of anaerobic bacteria, FeRB and SRB, and thus shed additional light on how phytoplankton blooms may modulate MeHg production and bioaccumulation in the aquatic environment.
Collapse
Affiliation(s)
- Xixiang Yin
- Shandong Jinan Eco-environmental Monitoring Center, Jinan 250014, China; Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Ten 37831, United States
| | - Lihong Wang
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Ten 37831, United States; Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan 250014, China
| | - Xujun Liang
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Ten 37831, United States
| | - Lijie Zhang
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Ten 37831, United States
| | - Jiating Zhao
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Ten 37831, United States
| | - Baohua Gu
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Ten 37831, United States; Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, Ten 37996, United States.
| |
Collapse
|
24
|
Nádudvari Á, Cabała J, Marynowski L, Jabłońska M, Dziurowicz M, Malczewski D, Kozielska B, Siupka P, Piotrowska-Seget Z, Simoneit BRT, Szczyrba M. High concentrations of HgS, MeHg and toxic gas emissions in thermally affected waste dumps from hard coal mining in Poland. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128542. [PMID: 35248960 DOI: 10.1016/j.jhazmat.2022.128542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/13/2022] [Accepted: 02/20/2022] [Indexed: 06/14/2023]
Abstract
This study aims to provide numerous environmental research approaches to understand the formation of mineral and organic mercury compounds in self-heating coal waste dumps of the Upper Silesian Coal Basin (USCB). The results are combined with environmental and health risk assessments. The mineralogy comprised accessory minerals in the fine fraction of thermally affected waste, i.e., Hg sulfides, most likely cinnabar or metacinnabar. Moreover, other metals, e.g., Pb, Zn and Cu, were found as sulfide forms. Apart from Hg, the ICP-ES/MS data confirmed the high content of Mn, Zn, Pb, Hg, Cr and Ba in these wastes. The high concentration of available Hg resulted in elevated MeHg concentrations in the dumps. There were no correlations or trends between MeHg concentrations and elemental Hg, TS, TOC, and pH. Furthermore, we did not detect microbial genes responsible for Hg methylation. The organic compounds identified in waste and emitted gases, such as organic acids, or free methyl radicals, common in such burn environments, could be responsible for the formation of MeHg. The concentration levels of gases, e.g., benzene, formaldehyde, NH3, emitted by the vents, reached or surpassed acceptable levels numerous times. The potential ecological and human health risks of these dumps were moderate to very high due to the significant influence of the high Hg concentrations.
Collapse
Affiliation(s)
- Ádám Nádudvari
- University of Silesia in Katowice, Faculty of Natural Sciences, 60 Będzińska Street, 41-200 Sosnowiec, Poland.
| | - Jerzy Cabała
- University of Silesia in Katowice, Faculty of Natural Sciences, 60 Będzińska Street, 41-200 Sosnowiec, Poland
| | - Leszek Marynowski
- University of Silesia in Katowice, Faculty of Natural Sciences, 60 Będzińska Street, 41-200 Sosnowiec, Poland
| | - Mariola Jabłońska
- University of Silesia in Katowice, Faculty of Natural Sciences, 60 Będzińska Street, 41-200 Sosnowiec, Poland
| | - Maria Dziurowicz
- University of Silesia in Katowice, Faculty of Natural Sciences, 60 Będzińska Street, 41-200 Sosnowiec, Poland
| | - Dariusz Malczewski
- University of Silesia in Katowice, Faculty of Natural Sciences, 60 Będzińska Street, 41-200 Sosnowiec, Poland
| | - Barbara Kozielska
- Silesian University of Technology, Faculty of Power and Environmental Engineering, Department of Air Protection, 22B Konarskiego St., 44-100 Gliwice, Poland
| | - Piotr Siupka
- University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Jagiellonska 28, 40-032 Katowice, Poland
| | - Zofia Piotrowska-Seget
- University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Jagiellonska 28, 40-032 Katowice, Poland
| | - Bernd R T Simoneit
- Oregon State University, Department of Chemistry, College of Science, Corvallis, OR 97331, USA
| | - Mirosław Szczyrba
- University of Silesia in Katowice, Faculty of Natural Sciences, 60 Będzińska Street, 41-200 Sosnowiec, Poland
| |
Collapse
|
25
|
Yu RQ, Barkay T. Microbial mercury transformations: Molecules, functions and organisms. ADVANCES IN APPLIED MICROBIOLOGY 2022; 118:31-90. [PMID: 35461663 DOI: 10.1016/bs.aambs.2022.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Mercury (Hg) methylation, methylmercury (MeHg) demethylation, and inorganic redox transformations of Hg are microbe-mediating processes that determine the fate and cycling of Hg and MeHg in many environments, and by doing so influence the health of humans and wild life. The discovery of the Hg methylation genes, hgcAB, in the last decade together with advances in high throughput and genome sequencing methods, have resulted in an expanded appreciation of the diversity of Hg methylating microbes. This review aims to describe experimentally confirmed and recently discovered hgcAB gene-carrying Hg methylating microbes; phylogenetic and taxonomic analyses are presented. In addition, the current knowledge on transformation mechanisms, the organisms that carry them out, and the impact of environmental parameters on Hg methylation, MeHg demethylation, and inorganic Hg reduction and oxidation is summarized. This knowledge provides a foundation for future action toward mitigating the impact of environmental Hg pollution.
Collapse
Affiliation(s)
- Ri-Qing Yu
- Department of Biology, University of Texas at Tyler, Tyler, TX, United States.
| | - Tamar Barkay
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| |
Collapse
|
26
|
Dissolved Gaseous Mercury (DGM) in the Gulf of Trieste, Northern Adriatic Sea. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10050587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Continuous dissolved gaseous mercury (DGM) measurements were performed during the summer months (May to September 2019) in the Gulf of Trieste (northern Adriatic Sea), a well-studied contaminated site due to releases of mercury from the former mercury mine Idrija in Slovenia. Continuous DGM data were regularly checked by the discrete manual method to assure traceability and comparability of the results and used for the calculation of the upward flux of Hg(0) between the water and the air compartment, using the gas exchange model applied in previous studies in the Mediterranean Sea. DGM concentrations measured by continuous and discrete methods showed good agreement, 68.7 and 73.5 ng·m−3, respectively. The diurnal DGM variability examined by sorting the DGM concentrations in 24 1-h intervals was extremely low (68.3–69.2 ng·m−3). Various environmental parameters measured at oceanographic buoy Vida, and the nearby stations were used to determine the relationship between DGM and the individual environmental parameters. The correlation with the oxygen saturation was pronounced during the July high DGM event (R2 = 0.70, p < 0.05), and the gradient between the bottom and surface temperature was correlated with both DGM peaks in June and July (R2 = 0.42 and R2 = 0.43, p < 0.05). Transport from the more polluted northern part of the Gulf was determined as the most probable source of both high DGM events. The computed average annual Hg(0) flux across the water–air interface (5.13 ng·m−2·h−1) was lower than those reported in recent studies. We assume that for an appropriate assessment of the Hg evasion flux and of the temporal DGM variability in such heterogeneously polluted coastal areas, both spatial and temporal coverage are required.
Collapse
|
27
|
Cardona GI, Escobar MC, Acosta-González A, Marín P, Marqués S. Highly mercury-resistant strains from different Colombian Amazon ecosystems affected by artisanal gold mining activities. Appl Microbiol Biotechnol 2022; 106:2775-2793. [PMID: 35344092 PMCID: PMC8990959 DOI: 10.1007/s00253-022-11860-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 01/28/2022] [Accepted: 02/27/2022] [Indexed: 02/07/2023]
Abstract
Two sites of the Colombian Amazon region with different levels of human intervention and mercury pollution were selected for the collection of samples of river and lake water, sediments, and associated forest soils. The Tarapacá region, affected mainly by barrage mining, showed low mercury concentrations, whilst in the Taraira region, affected by underground mining, there were several points with high mercury pollution levels. A collection of 72 bacterial and 10 yeast strains with different levels of mercury resistance was isolated and characterized. Most of the highly resistant bacterial strains (MIC > 40 mg L−1 HgCl2) were isolated from soil and sediment samples and belonged to either Pseudomonas (60%) or Bacillus (20%). Most of highly resistant bacterial strains were positive for the presence of the merA gene, suggesting an active mercury resistance mechanism. This was confirmed in the two most resistant strains, Pseudomonas sp. TP30 and Burkholderia contaminans TR100 (MIC = 64 and 71 mg L−1 HgCl2, respectively), which in the presence of increasing mercury concentrations expressed the merA gene at increasing levels, concomitant with a significant mercury reduction activity. Analysis of the MerA sequences present in the different isolates suggested a high gene conservation within the taxonomic groups but also several horizontal gene transfer events between taxonomically distant genera. We also observed a positive correspondence between the presence of the merA gene and the number of antibiotics to which the strains were resistant to. The most resistant strains are good candidates for future applications in the bioremediation of mercury-contaminated sites in the Amazon. Key points • Amazon sediments affected by underground gold mining have higher Hg levels. • Highly Hg-resistant isolates belonged to Pseudomonas and Bacillus genera. • TR100 and TP30 strains showed remediation potential to be used in the Amazon region.
Collapse
Affiliation(s)
- Gladys Inés Cardona
- Instituto Amazónico de Investigaciones Científicas SINCHI, 110321, Bogotá, Colombia.
| | - María Camila Escobar
- Instituto Amazónico de Investigaciones Científicas SINCHI, 110321, Bogotá, Colombia
| | | | - Patricia Marín
- Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, Department of Environmental Protection, Granada, Spain
| | - Silvia Marqués
- Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, Department of Environmental Protection, Granada, Spain
| |
Collapse
|
28
|
Barkay T, Gu B. Demethylation─The Other Side of the Mercury Methylation Coin: A Critical Review. ACS ENVIRONMENTAL AU 2022; 2:77-97. [PMID: 37101582 PMCID: PMC10114901 DOI: 10.1021/acsenvironau.1c00022] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The public and environmental health consequences of mercury (Hg) methylation have drawn much attention and considerable research to Hg methylation processes and their dynamics in diverse environments and under a multitude of conditions. However, the net methylmercury (MeHg) concentration that accumulates in the environment is equally determined by the rate of MeHg degradation, a complex process mediated by a variety of biotic and abiotic mechanisms, about which our knowledge is limited. Here we review the current knowledge on MeHg degradation and its potential pathways and mechanisms. We describe detoxification by resistant microorganisms that employ the Hg resistance (mer) system to reductively break the carbon-mercury (C-Hg) bond producing methane (CH4) and inorganic mercuric Hg(II), which is then reduced by the mercuric reductase to elemental Hg(0). Very recent research has begun to elucidate a mechanism for the long-recognized mer-independent oxidative demethylation, likely involving some strains of anaerobic bacteria as well as aerobic methane-oxidizing bacteria, i.e., methanotrophs. In addition, photochemical and chemical demethylation processes are described, including the roles of dissolved organic matter (DOM) and free radicals as well as dark abiotic demethylation in the natural environment about which little is currently known. We focus on mechanisms and processes of demethylation and highlight the uncertainties and known effects of environmental factors leading to MeHg degradation. Finally, we suggest future research directions to further elucidate the chemical and biochemical mechanisms of biotic and abiotic demethylation and their significance in controlling net MeHg production in natural ecosystems.
Collapse
Affiliation(s)
- Tamar Barkay
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - Baohua Gu
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
29
|
Zhang Y, Zhang L, Liang X, Wang Q, Yin X, Pierce EM, Gu B. Competitive exchange between divalent metal ions [Cu(II), Zn(II), Ca(II)] and Hg(II) bound to thiols and natural organic matter. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127388. [PMID: 34879578 DOI: 10.1016/j.jhazmat.2021.127388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/21/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
Mercuric Hg(II) ion forms exceptionally strong complexes with various organic ligands, particularly thiols and dissolved organic matter (DOM) in natural water. Few studies, however, have experimentally determined whether or not the presence of base cations and transition metal ions, such as Ca(II), Cu(II), and Zn(II), would compete with Hg(II) bound to these ligands, as concentrations of these metal ions are usually orders of magnitude higher than Hg(II) in aquatic systems. Different from previous model predictions, a significant fraction of Hg(II) bound to cysteine (CYS), glutathione (GSH), or DOM was found to be competitively exchanged by Cu(II), but not by Zn(II) or Ca(II). About 20-75% of CYS-bound-Hg(II) [at 2:1 CYS:Hg(II)] and 14-40% of GSH-bound-Hg(II) [at 1:1 GSH:Hg(II)] were exchanged by Cu(II) at concentrations 1-3 orders of magnitude greater than Hg(II). Competitive exchange was also observed between Cu(II) and Hg(II) bound to DOM, albeit to a lower extent, depending on relative abundances of thiol and carboxylate functional groups on DOM and their equilibrium time with Hg(II). When complexed with ethylenediaminetetraacetate (EDTA), most Hg(II) could be exchanged by Cu(II) and Zn(II), as well as Ca(II) at increasing concentrations. These results shed additional light on competitive exchange reactions between Hg(II) and coexisting metal ions and have important implications in Hg(II) chemical speciation and biogeochemical transformation, particularly in contaminated environments containing relatively high concentrations of Hg(II) and metal ions.
Collapse
Affiliation(s)
- Yaoling Zhang
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources and Qinghai Provincial Key Laboratory of Resources and Chemistry of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008, China; Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Lijie Zhang
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Xujun Liang
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Quanying Wang
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Xiangping Yin
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Eric M Pierce
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Baohua Gu
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States; Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, TN 37996, United States.
| |
Collapse
|
30
|
Amin A, Naveed M, Munawar U, Sarwar A, Latif Z. Characterization of Mercury-Resistant Rhizobacteria for Plant Growth Promotion: An In Vitro and In Silico Approach. Curr Microbiol 2021; 78:3968-3979. [PMID: 34550433 DOI: 10.1007/s00284-021-02660-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 09/08/2021] [Indexed: 10/20/2022]
Abstract
In this study, a total 30 rhizobacterial isolates were screened out based on resistance against different concentrations of mercuric chloride (HgCl2), growth on nitrogen-free mannitol (NFM) and production of indole-3-acetic acid (IAA). The biochemical and plant growth promoting characterization of selected isolates was performed by different biochemical tests. Out of 30, six isolates, UM-3, AZ-5, UM-7, UM-11, UM-26, and UM-28 showed resistance at 30 µg/ml HgCl2, pronounced growth on NFM and high production of IAA as 18.6, 16.7, 16, 18.7, 14, and 16 µg/ml, respectively (P < 0.05). The 16S rDNA ribotyping and phylogenetic analysis of selected bacterial isolates were performed and characterized as Exiguobacterium sp. UM-3 (KJ736011), Bacillus thuringiensis AZ-5 (KJ675627), Bacillus subtilis UM-7 (KJ736013), Enterobacter cloacae UM-11 (KJ736014), Pseudomonas aeruginosa UM-26 (KJ736016), P. aeruginosa UM-28 (KJ736017) and Bacillus pumilus UM-16 (KJ736015) used as negative control. B. thuringiensis AZ-5 showed high resistance against 30 µg/ml of HgCl2 due to the presence of merB gene. The structural determination of MerB protein was carried out using bioinformatics tools, i.e., Protparam, Pfam, InterProScan, STRING, Jpred4, PSIPRED, I-TASSER, COACH server and ERRAT. These tools predicted the structural based functional homology of MerB protein (organomercuric lyase) in association with MerA (mercuric reductase) in bacterial Hg-detoxification system.
Collapse
Affiliation(s)
- Aatif Amin
- Department of Microbiology, Faculty of Life Sciences, University of Central Punjab, Lahore, 54000, Pakistan.
| | - Muhammad Naveed
- Department of Biotechnology, Faculty of Life Sciences, University of Central Punjab, Lahore, 54000, Pakistan
| | - Umair Munawar
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, 54590, Pakistan
| | - Arslan Sarwar
- Department of Microbiology, Faculty of Life Sciences, University of Central Punjab, Lahore, 54000, Pakistan
| | - Zakia Latif
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, 54590, Pakistan
| |
Collapse
|
31
|
Xu A, Zhang X, Wu S, Xu N, Huang Y, Yan X, Zhou J, Cui Z, Dong W. Pollutant Degrading Enzyme: Catalytic Mechanisms and Their Expanded Applications. Molecules 2021; 26:4751. [PMID: 34443339 PMCID: PMC8401168 DOI: 10.3390/molecules26164751] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/03/2021] [Accepted: 07/30/2021] [Indexed: 11/16/2022] Open
Abstract
The treatment of environmental pollution by microorganisms and their enzymes is an innovative and socially acceptable alternative to traditional remediation approaches. Microbial biodegradation is often characterized with high efficiency as this process is catalyzed via degrading enzymes. Various naturally isolated microorganisms were demonstrated to have considerable ability to mitigate many environmental pollutants without external intervention. However, only a small fraction of these strains are studied in detail to reveal the mechanisms at the enzyme level, which strictly limited the enhancement of the degradation efficiency. Accordingly, this review will comprehensively summarize the function of various degrading enzymes with an emphasis on catalytic mechanisms. We also inspect the expanded applications of these pollutant-degrading enzymes in industrial processes. An in-depth understanding of the catalytic mechanism of enzymes will be beneficial for exploring and exploiting more degrading enzyme resources and thus ameliorate concerns associated with the ineffective biodegradation of recalcitrant and xenobiotic contaminants with the help of gene-editing technology and synthetic biology.
Collapse
Affiliation(s)
- Anming Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China; (A.X.); (X.Z.); (S.W.); (N.X.); (J.Z.)
| | - Xiaoxiao Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China; (A.X.); (X.Z.); (S.W.); (N.X.); (J.Z.)
| | - Shilei Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China; (A.X.); (X.Z.); (S.W.); (N.X.); (J.Z.)
| | - Ning Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China; (A.X.); (X.Z.); (S.W.); (N.X.); (J.Z.)
| | - Yan Huang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (Y.H.); (X.Y.)
| | - Xin Yan
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (Y.H.); (X.Y.)
| | - Jie Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China; (A.X.); (X.Z.); (S.W.); (N.X.); (J.Z.)
| | - Zhongli Cui
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (Y.H.); (X.Y.)
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China; (A.X.); (X.Z.); (S.W.); (N.X.); (J.Z.)
| |
Collapse
|
32
|
Yu C, Xiao W, Xu Y, Sun X, Li M, Lin H, Tong Y, Xie H, Wang X. Spatial-temporal characteristics of mercury and methylmercury in marine sediment under the combined influences of river input and coastal currents. CHEMOSPHERE 2021; 274:129728. [PMID: 33540304 DOI: 10.1016/j.chemosphere.2021.129728] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/01/2021] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
Mercury, especially in the form of methylmercury (MeHg), is a global pollutant, and aquatic products are considered the main sources of Hg exposure to humans. The Bohai and Yellow seas are two important epicontinental seas for marine fisheries and aquaculture in China. A decreasing trend of the THg in the Yellow River Estuary toward the outer edge was reported according to 83 surface sediments (27.3 ± 15.0 ng g-1) and 3 sediment cores from the Bohai Sea and Yellow Sea. The relatively higher THg levels in the central Yellow Sea can be primarily attributed to higher organic carbon levels and finer-grained sediment sizes and partly to the particulates from the riverine input of the Yellow River driven by the currents. An increasing trend in THg levels since industrialization in north China around the Bohai and Yellow seas, and a decreasing trend of Yellow River THg input in recent years were recorded by sediment cores. The spatial distribution pattern of surface sediments MeHg (161 ± 130 pg g-1) was different from that of THg. A higher MeHg content and MeHg/THg ratio were found in the Bohai and Yellow seas compared to the East China Sea, and extremely high MeHg levels (714 pg g-1) were found in the Yellow Sea Cold Water Mass (YSCWM) area, which is considered an important region for fishery and marine breeding, suggesting that more attention should be paid to the potential ecological and human health risks in the region due to mercury exposure.
Collapse
Affiliation(s)
- Chenghao Yu
- Ministry of Education Laboratory of Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Wenjie Xiao
- College of Marine Sciences, Shanghai Ocean University, Shanghai, 201306, China; Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Shenzhen, 518055, China
| | - Yunping Xu
- College of Marine Sciences, Shanghai Ocean University, Shanghai, 201306, China
| | - Xuejun Sun
- Key Laboratory of Tibetan Environmental Changes and Land Surface Process, Institute of Tibetan Plateau Research, Chinese Academy of Sciences (CAS), Beijing, 100101, China
| | - Mingyue Li
- Key Laboratory of Tibetan Environmental Changes and Land Surface Process, Institute of Tibetan Plateau Research, Chinese Academy of Sciences (CAS), Beijing, 100101, China
| | - Huiming Lin
- Ministry of Education Laboratory of Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Yindong Tong
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Han Xie
- Ministry of Education Laboratory of Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Xuejun Wang
- Ministry of Education Laboratory of Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
33
|
Eckley CS, Luxton TP, Knightes CD, Shah V. Methylmercury Production and Degradation under Light and Dark Conditions in the Water Column of the Hells Canyon Reservoirs, USA. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:1829-1839. [PMID: 33729607 PMCID: PMC8745031 DOI: 10.1002/etc.5041] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/28/2021] [Accepted: 03/09/2021] [Indexed: 05/28/2023]
Abstract
Methylmercury (MeHg) is a highly toxic form of mercury that can bioaccumulate in fish tissue. Methylmercury is produced by anaerobic bacteria, many of which are also capable of MeHg degradation. In addition, demethylation in surface waters can occur via abiotic sunlight-mediated processes. The goal of the present study was to understand the relative importance of microbial Hg methylation/demethylation and abiotic photodemethylation that govern the mass of MeHg within an aquatic system. The study location was the Hells Canyon complex of 3 reservoirs on the Idaho-Oregon border, USA, that has fish consumption advisories as a result of elevated MeHg concentrations. Our study utilized stable isotope addition experiments to trace MeHg formation and degradation within the water column of the reservoirs to understand the relative importance of these processes on the mass of MeHg using the Water Quality Analysis Simulation Program. The results showed that rates of MeHg production and degradation within the water column were relatively low (<0.07 d-1 ) but sufficient to account for most of the MeHg observed with the system. Most MeHg production within the water column appeared to occur in the spring when much of the water column was in the processes of becoming anoxic. In the surface waters, rates of photodemethylation were relatively large (up to -0.25 d-1 ) but quickly decreased at depths >0.5 m below the surface. These results can be used to identify the relative importance of MeHg processes that can help guide reservoir management decisions. Environ Toxicol Chem 2021;40:1829-1839. © 2021 SETAC. This article has been contributed to by US Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Chris S. Eckley
- US Environmental Protection Agency, Region-10, Seattle, Washington
| | - Todd P. Luxton
- Office of Research and Development, US Environmental Protection Agency, Cincinnati, Ohio
| | - Christopher D. Knightes
- Office of Research and Development, US Environmental Protection Agency, Narragansett, Rhode Island
| | - Vishal Shah
- College of the Sciences and Mathematics, West Chester University, West Chester, Pennsylvania, USA
| |
Collapse
|
34
|
Martin G, Sharma S, Ryan W, Srinivasan NK, Senko JM. Identification of Microbiological Activities in Wet Flue Gas Desulfurization Systems. Front Microbiol 2021; 12:675628. [PMID: 34262541 PMCID: PMC8273512 DOI: 10.3389/fmicb.2021.675628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/07/2021] [Indexed: 11/18/2022] Open
Abstract
Thermoelectric power generation from coal requires large amounts of water, much of which is used for wet flue gas desulfurization (wFGD) systems that minimize sulfur emissions, and consequently, acid rain. The microbial communities in wFGDs and throughout thermoelectric power plants can influence system performance, waste processing, and the long term stewardship of residual wastes. Any microorganisms that survive in wFGD slurries must tolerate high total dissolved solids concentrations (TDS) and temperatures (50–60°C), but the inocula for wFGDs are typically from fresh surface waters (e.g., lakes or rivers) of low TDS and temperatures, and whose activity might be limited under the physicochemically extreme conditions of the wFGD. To determine the extents of microbiological activities in wFGDs, we examined the microbial activities and communities associated with three wFGDs. O2 consumption rates of three wFGD slurries were optimal at 55°C, and living cells could be detected microscopically, indicating that living and active communities of organisms were present in the wFGD and could metabolize at the high temperature of the wFGD. A 16S rRNA gene-based survey revealed that the wFGD-associated microbial communities included taxa attributable to both thermophilic and mesophilic lineages. Metatranscriptomic analysis of one of the wFGDs indicated an abundance of active Burholderiaceae and several Gammaproteobacteria, and production of transcripts associated with carbohydrate metabolism, osmotic stress response, as well as phage, prophages, and transposable elements. These results illustrate that microbial activities can be sustained in physicochemically extreme wFGDs, and these activities may influence the performance and environmental impacts of thermoelectric power plants.
Collapse
Affiliation(s)
- Gregory Martin
- Department of Biology, The University of Akron, Akron, OH, United States
| | - Shagun Sharma
- Department of Biology, The University of Akron, Akron, OH, United States.,Integrated Bioscience Program, The University of Akron, Akron, OH, United States
| | - William Ryan
- Department of Biology, The University of Akron, Akron, OH, United States
| | | | - John M Senko
- Department of Biology, The University of Akron, Akron, OH, United States.,Integrated Bioscience Program, The University of Akron, Akron, OH, United States.,Department of Geosciences, The University of Akron, Akron, OH, United States
| |
Collapse
|
35
|
Yu C, Xu Y, Yan Y, Xiao W, Liu M, Cheng M, He W, Xu F, Wang X. Mercury and methylmercury in China's lake sediments and first estimation of mercury burial fluxes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 770:145338. [PMID: 33517014 DOI: 10.1016/j.scitotenv.2021.145338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/17/2021] [Accepted: 01/17/2021] [Indexed: 06/12/2023]
Abstract
Lake sediments are key materials for mercury deposition and methylation. To understand the mercury concentrations in China's lakes, 100 lake surface sediment samples were collected from 35 lakes in 2014. Total mercury (THg), methylmercury (MeHg) concentrations and the annual Hg burial rates in lake sediments were measured. THg and MeHg concentrations in the sediment ranged from 13.6 to 1488 ng‧g-1 and 0.05 to 1.70 ng‧g-1, respectively, and urban lakes reported most high values, indicating direct anthropogenic inputs. The Inner Mongolia-Xinjiang Region (MX) and Qinghai-Tibet Plateau Region (QT) reported relatively lower mercury burial rates, while the Eastern Plain Region (EP), Northeast Mountain and Plain Region (NE), and Yunnan-Guizhou Plateau Region (YG) reported higher mercury burial rates. Regional variances of THg burial fluxes were dominated by atmospheric deposition, terrestrial input, and sediment accumulation rates in different lakes. In 2014, the estimated average THg burial rate in China's lakes was 139 μg‧m-2‧yr-1, comparable to the average in mid-latitude North America in recent years; however, due to China's much smaller lake area relative to NA, the annual THg burial flux in China was much lower than that in North America. EP and NE, where most freshwater aquatic products in China are harvested, accounted for 58.2% and 22.9%, respectively, of the THg burial flux. High sedimentary MeHg concentrations and MeHg:THg ratios were reported in most of the NE but low MeHg concentrations and MeHg:THg ratios were reported in EP. MeHg concentrations and MeHg:THg ratios were positively correlated with water COD levels and negatively correlated with average temperature. The results of this study indicate that in addition to the adjacent seas, lake sediments are an important mercury sink in China's aquatic environment, which could cause health risks due to MeHg intake, especially in NE.
Collapse
Affiliation(s)
- Chenghao Yu
- Ministry of Education Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yunping Xu
- College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Yunyun Yan
- Ministry of Education Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Wenjie Xiao
- College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China; Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Shenzhen 518055, China
| | - Maodian Liu
- Ministry of Education Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; School of the Environment, Yale University, New Haven, CT 06511, USA
| | - Menghan Cheng
- Ministry of Education Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Wei He
- Ministry of Education Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Fuliu Xu
- Ministry of Education Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Xuejun Wang
- Ministry of Education Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
36
|
Xia J, Wang J, Zhang L, Wang X, Yuan W, Anderson CWN, Chen C, Peng T, Feng X. Significant mercury efflux from a Karst region in Southwest China - Results from mass balance studies in two catchments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 769:144892. [PMID: 33482546 DOI: 10.1016/j.scitotenv.2020.144892] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
Karst regions have long been recognised as landscapes of ecological vulnerability, however the mass balance and fate of mercury (Hg) in karst regions have not been well documented. This study focused on the largest contiguous karst area in China and investigated Hg mass balance in two catchments, one with high geological Hg (Huilong) and the other representative of regional background Hg (Chenqi). The mass balance of Hg was calculated separately for the two catchments by considering Hg in throughfall, open field precipitation, total suspended particulate matter (TSP), litterfall, fertilizer, crop harvesting, air-surface Hg0 exchange, surface runoff and underground runoff. Results show that litterfall Hg deposition is the largest loading (from atmosphere) of Hg in both catchments, accounting for 61.5% and 38.5% of the total Hg input at Huilong and Chenqi, respectively. Air-surface Hg0 exchange is the largest efflux, accounting for 71.7% and 44.6% of the total Hg output from Huilong and Chenqi, respectively. Because both catchments are subject to farm and forest land use, cultivation plays an important role in shaping Hg fate. Mercury loading through fertilizer was ranked as the second largest input (28.5%) in Chenqi catchment and Hg efflux through crop harvest was ranked as the second largest output pathway in both Huilong (27.0%) and Chenqi (52.9%). The net Hg fluxes from the catchments are estimated to be 1498 ± 1504 μg m-2 yr-1 and 4.8 ± 98.2 μg m-2 yr-1. The significantly greater magnitude of net Hg source in Huilong is attributed to higher air-surface Hg0 exchange. The output/input ratio of Hg in this study was much greater than has been reported for other forest or agricultural ecosystems and indicates that the karst region of Southwest China is a significant source of atmospheric Hg. The results of this study should be considered in the development of pollution control policies which seek to conserve fragile karst ecosystems characterised by high geological background of Hg.
Collapse
Affiliation(s)
- Jicheng Xia
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Jianxu Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; CAS Centre for Excellence in Quaternary Science and Global Change, Xi'an 710061, China
| | - Leiming Zhang
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto M3H5T4, Canada
| | - Xun Wang
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Wei Yuan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Christopher W N Anderson
- Environmental Sciences Group, School of Agriculture and Environment, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Chaoyue Chen
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Peng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; Puding Karst Ecosystem Research Station, Chinese Academy of Sciences, Puding 562100, China
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; CAS Centre for Excellence in Quaternary Science and Global Change, Xi'an 710061, China.
| |
Collapse
|
37
|
Liu J, He X, Xu Y, Zuo Z, Lei P, Zhang J, Yin Y, Wei Y. Fate of mercury and methylmercury in full-scale sludge anaerobic digestion combined with thermal hydrolysis. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124310. [PMID: 33525130 DOI: 10.1016/j.jhazmat.2020.124310] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/16/2020] [Accepted: 10/15/2020] [Indexed: 06/12/2023]
Abstract
Methylmercury (MeHg) is one of the highly toxic and bio-accumulated forms of mercury. Its presence in wastewater treatment processes has been evidenced in recent studies. Considering its enrichment in sewage sludge and the ecological risk associated with its land application, this study investigated the fate of mercury and MeHg in full-scale anaerobic digestion combined with Cambi thermal hydrolysis based on one-year sampling. Results showed that the advanced anaerobic digestion could increase the total mercury (THg) content from 4.35 ± 0.43 mg/kg in raw sludge to 6.37 ± 1.05 mg/kg in digested sludge, and the MeHg content decreased from 1.61 to 8.94 ng/g in raw sludge to 0.21-2.03 ng/g after anaerobic digestion. The demethylation of MeHg was dominant in both thermal hydrolysis and anaerobic digestion; it was mostly derived from the physico-chemical impacts such as chemical decomposition in thermal hydrolysis and precipitation in anaerobic digestion. Although the reported microbial methylators, such as Methanosarcina and Clostridia, were dominant in anaerobic digestion, the relative abundances of hgcA and merA were relatively low and did not correlate with the MeHg profiles. Thus, microbial methylation or demethylation seems negligible in terms of MeHg transformation.
Collapse
Affiliation(s)
- Jibao Liu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Xianglin He
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yufeng Xu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhuang Zuo
- Beijing Drainage Group CO., LTD, Beijing 100192, China
| | - Pei Lei
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210046, China
| | - Junya Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yongguang Yin
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yuansong Wei
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
38
|
Refaey M, Abdel-Azeem AM, Abo Nahas HH, Abdel-Azeem MA, El-Saharty AA. Role of Fungi in Bioremediation of Soil Contaminated with Heavy Metals. Fungal Biol 2021. [DOI: 10.1007/978-3-030-67561-5_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
39
|
Richter W, Skinner LC. Mercury in the fish of New York's Great Lakes: A quarter century of near stability. ECOTOXICOLOGY (LONDON, ENGLAND) 2020; 29:1721-1738. [PMID: 31784923 DOI: 10.1007/s10646-019-02130-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/24/2019] [Indexed: 06/10/2023]
Abstract
We collected 849 fish of 16 species from New York portions of Lake Erie, Lake Ontario and the intervening Niagara River and its tributary Cayuga Creek, and analyzed fillets from individual fish for total mercury. Concentrations ranged from 0.029 to 1.090 ppm wet weight, with 92% below the EPA tissue residue criterion of 0.3 ppm, and thus not posing an undue risk from human consumption. We compared these 2010-2017 results to historical data spanning 40 years to assess temporal changes. The temporal pattern was generally consistent among water bodies and species: Mercury concentrations differed little between the most recent collections and fish taken from 1999-2008 and 1988-1996, while concentrations in all three of these periods were generally lower than in 1970. Smallmouth Bass from Lake Ontario were an exception with a continued decline, likely due to diet change following the introduction of exotic prey. Overall, though, fish tissue mercury concentrations from these large water bodies, which integrate regional influences, appear to have changed little in the last quarter century. We also report a consistent spatial pattern for multiple species having lower mercury concentrations in Lake Erie than in Lake Ontario over the period of record.
Collapse
Affiliation(s)
- Wayne Richter
- Division of Fish and Wildlife, New York State Department of Environmental Conservation, 625 Broadway, Albany, NY, 12233, USA.
- Department of Biology, Skidmore College, Saratoga Springs, NY, 12866, USA.
| | - Lawrence C Skinner
- Division of Fish and Wildlife, New York State Department of Environmental Conservation, 625 Broadway, Albany, NY, 12233, USA
| |
Collapse
|
40
|
Sources and Toxicity of Mercury in the San Francisco Bay Area, Spanning California and Beyond. JOURNAL OF ENVIRONMENTAL AND PUBLIC HEALTH 2020; 2020:8184614. [PMID: 33014081 PMCID: PMC7519205 DOI: 10.1155/2020/8184614] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 07/13/2020] [Accepted: 08/19/2020] [Indexed: 12/23/2022]
Abstract
This report synthesizes and evaluates published scientific literature on the environmental occurrence and biomagnification of mercury with emphasis on the San Francisco Bay Area (SFBA), California. Mercury forms various compounds, well known for their toxicity in humans and environmental ecosystems. Elemental mercury is transported and distributed by air, water, and sediments. Through the metabolic processes of algae and bacteria, mercury is converted into organic compounds, such as methylmercury (MeHg), which then bioaccumulates up through trophic levels. In fish, it is found primarily in skeletal muscle, while in humans, the primary target organs are the brain and kidneys. Health concerns exist regarding bioaccumulation of mercury in humans. This paper reviews the known anthropogenic sources of mercury contamination, including atmospheric deposition through aerial transport from coal burning power plants, cement production, and residual contaminants of mercury from gold mining, as well as mercury-containing waste from silver amalgams emitted from dental offices into waterways. Although tools exist for measuring mercury levels in hair, breast milk, urine, blood, and feces in humans, current diagnostic tools are inadequate in measuring total mercury load, including deposited mercury in tissues. Additionally, insufficient attention is being paid to potential synergistic impacts of mercury interaction with multipliers such as lead, cadmium, and aluminum. We provide specific data on methylmercury concentrations at different trophic levels, followed by recommendations for reducing the level of mercury in the SFBA in order to protect the health of humans and other species.
Collapse
|
41
|
Xu X, Hao R, Xu H, Lu A. Removal mechanism of Pb(II) by Penicillium polonicum: immobilization, adsorption, and bioaccumulation. Sci Rep 2020; 10:9079. [PMID: 32493948 PMCID: PMC7270113 DOI: 10.1038/s41598-020-66025-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 05/13/2020] [Indexed: 11/30/2022] Open
Abstract
Currently, lead (Pb) has become a severe environmental pollutant and fungi hold a promising potential for the remediation of Pb-containing wastewater. The present study showed that Penicillium polonicum was able to tolerate 4 mmol/L Pb(II), and remove 90.3% of them in 12 days through three mechanisms: extracellular immobilization, cell wall adsorption, and intracellular bioaccumulation. In this paper. the three mechanisms were studied by Raman, X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). The results indicated that Pb(II) was immobilized as lead oxalate outside the fungal cell, bound with phosphate, nitro, halide, hydroxyl, amino, and carboxyl groups on the cell wall, precipitated as pyromorphite [Pb5(PO4)3Cl] on the cell wall, and reduced to Pb(0) inside the cell. These combined results provide a basis for additionally understanding the mechanisms of Pb(II) removal by P. polonicum and developing remediation strategies using this fungus for lead-polluted water.
Collapse
Affiliation(s)
- Xiyang Xu
- The Key Laboratory of Orogenic Belts and Crustal Evolution; Beijing Key Laboratory of Mineral Environmental Function, School of Earth and Space Sciences, Peking University, Beijing, 100871, China
| | - Ruixia Hao
- The Key Laboratory of Orogenic Belts and Crustal Evolution; Beijing Key Laboratory of Mineral Environmental Function, School of Earth and Space Sciences, Peking University, Beijing, 100871, China.
| | - Hui Xu
- The Key Laboratory of Orogenic Belts and Crustal Evolution; Beijing Key Laboratory of Mineral Environmental Function, School of Earth and Space Sciences, Peking University, Beijing, 100871, China
| | - Anhuai Lu
- The Key Laboratory of Orogenic Belts and Crustal Evolution; Beijing Key Laboratory of Mineral Environmental Function, School of Earth and Space Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
42
|
Li H, Zheng D, Zhang X, Niu Z, Ma H, Zhang S, Wu C. Total and Methylmercury of Suaeda heteroptera Wetland Soil Response to a Salinity Gradient Under Wetting and Drying Conditions. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 104:778-785. [PMID: 32430533 DOI: 10.1007/s00128-020-02874-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
Mercury (Hg) methylation could occur in freshwater ecosystems with low or high salinity. However, few studies are available about the effects of salinity change on mercury(Hg) release and methylation. In-situ experiments using Suaeda heteroptera wetland soil column from the Liaohe estuary were performed to decipher how total mercury (THg) and methylmercury (MeHg) contents change under fluctuant salinity and wet and dry soil conditions. Salinity gradients were set to 0.50% (S1), 1.00% (S2), 1.50% (S3) and 1.80% (S4), and pure deionized water was used as a blank control (CK). Wet and dry soil conditions were set to full inundation condition (WD1) and naturally dried treatment (WD2). Results indicated that the highest THg and MeHg contents were found in surface and bottom soil when water salinity treatment was CK under WD1. THg and MeHg decreased with salinity under WD1. THg contents in overlying water varied from 0.854 to 1.243 µg L-1 under WD1 treatments and increased with salinity change. When under WD2 treatment, THg contents in both soil layers gradually decreased with rising salinity. Meanwhile, MeHg contents in both soil layers reached the lowest level at CK (1.666 μg kg-1and 2.520 μg kg-1) and increased gradually with the rising salinity. By comparison, THg content of the soil was much lower in WD1 than that in WD2. Under the WD1 condition, the MeHg contents and %MeHg decreased with rising salinity and showed significantly different in different salinity treatment, however, its showed an opposite trend with rising salinity under the WD2 condition.
Collapse
Affiliation(s)
- Hang Li
- Environmental College, Shenyang University, Shenyang, 110044, China
- Key Laboratory of Eco-Restoration of Regional Contaminated Environment, Shenyang University, Shenyang, 110044, China
| | - Dongmei Zheng
- Environmental College, Shenyang University, Shenyang, 110044, China.
- Key Laboratory of Eco-Restoration of Regional Contaminated Environment, Shenyang University, Shenyang, 110044, China.
| | - Xun Zhang
- Environmental College, Shenyang University, Shenyang, 110044, China
- Key Laboratory of Eco-Restoration of Regional Contaminated Environment, Shenyang University, Shenyang, 110044, China
| | - Zhixin Niu
- Environmental College, Shenyang University, Shenyang, 110044, China
- Key Laboratory of Eco-Restoration of Regional Contaminated Environment, Shenyang University, Shenyang, 110044, China
| | - Huanchi Ma
- Environmental College, Shenyang University, Shenyang, 110044, China
- Key Laboratory of Eco-Restoration of Regional Contaminated Environment, Shenyang University, Shenyang, 110044, China
| | - Shiwei Zhang
- Environmental College, Shenyang University, Shenyang, 110044, China
- Key Laboratory of Eco-Restoration of Regional Contaminated Environment, Shenyang University, Shenyang, 110044, China
| | - Chenghao Wu
- Environmental College, Shenyang University, Shenyang, 110044, China
- Key Laboratory of Eco-Restoration of Regional Contaminated Environment, Shenyang University, Shenyang, 110044, China
| |
Collapse
|
43
|
Shahid M, Khalid S, Bibi I, Bundschuh J, Khan Niazi N, Dumat C. A critical review of mercury speciation, bioavailability, toxicity and detoxification in soil-plant environment: Ecotoxicology and health risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 711:134749. [PMID: 32000322 DOI: 10.1016/j.scitotenv.2019.134749] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/18/2019] [Accepted: 09/29/2019] [Indexed: 05/09/2023]
Abstract
Environmental contamination by a non-essential and non-beneficial, although potentially toxic mercury (Hg), is becoming a great threat to the living organisms at a global scale. Owing to its various uses in numerous industrial processes, high amount of Hg is released into different environmental compartments. Environmental Hg contamination can result in food chain contamination, especially due to its accumulation in edible plant parts. Consumption of Hg-rich food is a key source of Hg exposure to humans. Since Hg does not possess any identified biological role and has genotoxic and carcinogenic potential, it is critical to monitor its biogeochemical behavior in the soil-plant system and its influence in terms of possible food chain contamination and human exposure. This review traces a plausible link among Hg levels, its chemical speciation and phytoavailability in soil, accumulation in plants, phytotoxicity and detoxification of Hg inside the plant. The role of different enzymatic (peroxidase, catalase, ascorbate peroxidase, superoxide dismutase, glutathione peroxidase) and non-enzymatic (glutathione, phytochelatins, proline and ascorbic acid) antioxidants has also been elucidated with respect to enhanced generation of reactive radicles and resulting oxidative stress. The review also outlines Hg build-up in edible plant tissues and associated health risks. The biogeochemical role of Hg in the soil-plant system and associated health risks have been described with well summarized and up-to-date data in 12 tables and 4 figures. We believe that this comprehensive review article and meta-analysis of Hg data can be greatly valuable for scientists, researchers, policymakers and graduate-level students.
Collapse
Affiliation(s)
- Muhammad Shahid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari-61100, Pakistan.
| | - Sana Khalid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari-61100, Pakistan
| | - Irshad Bibi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Jochen Bundschuh
- UNESCO Chair on Groundwater Arsenic within the 2030 Agenda for Sustainable Development, University of Southern Queensland, West Street, Toowoomba, Queensland 4350, Australia
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan; School of Civil Engineering and Surveying, University of Southern Queensland, Toowoomba, Queensland, Australia.
| | - Camille Dumat
- Centre d'Etude et de Recherche Travail Organisation Pouvoir (CERTOP), UMR5044, Université J. Jaurès - Toulouse II, 5 allée Machado A., 31058 Toulouse, cedex 9, France; Université de Toulouse, INP-ENSAT, Avenue de l'Agrobiopole, 31326 Auzeville-Tolosane, France; Association Réseau-Agriville (http://reseau-agriville.com/), France
| |
Collapse
|
44
|
Yoshimura KM, Todorova S, Biddle JF. Mercury geochemistry and microbial diversity in meromictic Glacier Lake, Jamesville, NY. ENVIRONMENTAL MICROBIOLOGY REPORTS 2020; 12:195-202. [PMID: 32036624 DOI: 10.1111/1758-2229.12823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/06/2020] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
Meromictic lakes are stratified lakes that typically stimulate phototrophic anoxic microbial metabolism, including the transformation of sulphur. Less studied are the transformations of mercury in these environments, and the microorganisms, which mediate these reactions. In order to further an understanding of redox species, mercury and microbial populations in meromictic lakes, we examined the geochemistry and microbiology of Glacier Lake in Jamesville, NY. We found an anoxic transition at a depth of 6 m, followed by active nitrate and sulphate utilization. A chlorophyll a maximum was located at 11 m, coinciding with peaks of several photoautotrophic microbial lineages and total mercury and methyl mercury. Via amplicon sequencing, the microbial population showed pronounced peaks of cyanobacteria at 10 m, Chlorobi at 12 m and Chloroflexi at 14 m. Sulphate-reducing bacteria were also most abundant between 10 and 14 m depth. A functional gene indicating the potential for the production of methyl mercury, hgcA, was detected at several depths in the lake. Our work suggests that in addition to the sulphur cycle, the cycling of mercury may be indirectly coupled with phototrophic processes in Glacier Lake.
Collapse
Affiliation(s)
| | - Svetoslava Todorova
- Department of Civil and Environmental Engineering, Syracuse University, Syracuse, NY, USA
| | - Jennifer F Biddle
- School of Marine Science and Policy, University of Delaware, Lewes, DE, USA
| |
Collapse
|
45
|
d’Errico G, Aloj V, Ventorino V, Bottiglieri A, Comite E, Ritieni A, Marra R, Bolletti Censi S, Flematti GR, Pepe O, Vinale F. Methyl t-butyl ether-degrading bacteria for bioremediation and biocontrol purposes. PLoS One 2020; 15:e0228936. [PMID: 32084150 PMCID: PMC7034917 DOI: 10.1371/journal.pone.0228936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 01/27/2020] [Indexed: 11/27/2022] Open
Abstract
A total of fifteen potential methyl t-butyl ether (MtBE)-degrading bacterial strains were isolated from contaminated soil. They have been identified as belonging to the genera Bacillus, Pseudomonas, Kocuria, Janibacter, Starkeya, Bosea, Mycolicibacterium, and Rhodovarius. Bacillus aryabhattai R1B, S. novella R8b, and M. mucogenicum R8i were able to grow using MtBE as carbon source, exhibiting different growth behavior and contaminant degradation ability. Their biocontrol ability was tested against various fungal pathogens. Both S. novella R8b and B. aryabhattai were effective in reducing the development of necrotic areas on leaves within 48 hours from Botritys cinerea and Alternaria alternata inoculation. Whereas, M. mucogenicum effectively controlled B. cinerea after 72 hours. Similar results were achieved using Pythium ultimum, in which the application of isolated bacteria increased seed germination. Only M. mucogenicum elicited tomato plants resistance against B. cinerea. This is the first report describing the occurrence of bioremediation and biocontrol activities in M. mucogenicum, B. aryabhattai and S. novella species. The production of maculosin and its antibiotic activity against Rhizoctonia solani has been reported for first time from S. novella. Our results highlight the importance of multidisciplinary approaches to achieve a consistent selection of bacterial strains useful for plant protection and bioremediation purposes.
Collapse
Affiliation(s)
- Giada d’Errico
- University of Naples Federico II, Department of Agricultural Sciences, Portici (NA), Italy
| | - Veronica Aloj
- University of Naples Federico II, Department of Agricultural Sciences, Portici (NA), Italy
| | - Valeria Ventorino
- University of Naples Federico II, Department of Agricultural Sciences, Portici (NA), Italy
| | - Assunta Bottiglieri
- University of Naples Federico II, Department of Agricultural Sciences, Portici (NA), Italy
| | - Ernesto Comite
- University of Naples Federico II, Department of Agricultural Sciences, Portici (NA), Italy
| | - Alberto Ritieni
- University of Naples Federico II, Department of Pharmacy, Naples, Italy
| | - Roberta Marra
- University of Naples Federico II, Department of Agricultural Sciences, Portici (NA), Italy
| | | | - Gavin R. Flematti
- School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Olimpia Pepe
- University of Naples Federico II, Department of Agricultural Sciences, Portici (NA), Italy
| | - Francesco Vinale
- University of Naples Federico II, Department of Veterinary Medicine and Animal Production, Naples, Italy
- National Research Council, Institute for Sustainable Plant Protection, Portici (NA), Italy
- * E-mail:
| |
Collapse
|
46
|
Jain A, Sarsaiya S, Wu Q, Shi J, Lu Y. New insights and rethinking of cinnabar for chemical and its pharmacological dynamics. Bioengineered 2020; 10:353-364. [PMID: 31431119 PMCID: PMC6738451 DOI: 10.1080/21655979.2019.1652491] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Cinnabar is an attractive mineral with many different uses. It is reported that cinnabar is one of the traditional Chinese’s medicines extensively use. The main objective of this critical review is to identify the current overview, concept and chemistry of cinnabar, which includes the process developments, challenges, and diverse options for pharmacology research. It is used as a medicine through probable toxicity, especially when taking overdoes. This review is the first to describe the toxicological effects of cinnabar and its associated compounds. Nuclear magnetic resonance (NMR) dependent metabolomics could be useful for examination of the pharmaceutical consequence. The analysis indicated that the accurate preparation methods, appropriate doses, disease status, ages with drug combinations are significant factors for impacting the cinnabar toxicity. Toxicologically, synthetic mercury sulfide or cinnabar should be notable for mercuric chloride, mercury vapor and methyl mercury for future protection and need several prominent advancements in cinnabar research.
Collapse
Affiliation(s)
- Archana Jain
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University , Guizhou , China
| | - Surendra Sarsaiya
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University , Guizhou , China.,Bioresource Institute for Healthy Utilization, Zunyi Medical University , Guizhou , China
| | - Qin Wu
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University , Guizhou , China
| | - Jingshan Shi
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University , Guizhou , China
| | - Yuanfu Lu
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University , Guizhou , China
| |
Collapse
|
47
|
Swift evolutionary response of microbes to a rise in anthropogenic mercury in the Northern Hemisphere. ISME JOURNAL 2019; 14:788-800. [PMID: 31831837 PMCID: PMC7031220 DOI: 10.1038/s41396-019-0563-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 11/17/2019] [Indexed: 01/22/2023]
Abstract
Anthropogenic mercury remobilization has considerably increased since the Industrial Revolution in the late 1700s. The Minamata Convention on Mercury is a United Nations treaty (2017) aiming at curbing mercury emissions. Unfortunately, evaluating the effectiveness of such a global treaty is hampered by our inability to determine the lag in aquatic ecosystem responses to a change in atmospheric mercury deposition. Whereas past metal concentrations are obtained from core samples, there are currently no means of tracking historical metal bioavailability or toxicity. Here, we recovered DNA from nine dated sediment cores collected in Canada and Finland, and reconstructed the past demographics of microbes carrying genes coding for the mercuric reductase (MerA)—an enzyme involved in Hg detoxification—using Bayesian relaxed molecular clocks. We found that the evolutionary dynamics of merA exhibited a dramatic increase in effective population size starting from 1783.8 ± 3.9 CE, which coincides with both the Industrial Revolution, and with independent measurements of atmospheric Hg concentrations. We show that even low levels of anthropogenic mercury affected the evolutionary trajectory of microbes in the Northern Hemisphere, and that microbial DNA encoding for detoxification determinants stored in environmental archives can be used to track historical pollutant toxicity.
Collapse
|
48
|
Liu M, Xie H, He Y, Zhang Q, Sun X, Yu C, Chen L, Zhang W, Zhang Q, Wang X. Sources and transport of methylmercury in the Yangtze River and the impact of the Three Gorges Dam. WATER RESEARCH 2019; 166:115042. [PMID: 31520812 DOI: 10.1016/j.watres.2019.115042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/29/2019] [Accepted: 09/02/2019] [Indexed: 05/22/2023]
Abstract
The magnitude of environmental change due to anthropogenic impacts might greatly exceed that of natural disturbances. In this work, we quantitatively examine the impacts of river damming, soil erosion, and point-source release on the transport of methylmercury (MeHg) throughout the Yangtze River, the third longest river in the world. Based on seasonal observations and the subsequent material flow analysis, we found that in 2016, the Yangtze River discharged 470 ± 200 kg MeHg to the coastal and shelf areas, a value at least ten-fold larger than existing observations in other large rivers around the world. The construction of the Three Gorges Dam (TGD), the world's largest hydropower dam, induced a substantial amount of MeHg (at least 250 ± 220 kg) accumulation in the reservoir and a relatively small amount of MeHg (150 ± 37 kg) discharge to the downstream region in 2016. The reservoir itself is not expected to be more contaminated by MeHg than the downstream areas of the river after the TGD, and the TGD has an additive effect on downstream MeHg transport. The riverine MeHg flux in the river mouth was 3-fold that discharged from the TGD mainly due to TGD-induced resuspension of MeHg from the downstream riverbed, as well as MeHg imports to the downstream area from tributaries, soil erosion, municipal wastewater, and in situ production. Our analysis offers new evidence that in future decades, the increase in estuarine MeHg contamination resulting from the increasing construction of large dams might pose a challenge for global coastal fisheries.
Collapse
Affiliation(s)
- Maodian Liu
- Ministry of Education Laboratory of Earth Surface Process, College of Urban and Environmental Science, Peking University, Beijing, 100871, China
| | - Han Xie
- Ministry of Education Laboratory of Earth Surface Process, College of Urban and Environmental Science, Peking University, Beijing, 100871, China
| | - Yipeng He
- Department of Marine Sciences, University of Connecticut, 1080 Shennecossett Rd., Groton, CT, 06340, USA
| | - Qianru Zhang
- Ministry of Education Laboratory of Earth Surface Process, College of Urban and Environmental Science, Peking University, Beijing, 100871, China
| | - Xuejun Sun
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chenghao Yu
- Ministry of Education Laboratory of Earth Surface Process, College of Urban and Environmental Science, Peking University, Beijing, 100871, China
| | - Long Chen
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China
| | - Wei Zhang
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Qianggong Zhang
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xuejun Wang
- Ministry of Education Laboratory of Earth Surface Process, College of Urban and Environmental Science, Peking University, Beijing, 100871, China.
| |
Collapse
|
49
|
Liu YR, Yang Z, Zhou X, Qu X, Li Z, Zhong H. Overlooked Role of Putative Non-Hg Methylators in Predicting Methylmercury Production in Paddy Soils. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:12330-12338. [PMID: 31603332 DOI: 10.1021/acs.est.9b03013] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Rice ingestion has been recognized as an important route of dietary exposure to neurotoxic methylmercury (MeHg) that is commonly synthesized in rice paddy soils. Although Hg methylators are known to regulate soil MeHg formation, the effect of non-Hg methylating communities on MeHg production remains unclear. Here, we collected 141 paddy soil samples from main rice-producing areas across China to identify associations between bacterial community composition (including both Hg and putative non-Hg methylators) and MeHg production. Results showed that the MeHg content in the paddy soils varied from 0.11 to 8.36 ng g-1 at a national spatial scale, which could be due to the shifts of soil microbial community composition across different areas. Our structure equation modeling suggested a strong link between bacterial community composition and MeHg content and %MeHg. More importantly, random forest analyses suggested a more significant role of putative non-Hg methylators than Hg methylators in predicting variations of soil MeHg content. The relative abundance of putative non-Hg methylators such as unclassified Xanthomonadales and Chitinophagaceae were strongly correlated with soil MeHg contents. Further, microbial network analysis revealed strong co-occurrence patterns between the putative non-Hg and Hg methylators. These findings highlight an overlooked role of non-Hg methylating communities in predicting MeHg production in paddy soils.
Collapse
Affiliation(s)
| | - Ziming Yang
- Department of Chemistry , Oakland University , Rochester , Michigan 48309 , United States
| | | | | | - Zizhu Li
- School of the Environment , Nanjing University , Nanjing 210023 , China
| | - Huan Zhong
- School of the Environment , Nanjing University , Nanjing 210023 , China
| |
Collapse
|
50
|
Semrau JD, DiSpirito AA. Methanobactin: A Novel Copper-Binding Compound Produced by Methanotrophs. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/978-3-030-23261-0_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|