1
|
Haroon M, Khan WU, Munir B, Ahmad SR, Rehman A, Akram W, Munir A, Sardar R, Yasin NA. Seed priming with alpha-tocopherol alleviates microplastic stress in Brassica rapa through modulations in morphological, physiological and biochemical attributes. CHEMOSPHERE 2025; 371:144060. [PMID: 39756708 DOI: 10.1016/j.chemosphere.2024.144060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/22/2024] [Accepted: 12/31/2024] [Indexed: 01/07/2025]
Abstract
Microplastics (MPs) have been regarded as emerging pollutants globally, and understanding of the injurious impacts of MPs on food crops is still scarce. MPs toxicity can disrupt the growth and physic-chemical characteristics of turnip seedlings. Hence, sustainable remediation techniques by employing growth regulators can alleviate harmful impacts and confer MPs tolerance in vegetables. It was aimed to explore the impact of α-tocopherol for the alleviation of MPs toxicity in Brassica rapa seedlings. During present investigation, seed priming was executed with 25, 50 and 100 mg L-1α-tocopherol and then concerned soaked seeds of B. rapa were grown in Perti dishes treated with MPs (50 mg L-1). The current study showed that MPs toxicity significantly reduced seed germination, growth attributes, and photosynthetic activity while remarkably boosting the level of enzymatic and non-enzymatic antioxidants. Nevertheless, seed priming with α-tocopherol mitigated the MPs stress in Brassica rapa by augmenting growth attributes, photosynthetic machinery, phenol, flavonoid, proline and antioxidant enzymes such as catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD). Furthermore, α-tocopherol supply meaningfully lowered the malondialdehyde (MDA) and hydrogen peroxide (H2O2) contents of B. rapa under MPs stressed conditions. Hence, seed priming with α-tocopherol can be a promising strategy for promoting turnip crop production in MPs-contaminated environments. These outcomes will offer new insights into the sustainable management of the harmful effects of MPs on food crops.
Collapse
Affiliation(s)
- Mahrukh Haroon
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, 54590, Pakistan
| | - Waheed Ullah Khan
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, 54590, Pakistan.
| | - Bareera Munir
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, 54590, Pakistan
| | - Sajid Rashid Ahmad
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, 54590, Pakistan
| | - Areeba Rehman
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, 54590, Pakistan
| | - Waheed Akram
- Faculty of Agricultural Sciences, University of the Punjab, Lahore, 54590, Pakistan
| | - Awais Munir
- Institute of Agro-Industry and Environment, The Islamia University of Bahawalpur, Pakistan
| | - Rehana Sardar
- Department of Biological and Environmental Sciences, Emerson University, Multan, Pakistan
| | - Nasim Ahmad Yasin
- Faculty of Agricultural Sciences, University of the Punjab, Lahore, 54590, Pakistan.
| |
Collapse
|
2
|
Munteanu C, Mârza SM, Papuc I. The immunomodulatory effects of vitamins in cancer. Front Immunol 2024; 15:1464329. [PMID: 39434876 PMCID: PMC11491384 DOI: 10.3389/fimmu.2024.1464329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 09/17/2024] [Indexed: 10/23/2024] Open
Abstract
Nutrition may affect animal health due to the strong link between them. Also, diets improve the healing process in various disease states. Cancer is a disease, where the harmful consequences of tumors severely impair the body. The information regarding the evolution of this disease is extrapolated from human to animal because there are few specific studies regarding nutritional needs in animals with cancer. Thus, this paper aims to review the literature regarding the immunomodulatory effects of vitamins in mammal cancer. An adequate understanding of the metabolism and requirements of nutrients for mammals is essential to ensuring their optimal growth, development, and health, regardless of their food sources. According to these: 1) Some species are highly dependent on vitamin D from food, so special attention must be paid to this aspect. Calcitriol/VDR signaling can activate pro-apoptotic proteins and suppress anti-apoptotic ones. 2) Nitric oxide (NO) production is modulated by vitamin E through inhibiting transcription nuclear factor kappa B (NF-κB) activation. 3) Thiamine supplementation could be responsible for the stimulation of tumor cell proliferation, survival, and resistance to chemotherapy. 4) Also, it was found that the treatment with NO-Cbl in dogs is a viable anti-cancer therapy that capitalizes on the tumor-specific properties of the vitamin B12 receptor. Therefore, diets should contain the appropriate class of compounds in adequate proportions. Also, the limitations of this paper are that some vitamins are intensively studied and at the same time regarding others, there is a lack of information, especially in animals. Therefore, some subsections are longer and more heavily debated than others.
Collapse
Affiliation(s)
- Camelia Munteanu
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, ;Romania
| | - Sorin Marian Mârza
- Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine, Cluj-Napoca, ;Romania
| | - Ionel Papuc
- Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine, Cluj-Napoca, ;Romania
| |
Collapse
|
3
|
Nava-Tapia DA, Román-Justo NY, Cuenca-Rojo A, Guerrero-Rivera LG, Patrón-Guerrero A, Poblete-Cruz RI, Zacapala-Gómez AE, Sotelo-Leyva C, Navarro-Tito N, Mendoza-Catalán MA. Exploring the potential of tocopherols: mechanisms of action and perspectives in the prevention and treatment of breast cancer. Med Oncol 2024; 41:208. [PMID: 39060448 DOI: 10.1007/s12032-024-02454-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
Currently, breast cancer is the most common cause of mortality caused by neoplasia in women worldwide. The unmet challenges of conventional cancer therapy are chemoresistance and lack of selectivity, which can lead to serious side effects in patients; therefore, new treatments based on natural compounds that serve as adjuvants in breast cancer therapy are urgently needed. Tocopherols are naturally occurring antioxidant compounds that have shown antitumor activity against several types of cancer, including breast cancer. This review summarizes the antitumoral activity of tocopherols, such as the antiproliferative, apoptotic, anti-invasive, and antioxidant effects of tocopherols, through different molecular mechanisms. According to the studies described, α-T, δ-T and γ-T are the most studied in breast tumor cells; however, α-T and γ-T show a more critical antitumor activity and significant potential as a complements to chemotherapeutic drugs against breast cancer, enhancing toxicity against tumor cells and preventing cytotoxicity in nontumor cells. However, the possible relationship between tocopherol intake, related to concentration, and the promotion of cancer in particular cases should not be ruled out, so additional studies are required to determine the correct dose to obtain the desired antitumor effect. Moreover, nanomicelles of D-α-tocopherol have promising potential as pharmaceutical excipients for drug delivery to improve the cytotoxicity and selectivity of first-line chemotherapeutics against breast cancer.
Collapse
Affiliation(s)
- Dania A Nava-Tapia
- Facultad de Ciencias Químico Biológicas, Autonomous University of Guerrero, Av. Lázaro Cárdenas S/N., 39090, Chilpancingo, Guerrero, Mexico
| | - Norely Y Román-Justo
- Facultad de Ciencias Químico Biológicas, Autonomous University of Guerrero, Av. Lázaro Cárdenas S/N., 39090, Chilpancingo, Guerrero, Mexico
| | - Antonio Cuenca-Rojo
- Facultad de Ciencias Químico Biológicas, Autonomous University of Guerrero, Av. Lázaro Cárdenas S/N., 39090, Chilpancingo, Guerrero, Mexico
| | - Lizeth G Guerrero-Rivera
- Facultad de Ciencias Químico Biológicas, Autonomous University of Guerrero, Av. Lázaro Cárdenas S/N., 39090, Chilpancingo, Guerrero, Mexico
| | - Annet Patrón-Guerrero
- Facultad de Ciencias Químico Biológicas, Autonomous University of Guerrero, Av. Lázaro Cárdenas S/N., 39090, Chilpancingo, Guerrero, Mexico
| | - Ruth I Poblete-Cruz
- Facultad de Ciencias Químico Biológicas, Autonomous University of Guerrero, Av. Lázaro Cárdenas S/N., 39090, Chilpancingo, Guerrero, Mexico
| | - Ana E Zacapala-Gómez
- Facultad de Ciencias Químico Biológicas, Autonomous University of Guerrero, Av. Lázaro Cárdenas S/N., 39090, Chilpancingo, Guerrero, Mexico
| | - César Sotelo-Leyva
- Facultad de Ciencias Químico Biológicas, Autonomous University of Guerrero, Av. Lázaro Cárdenas S/N., 39090, Chilpancingo, Guerrero, Mexico
| | - Napoleón Navarro-Tito
- Facultad de Ciencias Químico Biológicas, Autonomous University of Guerrero, Av. Lázaro Cárdenas S/N., 39090, Chilpancingo, Guerrero, Mexico.
| | - Miguel A Mendoza-Catalán
- Facultad de Ciencias Químico Biológicas, Autonomous University of Guerrero, Av. Lázaro Cárdenas S/N., 39090, Chilpancingo, Guerrero, Mexico.
| |
Collapse
|
4
|
Basu S, Kumar G. Regulation of nitro-oxidative homeostasis: an effective approach to enhance salinity tolerance in plants. PLANT CELL REPORTS 2024; 43:193. [PMID: 39008125 DOI: 10.1007/s00299-024-03275-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024]
Abstract
Soil salinity is a major constraint for sustainable agricultural productivity, which together with the incessant climate change may be transformed into a severe threat to the global food security. It is, therefore, a serious concern that needs to be addressed expeditiously. The overproduction and accumulation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) are the key events occurring during salt stress, consequently employing nitro-oxidative stress and programmed cell death in plants. However, very sporadic studies have been performed concerning different aspects of nitro-oxidative stress in plants under salinity stress. The ability of plants to tolerate salinity is associated with their ability to maintain the cellular redox equilibrium mediated by both non-enzymatic and enzymatic antioxidant defense mechanisms. The present review emphasizes the mechanisms of ROS and RNS generation in plants, providing a detailed evaluation of how redox homeostasis is conserved through their effective removal. The uniqueness of this article stems from its incorporation of expression analyses of candidate genes for different antioxidant enzymes involved in ROS and RNS detoxification across various developmental stages and tissues of rice, utilizing publicly available microarray data. It underscores the utilization of modern biotechnological methods to improve salinity tolerance in crops, employing different antioxidants as markers. The review also explores how various transcription factors contribute to plants' ability to tolerate salinity by either activating or repressing the expression of stress-responsive genes. In summary, the review offers a thorough insight into the nitro-oxidative homeostasis strategy for extenuating salinity stress in plants.
Collapse
Affiliation(s)
- Sahana Basu
- Department of Life Science, Central University of South Bihar, Gaya, 824236, Bihar, India
| | - Gautam Kumar
- Department of Life Science, Central University of South Bihar, Gaya, 824236, Bihar, India.
| |
Collapse
|
5
|
Papotti B, Dessena M, Adorni MP, Paleari D, Rinaldi L, Bernini F. In vitro evaluation of the immunomodulatory activity of the nutraceutical formulation AminoDefence. Int J Food Sci Nutr 2024; 75:173-184. [PMID: 38030612 DOI: 10.1080/09637486.2023.2283688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/10/2023] [Indexed: 12/01/2023]
Abstract
Immune system (IS) functionality is warranted by inter-dependent processes that balance body defences without exceeding in inflammation. An ideal nutraceutical approach should sustain the protective IS activity while controlling inflammation. The potential immunomodulatory activity of the food supplement (FS) AminoDefence was studied in resting macrophages RAW264.7 and following stimulation of bacterial- and viral-associated inflammation trough LPS and PolyI:C treatments, respectively. In unstimulated macrophages, the formulation exerted a dose-dependent immunostimulant activity by up-regulating NO, IL-6, TNF-α and MCP-1 release, while it dampened the aberrant release of these factors induced by pro-inflammatory stimuli. Exploring the contribution of single components Echinacea purpurea (E. purpurea) extract and quercetin, used at proportional concentrations than in whole formulation, a more pronounced immunostimulant effect was observed for E. purpurea, and an anti-inflammatory activity for quercetin. Hence, AminoDefence exerts an immunomodulatory activity in macrophages by effectively stimulating a protective inflammatory response and limiting it in cases of excessive inflammation.
Collapse
Affiliation(s)
- Bianca Papotti
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Mattia Dessena
- Department of Medicine and Surgery, Unit of Neuroscience, University of Parma, Parma, Italy
| | - Maria Pia Adorni
- Department of Medicine and Surgery, Unit of Neuroscience, University of Parma, Parma, Italy
| | | | | | - Franco Bernini
- Department of Food and Drug, University of Parma, Parma, Italy
| |
Collapse
|
6
|
Morelli L, Havurinne V, Madeira D, Martins P, Cartaxana P, Cruz S. Photoprotective mechanisms in Elysia species hosting Acetabularia chloroplasts shed light on host-donor compatibility in photosynthetic sea slugs. PHYSIOLOGIA PLANTARUM 2024; 176:e14273. [PMID: 38566156 DOI: 10.1111/ppl.14273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024]
Abstract
Sacoglossa sea slugs have garnered attention due to their ability to retain intracellular functional chloroplasts from algae, while degrading other algal cell components. While protective mechanisms that limit oxidative damage under excessive light are well documented in plants and algae, the photoprotective strategies employed by these photosynthetic sea slugs remain unresolved. Species within the genus Elysia are known to retain chloroplasts from various algal sources, but the extent to which the metabolic processes from the donor algae can be sustained by the sea slugs is unclear. By comparing responses to high-light conditions through kinetic analyses, molecular techniques, and biochemical assays, this study shows significant differences between two photosynthetic Elysia species with chloroplasts derived from the green alga Acetabularia acetabulum. Notably, Elysia timida displayed remarkable tolerance to high-light stress and sophisticated photoprotective mechanisms such as an active xanthophyll cycle, efficient D1 protein recycling, accumulation of heat-shock proteins and α-tocopherol. In contrast, Elysia crispata exhibited absence or limitations in these photoprotective strategies. Our findings emphasize the intricate relationship between the host animal and the stolen chloroplasts, highlighting different capacities to protect the photosynthetic organelle from oxidative damage.
Collapse
Affiliation(s)
- Luca Morelli
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Vesa Havurinne
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Diana Madeira
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Patrícia Martins
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Paulo Cartaxana
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Sónia Cruz
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
7
|
Fawzy El-Sayed KM, Cosgarea R, Sculean A, Doerfer C. Can vitamins improve periodontal wound healing/regeneration? Periodontol 2000 2024; 94:539-602. [PMID: 37592831 DOI: 10.1111/prd.12513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 08/19/2023]
Abstract
Periodontitis is a complex inflammatory disorder of the tooth supporting structures, associated with microbial dysbiosis, and linked to a number if systemic conditions. Untreated it can result in an irreversible damage to the periodontal structures and eventually teeth loss. Regeneration of the lost periodontium requires an orchestration of a number of biological events on cellular and molecular level. In this context, a set of vitamins have been advocated, relying their beneficial physiological effects, to endorse the biological regenerative events of the periodontium on cellular and molecular levels. The aim of the present article is to elaborate on the question whether or not vitamins improve wound healing/regeneration, summarizing the current evidence from in vitro, animal and clinical studies, thereby shedding light on the knowledge gap in this field and highlighting future research needs. Although the present review demonstrates the current heterogeneity in the available evidence and knowledge gaps, findings suggest that vitamins, especially A, B, E, and CoQ10, as well as vitamin combinations, could exert positive attributes on the periodontal outcomes in adjunct to surgical or nonsurgical periodontal therapy.
Collapse
Affiliation(s)
- Karim M Fawzy El-Sayed
- Oral Medicine and Periodontology Department, Faculty of Oral and Dental Medicine, Cairo University, Giza, Egypt
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts University, Kiel, Germany
| | - Raluca Cosgarea
- Department of Periodontology, Operative and Preventive Dentistry, University of Bonn, Bonn, Germany
- Department of Periodontology and Peri-implant Diseases, Philips University Marburg, Marburg, Germany
- Clinic for Prosthetic Dentistry, University Iuliu-Hatieganu, Cluj-Napoca, Romania
| | - Anton Sculean
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Christof Doerfer
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts University, Kiel, Germany
| |
Collapse
|
8
|
Sordini B, Urbani S, Esposto S, Selvaggini R, Daidone L, Veneziani G, Servili M, Taticchi A. Evaluation of the Effect of an Olive Phenolic Extract on the Secondary Shelf Life of a Fresh Pesto. Antioxidants (Basel) 2024; 13:128. [PMID: 38275653 PMCID: PMC10813149 DOI: 10.3390/antiox13010128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/30/2023] [Accepted: 01/09/2024] [Indexed: 01/27/2024] Open
Abstract
Recent advances in the olive oil sector aim to develop sustainable strategies for the valorisation of mechanical extraction co-products as a rich source of bioactive compounds with antioxidant and antimicrobial activities. In this work, we studied the effectiveness of a phenolic extract (PE) from olive vegetation water (OVW) as a new antioxidant of natural origin for improving the quality and extending the secondary shelf life (SSL) of a fresh basil pesto sold as a served loose product at the deli counter, simulating the storage conditions after packaging, opening, and serving. For that, the PE was mixed with the oily phase of fresh pesto in two different concentrations and compared to a control pesto (CTRL) made with the addition of common additives (ascorbic acid (E300) and sorbic acid (E200)). The physicochemical parameters, phenolic and volatile composition, sensory profiles, and antioxidant capacity of the experimental pesto samples were evaluated after opening. The results proved that the enrichment with the PE improved the stability of the pesto and, hence, its overall quality. The PE provided higher protection than the CTRL against primary and secondary oxidation at both concentrations tested and delayed the accumulation of the volatile compounds responsible for the 'rancid' off-flavour up to 7 days after first opening, while also preserving higher levels of the pesto phytonutrients (such as the rosmarinic, caffeic, and chicoric acids and α-tocopherol). These results show that the generation of food waste in households, catering chains, retail, and/or restaurants can be reduced, improving the sustainability of the food industry and the competitiveness of the olive oil sector.
Collapse
Affiliation(s)
| | | | - Sonia Esposto
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Via San Costanzo s.n.c., 06126 Perugia, Italy; (B.S.); (S.U.); (R.S.); (L.D.); (G.V.); (M.S.); (A.T.)
| | | | | | | | | | | |
Collapse
|
9
|
Vidya Muthulakshmi M, Srinivasan A, Srivastava S. Antioxidant Green Factories: Toward Sustainable Production of Vitamin E in Plant In Vitro Cultures. ACS OMEGA 2023; 8:3586-3605. [PMID: 36743063 PMCID: PMC9893489 DOI: 10.1021/acsomega.2c05819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/14/2022] [Indexed: 06/18/2023]
Abstract
Vitamin E is a dietary supplement synthesized only by photosynthetic organisms and, hence, is an essential vitamin for human well-being. Because of the ever-increasing demand for natural vitamin E and limitations in existing synthesis modes, attempts to improve its yield using plant in vitro cultures have gained traction in recent years. With inflating industrial production costs, integrative approaches to conventional bioprocess optimization is the need of the hour for multifold vitamin E productivity enhancement. In this review, we briefly discuss the structure, isomers, and important metabolic routes of biosynthesis for vitamin E in plants. We then emphasize its vital role in human health and its industrial applications and highlight the market demand and supply. We illustrate the advantages of in vitro plant cell/tissue culture cultivation as an alternative to current commercial production platforms for natural vitamin E. We touch upon the conventional vitamin E metabolic pathway engineering strategies, such as single/multigene overexpression and chloroplast engineering. We highlight the recent progress in plant systems biology to rationally identify metabolic bottlenecks and knockout targets in the vitamin E biosynthetic pathway. We then discuss bioprocess optimization strategies for sustainable vitamin E production, including media/process optimization, precursor/elicitor addition, and scale-up to bioreactors. We culminate the review with a short discussion on kinetic modeling to predict vitamin E production in plant cell cultures and suggestions on sustainable green extraction methods of vitamin E for reduced environmental impact. This review will be of interest to a wider research fraternity, including those from industry and academia working in the field of plant cell biology, plant biotechnology, and bioprocess engineering for phytochemical enhancement.
Collapse
Affiliation(s)
- M. Vidya Muthulakshmi
- Department
of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras (IIT Madras), Chennai, 600 036 Tamil Nadu, India
| | - Aparajitha Srinivasan
- Department
of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras (IIT Madras), Chennai, 600 036 Tamil Nadu, India
| | - Smita Srivastava
- Department
of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras (IIT Madras), Chennai, 600 036 Tamil Nadu, India
| |
Collapse
|
10
|
Munteanu C, Berindean I, Mihai M, Pop B, Popa M, Muntean L, Petrescu O, Ona A. E, K, B5, B6, and B9 vitamins and their specific immunological effects evaluated by flow cytometry. Front Med (Lausanne) 2023; 9:1089476. [PMID: 36687400 PMCID: PMC9849766 DOI: 10.3389/fmed.2022.1089476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/12/2022] [Indexed: 01/07/2023] Open
Abstract
It has been proven that vitamins play an essential role in preventing certain diseases since ancient times. It is thus fruitless to approach the roles of vitamins without making reference to the techniques used in evaluating the effects of these micronutrients. Therefore, the aim of this paper was to summarize the immunological effects of E, K, B5, B6, and B9 vitamins evaluated by flow cytometry. Some of these significant effects were presented and discussed: (a) The role of vitamins E in the prevention and treatment of different types of cancer. (b) The properties of K vitamins in the development and maintenance of pheochromocytoma Cell Line 12 (PC12) cells in Parkinson's disease; (c) The improvement effect of vitamin B5 on the loss of bone mass in low estrogen conditions; (d) The anticancer role of vitamins B6. (e) The role of Vitamin B9 in the regulation of Treg cells. As such, the flow cytometry technique used to assess these properties is essential to evaluate the immunomodulatory effects of certain vitamins. The technique undergoes constant improvement which makes it possible to determine several parameters with a role in the modulation of the immune function and at the same time increase the accuracy of the methods that highlight them.
Collapse
Affiliation(s)
- Camelia Munteanu
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Ioana Berindean
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Mihaela Mihai
- Department of Transversal Competencies, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Bianca Pop
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Mihai Popa
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Leon Muntean
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Olivia Petrescu
- Department of Applied Modern Languages, Faculty of Letters, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Andreea Ona
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania,*Correspondence: Andreea Ona,
| |
Collapse
|
11
|
Wang M, Zheng Z, Tian Z, Zhang H, Zhu C, Yao X, Yang Y, Cai X. Molecular Cloning and Analysis of an Acetyl-CoA C-acetyltransferase Gene ( EkAACT) from Euphorbia kansui Liou. PLANTS (BASEL, SWITZERLAND) 2022; 11:1539. [PMID: 35736690 PMCID: PMC9229008 DOI: 10.3390/plants11121539] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/27/2022] [Accepted: 06/07/2022] [Indexed: 11/17/2022]
Abstract
Terpenoids are the largest class of natural products and are essential for cell functions in plants and their interactions with the environment. Acetyl-CoA acetyltransferase (AACT, EC2.3.1.9) can catalyze a key initiation step of the mevalonate pathway (MVA) for terpenoid biosynthesis and is modulated by many endogenous and external stimuli. Here, the function and expression regulation activities of AACT in Euphorbia kansui Liou (EkAACT) were reported. Compared with wild-type Arabidopsis, the root length, whole seedling fresh weight and growth morphology of EkAACT-overexpressing plants were slightly improved. The transcription levels of AtAACT, AtMDC, AtMK, AtHMGR, and AtHMGS in the MVA pathway and total triterpenoid accumulation increased significantly in transgenic Arabidopsis. Under NaCl and PEG treatment, EkAACT-overexpressing Arabidopsis showed a higher accumulation of total triterpenoids, higher enzyme activity of peroxidase (POD) and superoxide dismutase (SOD), increased root length and whole seedling fresh weight, and a decrease in the proline content, which indicated that plant tolerance to abiotic stress was enhanced. Thus, AACT, as the first crucial enzyme, plays a major role in the overall regulation of the MVA pathway.
Collapse
Affiliation(s)
- Meng Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an 710069, China; (M.W.); (Z.Z.); (Z.T.); (H.Z.); (C.Z.); (X.Y.); (Y.Y.)
| | - Zhe Zheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an 710069, China; (M.W.); (Z.Z.); (Z.T.); (H.Z.); (C.Z.); (X.Y.); (Y.Y.)
| | - Zheni Tian
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an 710069, China; (M.W.); (Z.Z.); (Z.T.); (H.Z.); (C.Z.); (X.Y.); (Y.Y.)
| | - Hao Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an 710069, China; (M.W.); (Z.Z.); (Z.T.); (H.Z.); (C.Z.); (X.Y.); (Y.Y.)
| | - Chenyu Zhu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an 710069, China; (M.W.); (Z.Z.); (Z.T.); (H.Z.); (C.Z.); (X.Y.); (Y.Y.)
| | - Xiangyu Yao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an 710069, China; (M.W.); (Z.Z.); (Z.T.); (H.Z.); (C.Z.); (X.Y.); (Y.Y.)
| | - Yixin Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an 710069, China; (M.W.); (Z.Z.); (Z.T.); (H.Z.); (C.Z.); (X.Y.); (Y.Y.)
- Medical Experiment Center, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Xia Cai
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an 710069, China; (M.W.); (Z.Z.); (Z.T.); (H.Z.); (C.Z.); (X.Y.); (Y.Y.)
| |
Collapse
|
12
|
Melo D, Álvarez-Ortí M, Nunes MA, Costa ASG, Machado S, Alves RC, Pardo JE, Oliveira MBPP. Whole or Defatted Sesame Seeds ( Sesamum indicum L.)? The Effect of Cold Pressing on Oil and Cake Quality. Foods 2021; 10:foods10092108. [PMID: 34574218 PMCID: PMC8466230 DOI: 10.3390/foods10092108] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/26/2021] [Accepted: 09/03/2021] [Indexed: 01/16/2023] Open
Abstract
Whole sesame seeds and sesame oil, which is obtained after cold pressing the seeds, are foodstuffs globally consumed due to their nutritional characteristics. The press cake that remains from the oil extraction process can be ground to form a defatted flour that can be incorporated into the human diet, contributing to the valorisation of this product. The nutritional comparison between the whole seeds and the press cake reveals the potential of this by-product to be incorporated in the formulation of diverse foodstuff, since it is richer than the seeds in proteins (30%) and fibre (25%) and still contains a proportion of oil (32%) with a fatty acid pattern characterized by the abundance of unsaturated fatty acids. The protein fraction of both the seeds and the cake shows a balanced composition regarding amino acid composition, with all the essential amino acids included. On the other hand, the oil obtained by cold pressing is shown as a high-quality oil, where the predominant fatty acids are oleic (42.66%) and linoleic (41.25%), which are essential fatty acids because they are not synthetised in the organism and must be obtained through the diet. In addition, it is rich in vitamin E, especially in γ-tocopherol, that was the main isomer found. Regarding these results, all products (sesame seeds, oil and press cake) are components suitable to be included in a healthy diet.
Collapse
Affiliation(s)
- Diana Melo
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Street of Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal; (D.M.); (M.A.N.); (A.S.G.C.); (S.M.); (R.C.A.); (M.B.P.P.O.)
| | - Manuel Álvarez-Ortí
- Higher Technical School of Agricultural and Forestry Engineering, University of Castilla-La Mancha, Campus Universitario, s/n, 02071 Albacete, Spain;
| | - Maria Antónia Nunes
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Street of Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal; (D.M.); (M.A.N.); (A.S.G.C.); (S.M.); (R.C.A.); (M.B.P.P.O.)
| | - Anabela S. G. Costa
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Street of Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal; (D.M.); (M.A.N.); (A.S.G.C.); (S.M.); (R.C.A.); (M.B.P.P.O.)
| | - Susana Machado
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Street of Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal; (D.M.); (M.A.N.); (A.S.G.C.); (S.M.); (R.C.A.); (M.B.P.P.O.)
| | - Rita C. Alves
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Street of Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal; (D.M.); (M.A.N.); (A.S.G.C.); (S.M.); (R.C.A.); (M.B.P.P.O.)
| | - José E. Pardo
- Higher Technical School of Agricultural and Forestry Engineering, University of Castilla-La Mancha, Campus Universitario, s/n, 02071 Albacete, Spain;
- Correspondence:
| | - Maria Beatriz P. P. Oliveira
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Street of Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal; (D.M.); (M.A.N.); (A.S.G.C.); (S.M.); (R.C.A.); (M.B.P.P.O.)
| |
Collapse
|
13
|
Soba D, Aranjuelo I, Gakière B, Gilard F, Pérez-López U, Mena-Petite A, Muñoz-Rueda A, Lacuesta M, Sanz-Saez A. Soybean Inoculated With One Bradyrhizobium Strain Isolated at Elevated [CO 2] Show an Impaired C and N Metabolism When Grown at Ambient [CO 2]. FRONTIERS IN PLANT SCIENCE 2021; 12:656961. [PMID: 34093614 PMCID: PMC8173217 DOI: 10.3389/fpls.2021.656961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/31/2021] [Indexed: 05/27/2023]
Abstract
Soybean (Glycine max L.) future response to elevated [CO2] has been shown to differ when inoculated with B. japonicum strains isolated at ambient or elevated [CO2]. Plants, inoculated with three Bradyrhizobium strains isolated at different [CO2], were grown in chambers at current and elevated [CO2] (400 vs. 700 ppm). Together with nodule and leaf metabolomic profile, characterization of nodule N-fixation and exchange between organs were tested through 15N2-labeling analysis. Soybeans inoculated with SFJ14-36 strain (isolated at elevated [CO2]) showed a strong metabolic imbalance, at nodule and leaf levels when grown at ambient [CO2], probably due to an insufficient supply of N by nodules, as shown by 15N2-labeling. In nodules, due to shortage of photoassimilate, C may be diverted to aspartic acid instead of malate in order to improve the efficiency of the C source sustaining N2-fixation. In leaves, photorespiration and respiration were boosted at ambient [CO2] in plants inoculated with this strain. Additionally, free phytol, antioxidants, and fatty acid content could be indicate induced senescence due to oxidative stress and lack of nitrogen. Therefore, plants inoculated with Bradyrhizobium strain isolated at elevated [CO2] may have lost their capacity to form effective symbiosis at ambient [CO2] and that was translated at whole plant level through metabolic impairment.
Collapse
Affiliation(s)
- David Soba
- Instituto de Agrobiotecnología (IdAB), Consejo Superior de Investigaciones Científicas (CSIC)-Gobierno de Navarra, Pamplona, Spain
| | - Iker Aranjuelo
- Instituto de Agrobiotecnología (IdAB), Consejo Superior de Investigaciones Científicas (CSIC)-Gobierno de Navarra, Pamplona, Spain
| | - Bertrand Gakière
- Plateforme Métabolisme-Métabolome, Institut de Biologie des Plantes, Université Paris-Sud, Orsay, France
| | - Françoise Gilard
- Plateforme Métabolisme-Métabolome, Institut de Biologie des Plantes, Université Paris-Sud, Orsay, France
| | - Usue Pérez-López
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Amaia Mena-Petite
- Department of Plant Biology and Ecology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Alberto Muñoz-Rueda
- Department of Plant Biology and Ecology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Maite Lacuesta
- Department of Plant Biology and Ecology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Alvaro Sanz-Saez
- Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn, AL, United States
| |
Collapse
|
14
|
Kruk J, Szymańska R. Singlet oxygen oxidation products of carotenoids, fatty acids and phenolic prenyllipids. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 216:112148. [PMID: 33556703 DOI: 10.1016/j.jphotobiol.2021.112148] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/27/2020] [Accepted: 01/28/2021] [Indexed: 10/22/2022]
Abstract
Singlet oxygen (1O2) is the major reactive oxygen species ROS causing photooxidative stress in plants which is formed predominantly in the reaction center of photosystem II during photosynthesis. To avoid deleterious effects of 1O2 oxygen on photosynthetic membrane components, plant synthesize a variety of 1O2 quenchers of lipophilic character, such as carotenoids or phenolic prenyllipids (tocopherols, plastochromanol-8, plastoquinol). In the process of chemical quenching of 1O2 by the antioxidants, both short-lived products, such as oxidized carotenoids, or relative long-lived compounds, such as oxidized phenolic prenyllipids are formed. The other target of 1O2 are unsaturated fatty acids of membrane lipids that undergo peroxidation as a result of the reaction. Some of the 1O2 oxidation products, like β-cyclocitral can be components of 1O2-signallingsignaling pathway leading to acclimatory responses of plants, while some others further fulfill antioxidant functions, like hydroxy-plastochromanol or hydroxy-plastoquinol. As most of the 1O2 oxidation products are specific compounds formed only as a results of 1O2 action, they can be very useful, specific molecular markers of 1O2-dependent oxidative stress in vivo.
Collapse
Affiliation(s)
- Jerzy Kruk
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| | - Renata Szymańska
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Reymonta 19, 30-059 Kraków, Poland
| |
Collapse
|
15
|
Bilska K, Wojciechowska N, Alipour S, Kalemba EM. Ascorbic Acid-The Little-Known Antioxidant in Woody Plants. Antioxidants (Basel) 2019; 8:E645. [PMID: 31847411 PMCID: PMC6943661 DOI: 10.3390/antiox8120645] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/12/2019] [Accepted: 12/12/2019] [Indexed: 01/21/2023] Open
Abstract
Reactive oxygen species (ROS) are constantly produced by metabolically active plant cells. The concentration of ROS may determine their role, e.g., they may participate in signal transduction or cause oxidative damage to various cellular components. To ensure cellular homeostasis and minimize the negative effects of excess ROS, plant cells have evolved a complex antioxidant system, which includes ascorbic acid (AsA). AsA is a multifunctional metabolite with strong reducing properties that allows the neutralization of ROS and the reduction of molecules oxidized by ROS in cooperation with glutathione in the Foyer-Halliwell-Asada cycle. Antioxidant enzymes involved in AsA oxidation and reduction switches evolved uniquely in plants. Most experiments concerning the role of AsA have been performed on herbaceous plants. In addition to extending our understanding of this role in additional taxa, fundamental knowledge of the complex life cycle stages of woody plants, including their development and response to environmental factors, will enhance their breeding and amend their protection. Thus, the role of AsA in woody plants compared to that in nonwoody plants is the focus of this paper. The role of AsA in woody plants has been studied for nearly 20 years. Studies have demonstrated that AsA is important for the growth and development of woody plants. Substantial changes in AsA levels, as well as reduction and oxidation switches, have been reported in various physiological processes and transitions described mainly in leaves, fruits, buds, and seeds. Evidently, AsA exhibits a dual role in the photoprotection of the photosynthetic apparatus in woody plants, which are the most important scavengers of ozone. AsA is associated with proper seed production and, thus, woody plant reproduction. Similarly, an important function of AsA is described under drought, salinity, temperature, light stress, and biotic stress. This report emphasizes the involvement of AsA in the ecological advantages, such as nutrition recycling due to leaf senescence, of trees and shrubs compared to nonwoody plants.
Collapse
Affiliation(s)
- Karolina Bilska
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland; (K.B.); (N.W.); (S.A.)
| | - Natalia Wojciechowska
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland; (K.B.); (N.W.); (S.A.)
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Shirin Alipour
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland; (K.B.); (N.W.); (S.A.)
- Department of Forestry, Faculty of Agriculture and Natural Resources, Lorestan University, Khorramabad, Iran
| | - Ewa Marzena Kalemba
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland; (K.B.); (N.W.); (S.A.)
| |
Collapse
|
16
|
Georgiadou EC, Koubouris G, Goulas V, Sergentani C, Nikoloudakis N, Manganaris GA, Kalaitzis P, Fotopoulos V. Genotype-dependent regulation of vitamin E biosynthesis in olive fruits as revealed through metabolic and transcriptional profiles. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21:604-614. [PMID: 30556243 DOI: 10.1111/plb.12950] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 12/12/2018] [Indexed: 05/21/2023]
Abstract
Vitamin E is a general term used to describe a group of eight lipophilic compounds known as tocochromanols. These vitamin E variants are chemically categorised into two classes formed by α-, β-, γ- and δ- tocopherols and tocotrienols isoforms, respectively. The present study describes the concurrent regulation of genes and metabolites orchestrating vitamin E biosynthesis in olive drupes of five distinctive Greek olive cultivars. A combination of analytical, biochemical and molecular approaches was employed in order to carry out comparative analyses, including real-time RT-qPCR for gene expression levels and HPLC analysis of metabolite content. Findings indicated that tocochromanol levels and composition, oil content, gene expression levels as well as total antioxidant activity were highly dependent on cultivar and, to a lesser extent, on fruit developmental stage. Specifically, cultivars 'Kalokairida' and 'Lianolia Kerkyras' demonstrated the highest vitamin E content. The latter possessed high tocochromanol content combined with highest overall antioxidant activity in all developmental stages, concomitant with the up-regulation expression profile of HPPD. The genotypic imprint versus the temporal contribution to vitamin E levels, as well as the potential link to lipid peroxidation amelioration, are discussed.
Collapse
Affiliation(s)
- E C Georgiadou
- Department of Agricultural Sciences, Biotechnology & Food Science, Cyprus University of Technology, Limassol, Cyprus
| | - G Koubouris
- ELGO DEMETER, NAGREF - Institute of Olive Tree, Subtropical Plants & Viticulture, Chania, Greece
| | - V Goulas
- Department of Agricultural Sciences, Biotechnology & Food Science, Cyprus University of Technology, Limassol, Cyprus
| | - C Sergentani
- ELGO DEMETER, NAGREF - Institute of Olive Tree, Subtropical Plants & Viticulture, Chania, Greece
| | - N Nikoloudakis
- Department of Agricultural Sciences, Biotechnology & Food Science, Cyprus University of Technology, Limassol, Cyprus
| | - G A Manganaris
- Department of Agricultural Sciences, Biotechnology & Food Science, Cyprus University of Technology, Limassol, Cyprus
| | - P Kalaitzis
- Department of Horticultural Genetics and Biotechnology, Mediterranean Agronomic Institute of Chania (MAICh), Chania, Greece
| | - V Fotopoulos
- Department of Agricultural Sciences, Biotechnology & Food Science, Cyprus University of Technology, Limassol, Cyprus
| |
Collapse
|
17
|
Giménez T, Mula D, Gea-Botella S, Martínez-Madrid MC, Martí N, Valero M, Saura D. Lipase catalyzed deacidification of tocopherol-rich distillates obtained from natural Vitamin E sources. Process Biochem 2019. [DOI: 10.1016/j.procbio.2018.11.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
18
|
Kimura E, Abe T, Murata K, Kimura T, Otoki Y, Yoshida T, Miyazawa T, Nakagawa K. Identification of OsGGR2, a second geranylgeranyl reductase involved in α-tocopherol synthesis in rice. Sci Rep 2018; 8:1870. [PMID: 29382838 PMCID: PMC5789843 DOI: 10.1038/s41598-018-19527-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/02/2018] [Indexed: 12/30/2022] Open
Abstract
Tocopherol (Toc) and tocotrienol (T3) are abundant in rice bran. Geranylgeranyl reductase (GGR) is an essential enzyme for Toc production that catalyzes the reduction of geranylgeranyl pyrophosphate and geranylgeranyl-chlorophyll. However, we found that a rice mutant line with inactivated Os02g0744900 (OsGGR1/LYL1/OsChl P) gene produces Toc, suggesting that rice plants may carry another enzyme with GGR activity. Using an RNA-mediated interference technique, we demonstrated that the Os01g0265000 ("OsGGR2") gene product has GGR activity. This result supports the existence of two GGR genes (OsGGR1 and OsGGR2) in rice, in contrast to Arabidopsis thaliana (thale cress) and cyanobacterium Synechocystis that each have only one GGR gene. We also produced rice callus with inactivated OsGGR1 and OsGGR2 that produced T3 but not Toc. Such rice callus could be used as a resource for production of pure T3 for nutraceutical applications.
Collapse
Affiliation(s)
- Eiichi Kimura
- National Agricultural Research Center for Tohoku Region, NARO, Morioka, Iwate, 020-0198, Japan
| | - Takumi Abe
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980 - 0845, Japan
| | - Kazumasa Murata
- Agricultural Research Institute, Toyama Prefectural Agricultural, Forestry and Fisheries Research Center, Toyama, Toyama, 939-8153, Japan
| | - Toshiyuki Kimura
- Division of Food Function Research, Food Research Institute, NARO, Tsukuba, Ibaraki, 305-8642, Japan
| | - Yurika Otoki
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980 - 0845, Japan
| | - Taiji Yoshida
- National Agricultural Research Center for Tohoku Region, NARO, Morioka, Iwate, 020-0198, Japan
| | - Teruo Miyazawa
- Food and Biotechnology Innovation Project, New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai, Miyagi, 980-8579, Japan
| | - Kiyotaka Nakagawa
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980 - 0845, Japan.
| |
Collapse
|
19
|
Wang D, Wang Y, Long W, Niu M, Zhao Z, Teng X, Zhu X, Zhu J, Hao Y, Wang Y, Liu Y, Jiang L, Wang Y, Wan J. SGD1, a key enzyme in tocopherol biosynthesis, is essential for plant development and cold tolerance in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 260:90-100. [PMID: 28554480 DOI: 10.1016/j.plantsci.2017.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 04/10/2017] [Accepted: 04/17/2017] [Indexed: 06/07/2023]
Abstract
Tocopherols, a group of Vitamin E compounds, are essential components of the human diet. In contrast to well documented roles in animals, the functions of tocopherols in plants are less understood. In this study, we characterized two allelic rice dwarf mutant lines designated sgd1-1 and sgd1-2 (small grain and dwarf1). Histological observations showed that the dwarf phenotypes were mainly due to cell elongation defects. A map-based cloning strategy and subsequent complementation test showed that SGD1 encodes homogentisate phytyltransferase (HPT), a key enzyme in tocopherol biosynthesis. Mutation of SGD1 resulted in tocopherol deficiency in both sgd1mutants. No oxidant damage was detected in the sgd1 mutants. Further analysis showed that sgd1-2 was hypersensitive to cold stress. Our results indicate that SGD1 is essential for plant development and cold tolerance in rice.
Collapse
Affiliation(s)
- Di Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yunlong Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Wuhua Long
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Mei Niu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zhigang Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xuan Teng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xiaopin Zhu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jianping Zhu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yuanyuan Hao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yongfei Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yi Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Ling Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yihua Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Jianmin Wan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China; National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| |
Collapse
|
20
|
Gupta K, Sengupta A, Chakraborty M, Gupta B. Hydrogen Peroxide and Polyamines Act as Double Edged Swords in Plant Abiotic Stress Responses. FRONTIERS IN PLANT SCIENCE 2016; 7:1343. [PMID: 27672389 PMCID: PMC5018498 DOI: 10.3389/fpls.2016.01343] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 08/22/2016] [Indexed: 05/02/2023]
Abstract
The specific genetic changes through which plants adapt to the multitude of environmental stresses are possible because of the molecular regulations in the system. These intricate regulatory mechanisms once unveiled will surely raise interesting questions. Polyamines and hydrogen peroxide have been suggested to be important signaling molecules during biotic and abiotic stresses. Hydrogen peroxide plays a versatile role from orchestrating physiological processes to stress response. It helps to achieve acclimatization and tolerance to stress by coordinating intra-cellular and systemic signaling systems. Polyamines, on the other hand, are low molecular weight polycationic aliphatic amines, which have been implicated in various stress responses. It is quite interesting to note that both hydrogen peroxide and polyamines have a fine line of inter-relation between them since the catabolic pathways of the latter releases hydrogen peroxide. In this review we have tried to illustrate the roles and their multifaceted functions of these two important signaling molecules based on current literature. This review also highlights the fact that over accumulation of hydrogen peroxide and polyamines can be detrimental for plant cells leading to toxicity and pre-mature cell death.
Collapse
Affiliation(s)
- Kamala Gupta
- Department of Biological Sciences, Presidency UniversityKolkata, India
- Department of Botany, Government General Degree College, Affiliated to University of BurdwanSingur, India
| | - Atreyee Sengupta
- Department of Biological Sciences, Presidency UniversityKolkata, India
| | | | - Bhaskar Gupta
- Department of Biological Sciences, Presidency UniversityKolkata, India
- Department of Zoology, Government General Degree College, Affiliated to University of BurdwanSingur, India
| |
Collapse
|
21
|
Gabruk M, Habina I, Kruk J, Dłużewska J, Szymańska R. Natural variation in tocochromanols content in Arabidopsis thaliana accessions - the effect of temperature and light intensity. PHYSIOLOGIA PLANTARUM 2016; 157:147-160. [PMID: 27174597 DOI: 10.1111/ppl.12408] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/05/2015] [Accepted: 10/08/2015] [Indexed: 06/05/2023]
Abstract
In this study, 25 accessions of Arabidopsis thaliana originating from a variety of climate conditions were grown under controlled circumstances of different light intensity and temperature. The accessions were analyzed for prenyllipids content and composition, as well as expression of the genes involved in tocochromanol biosynthesis (vte1-5). It was found that the applied conditions did not strongly affect total tocochromanols content and there was no apparent correlation of the tocochromanol content with the origin of the accessions. However, the presented results indicate that the temperature, more than the light intensity, affects the expression of the vte1-5 genes and the content of some prenyllipids. An interesting observation was that under low growth temperature, the hydroxy-plastochromanol (PC-OH) to plastochromanol (PC) ratio was considerably increased regardless of the light intensity in most of the accessions. PC-OH is known to be formed as a result of singlet oxygen stress, therefore this observation indicates that the singlet oxygen production is enhanced under low temperature. Unexpectedly, the highest increase in the PC-OH/PC ratio was found for accessions originating from cold climate (Shigu, Krazo-1 and Lov-5), even though such plants could be expected to be more resistant to low temperature stress.
Collapse
Affiliation(s)
- Michał Gabruk
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, 30-387, Poland
| | - Iwona Habina
- Department of Medical Physics and Biophysics, Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Krakow, 30-059, Poland
| | - Jerzy Kruk
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, 30-387, Poland
| | - Jolanta Dłużewska
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, 30-387, Poland
| | - Renata Szymańska
- Department of Medical Physics and Biophysics, Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Krakow, 30-059, Poland
| |
Collapse
|
22
|
Raiola A, Tenore GC, Barone A, Frusciante L, Rigano MM. Vitamin E Content and Composition in Tomato Fruits: Beneficial Roles and Bio-Fortification. Int J Mol Sci 2015; 16:29250-64. [PMID: 26670232 PMCID: PMC4691107 DOI: 10.3390/ijms161226163] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 11/29/2015] [Accepted: 12/02/2015] [Indexed: 01/21/2023] Open
Abstract
Several epidemiological studies have demonstrated that high vitamin E intakes are related to a reduced risk of non-communicable diseases, while other dietary antioxidants are not, suggesting that vitamin E exerts specific healthy functions in addition to its antioxidant role. In this regard, tomato (Solanum lycopersicum), one of the most consumed vegetables of the whole world population, is an important source of both tocopherols and tocotrienols. However, vitamin E content may strongly depend on several biotic and abiotic factors. In this review we will debate the elements affecting the synthesis of tocopherols and tocotrienols in tomato fruit, such as environmental conditions, genotype, fruit maturity level, and the impact of classical processing methods, such as pasteurization and lyophilization on the amount of these compounds. In addition we will analyze the specific vitamin E mechanisms of action in humans and the consequent functional effects derived from its dietary intake. Finally, we will examine the currently available molecular techniques used to increase the content of vitamin E in tomato fruit, starting from the identification of genetic determinants and quantitative trait loci that control the accumulation of these metabolites.
Collapse
Affiliation(s)
- Assunta Raiola
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, Portici (Naples) 80055, Italy.
| | - Gian Carlo Tenore
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, Naples 80131, Italy.
| | - Amalia Barone
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, Portici (Naples) 80055, Italy.
| | - Luigi Frusciante
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, Portici (Naples) 80055, Italy.
| | - Maria Manuela Rigano
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, Portici (Naples) 80055, Italy.
| |
Collapse
|
23
|
Szymańska R, Nowicka B, Gabruk M, Glińska S, Michlewska S, Dłużewska J, Sawicka A, Kruk J, Laitinen R. Physiological and antioxidant responses of two accessions of Arabidopsis thaliana in different light and temperature conditions. PHYSIOLOGIA PLANTARUM 2015; 154:194-209. [PMID: 25214438 DOI: 10.1111/ppl.12278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 07/28/2014] [Accepted: 07/30/2014] [Indexed: 06/03/2023]
Abstract
During their lifetime, plants need to adapt to a changing environment, including light and temperature. To understand how these factors influence plant growth, we investigated the physiological and antioxidant responses of two Arabidopsis accessions, Shahdara (Sha) from the Shahdara valley (Tajikistan, Central Asia) in a mountainous area and Lovvik-5 (Lov-5) from northern Sweden to different light and temperature conditions. These accessions originate from different latitudes and have different life strategies, both of which are known to be influenced by light and temperature. We showed that both accessions grew better in high-light and at a lower temperature (16°C) than in low light and at 23°C. Interestingly, Sha had a lower chlorophyll content but more efficient non-photochemical quenching than Lov-5. Sha, also showed a higher expression of vitamin E biosynthetic genes. We did not observe any difference in the antioxidant prenyllipid level under these conditions. Our results suggest that the mechanisms that keep the plastoquinone (PQ)-pool in more oxidized state could play a role in the adaptation of these accessions to their local climatic conditions.
Collapse
Affiliation(s)
- Renata Szymańska
- Department of Medical Physics and Biophysics, Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Krakow, 30-059, Poland
| | - Beatrycze Nowicka
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Krakow, 30-387, Poland
| | - Michał Gabruk
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Krakow, 30-387, Poland
| | - Sława Glińska
- Laboratory of Electron Microscopy, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, 90-237, Poland
| | - Sylwia Michlewska
- Laboratory of Electron Microscopy, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, 90-237, Poland
| | - Jolanta Dłużewska
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Krakow, 30-387, Poland
| | - Anna Sawicka
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Krakow, 30-387, Poland
| | - Jerzy Kruk
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Krakow, 30-387, Poland
| | - Roosa Laitinen
- Max-Planck-Institute of Molecular Plant Physiology, Molecular Mechanisms of Adaptation, Potsdam-Golm, 14476, Germany
| |
Collapse
|
24
|
Mokrosnop VM. Functions of tocopherols in the cells of plants and other photosynthetic organisms. UKRAINIAN BIOCHEMICAL JOURNAL 2015; 86:26-36. [PMID: 25816585 DOI: 10.15407/ubj86.05.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Tocopherol synthesis has only been observed in photosynthetic organisms (plants, algae and some cyanobacteria). Tocopherol is synthesized in the inner membrane of chloroplasts and distributed between chloroplast membranes, thylakoids and plastoglobules. Physiological significance of tocopherols for human and animal is well-studied, but relatively little is known about their function in plant organisms. Among the best characterized functions oftocopherols in cells is their ability to scavenge and quench reactive oxygen species and fat-soluble by-products of oxidative stress. There are the data on the participation of different mechanisms of α-tocopherol action in protecting photosystem II (PS II) from photoinhibition both by deactivation of singlet oxygen produced by PSII and by reduction of proton permeability of thylakoid membranes, leading to acidification of lumen under high light conditions and activation of violaxanthin de-epoxidase. Additional biological activity of tocopherols, independent of its antioxidant functions have been demonstrated. Basic mechanisms for these effects are connected with the modulation of signal transduction pathways by specific tocopherols and, in some instances, by transcriptional activation of gene expression.
Collapse
|
25
|
Puzanskiy RK, Shavarda AL, Tarakhovskaya ER, Shishova MF. Analysis of metabolic profile of Chlamydomonas reinhardtii cultivated under autotrophic conditions. APPL BIOCHEM MICRO+ 2014. [DOI: 10.1134/s0003683815010135] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Sivakumar G, Jeong K, Lay JO. Biomass and RRR-α-tocopherol production in Stichococcus bacillaris strain siva2011 in a balloon bioreactor. Microb Cell Fact 2014; 13:79. [PMID: 24893720 PMCID: PMC4055361 DOI: 10.1186/1475-2859-13-79] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 05/30/2014] [Indexed: 12/16/2022] Open
Abstract
Background Green microalgae represent a renewable natural source of vitamin E. Its most bioactive form is the naturally occurring RRR-α-tocopherol which is biosynthesized in photosynthetic organisms as a single stereoisomer. It is noteworthy that the natural and synthetic α-tocopherols are different biomolecular entities. This article focuses on RRR-α-tocopherol production in Stichococcus bacillaris strain siva2011 biomass in a bioreactor culture with methyl jasmonate (MeJa) elicitor. Additionally, a nonlinear mathematical model was used to quantitatively scale-up and predict the biomass production in a 20 L balloon bioreactor with dual variables such as time and volume. Results Approximately 0.6 mg/g dry weight (DW) of RRR-α-tocopherol was enhanced in S. bacillaris strain siva2011 biomass with the MeJa 50 μL/L for 24 hrs elicitations when compared to the control. The R2 value from the nonlinear model was enhanced up to 95% when compared to the linear model which significantly improved the accuracy for estimating S. bacillaris strain siva2011 biomass production in a balloon bioreactor. Conclusions S. bacillaris strain siva2011 is a new green microalga which biosynthesizes significant amounts of RRR-α-tocopherol. Systematically validated dual variable empirical data should provide key insights to multivariable or fourth order modeling for algal biomass scale-up. This bioprocess engineering should provide valuable information for industrial production of RRR-α-tocopherol from green cells.
Collapse
Affiliation(s)
- Ganapathy Sivakumar
- Arkansas Biosciences Institute and College of Agriculture and Technology, Arkansas State University, PO Box 639, Jonesboro, AR 72401, USA.
| | | | | |
Collapse
|
27
|
Aranjuelo I, Doustaly F, Cela J, Porcel R, Müller M, Aroca R, Munné-Bosch S, Bourguignon J. Glutathione and transpiration as key factors conditioning oxidative stress in Arabidopsis thaliana exposed to uranium. PLANTA 2014; 239:817-30. [PMID: 24389672 DOI: 10.1007/s00425-013-2014-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 12/12/2013] [Indexed: 05/23/2023]
Abstract
Although oxidative stress has been previously described in plants exposed to uranium (U), some uncertainty remains about the role of glutathione and tocopherol availability in the different responsiveness of plants to photo-oxidative damage. Moreover, in most cases, little consideration is given to the role of water transport in shoot heavy metal accumulation. Here, we investigated the effect of uranyl nitrate exposure (50 μM) on PSII and parameters involved in water transport (leaf transpiration and aquaporin gene expression) of Arabidopsis wild type (WT) and mutant plants that are deficient in tocopherol (vte1: null α/γ-tocopherol and vte4: null α-tocopherol) and glutathione biosynthesis (high content: cad1.3 and low content: cad2.1). We show how U exposure induced photosynthetic inhibition that entailed an electron sink/source imbalance that caused PSII photoinhibition in the mutants. The WT was the only line where U did not damage PSII. The increase in energy thermal dissipation observed in all the plants exposed to U did not avoid photo-oxidative damage of mutants. The maintenance of control of glutathione and malondialdehyde contents probed to be target points for the overcoming of photoinhibition in the WT. The relationship between leaf U content and leaf transpiration confirmed the relevance of water transport in heavy metals partitioning and accumulation in leaves, with the consequent implication of susceptibility to oxidative stress.
Collapse
Affiliation(s)
- Iker Aranjuelo
- Instituto de Agrobiotecnología, Universidad Pública de Navarra-CSIC-Gobierno de Navarra, Campus de Arrosadía, 31192, Mutilva Baja, Spain,
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Boca S, Koestler F, Ksas B, Chevalier A, Leymarie J, Fekete A, Mueller MJ, Havaux M. Arabidopsis lipocalins AtCHL and AtTIL have distinct but overlapping functions essential for lipid protection and seed longevity. PLANT, CELL & ENVIRONMENT 2014; 37:368-81. [PMID: 23837879 DOI: 10.1111/pce.12159] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 07/02/2013] [Accepted: 07/02/2013] [Indexed: 05/21/2023]
Abstract
Lipocalins are a group of multifunctional proteins, recognized as carriers of small lipophilic molecules, which have been characterized in bacteria and animals. Two true lipocalins have been recently identified in plants, the temperature-induced lipocalin (TIL) and the chloroplastic lipocalin (CHL), the expression of which is induced by various abiotic stresses. Each lipocalin appeared to be specialized in the responses to specific stress conditions in Arabidopsis thaliana, with AtTIL and AtCHL playing a protective role against heat and high light, respectively. The double mutant AtCHL KO × AtTIL KO deficient in both lipocalins was more sensitive to temperature, drought and light stresses than the single mutants, exhibiting intense lipid peroxidation. AtCHL deficiency dramatically enhanced the photosensitivity of mutants (vte1, npq1) affected in lipid protection mechanisms (tocopherols, zeaxanthin), confirming the role of lipocalins in the prevention of lipid peroxidation. Seeds of the AtCHL KO × AtTIL KO double mutant were very sensitive to natural and artificial ageing, and again this phenomenon was associated with the oxidation of polyunsaturated lipids. The presented results show that the Arabidopsis lipocalins AtTIL and AtCHL have overlapping functions in lipid protection which are essential for stress resistance and survival.
Collapse
Affiliation(s)
- Simona Boca
- CEA, DSV, IBEB, Laboratoire d'Ecophysiologie Moléculaire des Plantes, Saint-Paul-lez-Durance, F-13108, France; CNRS, UMR 7265 Biologie Végétale et Microbiologie Environnementales, Saint-Paul-lez-Durance, F-13108, France; Aix-Marseille Université, Saint-Paul-lez-Durance, F-13108, France
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Racchi ML. Antioxidant Defenses in Plants with Attention to Prunus and Citrus spp. Antioxidants (Basel) 2013; 2:340-69. [PMID: 26784469 PMCID: PMC4665512 DOI: 10.3390/antiox2040340] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Revised: 10/08/2013] [Accepted: 10/28/2013] [Indexed: 12/13/2022] Open
Abstract
This short review briefly introduces the formation of reactive oxygen species (ROS) as by-products of oxidation/reduction (redox) reactions, and the ways in which the antioxidant defense machinery is involved directly or indirectly in ROS scavenging. Major antioxidants, both enzymatic and non enzymatic, that protect higher plant cells from oxidative stress damage are described. Biochemical and molecular features of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) are discussed because they play crucial roles in scavenging ROS in the different cell compartments and in response to stress conditions. Among the non enzymatic defenses, particular attention is paid to ascorbic acid, glutathione, flavonoids, carotenoids, and tocopherols. The operation of ROS scavenging systems during the seasonal cycle and specific developmental events, such as fruit ripening and senescence, are discussed in relation to the intense ROS formation during these processes that impact fruit quality. Particular attention is paid to Prunus and Citrus species because of the nutritional and antioxidant properties contained in these commonly consumed fruits.
Collapse
Affiliation(s)
- Milvia Luisa Racchi
- Department of Agri-Food Production and Environmental Sciences, Section of Agricultural Genetics-DISPAA, University of Florence, via Maragliano 77, Firenze 50144, Italy.
| |
Collapse
|
30
|
Demmig-Adams B, Cohu CM, Amiard V, Zadelhoff G, Veldink GA, Muller O, Adams WW. Emerging trade-offs - impact of photoprotectants (PsbS, xanthophylls, and vitamin E) on oxylipins as regulators of development and defense. THE NEW PHYTOLOGIST 2013; 197:720-9. [PMID: 23418633 DOI: 10.1111/nph.12100] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
This review summarizes evidence for a mechanistic link between plant photoprotection and the synthesis of oxylipin hormones as regulators of development and defense. Knockout mutants of Arabidopsis, deficient in various key components of the chloroplast photoprotection system, consistently produced greater concentrations of the hormone jasmonic acid or its precursor 12- oxo-phytodienoic acid (OPDA), both members of the oxylipin messenger family. Characterized plants include several mutants deficient in PsbS (an intrinsic chlorophyll-binding protein of photosystem II) or pigments (zeaxanthin and/or lutein) required for photoprotective thermal dissipation of excess excitation energy in the chloroplast and a mutant deficient in reactive oxygen detoxification via the antioxidant vitamin E (tocopherol). Evidence is also presented that certain plant defenses against herbivores or pathogens are elevated for these mutants. This evidence furthermore indicates that wild-type Arabidopsis plants possess less than maximal defenses against herbivores or pathogens, and suggest that plant lines with superior defenses against abiotic stress may have lower biotic defenses. The implications of this apparent trade-off between abiotic and biotic plant defenses for plant ecology as well as for plant breeding/engineering are explored, and the need for research further addressing this important issue is highlighted.
Collapse
Affiliation(s)
- Barbara Demmig-Adams
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309-0334, USA.
| | | | | | | | | | | | | |
Collapse
|
31
|
Turan S, Tripathy BC. Salt and genotype impact on antioxidative enzymes and lipid peroxidation in two rice cultivars during de-etiolation. PROTOPLASMA 2013; 250:209-222. [PMID: 22434153 DOI: 10.1007/s00709-012-0395-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 02/28/2012] [Indexed: 05/31/2023]
Abstract
Crop yield is severely affected by soil salinity, as salt levels that are harmful to plant growth occur in large terrestrial areas of the world. The present investigation describes the studies of enzymatic activities, in-gel assays, gene expression of some of the major antioxidative enzymes, tocopherol accumulation, lipid peroxidation, ascorbate and dehydroascorbate contents in a salt-sensitive rice genotype PB1, and a relatively salt-tolerant cultivar CSR10 in response to 200 mM NaCl. Salt solution was added to the roots of hydroponically grown 5-day-old etiolated rice seedlings, 12 h prior to transfer to cool white fluorescent + incandescent light (100 μmol photons m(-2) s(-1)). Total tocopherol and ascorbate contents declined in salt-stressed rice seedlings. Among antioxidative enzymes, an increase in the activities of superoxide dismutase (EC 1.15.1.1), catalase (EC 1.11.1.6), ascorbate peroxidase (EC 1.11.1.11), glutathione reductase (EC 1.6.4.2), and their gene expression was observed in both cultivars in response to salt stress. The salt-tolerant cultivar CSR10 resisted stress due to its early preparedness to combat oxidative stress via upregulation of gene expression and enzymatic activities of antioxidative enzymes and a higher redox status of the antioxidant ascorbate even in a non-stressed environment.
Collapse
Affiliation(s)
- Satpal Turan
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | | |
Collapse
|
32
|
Tlili N, Khaldi A, Triki S, Munné-Bosch S. Phenolic compounds and vitamin antioxidants of caper (Capparis spinosa). PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2010; 65:260-5. [PMID: 20668946 DOI: 10.1007/s11130-010-0180-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Capparis spinosa shows strong resistance to the adverse Mediterranean conditions and it has nutritional and medicinal value. The aim of this study was to evaluate the contents of total phenolic compounds, rutin, tocopherols, carotenoids and vitamin C in leaves and flower buds of C. spinosa from different locations in Tunisia. Results showed the richness of caper with these compounds, especially phenolic compounds. Interestingly, it was also found the presence of both α- and γ-tocopherol in buds. Moreover, C. spinosa contained an appreciable level of vitamin C. The significant amounts of these antioxidants confirm the nutritional and medicinal value of caper.
Collapse
Affiliation(s)
- Nizar Tlili
- Laboratoire de Biochimie, Département de Biologie, Faculté des Sciences de Tunis, Université Tunis El-Manar, Tunis 2092, Tunisia.
| | | | | | | |
Collapse
|
33
|
Behnke K, Loivamäki M, Zimmer I, Rennenberg H, Schnitzler JP, Louis S. Isoprene emission protects photosynthesis in sunfleck exposed Grey poplar. PHOTOSYNTHESIS RESEARCH 2010; 104:5-17. [PMID: 20135229 DOI: 10.1007/s11120-010-9528-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Accepted: 01/11/2010] [Indexed: 05/12/2023]
Abstract
In the present study, we combined transient temperature and light stress (sunfleck) and comparably analyzed photosynthetic gas exchange in Grey poplar which has been genetically modified in isoprene emission capacity. Overall, we demonstrate that for poplar leaves the ability to emit isoprene is crucial to maintain photosynthesis when exposed to sunflecks. Net CO2 assimilation and electron transport rates were strongly impaired in sunfleck-treated non-isoprene emitting poplars. Similar impairment was not detected when the leaves were exposed to high light (lightflecks) only. Within 10 h non-isoprene emitting poplars recovered from sunfleck-related impairment as indicated by chlorophyll fluorescence and microarray analysis. Unstressed leaves of non-isoprene emitting poplars had higher ascorbate contents, but also higher contents of malondialdehyde than wild-type. Microarray analyses revealed lipid and chlorophyll degradation processes in the non-isoprene emitting poplars. Thus, there is evidence for an adjustment of the antioxidative system in the non-isoprene emitting poplars even under normal growth conditions.
Collapse
Affiliation(s)
- Katja Behnke
- Karlsruhe Institute of Technology, Institute for Meteorology and Climate Research (IMK-IFU), Garmisch-Partenkirchen, Germany
| | | | | | | | | | | |
Collapse
|
34
|
Bajda A, Konopka-Postupolska D, Krzymowska M, Hennig J, Skorupinska-Tudek K, Surmacz L, Wójcik J, Matysiak Z, Chojnacki T, Skorzynska-Polit E, Drazkiewicz M, Patrzylas P, Tomaszewska M, Kania M, Swist M, Danikiewicz W, Piotrowska W, Swiezewska E. Role of polyisoprenoids in tobacco resistance against biotic stresses. PHYSIOLOGIA PLANTARUM 2009; 135:351-64. [PMID: 19292825 DOI: 10.1111/j.1399-3054.2009.01204.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Infection with avirulent pathogens, tobacco mosaic virus (TMV) or Pseudomonas syringae pv. tabaci induced accumulation of polyisoprenoid alcohols, solanesol and a family of polyprenols [from polyprenol composed of 14 isoprene units (Pren-14) to -18, with Pren-16 dominating] in the leaves of resistant tobacco plants Nicotiana tabacum cv. Samsun NN. Upon TMV infection, solanesol content was increased seven- and eight-fold in the inoculated and upper leaves, respectively, while polyprenol content was increased 2.5- and 2-fold in the inoculated and upper leaves, respectively, on the seventh day post-infection. Accumulation of polyisoprenoid alcohols was also stimulated by exogenously applied hydrogen peroxide but not by exogenous salicylic acid (SA). On the contrary, neither inoculation of the leaves of susceptible tobacco plants nor wounding of tobacco leaves caused an increase in polyisoprenoid content. Taken together, these results indicate that polyisoprenoid alcohols might be involved in plant resistance against pathogens. A putative role of accumulated polyisoprenoids in plant response to pathogen attack is discussed. Similarly, the content of plastoquinone (PQ) was increased two-fold in TMV-inoculated and upper leaves of resistant plants. Accumulation of PQ was also stimulated by hydrogen peroxide, bacteria (P. syringae) and SA. The role of PQ in antioxidant defense in cellular membranous compartments is discussed in the context of the enzymatic antioxidant machinery activated in tobacco leaves subjected to viral infection. Elevated activity of several antioxidant enzymes (ascorbate peroxidase, guaiacol peroxidase, glutathione reductase and superoxide dismutase, especially the CuZn superoxide dismutase isoform) and high, but transient elevation of catalase was found in inoculated leaves of resistant tobacco plants but not in susceptible plants.
Collapse
Affiliation(s)
- Agnieszka Bajda
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Li Y, Wang Z, Sun X, Tang K. Current opinions on the functions of tocopherol based on the genetic manipulation of tocopherol biosynthesis in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2008; 50:1057-1069. [PMID: 18844774 DOI: 10.1111/j.1744-7909.2008.00689.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
As a member of an important group of lipid soluble antioxidants, tocopherols play a paramount role in the daily diet of humans and animals. Recently, genes required for tocochromanol biosynthesis pathway have been identified and cloned with the help of genomics-based approaches and molecular manipulation in the model organisms: Arabidopsis thaliana and Synechocystis sp. PCC 6803. At the basis of these foundations, genetic manipulation of tocochromanol biosynthesis pathway can give rise to strategies that enhance the level of tocochromanol content or convert the constitution of tocochromanol. In addition, genetic manipulations of the tocochromanol biosynthesis pathway provide help for the study of the function of tocopherol in plant systems. The present article summarizes recent advances and pays special attention to the functions of tocopherol in plants. The roles of tocopherol in the network of reactive oxygen species, antioxidants and phytohormones to maintain redox homeostasis and the functions of tocopherol as a signal molecule in chloroplast-to-nucleus signaling to regulate carbohydrate metabolism are also discussed.
Collapse
Affiliation(s)
- Yin Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, Fudan University, Shanghai 200433, China
| | | | | | | |
Collapse
|
36
|
Zou W, Tolstikov VV. Probing genetic algorithms for feature selection in comprehensive metabolic profiling approach. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2008; 22:1312-1324. [PMID: 18383216 DOI: 10.1002/rcm.3507] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Six different clones of 1-year-old loblolly pine (Pinus taeda L.) seedlings grown under standardized conditions in a green house were used for sample preparation and further analysis. Three independent and complementary analytical techniques for metabolic profiling were applied in the present study: hydrophilic interaction chromatography (HILIC-LC/ESI-MS), reversed-phase liquid chromatography (RP-LC/ESI-MS), and gas chromatography all coupled to mass spectrometry (GC/TOF-MS). Unsupervised methods, such as principle component analysis (PCA) and clustering, and supervised methods, such as classification, were used for data mining. Genetic algorithms (GA), a multivariate approach, was probed for selection of the smallest subsets of potentially discriminative classifiers. From more than 2000 peaks found in total, small subsets were selected by GA as highly potential classifiers allowing discrimination among six investigated genotypes. Annotated GC/TOF-MS data allowed the generation of a small subset of identified metabolites. LC/ESI-MS data and small subsets require further annotation. The present study demonstrated that combination of comprehensive metabolic profiling and advanced data mining techniques provides a powerful metabolomic approach for biomarker discovery among small molecules. Utilizing GA for feature selection allowed the generation of small subsets of potent classifiers.
Collapse
Affiliation(s)
- Wei Zou
- UC Davis Genome Center, University of California, Davis, CA 95616, USA
| | | |
Collapse
|