1
|
Ferreira MKA, Freitas WPO, Barbosa IM, da Rocha MN, da Silva AW, de Lima Rebouças E, da Silva Mendes FR, Alves CR, Nunes PIG, Marinho MM, Furtado RF, Santos FA, Marinho ES, de Menezes JESA, dos Santos HS. Heterocyclic chalcone ( E)-1-(2-hydroxy-3,4,6-trimethoxyphenyl)-3-(thiophen-2-yl) prop-2-en-1-one derived from a natural product with antinociceptive, anti-inflammatory, and hypoglycemic effect in adult zebrafish. 3 Biotech 2023; 13:276. [PMID: 37457871 PMCID: PMC10349009 DOI: 10.1007/s13205-023-03696-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023] Open
Abstract
Diabetes is a disease linked to pathologies, such as chronic inflammation, neuropathy, and pain. The synthesis by the Claisen-Schmidt condensation reaction aims to obtain medium to high yield chalconic derivatives. Studies for the synthesis of new chalcone molecules aim at the structural manipulation of aromatic rings, as well as the replacement of rings by heterocycles, and combination through chemical reactions of synthesized structures with other molecules, in order to enhance biological activity. A chalcone was synthesized and evaluated for its antinociceptive, anti-inflammatory and hypoglycemic effect in adult zebrafish. In addition to reducing nociceptive behavior, chalcone (40 mg/kg) reversed post-treatment-induced acute and chronic hyperglycemia and reduced carrageenan-induced abdominal edema in zebrafish. It also showed an inhibitory effect on NO production in J774A.1 cells. When compared with the control groups, the oxidative stress generated after chronic hyperglycemia and after induction of abdominal edema was significantly reduced by chalcone. Molecular docking simulations of chalcone with Cox -1, Cox-2, and TRPA1 channel enzymes were performed and indicated that chalcone has a higher affinity for the COX-1 enzyme and 4 interactions with the TRPA1 channel. Chalcone also showed good pharmacokinetic properties as assessed by ADMET. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03696-8.
Collapse
Affiliation(s)
- Maria Kueirislene Amancio Ferreira
- Laboratório de Química de Produtos Naturais-LQPNS, Universidade Estadual do Ceará, Programa de Pós-Graduação em Ciências Naturais, Fortaleza, CE Brazil
| | - Wendy Pascoal Oliveira Freitas
- Laboratório de Química de Produtos Naturais-LQPNS, Universidade Estadual do Ceará, Programa de Pós-Graduação em Ciências Naturais, Fortaleza, CE Brazil
| | - Italo Moura Barbosa
- Laboratório de Química de Produtos Naturais-LQPNS, Universidade Estadual do Ceará, Programa de Pós-Graduação em Ciências Naturais, Fortaleza, CE Brazil
| | - Matheus Nunes da Rocha
- Laboratório de Química de Produtos Naturais-LQPNS, Universidade Estadual do Ceará, Programa de Pós-Graduação em Ciências Naturais, Fortaleza, CE Brazil
| | - Antônio Wlisses da Silva
- Programa de Doutorado em Biotecnologia, Rede Nordeste de Biotecnologia (RENORBIO), Fortaleza, CE Brazil
| | - Emanuela de Lima Rebouças
- Programa de Doutorado em Biotecnologia, Rede Nordeste de Biotecnologia (RENORBIO), Fortaleza, CE Brazil
| | | | - Carlucio Roberto Alves
- Laboratório de Sistemas de Nanotecnologia e BiomateriaisPrograma de Pós-Graduação em Ciências Naturais, Universidade Estadual do Ceará, Fortaleza, CE Brazil
| | - Paulo Iury Gomes Nunes
- Departamento de Fisiologia e Farmacologia Laboratório de Produtos Naturais, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE Brazil
| | | | | | - Flávia Almeida Santos
- Departamento de Fisiologia e Farmacologia Laboratório de Produtos Naturais, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE Brazil
| | - Emmanuel Silva Marinho
- Laboratório de Química de Produtos Naturais-LQPNS, Universidade Estadual do Ceará, Programa de Pós-Graduação em Ciências Naturais, Fortaleza, CE Brazil
| | - Jane Eire Silva Alencar de Menezes
- Laboratório de Química de Produtos Naturais-LQPNS, Universidade Estadual do Ceará, Programa de Pós-Graduação em Ciências Naturais, Fortaleza, CE Brazil
| | - Helcio Silva dos Santos
- Laboratório de Química de Produtos Naturais-LQPNS, Universidade Estadual do Ceará, Programa de Pós-Graduação em Ciências Naturais, Fortaleza, CE Brazil
- Programa de Doutorado em Biotecnologia, Rede Nordeste de Biotecnologia (RENORBIO), Fortaleza, CE Brazil
- Departamento de Química, Universidade Estadual Vale do Acaraú, Sobral, CE Brazil
| |
Collapse
|
2
|
Rebouças EDL, da Silva AW, Rodrigues MC, Ferreira MKA, Mendes FRS, Marinho MM, Marinho EM, Pereira LR, Araújo JIFD, da Silva JYG, Moura LFWG, Magalhaes FEA, Salles Trevisan MT, Dos Santos HS, Marinho ES, Guedes MIF. Antinociceptive, anti-inflammatory and hypoglycemic activities of the ethanolic Turnera subulata Sm. flower extract in adult zebrafish ( Danio rerio). J Biomol Struct Dyn 2022; 40:13062-13074. [PMID: 34629028 DOI: 10.1080/07391102.2021.1981449] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Turnera subulata Sm. belongs to the family Turneraceae and is found in Brazil. The present study evaluated the antinociceptive, anti-inflammatory, and hypoglycemic potential of T. subulata flower extract (EtFloTsu) in zebrafish (Danio rerio). The total phenol and flavonoid contents of EtFloTsu were determined and identified using the Folin Ciocalteu reagent and aluminum chloride (AlCl3), respectively. The constituents of the extract were identified by HPLC-DAD, and the in vitro antioxidant activity (DPPH) was determined, toxicity in brine shrimp, and acute toxicity of 96 h in adult zebrafish. In addition, adult zebrafish (n = 6/fish) were treated orally with EtFloTsu (4, 20, or 40 mg/kg; vo) and subjected to formalin-induced nociception tests (with its possible mechanism of action with camphor), carrageenan-induced inflammation, and D-glucose-induced hyperglycemia (111 mM). Oxidative stress in the liver and brain tissues was assessed. EtFloTsu showed high levels of phenolic and flavonoid compounds with antioxidant activity. The phytochemicals chlorogenic acid, luteolin-7-o-glucoside, vitexin, and apigenin-7-o-glucoside were also identified in EtFloTsu. The synergism between these constituents was possibly responsible for the antinociceptive (via TRPA1), anti-inflammatory, and hypoglycemic effects of EtFloTsu in adult zebrafish, without causing toxicity in animals. Therefore, T. subulata flowers have therapeutic agents that could treat pain, inflammation, diabetes, and related complications.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Emanuela de Lima Rebouças
- Northeast Biotechnology Network, Graduate Program of Biotechnology, Campus do Itaperi, State University of Ceará, Fortaleza, Ceará, Brazil.,Laboratory of Biotechnology and Molecular Biology, Health Sciences Center (CCS), Itaperi Campus, State University of Ceará, Fortaleza, Ceará, Brazil
| | - Antonio Wlisses da Silva
- Laboratory of Natural Products Chemistry - LQPN-S, Science and Technology Center (CCT), Itaperi Campus, State University of Ceará, Fortaleza, Ceará, Brazil
| | - Marnielle Coutinho Rodrigues
- Northeast Biotechnology Network, Graduate Program of Biotechnology, Campus do Itaperi, State University of Ceará, Fortaleza, Ceará, Brazil
| | - Maria Kueirislene Amâncio Ferreira
- Laboratory of Natural Products Chemistry - LQPN-S, Science and Technology Center (CCT), Itaperi Campus, State University of Ceará, Fortaleza, Ceará, Brazil
| | - Francisco Rogênio Silva Mendes
- Laboratory of Natural Products Chemistry - LQPN-S, Science and Technology Center (CCT), Itaperi Campus, State University of Ceará, Fortaleza, Ceará, Brazil
| | | | - Emanuelle Machado Marinho
- Group of Theoretical Chemistry - GQT, Pici Campus, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Lucas Ramos Pereira
- Department of Chemistry, Laboratory of Natural Products, Bioprospecting and Biotechnology, CECITEC Campus, State University of Ceará, Tauá, Ceará, Brazil
| | - José Ismael Feitosa de Araújo
- Department of Chemistry, Laboratory of Natural Products, Bioprospecting and Biotechnology, CECITEC Campus, State University of Ceará, Tauá, Ceará, Brazil
| | - José Ytalo Gomes da Silva
- Laboratory of Biotechnology and Molecular Biology, Health Sciences Center (CCS), Itaperi Campus, State University of Ceará, Fortaleza, Ceará, Brazil
| | | | - Francisco Ernani Alves Magalhaes
- Laboratory of Biotechnology and Molecular Biology, Health Sciences Center (CCS), Itaperi Campus, State University of Ceará, Fortaleza, Ceará, Brazil.,Department of Chemistry, Laboratory of Natural Products, Bioprospecting and Biotechnology, CECITEC Campus, State University of Ceará, Tauá, Ceará, Brazil
| | | | - Hélcio Silva Dos Santos
- Northeast Biotechnology Network, Graduate Program of Biotechnology, Campus do Itaperi, State University of Ceará, Fortaleza, Ceará, Brazil.,Laboratory of Natural Products Chemistry - LQPN-S, Science and Technology Center (CCT), Itaperi Campus, State University of Ceará, Fortaleza, Ceará, Brazil.,Department of Chemistry, State University of Vale do Acaraú, Sobral, Ceará, Brazil
| | - Emmanuel Silva Marinho
- Group of Theoretical Chemistry and Electrochemical - GQTE, FAFIDAM Campus, State University of Ceará, Iguatu, Ceará, Brazil
| | - Maria Izabel Florindo Guedes
- Northeast Biotechnology Network, Graduate Program of Biotechnology, Campus do Itaperi, State University of Ceará, Fortaleza, Ceará, Brazil.,Laboratory of Biotechnology and Molecular Biology, Health Sciences Center (CCS), Itaperi Campus, State University of Ceará, Fortaleza, Ceará, Brazil
| |
Collapse
|
3
|
Popowicz H, Kwiecień-Jaguś K, Mędrzycka-Dąbrowska W, Kopeć M, Dyk D. Evidence-Based Nursing Practices for the Prevention of Newborn Procedural Pain in Neonatal Intensive Therapy-An Exploratory Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12075. [PMID: 36231377 PMCID: PMC9566416 DOI: 10.3390/ijerph191912075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/09/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Due to the progress in neonatology, in particular, in the past three decades, the mortality rate among patients of intensive care units has decreased. However, this is connected not only with newborns needing to stay longer in the unit, but also with the exposure of newborns to many painful procedures and stresses. Lack of or insufficient pain prevention has a negative impact on the sensory or locomotor development of newborns. Despite the presence of guidelines based on scientific evidence, the use of pharmacological and non-pharmacological pain-management methods in newborns is still insufficient. AIM The aim of the study was to: identify the knowledge nurses/midwives have of recommended non-pharmacological and/or pharmacological methods, in particular, in relation to medical intervention procedures; assess the interventions for pain relief applied by midwives/nurses most often in their clinical practice; examine the role of age, general work experience, education level and years of work of medical professionals on a neonatal ward, as well as the referral level of a unit, versus the application of pharmacological and non-pharmacological methods. METHODS A descriptive and quantitative study conducted in 2019 among Polish nurses/midwives working at neonatal intensive care units. RESULTS The analysis of the material reflected the deficit of knowledge and the insufficient daily use of recommended pain-relief measures among the respondents. CONCLUSIONS The interpretation of data indicates that despite the clear and easily available recommendations of scientific societies concerning the mode of conduct in particular medical procedures, medical personnel do not apply those recommendations in their everyday practice. It is necessary to plan and implement education strategies for nurses/midwives on standard pain-management interventions during painful medical procedures.
Collapse
Affiliation(s)
- Hanna Popowicz
- Department of Obstetric and Gynecological Nursing, Medical University of Gdańsk, 80-211 Gdansk, Poland
| | - Katarzyna Kwiecień-Jaguś
- Department of Anesthesiology Nursing and Intensive Care, Medical University of Gdańsk, 80-211 Gdansk, Poland
| | | | - Monika Kopeć
- Department of Human Nutrition, University of Warmia and Mazury, 10-718 Olsztyn, Poland
| | - Danuta Dyk
- Department of Anesthesiology and Intensive Care Nursing, Poznań University of Medical Sciences, 60-806 Poznan, Poland
| |
Collapse
|
4
|
Gomes CI, Barr GA. Local injury and systemic infection in infants alter later nociception and pain affect during early life and adulthood. Brain Behav Immun Health 2021; 9:100175. [PMID: 34589906 PMCID: PMC8474633 DOI: 10.1016/j.bbih.2020.100175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 11/06/2020] [Indexed: 10/25/2022] Open
Abstract
Newborns in intensive care are regularly exposed to minor painful procedures at developmental time points when noxious stimulation would be normally absent. Pain from these interventions is inconsistently treated and often exists concurrently with systemic infection, a common comorbidity of prematurity. Our understanding of the independent and combined effects of early painful experiences and infection on pain response is incomplete. The main goals of this research therefore were to understand how pain and infection experienced early in life influence future nociceptive and affective responses to painful stimuli. Rat pups were infected with E-coli on postnatal day 2 (PN2) and had left hind paw injury with carrageenan on PN3. Standard thermal tests for acute pain, formalin tests for inflammatory pain, and conditioned place aversion testing were performed at different ages to assess the nociceptive and affective components of the pain response. Early E-coli infection and early inflammatory injury with carrageenan both independently increased pain scores following hind paw reinjury with formalin on PN8, with effects persisting into adulthood in the carrageenan exposed group. When experienced concurrently, early E-coli infection and carrageenan exposure also increased conditioned aversion to pain in adults. Effect of sex was significant only in formalin testing, with males showing higher pain scores in infancy and females showing higher pain scores as adults. These findings demonstrate that infection experienced early in life can alter both the nociceptive and affective components of the pain response and that there is a cumulative effect of local and systemic pro-inflammatory processes on the aversive component of pain.
Collapse
Affiliation(s)
- Carly I Gomes
- Department of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Gordon A Barr
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, 3615 Civic Center Boulevard, Philadelphia, PA, 19104, USA.,Department of Psychology, University of Pennsylvania, 425 S. University Avenue, Stephen A. Levin Building, Philadelphia, PA, USA
| |
Collapse
|
5
|
Liu X, Wang N, Wang J, Luo F. Formalin-induced pain prolongs sub- to supra-second time estimation in rats. PeerJ 2021; 9:e11002. [PMID: 33717706 PMCID: PMC7934679 DOI: 10.7717/peerj.11002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 02/02/2021] [Indexed: 11/25/2022] Open
Abstract
Background Temporal estimation can be influenced by pain, which is a complex psychological and physiological phenomenon. However, the time range in which perception is most sensitive to pain remains unclear. Methods In the present study, we explored the effects of acute inflammatory pain on time perception in the sub- to supra-second (0.6–2.4-s) and supra-second (2–8-s) ranges in rats. Plantar formalin injection was used to induce acute inflammatory pain, and a temporal bisection task was used to measure time perception. Task test sessions were held for five consecutive days (one per day): the day before injection (baseline), immediately after injection, and the three post-injection days. The point of subjective equality (PSE, which reflects the subjective duration) and Weber fraction (which reflects temporal sensitivity) were calculated and analysed. Results In the 0.6–2.4-s range, the PSE was significantly lower, indicating prolonged subjective duration, in the formalin group relative to the saline group (p = 0.049) immediately after injection. Formalin-induced pain also tended to lengthened time perception in the 0.6–2.4-s range on post-injection days 2 (p = 0.06) and 3 (p = 0.054). In the 2–8-s range, formalin injection did not affect the PSE or Weber fraction. Conclusions The enhanced effect of pain on temporal perception in the sub- to supra-second range is observed in this study and this effect is attenuated with the prolongation of estimated time, even in rats.
Collapse
Affiliation(s)
- Xinhe Liu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Ning Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Jinyan Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Fei Luo
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Mascarenhas CJ, Liu R, Barr GA. Effects of plant-derived analgesic compounds sinomenine and salvinorin A in infant rats. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2020; 18:174-180. [PMID: 31992510 DOI: 10.1016/j.joim.2020.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 07/03/2019] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Premature and ill neonates undergo painful but medically necessary procedures while hospitalized. Although opiate drugs are administered as analgesics, problems associated with their side effects, tolerance, and potential dependence necessitate research into alternative pain-relieving medications. Here we test two plant-derived compounds in infant rats: sinomenine, which targets the Mas-related G-protein-coupled receptor member X2 opioid receptor; and salvinorin A, which is a κ opioid receptor agonist. In adult animals both sinomenine and salvinorin A are analgesic, but neither has been tested in infants. METHODS We used the formalin and thermal plantar tests in rats 7 and 21 days of age (PN7 and PN21) for behavioral signs of pain. In addition, brain sections were stained using Fos immunohistochemistry to examine patterns of brain activation in the midbrain periaqueductal gray and the paraventricular nucleus of the hypothalamus. RESULTS Sinomenine was analgesic in both the formalin and thermal tests on animals 21 days of age. At PN7 only the highest dose elevated response latencies in the thermal test and there were no effects of sinomenine in the formalin test. Analysis of Fos expression in the sinomenine-treated animals showed no drug effect, in contrast to the behavioral results. Salvinorin A was analgesic in the formalin test only at the highest dose at 21 days of age but not in the thermal test at either age. CONCLUSION The increased modest effectiveness of sinomenine in older animals and the minimum salvinorin A drug effect suggest that the compounds act on sites that develop during the preweaning period (sinomenine) or after weaning (salvinorin A).
Collapse
Affiliation(s)
- Conrad J Mascarenhas
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Renyu Liu
- Department of Anesthesiology and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gordon A Barr
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Anesthesiology and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
7
|
Formalin-induced and neuropathic pain altered time estimation in a temporal bisection task in rats. Sci Rep 2019; 9:18683. [PMID: 31822729 PMCID: PMC6904569 DOI: 10.1038/s41598-019-55168-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/25/2019] [Indexed: 01/31/2023] Open
Abstract
Time perception is an important ability that is related closely to humans’ and animals’ daily activities. It can be distorted by various emotional states. In human studies, experimental pain has been shown to prolong the perception of time. However, related animal studies are lacking. In this study, we used a temporal bisection task to investigate how acute inflammatory pain (induced by hind-paw formalin injection) and chronic neuropathic pain [induced by spinal nerve ligation (SNL)] affected time perception in rats. Rats were trained to recognize “short” (1200-ms) and “long” (2400-ms) anchor-duration pure tones and were rewarded for corresponding lever presses. During testing, rats perceived a series of intermediate-duration and anchor-duration pure tones, and selected levers corresponding to the “short” and “long” tones. After formalin injection, rats gave more “long” lever-press responses than after saline injection. The point of subjective equality after formalin injection also increased, suggesting that formalin-induced acute pain extended time perception. In contrast, rats that had undergone SNL gave fewer “long” lever-press responses compared with the sham surgery group. This animal study suggests that formalin-induced pain and neuropathic pain may have different effects on time perception.
Collapse
|
8
|
Butkevich IP, Mikhailenko VA, Vershinina EA, Barr GA. Differences Between the Prenatal Effects of Fluoxetine or Buspirone Alone or in Combination on Pain and Affective Behaviors in Prenatally Stressed Male and Female Rats. Front Behav Neurosci 2019; 13:125. [PMID: 31244623 PMCID: PMC6579839 DOI: 10.3389/fnbeh.2019.00125] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/22/2019] [Indexed: 01/06/2023] Open
Abstract
The selective serotonin reuptake inhibitor fluoxetine and the 5-HT1A receptor agonist buspirone are used to treat depression and anxiety. Previously we demonstrated that chronic stress during pregnancy (prenatal stress) in rats, used as a model of maternal depression risk, increased inflammatory pain and depressive-like behavior in the offspring; buspirone injected to pregnant dams was protective. Clinically, the addition of buspirone to fluoxetine increases the latter’s efficacy in treating depression in patients. Here, we investigated the influence of repeated prenatal injections of fluoxetine, buspirone or their combination on pain- and depressive-like behaviors in prenatally stressed young male and female rats. Prenatal stress augmented depressive-like behavior and both thermal and inflammatory pain (formalin test), replicating our prior findings, and increased basal levels of corticosterone in the blood plasma. Both drugs and their combination reduced the effects of prenatal stress on thermal pain and depressive-like behavior independently of sex. The combination of fluoxetine and buspirone, compared with fluoxetine, was more antinociceptive in the hot plate test in both sexes, and when compared with buspirone, was more antinociceptive only in males. A detailed study of the time-course of formalin-induced pain showed a nuanced effect of these drugs that was sex-dependent. The combination of the two drugs was less effective in females than males during the initial acute phase of nociceptive behavior in flexing + shaking behaviors, whereas that combination was more effective than fluoxetine alone in the first acute phase of licking behavior in females. The antinociceptive effect of buspirone dominated that of the drug combination and of fluoxetine alone, especially during the interphase of the formalin test in both sexes for both flexing + shaking and licking, suggesting a more effective prenatal action of buspirone on the development of a descending serotonergic inhibitory system modulating pain in the spinal cord dorsal horn neurons. Our results indicate that inflammatory pain-like responses integrated at the spinal level in males were more vulnerable to prenatal stress than females. In licking, the antinociceptive effect of fluoxetine and drug combination in the interphase was more in males than females. The data underscore the importance of considering sexual dimorphism when using drug therapy.
Collapse
Affiliation(s)
- Irina P Butkevich
- Laboratory of Ontogenesis of the Nervous System, I.P. Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia.,Department of Normal Physiology, State Pediatric Medical University, St. Petersburg, Russia
| | - Viktor A Mikhailenko
- Laboratory of Ontogenesis of the Nervous System, I.P. Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Elena A Vershinina
- Department of Information Technologies and Mathematical Modeling, I.P. Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Gordon A Barr
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
9
|
Tsukamoto A, Konishi Y, Kawakami T, Koibuchi C, Sato R, Kanai E, Inomata T. Pharmacological properties of various anesthetic protocols in 10-day-old neonatal rats. Exp Anim 2017; 66:397-404. [PMID: 28674271 PMCID: PMC5682352 DOI: 10.1538/expanim.17-0037] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In general, the anesthesia in neonates involves high risk. Although hypothermic
anesthesia is recommended in rats up to the age of 7 days, neonatal anesthesia for later
periods has not been standardized. The present study investigated the pharmacological
properties of conventional anesthetic protocols in 10-day-old SD rats. The rats were
anesthetized with four anesthetics: a combination of ketamine and xylazine (K/X); a
combination of medetomidine, midazolam, and butorphanol (M/M/B); isoflurane; and
sevoflurane. Anesthetic depth was scored by reflex response to noxious stimuli. Induction
and recovery times were recorded. Vital signs and mortality rate were evaluated for safety
assessment. All rats died after administration of K/X at a dose of 60/6 mg/kg, whereas K/X
at 40/4 mg/kg resulted in insufficient anesthetic depth, indicating inappropriate for
neonatal anesthesia. Although M/M/B at the adult rat dose (0.15/2/2.5 mg/kg) did not
provide surgical anesthetic depth, the mouse dose (0.3/4/5 mg/kg) showed sufficient
anesthetic depth with relatively stable vital signs. Isoflurane required a long induction
period, and caused remarkable respiratory depression and hypothermia, resulted in a 25%
mortality rate. In contrast, sevoflurane provided consistent surgical anesthetic depth
with rapid induction. Although respiratory rate decrease was markedly observed, all rats
survived. Among the anesthetic protocols investigated in the present study, sevoflurane
and M/M/B at the mouse dose were recommended for the neonatal anesthesia. Compared with
adult rats, the required dose of both anesthetics in neonates was higher, possibly
associated with their lower anesthetic sensitivity.
Collapse
Affiliation(s)
- Atsushi Tsukamoto
- Laboratory of Laboratory Animal Science, Faculty of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuou-ku, Sagamihara, Kanagawa 252-5201, Japan
| | - Yui Konishi
- Laboratory of Laboratory Animal Science, Faculty of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuou-ku, Sagamihara, Kanagawa 252-5201, Japan
| | - Takako Kawakami
- Laboratory of Laboratory Animal Science, Faculty of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuou-ku, Sagamihara, Kanagawa 252-5201, Japan
| | - Chiharu Koibuchi
- Laboratory of Laboratory Animal Science, Faculty of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuou-ku, Sagamihara, Kanagawa 252-5201, Japan
| | - Reiichiro Sato
- Laboratory of Veterinary Internal Medicine 3, Faculty of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuou-ku, Sagamihara, Kanagawa 252-5201, Japan
| | - Eiichi Kanai
- Laboratory of Veterinary Radiology, Faculty of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuou-ku, Sagamihara, Kanagawa 252-5201, Japan
| | - Tomo Inomata
- Laboratory of Laboratory Animal Science, Faculty of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuou-ku, Sagamihara, Kanagawa 252-5201, Japan
| |
Collapse
|
10
|
Sperry MM, Kandel BM, Wehrli S, Bass KN, Das SR, Dhillon PS, Gee JC, Barr GA. Mapping of pain circuitry in early post-natal development using manganese-enhanced MRI in rats. Neuroscience 2017; 352:180-189. [PMID: 28391012 PMCID: PMC7276061 DOI: 10.1016/j.neuroscience.2017.03.052] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 03/08/2017] [Accepted: 03/28/2017] [Indexed: 12/14/2022]
Abstract
Premature or ill full-term infants are subject to a number of noxious procedures as part of their necessary medical care. Although we know that human infants show neural changes in response to such procedures, we know little of the sensory or affective brain circuitry activated by pain. In rodent models, the focus has been on spinal cord and, more recently, midbrain and medulla. The present study assesses activation of brain circuits using manganese-enhanced magnetic resonance imaging (MEMRI). Uptake of manganese, a paramagnetic contrast agent that is transported across active synapses and along axons, was measured in response to a hindpaw injection of dilute formalin in 12-day-old rat pups, the age at which rats begin to show aversion learning and which is roughly the equivalent of full-term human infants. Formalin induced the oft-reported biphasic response at this age and induced a conditioned aversion to cues associated with its injection, thus demonstrating the aversiveness of the stimulation. Morphometric analyses, structural equation modeling and co-expression analysis showed that limbic and sensory paths were activated, the most prominent of which were the prefrontal and anterior cingulate cortices, nucleus accumbens, amygdala, hypothalamus, several brainstem structures, and the cerebellum. Therefore, both sensory and affective circuits, which are activated by pain in the adult, can also be activated by noxious stimulation in 12-day-old rat pups.
Collapse
Affiliation(s)
- M M Sperry
- Department of Bioengineering, University of Pennsylvania, United States
| | - B M Kandel
- Penn Image Computing and Science Laboratory, Department of Radiology, University of Pennsylvania, United States
| | - S Wehrli
- NMR Core, Children's Hospital of Philadelphia, United States
| | - K N Bass
- Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, United States
| | - S R Das
- Penn Image Computing and Science Laboratory, Department of Radiology, University of Pennsylvania, United States
| | - P S Dhillon
- Penn Image Computing and Science Laboratory, Department of Radiology, University of Pennsylvania, United States
| | - J C Gee
- Penn Image Computing and Science Laboratory, Department of Radiology, University of Pennsylvania, United States
| | - G A Barr
- Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, United States.
| |
Collapse
|
11
|
Butkevich IP, Mikhailenko VA, Vershinina EA, Aloisi AM, Barr GA. Long-Term Effects of Chronic Buspirone during Adolescence Reduce the Adverse Influences of Neonatal Inflammatory Pain and Stress on Adaptive Behavior in Adult Male Rats. Front Behav Neurosci 2017; 11:11. [PMID: 28184190 PMCID: PMC5266710 DOI: 10.3389/fnbeh.2017.00011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 01/12/2017] [Indexed: 01/07/2023] Open
Abstract
Neonatal pain and stress induce long-term changes in pain sensitivity and behavior. Previously we found alterations in pain sensitivity in adolescent rats exposed to early-life adverse events. We tested whether these alterations have long-lasting effects and if those effects can be improved by the 5-hydroxytryptamine 1A (5-HT1A) receptor agonist buspirone injected chronically during the adolescent period. This study investigates: (1) effects of inflammatory pain (the injection of formalin into the pad of a hind paw) or stress (short maternal deprivation-isolation, MI), or their combination in 1-2-day-old rats on the adult basal pain, formalin-induced pain, anxiety and depression; (2) effects of adolescent buspirone in adult rats that experienced similar early-life insults. Changes in nociceptive thresholds were evaluated using the hot plate (HP) and formalin tests; levels of anxiety and depression were assessed with the elevated plus maze and forced swim tests respectively. Both neonatal painful and stressful treatments induced long-term alterations in the forced swim test. Other changes in adult behavioral responses were dependent on the type of neonatal treatment. There was a notable lack of long-term effects of the combination of early inflammatory pain and stress of MI on the pain responses, anxiety levels or on the effects of adolescent buspirone. This study provides the first evidence that chronic injection of buspirone in adolescent rats alters antinociceptive and anxiolytic effects limited to adult rats that showed behavioral alterations induced by early-life adverse treatments. These data highlight the role of 5-HT1A receptors in long-term effects of neonatal inflammatory pain and stress of short MI on adaptive behavior and possibility of correction of the pain and psychoemotional behavior that were altered by adverse pain/stress intervention using buspirone during critical adolescent period.
Collapse
Affiliation(s)
- Irina P. Butkevich
- Laboratory of Ontogenesis of the Nervous System, I.P. Pavlov Institute of Physiology, Russian Academy of SciencesSt. Petersburg, Russia
| | - Viktor A. Mikhailenko
- Laboratory of Ontogenesis of the Nervous System, I.P. Pavlov Institute of Physiology, Russian Academy of SciencesSt. Petersburg, Russia
| | - Elena A. Vershinina
- Department of Information Technologies and Mathematical Modeling, I.P. Pavlov Institute of Physiology, Russian Academy of SciencesSt. Petersburg, Russia
| | - Anna M. Aloisi
- Department of Medicine, Surgery and Neuroscience, University of SienaSiena, Italy
| | - Gordon A. Barr
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia and the Perelman School of Medicine at the University of PennsylvaniaPhiladelphia, PA, USA
| |
Collapse
|
12
|
Barr GA, Wang S, Weisshaar CL, Winkelstein BA. Developmental Changes in Pain and Spinal Immune Gene Expression after Radicular Trauma in the Rat. Front Neurol 2016; 7:223. [PMID: 28018284 PMCID: PMC5156703 DOI: 10.3389/fneur.2016.00223] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 11/23/2016] [Indexed: 01/08/2023] Open
Abstract
Neuropathic pain is chronic pain that develops after nerve injury and is less frequent in infants and children than in adults. Likewise, in animal models of neuropathic pain, allodynia and hyperalgesia are non-existent or attenuated in the infant, with a “switch” during development by which acute nerve injury transitions to chronic pain. Concomitant with the delay in neuropathic pain, there is a parallel delay in the ability of nerve injury to activate the immune system. Models of neuropathic pain in the infant have used various ligation methods and find that neuropathic pain does not occur under after postnatal days 21–28 (PN21–PN28), linked to activation of immune processes and developmental regulation of anti-inflammatory cytokines. We applied a model of neuropathic pain in the adult using a transient compression of the cervical nerve or nerve root in infant rats (injured at 10, 14, 21, or 28 days of age) to define transition periods during which injury results in no change in thermal and mechanical pain sensitivity or in short-term changes in pain. There was little to no hyperalgesia when the injury was imposed at PN10, but significant thermal hyperalgesia and mechanical allodynia 1 day after compression injury when performed at PN14, 21, or 28. Thermal withdrawal latencies returned to near baseline by 7 days postsurgery when the injuries were at PN14, and lasted up to 14 days when the injury was imposed at PN28. There was mechanical allodynia following injury at 1 day postinjury and at 14 days after injury at PN14. Measurements of mRNA from spinal cord at 1, 7, and 14 days postinjury at PN14, 21, and 28 showed that both the magnitude and duration of elevated immune markers and chemokines/cytokines were greater in the older animals, corresponding to the development of hyperalgesia. Thus, we confirm the late onset of neuropathic pain but found no evidence of emergent hyperalgesia if the injury was before PN21. This may be due to the use of a transient, and not sustained, compression ligation model.
Collapse
Affiliation(s)
- Gordon A Barr
- Division of Basic Science Research, Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania , Philadelphia, PA , USA
| | - Shaoning Wang
- Division of Basic Science Research, Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania , Philadelphia, PA , USA
| | - Christine L Weisshaar
- Spine Pain Research Laboratory, Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania , Philadelphia, PA , USA
| | - Beth A Winkelstein
- Spine Pain Research Laboratory, Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania , Philadelphia, PA , USA
| |
Collapse
|
13
|
Butkevich IP, Mikhailenko VA, Vershinina EA, Ulanova NA. Differences in adaptive behaviors of adolescent male and female rats exposed at birth to inflammatory pain or stress. J EVOL BIOCHEM PHYS+ 2015. [DOI: 10.1134/s0022093015040067] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Mikhailenko VA, Butkevich IP, Vershinina EA, Ulanova NA. Long-term changes in adaptive behavior of rats after inflammatory pain stimulation during neonatal development. J EVOL BIOCHEM PHYS+ 2015. [DOI: 10.1134/s0022093015020052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Hunter D, Chai C, Barr GA. Effects of COX inhibition and LPS on formalin induced pain in the infant rat. Dev Neurobiol 2014; 75:1068-79. [PMID: 25205468 DOI: 10.1002/dneu.22230] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 08/29/2014] [Accepted: 09/07/2014] [Indexed: 12/14/2022]
Abstract
In the adult, immune and neural processes jointly modulate pain. During development, both are in transition and little is known about the role that the immune system plays in pain processing in infants and children. The objective of this study was to determine if inhibition or augmentation of the immune system would alter pain processing in the infant rat, as it does in the adult. In Experiment 1, rat pups aged 3, 10, or 21 (PN3, PN10, and PN21) days of age were pretreated with NS398 (selective cyclooxygenase (COX)-2 inhibitor) or SC560 (selective COX-1 inhibitor) and tested in the intraplantar formalin test to assess effects of COX inhibition on nociception. Neither drug had an effect on the behavioral response at PN3 or PN10 pups but both drugs attenuated nociceptive scores in PN21 pups. cFos expression in the spinal cord likewise was reduced only at PN21. In Experiment 2, pups were injected with lipopolysaccharide (LPS) prior to the formalin test at PN3 or PN21. LPS increased the nociceptive response more robustly at PN21 than at PN3, while increasing cytokine mRNA equally at both ages. The augmentation of pain responding at PN21 was largely during the late stages of the formalin test, as reported in the adult. These data support previous findings demonstrating late maturing immune modulation of nociceptive behaviors.
Collapse
Affiliation(s)
- Deirtra Hunter
- Department of Developmental Neuroscience, New York State Psychiatric Institute, Columbia University College of Physicians and Surgeons, New York
| | - Christina Chai
- Department of Psychology, Mercy College, Dobbs Ferry, New York, 10522
| | - Gordon A Barr
- Department of Developmental Neuroscience, New York State Psychiatric Institute, Columbia University College of Physicians and Surgeons, New York
- Department of Psychology, Hunter College, City University of New York, New York
| |
Collapse
|
16
|
Barr GA, Hunter DA. Interactions between glia, the immune system and pain processes during early development. Dev Psychobiol 2014; 56:1698-710. [PMID: 24910104 DOI: 10.1002/dev.21229] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 05/15/2014] [Indexed: 01/10/2023]
Abstract
Pain is a serious problem for infants and children and treatment options are limited. Moreover, infants born prematurely or hospitalized for illness likely have concurrent infection that activates the immune system. It is now recognized that the immune system in general and glia in particular influence neurotransmission and that the neural bases of pain are intimately connected to immune function. We know that injuries that induce pain activate immune function and suppressing the immune system alleviates pain. Despite this advance in our understanding, virtually nothing is known of the role that the immune system plays in pain processing in infants and children, even though pain is a serious clinical issue in pediatric medicine. This brief review summarizes the existing data on immune-neural interactions in infants, providing evidence for the immaturity of these interactions.
Collapse
Affiliation(s)
- Gordon A Barr
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104.
| | | |
Collapse
|
17
|
Inflammatory pain and corticosterone response in infant rats: effect of 5-HT1A agonist buspirone prior to gestational stress. Mediators Inflamm 2013; 2013:915189. [PMID: 23606797 PMCID: PMC3628187 DOI: 10.1155/2013/915189] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 03/06/2013] [Indexed: 01/18/2023] Open
Abstract
Our researches have shown that gestational stress causes exacerbation of inflammatory pain in the offspring; the maternal 5-HT1A agonist buspirone before the stress prevents the adverse effect. The serotonergic system and hypothalamo-pituitary-adrenal (HPA) axis are closely interrelated. However, interrelations between inflammatory pain and the HPA axis during the hyporeactive period of the latter have not been studied. The present research demonstrates that formalin-induced pain causes a gradual and prolonged increase in plasma corticosterone level in 7-day-old male rats; twenty-four hours after injection of formalin, the basal corticosterone level still exceeds the initial basal corticosterone value. Chronic treatments of rat dams with buspirone before restraint stress during gestation normalize in the offspring pain-like behavior and induce during the acute phase in the formalin test the stronger corticosterone increase as compared to the stress hormonal elevation in animals with other prenatal treatments. Negative correlation between plasma corticosterone level and the number of flexes+shakes is revealed in buspirone+stress rats. The new data enhance the idea about relativity of the HPA axis hyporeactive period and suggest that maternal buspirone prior to stress during gestation may enhance an adaptive mechanism of the inflammatory nociceptive system in the infant male offspring through activation of the HPA axis peripheral link.
Collapse
|
18
|
Low formalin concentrations induce fine-tuned responses that are sex and age-dependent: a developmental study. PLoS One 2013; 8:e53384. [PMID: 23308208 PMCID: PMC3538774 DOI: 10.1371/journal.pone.0053384] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 11/27/2012] [Indexed: 11/19/2022] Open
Abstract
The formalin test is increasingly applied as a model of inflammatory pain using high formalin concentrations (5–15%). However, little is known about the effects of low formalin concentrations on related behavioural responses. To examine this, rat pups were subjected to various concentrations of formalin at four developmental stages: 7, 13, 22, and 82 days of age. At postnatal day (PND) 7, sex differences in flinching but not licking responses were observed with 0.5% formalin evoking higher flinching in males than in females. A dose response was evident in that 0.5% formalin also produced higher licking responses compared to 0.3% or 0.4% formalin. At PND 13, a concentration of 0.8% formalin evoked a biphasic response. At PND 22, a concentration of 1.1% evoked higher flinching and licking responses during the late phase (10–30 min) in both males and females. During the early phase (0–5 min), 1.1% evoked higher licking responses compared to 0.9% or 1% formalin. 1.1% formalin produced a biphasic response that was not evident with 0.9 or 1%. At PND 82, rats displayed a biphasic pattern in response to three formalin concentrations (1.25%, 1.75% and 2.25%) with the presence of an interphase for both 1.75% and 2.25% but not for 1.25%. These data suggest that low formalin concentrations induce fine-tuned responses that are not apparent with the high formalin concentration commonly used in the formalin test. These data also show that the developing nociceptive system is very sensitive to subtle changes in formalin concentrations.
Collapse
|
19
|
Butkevich IP, Mikhailenko VA, Vershinina EA, Otellin VA, Aloisi AM. Buspirone before prenatal stress protects against adverse effects of stress on emotional and inflammatory pain-related behaviors in infant rats: age and sex differences. Brain Res 2011; 1419:76-84. [PMID: 21937026 DOI: 10.1016/j.brainres.2011.08.068] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 08/23/2011] [Accepted: 08/27/2011] [Indexed: 12/29/2022]
Abstract
Prenatal stress strengthens tonic pain and provokes depression. The serotoninergic system is involved in these processes. We recently showed that maternal buspirone, a 5-HT1A receptor agonist, protects against the adverse effects of in utero stress on depression and pain in adult rat offspring. Using a similar maternal treatment with buspirone, we focus here on the infant stage, which is important for the correction of prenatal abnormalities. Maternal buspirone before restraint stress during the last week of pregnancy decreased the time of immobility in the forced swim test in the infant offspring. Prenatal stress increased formalin-induced pain in the second part of the time-course of the response to formalin in males of middle infancy but in the first part of the response in males of late infancy. The effect was reversed by maternal buspirone. Pain dominated in males of both middle and late infancy but the time-course of formalin pain in infant females revealed a slower development of the processes. The results show that the time-course of formalin-induced pain in infant rats reacts to prenatal stress in an age-dependent and sexually dimorphic manner. Our finding of opposite influences of prenatal stress and buspirone before prenatal stress on formalin-induced pain during the interphase indicates that functional maturity of the descending serotonergic inhibitory system occurs in late infancy males (11-day-olds), and 5-HT1A receptors participate in this process. The data provide evidence that maternal treatment with buspirone prior to stress during pregnancy alleviates depression-like and tonic pain-related behaviors in the infant offspring.
Collapse
Affiliation(s)
- Irina P Butkevich
- Laboratory of Ontogeny of the Nervous System, Pavlov Institute of Physiology, Russian Academy of Sciences, Nab. Makarova 6, St. Petersburg 199034, Russia.
| | | | | | | | | |
Collapse
|
20
|
Formalin-induced c-fos expression in the brain of infant rats. THE JOURNAL OF PAIN 2010; 12:263-71. [PMID: 21146467 DOI: 10.1016/j.jpain.2010.09.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 07/30/2010] [Accepted: 09/16/2010] [Indexed: 11/21/2022]
Abstract
UNLABELLED In the fetal, infant, and adult rat, injury induces a well-defined behavioral response and induces c-fos expression in the spinal cord dorsal horn. There is more limited information about the processing of noxious stimulation in the infant brain. We describe here the appearance of the Fos protein in the brain of fetal and infant rats following formalin-induced injury. Regions were chosen for analysis with a special focus on brain loci that express c-fos in the adult. No Fos positive cells were found in the brains of fetuses; newborns did not show increased Fos expression after formalin injection in any structure examined. At 3 and 14 days of age, there was a significant increase in Fos staining induced by formalin in the ventral lateral medulla. In contrast, paraventricular and medial dorsal nuclei of the thalamus, the paraventricular nucleus of the hypothalamus, and periaqueductal gray of the midbrain showed increased levels of Fos protein only at 14 days of age. We hypothesize that this developmental pattern is related not only to the maturation of pain perception but also to development of autonomic and defensive reactions to pain in the infant. PERSPECTIVE Because the infant processes pain differently than the adult, knowledge of those differences informs pediatric clinical practice. Using Fos expression as a marker of neural activity in the rat, we show that the pattern of brain activation is immature at birth but is in place by 14 days of age.
Collapse
|
21
|
Butkevich IP, Mikhailenko VA, Vershinina EA, Semenov PO. Infantile stage of rat development in behavioral parameters of depression-like state and pain response. J EVOL BIOCHEM PHYS+ 2009. [DOI: 10.1134/s0022093009050065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Interrelationship between measures of pain reactions in inflammation and levels of depression in prenatally stressed rat pups. ACTA ACUST UNITED AC 2009; 40:179-84. [PMID: 20033308 DOI: 10.1007/s11055-009-9241-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 07/21/2008] [Indexed: 11/27/2022]
Abstract
The interrelationship between measures of pain reactions (number of flexion + shaking patterns) in the formalin test and the level of depression (duration of immobility) in the forced swimming (Porsolt) test was studied in prenatally stressed rat pups aged 7-8 days. Two series of experiments were performed, with different sequences of tests separated by intervals of one day. In the first series of experiments, the Porsolt test was performed first; in the second series, the formalin test was performed before forced swimming. The sequence of tests was found to have different effects on measures of pain and depression and their correlation in prenatally stressed and unstressed rat pups. The effects of the sequence of the depression test (before or after the formalin test) on measures of depression were different in prenatally unstressed and stressed rat pups. In the former there were no differences between the two test sequences, while in prenatally stressed rat pups the first sequence showed a significant increase in the duration of immobility. The order of testing had no effect on the pain response--there were no differences between the numbers of flexion + shaking patterns in either prenatally stressed rat pups or unstressed animals; measures of the pain response were significantly greater in the sequence in which the formalin test was followed by the Porsolt test in prenatally stressed individuals as compared with unstressed animals. A positive correlation between study parameters was seen in the first series in prenatally unstressed rat pups, while there was a negative correlation in prenatally stressed animals. In the second series, there were no significant relationships between measures. Thus, the sequelae of postnatal stress, as imposed by each test the day before the final test, were apparent only in prenatally stressed animals in terms of the level of depression.
Collapse
|
23
|
de Medeiros CB, Fleming AS, Johnston CC, Walker CD. Artificial rearing of rat pups reveals the beneficial effects of mother care on neonatal inflammation and adult sensitivity to pain. Pediatr Res 2009; 66:272-7. [PMID: 19531973 DOI: 10.1203/pdr.0b013e3181b1be06] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Repeated pain during brain development can have long-term consequences in both humans and animals. We previously showed that maternal care provided to pups experiencing pain reduced adult pain sensitivity. This study tested whether sensory stimulation was responsible for this effect. Rat pups were either mother-reared controls (MR-CON) or artificially reared (AR) with minimal (AR-MIN) or maximal (AR-MAX) stimulation provided daily. In each rearing condition, pups were either uninjected or injected from postnatal day (PND) 4 to 14 with saline (0.9%) or formalin (0.2-0.4%). Pain behavior and paw inflammation were scored. Thermal sensitivity and responses to formalin were tested in adulthood (PND 70). AR neonates, irrespective of sensory stimulation received, exhibited a pain response (p < 0.001), even with a mild formalin dose. Maternal rearing reduced inflammation during the second week of life compared with AR pups (p < 0.05). Early pain exposure did not modify adult pain sensitivity. However, rearing altered adult pain sensitivity such that uninjected MR-CON rats had lower pain sensitivities than uninjected AR rats (p < 0.05). This suggests that the beneficial effects of maternal rearing can be obliterated if additional stimulation/stress occurs during the early neonatal period. In addition, this suggests that optimal level of maternal stimulation exists that determines adult pain sensitivity.
Collapse
Affiliation(s)
- Cynthia B de Medeiros
- Department of Psychology, University of Toronto at Mississauga, Mississauga, Ontario L5L 1C6, Canada
| | | | | | | |
Collapse
|
24
|
Butkevich IP, Mikhailenko VA, Vershinina EA, Semionov PO, Otellin VA, Aloisi AM. Heterogeneity of the infant stage of rat development: inflammatory pain response, depression-related behavior, and effects of prenatal stress. Brain Res 2009; 1286:53-9. [PMID: 19559682 DOI: 10.1016/j.brainres.2009.06.055] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2009] [Revised: 06/15/2009] [Accepted: 06/17/2009] [Indexed: 12/29/2022]
Abstract
The infant stage of rat development is a very important period for potential correction of adverse consequences produced by negative prenatal events. However the age limit for this correction needs to be investigated. The last prenatal and first two weeks after birth are "critical" for maturation of the nociceptive and emotional systems. Clinical observations suggest a correlation between persistent pain response and emotional behavior. In infant male rats of different ages, we studied indices of the inflammatory pain response (the number of flexes+shakes in the formalin test), depression-related behavior (immobility in the forced swim test) and the relations between them, as well as the effects of prenatal stress on these indices. Furthermore, we assessed the trend of body weight and the relations between body weight and the depression- and pain-related behaviors. We demonstrate heterogeneity of the infant stage: control prenatally non-stressed rat pups showed significantly lower immobility at 7 days of age than at 10 days; prenatal stress caused an increase of immobility and the number of flexes+shakes in 7-8-day-old pups but not in 10-11-day-olds. These findings should be taken into account in the treatment of abnormalities of emotional and inflammatory pain-related behaviors produced by prenatal stressful events. The present data and our previous findings indicate that the deficiency of body weight in prenatally stressed newborns may predict the development of abnormalities in inflammatory pain-related responses during postnatal ontogeny.
Collapse
Affiliation(s)
- Irina P Butkevich
- Laboratory of Ontogeny of the Nervous System, Pavlov Institute of Physiology, Russian Academy of Sciences, Nab. Makarova, 6, St. Petersburg 199034, Russia.
| | | | | | | | | | | |
Collapse
|
25
|
Butkevich I, Mikhailenko V, Semionov P, Bagaeva T, Otellin V, Aloisi AM. Effects of maternal corticosterone and stress on behavioral and hormonal indices of formalin pain in male and female offspring of different ages. Horm Behav 2009; 55:149-57. [PMID: 18955060 DOI: 10.1016/j.yhbeh.2008.09.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Revised: 09/17/2008] [Accepted: 09/17/2008] [Indexed: 10/21/2022]
Abstract
In previous studies, we showed for the first time that prenatal stress in rats produces long-term alterations of formalin-induced pain behavior that are dependent on age and sex, and we demonstrated an important role of the serotonergic system in mechanisms of prenatal stress (Butkevich, I.P. and Vershinina, E.A., 2001; Butkevich, I.P. and Vershinina, E.A., 2003; Butkevich, I.P., Mikhailenko, V.A., Vershinina, E.A., Khozhai, L.I., Grigorev, I.P., Otellin, V.A., 2005; Butkevich, I.P., Mikhailenko, V.A., Khozhai, L.I., Otellin, V.A., 2006). In the present study, we focus on the influence of the maternal corticosterone milieu and its role in the effects of stress during pregnancy on formalin-induced pain and the corticosterone response to it in male and female offspring of different ages. For this purpose, we used adrenalectomy (AD) in female rats 3-4 weeks before mating (as distinct from AD typically performed at the beginning of pregnancy). Since AD is considered a reliable method to treat hypercortisolism, researches on the effects of long-term AD in dams on the systems responsible for adaptive behavior in offspring are important (such studies are not described in the literature). The results demonstrate that the differences in the corticosterone response to injection of formalin and saline are obvious in 90-day-old (adult) female offspring but masked in 25-day-old ones. AD promoted the corticosterone response to formalin-induced pain but not to injection of saline in prenatally non-stressed female offspring of both ages. Prenatal stress canceled the differences in corticosterone response to injection of formalin and saline in 25-day-old offspring of AD dams and in adult offspring of sham-operated (SH) dams but caused similar differences in adult offspring of AD dams. Sex differences were found in basal corticosterone levels in AD prenatally stressed rats of both age groups, with a higher level in females, and in the corticosterone response to formalin-induced pain in the adult rats of all groups investigated, with higher corticosterone levels in females. In regard to pain behavior, AD induced significant changes in flexing+shaking in prenatally non-stressed adult offspring and canceled the differences in this behavior between non-stressed and stressed 25-day-old offspring. There were sex differences in pain behavior of the adult rats: greater flexing+shaking in AD non-stressed males but in SH non-stressed females; greater licking in prenatally-stressed AD and SH females. These results indicate that the long-term influences of maternal corticosterone on formalin-induced pain and the corticosterone response to it are determined by the sex and age of the offspring and suggest that other mechanisms, including serotonergic ones revealed in our previous studies, are involved in the effects of prenatal stress on inflammatory pain behavior.
Collapse
Affiliation(s)
- Irina Butkevich
- Laboratory of Ontogeny of the Nervous System, IP Pavlov Institute of Physiology, Russian Academy of Sciences, Petersburg, Russia.
| | | | | | | | | | | |
Collapse
|
26
|
Rohani MH, Akbari Z, Behzadi G. Congenital hypothyroidism alters formalin-induced pain response in neonatal rats. Int J Dev Neurosci 2008; 27:53-7. [PMID: 18992317 DOI: 10.1016/j.ijdevneu.2008.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2007] [Revised: 10/06/2008] [Accepted: 10/07/2008] [Indexed: 10/21/2022] Open
Abstract
The present study designed to investigate the development of nociceptive circuits upon formalin-induced pain in congenital hypothyroid pups during the first three postnatal weeks. Following induction of maternal hypothyroidism, the offspring pups were received right intraplantar injection of different formalin concentrations at 7, 15, and 23 days of age. Significant reduction in weight gain was observed in PTU-treated offspring from postnatal days 15 up to 23 (P<0.001). No difference was observed between normal and hypothyroid PND7 pups in total pain intensity score with 0.3% solution of formalin. However, normal pups showed higher total pain score (P<0.01) during the first phase of 1% formalin injection. PND15 normal pups showed a biphasic pain response with a concentration of 2% formalin injection. Obvious persistence of higher pain intensity was observed in hypothyroid pups after interphase through the 2nd phase (P2) and recovery phase (P3), (P<0.001). PND23 hypothyroid rats showed slightly biphasic pattern of pain behavior with persistence of lower pain intensity during P2 (2.5% formalin, P<0.05), (10% formalin, P<0.001) without any further decline during P3 (P<0.01, P<0.001 respectively). In general, the number of flexes+shakes in hypothyroid pups was higher than normal pups in both the early and late phases of the test. Licking activity was intensively expressed only in normal pups during phase 2 at the age of 23 days. In contrast to acute pain, hypothyroidism results to pain hypersensitivity in two weeks old rats whereas weaned rats were hyposensitive to tonic nociceptive stimulation without showing the subsequent recovery phase.
Collapse
Affiliation(s)
- Mohammad H Rohani
- Neuroscience Research Center and Department of Physiology, Faculty of Medicine, Shahid Beheshti University, M.C. Evin, Post Box: 19615-1178, Tehran, Iran
| | | | | |
Collapse
|
27
|
Quintero GC, Erzurumlu RS, Vaccarino AL. Evaluation of morphine analgesia and motor coordination in mice following cortex-specific knockout of the N-methyl-D-aspartate NR1-subunit. Neurosci Lett 2008; 437:55-8. [PMID: 18423864 PMCID: PMC2497425 DOI: 10.1016/j.neulet.2008.03.077] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Revised: 03/26/2008] [Accepted: 03/27/2008] [Indexed: 11/20/2022]
Abstract
Studies have shown that N-methyl-D-aspartate (NMDA) receptors play a critical role in morphine analgesia and motoric processes at different levels of the central nervous system. In this study, we used cortex-specific NR1 knockout (KO) mice (C57BL/6 strain) to elucidate the role of cortical NMDA receptors in morphine analgesia and motor coordination. On post-natal day 20, mice (CTL and KO) received vehicle (saline) or morphine (10 mg/kg) and paw withdrawal latency (PWL) to a noxious thermal stimulus was measured. On post-natal day 21, motor coordination was measured using the rotating pole test. No differences in KO mice were found with respect to PWL following administration of saline or morphine (p>0.05). However, sex-dependent differences were found in motor coordination, with male KO mice showing a greater motor impairment in the rotating pole test than female KO mice (p<0.05). The present results demonstrate that NMDA receptors are involved in both the analgesic effects of morphine and motor coordination, with the existence of sex-related differences in motor coordination.
Collapse
Affiliation(s)
- Gabriel C Quintero
- Neuroscience Center of Excellence, Louisiana State University Health Science Center, New Orleans, LA 70112, USA.
| | | | | |
Collapse
|
28
|
Anand KJS, Garg S, Rovnaghi CR, Narsinghani U, Bhutta AT, Hall RW. Ketamine reduces the cell death following inflammatory pain in newborn rat brain. Pediatr Res 2007; 62:283-90. [PMID: 17551412 DOI: 10.1203/pdr.0b013e3180986d2f] [Citation(s) in RCA: 161] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Premature infants experience untreated repetitive pain that may alter their brain development. Effects of ketamine and repetitive pain on cellular death and subsequent behavior were studied in neonatal rats. Rat pups were randomized to undisturbed controls (C), 4% formalin injection (F), ketamine alone (K, 5 mg/kg) or formalin plus ketamine (KF) and were assessed for neuroactivation with Fos protein, cellular death with FluoroJade-B, cognition with the radial arm maze, and pain thresholds with the hot-plate. Greater Fos expression and cell death occurred in F vs. C groups in defined brain areas at 1 and 4 h in F compared with other groups. Cell death was accentuated 3.3-fold in cortical areas and 1.6-fold in subcortical areas in the F compared with the C group following repetitive pain and sacrifice 18-20 h later. These effects were ameliorated by ketamine. Compared with the F group, all other groups demonstrated greater exploratory and rearing behaviors and decreased time for bait consumption at 1-h and 3-h intervals. Significantly greater thermal pain latencies occurred in the KF and F groups. Repetitive neonatal pain accentuates neuronal excitation and cell death in developmentally regulated cortical and subcortical areas, which decreases the acquisition of visual-spatial clues, short-term and long-term memory, and increases pain latencies. Ketamine analgesia mitigates most of these effects.
Collapse
Affiliation(s)
- Kanwaljeet J S Anand
- Pain Neurobiology Lab, Arkansas Children's Hospital Research Institute, Little Rock, Arkansas 72202, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Quintero GC, Erzurumlu RS, Vaccarino AL. Decreased pain response in mice following cortex-specific knockout of the N-methyl-D-aspartate NR1 subunit. Neurosci Lett 2007; 425:89-93. [PMID: 17822844 PMCID: PMC3670823 DOI: 10.1016/j.neulet.2007.08.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2006] [Revised: 08/09/2007] [Accepted: 08/17/2007] [Indexed: 01/09/2023]
Abstract
Studies have shown that N-methyl-D-aspartate (NMDA) receptors play a critical role in pain processing at different levels of the central nervous system. In this study, we used cortex-specific NR1 knockout mice (C57BL/6 strain) to elucidate the role of cortical NMDA receptors in pain processes. On post-natal day 20, paw withdrawal latency (PWL) to a noxious thermal stimulus was measured in male and female knockout (KO), control (Ctrl), and C57BL/6 (C57) mice. Twenty-four hours later, the same mice were tested in the formalin-pain assay (20 microl of 5% formalin injected into one hind-paw). The results show that KO mice (both male and female) have significantly reduced pain responses during both early and late phases of formalin test, as compared with Ctrl and C57 mice (p<0.01). By contrast, no differences among groups were found in PWL to a noxious thermal stimulus. Taken together, these results demonstrate dissociation in the role of cortical NMDA receptors in mediating different types of pain.
Collapse
Affiliation(s)
- Gabriel C Quintero
- Neuroscience Center of Excellence, Louisiana State University Health Science Center, New Orleans, LA 70112, USA.
| | | | | |
Collapse
|
30
|
King TE, Barr GA. Spinal cord ionotropic glutamate receptors function in formalin-induced nociception in preweaning rats. Psychopharmacology (Berl) 2007; 192:489-98. [PMID: 17356878 DOI: 10.1007/s00213-007-0735-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Accepted: 02/05/2007] [Indexed: 12/26/2022]
Abstract
RATIONALE Neonates respond to noxious stimuli at or before birth, but the organization of nociceptive systems changes well into postnatal life. It is unknown how nociceptive information is processed in the immature animal and, specifically, whether noxious stimulation is transmitted by glutamatergic circuits, known to play an important role in nociception in the adult. Both N-methyl-D-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors are found within the neonatal spinal cord, but in immature form, and when they become involved in pain processing in vivo is not known. OBJECTIVES The objective was to determine the age-related changes in the involvement of spinal NMDA and AMPA receptors in formalin-induced nociception during early life. Because the formalin test provides a measure of immediate nociceptive responding (first phase) and of peripheral and central sensitization (second phase), a second aim was to determine if there is specificity of the effects to either phase. MATERIALS AND METHODS NMDA antagonists (MK801, AP5) or an AMPA antagonist (YM872) was administered intrathecally, and pups were assessed in the formalin test behaviorally and by Fos expression within the spinal cords of 3-, 10-, and 21-day-old rats. RESULTS The NMDA antagonists attenuated formalin-induced behavioral responses at the youngest age tested with some selectivity for the second phase of responding. MK-801 did not induce motor impairment at any age. YM872 also attenuated formalin-induced nociceptive responses at all ages throughout the test session, although there was some motor impairment in the 3-day-old subjects. Spinal administration of either YM872 or MK-801 reduced Fos expression in the spinal cord at all ages. CONCLUSIONS These data suggest that spinal NMDA and AMPA receptor are functional and involved in formalin-induced nociception throughout development.
Collapse
Affiliation(s)
- Tamara E King
- Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA
| | | |
Collapse
|
31
|
Houfflin Debarge V, Sicot B, Jaillard S, Gueorgiva I, Delelis A, Deruelle P, Ducloy AS, Storme L. The Mechanisms of Pain-Induced Pulmonary Vasoconstriction: An Experimental Study in Fetal Lambs. Anesth Analg 2007; 104:799-806. [PMID: 17377085 DOI: 10.1213/01.ane.0000259013.59084.bd] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Nociceptive stimulation induces pulmonary vasoconstriction in fetuses and newborns. The mechanism of this response is not fully understood. As the systemic hemodynamic response to pain is mainly mediated by sympathetic stimulation, we hypothesized that pain-induced pulmonary vasoconstriction results from the activation of catecholaminergic receptors. To test this hypothesis, we studied the pulmonary vascular response to nociceptive stimuli in fetal lambs before and after alpha-adrenoceptor blockade. METHODS Surgery was performed in fetal lambs. Catheters were placed into the ascending aorta, superior vena cava, and main pulmonary artery. An ultrasonic flow transducer was placed around the left pulmonary artery, and subcutaneous catheters were placed in the limb. The hemodynamic responses to (1) subcutaneous injection of formalin (which is used as nociceptive stimulus in experimental studies), (2) prazosin (specific alpha(1)-adrenoceptor antagonist), and (3) formalin during prazosin infusion were evaluated. Plasma cortisol and catecholamine concentrations were measured. RESULTS Pulmonary vascular resistance (PVR) increased by 50% (P < 0.01) after the formalin test. PVR did not change after the formalin test during prazosin infusion or during prazosin infusion alone. Catecholamine and cortisol levels did not change during any of the protocols. DISCUSSION Our results indicate that the fetal pulmonary vasoconstrictive response to pain involves alpha(1)-adrenoceptors activation. As plasma catecholamine concentrations did not change after the formalin test, we speculate that the pulmonary vascular response to nociceptive stimuli could be triggered by a local release of catecholamine induced by sympathetic stimulation.
Collapse
|
32
|
Butkevich IP, Barr GA, Vershinina EA. Sex differences in formalin-induced pain in prenatally stressed infant rats. Eur J Pain 2007; 11:888-94. [PMID: 17379552 DOI: 10.1016/j.ejpain.2007.02.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Revised: 01/29/2007] [Accepted: 02/05/2007] [Indexed: 11/27/2022]
Abstract
The aim of this work was to study the effects of prenatal stress on nociceptive responses in the formalin test in female and male infant (7-day-old) Long-Evans hooded rats. Prenatally stressed infant rats displayed biphasic flinching+ shaking behavior whereas non-stressed animals showed only a weak second phase. Pain sensitivity in prenatally stressed males was significantly greater than that of prenatally non-stressed males during the second phase only; there were no differences in pain sensitivity between prenatally stressed and non-stressed females. Moreover prenatally stressed male rats pups demonstrated that the second phase of the response to formalin was enhanced relative to the second phase in stressed females. The current and previous data [Butkevich IP, Barr GA, Mikhailenko VA, Otellin VA. Increased formalin-induced pain and expression of fos neurons in the lumbar spinal cord of prenatally stressed infants rats. Neurosci Lett 2006a;403:222-226] show increased tonic pain in prenatally stressed infant rats and a large increase in the number of formalin-induced fos-like immunoreactivity in the spinal cord dorsal horn. There is a concomitant decrease in serotonin-like immunoreactivity in the lumbar spinal cord dorsal horn [Butkevich IP, Barr GA, Otellin VA. Effect of prenatal stress on behavioral and neural indices of formalin-induced pain in infant rats. Abstracts, 35th Annual Meeting of Soc. For Neurosci. 2005a. Program No. 512.4 Washington, DC: Society for Neuroscience]. Given the decreased level of perinatal testosterone in prenatally stressed rats to which infant males are more sensitive than females, we suggest that these hormonal, behavioral and neuronal indices are strongly interrelated in prenatally stressed 7-day-old rat pups and that the decreased surge of testosterone may contribute to the increased behavioral response in the second phase in male rat pups. Mechanisms underlying the behavioral pain response induced by inflammation in prenatally stressed rat pups are characterized by sexual dimorphism even prior to the activational effects of sex hormones.
Collapse
Affiliation(s)
- Irina P Butkevich
- Laboratory of Ontogeny of Nervous System, I.P. Pavlov Institute of Physiology, The Russian Academy of Sciences, St. Petersburg 199034, Russia.
| | | | | |
Collapse
|
33
|
Butkevich IP, Barr GA, Vershinina EA. Sex-dependent differences in parameters of long-term pain caused by inflammatory focus in prenatally stressed newborn rats. J EVOL BIOCHEM PHYS+ 2007. [DOI: 10.1134/s0022093007010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Paton JFR, Nalivaiko E, Boscan P, Pickering AE. Reflexly evoked coactivation of cardiac vagal and sympathetic motor outflows: observations and functional implications. Clin Exp Pharmacol Physiol 2007; 33:1245-50. [PMID: 17184509 DOI: 10.1111/j.1440-1681.2006.04518.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
1. The purpose of the present review is to highlight the pattern of activity in the parasympathetic and sympathetic nerves innervating the heart during their reflex activation. 2. We describe the well-known reciprocal control of cardiac vagal and sympathetic activity during the baroreceptor reflex, but point out that this appears to be the exception rather than the rule and that many other reflexes reviewed herein (e.g. peripheral chemoreceptor, nociceptor, diving response and oculocardiac) involve simultaneous coactivation of both autonomic limbs. 3. The heart rate response during simultaneous activation of cardiac autonomic outflows is unpredictable because it does not simply reflect the summation of opposing influences. Indeed, it can result in bradycardia (peripheral chemoreceptor, diving and corneal), tachycardia (nociceptor) and, in some circumstances, can predispose to malignant arrhythmias. 4. We propose that this cardiac autonomic coactivation may allow greater cardiac output during bradycardia (increased ventricular filling time and stronger contraction) than activation of the sympathetic limb alone. This may be important when pumping blood into a constricted vascular tree, such as is the case during the peripheral chemoreceptor reflex and the diving response.
Collapse
Affiliation(s)
- Julian F R Paton
- Department of Physiology, Bristol Heart Institute, School of Medical Sciences, University of Bristol, Bristol, UK.
| | | | | | | |
Collapse
|
35
|
Butkevich IP, Barr GA, Mikhailenko VA, Otellin VA. Increased formalin-induced pain and expression of fos neurons in the lumbar spinal cord of prenatally stressed infant rats. Neurosci Lett 2006; 403:222-6. [PMID: 16782271 DOI: 10.1016/j.neulet.2006.04.059] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2006] [Revised: 04/26/2006] [Accepted: 04/27/2006] [Indexed: 11/26/2022]
Abstract
When pregnant dams are stressed, there is a resultant alteration in brain development and behavior in their offspring. Prior work has shown increased nociceptive responses in adolescent or adult rats born of stressed dams. However, the age at which those changes first occur is not known. The aim of the present study was to evaluate the effect of prenatal stress on pain sensitivity in the formalin test in 7-day-old rats, behaviorally and by fos-like immunoreactivity (Fos-LI) in the lumbar spinal cord dorsal horn. The behavioral response to intraplantar injection of formalin is represented by two nociceptive phases separated by an interphase during which nociceptive responses decrease; the interphase is not seen until the start of the third postnatal week and appears as descending inhibitory monoaminergic systems develop. Prenatally stressed infants showed increased nociceptive responses in the second, tonic phase and a large increase in the number of formalin-induced Fos-LI neurons in the lumbar dorsal horn, a result consistent with the behavioral data. The increased nociception in prenatally stressed 7-day-old pups may be associated with the decrease in the intensity of serotonin-like immunoreactivity and density of serotonergic cells in the lumbar spinal cord dorsal horn and the dorsal raphe nucleus reported earlier.
Collapse
Affiliation(s)
- Irina P Butkevich
- Laboratory of Ontogeny of Nervous System, I.P. Pavlov Institute of Physiology, The Russian Academy of Sciences, St. Petersburg 199034, Russia.
| | | | | | | |
Collapse
|
36
|
Boscan P, Dutschmann M, Herbert H, Paton JFR. Neurokininergic mechanism within the lateral crescent nucleus of the parabrachial complex participates in the heart-rate response to nociception. J Neurosci 2005; 25:1412-20. [PMID: 15703395 PMCID: PMC6725996 DOI: 10.1523/jneurosci.4075-04.2005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We wanted to ascertain whether the lateral parabrachial nucleus was involved in mediating the heart-rate response evoked during stimulation of somatic nociceptors. Reversible inactivation of the lateral parabrachial nucleus, using a GABA(A) agonist, reduced the reflex tachycardia evoked during noxious (mechanical) stimulation of the forelimb by approximately 50%. The same effect was observed after blockade of neurokinin 1 receptors within the lateral parabrachial nucleus, indicating a possible involvement for substance P as a neurotransmitter. Immunocytochemistry revealed a strong expression of substance P-immunoreactive fibers and boutons in all lateral subnuclei, but they were particularly dense in the lateral crescent subnucleus. Histological verification showed that the most effective injection sites for attenuating the noxious-evoked tachycardia were all placed in or near to the lateral crescent nucleus of the lateral parabrachial complex. Many single units recorded from this region were activated by high-intensity brachial nerve stimulation. The brachial nerve evoked firing responses of some of these neurons was reversibly reduced after local delivery of a neurokinin 1 receptor antagonist. However, only a minority of these neurons followed a paired-pulse stimulation protocol applied to the spinal cord, suggesting a predominance of indirect projections from the spinal cord to the parabrachial nucleus. We conclude that the cardiac component of the response to somatic nociception involves indirect spinal pathways that most likely excite neurons located in the lateral crescent nucleus of the parabrachial complex via activation of neurokinin 1 receptors.
Collapse
Affiliation(s)
- Pedro Boscan
- Department of Physiology, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, United Kingdom
| | | | | | | |
Collapse
|
37
|
Butkevich IP, Mikhailenko VA, Vershinina EA, Khozhai LI, Grigorev I, Otellin VA. Reduced serotonin synthesis during early embryogeny changes effect of subsequent prenatal stress on persistent pain in the formalin test in adult male and female rats. Brain Res 2005; 1042:144-59. [PMID: 15854586 DOI: 10.1016/j.brainres.2005.02.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2004] [Revised: 02/03/2005] [Accepted: 02/04/2005] [Indexed: 11/19/2022]
Abstract
The considerable evidence supporting a role for serotonin (5-HT) in the embryonic formation of CNS, mediation of prenatal stress, and pain processing is reviewed. Long-term influences of prenatal 5-HT depletion as well as its combination with prenatal stress effects on tonic nociceptive system in 90-day-old Wistar rats were studied in the formalin test. Pregnant dams were injected with para-chlorophenylalanine (pCPA, 400 mg/kg/2 ml, ip), producing 5-HT depletion during the early period of fetal serotonergic system development. The adult offspring from pCPA-treated dams revealed changes in behavioral indices of persistent pain (flexing + shaking and licking) in the formalin test (2.5%, 50 microl) that were accompanied by irreversible morphological alterations in the dorsal raphe nuclei. In the other series of experiments, the role of 5-HT in the mediation of prenatal stress on the behavioral indices of persistent pain was investigated in the adult offspring from dams with 5-HT depletion followed by restraint stress. Stress during the last embryonic week caused much more increase in flexing + shaking and licking in the second tonic phase of the response to formalin in offspring from pCPA- than saline-treated (control) dams. The former was characterized by alterations in the durations of the interphase, the second phase, and the whole behavioral response too. In offspring from pCPA-treated dams, sex dimorphism was revealed in tonic pain evaluated by licking. Together with our previous results in juvenile rats demonstrating the necessity of definite level of prenatal 5-HT for normal development of tonic nociceptive system, the present pioneering findings obtained in adult rats indicate that prenatal 5-HT depletion causes long-term morphological abnormalities in the dorsal raphe nuclei accompanied by alterations in behavioral indices of tonic pain. Early prenatal 5-HT depletion increases vulnerability of tonic nociceptive circuits to the following prenatal stress.
Collapse
Affiliation(s)
- Irina Pavlovna Butkevich
- Laboratory of Ontogenesis of Nervous System, IP Pavlov Institute of Physiology of the Russian Academy of Sciences, Nab. Makarova, 6. 199034, St. Petersburg, Russia.
| | | | | | | | | | | |
Collapse
|
38
|
Paton JFR, Boscan P, Pickering AE, Nalivaiko E. The yin and yang of cardiac autonomic control: vago-sympathetic interactions revisited. ACTA ACUST UNITED AC 2005; 49:555-65. [PMID: 16269319 DOI: 10.1016/j.brainresrev.2005.02.005] [Citation(s) in RCA: 208] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2004] [Revised: 01/27/2005] [Accepted: 02/15/2005] [Indexed: 11/23/2022]
Abstract
We review the pattern of activity in the parasympathetic and sympathetic nerves innervating the heart. Unlike the conventional textbook picture of reciprocal control of cardiac vagal and sympathetic nervous activity, as seen during a baroreceptor reflex, many other reflexes involve simultaneous co-activation of both autonomic limbs. Indeed, even at 'rest', the heart receives tonic drives from both sympathetic and parasympathetic cardiac nerves. Autonomic co-activation occurs during peripheral chemoreceptor, diving, oculocardiac, somatic nociceptor reflex responses as well as being evoked from structures within the brain. It is suggested that simultaneous co-activation may lead to a more efficient cardiac function giving greater cardiac output than activation of the sympathetic limb alone; this permits both a longer time for ventricular filling and a stronger contraction of the myocardium. This may be important when pumping blood into a constricted vascular tree such as is the case during the diving response. We discuss that in some instances, high drive to the heart from both autonomic limbs may also be arrhythmogenic.
Collapse
Affiliation(s)
- J F R Paton
- Department of Physiology, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK
| | | | | | | |
Collapse
|
39
|
Butkevich IP, Mikhailenko VA, Khozhai LI, Otellin VA. Effects of Decrease of Serotonin Synthesis and Subsequent Stress in Embryogenesis on Rat Pain Sensitivity during the Prepuberty Period of Development. J EVOL BIOCHEM PHYS+ 2005. [DOI: 10.1007/s10893-005-0056-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
Houfflin-Debarge V, Delelis A, Jaillard S, Larrue B, Deruelle P, Ducloy AS, Puech F, Storme L. Effects of nociceptive stimuli on the pulmonary circulation in the ovine fetus. Am J Physiol Regul Integr Comp Physiol 2005; 288:R547-53. [PMID: 15637175 DOI: 10.1152/ajpregu.00433.2004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The fetus is able to exhibit a stress response to painful events, and stress hormones have been shown to modulate pulmonary vascular tone. At birth, the increased level of stress hormones plays a significant role in the adaptation to postnatal life. We therefore hypothesized that pain may alter pulmonary circulation in the perinatal period. The hemodynamic response to subcutaneous injection of formalin, which is used in experimental studies as nociceptive stimulus, was evaluated in chronically prepared, fetal lambs. Fetal lambs were operated on at 128 days gestation. Catheters were placed into the ascending aorta, superior vena cava, and main pulmonary artery. An ultrasonic flow transducer was placed around the left pulmonary artery. Three subcutaneous catheters were placed in the lambs' limb. The hemodynamic responses to subcutaneous injection of formalin, to formalin after fetal analgesia by sufentanil, and to sufentanil alone were recorded. Cortisol and catecholamine concentrations were also measured. Pulmonary vascular resistances (PVR) increased by 42% ( P < 0.0001) after formalin injection. Cortisol increased by 54% ( P = 0.05). During sufentanil infusion, PVR did not change significantly after formalin. Cortisol increased by 56% ( P < 0.05). PVR did not change during sufentanil infusion. Norepinephrine levels did not change during any of the protocols. Our results indicate that nociceptive stimuli may increase the pulmonary vascular tone. This response is not mediated by an increase in circulating catecholamine levels. Analgesia prevents this effect. We speculate that this pulmonary vascular response to nociceptive stimulation may explain some hypoxemic events observed in newborn infants during painful intensive care procedures.
Collapse
Affiliation(s)
- V Houfflin-Debarge
- Department of Obstetrics, Centre Hospitalier Régional Universitaire de Lille, Lille, France.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Nociceptive sensitivity to a long-term stimulus in the formalin test in female and male rats in postnatal ontogenesis. J EVOL BIOCHEM PHYS+ 2005. [DOI: 10.1007/s10893-005-0040-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
Abstract
It is unclear how neonates respond to noxious stimuli. This study examined the role of neurokinin peptides in 3- and 21-day-old rat pups using the preprotachykinin-A (PPTA) knockout mouse, lacking neurokinin A and substance P. We assessed pain behaviors of these mice before the neurokinin system is putatively active, 3 days after birth, and after this system is active, 21 days after birth. The lack of these peptides failed to alter behavioral responses to nociceptive stimulation in the 3-day-old mice. The 21-day-old mice lacking these peptides were less responsive to 5 microl 2% formalin and to high intensity thermal and mechanical stimuli. Thus, the neurokinins appear not to be an important mechanism in the processing of nociceptive information in the infant.
Collapse
Affiliation(s)
- Tamara E King
- Columbia University, Department of Psychiatry, Division of Developmental Psychobiology, NYSPI, 1051 Riverside Drive, New York, NY 10032, USA
| | | |
Collapse
|
43
|
Butkevich IP, Khozhai LI, Mikhailenko VA, Otellin VA. Decreased serotonin level during pregnancy alters morphological and functional characteristics of tonic nociceptive system in juvenile offspring of the rat. Reprod Biol Endocrinol 2003; 1:96. [PMID: 14614772 PMCID: PMC280733 DOI: 10.1186/1477-7827-1-96] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2003] [Accepted: 11/13/2003] [Indexed: 11/10/2022] Open
Abstract
Serotonin (5-HT) contributes to the prenatal development of the central nervous system, acting as a morphogen in the young embryo and later as a neurotransmitter. This biologically active agent influences both morphological and biochemical differentiation of raphe neurons, which give rise to the descending serotonergic paths that regulate the processing of acutely evoked nociceptive inputs. The involvement of 5-HT in the prenatal development of tonic nociceptive system has not been studied. In the present study we evaluated the effects of a single injection (400 mg/kg, 2 ml, i.p.) of the 5-HT synthesis inhibitor, para-chlorophenylalanine (pCPA), given to pregnant rats during the critical period fetal serotonin development. The functional integrity of the tonic nociceptive response was investigated in 25 day old rats using the classic formalin test. Morphological analysis of brain structures involved in formalin-induced pain and 5-HT levels in the heads of 12-day embryos were also evaluated. Embryonic levels of 5-HT were significantly lowered by the treatment. The juvenile rats from pCPA-treated females showed altered brain morphology and cell differentiation in the developing cortex, hippocampus, raphe nuclei, and substantia nigra. In the formalin test, there were significant decreases in the intensity and duration of the second phase of the formalin-induced response, characterizing persistent, tonic pain. The extent of impairments in the brain structures correlated positively with the level of decrease in the behavioral responses. The data demonstrate the involvement of 5-HT in the prenatal development of the tonic nociceptive system. The decreased tonic component of the behavioral response can be explained by lower activity of the descending excitatory serotonergic system originating in the raphe nuclei, resulting in decreased tonic pain processing organized at the level of the dorsal horn of the spinal cord.
Collapse
Affiliation(s)
- Irina P Butkevich
- Laboratory of Ontogeny of Nervous System, I.P. Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Ludmila I Khozhai
- Laboratory of Ontogeny of Nervous System, I.P. Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Victor A Mikhailenko
- Laboratory of Ontogeny of Nervous System, I.P. Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Vladimir A Otellin
- Laboratory of Ontogeny of Nervous System, I.P. Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
44
|
Butkevich IP, Mikhailenko VA, Khozhai LI, Otellin VA. Prenatal serotonin depletion changes the behavioral response in the nociceptive formalin test in rats. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2003; 390:207-9. [PMID: 12940142 DOI: 10.1023/a:1024489029485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- I P Butkevich
- Pavlov Institute of Physiology, Russian Academy of Sciences, nab. Makarova 6, St. Petersburg, 199034 Russia
| | | | | | | |
Collapse
|
45
|
Barr GA, Limon E, Luthmann RA, Barr GA, Cheng J, Wang S. Analgesia induced by local plantar injections of opiates in the formalin test in infant rats. Dev Psychobiol 2003; 42:111-22. [PMID: 12555276 DOI: 10.1002/dev.10089] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Morphine injected locally to the paw of an adult or an infant rat is analgesic. Opiates specific to micro and kappa opioid receptors, and less consistently to delta opioid receptors, given locally to the site of injury in adult animals are also analgesic in a variety of models of inflammatory pain. To determine which opioid receptor(s) are involved in local analgesia in the immature animal, agonists specific for micro, kappa, and delta opioid receptors were injected into the intraplantar pad in infant rats and the resultant nociceptive behavior and Fos expression assayed in the formalin test. The kappa opioid receptor agonist U50,488 reduced nociceptive behavior in both phases of the formalin test and reduced Fos expression in the dorsal horn of the lumbar spinal cord, at 3 and 21 days of age. Morphiceptin (micro opioid agonist) was analgesic in the 21-day-old pups, but not the 3-day-old pups, measured behaviorally or by Fos expression. DPDPE (delta opioid agonist) was not analgesic at either age. We also tested the effects of opioid receptor antagonists on morphine's local analgesic action. Naltrexone, and to a lesser extent the micro opioid antagonist CTOP, antagonized morphine's analgesic effect. Kappa and delta opioid receptor blockers were inactive. The results demonstrate the ability of the kappa opioid system to mediate analgesia in the neonate at the site of injury in acute and chronic pain models, that the micro opioid agonists are active later in development, but that morphine is analgesic in part through micro opioid receptors.
Collapse
Affiliation(s)
- Gordon A Barr
- Hunter College and the Biopsychology Doctoral Program, The Graduate and University Center City, University of New York, New York, NY 10021, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Serrano MI, Goicoechea C, Serrano JS, Serrano-Martino MC, Sánchez E, Martín MI. Age-related changes in the antinociception induced by taurine in mice. Pharmacol Biochem Behav 2002; 73:863-7. [PMID: 12213532 DOI: 10.1016/s0091-3057(02)00911-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Taurine is a nonessential amino acid that is of medical interest for the nutrition of infants. Taurine has been found in the central nervous system of rodents and humans, and among its potential therapeutic uses, it is interesting to remark its analgesic actions. It is also well known that concentration levels during the fetal and prenatal periods are higher than in adulthood. The data obtained so far indicate that taurine is involved in the development process of the brain and possibly other organs. The taurine levels in old age are still unknown, but it is presumed that they will be different from those of younger animals. Data about age-related alterations and functional modifications of this and other amino acids are still scarce. The aim of the present work was to study the antinociceptive effect of taurine and its relationship with aging in mice. No differences were found between prepubertal and young adult animals; on the contrary, old animals showed significantly reduced sensitivity to the antinociception induced by taurine; in fact, at the tested doses, taurine did not induce antinociception in this group of mice. The mechanism underlying this effect has not been clarified because there are several mechanisms and neurotransmitter systems involved in the antinociception induced by taurine.
Collapse
Affiliation(s)
- M I Serrano
- Pharmacology Unit, Department of Pharmacology, Pediatrics and Radiology, University Hospital of Macarena Medical School, Seville University, 41009, Seville, Spain
| | | | | | | | | | | |
Collapse
|
47
|
Boscan P, Kasparov S, Paton JFR. Somatic nociception activates NK1 receptors in the nucleus tractus solitarii to attenuate the baroreceptor cardiac reflex. Eur J Neurosci 2002; 16:907-20. [PMID: 12372027 DOI: 10.1046/j.1460-9568.2002.02131.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
There is limited information regarding the integration of visceral and somatic afferents within the nucleus of the solitary tract (NTS). We studied the interaction of nociceptive and baroreceptive inputs in this nucleus in an in situ arterially perfused, un-anaesthetized decerebrate preparation of rat. At the systemic level, the gain of the cardiac component of the baroreceptor reflex was attenuated significantly by noxious mechanical stimulation of a forepaw. This baroreceptor reflex depression was mimicked by NTS microinjection of substance P and antagonized by microinjection of either bicuculline (a GABAA receptor antagonist) or a neurokinin type 1 (NK1) receptor antagonist (CP-99994). The substance P effect was also blocked by a bilateral microinjection of bicuculline, at a dose that was without effect on basal baroreceptor reflex gain. Baroreceptive NTS neurons were defined by their excitatory response following increases in pressure within the ipsilateral carotid sinus. In 27 of 34 neurons the number of evoked spikes from baroreceptor stimulation was reduced significantly by concomitant electrical stimulation of the brachial nerve (P < 0.01). Furthermore, the attenuation of baroreceptor inputs to NTS neurons by brachial nerve stimulation was prevented by pressure-ejection of bicuculline from a multi-barrelled microelectrode (n = 8). In a separate population of 17 of 45 cells tested, brachial nerve stimulation evoked an excitatory response that was antagonized by blockade of NK1 receptors. We conclude that nociceptive afferents activate NK1 receptors, which in turn excite GABAergic interneurons impinging on cells mediating the cardiac component of the baroreceptor reflex.
Collapse
Affiliation(s)
- Pedro Boscan
- Department of Physiology, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK.
| | | | | |
Collapse
|
48
|
Boscan P, Paton JFR. Nociceptive afferents selectively modulate the cardiac component of the peripheral chemoreceptor reflex via actions within the solitary tract nucleus. Neuroscience 2002; 110:319-28. [PMID: 11958873 DOI: 10.1016/s0306-4522(01)00585-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Our previous findings showed that the nucleus of the solitary tract (NTS) mediated part of the tachycardia evoked during somatic noxious stimulation. Here, we investigated the interaction between somatic nociceptor- and peripheral chemoreceptor-evoked cardiac changes. We sought to determine whether this interaction occurred within the NTS, the primary site of termination of chemoreceptor afferents. In a working heart-brainstem preparation of rat, mechanical noxious activation of a forelimb evoked a tachycardia of 17.5+/-3 (mean+/-S.E.M.) b.p.m., whereas sodium cyanide (7-30 microg) stimulation of peripheral chemoreceptors produced a sub-maximal bradycardia of -140+/-15 b.p.m. During nociceptor stimulation the sodium cyanide-evoked bradycardia was attenuated to -42.6+/-12 b.p.m. but could be prevented by a multiple bilateral NTS microinjection of bicuculline (i.e. -173+/-18 b.p.m.). Furthermore, the activity of NTS neurones responding to peripheral chemoreceptor stimulation increased from 2.8+/-1.3 to 9.4+/-1.9 Hz during sodium cyanide injection (n=7; P<0.01). The latter response was attenuated reversibly to 2.9+/-0.9 Hz during simultaneous stimulation of the brachial nerve. Pressure ejection of bicuculline abolished this inhibitory action of brachial-nerve stimulation on the chemoreceptor-evoked excitatory synaptic response. We conclude that somatic noxious stimulation attenuates the chemoreceptor reflex-evoked bradycardia via a GABA(A)ergic mechanism in the NTS.
Collapse
Affiliation(s)
- P Boscan
- Department of Physiology, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK.
| | | |
Collapse
|
49
|
McHaffie JG, Wang S, Walton N, Stein BE, Redgrave P. Covariant maturation of nocifensive oral behaviour and c-fos expression in rat superior colliculus. Neuroscience 2002; 109:597-607. [PMID: 11823069 DOI: 10.1016/s0306-4522(01)00499-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Injections of formalin into the rodent paw elicit a rapid orientation of the head and mouth to the source of discomfort, followed by licking and biting the injected area. Previous work has shown this response is dependent on the integrity of the midbrain superior colliculus. The present experiments were initiated to examine the ontogeny of this oral nocifensive reaction and to determine whether it is correlated with the functional maturation of collicular responses to noxious stimuli (as indicated by c-fos immunohistochemistry). Rat pups at various postnatal ages received formalin injections in either the hindpaw or perioral regions. Behaviour was videotaped, and after 120 min, animals were killed and the brain and spinal cord processed for Fos-like immunoreactivity. Uninjected controls were treated identically. Formalin-induced oral responses following injections into the hindpaw and the expression of Fos in the superior colliculus were virtually absent until 10 days postnatal, despite the presence of Fos-like immunoreactivity in many other structures (e.g. spinal cord, parabrachial area, periaqueductal grey). In contrast, animals from day 1 were able to use limbs to localise the perioral injection site. From day 10 onward, there was a progressive increase in oral nocifensive behaviours and Fos expression in the superior colliculus. Our observations are consistent with the hypothesis that the normal elaboration of pain-induced oral behaviour is initiated only after a functionally active superior colliculus has developed, and support previous observations that link the colliculus particularly with oral nocifensive behaviours.
Collapse
Affiliation(s)
- J G McHaffie
- Department of Psychology, University of Sheffield S10 2TP, UK
| | | | | | | | | |
Collapse
|
50
|
Butkevich IP, Vershinina EA. Prenatal stress alters time characteristics and intensity of formalin-induced pain responses in juvenile rats. Brain Res 2001; 915:88-93. [PMID: 11578623 DOI: 10.1016/s0006-8993(01)02819-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Previous studies found that stressful events during pregnancy can alter the offspring's pain sensitivity to the phasic nociceptive stimuli. The present data constitute the first demonstration of the consequences of prenatal stress to formalin-induced pain in juvenile rats. Injection of formalin into a hind paw of a 25-day-old rat that had not been stressed prenatally produced the typical biphasic specific nociceptive behavioral response consisting of an early short phase lasting 1-4 min followed by a second prolonged phase (12-24 min). Between them there was an interphase that lasted 6-9 min during which the specific behaviors were not shown. This period is generally considered to be a period of inactivity. Prenatally stressed rat pups showed significant increase in flexing+shaking behaviors and in the duration of the second phase of formalin-induced pain in flexing+shaking and licking behaviors and decrease of the duration of the interphase. Disinhibition of the pain behaviors during the interphase was greatly more pronounced in female than in male rats. Sex differences indicate increased vulnerability of inhibitory processes to prenatal stress in females compared with males. These data also underline the importance of understanding the nature of the interphase and provide data on the mechanisms that underlie that component of the formalin test.
Collapse
Affiliation(s)
- I P Butkevich
- Laboratory of Ontogenesis of the Nervous System, I.P. Pavlov Institute of Physiology, Russian Academy of Sciences, Nab. Makarova 6, 199034 St. Petersburg, Russia.
| | | |
Collapse
|