1
|
Bergamasco MI, Ogier JM, Garnham AL, Whitehead L, Rogers K, Smyth GK, Burt RA, Voss AK, Thomas T. Loss of KAT6B causes premature ossification and promotes osteoblast differentiation during development. Dev Biol 2025; 520:141-154. [PMID: 39832706 DOI: 10.1016/j.ydbio.2025.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/14/2025] [Accepted: 01/17/2025] [Indexed: 01/22/2025]
Abstract
The MYST family histone acetyltransferase gene, KAT6B (MYST4, MORF, QKF) is mutated in two distinct human congenital disorders characterised by intellectual disability, facial dysmorphogenesis and skeletal abnormalities; the Say-Barber-Biesecker-Young-Simpson variant of Ohdo syndrome and Genitopatellar syndrome. Despite its requirement in normal skeletal development, the cellular and transcriptional effects of KAT6B in skeletogenesis have not been thoroughly studied. Here, we show that germline deletion of the Kat6b gene in mice causes premature ossification in vivo, resulting in shortened craniofacial elements and increased bone density, as well as shortened tibias with an expanded pre-hypertrophic layer, as compared to wild type controls. Mechanistically, we show that the loss of KAT6B in mesenchymal progenitor cells promotes transition towards an osteoblast-progenitor state with upregulation of gene targets of RUNX2, a master regulator of osteoblast development and concomitant downregulation of SOX9, a critical gene in chondrocyte development. Moreover, we find that compound heterozygosity at Kat6b and Runx2 loci partially rescues the reduction in ossification of Runx2 heterozygous, but not homozygous mice, suggesting that KAT6B may limit the action of RUNX2, possibly through a role in maintaining progenitors in an undifferentiated state. Moreover, our results show that KAT6B has essential roles in regulating the expression of a large number of genes involved in skeletogenesis and bone development.
Collapse
Affiliation(s)
- Maria I Bergamasco
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Jacqueline M Ogier
- The Department of Audiology and Speech Pathology, The University of Melbourne, Parkville, VIC, Australia
| | - Alexandra L Garnham
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Lachlan Whitehead
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Kelly Rogers
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Gordon K Smyth
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia; School of Mathematics and Statistics, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Rachel A Burt
- Department of Genetics, The Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, Victoria, 3052, Australia
| | - Anne K Voss
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3052, Australia.
| | - Tim Thomas
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3052, Australia.
| |
Collapse
|
2
|
Cuevas RA, Hortells L, Chu CC, Wong R, Crane A, Boufford C, Regan C, Moorhead WJ, Bashline MJ, Parwal A, Parise AM, Behzadi P, Brown MJ, Gurkar A, Bruemmer D, Sembrat J, Sultan I, Gleason TG, Billaud M, St. Hilaire C. Non-Canonical TERT Activity Initiates Osteogenesis in Calcific Aortic Valve Disease. Circ Res 2025; 136:403-421. [PMID: 39835393 PMCID: PMC11825275 DOI: 10.1161/circresaha.122.321889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 01/05/2025] [Accepted: 01/07/2025] [Indexed: 01/22/2025]
Abstract
BACKGROUND Calcific aortic valve disease is the pathological remodeling of valve leaflets. The initial steps in valve leaflet osteogenic reprogramming are not fully understood. As TERT (telomerase reverse transcriptase) overexpression primes mesenchymal stem cells to differentiate into osteoblasts, we investigated whether TERT contributes to the osteogenic reprogramming of valve interstitial cells. METHODS Human control and calcific aortic valve disease aortic valve leaflets and patient-specific human aortic valve interstitial cells were used in in vivo and in vitro calcification assays. Loss of function experiments in human aortic valve interstitial cells and cells isolated from Tert-/- and Terc-/- mice were used for mechanistic studies. Calcification was assessed in Tert+/+ and Tert-/- mice ex vivo and in vivo. In silico modeling, proximity ligation, and coimmunoprecipitation assays defined novel TERT interacting partners. Chromatin immunoprecipitation and cleavage under targets and tagmentation sequencing defined protein-DNA interactions. RESULTS TERT protein was highly expressed in calcified valve leaflets without changes in telomere length, DNA damage, or senescence markers, and these features were retained in isolated primary human aortic valve interstitial cells. TERT expression increased with osteogenic or inflammatory stimuli, and knockdown or genetic deletion of TERT prevented calcification in vitro and in vivo. Mechanistically, TERT was upregulated via NF-κB (nuclear factor-kappa B) and required to initiate osteogenic reprogramming, independent of its canonical reverse transcriptase activity and the long noncoding RNA TERC. TERT exerts non-canonical osteogenic functions via binding with STAT5 (signal transducer and activator of transcription 5). Depletion or inhibition of STAT5 prevented calcification. STAT5 was found to bind the promoter region of RUNX2 (runt-related transcription factor 2), the master regulator of osteogenic reprogramming. Finally, we demonstrate that TERT and STAT5 are upregulated and colocalized in calcific aortic valve disease tissue compared with control tissue. CONCLUSIONS TERT's non-canonical activity is required to initiate calcification. TERT is upregulated via inflammatory signaling pathways and partners with STAT5 to bind the RUNX2 gene promoter. These data identify a novel mechanism and potential therapeutic target to decrease vascular calcification.
Collapse
Affiliation(s)
- Rolando A. Cuevas
- Division of Cardiology, Department of Medicine, Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Luis Hortells
- Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Science, UiT-The Arctic University of Norway, 9019 Tromsø, Norway
| | - Claire C. Chu
- Division of Cardiology, Department of Medicine, Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ryan Wong
- Division of Cardiology, Department of Medicine, Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alex Crane
- Division of Cardiology, Department of Medicine, Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Camille Boufford
- Division of Cardiology, Department of Medicine, Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Cailyn Regan
- Division of Cardiology, Department of Medicine, Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - William J. Moorhead
- Division of Cardiology, Department of Medicine, Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Michael J. Bashline
- Division of Cardiology, Department of Medicine, Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Aneesha Parwal
- Division of Cardiology, Department of Medicine, Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Angelina M. Parise
- Division of Cardiology, Department of Medicine, Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Parya Behzadi
- Division of Cardiology, Department of Medicine, Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mark J. Brown
- Division of Cardiology, Department of Medicine, Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Aditi Gurkar
- Aging Institute, Division of Geriatrics, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Dennis Bruemmer
- Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - John Sembrat
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ibrahim Sultan
- Division of Cardiac Surgery, Department of Cardiothoracic Surgery, Heart and Vascular Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Thomas G. Gleason
- Division of Cardiac Surgery, Department of Cardiothoracic Surgery, Heart and Vascular Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Marie Billaud
- Division of Cardiac Surgery, Department of Cardiothoracic Surgery, Heart and Vascular Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Cynthia St. Hilaire
- Division of Cardiology, Department of Medicine, Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
3
|
Lee YH, Yi HK, Pradhan PM, Kim TK, Jang S. Effect of c-Myb overexpression on osteoblastic-, odontoblastic-, and cementoblastic differentiation of primary human periodontal ligament cells. Eur J Oral Sci 2025; 133:e13040. [PMID: 39865493 DOI: 10.1111/eos.13040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 01/08/2025] [Indexed: 01/28/2025]
Abstract
The periodontal ligament (PDL) is a connective tissue, and PDL cells have a potential to differentiate into cementoblasts, osteoblasts, and gingival fibroblasts. This study investigated whether transcription factor c-Myb could induce differentiation of PDL cells for periodontal regeneration. PDL cells were isolated from extracted teeth and cultured. c-Myb was transfected to PDL cells using replication-deficient adenoviral vector. Differentiation of the PDL cells was analyzed by immunoblot, alkaline phosphatase activity, Alizarin red stain, and immunofluorescence analysis. Cell viability on titanium surfaces was analyzed by crystal violet stain and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. PDL cells cultured in osteogenic medium showed increased production of osteogenic and cementogenic molecules. Moreover, c-Myb-transfected cells showed increased production of dentinogenic molecules, in addition to the osteogenic and cementogenic molecules, even in normal culture condition. c-Myb-transfected cells also exhibited increased autophagy and type I collagen production under nutrient deprivation. When grown on a titanium surface, c-Myb-transfected cells showed increased production of osteogenesis-, dentinogenesis-, and cementogenesis-related molecules and cell viability. Thus, these results suggest that c-Myb might play an essential role during periodontal regeneration by improving the differentiation of PDL cells, and c-Myb can be utilized for enhancing the attachment of PDL cells to dental implant surfaces.
Collapse
Affiliation(s)
- Young-Hee Lee
- Department of Oral Biochemistry, Institute of Oral Bioscience, School of Dentistry, Jeonbuk National University, Jeonju-si, South Korea
| | - Ho-Keun Yi
- Department of Oral Biochemistry, Institute of Oral Bioscience, School of Dentistry, Jeonbuk National University, Jeonju-si, South Korea
| | - Paras Man Pradhan
- Department of Oral Biochemistry, Institute of Oral Bioscience, School of Dentistry, Jeonbuk National University, Jeonju-si, South Korea
| | - Tae-Kun Kim
- Department of Oral Biochemistry, Institute of Oral Bioscience, School of Dentistry, Jeonbuk National University, Jeonju-si, South Korea
| | - Sungil Jang
- Department of Oral Biochemistry, Institute of Oral Bioscience, School of Dentistry, Jeonbuk National University, Jeonju-si, South Korea
| |
Collapse
|
4
|
Dong Q, Fu H, Li W, Ji X, Yin Y, Zhang Y, Zhu Y, Li G, Jia H, Zhang H, Wang H, Hu J, Wang G, Wu Z, Zhang Y, Xu S, Hou Z. Nuclear farnesoid X receptor protects against bone loss by driving osteoblast differentiation through stabilizing RUNX2. Bone Res 2025; 13:20. [PMID: 39885145 PMCID: PMC11782663 DOI: 10.1038/s41413-024-00394-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/30/2024] [Accepted: 11/13/2024] [Indexed: 02/01/2025] Open
Abstract
The delicate balance between bone formation by osteoblasts and bone resorption by osteoclasts maintains bone homeostasis. Nuclear receptors (NRs) are now understood to be crucial in bone physiology and pathology. However, the function of the Farnesoid X receptor (FXR), a member of the NR family, in regulating bone homeostasis remains incompletely understood. In this study, in vitro and in vivo models revealed delayed bone development and an osteoporosis phenotype in mice lacking FXR in bone marrow mesenchymal stem cells (BMSCs) and osteoblasts due to impaired osteoblast differentiation. Mechanistically, FXR could stabilize RUNX2 by inhibiting Thoc6-mediated ubiquitination, thereby promoting osteogenic activity in BMSCs. Moreover, activated FXR could directly bind to the Thoc6 promoter, suppressing its expression. The interaction between RUNX2 and Thoc6 was mediated by the Runt domain of RUNX2 and the WD repeat of Thoc6. Additionally, Obeticholic acid (OCA), an orally available FXR agonist, could ameliorate bone loss in an ovariectomy (OVX)-induced osteoporotic mouse model. Taken together, our findings suggest that FXR plays pivotal roles in osteoblast differentiation by regulating RUNX2 stability and that targeting FXR may be a promising therapeutic approach for osteoporosis.
Collapse
Affiliation(s)
- Qi Dong
- Department of Orthopedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Orthopaedic Research Institute of Hebei Province, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Haoyuan Fu
- Department of Orthopedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Orthopaedic Research Institute of Hebei Province, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Wenxiao Li
- Department of Orthopedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Orthopaedic Research Institute of Hebei Province, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xinyu Ji
- Department of Cardiology, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yingchao Yin
- Department of Orthopedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Orthopaedic Research Institute of Hebei Province, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yiran Zhang
- School of Medicine, Nankai University, Tianjin, China
| | - Yanbo Zhu
- Hebei Food Safety Key Laboratory, Key Laboratory of Special Food Supervision Technology for State Market Regulation, Hebei Engineering Research Center for Special Food Safety and Health, Hebei Food Inspection and Research Institute, Shijiazhuang, Hebei, China
| | - Guoqiang Li
- Department of Orthopedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Orthopaedic Research Institute of Hebei Province, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Huiyang Jia
- Department of Orthopedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Orthopaedic Research Institute of Hebei Province, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Heng Zhang
- Department of Orthopedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Orthopaedic Research Institute of Hebei Province, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Haofei Wang
- Department of Orthopedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Orthopaedic Research Institute of Hebei Province, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jinglue Hu
- Orthopaedic Research Institute of Hebei Province, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | | | - Zhihao Wu
- School of Preclinical Medicine, Wannan Medical College, Wuhu, Anhui, China
| | - Yingze Zhang
- Department of Orthopedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Orthopaedic Research Institute of Hebei Province, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Sujuan Xu
- Department of Orthopedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
- Orthopaedic Research Institute of Hebei Province, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
- Hebei Key Laboratory for Diabetic Kidney Disease, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
- Department of Nephrology, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| | - Zhiyong Hou
- Department of Orthopedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
- Orthopaedic Research Institute of Hebei Province, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| |
Collapse
|
5
|
Shao Y, Du Y, Chen Z, Xiang L, Tu S, Feng Y, Hou Y, Kou X, Ai H. Mesenchymal stem cell-mediated adipogenic transformation: a key driver of oral squamous cell carcinoma progression. Stem Cell Res Ther 2025; 16:12. [PMID: 39849541 PMCID: PMC11755832 DOI: 10.1186/s13287-025-04132-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 01/08/2025] [Indexed: 01/25/2025] Open
Abstract
BACKGROUND Interaction between mesenchymal stem cells (MSCs) and oral squamous cell carcinoma (OSCC) cells plays a major role in OSCC progression. However, little is known about adipogenic differentiation alteration in OSCC-derived MSCs (OSCC-MSCs) and how these alterations affect OSCC growth. METHODS MSCs were successfully isolated and cultured from normal gingival tissue, OSCC peritumoral tissue, and OSCC tissue. This included gingiva-derived MSCs (GMSCs), OSCC adjacent noncancerous tissues-derived MSCs (OSCCN-MSCs), and OSCC-MSCs. The adipogenic and osteogenic differentiation capabilities of these cells were evaluated using Oil Red O and Alizarin Red S staining, respectively. OSCC cells were then co-cultured with either OSCC-MSCs or GMSCs to assess the impact on OSCC cell proliferation and migration. Subcutaneous xenograft experiments were conducted in BALB/c-nu mice to further investigate the effects in vivo. Additionally, immunohistochemical staining was performed on clinical samples to determine the expression levels of fatty acid synthase (FASN) and the proliferation marker Ki67. RESULTS OSCC-MSCs exhibited enhanced adipogenic differentiation and reduced osteogenic differentiation compared to GMSCs. OSCC-MSCs significantly increased the proliferation and migration of OSCC cells relative to GMSCs and promoted tumor growth in mouse xenografts. Lipid droplet accumulation in the stroma was significantly more pronounced in OSCC + OSCC-MSCs xenografts compared to OSCC + GMSCs xenografts. Free fatty acids (FFAs) levels were elevated in OSCC tissues compared to normal gingival tissues. Moreover, OSCC-MSCs consistently secreted higher levels of FFAs in condition medium than GMSCs. Knockdown of FASN in OSCC-MSCs reduced their adipogenic potential and inhibited their ability to promote OSCC cell proliferation and migration. Clinical sample analysis confirmed higher FASN expression in OSCC stroma, correlating with larger tumor size and increased Ki67 expression in cancer tissues, and was associated with poorer overall survival. CONCLUSIONS OSCC-MSCs promoted OSCC proliferation and migration by upregulating FASN expression and facilitating FFAs secretion. Our results provide new insight into the mechanism of OSCC progression and suggest that the FASN of OSCC-MSCs may be potential targets of OSCC in the future.
Collapse
Affiliation(s)
- Yiting Shao
- Department of Stomatology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Yu Du
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Zheng Chen
- Department of Stomatology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Lei Xiang
- Hospital of Stomatology, Guanghua School of Stomatology, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Shaoqin Tu
- Department of Stomatology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Yi Feng
- Department of Stomatology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Yuluan Hou
- Department of Stomatology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Xiaoxing Kou
- Hospital of Stomatology, Guanghua School of Stomatology, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China.
- Key Laboratory of Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China.
| | - Hong Ai
- Department of Stomatology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China.
| |
Collapse
|
6
|
Lin W, Li Y, Qiu C, Zou B, Gong Y, Zhang X, Tian D, Sherman W, Sanchez F, Wu D, Su KJ, Xiao X, Luo Z, Tian Q, Chen Y, Shen H, Deng H. Mapping the spatial atlas of the human bone tissue integrating spatial and single-cell transcriptomics. Nucleic Acids Res 2025; 53:gkae1298. [PMID: 39817519 PMCID: PMC11736439 DOI: 10.1093/nar/gkae1298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/17/2024] [Accepted: 12/23/2024] [Indexed: 01/18/2025] Open
Abstract
Bone is a multifaceted tissue requiring orchestrated interplays of diverse cells within specialized microenvironments. Although significant progress has been made in understanding cellular and molecular mechanisms of component cells of bone, revealing their spatial organization and interactions in native bone tissue microenvironment is crucial for advancing precision medicine, as they govern fundamental signaling pathways and functional dependencies among various bone cells. In this study, we present the first integrative high-resolution map of human bone and bone marrow, using spatial and single-cell transcriptomics profiling from femoral tissue. This multi-modal approach discovered a novel bone formation-specialized niche enriched with osteoblastic lineage cells and fibroblasts and unveiled critical cell-cell communications and co-localization patterns between osteoblastic lineage cells and other cells. Furthermore, we discovered a novel spatial gradient of cellular composition, gene expression and signaling pathway activities radiating from the trabecular bone. This comprehensive atlas delineates the intricate bone cellular architecture and illuminates key molecular processes and dependencies among cells that coordinate bone metabolism. In sum, our study provides an essential reference for the field of bone biology and lays the foundation for advanced mechanistic studies and precision medicine approaches in bone-related disorders.
Collapse
Affiliation(s)
- Weiqiang Lin
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, 1440 Canal Street, Downtown, New Orleans, LA 70112, USA
| | - Yisu Li
- Department of Cell and Molecular Biology, School of Science and Engineering, Tulane University, 6823 St. Charles Avenue, Uptown, New Orleans, LA 70118, USA
| | - Chuan Qiu
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, 1440 Canal Street, Downtown, New Orleans, LA 70112, USA
| | - Binghao Zou
- Department of Structural and Cellular Biology, School of Medicine, Tulane University, 1430 Tulane Avenue, Downtown, New Orleans, LA 70112, USA
| | - Yun Gong
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, 1440 Canal Street, Downtown, New Orleans, LA 70112, USA
| | - Xiao Zhang
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, 1440 Canal Street, Downtown, New Orleans, LA 70112, USA
| | - Di Tian
- The Molecular Pathology Laboratory, Department of Pathology and Laboratory Medicine, School of Medicine, Tulane University, 1430 Tulane Avenue, Downtown, New Orleans, LA 70112, USA
| | - William Sherman
- Department of Orthopaedic Surgery, School of Medicine, Tulane University, 1430 Tulane Avenue, Downtown, New Orleans, LA 70112, USA
| | - Fernando Sanchez
- Department of Orthopaedic Surgery, School of Medicine, Tulane University, 1430 Tulane Avenue, Downtown, New Orleans, LA 70112, USA
| | - Di Wu
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, 1440 Canal Street, Downtown, New Orleans, LA 70112, USA
| | - Kuan-Jui Su
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, 1440 Canal Street, Downtown, New Orleans, LA 70112, USA
| | - Xinyi Xiao
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, 1440 Canal Street, Downtown, New Orleans, LA 70112, USA
| | - Zhe Luo
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, 1440 Canal Street, Downtown, New Orleans, LA 70112, USA
| | - Qing Tian
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, 1440 Canal Street, Downtown, New Orleans, LA 70112, USA
| | - Yiping Chen
- Department of Cell and Molecular Biology, School of Science and Engineering, Tulane University, 6823 St. Charles Avenue, Uptown, New Orleans, LA 70118, USA
| | - Hui Shen
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, 1440 Canal Street, Downtown, New Orleans, LA 70112, USA
| | - Hongwen Deng
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, 1440 Canal Street, Downtown, New Orleans, LA 70112, USA
| |
Collapse
|
7
|
Bathina S, Prado M, Fuenmayor Lopez V, Colleluori G, Aguirre L, Chen R, Villareal DT, Armamento-Villareal R. PRDM16 Enhances Osteoblastogenic RUNX2 via Canonical WNT10b/β-CATENIN Pathway in Testosterone-Treated Hypogonadal Men. Biomolecules 2025; 15:79. [PMID: 39858473 PMCID: PMC11764227 DOI: 10.3390/biom15010079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/03/2025] [Accepted: 01/06/2025] [Indexed: 01/30/2025] Open
Abstract
We previously reported that PRDM16 mediated the improvement in body composition in testosterone (T)-treated hypogonadal men by shifting adipogenesis to myogenesis. Previous preclinical studies suggest that Prdm16 regulates Runx2, an important osteoblastic transcription factor, expression and activity. However, the changes in PRDM16, and other genes/proteins involved in osteoblastogenesis with T therapy in hypogonadal men are unexplored. We investigated the role of PRDM16 in RUNX2 activation by measuring changes in gene expression in peripheral blood monocytes (PBMCs) and proteins in the serum of hypogonadal men after T therapy for 6 months. Likewise, we evaluated changes in the WNT10b-β-CATENIN signaling pathway by gene expression and protein analyses. We found significant increases in PRDM16 and RUNX2 expression in PBMCs together with significant increases in serum proteins at 6 months when compared to baseline. There were also increases in gene and protein expressions of WNT10b, and β-CATENIN at 6 months. Furthermore, we found a significant positive correlation between % changes in PRDM16 and WNT10b. Our results suggest that T therapy activates PRDM16, leading to enhanced signaling in the canonical WNT10b-β-CATENIN-RUNX2 pathway, the pathway involved in osteoblastogenesis. The above findings may account for the improvement in bone density and quality in hypogonadal men treated with T.
Collapse
Affiliation(s)
- Siresha Bathina
- Division of Endocrinology Diabetes and Metabolism, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Medicine, Michael E. DeBakey Veterans Affairs (VA) Medical Center, Houston, TX 77030, USA
| | - Mia Prado
- Division of Endocrinology Diabetes and Metabolism, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Medicine, Michael E. DeBakey Veterans Affairs (VA) Medical Center, Houston, TX 77030, USA
| | - Virginia Fuenmayor Lopez
- Division of Endocrinology Diabetes and Metabolism, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Medicine, Michael E. DeBakey Veterans Affairs (VA) Medical Center, Houston, TX 77030, USA
| | - Georgia Colleluori
- Division of Endocrinology Diabetes and Metabolism, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lina Aguirre
- Department of Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87107, USA
- Department of Medicine, New Mexico VA Health Care System, Albuquerque, NM 87107, USA
| | - Rui Chen
- Division of Endocrinology Diabetes and Metabolism, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Medicine, Michael E. DeBakey Veterans Affairs (VA) Medical Center, Houston, TX 77030, USA
| | - Dennis T. Villareal
- Division of Endocrinology Diabetes and Metabolism, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Medicine, Michael E. DeBakey Veterans Affairs (VA) Medical Center, Houston, TX 77030, USA
| | - Reina Armamento-Villareal
- Division of Endocrinology Diabetes and Metabolism, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Medicine, Michael E. DeBakey Veterans Affairs (VA) Medical Center, Houston, TX 77030, USA
| |
Collapse
|
8
|
Buchanan C, Chen S, Yuan Y, Guo T, Feng J, Zhang M, Carey G, Howard I, Sanchez J, Ho TV, Chai Y. Loss of Runx2 in Gli1 + osteogenic progenitors prevents bone loss following ovariectomy. JBMR Plus 2025; 9:ziae141. [PMID: 39996169 PMCID: PMC11848843 DOI: 10.1093/jbmrpl/ziae141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 10/28/2024] [Accepted: 11/08/2024] [Indexed: 02/26/2025] Open
Abstract
Osteoporosis is a metabolic bone disorder characterized by low bone mass and bone mineral density. It is the most prevalent bone disease and a common cause of fracture in aging adults. Low bone mass, as seen in osteoporosis, results from an imbalance between osteoblast and osteoclast activity. Gli1+ cells are indispensable to the maintenance of bone tissue homeostasis. These cells give rise to osteoprogenitors and are present at the osteogenic fronts of long bones in adult mice. Runx2 is a key regulator of osteogenesis and plays a crucial role in osteoblastic differentiation and maturation during development. However, its function in maintaining adult bone tissue homeostasis remains unclear. In this study, we investigated the role of Runx2 in maintaining adult bone homeostasis in the context of ovariectomy-induced estrogen deficiency, a model for postmenopausal osteoporosis. Our results show that deletion of Runx2 in the Gli1+ osteogenic progenitor population prevents loss of both cortical and trabecular bone mass and mineralization after ovariectomy. At the cellular level, loss of Runx2 leads to a decrease in osteoclast activity. Our study indicates that Runx2 is essential for maintaining adult bone tissue homeostasis by regulating osteoclast differentiation.
Collapse
Affiliation(s)
- Connor Buchanan
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90089, United States
| | - Shuo Chen
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90089, United States
| | - Yuan Yuan
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90089, United States
| | - Tingwei Guo
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90089, United States
| | - Jifan Feng
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90089, United States
| | - Mingyi Zhang
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90089, United States
| | - Grace Carey
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90089, United States
| | - Ishmael Howard
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90089, United States
| | - Janet Sanchez
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90089, United States
| | - Thach-Vu Ho
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90089, United States
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90089, United States
| |
Collapse
|
9
|
Alexander KA, Tseng HW, Lao HW, Girard D, Barbier V, Ungerer JPJ, McWhinney BC, Samuel SG, Fleming W, Winkler IG, Salga M, Genêt F, Banzet S, Ruitenberg MJ, Lévesque JP. A glucocorticoid spike derails muscle repair to heterotopic ossification after spinal cord injury. Cell Rep Med 2024; 5:101849. [PMID: 39657663 PMCID: PMC11722129 DOI: 10.1016/j.xcrm.2024.101849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 08/02/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024]
Abstract
Why severe injury to the central nervous system (CNS) triggers the development of large neurogenic heterotopic ossifications (NHOs) within periarticular muscles remains unknown. We report that spinal cord injury (SCI) triggers a rapid corticosterone spike in mice, which is causal for NHO development because treatments with corticosterone or the synthetic glucocorticoid (GC) receptor (GR) agonist dexamethasone are sufficient to trigger heterotopic ossification and upregulate the expression of osteoinductive and osteogenic differentiation genes in injured muscles even without SCI. The central role for GR signaling in causing NHO is further demonstrated in mice deleted for the GR gene (Nr3c1), which no longer develop NHO after SCI. Furthermore, administration of clinical GR antagonists inhibits NHO development in mice with SCI. This study identifies endogenous GC as causing pathological NHO after CNS injury and suggests that GR antagonists may be of prophylactic use to prevent NHO development in victims of severe CNS injuries.
Collapse
Affiliation(s)
- Kylie A Alexander
- Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia.
| | - Hsu-Wen Tseng
- Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Hong Wa Lao
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD 4067, Australia
| | - Dorothée Girard
- Institut de Recherche Biomédicale des Armées, 92140 Clamart, France; INSERM, UMR-MD U1197 SToRM, 92140 Clamart, France
| | - Valérie Barbier
- Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Jacobus P J Ungerer
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD 4067, Australia; Department of Chemical Pathology, Pathology Queensland, Herston, QLD 4029, Australia
| | - Brett C McWhinney
- Department of Chemical Pathology, Pathology Queensland, Herston, QLD 4029, Australia
| | - Selwin G Samuel
- Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Whitney Fleming
- Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Ingrid G Winkler
- Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Marjorie Salga
- Unité Péri-Opératoire du Handicap, Physical and Rehabilitation Medicine Department, Hôpital Raymond-Poincaré, Assistance Publique Hôpitaux de Paris (APHP), 92380 Garches, France
| | - François Genêt
- Unité Péri-Opératoire du Handicap, Physical and Rehabilitation Medicine Department, Hôpital Raymond-Poincaré, Assistance Publique Hôpitaux de Paris (APHP), 92380 Garches, France; Université Versailles Saint-Quentin-en-Yvelines, UFR Simone Veil - Santé, END:ICAP, INSERM U1179, 78180 Montigny-le-Bretonneux, France
| | - Sébastien Banzet
- Institut de Recherche Biomédicale des Armées, 92140 Clamart, France; INSERM, UMR-MD U1197 SToRM, 92140 Clamart, France
| | - Marc J Ruitenberg
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD 4067, Australia
| | - Jean-Pierre Lévesque
- Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia.
| |
Collapse
|
10
|
Walton IS, McCann E, Weber A, Morton JEV, Noons P, Wilson LC, Ching RC, Cilliers D, Johnson D, Phipps JM, Shears DJ, Thomas GPL, Wall SA, Twigg SRF, Wilkie AOM. Reassessing the association: Evaluation of a polyalanine deletion variant of RUNX2 in non-syndromic sagittal and metopic craniosynostosis. J Anat 2024; 245:874-878. [PMID: 38760592 PMCID: PMC11547237 DOI: 10.1111/joa.14052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/09/2024] [Accepted: 04/12/2024] [Indexed: 05/19/2024] Open
Abstract
The RUNT-related transcription factor RUNX2 plays a critical role in osteoblast differentiation, and alterations to gene dosage cause distinct craniofacial anomalies. Uniquely amongst the RUNT-related family, vertebrate RUNX2 encodes a polyglutamine/polyalanine repeat (Gln23-Glu-Ala17 in humans), with the length of the polyalanine component completely conserved in great apes. Surprisingly, a frequent 6-amino acid deletion polymorphism, p.(Ala84_Ala89)del, occurs in humans (termed 11A allele), and a previous association study (Cuellar et al. Bone 137:115395;2020) reported that the 11A variant was significantly more frequent in non-syndromic sagittal craniosynostosis (nsSag; allele frequency [AF] = 0.156; 95% confidence interval [CI] 0.126-0.189) compared to non-syndromic metopic craniosynostosis (nsMet; AF = 0.068; 95% CI 0.045-0.098). However, the gnomAD v.2.1.1 control population used by Cuellar et al. did not display Hardy-Weinberg equilibrium, hampering interpretation. To re-examine this association, we genotyped the RUNX2 11A polymorphism in 225 individuals with sporadic nsSag as parent-child trios and 164 singletons with sporadic nsMet, restricting our analysis to individuals of European ancestry. We compared observed allele frequencies to the non-transmitted alleles in the parent-child trios, and to the genome sequencing data from gnomAD v.4, which display Hardy-Weinberg equilibrium. Observed AFs (and 95% CI) were 0.076 (0.053-0.104) in nsSag and 0.082 (0.055-0.118) in nsMet, compared with 0.062 (0.042-0.089) in non-transmitted parental alleles and 0.065 (0.063-0.067) in gnomAD v.4.0.0 non-Finnish European control genomes. In summary, we observed a non-significant excess, compared to gnomAD data, of 11A alleles in both nsSag (relative risk 1.18, 95% CI 0.83-1.67) and nsMet (relative risk 1.29, 95% CI 0.87-1.92), but we did not replicate the much higher excess of RUNX2 11A alleles in nsSag previously reported (p = 0.0001).
Collapse
Affiliation(s)
- Isaac S. Walton
- MRC Weatherall Institute of Molecular MedicineJohn Radcliffe Hospital, University of OxfordOxfordUK
| | - Emma McCann
- Department of Clinical GeneticsLiverpool Women's NHS Foundation TrustLiverpool, EnglandUK
- Present address:
Department of Clinical GeneticsCHI at CrumlinDublinIreland
| | - Astrid Weber
- Department of Clinical GeneticsLiverpool Women's NHS Foundation TrustLiverpool, EnglandUK
| | - Jenny E. V. Morton
- West Midlands Regional Clinical Genetics Service and Birmingham Health PartnersBirmingham Women's and Children's Hospitals NHS Foundation TrustBirminghamUK
- Birmingham Craniofacial UnitBirmingham Women's and Children's Hospitals NHS Foundation TrustBirminghamUK
| | - Peter Noons
- Birmingham Craniofacial UnitBirmingham Women's and Children's Hospitals NHS Foundation TrustBirminghamUK
| | - Louise C. Wilson
- Clinical Genetics ServiceGreat Ormond Street Hospital for Children NHS Foundation TrustLondonUK
| | - Rosanna C. Ching
- Oxford Craniofacial UnitOxford University Hospitals NHS Foundation TrustOxfordUK
| | - Deirdre Cilliers
- Oxford Centre for Genomic MedicineOxford University Hospitals NHS Foundation TrustOxfordUK
| | - David Johnson
- Oxford Craniofacial UnitOxford University Hospitals NHS Foundation TrustOxfordUK
| | - Julie M. Phipps
- Oxford Centre for Genomic MedicineOxford University Hospitals NHS Foundation TrustOxfordUK
| | - Deborah J. Shears
- Oxford Craniofacial UnitOxford University Hospitals NHS Foundation TrustOxfordUK
- Oxford Centre for Genomic MedicineOxford University Hospitals NHS Foundation TrustOxfordUK
| | - Gregory P. L. Thomas
- Oxford Craniofacial UnitOxford University Hospitals NHS Foundation TrustOxfordUK
| | - Steven A. Wall
- Oxford Craniofacial UnitOxford University Hospitals NHS Foundation TrustOxfordUK
| | - Stephen R. F. Twigg
- MRC Weatherall Institute of Molecular MedicineJohn Radcliffe Hospital, University of OxfordOxfordUK
| | - Andrew O. M. Wilkie
- MRC Weatherall Institute of Molecular MedicineJohn Radcliffe Hospital, University of OxfordOxfordUK
- Oxford Craniofacial UnitOxford University Hospitals NHS Foundation TrustOxfordUK
- Oxford Centre for Genomic MedicineOxford University Hospitals NHS Foundation TrustOxfordUK
| |
Collapse
|
11
|
Lu ZJ, Gu HY, Li ZQ, Lin FX. Low frequency‑pulsed electromagnetic fields promote osteogenic differentiation of bone marrow‑derived mesenchymal stem cells by regulating connexin 43 expression. Exp Ther Med 2024; 28:446. [PMID: 39386938 PMCID: PMC11462399 DOI: 10.3892/etm.2024.12736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 08/22/2024] [Indexed: 10/12/2024] Open
Abstract
The present study investigated the effect of connexin 43 (Cx43) on the regulation of osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells (BMSCs) using low-frequency-pulsed electromagnetic fields (LPEMF). The BMSCs were isolated and cultured in vitro using adherent whole-bone marrow cultures. CCK-8 assay was used to detect the effects of LPEMF on the proliferation ability of BMSCs and alkaline phosphatase (ALP) activity and the levels of osteogenic marker genes were detected to evaluate the osteogenic ability change following LPEMF treatment. Lentiviral vector-mediated RNA interference was transfected into BMSCs to inhibit the expression of Cx43 and western blotting was used to detect Cx43 expression. The BMSCs showed the highest proliferation following LPEMF treatment at 80 Hz for 1 h. The results of ALP activity, osteogenic marker genes and Alizarin Red S staining showed that the osteogenic ability was notably increased following LPEMF treatment at 80 Hz for 1 h. Cx43 expression increased during the osteogenic differentiation of BMSCs following LPEMF treatment at 80 Hz. The enhanced osteogenic differentiation of the LPEMF-treated BMSCs were partially reversed when Cx43 expression was inhibited. LPEMF may promote the osteogenic differentiation of BMSCs by regulating Cx43 expression and enhancing osteogenic ability.
Collapse
Affiliation(s)
- Zhi-Jun Lu
- Department of Spine Surgery, Ganzhou People's Hospital (The Affiliated Ganzhou Hospital of Jiangxi Medical College of Nanchang University, Ganzhou Hospital-Nanfang Hospital of Southern Medical University), Ganzhou, Jiangxi 341000, P.R. China
| | - Hou-Yun Gu
- Department of Spine Surgery, Ganzhou People's Hospital (The Affiliated Ganzhou Hospital of Jiangxi Medical College of Nanchang University, Ganzhou Hospital-Nanfang Hospital of Southern Medical University), Ganzhou, Jiangxi 341000, P.R. China
| | - Zhi-Qiang Li
- Department of Spine Surgery, Ganzhou People's Hospital (The Affiliated Ganzhou Hospital of Jiangxi Medical College of Nanchang University, Ganzhou Hospital-Nanfang Hospital of Southern Medical University), Ganzhou, Jiangxi 341000, P.R. China
| | - Fei-Xiang Lin
- Department of Spine Surgery, Ganzhou People's Hospital (The Affiliated Ganzhou Hospital of Jiangxi Medical College of Nanchang University, Ganzhou Hospital-Nanfang Hospital of Southern Medical University), Ganzhou, Jiangxi 341000, P.R. China
| |
Collapse
|
12
|
Behzadi P, St Hilaire C. Metabolites and metabolism in vascular calcification: links between adenosine signaling and the methionine cycle. Am J Physiol Heart Circ Physiol 2024; 327:H1361-H1375. [PMID: 39453431 PMCID: PMC11588312 DOI: 10.1152/ajpheart.00267.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 10/21/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
The global population of individuals with cardiovascular disease is expanding, and a key risk factor for major adverse cardiovascular events is vascular calcification. The pathogenesis of cardiovascular calcification is complex and multifaceted, with external cues driving epigenetic, transcriptional, and metabolic changes that promote vascular calcification. This review provides an overview of some of the lesser understood molecular processes involved in vascular calcification and discusses the links between calcification pathogenesis and aspects of adenosine signaling and the methionine pathway; the latter of which salvages the essential amino acid methionine, but also provides the substrate critical for methylation, a modification that regulates the function and activity of DNA and proteins. We explore the complex and dynamic nature of osteogenic reprogramming underlying intimal atherosclerotic calcification and medial arterial calcification (MAC). Atherosclerotic calcification is more widely studied; however, emerging studies now show that MAC is a significant pathology independent from atherosclerosis. Furthermore, we emphasize metabolite and metabolic-modulating factors that influence vascular calcification pathogenesis. Although the contributions of these mechanisms are more well-define in relation to atherosclerotic intimal calcification, understanding these pathways may provide crucial mechanistic insights into MAC and inform future therapeutic approaches. Herein, we highlight the significance of adenosine and methyltransferase pathways as key regulators of vascular calcification pathogenesis.
Collapse
Affiliation(s)
- Parya Behzadi
- Division of Cardiology, Department of Medicine, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Cynthia St Hilaire
- Division of Cardiology, Department of Medicine, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
13
|
Manoharan S, Ashfaq SS, Perumal E. MicroRNAs in fluorosis pathogenesis: impact on dental, skeletal, and soft tissues. Arch Toxicol 2024; 98:3913-3932. [PMID: 39269498 DOI: 10.1007/s00204-024-03853-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024]
Abstract
Fluoride-induced toxicity (fluorosis) poses a significant health concern globally, affecting millions of individuals. Understanding the molecular mechanisms underlying fluorosis, particularly the role of microRNAs (miRNAs), is crucial for developing effective preventive and therapeutic strategies. This review explores the pivotal role of miRNAs in the pathogenesis of fluorosis, particularly examining its impact on both hard (skeletal and dental) and soft (brain, liver, kidney, heart, and reproductive organs) tissues. Skeletal fluorosis manifests as abnormal bone mineralization and structure, while dental fluorosis affects enamel formation. In vitro and in vivo studies suggest a significant involvement of miRNAs in the progression of these conditions. For skeletal fluorosis, miR-124, miR-155, and miR-200c-3p have been identified as key regulators, while miR-296-5p and miR-214-3p are implicated in dental fluorosis. Moreover, soft tissue fluorosis encompasses a spectrum of adverse effects on various organs, including the brain, liver, kidneys, heart, and reproductive system. In soft tissues, miRNAs, such as miR-124, miR-200c-3p, miR-132, and miR-34b-5p, have been linked to cellular damage and dysfunction. Notably, miRNAs exert their effects through the modulation of critical pathways involved in fluorosis pathology, including Wnt signaling, apoptosis, cell cycle, and autophagy. Understanding the regulatory roles of miRNAs in fluorosis pathogenesis holds promise for identifying biomarkers and therapeutic targets. However, further research is needed to elucidate the molecular mechanisms underlying miRNA-mediated responses to fluoride exposure. Integration of miRNA research into fluorosis studies could facilitate the development of diagnostic tools and therapeutic interventions, thus mitigating the detrimental effects of fluorosis on both hard and soft tissues.
Collapse
Affiliation(s)
- Suryaa Manoharan
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641046, India
| | - Syed Saadullah Ashfaq
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641046, India
| | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641046, India.
| |
Collapse
|
14
|
Liao YR, Tsai YC, Hsieh TH, Tsai MT, Lin FY, Lin SJ, Lin CC, Chiang HY, Chu PH, Li SY. FHL2 in arterial medial calcification in chronic kidney disease. Nephrol Dial Transplant 2024; 39:2025-2039. [PMID: 38664060 PMCID: PMC11596093 DOI: 10.1093/ndt/gfae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Arterial medial calcification (AMC) is a common complication in individuals with chronic kidney disease (CKD), which can lead to cardiovascular morbidity and mortality. The progression of AMC is controlled by a key transcription factor called runt-related transcription factor 2 (RUNX2), which induces vascular smooth muscle cells (VSMCs) transdifferentiation into an osteogenic phenotype. However, RUNX2 has not been targeted for therapy due to its essential role in bone development. The objective of our study was to discover a RUNX2 coactivator that is highly expressed in arterial VSMCs as a potential therapy for AMC. METHODS We employed transcriptomic analysis of human data and an animal reporter system to pinpoint four and a half LIM domains 2 (FHL2) as a potential target. Subsequently, we investigated the mRNA and protein expression patterns of FHL2 in the aortas of both human and animal subjects with CKD. To examine the role of FHL2 in the RUNX2 transcription machinery, we conducted coimmunoprecipitation and chromatin immunoprecipitation experiments. Next, we manipulated FHL2 expression in cultured VSMCs to examine its impact on high phosphate-induced transdifferentiation. Finally, we employed FHL2-null mice to confirm the role of FHL2 in the development of AMC in vivo. RESULTS Among all the potential RUNX2 cofactors, FHL2 displays selective expression within the cardiovascular system. In the context of CKD subjects, FHL2 undergoes upregulation and translocation from the cytosol to the nucleus of arterial VSMCs. Once in the nucleus, FHL2 interacts structurally and functionally with RUNX2, acting as a coactivator of RUNX2. Notably, the inhibition of FHL2 expression averts transdifferentiation of VSMCs into an osteogenic phenotype and mitigates aortic calcification in uremic animals, without causing any detrimental effects on the skeletal system. CONCLUSION These observations provide evidence that FHL2 is a promising target for treating arterial calcification in patients with CKD.
Collapse
MESH Headings
- Animals
- LIM-Homeodomain Proteins/metabolism
- LIM-Homeodomain Proteins/genetics
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/pathology
- Renal Insufficiency, Chronic/etiology
- Renal Insufficiency, Chronic/complications
- Humans
- Mice
- Muscle Proteins/metabolism
- Muscle Proteins/genetics
- Core Binding Factor Alpha 1 Subunit/metabolism
- Core Binding Factor Alpha 1 Subunit/genetics
- Transcription Factors/metabolism
- Transcription Factors/genetics
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Cells, Cultured
- Vascular Calcification/metabolism
- Vascular Calcification/pathology
- Vascular Calcification/etiology
- Vascular Calcification/genetics
- Male
- Cell Transdifferentiation
- Mice, Inbred C57BL
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Mice, Knockout
Collapse
Affiliation(s)
- Yuan-Ru Liao
- Division of Nephrology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yu-Cheng Tsai
- Division of Nephrology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tsung-Han Hsieh
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei, Taiwan
| | - Ming-Tsun Tsai
- Division of Nephrology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Feng-Yen Lin
- Division of Cardiology, Department of Internal Medicine, School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shing-Jong Lin
- Division of Cardiology, Department of Internal Medicine, School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chih-Ching Lin
- Division of Nephrology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hou-Yu Chiang
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Anatomy, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Science, College of Medicine, Chang Guang University, Taoyuan, Taiwan
| | - Pao-Hsien Chu
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital, Taiwan
| | - Szu-Yuan Li
- Division of Nephrology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
15
|
Xinyi Y, Vladimirovich RI, Beeraka NM, Satyavathi A, Kamble D, Nikolenko VN, Lakshmi AN, Basappa B, Reddy Y P, Fan R, Liu J. Emerging insights into epigenetics and hematopoietic stem cell trafficking in age-related hematological malignancies. Stem Cell Res Ther 2024; 15:401. [PMID: 39506818 PMCID: PMC11539620 DOI: 10.1186/s13287-024-04008-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/22/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Hematopoiesis within the bone marrow (BM) is a complex and tightly regulated process predominantly influenced by immune factors. Aging, diabetes, and obesity are significant contributors to BM niche damage, which can alter hematopoiesis and lead to the development of clonal hematopoiesis of intermediate potential (CHIP). Genetic/epigenetic alterations during aging could influence BM niche reorganization for hematopoiesis or clonal hematopoiesis. CHIP is driven by mutations in genes such as Tet2, Dnmt3a, Asxl1, and Jak2, which are associated with age-related hematological malignancies. OBJECTIVE This literature review aims to provide an updated exploration of the functional aspects of BM niche cells within the hematopoietic microenvironment in the context of age-related hematological malignancies. The review specifically focuses on how immunological stressors modulate different signaling pathways that impact hematopoiesis. METHODS An extensive review of recent studies was conducted, examining the roles of various BM niche cells in hematopoietic stem cell (HSC) trafficking and the development of age-related hematological malignancies. Emphasis was placed on understanding the influence of immunological stressors on these processes. RESULTS Recent findings reveal a significant microheterogeneity and temporal stochasticity of niche cells across the BM during hematopoiesis. These studies demonstrate that niche cells, including mesenchymal stem cells, osteoblasts, and endothelial cells, exhibit dynamic interactions with HSCs, significantly influenced by the BM microenvironment as the age increases. Immunosurveillance plays a crucial role in maintaining hematopoietic homeostasis, with alterations in immune signaling pathways contributing to the onset of hematological malignancies. Novel insights into the interaction between niche cells and HSCs under stress/aging conditions highlight the importance of niche plasticity and adaptability. CONCLUSION The involvement of age-induced genetic/epigenetic alterations in BM niche cells and immunological stressors in hematopoiesis is crucial for understanding the development of age-related hematological malignancies. This comprehensive review provides new insights into the complex interplay between niche cells and HSCs, emphasizing the potential for novel therapeutic approaches that target niche cell functionality and resilience to improve hematopoietic outcomes in the context of aging and metabolic disorders. NOVELTY STATEMENT This review introduces novel concepts regarding the plasticity and adaptability of BM niche cells in response to immunological stressors and epigenetics. It proposes that targeted therapeutic strategies aimed at enhancing niche cell resilience could mitigate the adverse effects of aging, diabetes, and obesity on hematopoiesis and clonal hematopoiesis. Additionally, the review suggests that understanding the precise temporal and spatial dynamics of niche-HSC interactions and epigenetics influence may lead to innovative treatments for age-related hematological malignancies.
Collapse
Affiliation(s)
- Yang Xinyi
- Department of Oncology, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str, Moscow, 119991, Russia
| | - Reshetov Igor Vladimirovich
- Department of Oncology, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str, Moscow, 119991, Russia
| | - Narasimha M Beeraka
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str, Moscow, 119991, Russia.
- Raghavendra Institute of Pharmaceutical Education and Research (RIPER), Anantapuramu, Chiyyedu, Andhra Pradesh, 515721, India.
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut Street, R4-168, Indianapolis, IN, 46202, USA.
- Department of Studies in Molecular Biology, Faculty of Science and Technology, University of Mysore, Mysore, Karnataka, 570006, India.
| | - Allaka Satyavathi
- Department of Chemistry, Faculty of science, Dr B R Ambedkar Open University, Wanaparthy, Telangana, 509103, India
| | - Dinisha Kamble
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut Street, R4-168, Indianapolis, IN, 46202, USA
| | - Vladimir N Nikolenko
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str, Moscow, 119991, Russia
| | - Allaka Naga Lakshmi
- Department of Computer Science, St Philomena's College (Autonomous), Bangalore - Mysore Rd, Bannimantap, Mysuru, Karnataka, 570015, India
| | - Basappa Basappa
- Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Mysore, Karnataka, 570006, India
| | - Padmanabha Reddy Y
- Raghavendra Institute of Pharmaceutical Education and Research (RIPER), Anantapuramu, Chiyyedu, Andhra Pradesh, 515721, India
| | - Ruitai Fan
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450000, China.
| | - Junqi Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450000, China
| |
Collapse
|
16
|
Azarkina K, Gromova E, Malashicheva A. "A Friend Among Strangers" or the Ambiguous Roles of Runx2. Biomolecules 2024; 14:1392. [PMID: 39595568 PMCID: PMC11591759 DOI: 10.3390/biom14111392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024] Open
Abstract
The transcription factor Runx2 plays a crucial role in regulating osteogenic differentiation and skeletal development. This factor not only controls the expression of genes involved in bone formation, but also interacts with signaling pathways such as the Notch pathway, which are essential for body development. However, studies have produced conflicting results regarding the relationship between Runx2 and the Notch pathway. Some studies suggest a synergistic interaction between these molecules, while others suggest an inhibitory one, for example, the interplay between Notch signaling, Runx2, and vitamin D3 in osteogenic differentiation and bone remodeling. The findings suggest a complex relationship between Notch signaling and osteogenic differentiation, with ongoing research needed to clarify the mechanisms involved and resolve existing contradictions regarding role of Notch in this process. Additionally, there is increasing evidence of contradictory roles for Runx2 in various tissues and organs, both under normal conditions and in pathological states. This diversity of roles makes Runx2 a potential therapeutic target, offering new directions for research. In this review, we have discussed the mechanisms of osteogenic differentiation and the important role of Runx2 in this process. We have also examined its relationship with different signaling pathways. However, there are still many uncertainties and inconsistencies in our current understanding of these interactions. Additionally, given that Runx2 is also involved in numerous other events in various tissues, we have tried to comprehensively examine its functions outside the skeletal system.
Collapse
Affiliation(s)
| | | | - Anna Malashicheva
- Laboratory of Regenerative Biomedicine, Institute of Cytology, Russian Academy of Sciences, 194064 Saint-Petersburg, Russia
| |
Collapse
|
17
|
Hudacova E, Abaffy P, Kaplan MM, Krausova M, Kubista M, Machon O. Single-cell transcriptomic resolution of osteogenesis during craniofacial morphogenesis. Bone 2024; 190:117297. [PMID: 39461490 DOI: 10.1016/j.bone.2024.117297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/07/2024] [Accepted: 10/15/2024] [Indexed: 10/29/2024]
Abstract
Craniofacial morphogenesis depends on complex cell fate decisions during the differentiation of post-migratory cranial neural crest cells. Molecular mechanisms of cell differentiation of mesenchymal cells to developing bones, cartilage, teeth, tongue, and other craniofacial tissues are still poorly understood. We performed single-cell transcriptomic analysis of craniofacial mesenchymal cells derived from cranial NCCs in mouse embryo. Using FACS sorting of Wnt1-Cre2 progeny, we carefully mapped the cell heterogeneity in the craniofacial region during the initial stages of cartilage and bone formation. Transcriptomic data and in vivo validations identified molecular determinants of major cell populations involved in the development of lower and upper jaw, teeth, tongue, dermis, or periocular mesenchyme. Single-cell transcriptomic analysis of Meis2-deficient mice revealed critical gene expression differences, including increased osteogenic and cell adhesion markers. This leads to affected mesenchymal cell differentiation and increased ossification, resulting in impaired bone, cartilage, and tongue formation.
Collapse
Affiliation(s)
- Erika Hudacova
- Department of Developmental Biology, Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, 14200 Prague, Czech Republic; Department of Cell Biology, Faculty of Science, Charles University, Vinicna 7, 12000 Prague, Czech Republic.
| | - Pavel Abaffy
- Laboratory of Gene Expression, Institute of Biotechnology, Czech Academy of Sciences, Prumyslova 595, 25200 Vestec, Czech Republic.
| | - Mehmet Mahsum Kaplan
- Department of Developmental Biology, Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, 14200 Prague, Czech Republic.
| | - Michaela Krausova
- Department of Developmental Biology, Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, 14200 Prague, Czech Republic
| | - Mikael Kubista
- Laboratory of Gene Expression, Institute of Biotechnology, Czech Academy of Sciences, Prumyslova 595, 25200 Vestec, Czech Republic.
| | - Ondrej Machon
- Department of Developmental Biology, Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, 14200 Prague, Czech Republic.
| |
Collapse
|
18
|
Taufer NP, Santos-Souza C, Larentis LT, Santos CND, Creuzet SE, Garcez RC. Integrative analysis of molecular pathways and morphological anomalies associated with congenital Zika syndrome. J Neurol Sci 2024; 465:123190. [PMID: 39182423 DOI: 10.1016/j.jns.2024.123190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/09/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024]
Abstract
Congenital Zika syndrome (CZS) comprises a set of clinical manifestations that can be presented by neonates born to mothers infected by the Zika virus (ZIKV). CZS-associated phenotypes include neurological, skeletal, and systemic alterations and long-term developmental sequelae. One of the most frequently reported clinical conditions is microcephaly characterized by a reduction in head circumference and cognitive complications. Nevertheless, the associations among the diverse signaling pathways underlying CZS phenotypes remain to be elucidated. To shed light on CZS, we have extensively reviewed the morphological anomalies resulting from ZIKV infection, as well as genes and proteins of interest obtained from the published literature. With this list of genes or proteins, we performed computational analyses to explore the cellular processes, molecular mechanisms, and molecular pathways related to ZIKV infection. Therefore, in this review, we comprehensively describe the morphological abnormalities caused by congenital ZIKV infection and, through the analysis noted above, propose common molecular pathways altered by ZIKV that could explain both central nervous system and craniofacial skeletal alterations.
Collapse
Affiliation(s)
- Nathali Parise Taufer
- Graduate Program in Cell and Developmental Biology, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; Laboratório de Células-Tronco e Regeneração Tecidual (LACERT), Department of Cell Biology, Embryology, and Genetics, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Camila Santos-Souza
- Graduate Program in Cell and Developmental Biology, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; Laboratório de Células-Tronco e Regeneração Tecidual (LACERT), Department of Cell Biology, Embryology, and Genetics, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Lucas Trentin Larentis
- Graduate Program in Cell and Developmental Biology, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; Laboratório de Células-Tronco e Regeneração Tecidual (LACERT), Department of Cell Biology, Embryology, and Genetics, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | | | - Sophie Emmanuelle Creuzet
- Institut des Neurosciences Paris-Saclay (NeuroPSI), Paris-Saclay University, Centre National de la Recherche Scientifique UMR 9197, Saclay, France.
| | - Ricardo Castilho Garcez
- Graduate Program in Cell and Developmental Biology, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; Laboratório de Células-Tronco e Regeneração Tecidual (LACERT), Department of Cell Biology, Embryology, and Genetics, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| |
Collapse
|
19
|
Doyle SE, Cazzola CN, Coleman CM. Design considerations when creating a high throughput screen-compatible in vitro model of osteogenesis. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:100184. [PMID: 39313131 DOI: 10.1016/j.slasd.2024.100184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/06/2024] [Accepted: 09/20/2024] [Indexed: 09/25/2024]
Abstract
Inducing osteogenic differentiation in vitro is useful for the identification and development of bone regeneration therapies as well as modelling bone disorders. To couple in vitro models with high throughput screening techniques retains the assay's relevance in research while increasing its therapeutic impact. Miniaturizing, automating and/or digitalizing in vitro assays will reduce the required quantity of cells, biologic stimulants, culture/output assay reagents, time and cost. This review highlights the design and workflow considerations for creating a high throughput screen-compatible model of osteogenesis, comparing and contrasting osteogenic cell type, assay fabrication and culture methodology, osteogenic induction approach and repurposing existing output techniques.
Collapse
Affiliation(s)
- Stephanie E Doyle
- Regenerative Medicine Institute, School of Medicine, College of Medicine, Nursing and Health Science, University of Galway, Galway City, County Galway H91 FD82, Ireland.
| | - Courtney N Cazzola
- Regenerative Medicine Institute, School of Medicine, College of Medicine, Nursing and Health Science, University of Galway, Galway City, County Galway H91 FD82, Ireland
| | - Cynthia M Coleman
- Regenerative Medicine Institute, School of Medicine, College of Medicine, Nursing and Health Science, University of Galway, Galway City, County Galway H91 FD82, Ireland
| |
Collapse
|
20
|
Gomez GA, Udayakumar A, Pourteymoor S, Dennis G, Xing W, Mohan S. Evaluation of Potential Roles of Zinc Finger Homeobox 3 (Zfhx3) Expressed in Chondrocytes and Osteoblasts on Skeletal Growth in Mice. Calcif Tissue Int 2024; 115:445-454. [PMID: 39085428 PMCID: PMC11648307 DOI: 10.1007/s00223-024-01265-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/20/2024] [Indexed: 08/02/2024]
Abstract
Bone formation is tightly modulated by genetically encoded molecular proteins that interact to regulate cellular differentiation and secretion of bony matrix. Many transcription factors are known to coordinate these events by controlling gene transcription within networks. However, not all factors involved are known. Here, we identified a novel function for Zinc Finger Homeobox 3 (Zfhx3), a gene encoding a transcription factor, as a regulator of bone metabolism. We knocked out Zfhx3 conditionally in mice in either chondrocytes or osteoblasts and characterized their bones by micro-CT in 12-week-old mice. We observed a negative effect in linear bone growth in both knockout mice but reduced bone mass only in mice with Zfhx3 deleted in osteoblasts. Loss of Zfhx3 expression in osteoblasts affected trabecular bone mass in femurs and vertebrae in both sexes but influenced cortical bone volume fraction only in females. Moreover, transcriptional analysis of femoral bones in osteoblast Zfhx3 conditional knockout mice revealed a reduced expression of osteoblast genes, and histological evaluation of trabecular bones suggests that Zfhx3 causes changes in bone formation and not resorption. The loss of Zfhx3 causes reductions in trabecular bone area and osteoid volume, but no changes in the expression of osteoclast differentiation markers or number of TRAP stained osteoclasts. These studies introduce Zfhx3 as a relevant factor toward understanding gene regulatory networks that control bone formation and development of peak bone mass.
Collapse
Affiliation(s)
- Gustavo A Gomez
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, 11201 Benton Street, Loma Linda, CA, 92357, USA
| | - Anakha Udayakumar
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, 11201 Benton Street, Loma Linda, CA, 92357, USA
| | - Sheila Pourteymoor
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, 11201 Benton Street, Loma Linda, CA, 92357, USA
| | - Garrett Dennis
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, 11201 Benton Street, Loma Linda, CA, 92357, USA
| | - Weirong Xing
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, 11201 Benton Street, Loma Linda, CA, 92357, USA
| | - Subburaman Mohan
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, 11201 Benton Street, Loma Linda, CA, 92357, USA.
- Departments of Medicine, Biochemistry and Orthopedic Surgery, Loma Linda University, Loma Linda, CA, 92354, USA.
| |
Collapse
|
21
|
Komori T. Regulation of Skeletal Development and Maintenance by Runx2 and Sp7. Int J Mol Sci 2024; 25:10102. [PMID: 39337587 PMCID: PMC11432631 DOI: 10.3390/ijms251810102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Runx2 (runt related transcription factor 2) and Sp7 (Sp7 transcription factor 7) are crucial transcription factors for bone development. The cotranscription factor Cbfb (core binding factor beta), which enhances the DNA-binding capacity of Runx2 and stabilizes the Runx2 protein, is necessary for bone development. Runx2 is essential for chondrocyte maturation, and Sp7 is partly involved. Runx2 induces the commitment of multipotent mesenchymal cells to osteoblast lineage cells and enhances the proliferation of osteoprogenitors. Reciprocal regulation between Runx2 and the Hedgehog, fibroblast growth factor (Fgf), Wnt, and parathyroid hormone-like hormone (Pthlh) signaling pathways and Dlx5 (distal-less homeobox 5) plays an important role in these processes. The induction of Fgfr2 (Fgf receptor 2) and Fgfr3 expression by Runx2 is important for the proliferation of osteoblast lineage cells. Runx2 induces Sp7 expression, and Runx2+ osteoprogenitors become Runx2+Sp7+ preosteoblasts. Sp7 induces the differentiation of preosteoblasts into osteoblasts without enhancing their proliferation. In osteoblasts, Runx2 is required for bone formation by inducing the expression of major bone matrix protein genes, including Col1a1 (collagen type I alpha 1), Col1a2, Spp1 (secreted phosphoprotein 1), Ibsp (integrin binding sialoprotein), and Bglap (bone gamma carboxyglutamate protein)/Bglap2. Bglap/Bglap2 (osteocalcin) regulates the alignment of apatite crystals parallel to collagen fibrils but does not function as a hormone that regulates glucose metabolism, testosterone synthesis, and muscle mass. Sp7 is also involved in Co1a1 expression and regulates osteoblast/osteocyte process formation, which is necessary for the survival of osteocytes and the prevention of cortical porosity. SP7 mutations cause osteogenesis imperfecta in rare cases. Runx2 is an important pathogenic factor, while Runx1, Runx3, and Cbfb are protective factors in osteoarthritis development.
Collapse
Affiliation(s)
- Toshihisa Komori
- Department of Molecular Tumor Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| |
Collapse
|
22
|
Upadhyay V, Sharma S, Sethi A, Singh AK, Chowdhury S, Srivastava S, Mishra S, Singh S, Chattopadhyay N, Trivedi AK. Hakai, a novel Runx2 interacting protein, augments osteoblast differentiation by rescuing Runx2 from Smurf2-mediated proteasome degradation. J Cell Physiol 2024; 239:e31388. [PMID: 39034451 DOI: 10.1002/jcp.31388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024]
Abstract
Runt-related transcription factor 2 (Runx2) is a key regulator of osteoblast differentiation and bone formation. In Runx2-deficient embryos, skeletal development ceases at the cartilage anlage stage. These embryos die of respiratory failure upon birth and display a complete absence of bone and cartilage mineralization. Here, we identified Hakai, a type of E3 ubiquitin ligase as a potential Runx2 interacting partner through affinity pulldown-based proteomic approach. Subsequently, we observed that similar to Runx2, Hakai was downregulated in osteopenic ovariectomized rats, suggesting its involvement in bone formation. Consistent with this observation, Hakai overexpression significantly enhanced osteoblast differentiation in mesenchyme-like C3H10T1/2 as well as primary rat calvaria osteoblast (RCO) cells in vitro. Conversely, overexpression of a catalytically inactive Hakai mutant (C109A) exhibited minimal to no effect, whereas Hakai depletion markedly reduced endogenous Runx2 levels and impaired osteogenic differentiation in both C3H10T1/2 and RCOs. Mechanistically, Hakai physically interacts with Runx2 and enhances its protein turnover by rescuing it from Smad ubiquitination regulatory factor 2 (Smurf2)-mediated proteasome degradation. Wild-type Hakai but not Hakai-C109A inhibited Smurf2 protein levels through proteasome-mediated degradation. These findings underscore Hakai's functional role in bone formation, primarily through its positive modulation of Runx2 protein turnover by protecting it from Smurf2-mediated ubiquitin-proteasomal degradation. Collectively, our results demonstrate Hakai as a promising novel therapeutic target for osteoporosis.
Collapse
Affiliation(s)
- Vishal Upadhyay
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Shivani Sharma
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
- Division of Endocrinology and Center for Research in ASTHI, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Arppita Sethi
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Anil Kumar Singh
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Sangita Chowdhury
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Swati Srivastava
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Shivkant Mishra
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Shyam Singh
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Naibedya Chattopadhyay
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
- Division of Endocrinology and Center for Research in ASTHI, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Arun Kumar Trivedi
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
23
|
Qian D, Zhang Q, He CX, Guo J, Huang XT, Zhao J, Zhang H, Xu C, Peng W. Hai-Honghua medicinal liquor is a reliable remedy for fracture by promotion of osteogenic differentiation via activation of PI3K/Akt pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118234. [PMID: 38670404 DOI: 10.1016/j.jep.2024.118234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 02/19/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hai-Honghua medicinal liquor (HHML), an external Chinese herbal formula preparation, is often applied to treat freshly closed tibia/fibular fractures, ankle fractures, and other bone-related disorders, but the related molecular mechanism is unclear. AIM OF THE STUDY To evaluate the therapeutic effect of HHML in patients with tibial/fibular and ankle fractures, and to explore its related possible mechanism. METHODS AND MATERIALS A total of 182 patients with tibia/fibular fractures and 183 patients with ankle fractures were enrolled in this study. A randomized, controlled, unblinded clinical trial was designed to evaluate the therapeutic effect of HHML on tibial/fibular and ankle fractures. The chemical compositions of HHML were analyzed by the HPLC-Q-Extractive MS/MS. Furthermore, a rat tibial fracture model was established to evaluate the therapeutic effects of HHML in promoting fracture healing, and the mouse embryonic osteoblasts cell line of MC3T3-E1 was further carried out to explore the mechanisms of HHML on osteoblast differentiation. RESULTS In the clinical evaluation, HHML treatment significantly shortened the time for pain and swelling in patients with tibial/fibular fractures (P < 0.01) and ankle fractures (P < 0.01), and the incidence of complications was significantly reduced as well. Subsequently, 116 constituents were identified from HHML via HPLC-Q-TOF-MS/MS analysis. In vivo, no obvious changes in weight were observed in HHML-treated rats. Moreover, the levels of bone formation markers (including osteocalcin (OCN), N-terminal propeptide of type I procollagen (PINP), alkaline phosphatase (ALP), calcium (Ca) and substance P) in rat serum were significantly increased in HHML-treated rats compared with model rats (P < 0.05). Micro-CT analysis showed bone mineral density (BMD), bone volume fraction (BV/TV), trabecular thickness (Tb.Th) of the HHML-treated rats were significantly increased (P < 0.05, vs. Model) while trabecular separation (Tb.Sp) and structure model index (SMI) values were significantly reduced (P < 0.05, vs. Model). Histological analysis showed that HHML treatment promoted the healing of fractures and cartilage repair, and increased the osteoblasts and collagen fibers. Furthermore, our results also revealed HHML could promote MC3T3-E1 cells proliferation and osteoblast differentiation via regulation of the runt-related transcription factor 2 (RUNX2), bone alkaline phosphatase (BALP), and OCN by activating phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) pathway, which confirmed by adding PI3K chemical inhibitor of LY294002. CONCLUSION HHML treatment is a reliable remedy for fractures in tibial and ankle by promotion of osteogenic differentiation via activation of PI3K/Akt pathway.
Collapse
Affiliation(s)
- Die Qian
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qing Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng-Xun He
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Juan Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiao-Ting Huang
- Department of Orthopedics, Longquan Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610017, China
| | - Jun Zhao
- Department of Orthopedics, Longquan Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610017, China
| | - Hong Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Chi Xu
- Department of Orthopedics, Longquan Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610017, China.
| | - Wei Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
24
|
Liu J, Zhang K, Zhang X, Guan F, Zeng H, Kubo M, Lee P, Candotti F, James LK, Camara NOS, Benlagha K, Lei J, Forsman H, Yang L, Xiao W, Liu Z, Liu C. Immunoglobulin class-switch recombination: Mechanism, regulation, and related diseases. MedComm (Beijing) 2024; 5:e662. [PMID: 39144468 PMCID: PMC11322596 DOI: 10.1002/mco2.662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/30/2024] [Accepted: 06/30/2024] [Indexed: 08/16/2024] Open
Abstract
Maturation of the secondary antibody repertoire requires class-switch recombination (CSR), which switches IgM to other immunoglobulins (Igs), and somatic hypermutation, which promotes the production of high-affinity antibodies. Following immune response or infection within the body, activation of T cell-dependent and T cell-independent antigens triggers the activation of activation-induced cytidine deaminase, initiating the CSR process. CSR has the capacity to modify the functional properties of antibodies, thereby contributing to the adaptive immune response in the organism. Ig CSR defects, characterized by an abnormal relative frequency of Ig isotypes, represent a rare form of primary immunodeficiency. Elucidating the molecular basis of Ig diversification is essential for a better understanding of diseases related to Ig CSR defects and could provide clues for clinical diagnosis and therapeutic approaches. Here, we review the most recent insights on the diversification of five Ig isotypes and choose several classic diseases, including hyper-IgM syndrome, Waldenström macroglobulinemia, hyper-IgD syndrome, selective IgA deficiency, hyper-IgE syndrome, multiple myeloma, and Burkitt lymphoma, to illustrate the mechanism of Ig CSR deficiency. The investigation into the underlying mechanism of Ig CSR holds significant potential for the advancement of increasingly precise diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Jia‐Chen Liu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Department of Pathogen BiologySchool of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Ke Zhang
- Department of Pathogen BiologySchool of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Xu Zhang
- Department of RespiratoryThe First Affiliated Hospital of Yangtze UniversityJingzhouChina
| | - Fei Guan
- Department of Pathogen BiologySchool of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Hu Zeng
- Department of ImmunologyMayo Clinic College of Medicine and ScienceRochesterUSA
| | - Masato Kubo
- Laboratory for Cytokine Regulation, Center for Integrative Medical Science (IMS), RIKEN Yokohama InstituteYokohamaJapan
| | - Pamela Lee
- Department of Paediatrics and Adolescent MedicineLKS Faculty of MedicineThe University of Hong KongHong KongChina
| | - Fabio Candotti
- Division of Immunology and AllergyLausanne University Hospital and University of LausanneLausanneSwitzerland
| | | | | | - Kamel Benlagha
- Institut de Recherche Saint‐LouisUniversité de ParisParisFrance
| | - Jia‐Hui Lei
- Department of Pathogen BiologySchool of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Huamei Forsman
- Department of Rheumatology and Inflammation ResearchInstitute of Medicine, Sahlgrenska Academy, University of GothenburgGothenburgSweden
| | - Lu Yang
- Department of Pathogen BiologySchool of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Wei Xiao
- Department of RespiratoryThe First Affiliated Hospital of Yangtze UniversityJingzhouChina
| | - Zheng Liu
- Department of Otolaryngology‐Head and Neck SurgeryTongji Hospital, Tongji Medical College, HuazhongUniversity of Science and TechnologyWuhanChina
| | - Chao‐Hong Liu
- Department of Pathogen BiologySchool of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and TechnologyWuhanHubeiChina
| |
Collapse
|
25
|
Stonehouse-Smith D, Ota L, Seehra J, Kwok J, Liu C, Seppala M, Cobourne MT. How do teeth erupt? Br Dent J 2024; 237:217-221. [PMID: 39123030 PMCID: PMC11315668 DOI: 10.1038/s41415-024-7609-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/15/2024] [Accepted: 01/22/2024] [Indexed: 08/12/2024]
Abstract
The development of normal occlusion requires eruptive migration of teeth from their developmental position in the jaw into a functional position within the oral cavity. This process involves significant and coordinated movement in an axial direction and appropriate eruption through the gingival tissues. The mechanisms regulating these developmental events are poorly understood, and teeth retain eruptive potential throughout their lifespan. In recent years, the use of mouse models has helped to elucidate some of the underlying molecular and biological mechanisms of mammalian tooth eruption. Here, we outline our current understanding of tooth eruption mechanisms and discuss their relevance in terms of known human disorders of tooth eruption.
Collapse
Affiliation(s)
- Daniel Stonehouse-Smith
- Centre for Craniofacial & Regenerative Biology, Department of Orthodontics, Faculty of Dental, Oral & Craniofacial Sciences, King´s College London, London, UK
| | - Laura Ota
- Dental Core Trainee, Guy´s and St Thomas´ NHS Foundation Trust, UK
| | - Jadbinder Seehra
- Centre for Craniofacial & Regenerative Biology, Department of Orthodontics, Faculty of Dental, Oral & Craniofacial Sciences, King´s College London, London, UK
| | - Jerry Kwok
- Department of Oral Surgery, Guy´s and St Thomas´ NHS Foundation Trust, UK
| | - Catherine Liu
- Centre for Craniofacial & Regenerative Biology, Department of Orthodontics, Faculty of Dental, Oral & Craniofacial Sciences, King´s College London, London, UK
| | - Maisa Seppala
- Centre for Craniofacial & Regenerative Biology, Department of Orthodontics, Faculty of Dental, Oral & Craniofacial Sciences, King´s College London, London, UK
| | - Martyn T Cobourne
- Centre for Craniofacial & Regenerative Biology, Department of Orthodontics, Faculty of Dental, Oral & Craniofacial Sciences, King´s College London, London, UK.
| |
Collapse
|
26
|
Zhu S, Chen W, Masson A, Li YP. Cell signaling and transcriptional regulation of osteoblast lineage commitment, differentiation, bone formation, and homeostasis. Cell Discov 2024; 10:71. [PMID: 38956429 PMCID: PMC11219878 DOI: 10.1038/s41421-024-00689-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 05/04/2024] [Indexed: 07/04/2024] Open
Abstract
The initiation of osteogenesis primarily occurs as mesenchymal stem cells undergo differentiation into osteoblasts. This differentiation process plays a crucial role in bone formation and homeostasis and is regulated by two intricate processes: cell signal transduction and transcriptional gene expression. Various essential cell signaling pathways, including Wnt, BMP, TGF-β, Hedgehog, PTH, FGF, Ephrin, Notch, Hippo, and Piezo1/2, play a critical role in facilitating osteoblast differentiation, bone formation, and bone homeostasis. Key transcriptional factors in this differentiation process include Runx2, Cbfβ, Runx1, Osterix, ATF4, SATB2, and TAZ/YAP. Furthermore, a diverse array of epigenetic factors also plays critical roles in osteoblast differentiation, bone formation, and homeostasis at the transcriptional level. This review provides an overview of the latest developments and current comprehension concerning the pathways of cell signaling, regulation of hormones, and transcriptional regulation of genes involved in the commitment and differentiation of osteoblast lineage, as well as in bone formation and maintenance of homeostasis. The paper also reviews epigenetic regulation of osteoblast differentiation via mechanisms, such as histone and DNA modifications. Additionally, we summarize the latest developments in osteoblast biology spurred by recent advancements in various modern technologies and bioinformatics. By synthesizing these insights into a comprehensive understanding of osteoblast differentiation, this review provides further clarification of the mechanisms underlying osteoblast lineage commitment, differentiation, and bone formation, and highlights potential new therapeutic applications for the treatment of bone diseases.
Collapse
Affiliation(s)
- Siyu Zhu
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA
| | - Wei Chen
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA.
| | - Alasdair Masson
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA
| | - Yi-Ping Li
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA.
| |
Collapse
|
27
|
Kawa Y, Shindo M, Ohgane J, Inui M. Epigenome editing revealed the role of DNA methylation of T-DMR/CpG island shore on Runx2 transcription. Biochem Biophys Rep 2024; 38:101733. [PMID: 38799114 PMCID: PMC11127475 DOI: 10.1016/j.bbrep.2024.101733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
RUNX2 is a transcription factor crucial for bone formation. Mutant mice with varying levels of Runx2 expression display dosage-dependent skeletal abnormalities, underscoring the importance of Runx2 dosage control in skeletal formation. RUNX2 activity is regulated by several molecular mechanisms, including epigenetic modification such as DNA methylation. In this study, we investigated whether targeted repressive epigenome editing including hypermethylation to the Runx2-DMR/CpG island shore could influence Runx2 expression using Cas9-based epigenome-editing tools. Through the transient introduction of CRISPRoff-v2.1 and gRNAs targeting Runx2-DMR into MC3T3-E1 cells, we successfully induced hypermethylation of the region and concurrently reduced Runx2 expression during osteoblast differentiation. Although the epigenome editing of Runx2-DMR did not impact the expression of RUNX2 downstream target genes, these results indicate a causal relationship between the epigenetic status of the Runx2-DMR and Runx2 transcription. Additionally, we observed that hypermethylation of the Runx2-DMR persisted for at least 24 days under growth conditions but decreased during osteogenic differentiation, highlighting an endogenous DNA demethylation activity targeting the Runx2-DMR during the differentiation process. In summary, our study underscore the usefulness of the epigenome editing technology to evaluate the function of endogenous genetic elements and revealed that the Runx2-DMR methylation is actively regulated during osteoblast differentiation, subsequently could influence Runx2 expression.
Collapse
Affiliation(s)
- Yutaro Kawa
- Laboratory of Animal Regeneration Systemology, Department of Life Sciences, School of Agriculture, Meiji University, Kanagawa, 214-8571, Japan
| | - Miyuki Shindo
- Division of Laboratory Animal Resources, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| | - Jun Ohgane
- Laboratory of Genomic Function Engineering, Department of Life Sciences, School of Agriculture, Meiji University, Kanagawa, 214-8571, Japan
| | - Masafumi Inui
- Laboratory of Animal Regeneration Systemology, Department of Life Sciences, School of Agriculture, Meiji University, Kanagawa, 214-8571, Japan
| |
Collapse
|
28
|
Hu R, Dun X, Singh L, Banton MC. Runx2 regulates peripheral nerve regeneration to promote Schwann cell migration and re-myelination. Neural Regen Res 2024; 19:1575-1583. [PMID: 38051902 PMCID: PMC10883509 DOI: 10.4103/1673-5374.387977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 09/16/2023] [Indexed: 12/07/2023] Open
Abstract
Abstract
JOURNAL/nrgr/04.03/01300535-202407000-00038/figure1/v/2023-11-20T171125Z/r/image-tiff
Runx2 is a major regulator of osteoblast differentiation and function; however, the role of Runx2 in peripheral nerve repair is unclear. Here, we analyzed Runx2 expression following injury and found that it was specifically up-regulated in Schwann cells. Furthermore, using Schwann cell-specific Runx2 knockout mice, we studied peripheral nerve development and regeneration and found that multiple steps in the regeneration process following sciatic nerve injury were Runx2-dependent. Changes observed in Runx2 knockout mice include increased proliferation of Schwann cells, impaired Schwann cell migration and axonal regrowth, reduced re-myelination of axons, and a block in macrophage clearance in the late stage of regeneration. Taken together, our findings indicate that Runx2 is a key regulator of Schwann cell plasticity, and therefore peripheral nerve repair. Thus, our study shows that Runx2 plays a major role in Schwann cell migration, re-myelination, and peripheral nerve functional recovery following injury.
Collapse
Affiliation(s)
- Rong Hu
- School of Traditional Chinese Medicine, Department of Traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xinpeng Dun
- The Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Lolita Singh
- Faculty of Health, University of Plymouth, Plymouth, UK
| | | |
Collapse
|
29
|
Bixel MG, Sivaraj KK, Timmen M, Mohanakrishnan V, Aravamudhan A, Adams S, Koh BI, Jeong HW, Kruse K, Stange R, Adams RH. Angiogenesis is uncoupled from osteogenesis during calvarial bone regeneration. Nat Commun 2024; 15:4575. [PMID: 38834586 PMCID: PMC11150404 DOI: 10.1038/s41467-024-48579-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 05/06/2024] [Indexed: 06/06/2024] Open
Abstract
Bone regeneration requires a well-orchestrated cellular and molecular response including robust vascularization and recruitment of mesenchymal and osteogenic cells. In femoral fractures, angiogenesis and osteogenesis are closely coupled during the complex healing process. Here, we show with advanced longitudinal intravital multiphoton microscopy that early vascular sprouting is not directly coupled to osteoprogenitor invasion during calvarial bone regeneration. Early osteoprogenitors emerging from the periosteum give rise to bone-forming osteoblasts at the injured calvarial bone edge. Microvessels growing inside the lesions are not associated with osteoprogenitors. Subsequently, osteogenic cells collectively invade the vascularized and perfused lesion as a multicellular layer, thereby advancing regenerative ossification. Vascular sprouting and remodeling result in dynamic blood flow alterations to accommodate the growing bone. Single cell profiling of injured calvarial bones demonstrates mesenchymal stromal cell heterogeneity comparable to femoral fractures with increase in cell types promoting bone regeneration. Expression of angiogenesis and hypoxia-related genes are slightly elevated reflecting ossification of a vascularized lesion site. Endothelial Notch and VEGF signaling alter vascular growth in calvarial bone repair without affecting the ossification progress. Our findings may have clinical implications for bone regeneration and bioengineering approaches.
Collapse
Affiliation(s)
- M Gabriele Bixel
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine and University of Münster, Faculty of Medicine, D-48149, Münster, Germany.
| | - Kishor K Sivaraj
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine and University of Münster, Faculty of Medicine, D-48149, Münster, Germany
| | - Melanie Timmen
- Department of Regenerative Musculoskeletal Medicine, Institute of Musculoskeletal Medicine, University Hospital Münster, D-48149, Münster, Germany
| | - Vishal Mohanakrishnan
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine and University of Münster, Faculty of Medicine, D-48149, Münster, Germany
| | - Anusha Aravamudhan
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine and University of Münster, Faculty of Medicine, D-48149, Münster, Germany
| | - Susanne Adams
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine and University of Münster, Faculty of Medicine, D-48149, Münster, Germany
| | - Bong-Ihn Koh
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine and University of Münster, Faculty of Medicine, D-48149, Münster, Germany
| | - Hyun-Woo Jeong
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine and University of Münster, Faculty of Medicine, D-48149, Münster, Germany
- Max Planck Institute for Molecular Biomedicine, Sequencing Core Facility, D-48149, Münster, Germany
| | - Kai Kruse
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine and University of Münster, Faculty of Medicine, D-48149, Münster, Germany
- Max Planck Institute for Molecular Biomedicine, Bioinformatics Service Unit, D-48149, Münster, Germany
| | - Richard Stange
- Department of Regenerative Musculoskeletal Medicine, Institute of Musculoskeletal Medicine, University Hospital Münster, D-48149, Münster, Germany
| | - Ralf H Adams
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine and University of Münster, Faculty of Medicine, D-48149, Münster, Germany.
| |
Collapse
|
30
|
Wei F, Lin K, Ruan B, Wang C, Yang L, Wang H, Wang Y. Epigallocatechin gallate protects MC3T3-E1 cells from cadmium-induced apoptosis and dysfunction via modulating PI3K/AKT/mTOR and Nrf2/HO-1 pathways. PeerJ 2024; 12:e17488. [PMID: 38827303 PMCID: PMC11141548 DOI: 10.7717/peerj.17488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 05/09/2024] [Indexed: 06/04/2024] Open
Abstract
Epigallocatechin gallate (EGCG), an active constituent of tea, is recognized for its anticancer and anti-inflammatory properties. However, the specific mechanism by which EGCG protects osteoblasts from cadmium-induced damage remains incompletely understood. Here, the action of EGCG was investigated by exposing MC3T3-E1 osteoblasts to EGCG and CdCl2 and examining their growth, apoptosis, and differentiation. It was found that EGCG promoted the viability of cadmium-exposed MC3T3-E1 cells, mitigated apoptosis, and promoted both maturation and mineralization. Additionally, CdCl2 has been reported to inhibit both the phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) and nuclear factor erythroid 2-related factor 2/heme oxygenase-1(Nrf2/HO-1) signaling pathways. EGCG treatment attenuated cadmium-induced apoptosis in osteoblasts and restored their function by upregulating both signaling pathways. The findings provide compelling evidence for EGCG's role in attenuating cadmium-induced osteoblast apoptosis and dysfunction through activating the PI3K/AKT/mTOR and Nrf2/HO-1 pathways. This suggests the potential of using EGCG for treating cadmium-induced osteoblast dysfunction.
Collapse
Affiliation(s)
- Fanhao Wei
- Clinical Medical College, Yangzhou University, Yangzhou, China
- Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Kai Lin
- Nanjing University Medical School, Nanjing, China
| | - Binjia Ruan
- Nanjing University Medical School, Nanjing, China
| | | | - Lixun Yang
- Clinical Medical College, Yangzhou University, Yangzhou, China
- Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Hongwei Wang
- Nanjing University Medical School, Nanjing, China
| | - Yongxiang Wang
- Clinical Medical College, Yangzhou University, Yangzhou, China
- Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, China
| |
Collapse
|
31
|
Zerillo L, Coletta CC, Madera JR, Grasso G, Tutela A, Vito P, Stilo R, Zotti T. Extremely low frequency-electromagnetic fields promote chondrogenic differentiation of adipose-derived mesenchymal stem cells through a conventional genetic program. Sci Rep 2024; 14:10182. [PMID: 38702382 PMCID: PMC11068729 DOI: 10.1038/s41598-024-60846-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024] Open
Abstract
Progressive cartilage deterioration leads to chronic inflammation and loss of joint function, causing osteoarthritis (OA) and joint disease. Although symptoms vary among individuals, the disease can cause severe pain and permanent disability, and effective therapies are urgently needed. Human Adipose-Derived Stem Cells (ADSCs) may differentiate into chondrocytes and are promising for treating OA. Moreover, recent studies indicate that electromagnetic fields (EMFs) could positively affect the chondrogenic differentiation potential of ADSCs. In this work, we investigated the impact of EMFs with frequencies of 35 Hertz and 58 Hertz, referred to as extremely low frequency-EMFs (ELF-EMFs), on the chondrogenesis of ADSCs, cultured in both monolayer and 3D cell micromasses. ADSC cultures were daily stimulated for 36 min with ELF-EMFs or left unstimulated, and the progression of the differentiation process was evaluated by morphological analysis, extracellular matrix deposition, and gene expression profiling of chondrogenic markers. In both culturing conditions, stimulation with ELF-EMFs did not compromise cell viability but accelerated chondrogenesis by enhancing the secretion and deposition of extracellular matrix components at earlier time points in comparison to unstimulated cells. This study showed that, in an appropriate chondrogenic microenvironment, ELF-EMFs enhance chondrogenic differentiation and may be an important tool for supporting and accelerating the treatment of OA through autologous adipose stem cell therapy.
Collapse
Affiliation(s)
- Lucrezia Zerillo
- Dipartimento di Scienze e Tecnologie, Università Degli Studi del Sannio, Via dei Mulini, 82100, Benevento, Italy
- Genus Biotech, Università Degli Studi del Sannio, Benevento, Italy
| | - Concetta Claudia Coletta
- Dipartimento di Scienze e Tecnologie, Università Degli Studi del Sannio, Via dei Mulini, 82100, Benevento, Italy
| | - Jessica Raffaella Madera
- Dipartimento di Scienze e Tecnologie, Università Degli Studi del Sannio, Via dei Mulini, 82100, Benevento, Italy
| | - Gabriella Grasso
- Dipartimento di Scienze e Tecnologie, Università Degli Studi del Sannio, Via dei Mulini, 82100, Benevento, Italy
| | - Angelapia Tutela
- Dipartimento di Scienze e Tecnologie, Università Degli Studi del Sannio, Via dei Mulini, 82100, Benevento, Italy
| | - Pasquale Vito
- Dipartimento di Scienze e Tecnologie, Università Degli Studi del Sannio, Via dei Mulini, 82100, Benevento, Italy
- Genus Biotech, Università Degli Studi del Sannio, Benevento, Italy
| | - Romania Stilo
- Dipartimento di Scienze e Tecnologie, Università Degli Studi del Sannio, Via dei Mulini, 82100, Benevento, Italy.
| | - Tiziana Zotti
- Dipartimento di Scienze e Tecnologie, Università Degli Studi del Sannio, Via dei Mulini, 82100, Benevento, Italy.
| |
Collapse
|
32
|
Upadhyay V, Singh AK, Sharma S, Sethi A, Srivastava S, Chowdhury S, Siddiqui S, Chattopadhyay N, Trivedi AK. RING finger E3 ligase, RNF138 inhibits osteoblast differentiation by negatively regulating Runx2 protein turnover. J Cell Physiol 2024; 239:e31217. [PMID: 38327035 DOI: 10.1002/jcp.31217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/23/2024] [Accepted: 01/27/2024] [Indexed: 02/09/2024]
Abstract
A few ubiquitin ligases have been shown to target Runx2, the key osteogenic transcription factor and thereby regulate bone formation. The regulation of Runx2 expression and function are controlled both at the transcriptional and posttranslational levels. Really interesting new gene (RING) finger ubiquitin ligases of which RNF138 is a member are important players in the ubiquitin-proteasome system, contributing to the regulation of protein turnover and cellular processes. Here, we demonstrated that RNF138 negatively correlated with Runx2 protein levels in osteopenic ovariectomized rats which implied its role in bone loss. Accordingly, RNF138 overexpression potently inhibited osteoblast differentiation of mesenchyme-like C3H10T1/2 as well primary rat calvarial osteoblast (RCO) cells in vitro, whereas overexpression of catalytically inactive mutant RNF138Δ18-58 (lacks RING finger domain) had mild to no effect. Contrarily, RNF138 depletion copiously enhanced endogenous Runx2 levels and augmented osteogenic differentiation of C3H10T1/2 as well as RCOs. Mechanistically, RNF138 physically associates within multiple regions of Runx2 and ubiquitinates it leading to its reduced protein stability in a proteasome-dependent manner. Moreover, catalytically active RNF138 destabilized Runx2 which resulted in inhibition of its transactivation potential and physiological function of promoting osteoblast differentiation leading to bone loss. These findings underscore the functional involvement of RNF138 in bone formation which is primarily achieved through its modulation of Runx2 by stimulating ubiquitin-mediated proteasomal degradation. Thus, our findings indicate that RNF138 could be a promising novel target for therapeutic intervention in postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Vishal Upadhyay
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, Utter Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Anil Kumar Singh
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, Utter Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Shivani Sharma
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, Utter Pradesh, India
| | - Arppita Sethi
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, Utter Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Swati Srivastava
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, Utter Pradesh, India
| | - Sangita Chowdhury
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, Utter Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Shumaila Siddiqui
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, Utter Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Naibedya Chattopadhyay
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, Utter Pradesh, India
| | - Arun Kumar Trivedi
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, Utter Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
33
|
Chen X, Wang L, Yang M, Zhao W, Tu J, Liu B, Yuan X. RUNX transcription factors: biological functions and implications in cancer. Clin Exp Med 2024; 24:50. [PMID: 38430423 PMCID: PMC10908630 DOI: 10.1007/s10238-023-01281-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 11/10/2023] [Indexed: 03/03/2024]
Abstract
Runt-related transcription factors (RUNX) are a family of transcription factors that are essential for normal and malignant hematopoietic processes. Their most widely recognized role in malignancy is to promote the occurrence and development of acute myeloid leukemia. However, it is worth noting that during the last decade, studies of RUNX proteins in solid tumors have made considerable progress, suggesting that these proteins are directly involved in different stages of tumor development, including tumor initiation, progression, and invasion. RUNX proteins also play a role in tumor angiogenesis, the maintenance of tumor cell stemness, and resistance to antitumor drugs. These findings have led to the consideration of RUNX as a tumor biomarker. All RUNX proteins are involved in the occurrence and development of solid tumors, but the role of each RUNX protein in different tumors and the major signaling pathways involved are complicated by tumor heterogeneity and the interacting tumor microenvironment. Understanding how the dysregulation of RUNX in tumors affects normal biological processes is important to elucidate the molecular mechanisms by which RUNX affects malignant tumors.
Collapse
Affiliation(s)
- Xinyi Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang Road 1095, Wuhan, Hubei Province, China
| | - Lu Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang Road 1095, Wuhan, Hubei Province, China
| | - Mu Yang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang Road 1095, Wuhan, Hubei Province, China
| | - Weiheng Zhao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang Road 1095, Wuhan, Hubei Province, China
| | - Jingyao Tu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang Road 1095, Wuhan, Hubei Province, China.
| | - Bo Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang Road 1095, Wuhan, Hubei Province, China.
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang Road 1095, Wuhan, Hubei Province, China.
| |
Collapse
|
34
|
Kaur G, Wu B, Murali S, Lanigan T, Coleman RM. A synthetic, closed-looped gene circuit for the autonomous regulation of RUNX2 activity during chondrogenesis. FASEB J 2024; 38:e23484. [PMID: 38407380 PMCID: PMC10981937 DOI: 10.1096/fj.202300348rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 01/23/2024] [Accepted: 01/30/2024] [Indexed: 02/27/2024]
Abstract
The transcription factor RUNX2 is a key regulator of chondrocyte phenotype during development, making it an ideal target for prevention of undesirable chondrocyte maturation in cartilage tissue-engineering strategies. Here, we engineered an autoregulatory gene circuit (cisCXp-shRunx2) that negatively controls RUNX2 activity in chondrogenic cells via RNA interference initiated by a tunable synthetic Col10a1-like promoter (cisCXp). The cisCXp-shRunx2 gene circuit is designed based on the observation that induced RUNX2 silencing after early chondrogenesis enhances the accumulation of cartilaginous matrix in ATDC5 cells. We show that the cisCXp-shRunx2 initiates RNAi of RUNX2 in maturing chondrocytes in response to the increasing intracellular RUNX2 activity without interfering with early chondrogenesis. The induced loss of RUNX2 activity in turn negatively regulates the gene circuit itself. Moreover, the efficacy of RUNX2 suppression from cisCXp-shRunx2 can be controlled by modifying the sensitivity of cisCXp promoter. Finally, we show the efficacy of inhibiting RUNX2 in preventing matrix loss in human mesenchymal stem cell-derived (hMSC-derived) cartilage under conditions that induce chondrocyte hypertrophic differentiation, including inflammation. Overall, our results demonstrated that the negative modulation of RUNX2 activity with our autoregulatory gene circuit enhanced matrix synthesis and resisted ECM degradation by reprogrammed MSC-derived chondrocytes in response to the microenvironment of the degenerative joint.
Collapse
Affiliation(s)
- Gurcharan Kaur
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Biming Wu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Sunjana Murali
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, USA
| | - Thomas Lanigan
- Biomedical Research Vector Core, University of Michigan, Ann Arbor, MI, USA
| | - Rhima M. Coleman
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
35
|
Sharma G, Sultana A, Abdullah KM, Pothuraju R, Nasser MW, Batra SK, Siddiqui JA. Epigenetic regulation of bone remodeling and bone metastasis. Semin Cell Dev Biol 2024; 154:275-285. [PMID: 36379849 PMCID: PMC10175516 DOI: 10.1016/j.semcdb.2022.11.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 11/13/2022]
Abstract
Bone remodeling is a continuous and dynamic process of bone formation and resorption to maintain its integrity and homeostasis. Bone marrow is a source of various cell lineages, including osteoblasts and osteoclasts, which are involved in bone formation and resorption, respectively, to maintain bone homeostasis. Epigenetics is one of the elementary regulations governing the physiology of bone remodeling. Epigenetic modifications, mainly DNA methylation, histone modifications, and non-coding RNAs, regulate stable transcriptional programs without causing specific heritable alterations. DNA methylation in CpG-rich promoters of the gene is primarily correlated with gene silencing, and histone modifications are associated with transcriptional activation/inactivation. However, non-coding RNAs regulate the metastatic potential of cancer cells to metastasize at secondary sites. Deregulated or altered epigenetic modifications are often seen in many cancers and interwound with bone-specific tropism and cancer metastasis. Histone acetyltransferases, histone deacetylase, and DNA methyltransferases are promising targets in epigenetically altered cancer. High throughput epigenome mapping and targeting specific epigenetics modifiers will be helpful in the development of personalized epi-drugs for advanced and bone metastasis cancer patients. This review aims to discuss and gather more knowledge about different epigenetic modifications in bone remodeling and metastasis. Further, it provides new approaches for targeting epigenetic changes and therapy research.
Collapse
Affiliation(s)
- Gunjan Sharma
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ashrafi Sultana
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - K M Abdullah
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ramesh Pothuraju
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mohd Wasim Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Surinder Kumar Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jawed Akhtar Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
36
|
Bi R, Sun Y, Xiang L, Xu Z, Ye X, Tian Y, Lin Y, Yang C, Gao Y. TGF-β1/Smad3 Signaling Is Required to Alleviate Fluoride-Induced Enamel Hypomineralization. Biol Trace Elem Res 2024; 202:569-579. [PMID: 37140770 DOI: 10.1007/s12011-023-03688-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/28/2023] [Indexed: 05/05/2023]
Abstract
Excessive fluoride intake during enamel development can affect enamel mineralization, leading to dental fluorosis. However, its potential mechanisms remain largely unexplored. In the present study, we aimed to investigate the impact of fluoride on the expressions of RUNX2 and ALPL during mineralization and the effect of TGF-β1 administration on fluoride treatment. A dental fluorosis model of newborn mice and an ameloblast cell line ALC were both used in the present study. The mice of the NaF group, including the mothers and newborns, were fed with water containing 150 ppm NaF after delivery to induce dental fluorosis. The mandibular incisors and molars showed significant abrasion in the NaF group. Immunostaining, qRT-PCR, and Western blotting analysis indicated that exposure to fluoride markedly down-regulated RUNX2 and ALPL in mouse ameloblasts and ALCs. Besides, fluoride treatment significantly decreased the mineralization level detected by ALP staining. Furthermore, exogenous TGF-β1 up-regulated RUNX2 and ALPL and promoted mineralization, while the addition of SIS3 could block such TGF-β1-induced up-regulation. In TGF-β1 conditional knockout mice, the immunostaining of RUNX2 and ALPL was weaker compared with wild-type mice. Exposure to fluoride inhibited the expressions of TGF-β1 and Smad3. Co-treatment of TGF-β1 and fluoride up-regulated RUNX2 and ALPL compared with the fluoride alone treatment, promoting mineralization. Collectively, our data indicated that TGF-β1/Smad3 signaling pathway was necessary for the regulatory effects of fluoride on RUNX2 and ALPL, and the fluoride-induced suppression of ameloblast mineralization was mitigated by activating TGF-β1/Smad3 signaling pathway.
Collapse
Affiliation(s)
- Ruonan Bi
- Department of Pediatrics and Preventive Dentistry, Binzhou Medical University Hospital, Shandong, 256600, Binzhou, China
| | - Yiqun Sun
- Department of Pediatrics and Preventive Dentistry, Binzhou Medical University Hospital, Shandong, 256600, Binzhou, China
| | - Lili Xiang
- Department of Pediatrics and Preventive Dentistry, Binzhou Medical University Hospital, Shandong, 256600, Binzhou, China
| | - Zhenzhen Xu
- Department of Pediatrics and Preventive Dentistry, Binzhou Medical University Hospital, Shandong, 256600, Binzhou, China
| | - Xiaoyuan Ye
- Department of Pediatrics and Preventive Dentistry, Binzhou Medical University Hospital, Shandong, 256600, Binzhou, China
| | - Yanying Tian
- Department of Pediatrics and Preventive Dentistry, Binzhou Medical University Hospital, Shandong, 256600, Binzhou, China
| | - Yao Lin
- Department of Pediatrics and Preventive Dentistry, Binzhou Medical University Hospital, Shandong, 256600, Binzhou, China
| | - Chunyan Yang
- Institute of Stomatology, Binzhou Medical University, Shandong, 264003, Yantai, China.
| | - Yuguang Gao
- Department of Pediatrics and Preventive Dentistry, Binzhou Medical University Hospital, Shandong, 256600, Binzhou, China.
| |
Collapse
|
37
|
Xiong N, An JS, Yoon H, Ryoo HM, Lim WH. Runx2 heterozygosity alters homeostasis of the periodontal complex. J Periodontal Res 2024; 59:151-161. [PMID: 37882070 DOI: 10.1111/jre.13198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 10/02/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND AND OBJECTIVE Haploinsufficiency of Runx2 (Runx2+/- ) causes dental anomalies. However, little is known about the involvement of Runx2 in the maintenance of dentin, cementum, and the periodontal ligament (PDL) during adulthood. This study aimed to observe the effects of Runx2+/- on homeostasis of the periodontal complex. MATERIALS AND METHODS A total of 14 three-month-old Runx2+/- mice and their wild-type littermates were examined using micro-computed tomography, histology, and immunohistochemistry. Phenotypic alterations in the dentin, cementum, and PDL were characterized and quantified. RESULTS Haploinsufficiency of Runx2 caused cellular changes in the PDL space including reduction of cell proliferation and apoptosis, and irregular attachment of the collagen fibers in the PDL space into the cementum. Absence of continuous thickness of cementum was also observed in Runx2+/- mice. CONCLUSION Runx2 is critical for cementum integrity and attachment of periodontal fibers. Because of its importance to cementum homeostasis, Runx2 is essential for homeostasis of periodontal complex.
Collapse
Affiliation(s)
- Ni Xiong
- Department of Orthodontics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
| | - Jung-Sub An
- Department of Orthodontics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
| | - Heein Yoon
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
| | - Hyun-Mo Ryoo
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
| | - Won Hee Lim
- Department of Orthodontics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
38
|
González-Cejudo T, Villa-Suárez JM, Ferrer-Millán M, Andújar-Vera F, Contreras-Bolívar V, Andreo-López MC, Gómez-Vida JM, Martínez-Heredia L, González-Salvatierra S, de Haro Muñoz T, García-Fontana C, Muñoz-Torres M, García-Fontana B. Mild hypophosphatasia may be twice as prevalent as previously estimated: an effective clinical algorithm to detect undiagnosed cases. Clin Chem Lab Med 2024; 62:128-137. [PMID: 37440753 DOI: 10.1515/cclm-2023-0427] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023]
Abstract
OBJECTIVES Since the prevalence of hypophosphatasia (HPP), a rare genetic disease, seems to be underestimated in clinical practice, in this study, a new diagnostic algorithm to identify missed cases of HPP was developed and implemented. METHODS Analytical determinations recorded in the Clinical Analysis Unit of the Hospital Universitario Clínico San Cecilio in the period June 2018 - December 2020 were reviewed. A new clinical algorithm to detect HPP-misdiagnosed cases was used including the following steps: confirmation of persistent hypophosphatasemia, exclusion of secondary causes of hypophosphatasemia, determination of serum pyridoxal-5'-phosphate (PLP) and genetic study of ALPL gene. RESULTS Twenty-four subjects were selected to participate in the study and genetic testing was carried out in 20 of them following clinical algorithm criteria. Eighty percent of patients was misdiagnosed with HPP following the current standard clinical practice. Extrapolating these results to the current Spanish population means that there could be up to 27,177 cases of undiagnosed HPP in Spain. In addition, we found a substantial proportion of HPP patients affected by other comorbidities, such as autoimmune diseases (∼40 %). CONCLUSIONS This new algorithm was effective in detecting previously undiagnosed cases of HPP, which appears to be twice as prevalent as previously estimated for the European population. In the near future, our algorithm could be globally applied routinely in clinical practice to minimize the underdiagnosis of HPP. Additionally, some relevant findings, such as the high prevalence of autoimmune diseases in HPP-affected patients, should be investigated to better characterize this disorder.
Collapse
Affiliation(s)
- Trinidad González-Cejudo
- Clinical Analysis Unit, University Hospital Clínico San Cecilio, Granada, Spain
- Department of Medicine, University of Granada, Granada, Spain
| | | | - María Ferrer-Millán
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), Granada, Spain
| | - Francisco Andújar-Vera
- Department of Computer Science and Artificial Intelligence, University of Granada, Granada, Spain
- CIBER on Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
- Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI Institute), Granada, Spain
| | - Victoria Contreras-Bolívar
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), Granada, Spain
- Endocrinology and Nutrition Unit, University Hospital Clínico San Cecilio, Granada, Spain
| | | | | | | | - Sheila González-Salvatierra
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), Granada, Spain
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Tomás de Haro Muñoz
- Clinical Analysis Unit, University Hospital Clínico San Cecilio, Granada, Spain
| | - Cristina García-Fontana
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), Granada, Spain
- CIBER on Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
- Endocrinology and Nutrition Unit, University Hospital Clínico San Cecilio, Granada, Spain
| | - Manuel Muñoz-Torres
- Department of Medicine, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), Granada, Spain
- CIBER on Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
- Endocrinology and Nutrition Unit, University Hospital Clínico San Cecilio, Granada, Spain
| | - Beatriz García-Fontana
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), Granada, Spain
- CIBER on Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
- Department of Cell Biology, University of Granada, Granada, Spain
| |
Collapse
|
39
|
Musa RE, Lester KL, Quickstad G, Vardabasso S, Shumate TV, Salcido RT, Ge K, Shpargel KB. BRD4 binds to active cranial neural crest enhancers to regulate RUNX2 activity during osteoblast differentiation. Development 2024; 151:dev202110. [PMID: 38063851 PMCID: PMC10905746 DOI: 10.1242/dev.202110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 11/16/2023] [Indexed: 01/25/2024]
Abstract
Cornelia de Lange syndrome (CdLS) is a congenital disorder featuring facial dysmorphism, postnatal growth deficits, cognitive disability and upper limb abnormalities. CdLS is genetically heterogeneous, with cases arising from mutation of BRD4, a bromodomain protein that binds and reads acetylated histones. In this study, we have modeled CdLS facial pathology through mouse neural crest cell (NCC)-specific mutation of BRD4 to characterize cellular and molecular function in craniofacial development. Mice with BRD4 NCC loss of function died at birth with severe facial hypoplasia, cleft palate, mid-facial clefting and exencephaly. Following migration, BRD4 mutant NCCs initiated RUNX2 expression for differentiation to osteoblast lineages but failed to induce downstream RUNX2 targets required for lineage commitment. BRD4 bound to active enhancers to regulate expression of osteogenic transcription factors and extracellular matrix components integral for bone formation. RUNX2 physically interacts with a C-terminal domain in the long isoform of BRD4 and can co-occupy osteogenic enhancers. This BRD4 association is required for RUNX2 recruitment and appropriate osteoblast differentiation. We conclude that BRD4 controls facial bone development through osteoblast enhancer regulation of the RUNX2 transcriptional program.
Collapse
Affiliation(s)
- Rachel E. Musa
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599-7264, USA
| | - Kaitlyn L. Lester
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599-7264, USA
| | - Gabrielle Quickstad
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599-7264, USA
| | - Sara Vardabasso
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599-7264, USA
| | - Trevor V. Shumate
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599-7264, USA
| | - Ryan T. Salcido
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599-7264, USA
| | - Kai Ge
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Karl B. Shpargel
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599-7264, USA
| |
Collapse
|
40
|
Bajpai AK, Gu Q, Jiao Y, Starlard-Davenport A, Gu W, Quarles LD, Xiao Z, Lu L. Systems genetics and bioinformatics analyses using ESR1-correlated genes identify potential candidates underlying female bone development. Genomics 2024; 116:110769. [PMID: 38141931 PMCID: PMC10811775 DOI: 10.1016/j.ygeno.2023.110769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/14/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
Estrogen receptor α (ESR1) is involved in E2 signaling and plays a major role in postmenopausal bone loss. However, the molecular network underlying ESR1 has not been explored. We used systems genetics and bioinformatics to identify important genes associated with Esr1 in postmenopausal bone loss. We identified ~2300 Esr1-coexpressed genes in female BXD bone femur, functional analysis of which revealed 'osteoblast signaling' as the most enriched pathway. PPI network led to the identification of 25 'female bone candidates'. The gene-regulatory analysis revealed RUNX2 as a key TF. ANKRD1 and RUNX2 were significantly different between osteoporosis patients and healthy controls. Sp7, Col1a1 and Pth1r correlated with multiple femur bone phenotypes in BXD mice. miR-3121-3p targeted Csf1, Ankrd1, Sp7 and Runx2. β-estradiol treatment markedly increased the expression of these candidates in mouse osteoblast. Our study revealed that Esr1-correlated genes Ankrd1, Runx2, Csf1 and Sp7 may play important roles in female bone development.
Collapse
Affiliation(s)
- Akhilesh K Bajpai
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Qingqing Gu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA; Department of Cardiology, Affiliated Hospital of Nantong University, Jiangsu 226001, China
| | - Yan Jiao
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Athena Starlard-Davenport
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Weikuan Gu
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Leigh Darryl Quarles
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Zhousheng Xiao
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA.
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
41
|
Bi M, Yang K, Yu T, Wu G, Li Q. Cell-based mechanisms and strategies of co-culture system both in vivo and vitro for bone tissue engineering. Biomed Pharmacother 2023; 169:115907. [PMID: 37984308 DOI: 10.1016/j.biopha.2023.115907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/22/2023] Open
Abstract
The lack of a functional vascular supply has been identified as a major challenge limiting the clinical introduction of stem cell-based bone tissue engineering (BTE) for the repair of large-volume bone defects (LVBD). Various approaches have been explored to improve the vascular supply in tissue-engineered constructs, and the development of strategies that could effectively induce the establishment of a functional vascular supply has become a major goal of BTE research. One of the state-of-the-art methods is to incorporate both angiogenic and osteogenic cells in co-culture systems. This review clarifies the key concepts involved, summarises the cell types and models used to date, and systematically evaluates their performance. We also discuss the cell-to-cell communication between these two cell types and the strategies explored in BTE constructs with angiogenic and osteogenic cells to optimise their functions. In addition, we outline unresolved issues and remaining obstacles that need to be overcome for further development in this field and eventual successful repair of LVBD.
Collapse
Affiliation(s)
- Mengning Bi
- Department of Prosthetic Dentistry, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China; Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology Shanghai, China
| | - Kaiwen Yang
- Department of Prosthetic Dentistry, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China; Department of Oral Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai Key Laboratory of Stomatology &Shanghai Research Institute of Stomatology; National Clinical Research Center of Stomatology, Shanghai, China
| | - Tao Yu
- Department of Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Gang Wu
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam (VU), Amsterdam Movement Science (AMS), Amsterdam, the Netherlands; Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam (UvA) and Vrije Universiteit Amsterdam (VU), Amsterdam, the Netherlands.
| | - Qiong Li
- Department of Prosthetic Dentistry, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China.
| |
Collapse
|
42
|
Arai Y, English JD, Ono N, Ono W. Effects of antiresorptive medications on tooth root formation and tooth eruption in paediatric patients. Orthod Craniofac Res 2023; 26 Suppl 1:29-38. [PMID: 36714970 PMCID: PMC10864015 DOI: 10.1111/ocr.12637] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/09/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023]
Abstract
Tooth eruption is a pivotal milestone for children's growth and development. This process involves with the formation of the tooth root, the periodontal ligament (PDL) and the alveolar bone, as the tooth crown penetrates the bone and gingiva to enter the oral cavity. This review aims to outline current knowledge of the adverse dental effects of antiresorptive medications. Recently, paediatric indications for antiresorptive medications, such as bisphosphonates (BPs), have emerged, and these agents are increasingly used in children and adolescents to cure pathological bone resorption associated with bone diseases and cancers. Since tooth eruption is accompanied by osteoclastic bone resorption, it is expected that the administration of antiresorptive medications during this period affects tooth development. Indeed, several articles studying human patient cohorts and animal models report the dental defects associated with the use of these antiresorptive medications. This review shows the summary of the possible factors related to tooth eruption and introduces the future research direction to understand the mechanisms underlying the dental defects caused by antiresorptive medications.
Collapse
Affiliation(s)
- Yuki Arai
- Department of Orthodontics, University of Texas Health Science Center at Houston School of Dentistry, Houston, Texas, USA
| | - Jeryl D. English
- Department of Orthodontics, University of Texas Health Science Center at Houston School of Dentistry, Houston, Texas, USA
| | - Noriaki Ono
- Department of Diagnostic & Biomedical Sciences, University of Texas Health Science Center at Houston School of Dentistry, Houston, Texas, USA
| | - Wanida Ono
- Department of Orthodontics, University of Texas Health Science Center at Houston School of Dentistry, Houston, Texas, USA
| |
Collapse
|
43
|
Tian B, Bai J, Sheng L, Chen H, Chang W, Zhang Y, Yao C, Zhou C, Wang X, Shan H, Dong Q, Wang C, Zhou X. P7C3 Ameliorates Bone Loss by Inhibiting Osteoclast Differentiation and Promoting Osteogenesis. JBMR Plus 2023; 7:e10811. [PMID: 38130773 PMCID: PMC10731119 DOI: 10.1002/jbm4.10811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/13/2023] [Indexed: 12/23/2023] Open
Abstract
Bone homeostasis, the equilibrium between bone resorption and formation, is essential for maintaining healthy bone tissue in adult humans. Disruptions of this process can lead to pathological conditions such as osteoporosis. Dual-targeted agents, capable of inhibiting excessive bone resorption and stimulating bone formation, are being explored as a promising strategy for developing new treatments to address osteoporosis. In this study, we investigated the effects of P7C3 on bone remodeling and its potential therapeutic role in osteoporosis treatment in mice. Specifically, P7C3 can remarkably suppress receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL)-induced osteoclast differentiation in bone marrow macrophages via the Akt-NF-κB-NFATc1 signaling pathway. Additionally, RNA sequencing (RNAseq) analysis revealed that P7C3 promoted osteoblast differentiation and function through the Wnt/β-catenin signaling pathway, thereby enhancing bone formation. Furthermore, μCT analysis and histological examination of bone tissues from P7C3-treated mice showed attenuation of both Ti-induced bone erosion and ovariectomy (OVX)-induced bone loss. These findings suggest that P7C3 may have a novel function in bone remodeling and may be a promising therapeutic agent for the treatment of osteoporosis. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Bo Tian
- Department of OrthopedicsThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
- Laboratory for Biomaterial and ImmunoEngineering, Institute of Functional Nano & SoftMaterials (FUNSOM)Soochow UniversitySuzhouChina
| | - Jinyu Bai
- Department of OrthopedicsThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Lei Sheng
- Department of OrthopedicsThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Hao Chen
- Department of OrthopedicsThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Wenju Chang
- Department of OrthopedicsThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Yue Zhang
- Laboratory for Biomaterial and ImmunoEngineering, Institute of Functional Nano & SoftMaterials (FUNSOM)Soochow UniversitySuzhouChina
| | - Chenlu Yao
- Laboratory for Biomaterial and ImmunoEngineering, Institute of Functional Nano & SoftMaterials (FUNSOM)Soochow UniversitySuzhouChina
| | - Chenmeng Zhou
- Laboratory for Biomaterial and ImmunoEngineering, Institute of Functional Nano & SoftMaterials (FUNSOM)Soochow UniversitySuzhouChina
| | - Xiaoyu Wang
- Laboratory for Biomaterial and ImmunoEngineering, Institute of Functional Nano & SoftMaterials (FUNSOM)Soochow UniversitySuzhouChina
| | - Huajian Shan
- Department of OrthopedicsThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Qirong Dong
- Department of OrthopedicsThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Chao Wang
- Laboratory for Biomaterial and ImmunoEngineering, Institute of Functional Nano & SoftMaterials (FUNSOM)Soochow UniversitySuzhouChina
| | - Xiaozhong Zhou
- Department of OrthopedicsThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| |
Collapse
|
44
|
Tosa I, Ruscitto A, Wang Z, Chen KZ, Ono M, Embree MC. Bulk RNA-seq analyses of mandibular condylar cartilage in a post-traumatic TMJ osteoarthritis rabbit model. Orthod Craniofac Res 2023; 26 Suppl 1:131-141. [PMID: 36891610 DOI: 10.1111/ocr.12649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 03/10/2023]
Abstract
OBJECTIVE The temporomandibular joint (TMJ) is anatomically comprised of the mandibular condylar cartilage (CC) lined with fibrocartilaginous superficial zone and is crucial for eating and dental occlusion. TMJ osteoarthritis (OA) leads to pain, joint dysfunction and permanent loss of cartilage tissue. However, there are no drugs clinically available that ameliorate OA and little is known about global profiles of genes that contribute to TMJ OA. Furthermore, animal models that recapitulate the complexity of signalling pathways contributing to OA pathogenesis are crucial for designing novel biologics that thwart OA progression. We have previously developed a New Zealand white rabbit TMJ injury model that demonstrates CC degeneration. Here, we performed genome-wide profiling to identify new signalling pathways critical for cellular functions during OA pathology. MATERIALS AND METHODS Temporomandibular joint OA was surgically induced in New Zealand white rabbits. Three months following injury, we performed global gene expression profiling of the TMJ condyle. RNA samples from TMJ condyles were subjected to sequencing. After raw RNA-seq data were mapped to relevant genomes, differential expression was analysed with DESeq2. Gene ontology enrichment analysis and Kyoto Encyclopedia of Genes and Genomes pathway analysis were conducted. RESULTS/CONCLUSIONS Our study revealed multiple pathways altered during TMJ OA induction including the Wnt, Notch and PI3K-Akt signalling pathways. We demonstrate an animal model that recapitulates the complexity of the cues and signals underlying TMJ OA pathogenesis, which is essential for developing and testing novel pharmacologic agents to treat OA.
Collapse
Affiliation(s)
- Ikue Tosa
- Cartilage Biology and Regenerative Medicine Laboratory, College of Dental Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Angela Ruscitto
- Cartilage Biology and Regenerative Medicine Laboratory, College of Dental Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Ziyi Wang
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Kira Z Chen
- Cartilage Biology and Regenerative Medicine Laboratory, College of Dental Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Mitsuaki Ono
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Mildred C Embree
- Cartilage Biology and Regenerative Medicine Laboratory, College of Dental Medicine, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
45
|
Agarwal N, Daigavane P, Kamble R, Suchak D. A Clinical Odyssey Involving Cleidocranial Dysplasia: Report of a Rare Case. Cureus 2023; 15:e51024. [PMID: 38264393 PMCID: PMC10804171 DOI: 10.7759/cureus.51024] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 12/24/2023] [Indexed: 01/25/2024] Open
Abstract
Cleidocranial dysplasia (CCD) is a rare genetic disorder that causes cranial and skeletal abnormalities. This case report presents a comprehensive analysis of a rare instance of CCD, highlighting its clinical manifestations through an orthodontic lens shedding light on the challenges and complexities associated with managing this uncommon condition. The patient, an 18-year-old female, presented with a variety of symptoms, including delayed eruption of permanent teeth, abnormal facial features, and prominent cranial abnormalities. Multiple teeth in both the arches were missing including over-retention of primary teeth. Features of cleidocranial dysplasia were evident in her facial appearance. Treatment of CCD requires a multifaceted approach, often involving orthodontic interventions, dental extractions, and corrective surgeries to address cranial deformities and other skeletal anomalies. The report emphasizes the importance of multidisciplinary collaboration in diagnosing and managing such cases, shedding light on the distinctive features of CCD and their implications for orthodontic treatment on what kind of best treatment can be given to these patients. This case serves as a reminder of the importance of raising awareness about rare genetic disorders like CCD, as early diagnosis and intervention can significantly improve the patient's quality of life. Furthermore, it underscores the significance of a collaborative and holistic healthcare approach in managing such complex conditions. It emphasizes the need for continued research, awareness, and support for individuals affected by such conditions.
Collapse
Affiliation(s)
- Nishu Agarwal
- Orthodontics and Dentofacial Orthopaedics, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Pallavi Daigavane
- Orthodontics and Dentofacial Orthopaedics, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Ranjit Kamble
- Orthodontics and Dentofacial Orthopaedics, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Dhwani Suchak
- Orthodontics and Dentofacial Orthopaedics, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
46
|
Chen N, Wu RW, Lam Y, Chan WC, Chan D. Hypertrophic chondrocytes at the junction of musculoskeletal structures. Bone Rep 2023; 19:101698. [PMID: 37485234 PMCID: PMC10359737 DOI: 10.1016/j.bonr.2023.101698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/12/2023] [Accepted: 07/01/2023] [Indexed: 07/25/2023] Open
Abstract
Hypertrophic chondrocytes are found at unique locations at the junction of skeletal tissues, cartilage growth plate, articular cartilage, enthesis and intervertebral discs. Their role in the skeleton is best understood in the process of endochondral ossification in development and bone fracture healing. Chondrocyte hypertrophy occurs in degenerative conditions such as osteoarthritis. Thus, the role of hypertrophic chondrocytes in skeletal biology and pathology is context dependent. This review will focus on hypertrophic chondrocytes in endochondral ossification, in which they exist in a transient state, but acting as a central regulator of differentiation, mineralization, vascularization and conversion to bone. The amazing journey of a chondrocyte from being entrapped in the extracellular matrix environment to becoming proliferative then hypertrophic will be discussed. Recent studies on the dynamic changes and plasticity of hypertrophic chondrocytes have provided new insights into how we view these cells, not as terminally differentiated but as cells that can dedifferentiate to more progenitor-like cells in a transition to osteoblasts and adipocytes, as well as a source of skeletal stem and progenitor cells residing in the bone marrow. This will provide a foundation for studies of hypertrophic chondrocytes at other skeletal sites in development, tissue maintenance, pathology and therapy.
Collapse
Affiliation(s)
- Ning Chen
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Robin W.H. Wu
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Yan Lam
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Wilson C.W. Chan
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
- Department of Orthopaedics Surgery and Traumatology, The University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen 518053, China
| | - Danny Chan
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
47
|
Güney Z, Kurgan Ş, Önder C, Tayman MA, Günhan Ö, Kantarci A, Serdar MA, Günhan M. Wnt signaling in periodontitis. Clin Oral Investig 2023; 27:6801-6812. [PMID: 37814163 DOI: 10.1007/s00784-023-05294-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/27/2023] [Indexed: 10/11/2023]
Abstract
OBJECTIVE This study aimed to evaluate the Wnt/β-catenin signaling pathway activity in gingival samples obtained from patients with periodontitis. MATERIALS AND METHODS Fifteen patients with stage III grade B (SIIIGB) and eleven with stage III grade C (SIIIGC) periodontitis were included and compared to 15 control subjects. β-Catenin, Wnt 3a, Wnt 5a, and Wnt 10b expressions were evaluated by Q-PCR. Topographic localization of tissue β-catenin, Wnt 5a, and Wnt 10b was measured by immunohistochemical analysis. TNF-α was used to assess the inflammatory state of the tissues, while Runx2 was used as a mediator of active destruction. RESULTS Wnt 3a, Wnt 5a, and Wnt 10b were significantly higher in gingival tissues in both grades of stage 3 periodontitis compared to the control group (p < 0.05). β-Catenin showed intranuclear staining in connective tissue in periodontitis, while it was confined to intracytoplasmic staining in epithelial tissue and the cell walls in the control group. Wnt5a protein expression was elevated in periodontitis, with the most intense staining observed in the connective tissue of SIIIGC samples. Wnt10b showed the highest density in the connective tissue of patients with periodontitis. CONCLUSIONS Our findings suggested that periodontal inflammation disrupts the Wnt/β-catenin signaling pathway. CLINICAL RELEVANCE Periodontitis disrupts Wnt signaling in periodontal tissues in parallel with tissue inflammation and changes in morphology. This change in Wnt-related signaling pathways that regulate tissue homeostasis in the immunoinflammatory response may shed light on host-induced tissue destruction in the pathogenesis of the periodontal disease.
Collapse
Affiliation(s)
- Zeliha Güney
- Faculty of Dentistry Department of Periodontology, Ankara University, 06500-Cankaya, Ankara, Turkey
- Faculty of Dentistry Department of Periodontology, Ankara Medipol University, Ankara, Turkey
| | - Şivge Kurgan
- Faculty of Dentistry Department of Periodontology, Ankara University, 06500-Cankaya, Ankara, Turkey.
| | - Canan Önder
- Faculty of Dentistry Department of Periodontology, Ankara University, 06500-Cankaya, Ankara, Turkey
| | - Mahmure Ayşe Tayman
- Faculty of Dentistry Department of Periodontology, Yildirim Beyazit University, Ankara, Turkey
| | - Ömer Günhan
- Faculty of Medicine Department of Pathology, TOBB University, Ankara, Turkey
| | | | | | - Meral Günhan
- Faculty of Dentistry Department of Periodontology, Ankara University, 06500-Cankaya, Ankara, Turkey
| |
Collapse
|
48
|
Yonezawa T, Takahashi H, Hao Y, Furukawa C, Tsuchiya A, Zhang W, Fukushima T, Fukuyama T, Sawasaki T, Kitamura T, Goyama S. The E3 ligase DTX2 inhibits RUNX1 function by binding its C terminus and prevents the growth of RUNX1-dependent leukemia cells. FEBS J 2023; 290:5141-5157. [PMID: 37500075 DOI: 10.1111/febs.16914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 03/25/2023] [Accepted: 07/25/2023] [Indexed: 07/29/2023]
Abstract
Transcription factor RUNX1 plays important roles in hematopoiesis and leukemogenesis. RUNX1 function is tightly controlled through posttranslational modifications, including ubiquitination and acetylation. However, its regulation via ubiquitination, especially proteasome-independent ubiquitination, is poorly understood. We previously identified DTX2 as a RUNX1-interacting E3 ligase using a cell-free AlphaScreen assay. In this study, we examined whether DTX2 is involved in the regulation of RUNX1 using in vitro and ex vivo analyses. DTX2 bound to RUNX1 and other RUNX family members RUNX2 and RUNX3 through their C-terminal region. DTX2-induced RUNX1 ubiquitination did not result in RUNX1 protein degradation. Instead, we found that the acetylation of RUNX1, which is known to enhance the transcriptional activity of RUNX1, was inhibited in the presence of DTX2. Concomitantly, DTX2 reduced the RUNX1-induced activation of an MCSFR luciferase reporter. We also found that DTX2 induced RUNX1 cytoplasmic mislocalization. Moreover, DTX2 overexpression showed a substantial growth-inhibitory effect in RUNX1-dependent leukemia cell lines. Thus, our findings indicate a novel aspect of the ubiquitination and acetylation of RUNX1 that is modulated by DTX2 in a proteosome-independent manner.
Collapse
Affiliation(s)
- Taishi Yonezawa
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Japan
| | | | - Yangying Hao
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Japan
| | - Chie Furukawa
- Proteo-Science Center (PROS), Ehime University, Matsuyama, Japan
| | - Akiho Tsuchiya
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Japan
| | - Wenyu Zhang
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Japan
| | - Tsuyoshi Fukushima
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Japan
| | - Tomofusa Fukuyama
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Japan
| | - Tatsuya Sawasaki
- Proteo-Science Center (PROS), Ehime University, Matsuyama, Japan
| | - Toshio Kitamura
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Japan
| | - Susumu Goyama
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Japan
| |
Collapse
|
49
|
Piao M, Lee SH, Li Y, Choi JK, Yeo CY, Lee KY. Cyclophilin E (CypE) Functions as a Positive Regulator in Osteoblast Differentiation by Regulating the Transcriptional Activity of Runx2. Cells 2023; 12:2549. [PMID: 37947627 PMCID: PMC10648996 DOI: 10.3390/cells12212549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/20/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023] Open
Abstract
Cyclophilin E (CypE) belongs to the cyclophilin family and exhibits peptidyl-prolyl cis-trans isomerase (PPIase) activity. It participates in various biological processes through the regulation of peptidyl-prolyl isomerization. However, the specific role of CypE in osteoblast differentiation has not yet been elucidated. In this study, we first discovered the positive impact of CypE on osteoblast differentiation through gain or loss of function experiments. Mechanistically, CypE enhances the transcriptional activity of Runx2 through its PPIase activity. Furthermore, we identified the involvement of the Akt signaling pathway in CypE's function in osteoblast differentiation. Taken together, our findings indicate that CypE plays an important role in osteoblast differentiation as a positive regulator by increasing the transcriptional activity of Runx2.
Collapse
Affiliation(s)
- Meiyu Piao
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju 61186, Republic of Korea; (M.P.); (S.H.L.); (Y.L.)
| | - Sung Ho Lee
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju 61186, Republic of Korea; (M.P.); (S.H.L.); (Y.L.)
| | - Yuankuan Li
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju 61186, Republic of Korea; (M.P.); (S.H.L.); (Y.L.)
| | - Joong-Kook Choi
- Division of Biochemistry, College of Medicine, Chungbuk National University, Cheong-Ju 28644, Republic of Korea;
| | - Chang-Yeol Yeo
- Department of Life Science and Research Center for Cellular Homeostasis, Ewha Woman’s University, Seoul 03760, Republic of Korea
| | - Kwang Youl Lee
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju 61186, Republic of Korea; (M.P.); (S.H.L.); (Y.L.)
| |
Collapse
|
50
|
Ishikawa M, Kanzaki H, Kodera R, Sekimizu T, Wada S, Tohyama S, Ida T, Shimoyama M, Manase S, Tomonari H, Kuroda N. Early diagnosis of aortic calcification through dental X-ray examination for dental pulp stones. Sci Rep 2023; 13:18576. [PMID: 37903847 PMCID: PMC10616172 DOI: 10.1038/s41598-023-45902-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/25/2023] [Indexed: 11/01/2023] Open
Abstract
Vascular calcification, an ectopic calcification exacerbated by aging and renal dysfunction, is closely associated with cardiovascular disease. However, early detection indicators are limited. This study focused on dental pulp stones, ectopic calcifications found in oral tissues that are easily identifiable on dental radiographs. Our investigation explored the frequency and timing of these calcifications in different locations and their relationship to aortic calcification. In cadavers, we examined the association between the frequency of dental pulp stones and aortic calcification, revealing a significant association. Notably, dental pulp stones appeared prior to aortic calcification. Using a rat model of hyperphosphatemia, we confirmed that dental pulp stones formed earlier than calcification in the aortic arch. Interestingly, there were very few instances of aortic calcification without dental pulp stones. Additionally, we conducted cell culture experiments with vascular smooth muscle cells (SMCs) and dental pulp cells (DPCs) to explore the regulatory mechanism underlying high phosphate-mediated calcification. We found that DPCs produced calcification deposits more rapidly and exhibited a stronger augmentation of osteoblast differentiation markers compared with SMCs. In conclusion, the observation of dental pulp stones through X-ray examination during dental checkups could be a valuable method for early diagnosis of aortic calcification risk.
Collapse
Affiliation(s)
- Misao Ishikawa
- Department of Anatomy, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, Kanagawa Pref., 230-8501, Japan.
| | - Hiroyuki Kanzaki
- Department of Orthodontics, School of Dental Medicine, Tsurumi University, Yokohama, Japan
| | - Ryo Kodera
- Department of Anatomy, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, Kanagawa Pref., 230-8501, Japan
| | - Takehiro Sekimizu
- Department of Anatomy, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, Kanagawa Pref., 230-8501, Japan
| | - Satoshi Wada
- Department of Oral and Maxillofacial Surgery, Kanazawa Medical University, Kanazawa, Japan
| | - Syunnosuke Tohyama
- Department of Orthodontics, School of Dental Medicine, Tsurumi University, Yokohama, Japan
| | - Tomomi Ida
- Department of Orthodontics, School of Dental Medicine, Tsurumi University, Yokohama, Japan
| | - Miho Shimoyama
- Department of Orthodontics, School of Dental Medicine, Tsurumi University, Yokohama, Japan
| | - Shugo Manase
- Department of Orthodontics, School of Dental Medicine, Tsurumi University, Yokohama, Japan
| | - Hiroshi Tomonari
- Department of Orthodontics, School of Dental Medicine, Tsurumi University, Yokohama, Japan
| | - Noriyuki Kuroda
- Department of Anatomy, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, Kanagawa Pref., 230-8501, Japan
| |
Collapse
|