1
|
Tung MC, Chang GM, Dai WC, Hsu CH, Chang HC, Yang WT, Ho YJ, Lu CH, Chen YH, Chang CC. Cryptotanshinone Suppresses the STAT3/BCL-2 Pathway to Provoke Human Bladder Urothelial Carcinoma Cell Death. ENVIRONMENTAL TOXICOLOGY 2025; 40:624-635. [PMID: 39601353 DOI: 10.1002/tox.24446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/06/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024]
Abstract
Bladder cancer is one of the most common human malignancies worldwide. Aberrant activation of signal transducer and activator of transcription 3 (STAT3) is crucial to driving malignant progression and predicting poor prognosis of multiple human cancers, including bladder cancer, making STAT3 a promising target of cancer therapeutics. Cryptotanshinone (CTS) is an anticancer ingredient of Danshen ( Salvia miltiorrhiza ), a top-graded Chinese medicinal herb. However, whether CTS targets STAT3 to exert its cytotoxic effect on human bladder cancer remains unknown. Herein, we demonstrated that CTS is cytotoxic to multiple human urinary bladder transitional cell carcinoma (TCC) cell lines while sparing normal human urothelial cells. CTS provoked apoptosis-dependent bladder TCC cytotoxicity, as apoptosis blockage by z-VAD-fmk markedly rescued the clonogenicity of CTS-treated cells. Besides, CTS was found to suppress constitutive and interleukin 6-inducible activation of STAT3, evidenced by the downregulation of STAT3 tyrosine 705 phosphorylation and BCL2, a recognized STAT3 transcriptional target. Notably, ectopic expression of a dominant-active STAT3 mutant (STAT3-C) or BCL-2 alleviated CTS-induced apoptosis and clonogenicity inhibition, thus confirming STAT3 blockade as a pivotal mechanism of CTS's cytotoxic action on bladder TCC cells. Lastly, immunoblotting revealed that CTS lowered the levels of active JAK2, an upstream kinase that mediates STAT3 tyrosine 705 phosphorylation. Altogether, we conclude that the blockade of the JAK2/STAT3/BCL-2 antiapoptotic signaling axis is a vital mechanism whereby CTS provokes bladder cancer cytotoxicity. The current evidence implicates CTS's potential to be translated into a bladder cancer therapeutic agent.
Collapse
Affiliation(s)
- Min-Che Tung
- Division of Urology, Department of Surgery, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan
| | - Ge-Man Chang
- Graduate Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Wen-Chyi Dai
- Doctoral Program in Biotechnology Industrial Innovation and Management, National Chung Hsing University, Taichung, Taiwan
| | - Chen-Hsuan Hsu
- Graduate Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Hsiang-Chun Chang
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Wei-Ting Yang
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Yann-Jen Ho
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Chien-Hsing Lu
- Department of Obstetrics and Gynecology, Taichung Veterans General Hospital, Taichung, Taiwan
- Doctoral Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Yi-Hsin Chen
- Department of Nephrology, Taichung Tzu Chi Hospital, Buddhist Tzu chi Medical Foundation, Taichung, Taiwan
- School of Medicine, Tzu Chi University, Hualein, Taiwan
- Department of Artificial Intelligence and Data Science, National Chung Hsing University, Taichung, Taiwan
| | - Chia-Che Chang
- Graduate Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
- Doctoral Program in Biotechnology Industrial Innovation and Management, National Chung Hsing University, Taichung, Taiwan
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
- Doctoral Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Master Program in Precision Health, Rong Hsing Research Center for Translational Medicine, The iEGG and Animal Biotechnology Research Center, National Chung Hsing University, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
2
|
Yusup M, He G, Qin Y, Tuerxun N, Hao J. Efficacy and influencing factors of immunosuppressive therapy for pure red cell aplasia: meta-analysis and systematic review. Ann Hematol 2025:10.1007/s00277-025-06315-z. [PMID: 40105948 DOI: 10.1007/s00277-025-06315-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 03/11/2025] [Indexed: 03/22/2025]
Abstract
Acquired pure red cell aplasia (aPRCA) is a rare hematological syndrome characterized by anemia and a significant reduction in erythroid progenitor cells. Immunosuppressive therapy (IST), including Corticosteroids (CS), Cyclosporine (CsA), and cyclophosphamide (CYC), is the primary treatment. However, variations in clinical efficacy and limited comparative studies have created uncertainty in therapeutic choices. This study aims to evaluate the efficacy of IST and the factors influencing treatment outcomes. A systematic search was conducted using PubMed, Embase, Cochrane Library, and Web of Science. Two researchers independently screened studies and extracted data. The quality of studies was assessed using the MINORS scale. Meta-analysis was performed using STATA/MP16, and effect size (ES) was calculated using fixed- or random-effects models based on heterogeneity. A total of 33 studies involving 1,193 patients were included. The overall efficacy of IST was significant, with a pooled ES of 0.656 (95% CI: 0.600-0.710). CsA demonstrated the highest efficacy (ES = 0.699; 95% CI: 0.615-0.779), followed by CYC (ES = 0.592; 95% CI: 0.423-0.752) and CS (ES = 0.568; 95% CI: 0.457-0.676). Subgroup analyses revealed that factors such as etiology, combination therapies, first- vs. second-line treatment, and genetic characteristics significantly influenced outcomes. Notably, the response to IST was higher in primary aPRCA (ES = 0.667; 95% CI: 0.598-0.733) compared to LGLL-associated (ES = 0.515; 95% CI: 0.393-0.637) and thymoma-associated (ES = 0.690; 95% CI: 0.492-0.864) aPRCA. The combination of CS and CsA yielded superior efficacy (ES = 0.761; 95% CI: 0.658-0.853) compared to combination of CS and CsA and monotherapy. First-line treatment demonstrated better efficacy than second-line treatment (ES = 0.659; 95% CI: 0.596-0.720) vs. (ES = 0.452; 95% CI: 0.199-0.715). The important finding was that (ES = 0.861; 95% CI: 0.595-1.000) in the STAT3 mutation (+) group and (ES = 0.375; 95% CI: 0.034-0.801) in the STAT3 mutation (-) group. IST demonstrates overall efficacy in aPRCA, with variations influenced by etiology, drug combinations, and genetic mutations such as STAT3. These findings highlight the need for personalized treatment strategies and further research to validate and optimize IST efficacy.
Collapse
Affiliation(s)
- Muyassar Yusup
- Department of Hematology, First Affiliated Hospital of Xinjiang Medical University, XinJiang Institute of Hematology , Urumqi, China
| | | | - YuTing Qin
- Department of Hematology, First Affiliated Hospital of Xinjiang Medical University, XinJiang Institute of Hematology , Urumqi, China
| | - Niluopaer Tuerxun
- Department of Hematology, First Affiliated Hospital of Xinjiang Medical University, XinJiang Institute of Hematology , Urumqi, China
| | - JianPing Hao
- Department of Hematology, First Affiliated Hospital of Xinjiang Medical University, XinJiang Institute of Hematology , Urumqi, China.
| |
Collapse
|
3
|
Sugiyama A, Minami M, Ugajin K, Inaba-Inoue S, Yabuno N, Takekawa Y, Xiaomei S, Takei S, Sasaki M, Nomai T, Jiang X, Kita S, Maenaka K, Hirose M, Yao M, Gooley PR, Moseley GW, Sugita Y, Ose T. Structural analysis reveals how tetrameric tyrosine-phosphorylated STAT1 is targeted by the rabies virus P-protein. Sci Signal 2025; 18:eads2210. [PMID: 40100957 DOI: 10.1126/scisignal.ads2210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 02/28/2025] [Indexed: 03/20/2025]
Abstract
Signal transducer and activator of transcription (STAT) family members mediate signaling in the Janus kinase (JAK)-STAT pathway and are activated by phosphorylation at a conserved tyrosine residue, resulting in dimerization through reciprocal interactions between the phosphotyrosine and a Src homology 2 (SH2) domain. Tyrosine-phosphorylated STAT (pY-STAT) then translocates to the nucleus to induce the expression of genes encoding antiviral proteins. Although the active and functional forms of STATs are conventionally considered to be dimers, STATs can undergo higher-order oligomerization, which is implicated in regulating transcriptional activity. We present the cryo-electron microscopy (cryo-EM) structure of the tetrameric form of intact pY-STAT1 in complex with DNA, which indicates that interactions between the amino-terminal domains (NTDs) of STAT1 induce oligomerization. The tetrameric structure revealed a compact conformation with a previously uncharacterized binding interface: Two DNA-bound dimers are twofold symmetrically aligned to transform into a tandem DNA-binding model without NTD dimer separation. Moreover, biochemical analyses indicated that the rabies virus P-protein selectively targeted tetrameric pY-STAT1. Combined with data showing which regions contribute to the interaction between pY-STAT1 and the P-protein, we constructed a binding model explaining how P recognizes the pY-STAT1 tetramer. These data provide insight into how pathogenic viruses target signaling pathways that mediate the host immune response.
Collapse
Affiliation(s)
- Aoi Sugiyama
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Miku Minami
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Kaito Ugajin
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Satomi Inaba-Inoue
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Nana Yabuno
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Yuichiro Takekawa
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Sun Xiaomei
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Shiho Takei
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Mina Sasaki
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Tomo Nomai
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Xinxin Jiang
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Shunsuke Kita
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Katsumi Maenaka
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Mika Hirose
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Min Yao
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Paul R Gooley
- Department of Biochemistry and Pharmacology and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Gregory W Moseley
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Yukihiko Sugita
- Institute for Life and Medical Sciences, Hakubi Center for Advanced Research, Kyoto University, Kyoto 606-8507, Japan
| | - Toyoyuki Ose
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
4
|
Mohamed RA, Shouman MM. Ondansetron alleviates testosterone-induced BPH in rats through cross regulation of the 5-HT/AR/P-STAT3 and the non-canonical NF-κB pathways. Eur J Pharmacol 2025; 991:177331. [PMID: 39894432 DOI: 10.1016/j.ejphar.2025.177331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/22/2025] [Accepted: 01/30/2025] [Indexed: 02/04/2025]
Abstract
Benign prostatic hyperplasia (BPH) is a widespread age-related health issue. Every year, new pathological cues are revealed in the pathogenesis of BPH, however, the role of serotonin, Janus tyrosine kinase (JAK)-2/signal transducer and activator of the transcription (STAT)-3 and non-canonical nuclear factor-kappa B (NF-κB p52) pathways and their interaction with the androgen receptor (AR) in BPH are still not fully investigated. Accordingly, the aim of the current study was to unveil the possible modulatory effect of ondansetron alone and in combination with tamsulosin on these pathways and their utilization as therapeutic targets. Five groups of rats were utilized; group 1 received corn oil to serve as normal control, while the other groups administered testosterone (3 mg/kg, subcutaneously) dissolved in corn oil for 2 weeks followed by the co-administration of either tamsulosin (0.2 mg/kg, orally), ondansetron (2 mg/kg, intraperitoneally) or their combination for another 15 days along with testosterone injections. All treatments improved kidney function (creatinine and blood urea nitrogen), decreased oxidative stress (reduced glutathione and malondialdehyde), attenuated inflammation (NF-κB, cyclooxygenase-2), decreased AR expression, NF-κB p52, P-STAT3, transforming growth factor beta-1 in addition to markers of epithelial-mesenchymal transition (alpha smooth muscle actin and vimentin) this was associated with an increase in the prostatic content of serotonin, improvement in the histopathological picture and overall shrinkage in relative prostate weight. These results show that ondansetron is a very promising treatment for BPH especially in combination with tamsulosin and unveiled NF-κB p52 and serotonin as novel therapeutic targets in the management of BPH.
Collapse
Affiliation(s)
- Reem A Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October University for Modern Sciences and Arts, 26 July Mehwar Road intersection with Wahat Road, 6th of October City, 12451, Egypt.
| | - Maha M Shouman
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October University for Modern Sciences and Arts, 26 July Mehwar Road intersection with Wahat Road, 6th of October City, 12451, Egypt.
| |
Collapse
|
5
|
Qian X, Tong M, Zhang T, Li Q, Hua M, Zhou N, Zeng W. IL-24 promotes atopic dermatitis-like inflammation through driving MRSA-induced allergic responses. Protein Cell 2025; 16:188-210. [PMID: 38752989 DOI: 10.1093/procel/pwae030] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/25/2024] [Indexed: 03/11/2025] Open
Abstract
Atopic dermatitis (AD) is a prevalent inflammatory skin disorder in which patients experience recurrent eczematous lesions and intense itching. The colonization of Staphylococcus aureus (S. aureus) is correlated with the severity of the disease, but its role in AD development remains elusive. Using single-cell RNA sequencing, we uncovered that keratinocytes activate a distinct immune response characterized by induction of Il24 when exposed to methicillin-resistant S. aureus (MRSA). Further experiments using animal models showed that the administration of recombinant IL-24 protein worsened AD-like pathology. Genetic ablation of Il24 or the receptor Il20rb in keratinocytes alleviated allergic inflammation and atopic march. Mechanistically, IL-24 acted through its heterodimeric receptors on keratinocytes and augmented the production of IL-33, which in turn aggravated type 2 immunity and AD-like skin conditions. Overall, these findings establish IL-24 as a critical factor for onset and progression of AD and a compelling therapeutic target.
Collapse
Affiliation(s)
- Xinmin Qian
- Institute for Immunology and School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing 100084, China
| | - Meiyi Tong
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100084, China
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Tianqing Zhang
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qingqing Li
- Institute for Immunology and School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing 100084, China
| | - Meng Hua
- Institute for Immunology and School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing 100084, China
| | - Nan Zhou
- Institute for Immunology and School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing 100084, China
| | - Wenwen Zeng
- Institute for Immunology and School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing 100084, China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan 030001, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
- Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing 100084, China
| |
Collapse
|
6
|
King Z, Desai SR, Frank DA, Shastri A. STAT signaling in the pathogenesis and therapy of acute myeloid leukemia and myelodysplastic syndromes. Neoplasia 2025; 61:101137. [PMID: 39933227 PMCID: PMC11869857 DOI: 10.1016/j.neo.2025.101137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 02/04/2025] [Indexed: 02/13/2025]
Abstract
Acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) represent complex hematopoietic malignancies characterized by ineffective hematopoiesis and dysregulated myeloid differentiation. Recent research has underscored the critical role of aberrant STAT signaling pathways, particularly involving STAT3 and STAT5, in the pathogenesis of these disorders. Aberrant activation of STAT proteins has been implicated as a mediator of oncogenesis in several malignancies. In this review, we discuss the role of STAT proteins in both regulated and dysregulated hematopoiesis, the consequences of dysregulation in acute myeloid leukemia and myelodysplastic syndromes, therapeutic strategies, and recent advancements in STAT-targeted therapy. By integrating findings from recent preclinical and clinical studies, this review provides insights into the evolving landscape of STAT-targeted therapies, highlighting the promise of these approaches in enhancing treatment efficacy and improving patient outcomes in high-risk hematologic malignancies.
Collapse
MESH Headings
- Humans
- Myelodysplastic Syndromes/metabolism
- Myelodysplastic Syndromes/etiology
- Myelodysplastic Syndromes/therapy
- Myelodysplastic Syndromes/pathology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/etiology
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/genetics
- Signal Transduction
- STAT Transcription Factors/metabolism
- Animals
- Molecular Targeted Therapy
- Disease Susceptibility
Collapse
Affiliation(s)
- Zoe King
- Department of Pediatric Hematology and Oncology, The Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Sudhamsh Reddy Desai
- Department of Medicine, Jacobi Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - David A Frank
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA.
| | - Aditi Shastri
- Department of Oncology, Montefiore Medical Center & Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
7
|
Zhang Z, Zhu S, Li Q, Wei S, Yin L, Zhu J, Yang S, Zhang W, Lai K. Investigating the role of IL-6 in the pathogenesis of systemic lupus erythematosus: Insights from bone marrow mesenchymal stem cells. Lupus 2025; 34:225-233. [PMID: 39882783 DOI: 10.1177/09612033251317783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
BackgroundSystemic lupus erythematosus is a common autoimmune disease. Studies have suggested that defective stem cells could be involved in the pathogenesis of systemic lupus erythematosus, which leads to changes in the function of immune cells. By observing the cell morphology, autophagy, and senescence of bone marrow mesenchymal stem cells (BMSCs) from lupus mice and normal controls, this study investigated the role of IL-6 in autophagy and senescence of BMSCs and explored relevant mechanisms.MethodFemale MRL/lpr and C57 mice with similar weights and sizes at 20-22 weeks old were selected. BMSCs were isolated using the whole bone marrow adherent method. Quantitative real-time polymerase chain reaction, β-galactosidase staining, western blotting, and ELISA were used to detect autophagy and senescence.ResultCompared with BMSCs from normal mice, BMSCs from lupus mice exhibited low autophagy and premature senescence with a senescence-associated secretory phenotype. The addition of exogenous IL-6 increased the protein levels of p-STAT3 and Bcl-2, and in the IL-6-treated group, the premature senescence of cells increased and autophagy decreased.ConclusionThe biological functions of BMSCs from MRL/lpr lupus mice were impaired. IL-6 prevents autophagy and subsequently promotes the senescence of BMSCs by activating the IL-6/STAT3 pathway.
Collapse
Affiliation(s)
- Zhiwen Zhang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Silang Zhu
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Qian Li
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Shanshan Wei
- Department of Dermatology, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Li Yin
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Junhao Zhu
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Shan Yang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Wenjing Zhang
- Department of Allergy, and Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Kuan Lai
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
8
|
Asare O, Shim L, Lee CJ, Delgado J, Quailes N, Zavala K, Park J, Hafeez BB, Cho YY, Chauhan SC, Kim DJ. Loss of TC-PTP in keratinocytes leads to increased UVB-induced autophagy. Cell Death Discov 2025; 11:80. [PMID: 40021617 PMCID: PMC11871011 DOI: 10.1038/s41420-025-02353-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/28/2025] [Accepted: 02/12/2025] [Indexed: 03/03/2025] Open
Abstract
Ultraviolet B (UVB) radiation can distort cellular homeostasis and predispose the skin to carcinogenesis. Amongst the deteriorating effects of the sun's UVB radiation on cellular homeostasis is the formation of DNA photoproducts. These photoproducts can cause significant changes in the structure and conformation of DNA, inducing gene mutations which may accumulate to trigger the formation of skin cancer. Photoproducts are typically repaired by nucleotide excision repair. Notwithstanding, when the repair mechanism fails, apoptosis ensues to prevent the accumulation of mutations and to restore cellular homeostasis. This present study reports that T-cell protein tyrosine phosphatase (TC-PTP) can increase UVB-induced apoptosis by inhibiting autophagy-mediated cell survival of damaged keratinocytes. TC-PTP deficiency in 3PC mouse keratinocytes led to the formation of autophagic vacuoles and increased expression of LC3-II. We established human TC-PTP-deficient (TC-PTP/KO) HaCaT cells using the CRISPR/Cas9 system. TC-PTP/KO HaCaT cells exhibited increased cell survival upon UVB exposure, which was accompanied by increased expression of LC3-II and decreased expression of p62 compared to control cells. Pretreatment of TC-PTP/KO HaCaT cells with early-phase autophagy inhibitor, 3-methyladenine significantly decreased the expression of LC3-II and reduced cell survival in response to UVB irradiation in comparison with untreated TC-PTP/KO cells. Pretreatment of TC-PTP/KO HaCaT cells with late-phase inhibitor, chloroquine also significantly reduced cell viability with increased accumulation of LC3-II after UVB irradiation compared to untreated counterpart cells. While UVB significantly increased apoptosis in the engineered (Mock) cells, this was not observed in similarly treated TC-PTP/KO HaCaT cells. However, chloroquine treatment increased apoptosis in TC-PTP/KO HaCaT cells. Examination of human squamous cell carcinomas (SCCs) revealed that TC-PTP expression was inversely correlated with LC3 expression. Our findings suggest that TC-PTP negatively regulates autophagy-mediated survival of damaged cells following UVB exposure, which can contribute to remove damaged keratinocytes via apoptosis.
Collapse
Affiliation(s)
- Obed Asare
- Department of Medicine and Oncology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
- Graduate Program in Biochemistry and Molecular Biology, University of Texas Rio Grande Valley, Edinburg, TX, USA
- Graduate Program in Cancer Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lindsey Shim
- Department of Medicine and Oncology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
- Graduate Program in Biochemistry and Molecular Biology, University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Cheol-Jung Lee
- Department of Medicine and Oncology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
- Biopharmaceutical Research Center, Ochang Institute of Biological and Environmental Science, Korea Basic Science Institute, Cheongju-si, 28119, Republic of Korea
| | - Jose Delgado
- School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Natasha Quailes
- School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Klarissa Zavala
- Department of Health & Biomedical Sciences, College of Health Professions, University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Junsoo Park
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493, Republic of Korea
| | - Bilal Bin Hafeez
- Department of Medicine and Oncology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
- Graduate Program in Biochemistry and Molecular Biology, University of Texas Rio Grande Valley, Edinburg, TX, USA
- South Texas Center for Excellence in Cancer Research, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Yong-Yeon Cho
- College of Pharmacy, The Catholic University of Korea, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
- BK21-4TH, and RCD Control Material Research Institute, College of Pharmacy, The Catholic University of Korea, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
| | - Subhash C Chauhan
- Department of Medicine and Oncology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
- Graduate Program in Biochemistry and Molecular Biology, University of Texas Rio Grande Valley, Edinburg, TX, USA
- South Texas Center for Excellence in Cancer Research, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Dae Joon Kim
- Department of Medicine and Oncology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA.
- Graduate Program in Biochemistry and Molecular Biology, University of Texas Rio Grande Valley, Edinburg, TX, USA.
- South Texas Center for Excellence in Cancer Research, University of Texas Rio Grande Valley, McAllen, TX, USA.
| |
Collapse
|
9
|
Wang X, Wang XQ, Luo K, Bai H, Qi JL, Zhang GX. Research Progress of Chinese Medicine Monomers in Treatment of Cholangiocarcinoma. Chin J Integr Med 2025; 31:170-182. [PMID: 39470920 DOI: 10.1007/s11655-024-4203-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2024] [Indexed: 11/01/2024]
Abstract
Cholangiocarcinoma (CCA) is a malignant tumor originating from cholangiocytes. However, it remains unclear about the pathogenesis of this carcinoma, which may be related to multiple factors. Currently, CCA is mainly treated by surgery, chemotherapy, and radiotherapy. Among them, surgery is the only potentially curative option for CCA. Nevertheless, the high malignancy and asymptomatic nature of CCA may lead to poor treatment outcomes. It has been demonstrated that Chinese medicine (CM) plays a significant role in various antitumor applications. Meanwhile, CM exhibits fewer side effects and high availability. Moreover, the in vitro application of CM monomers has been explored in many domestic and foreign studies. This article mainly reviews the signaling pathways and molecular mechanisms of CM monomers in the treatment of CCA in recent years. These findings are expected to provide new insights into the treatment of CCA.
Collapse
Affiliation(s)
- Xiang Wang
- Department of General Surgery, the Second Hospital of Dalian Medical University, Dalian, Liaoning Province, 116027, China
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116021, China
- Hepatobiliary Surgery Department, Shandong Provincial Third Hospittal, Shandong University, Jinan, 250031, China
| | - Xiao-Qing Wang
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116021, China
| | - Kai Luo
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116021, China
| | - He Bai
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116021, China
| | - Jia-Lin Qi
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116021, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning Province, 116044, China
| | - Gui-Xin Zhang
- Department of General Surgery, the Second Hospital of Dalian Medical University, Dalian, Liaoning Province, 116027, China.
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning Province, 116044, China.
| |
Collapse
|
10
|
Wang W, He L, Lin T, Xiang F, Wu Y, Zhou F, He Y. Homoharringtonine: mechanisms, clinical applications and research progress. Front Oncol 2025; 15:1522273. [PMID: 39949739 PMCID: PMC11821653 DOI: 10.3389/fonc.2025.1522273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/06/2025] [Indexed: 02/16/2025] Open
Abstract
Homoharringtonine is a natural alkaloid with significant pharmacological potential that has demonstrated promising efficacy in the treatment of hematological malignancies in recent years. This article systematically reviews the pharmacological mechanisms of Homoharringtonine, focusing on its key roles in inducing apoptosis, inhibiting cell cycle progression, and reducing cell migration and invasion. Additionally, HHT exhibits multiple biological activities, including immunomodulation, antiviral effects, and anti-fibrotic properties, with recent studies also revealing its potential neuroprotective functions. In clinical trials, Homoharringtonine has demonstrated promising efficacy in the treatment of hematological malignancies, particularly in various types such as acute myeloid leukemia and chronic myeloid leukemia. Despite the significant antitumor effects observed in clinical applications, its low bioavailability and potential side effects remain major challenges that limit its widespread use. This article details the latest research advancements aimed at enhancing the bioavailability of Homoharringtonine, including various drug delivery systems such as nanoparticles and liposomes, as well as chemical modification strategies. These approaches not only improve HHT's bioavailability in vivo but also enhance its targeting ability while reducing toxicity to normal cells. Furthermore, the combination of HHT with other drugs presents broader prospects for clinical treatment. By exploring the diverse pharmacological activities of Homoharringtonine in depth, this article aims to provide a foundation for developing novel therapeutic approaches based on natural products, thereby advancing HHT's application research in cancer treatment and other fields.
Collapse
Affiliation(s)
- Wen Wang
- Graduate School, Hunan University of Chinese Medicine, Changsha, China
| | - Lan He
- Hunan Provincial Engineering and Technological Research Center for Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Chinese Medicine and Protecting Visual Function, Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Key Laboratory for the Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Ting Lin
- Graduate School, Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Engineering and Technological Research Center for Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Chinese Medicine and Protecting Visual Function, Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Key Laboratory for the Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Fulan Xiang
- Graduate School, Hunan University of Chinese Medicine, Changsha, China
| | - Yibin Wu
- Graduate School, Hunan University of Chinese Medicine, Changsha, China
| | - Fangliang Zhou
- Hunan Provincial Engineering and Technological Research Center for Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Chinese Medicine and Protecting Visual Function, Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Key Laboratory for the Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Yingchun He
- Hunan Provincial Engineering and Technological Research Center for Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Chinese Medicine and Protecting Visual Function, Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Key Laboratory for the Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- Medical School, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
11
|
Dai WC, Chen TH, Peng TC, He YC, Hsu CY, Chang CC. Blockade of the STAT3/BCL-xL Axis Leads to the Cytotoxic and Cisplatin-Sensitizing Effects of Fucoxanthin, a Marine-Derived Carotenoid, on Human Bladder Urothelial Carcinoma Cells. Mar Drugs 2025; 23:54. [PMID: 39997178 PMCID: PMC11857094 DOI: 10.3390/md23020054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/19/2025] [Accepted: 01/20/2025] [Indexed: 02/26/2025] Open
Abstract
Bladder cancer is a globally prevalent urological malignancy, with transitional carcinoma (TCC) representing the majority of cases. Cisplatin is the primary drug for metastatic bladder cancer chemotherapy; however, its application is limited by nephrotoxicity and resistance. Signal Transducer and Activator of Transcription 3 (STAT3) is an oncogenic transcription factor often overactivated in various cancers, making it an appealing drug target. Fucoxanthin, a marine carotenoid, has significant anticancer properties. This study explored Fucoxanthin's cytotoxic effects and its potential to potentiate the efficacy of Cisplatin, along with the mechanisms underlying these effects, on human bladder TCC cells. We demonstrated that Fucoxanthin is cytotoxic to bladder TCC cells by inducing apoptosis, evidenced by z-VAD-fmk-mediated annulment of Fucoxanthin's cytotoxicity. Furthermore, Fucoxanthin reduced the levels of inherent or interleukin-6-induced tyrosine 705-phosphorylated STAT3 accompanied by downregulating BCL-xL, a well-established STAT3 target. Notably, ectopic expression of STAT3-C, a dominant-active STAT3 mutant, or BCL-xL thwarted Fucoxanthin's proapoptotic and cytotoxic actions. Moreover, Fucoxanthin at subtoxic dosages enhanced the susceptibility to Cisplatin-induced apoptosis of bladder TCC cells initially resistant to Cisplatin. Remarkably, this Cisplatin-sensitizing effect of Fucoxanthin was abrogated when cells ectopically expressed STAT3-C or BCL-xL. Overall, for the first time, we proved that the proapoptotic, cytotoxic, and Cisplatin-sensitizing effects of Fucoxanthin on human bladder TCC cells are attributed to the blockade of the STAT3/BCL-xL axis. Our findings highlight that targeting the STAT3/BCL-xL axis is a promising strategy to eliminate bladder TCC cells and facilitate Cisplatin sensitization, and further support the potential of incorporating Fucoxanthin into Cisplatin-based chemotherapy for treating bladder cancer.
Collapse
Affiliation(s)
- Wen-Chyi Dai
- Doctoral Program in Biotechnology Industrial Innovation and Management, National Chung Hsing University, Taichung 402202, Taiwan;
| | - Tzu-Hsuan Chen
- Department of Life Sciences, National Chung Hsing University, Taichung 402202, Taiwan;
| | - Tzu-Ching Peng
- Graduate Institute of Biomedical Sciences, National Chung Hsing University, Taichung 402202, Taiwan; (T.-C.P.); (Y.-C.H.)
| | - Yung-Ching He
- Graduate Institute of Biomedical Sciences, National Chung Hsing University, Taichung 402202, Taiwan; (T.-C.P.); (Y.-C.H.)
| | - Chao-Yu Hsu
- Division of Urology, Department of Surgery, Tungs’ Taichung MetroHarbor Hospital, Taichung 435403, Taiwan
- Department of Rehabilitation, Jenteh Junior College of Medicine, Nursing and Management, Miaoli 356006, Taiwan
| | - Chia-Che Chang
- Doctoral Program in Biotechnology Industrial Innovation and Management, National Chung Hsing University, Taichung 402202, Taiwan;
- Department of Life Sciences, National Chung Hsing University, Taichung 402202, Taiwan;
- Graduate Institute of Biomedical Sciences, National Chung Hsing University, Taichung 402202, Taiwan; (T.-C.P.); (Y.-C.H.)
- Master Program in Precision Health, Doctoral Program in Translational Medicine, Rong Hsing Research Center for Translational Medicine, The iEGG and Animal Biotechnology Research Center, National Chung Hsing University, Taichung 402202, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung 413305, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung 404327, Taiwan
| |
Collapse
|
12
|
Kumar S, Kumar BH, Nayak R, Pandey S, Kumar N, Pai KSR. Computational screening and molecular dynamics of natural compounds targeting the SH2 domain of STAT3: a multitarget approach using network pharmacology. Mol Divers 2025:10.1007/s11030-024-11075-5. [PMID: 39786519 DOI: 10.1007/s11030-024-11075-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 11/29/2024] [Indexed: 01/12/2025]
Abstract
SH2 (Src Homology 2) domains play a crucial role in phosphotyrosine-mediated signaling and have emerged as promising drug targets, particularly in cancer therapy. STAT3 (Signal Transducer and Activator of Transcription 3), which contains an SH2 domain, plays a pivotal role in cancer progression and immune evasion because it facilitates the dimerization of STAT3, which is essential for their activation and subsequent nuclear translocation. SH2 domain-mediated STAT3 inhibition disrupts this binding, reduces phosphorylation of STAT3, and impairs dimerization. This study employed an in silico approach to screen potential natural compounds that could target the SH2 domain of STAT3 and inhibit its function. The phytomolecules (182455) were retrieved from the ZINC 15 database and were docked using various modes like HTVS, SP, and XP. The phytomolecules exhibiting higher binding affinity were selected. MM-GBSA was performed to determine binding free energy, and the QikProp tool was utilized to assess the pharmacokinetic properties of potential hit compounds, narrowing down the list of candidates. Molecular dynamics simulations, thermal MM-GBSA, and WaterMap analysis were performed on compounds that exhibited favorable binding affinities and pharmacokinetic characteristics. Based on docking scores and binding interactions, ZINC255200449, ZINC299817570, ZINC31167114, and ZINC67910988 were identified as potential STAT3 inhibitors. ZINC67910988 demonstrated superior stability in molecular dynamics simulation and WaterMap analysis. Furthermore, DFT was performed to determine energetic and electronic properties, and HOMO and LUMO sites were predicted for electronic structure calculation. Additionally, network pharmacology was performed to map the compounds' interactions within biological networks, highlighting their multitarget potential. Compound-target networks elucidate the relationships between compounds and multiple targets, along with their associated pathways and help to minimize off-target effects. The identified lead compound showed strong potential as a STAT3 inhibitor, warranting further validation through in vitro and in vivo studies.
Collapse
Affiliation(s)
- Sachindra Kumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, 576104, India
| | - B Harish Kumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, 576104, India
| | - Raksha Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, 576104, India
| | - Samyak Pandey
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, 576104, India
| | - Nitesh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali, Bihar, 844102, India
| | - K Sreedhara Ranganath Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, 576104, India.
| |
Collapse
|
13
|
Jia J, Zhou X, Chu Q. Mechanisms and therapeutic prospect of the JAK-STAT signaling pathway in liver cancer. Mol Cell Biochem 2025; 480:1-17. [PMID: 38519710 DOI: 10.1007/s11010-024-04983-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/29/2024] [Indexed: 03/25/2024]
Abstract
Liver cancer (LC) poses a significant global health challenge due to its high incidence and poor prognosis. Current systemic treatment options, such as surgery, chemotherapy, radiofrequency ablation, and immunotherapy, have shown limited effectiveness for advanced LC patients. Moreover, owing to the heterogeneous nature of LC, it is crucial to uncover more in-depth pathogenic mechanisms and develop effective treatments to address the limitations of the existing therapeutic modalities. Increasing evidence has revealed the crucial role of the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway in the pathogenesis of LC. The specific mechanisms driving the JAK-STAT pathway activation in LC, participate in a variety of malignant biological processes, including cell differentiation, evasion, anti-apoptosis, immune escape, and treatment resistance. Both preclinical and clinical investigations on the JAK-STAT pathway inhibitors have exhibited potential in LC treatment, thereby opening up avenues for the development of more targeted therapeutic strategies for LC. In this study, we provide an overview of the JAK-STAT pathway, delving into the composition, activation, and dynamic interplay within the pathway. Additionally, we focus on the molecular mechanisms driving the aberrant activation of the JAK-STAT pathway in LC. Furthermore, we summarize the latest advancements in targeting the JAK-STAT pathway for LC treatment. The insights presented in this review aim to underscore the necessity of research into the JAK-STAT signaling pathway as a promising avenue for LC therapy.
Collapse
Affiliation(s)
- JunJun Jia
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Shangcheng District, Hangzhou, 310003, Zhejiang, China.
| | - Xuelian Zhou
- Division of Endocrinology, National Clinical Research Center for Child Health, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Qingfei Chu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| |
Collapse
|
14
|
Lan C, Fang G, Qiu C, Li X, Yang F, Yang Y. Inhibition of DYRK1A attenuates vascular remodeling in pulmonary arterial hypertension via suppressing STAT3/Pim-1/NFAT pathway. Clin Exp Hypertens 2024; 46:2297642. [PMID: 38147409 DOI: 10.1080/10641963.2023.2297642] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/15/2023] [Indexed: 12/28/2023]
Abstract
Pulmonary arterial hypertension (PAH) is characterized by progressive vascular remodeling caused by the excessive proliferation and survival of pulmonary artery smooth muscle cells (PASMCs). Dual-specificity tyrosine regulated kinase 1A (DYRK1A) is a pleiotropic kinase involved in the regulation of multiple biological functions, including cell proliferation and survival. However, the role and underlying mechanisms of DYRK1A in PAH pathogenesis remain unclear. We found that DYRK1A was upregulated in PASMCs in response to hypoxia, both in vivo and in vitro. Inhibition of DYRK1A by harmine significantly attenuated hypoxia-induced pulmonary hypertension and pulmonary artery remodeling. Mechanistically, we found that DYRK1A promoted pulmonary arterial remodeling by enhancing the proliferation and survival of PASMCs through activating the STAT3/Pim-1/NFAT pathway, because STAT3 gain-of-function via adeno-associated virus serotype 2 (AAV2) carrying the constitutively active form of STAT3 (STAT3C) nearly abolished the protective effect of harmine on PAH. Collectively, our results reveal a significant role for DYRK1A in pulmonary arterial remodeling and suggest it as a drug target with translational potential for the treatment of PAH.
Collapse
Affiliation(s)
- Cong Lan
- Department of Cardiology, General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Guangyao Fang
- Department of Cardiology, General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Chenming Qiu
- Department of Burn and Plastic Surgery, General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Xiuchuan Li
- Department of Cardiology, General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Fengyuan Yang
- Department of Nephrology, General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Yongjian Yang
- Department of Cardiology, General Hospital of Western Theater Command, Chengdu, Sichuan, China
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| |
Collapse
|
15
|
Manoharan S, Perumal E. A strategic review of STAT3 signaling inhibition by phytochemicals for cancer prevention and treatment: Advances and insights. Fitoterapia 2024; 179:106265. [PMID: 39437855 DOI: 10.1016/j.fitote.2024.106265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Cancer remains a significant global health concern. The dysregulation of signaling networks in tumor cells greatly affects their functions. This review intends to explore phytochemicals possessing potent anticancer properties that specifically target the STAT3 signaling pathway, elucidating strategies and emphasizing their potential as promising candidates for cancer therapy. The review comprehensively examines various STAT3 inhibitors designed to disrupt the signaling cascade, including those targeting upstream activation, SH2 domain phosphorylation, DNA binding domain (DBD), N-terminal domain (NTD), nuclear translocation, and enhancing endogenous STAT3 negative regulators. A literature review was conducted to identify phytochemicals with anticancer activity targeting the STAT3 signaling pathway. Popular research databases such as Google Scholar, PubMed, Science Direct, Scopus, Web of Science, and ResearchGate were searched from the years 1989 - 2023 based on the keywords "Cancer", "STAT3", "Phytochemicals", "Phytochemicals targeting STAT3 signaling", "upstream activation of STAT3", "SH2 domain of STAT3", "DBD of STAT3", "NTD of STAT3, "endogenous negative regulators of STAT3", or "nuclear translocation of STAT3", and their combinations. A total of 264 relevant studies were selected and analyzed based on the mechanisms of action and the efficacy of the phytocompounds. The majority of the discussed phytochemicals primarily focus on inhibiting upstream activation of STAT3. Additionally, flavonoid and terpenoid compounds exhibit multifaceted effects by targeting one or more checkpoints within the STAT3 pathway. Analysis reveals that phytochemicals targeting upstream activation predominantly belong to the classes of flavonoids and terpenoids, which hold significant promise as effective anticancer therapeutics. Future research in this field can be directed towards exploring and developing these scrutinized classes of phytochemicals to achieve desired therapeutic outcomes in cancer treatment.
Collapse
Affiliation(s)
- Suryaa Manoharan
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641 046, India
| | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641 046, India.
| |
Collapse
|
16
|
Li L, Hu X, Nkwocha J, Kmieciak M, Meads MB, Shain KH, Alugubelli RR, Silva AS, Mann H, Sudalagunta PR, Canevarolo RR, Zhou L, Grant S. Combined MEK1/2 and ATR inhibition promotes myeloma cell death through a STAT3-dependent mechanism in vitro and in vivo. Br J Haematol 2024; 205:2338-2348. [PMID: 39379134 DOI: 10.1111/bjh.19796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/18/2024] [Indexed: 10/10/2024]
Abstract
Mechanisms underlying potentiation of the anti-myeloma (MM) activity of ataxia telangiectasia Rad3 (ATR) antagonists by MAPK (Mitogen-activated protein kinases)-related extracellular kinase 1/2 (MEK1/2) inhibitors were investigated. Co-administration of the ATR inhibitor (ATRi) BAY1895344 (BAY) and MEK1/2 inhibitors, for example, cobimetinib, synergistically increased cell death in diverse MM cell lines. Mechanistically, BAY and cobimetinib blocked STAT3 Tyr705 and Ser727 phosphorylation, respectively, and dual dephosphorylation triggered marked STAT3 inactivation and downregulation of STAT3 (Signal transducer and activator of transcription 3) downstream targets (c-Myc and BCL-XL). Similar events occurred in highly bortezomib-resistant (PS-R) cells, in the presence of patient-derived conditioned medium, and with alternative ATR (e.g. M1774) and MEK1/2 (trametinib) inhibitors. Notably, constitutively active STAT3 c-MYC or BCL-XL ectopic expression significantly protected cells from BAY/cobimetinib. In contrast, transfection of cells with a dominant-negative form of STAT3 (Y705F) sensitized cells to cobimetinib, as did ATR shRNA knockdown. Conversely, MEK1/2 knockdown markedly increased ATRi sensitivity. The BAY/cobimetinib regimen was also active against primary CD138+ MM cells, but not normal CD34+ cells. Finally, the ATR inhibitor/cobimetinib regimen significantly improved survival in MM xenografts, including bortezomib-resistant models, with minimal toxicity. Collectively, these findings suggest that combined ATR/MEK1/2 inhibition triggers dual STAT3 Tyr705 and Ser727 dephosphorylation, pronounced downregulation of cytoprotective targets and MM cell death, warranting attention as a novel therapeutic strategy in MM.
Collapse
Affiliation(s)
- Lin Li
- Division of Hematology/Oncology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Xiaoyan Hu
- Division of Hematology/Oncology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Jewel Nkwocha
- Division of Hematology/Oncology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Maciej Kmieciak
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Mark B Meads
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, Florida, USA
| | - Kenneth H Shain
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, Florida, USA
| | | | - Ariosto S Silva
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center, Tampa, Florida, USA
| | - Hashim Mann
- Division of Hematology/Oncology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Praneeth R Sudalagunta
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center, Tampa, Florida, USA
| | - Rafael R Canevarolo
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center, Tampa, Florida, USA
| | - Liang Zhou
- Division of Hematology/Oncology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
- Department of Translational Medicine, Asklepios BioPharmaceutical, Inc., Durham, North Carolina, USA
| | - Steven Grant
- Division of Hematology/Oncology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
17
|
Shin HK, Chung HJ, Kim WH. Overactivation of Signal Transducer and Activator of Transcription 3 in Canine Hepatocellular Carcinoma and Its Prognostic Significance. Vet Comp Oncol 2024; 22:490-499. [PMID: 39135335 DOI: 10.1111/vco.12998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 11/13/2024]
Abstract
Phosphorylated signal transducer and activator of transcription 3 (pSTAT3), which is related to anti-apoptosis, cellular proliferation, invasion and migration of tumours, has prognostic significance in malignant tumours in humans as well as in canine melanoma. However, the significance of pSTAT3 in canine liver tissues has not yet been evaluated. This study's objective was to compare its expression in canine normal, non-neoplastic hepatic disease and hepatocellular carcinoma (HCC) tissues by immunohistochemical analysis. Furthermore, the association between pSTAT3 immunostaining and clinicopathological factors was investigated. Overall, 68 canine liver tissues, including 10 normal liver tissues, 30 non-neoplastic hepatic disease tissues and 28 HCC tissues were examined, revealing distinct differences in pSTAT3 immunostaining among the groups. (p < 0.001). Additionally, high pSTAT3 immunostaining was significantly associated with increased tumour size (5 > cm) (p = 0.041), and metastasis (p = 0.046). Furthermore, Kaplan-Meier survival curve analysis revealed a correlation between high pSTAT3 immunostaining and poor disease-free survival (p = 0.013) and overall survival (p = 0.011). These findings suggest that overactivation of STAT3 is associated with poor prognosis in canine HCC. Therefore, pSTAT3 is considered a potential prognostic marker and therapeutic target for canine HCC.
Collapse
Affiliation(s)
- Hun Kyeong Shin
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Hea Ji Chung
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Wan Hee Kim
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
18
|
Pickles RJ, Chen G, Randell SH. Enhanced susceptibility of pediatric airway epithelium to respiratory syncytial virus infection. J Clin Invest 2024; 134:e185689. [PMID: 39484717 PMCID: PMC11527439 DOI: 10.1172/jci185689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024] Open
Abstract
Immature innate and adaptive immunity and vulnerability of narrower airways to obstruction increase the susceptibility of infants to severe respiratory syncytial virus (RSV) disease. In this issue of the JCI, Zhao et al. illustrated greater intrinsic susceptibility of pediatric versus adult airway epithelial cells to RSV-induced cytopathology. Using precision cut lung slices (PCLS) and air-liquid interface (ALI) airway epithelial cell cultures, the authors showed that impaired STAT3 activation in RSV-infected pediatric multiciliated cells increased cell apoptosis and viral shedding, which enhanced the spread of infection. Bolstering STAT3 activation and treatment of neonatal mice with apoptosis inhibitors suppressed virus spread, suggesting that enhancing STAT3 activation may provide therapeutic benefit.
Collapse
Affiliation(s)
| | - Gang Chen
- Marsico Lung Institute
- Department of Pediatrics
| | - Scott H. Randell
- Marsico Lung Institute
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
19
|
Li Y, Liu J, Wu S, Xiao J, Zhang Z. Ferroptosis: opening up potential targets for gastric cancer treatment. Mol Cell Biochem 2024; 479:2863-2874. [PMID: 38082184 DOI: 10.1007/s11010-023-04886-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/24/2023] [Indexed: 10/15/2024]
Abstract
The fifth most frequent cancer in the world is gastric cancer. It ranks as the fourth most common reason for cancer-related deaths. Even though surgery is the only curative treatment for stomach cancer, adding adjuvant radiotherapy and chemotherapy is preferable than only surgery. The majority of patients, however, are discovered to be extremely tardy the first time and have a terrible prognosis. Therefore, it is necessary to create more viable therapy modalities. A growing number of studies in recent years have shown that ferroptosis and many cancer types are related. This gives our treatment a fresh viewpoint. We investigated the relationship between different signal pathways and non-coding RNA on ferroptosis in gastric cancer cells. Also discussed the targets cause ferroptosis resistance increased or reduced to the influence of the chemoresistance,proliferation and metastasis.
Collapse
Affiliation(s)
- Yuwei Li
- Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Cancer Research Institute of Hengyang Medical College, University of South China, 28 Changsheng Road, Hengyang, 421001, Hunan, China
| | - Jiangrong Liu
- Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Cancer Research Institute of Hengyang Medical College, University of South China, 28 Changsheng Road, Hengyang, 421001, Hunan, China
| | - Shihua Wu
- Department of Pathology, The Second Affiliated Hospital, Shaoyang University, Shaoyang, 422000, Hunan, China
| | - Juan Xiao
- Department of Head and Neck Surgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Zhiwei Zhang
- Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Cancer Research Institute of Hengyang Medical College, University of South China, 28 Changsheng Road, Hengyang, 421001, Hunan, China.
| |
Collapse
|
20
|
Liang Y, Lin H, Jiang Z, Zhao Q, Cui R, Li S. HOXB8 mediates resistance to cetuximab in colorectal cancer cells through activation of the STAT3 pathway. Discov Oncol 2024; 15:603. [PMID: 39472327 PMCID: PMC11522251 DOI: 10.1007/s12672-024-01440-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/08/2024] [Indexed: 11/02/2024] Open
Abstract
Homeobox B8 (HOXB8) belongs to the HOX family and was essential to the development of colorectal carcinoma. Among the prevalent monoclonal antibodies for treating RAS/BRAF wild-type metastatic colorectal cancer (mCRC) patients, cetuximab stands out, but resistance to cetuximab frequently arises in targeted treatments. Currently, the role of HOXB8 in cetuximab-resistant mCRC remains unclear. By comparing drug-sensitive cell lines (SW48) with drug-resistant cell lines (HCT116, CACO2), we discovered that HOXB8 was substantially expressed in cetuximab-resistant cell lines, and furthermore, in drug-resistant cell lines (HCT116, CACO2), HOXB8 knockdown increased the cytotoxicity of cetuximab via blocking the signal transducer and activator of transcription 3 (STAT3) signaling pathway. Conversely, the excessive expression of HOXB8 reduced the growth suppression in SW48 cells caused by cetuximab by triggering the STAT3 signaling pathway. Conclusively, we conclude that HOXB8 has played an essential role in cetuximab-resistant mCRC and that treating HOXB8 specifically may be a useful treatment approach for certain cetuximab-resistant mCRC patients.
Collapse
Affiliation(s)
- Yunan Liang
- Department of Colorectal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang Street, Ouhai District, Wenzhou, 325000, Zhejiang, China
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Chashan Road, Wenzhou, 325035, Zhejiang, China
| | - Han Lin
- Department of Colorectal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang Street, Ouhai District, Wenzhou, 325000, Zhejiang, China
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Chashan Road, Wenzhou, 325035, Zhejiang, China
| | - Zongsheng Jiang
- Department of Colorectal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang Street, Ouhai District, Wenzhou, 325000, Zhejiang, China
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Chashan Road, Wenzhou, 325035, Zhejiang, China
| | - Qi Zhao
- Department of Colorectal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang Street, Ouhai District, Wenzhou, 325000, Zhejiang, China
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Chashan Road, Wenzhou, 325035, Zhejiang, China
| | - Ri Cui
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Chashan Road, Wenzhou, 325035, Zhejiang, China.
| | - Shaotang Li
- Department of Colorectal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang Street, Ouhai District, Wenzhou, 325000, Zhejiang, China.
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Chashan Road, Wenzhou, 325035, Zhejiang, China.
| |
Collapse
|
21
|
Jiang RY, Zhu JY, Zhang HP, Yu Y, Dong ZX, Zhou HH, Wang X. STAT3: Key targets of growth-promoting receptor positive breast cancer. Cancer Cell Int 2024; 24:356. [PMID: 39468521 PMCID: PMC11520424 DOI: 10.1186/s12935-024-03541-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/17/2024] [Indexed: 10/30/2024] Open
Abstract
Breast cancer has become the malignant tumor with the first incidence and the second mortality among female cancers. Most female breast cancers belong to luminal-type breast cancer and HER2-positive breast cancer. These breast cancer cells all have different driving genes, which constantly promote the proliferation and metastasis of breast cancer cells. Signal transducer and activator of transcription 3 (STAT3) is an important breast cancer-related gene, which can promote the progress of breast cancer. It has been proved in clinical and basic research that over-expressed and constitutively activated STAT3 is involved in the progress, proliferation, metastasis and chemotherapy resistance of breast cancer. STAT3 is an important key target in luminal-type breast cancer and HER2-positive cancer, which has an important impact on the curative effect of related treatments. In breast cancer, the activation of STAT3 will change the spatial position of STAT3 protein and cause different phenotypic changes of breast cancer cells. In the current basic research and clinical research, small molecule inhibitors activated by targeting STAT3 can effectively treat breast cancer, and enhance the efficacy level of related treatment methods for luminal-type and HER2-positive breast cancers.
Collapse
Affiliation(s)
- Rui-Yuan Jiang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, NO.548, Binwen Road, Binjiang District, Hangzhou, 310000, Zhejiang, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Jia-Yu Zhu
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, NO.548, Binwen Road, Binjiang District, Hangzhou, 310000, Zhejiang, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Huan-Ping Zhang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
- Department of Graduate Student, Wenzhou Medical University, No.270, Xueyuan West Road, Lucheng District, Wenzhou, 325027, Zhejiang, China
| | - Yuan Yu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Zhi-Xin Dong
- Department of Oncology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, No.89-9, Dongge Road, Qingxiu District, Nanning, 530000, Guangxi, China
| | - Huan-Huan Zhou
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, NO.548, Binwen Road, Binjiang District, Hangzhou, 310000, Zhejiang, China.
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
| | - Xiaojia Wang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
| |
Collapse
|
22
|
Patel NM, Patel PH, Bhogal RH, Harrington KJ, Singanayagam A, Kumar S. Altered Microbiome Promotes Pro-Inflammatory Pathways in Oesophago-Gastric Tumourigenesis. Cancers (Basel) 2024; 16:3426. [PMID: 39410045 PMCID: PMC11476036 DOI: 10.3390/cancers16193426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/27/2024] [Accepted: 10/04/2024] [Indexed: 10/20/2024] Open
Abstract
INTRODUCTION The upper gastrointestinal microbiome is a dynamic entity that is involved in numerous processes including digestion, production of vitamins and protection against pathogens. Many external and intrinsic factors may cause changes in the proportions of bacteria within the microbial community, termed 'dysbiosis'. A number of these have been identified as risk factors for a range of diseases, including oesophago-gastric carcinoma. MATERIALS AND METHODS A narrative review was conducted to elucidate the current evidence on the role of the microbiome in promoting oesophago-gastric tumourigenesis. Significant causes of dysbiosis including age, medications and GORD were examined and key pro-inflammatory pathways implicated in tumourigenesis and their interaction with the microbiome were described. RESULTS AND DISCUSSION An association between microbial dysbiosis and development of oesophago-gastric cancer may be mediated via activation of pro-inflammatory pathways, the inflammasome and the innate immune system. Advances in sequencing technology allow microbial communities to be fingerprinted by sequencing the 16S rRNA gene, enabling a deeper understanding of the genera that may be implicated in driving tumourigenesis. CONCLUSIONS Developing a greater understanding of the influence of the microbiota on oesophago-gastric tumourigenesis may enable advances to be made in the early detection of malignancy and in the development of novel systemic therapies, leading to improved rates of survival.
Collapse
Affiliation(s)
- Nikhil Manish Patel
- Department of Upper GI Surgery, The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK; (N.M.P.)
- The Upper Gastrointestinal Surgical Oncology Research Group, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SW7 3RP, UK
| | - Pranav Harshad Patel
- Department of Upper GI Surgery, The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK; (N.M.P.)
- The Upper Gastrointestinal Surgical Oncology Research Group, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SW7 3RP, UK
| | - Ricky Harminder Bhogal
- Department of Upper GI Surgery, The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK; (N.M.P.)
- The Upper Gastrointestinal Surgical Oncology Research Group, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SW7 3RP, UK
| | - Kevin Joseph Harrington
- Targeted Therapy Group, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SW7 3RP, UK
| | - Aran Singanayagam
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, Imperial College London, London SW7 2AZ, UK
| | - Sacheen Kumar
- Department of Upper GI Surgery, The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK; (N.M.P.)
- The Upper Gastrointestinal Surgical Oncology Research Group, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SW7 3RP, UK
- Department of Upper Gastrointestinal Surgery, Digestive Disease and Surgery Institute, Cleveland Clinic London Hospital, London SW1X 7HY, UK
| |
Collapse
|
23
|
Morishima N, Ito Y. Calpain-5 regulates muscle-specific protein expression and nuclear positioning during myoblast differentiation. J Biol Chem 2024; 300:107842. [PMID: 39357823 PMCID: PMC11549977 DOI: 10.1016/j.jbc.2024.107842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 09/11/2024] [Indexed: 10/04/2024] Open
Abstract
Intracellular calcium dynamics is key to regulating various physiological events. Myotube formation by myoblast fusion is controlled by the release of Ca2+ from the endoplasmic reticulum (ER), and the calpain (CAPN) family is postulated to be an executioner of the process. However, the activation of a specific member of the family or its physiological substrates is unclear. In this study, we explore the involvement of a CAPN in myoblast differentiation. Time-course experiments showed that the reduction in potential substrates of calpains, c-Myc and STAT3 (signal transducer and activator of transcription 3) and generation of STAT3 fragments occurred multiple times at an early stage of myoblast differentiation. Inhibition of the ER Ca2+ release suppressed these phenomena, suggesting that the reduction was dependent on the cleavage by a CAPN. CAPN5 knockdown suppressed the reduction. In vitro reconstitution assay showed Ca2+- and CAPN5-dependent degradation of c-Myc and STAT3. These results suggest the activation of CAPN5 in differentiating myoblasts. Fusion of the Capn5 knockdown myoblast efficiently occurred; however, the upregulation of muscle-specific proteins (myosin and actinin) was suppressed. Myofibrils were poorly formed in the fused cells with a bulge where nuclei formed a cluster, suggesting that the myonuclear positioning was abnormal. STAT3 was hyperactivated in those fused cells, possibly inhibiting the upregulation of muscle-specific proteins necessary for the maturation of myotubes. These results suggest that the CAPN5 activity is essential in myoblast differentiation.
Collapse
Affiliation(s)
- Nobuhiro Morishima
- Nano Medical Engineering Laboratory, Cluster for Pioneering Research, RIKEN, Wako, Japan.
| | - Yoshihiro Ito
- Nano Medical Engineering Laboratory, Cluster for Pioneering Research, RIKEN, Wako, Japan; Emergent Bioengineering Materials Research Team, Center for Emergent Matter Science, RIKEN, Wako, Japan
| |
Collapse
|
24
|
Oleksak P, Rysanek D, Vancurova M, Vasicova P, Urbancokova A, Novak J, Maurencova D, Kashmel P, Houserova J, Mikyskova R, Novotny O, Reinis M, Juda P, Hons M, Kroupova J, Sedlak D, Sulimenko T, Draber P, Chlubnova M, Nepovimova E, Kuca K, Lisa M, Andrys R, Kobrlova T, Soukup O, Janousek J, Prchal L, Bartek J, Musilek K, Hodny Z. Discovery of a 6-Aminobenzo[ b]thiophene 1,1-Dioxide Derivative (K2071) with a Signal Transducer and Activator of Transcription 3 Inhibitory, Antimitotic, and Senotherapeutic Activities. ACS Pharmacol Transl Sci 2024; 7:2755-2783. [PMID: 39296273 PMCID: PMC11406704 DOI: 10.1021/acsptsci.4c00190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 09/21/2024]
Abstract
6-Nitrobenzo[b]thiophene 1,1-dioxide (Stattic) is a potent signal transducer and activator of the transcription 3 (STAT3) inhibitor developed originally for anticancer therapy. However, Stattic harbors several STAT3 inhibition-independent biological effects. To improve the properties of Stattic, we prepared a series of analogues derived from 6-aminobenzo[b]thiophene 1,1-dioxide, a compound directly obtained from the reduction of Stattic, that includes a methoxybenzylamino derivative (K2071) with optimized physicochemical characteristics, including the ability to cross the blood-brain barrier. Besides inhibiting the interleukin-6-stimulated activity of STAT3 mediated by tyrosine 705 phosphorylation, K2071 also showed cytotoxicity against a set of human glioblastoma-derived cell lines. In contrast to the core compound, a part of K2071 cytotoxicity reflected a STAT3 inhibition-independent block of mitotic progression in the prophase, affecting mitotic spindle formation, indicating that K2071 also acts as a mitotic poison. Compared to Stattic, K2071 was significantly less thiol-reactive. In addition, K2071 affected cell migration, suppressed cell proliferation in tumor spheroids, exerted cytotoxicity for glioblastoma temozolomide-induced senescent cells, and inhibited the secretion of the proinflammatory cytokine monocyte chemoattractant protein 1 (MCP-1) in senescent cells. Importantly, K2071 was well tolerated in mice, lacking manifestations of acute toxicity. The structure-activity relationship analysis of the K2071 molecule revealed the necessity of the para-substituted methoxyphenyl motif for antimitotic but not overall cytotoxic activity of its derivatives. Altogether, these results indicate that compound K2071 is a novel Stattic-derived STAT3 inhibitor and a mitotic poison with anticancer and senotherapeutic properties that is effective on glioblastoma cells and may be further developed as an agent for glioblastoma therapy.
Collapse
Affiliation(s)
- Patrik Oleksak
- Faculty of Science, Department of Chemistry, University of Hradec Kralove, Rokitanskeho 62, Hradec Kralove 500 03, Czech Republic
| | - David Rysanek
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Marketa Vancurova
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Pavla Vasicova
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Alexandra Urbancokova
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Josef Novak
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Dominika Maurencova
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Pavel Kashmel
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Jana Houserova
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Romana Mikyskova
- Laboratory of Immunological and Tumour Models, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Ondrej Novotny
- Laboratory of Immunological and Tumour Models, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Milan Reinis
- Laboratory of Immunological and Tumour Models, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Pavel Juda
- BIOCEV, First Faculty of Medicine, Charles University, Prumyslova 595, Vestec 252 50, Czech Republic
| | - Miroslav Hons
- BIOCEV, First Faculty of Medicine, Charles University, Prumyslova 595, Vestec 252 50, Czech Republic
| | - Jirina Kroupova
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - David Sedlak
- CZ-OPENSCREEN, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Tetyana Sulimenko
- Laboratory of Biology of Cytoskeleton, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Pavel Draber
- Laboratory of Biology of Cytoskeleton, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Marketa Chlubnova
- Faculty of Science, Department of Chemistry, University of Hradec Kralove, Rokitanskeho 62, Hradec Kralove 500 03, Czech Republic
| | - Eugenie Nepovimova
- Faculty of Science, Department of Chemistry, University of Hradec Kralove, Rokitanskeho 62, Hradec Kralove 500 03, Czech Republic
| | - Kamil Kuca
- Faculty of Science, Department of Chemistry, University of Hradec Kralove, Rokitanskeho 62, Hradec Kralove 500 03, Czech Republic
| | - Miroslav Lisa
- Faculty of Science, Department of Chemistry, University of Hradec Kralove, Rokitanskeho 62, Hradec Kralove 500 03, Czech Republic
| | - Rudolf Andrys
- Faculty of Science, Department of Chemistry, University of Hradec Kralove, Rokitanskeho 62, Hradec Kralove 500 03, Czech Republic
| | - Tereza Kobrlova
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, Hradec Kralove 500 05, Czech Republic
| | - Ondrej Soukup
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, Hradec Kralove 500 05, Czech Republic
| | - Jiri Janousek
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, Hradec Kralove 500 05, Czech Republic
| | - Lukas Prchal
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, Hradec Kralove 500 05, Czech Republic
| | - Jiri Bartek
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
- Danish Cancer Institute, Strandboulevarden 49, DK-2100 Copenhagen, Denmark
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Kamil Musilek
- Faculty of Science, Department of Chemistry, University of Hradec Kralove, Rokitanskeho 62, Hradec Kralove 500 03, Czech Republic
| | - Zdenek Hodny
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| |
Collapse
|
25
|
Ministrini S, Niederberger R, Akhmedov A, Beer G, Puspitasari YM, Franzini M, Vergaro G, Cannie DE, Elliott P, Kahr PC, Hock C, Kobza R, Toggweiler S, Lüscher TF, Camici GG, Stämpfli SF. Antithrombotic properties of Tafamidis: An additional protective effect for transthyretin amyloid cardiomyopathy patients. Vascul Pharmacol 2024; 156:107411. [PMID: 39029855 DOI: 10.1016/j.vph.2024.107411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
INTRODUCTION Tafamidis is a molecular chaperone that stabilizes the transthyretin (TTR) homo-tetramer, preventing its dissociation and consequent deposition as amyloid fibrils in organ tissues. Tafamidis reduces mortality and the incidence of hospitalization for cardiovascular causes in patients with TTR amyloid (ATTR) cardiomyopathy. As ATTR cardiomyopathy is associated with a high risk of thromboembolic complications, we hypothesized that tafamidis may have a direct ancillary anti-thrombotic effect. METHODS Primary human aortic endothelial cells (HAECs) were treated with tafamidis at clinically relevant concentrations and with plasma of patients, before and after the initiation of treatment with tafamidis. The expression of TF was induced by incubation with Tumor Necrosis Factor α (TNFα). Intracellular expression of tissue factor (TF) was measured by western blot. TF activity was measured by a colorimetric assay. Gene expressions of TF were measured by quantitative polymerase chain reaction. RESULTS Treatment with tafamidis dose-dependently reduced the expression and activity of TNFα-induced TF. This effect was confirmed in cells treated with patients' plasma. Signal Transducer and Activator of Transcription 3 (STAT3) phosphorylation was significantly inhibited by tafamidis. Incubation of HAECs with tafamidis and the STAT3 activator colivelin partially rescued the expression of TF. CONCLUSIONS Treatment with tafamidis lowers the thrombotic potential in human primary endothelial cells by reducing TF expression and activity. This previously unknown off-target effect may provide a novel mechanistic explanation for the lower number of thromboembolic complications in ATTR cardiomyopathy patients treated with tafamidis.
Collapse
Affiliation(s)
- Stefano Ministrini
- Center for Molecular Cardiology, Schlieren Campus, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
| | - Rebecca Niederberger
- Center for Molecular Cardiology, Schlieren Campus, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
| | - Alexander Akhmedov
- Center for Molecular Cardiology, Schlieren Campus, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
| | - Georgia Beer
- Center for Molecular Cardiology, Schlieren Campus, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
| | - Yustina M Puspitasari
- Center for Molecular Cardiology, Schlieren Campus, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
| | - Maria Franzini
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Via Savi 10, 56126 Pisa, Italy
| | - Giuseppe Vergaro
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, Via Giuseppe Moruzzi 1, 56126 Pisa, Italy
| | - Douglas E Cannie
- Institute of Cardiovascular Science, University College London, 62 Huntley St, Wc1E 6Dd London, UK; Barts Heart Center, St. Bartholomew's Hospital, West Smithfield, Ec1A 7Be London, UK
| | - Perry Elliott
- Institute of Cardiovascular Science, University College London, 62 Huntley St, Wc1E 6Dd London, UK; Barts Heart Center, St. Bartholomew's Hospital, West Smithfield, Ec1A 7Be London, UK
| | - Peter C Kahr
- Center for Molecular Cardiology, Schlieren Campus, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland,; Neurimmune, Wagistrasse 18, 8952 Schlieren, Switzerland
| | - Christoph Hock
- Neurimmune, Wagistrasse 18, 8952 Schlieren, Switzerland; Institute for Regenerative Medicine (IREM), Wagistrasse 12, 8952 Schlieren, Switzerland
| | - Richard Kobza
- Cardiology Division, Heart Center, Luzerner Kantonsspital, Spitalstrasse 16, 6000 Lucerne, Switzerland
| | - Stefan Toggweiler
- Cardiology Division, Heart Center, Luzerner Kantonsspital, Spitalstrasse 16, 6000 Lucerne, Switzerland
| | - Thomas F Lüscher
- Center for Molecular Cardiology, Schlieren Campus, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland,; Royal Brompton and Harefield Hospitals and Imperial College, London, UK
| | - Giovanni G Camici
- Center for Molecular Cardiology, Schlieren Campus, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland,; Department of Research and Education, University Hospital Zurich, Rämistrasse 100, 8092 Zurich, Switzerland
| | - Simon F Stämpfli
- Center for Molecular Cardiology, Schlieren Campus, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland,; Cardiology Division, Heart Center, Luzerner Kantonsspital, Spitalstrasse 16, 6000 Lucerne, Switzerland.
| |
Collapse
|
26
|
Li X, Chen X, Yu H, Huang R, Wu P, Gong Y, Chen X, Liu C. Knockdown and Overexpression Experiments to Investigate the Inhibitory Mechanism of Fuzheng Xiaozheng Prescription, an Effective Chinese Herbal Formula for the Clinical Treatment of Hepatocellular Carcinoma. Pharmaceuticals (Basel) 2024; 17:1159. [PMID: 39338323 PMCID: PMC11434836 DOI: 10.3390/ph17091159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
Fuzheng Xiaozheng prescription (FZXZP) is an effective formula for the treatment of different kinds of chronic liver diseases. However, its potential molecular mechanisms in treating hepatocellular carcinoma (HCC) have not been investigated thoroughly. The aim of this study is to elucidate the targets and intrinsic mechanisms of FZXZP and their active components for the treatment of HCC. The efficacy of FZXZP against HCC was clarified through a rat HCC model and HCC cell culture. Network pharmacology and molecular docking were utilized to predict the mechanism of action and effector components of FZXZP. The key mechanism and targets were verified by the construction of overexpression and knockout cell models. The results showed that FZXZP greatly delayed the development of HCC in vivo experiments, as evidenced by biochemical evaluations, H&E analyses and growth inhibition of HCC. FZXZP dramatically inhibited cell viability and proliferative capacity and induced the apoptosis of hepatoma cells in vitro. Moreover, network pharmacology analyses demonstrated that the EGFR family and apoptosis-related targets were found to be the most significant in bioinformatics analysis. Furthermore, the EGFR/STAT3 signal axis might be the most likely target of FZXZP in anti-HCC due to the fact that it could be down-regulated by FZXZP with an upward trend of Bax, Caspase-3, Caspase-8, Caspase-9 and an inverse trend of Bcl2. Importantly, the above targeted signal axis was finally validated by our knockdown and overexpression analyses. Meanwhile, flow cytometry and TUNEL staining also revealed that FZXZP significantly induced apoptosis in the EGFR-overexpressing HCC cell line. The molecular docking results revealed that the key effector components of FZXZP that exerted the above regulatory roles were wogonin and glycitein. All of these results suggest that FZXZP could significantly delay HCC development by inhibiting proliferation and promoting apoptosis of HCC cells, and the EGFR/STAT3 signal axis might be a critical signal axis of FZXZP in suppressing HCC progression.
Collapse
Affiliation(s)
- Xia Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiaofeng Chen
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Han Yu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Renwei Huang
- Sichuan Provincial Key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu 611130, China
| | - Peijie Wu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yanju Gong
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiping Chen
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chao Liu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
27
|
Zhang QY, Ding W, Mo JS, Ou-Yang SM, Lin ZY, Peng KR, Liu GP, Lu JJ, Yue PB, Lei JP, Wang YD, Zhang XL. Novel STAT3 oligonucleotide compounds suppress tumor growth and overcome the acquired resistance to sorafenib in hepatocellular carcinoma. Acta Pharmacol Sin 2024; 45:1701-1714. [PMID: 38609562 PMCID: PMC11272795 DOI: 10.1038/s41401-024-01261-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/03/2024] [Indexed: 04/14/2024]
Abstract
Signal transducer and activator of transcription 3 (STAT3) plays an important role in the occurrence and progression of tumors, leading to resistance and poor prognosis. Activation of STAT3 signaling is frequently detected in hepatocellular carcinoma (HCC), but potent and less toxic STAT3 inhibitors have not been discovered. Here, based on antisense technology, we designed a series of stabilized modified antisense oligonucleotides targeting STAT3 mRNA (STAT3 ASOs). Treatment with STAT3 ASOs decreased the STAT3 mRNA and protein levels in HCC cells. STAT3 ASOs significantly inhibited the proliferation, survival, migration, and invasion of cancer cells by specifically perturbing STAT3 signaling. Treatment with STAT3 ASOs decreased the tumor burden in an HCC xenograft model. Moreover, aberrant STAT3 signaling activation is one of multiple signaling pathways involved in sorafenib resistance in HCC. STAT3 ASOs effectively sensitized resistant HCC cell lines to sorafenib in vitro and improved the inhibitory potency of sorafenib in a resistant HCC xenograft model. The developed STAT3 ASOs enrich the tools capable of targeting STAT3 and modulating STAT3 activity, serve as a promising strategy for treating HCC and other STAT3-addicted tumors, and alleviate the acquired resistance to sorafenib in HCC patients. A series of novel STAT3 antisense oligonucleotide were designed and showed potent anti-cancer efficacy in hepatocellular carcinoma in vitro and in vivo by targeting STAT3 signaling. Moreover, the selected STAT3 ASOs enhance sorafenib sensitivity in resistant cell model and xenograft model.
Collapse
Affiliation(s)
- Qi-Yi Zhang
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Wen Ding
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jian-Shan Mo
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Shu-Min Ou-Yang
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zi-You Lin
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ke-Ren Peng
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Guo-Pin Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Pei-Bin Yue
- Department of Medicine, Division of Hematology-Oncology, and Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Jin-Ping Lei
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yan-Dong Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China.
| | - Xiao-Lei Zhang
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
28
|
Tang C, Hartley GP, Couillault C, Yuan Y, Lin H, Nicholas C, Srinivasamani A, Dai J, Dumbrava EEI, Fu S, Karp DD, Naing A, Piha-Paul SA, Rodon Ahnert J, Pant S, Subbiah V, Yap TA, Tsimberidou AM, Guerrero P, Dhebat S, Proia T, Curran MA, Hong DS. Preclinical study and parallel phase II trial evaluating antisense STAT3 oligonucleotide and checkpoint blockade for advanced pancreatic, non-small cell lung cancer and mismatch repair-deficient colorectal cancer. BMJ ONCOLOGY 2024; 3:e000133. [PMID: 39886125 PMCID: PMC11347683 DOI: 10.1136/bmjonc-2023-000133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 05/23/2024] [Indexed: 02/01/2025]
Abstract
Objective To evaluate signal transducer and activator of transcription 3 (STAT3) inhibition we conducted a co-clinical trial testing danvatirsen, a STAT3 antisense oligonucleotide (ASO) and checkpoint inhibition in conjunction with preclinical experiments. Methods and analysis Orthotopically implanted pancreatic cancer (pancreatic adenocarcinoma (PDAC)) was treated with STAT3 ASO with immune checkpoint inhibition. Tumour infiltrating immune cell populations were characterised via flow cytometry. In vitro experiments evaluated STAT3 inhibition in pancreatic stellate cells (PSCs) and myeloid-derived suppressor cells (MDSCs).A phase II trial employing a Simon II stage design tested the clinical efficacy of danvatirsen and durvalumab in non-small cell lung cancer (NSCLC), PDAC and mismatch repair-deficient colorectal cancer (MRD CRC). The primary objective was 4-month disease control rate (DCR). Results In vivo studies identified improvement in survival of PDAC implanted mice treated with STAT3 ASO and checkpoint inhibition. Within tumour-infiltrating lymphocytes there was expansion of CD4 and PD-1+ CD8 populations with STAT3 ASO.Thirty-seven patients (29 PDAC, 7 NSCLC and 1 MRD CRC) from a single institution started treatment on trial between April 2017 and March 2020. No objective responses were observed. Four of six (66.7%, 95% CI 22.3% to 95.7%) NSCLC and 4 of 23 (17.4%, 95% CI 5% to 38.8%) PDAC patients exhibited 4-month DCR. Follow-up in vitro studies revealed an anti-inflammatory and pro-tumour effect of STAT3 ASO mediated by PSCs and MDSCs distinct from ablation of STAT3. Conclusion Although durvalumab and danvatirsen met the primary endpoint, no objective responses were observed. A rationale for the lack of objective responses is danvatirsen-induced myeloid immune suppression. Trial registration number NCT02983578.
Collapse
Affiliation(s)
- Chad Tang
- GU Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Genevieve P Hartley
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Coline Couillault
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ying Yuan
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Heather Lin
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Courtney Nicholas
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Anupallavi Srinivasamani
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- University of Texas Health Science Center at Houston Graduate School of Biomedical Science, Houston, Texas, USA
| | - James Dai
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ecaterina E Ileana Dumbrava
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Siqing Fu
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Daniel D Karp
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Aung Naing
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sarina A Piha-Paul
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jordi Rodon Ahnert
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Shubham Pant
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Vivek Subbiah
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Timonthy A Yap
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Apostolia M Tsimberidou
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Paola Guerrero
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sarah Dhebat
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Theresa Proia
- Oncology R&D, Research & Early Development, AstraZeneca PLC, Waltham, Massachusetts, USA
| | - Michael A Curran
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - David S Hong
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
29
|
Yi M, Li T, Niu M, Zhang H, Wu Y, Wu K, Dai Z. Targeting cytokine and chemokine signaling pathways for cancer therapy. Signal Transduct Target Ther 2024; 9:176. [PMID: 39034318 PMCID: PMC11275440 DOI: 10.1038/s41392-024-01868-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/30/2024] [Accepted: 05/11/2024] [Indexed: 07/23/2024] Open
Abstract
Cytokines are critical in regulating immune responses and cellular behavior, playing dual roles in both normal physiology and the pathology of diseases such as cancer. These molecules, including interleukins, interferons, tumor necrosis factors, chemokines, and growth factors like TGF-β, VEGF, and EGF, can promote or inhibit tumor growth, influence the tumor microenvironment, and impact the efficacy of cancer treatments. Recent advances in targeting these pathways have shown promising therapeutic potential, offering new strategies to modulate the immune system, inhibit tumor progression, and overcome resistance to conventional therapies. In this review, we summarized the current understanding and therapeutic implications of targeting cytokine and chemokine signaling pathways in cancer. By exploring the roles of these molecules in tumor biology and the immune response, we highlighted the development of novel therapeutic agents aimed at modulating these pathways to combat cancer. The review elaborated on the dual nature of cytokines as both promoters and suppressors of tumorigenesis, depending on the context, and discussed the challenges and opportunities this presents for therapeutic intervention. We also examined the latest advancements in targeted therapies, including monoclonal antibodies, bispecific antibodies, receptor inhibitors, fusion proteins, engineered cytokine variants, and their impact on tumor growth, metastasis, and the tumor microenvironment. Additionally, we evaluated the potential of combining these targeted therapies with other treatment modalities to overcome resistance and improve patient outcomes. Besides, we also focused on the ongoing research and clinical trials that are pivotal in advancing our understanding and application of cytokine- and chemokine-targeted therapies for cancer patients.
Collapse
Affiliation(s)
- Ming Yi
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Tianye Li
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310000, People's Republic of China
| | - Mengke Niu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Haoxiang Zhang
- Department of Hepatopancreatobiliary Surgery, Fujian Provincial Hospital, Fuzhou, 350001, People's Republic of China
| | - Yuze Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| | - Zhijun Dai
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, People's Republic of China.
| |
Collapse
|
30
|
Xie W, Zhang Y, Zhang Z, Li Q, Tao L, Zhang R. ISG15 promotes tumor progression via IL6/JAK2/STAT3 signaling pathway in ccRCC. Clin Exp Med 2024; 24:140. [PMID: 38951255 PMCID: PMC11217101 DOI: 10.1007/s10238-024-01414-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/20/2024] [Indexed: 07/03/2024]
Abstract
Although renal cell carcinoma (RCC) is a prevalent type of cancer, the most common pathological subtype, clear cell renal cell carcinoma (ccRCC), still has poorly understood molecular mechanisms of progression. Moreover, interferon-stimulated gene 15 (ISG15) is associated with various types of cancer; however, its biological role in ccRCC remains unclear.This study aimed to explore the role of ISG15 in ccRCC progression.ISG15 expression was upregulated in ccRCC and associated with poor prognosis. RNA sequence analysis and subsequent experiments indicated that ISG15 modulated IL6/JAK2/STAT3 signaling to promote ccRCC proliferation, migration, and invasion. Additionally, our animal experiments confirmed that sustained ISG15 knockdown reduced tumor growth rate in nude mice and promoted cell apoptosis. ISG15 modulates the IL6/JAK2/STAT3 pathway, making it a potential therapeutic target and prognostic biomarker for ccRCC.
Collapse
Affiliation(s)
- Wei Xie
- Department of Urology, The Second Affiliated Hospital of Chongqing Medical University, Linjiang Road. 74, Jiangbei, Chongqing, China
| | - Yuanfeng Zhang
- Department of Urology, The Second Affiliated Hospital of Chongqing Medical University, Linjiang Road. 74, Jiangbei, Chongqing, China
| | - Zhechuan Zhang
- Department of Urology, The Second Affiliated Hospital of Chongqing Medical University, Linjiang Road. 74, Jiangbei, Chongqing, China
| | - Qinke Li
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Chongqing Medical University, Linjiang Road. 74, Yuzhong, Chongqing, China
| | - Lesha Tao
- Department of Urology, Chongqing People's Hospital, Xingguang Road.118, Chongqing, China
| | - Ronggui Zhang
- Department of Urology, The Second Affiliated Hospital of Chongqing Medical University, Linjiang Road. 74, Jiangbei, Chongqing, China.
- Department of Urology, Chongqing People's Hospital, Xingguang Road.118, Chongqing, China.
| |
Collapse
|
31
|
Mohamed AH, Ahmed AT, Al Abdulmonem W, Bokov DO, Shafie A, Al-Hetty HRAK, Hsu CY, Alissa M, Nazir S, Jamali MC, Mudhafar M. Interleukin-6 serves as a critical factor in various cancer progression and therapy. Med Oncol 2024; 41:182. [PMID: 38900329 DOI: 10.1007/s12032-024-02422-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/06/2024] [Indexed: 06/21/2024]
Abstract
Interleukin-6 (IL-6), a pro-inflammatory cytokine, plays a crucial role in host immune defense and acute stress responses. Moreover, it modulates various cellular processes, including proliferation, apoptosis, angiogenesis, and differentiation. These effects are facilitated by various signaling pathways, particularly the signal transducer and activator of transcription 3 (STAT3) and Janus kinase 2 (JAK2). However, excessive IL-6 production and dysregulated signaling are associated with various cancers, promoting tumorigenesis by influencing all cancer hallmarks, such as apoptosis, survival, proliferation, angiogenesis, invasiveness, metastasis, and notably, metabolism. Emerging evidence indicates that selective inhibition of the IL-6 signaling pathway yields therapeutic benefits across diverse malignancies, such as multiple myeloma, prostate, colorectal, renal, ovarian, and lung cancers. Targeting key components of IL-6 signaling, such as IL-6Rs, gp130, STAT3, and JAK via monoclonal antibodies (mAbs) or small molecules, is a heavily researched approach in preclinical cancer studies. The purpose of this study is to offer an overview of the role of IL-6 and its signaling pathway in various cancer types. Furthermore, we discussed current preclinical and clinical studies focusing on targeting IL-6 signaling as a therapeutic strategy for various types of cancer.
Collapse
Affiliation(s)
- Asma'a H Mohamed
- Biomedical Engineering Department, College of Engineering and Technologies, Al-Mustaqbal University, Babil, Hilla, 51001, Iraq
| | - Abdulrahman T Ahmed
- Department of Nursing, Al-Maarif University College, Ramadi, AL-Anbar Governorate, Iraq.
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Kingdom of Saudi Arabia
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy named after A.P. Nelyubin, Sechenov First Moscow State Medical University, 8 Trubetskaya St., bldg. 2, Moscow, Russian Federation, 119991
- Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, 2/14 Ustyinsky pr., Moscow, Russian Federation, 109240
| | - Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
| | | | - Chou-Yi Hsu
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, AZ, 85004, USA
| | - Mohammed Alissa
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Shahid Nazir
- School of Science and Technology, University of New England, Armidale, NSW, Australia
| | - Mohammad Chand Jamali
- Faculty of Medical and Health Sciences, Liwa College, Al Ain, Abu Dhabi, United Arab Emirates
| | - Mustafa Mudhafar
- Department of Medical Physics, College of Applied Medical Sciences, University of Kerbala, Karbala, 56001, Iraq
- Department of Anesthesia Techniques and Intensive Care, Al-Taff University College, Kerbala, 56001, Iraq
| |
Collapse
|
32
|
Zhang L, Liu P, Jiang Y, Fan D, He X, Zhang J, Luo B, Sui J, Luo Y, Fu X, Yang T. Exploration of novel isoxazole-fused quinone derivatives as anti-colorectal cancer agents through inhibiting STAT3 and elevating ROS level. Eur J Med Chem 2024; 272:116448. [PMID: 38704936 DOI: 10.1016/j.ejmech.2024.116448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 05/07/2024]
Abstract
Colorectal cancer (CRC) is trending to be a major health problem throughout the world. Therapeutics with dual modes of action have shown latent capacity to create ideal anti-tumor activity. Signal transducer and activator of transcription 3 (STAT3) has been proved to be a potential target for the development of anti-colon cancer drug. In addition, modulation of tumor redox homeostasis through deploying exogenous reactive oxygen species (ROS)-enhancing agents has been widely applied as anti-tumor strategy. Thus, simultaneously targeting STAT3 and modulation ROS balance would offer a fresh avenue to combat CRC. In this work, we designed and synthesized a novel series of isoxazole-fused quinones, which were evaluated for their preliminary anti-proliferative activity against HCT116 cells. Among these quinones, compound 41 exerted excellent in vitro anti-tumor effect against HCT116 cell line with an IC50 value of 10.18 ± 0.4 nM. Compound 41 was proved to bind to STAT3 by using Bio-Layer Interferometry (BLI) assay, and can significantly inhibit phosphorylation of STAT3. It also elevated ROS of HCT116 cells by acting as a substrate of NQO1. Mitochondrial dysfunction, apoptosis, and cell cycle arrest, which was caused by compound 41, might be partially due to the inhibition of STAT3 phosphorylation and ROS production induced by 41. Moreover, it exhibited ideal anti-tumor activity in human colorectal cancer xenograft model and good safety profiles in vivo. Overall, this study provided a novel quinone derivative 41 with excellent anti-tumor activity by inhibiting STAT3 and elevating ROS level, and gave insights into designing novel anti-tumor therapeutics by simultaneously modulation of STAT3 and ROS.
Collapse
Affiliation(s)
- Lidan Zhang
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu, 610041, China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China; Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Pingxian Liu
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu, 610041, China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China; Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yunhan Jiang
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu, 610041, China; Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China; Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Dongmei Fan
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu, 610041, China; Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinlian He
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu, 610041, China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China; Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiangnan Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Baozhu Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Sui
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Youfu Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Xinyuan Fu
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu, 610041, China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China; Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Tao Yang
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu, 610041, China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China; Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
33
|
Miao J, Chen S, Cao H, Ding Z, Li Y, Wang W, Nundlall K, Deng Y, Li J. Bruceantinol targeting STAT3 exerts promising antitumor effects in in vitro and in vivo osteosarcoma models. Mol Carcinog 2024; 63:1133-1145. [PMID: 38426797 DOI: 10.1002/mc.23714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 01/29/2024] [Accepted: 02/20/2024] [Indexed: 03/02/2024]
Abstract
Bruceantinol (BOL) is a quassinoid compound found in the fruits of Brucea javanica. Previous research has highlighted the manifold physiological and pharmacological activities of BOL. Notably, BOL has demonstrated antitumor cytotoxic and antibacterial effects, lending support to its potential as a promising therapeutic agent for various diseases. Despite being recognized as a potent antitumor inhibitor in multiple cancer types, its efficacy against osteosarcoma (OS) has not been elucidated. In this work, we investigated the antitumor properties of BOL against OS. Our findings showed that BOL significantly decreased the proliferation and migration of OS cells, induced apoptosis, and caused cell death without affecting the cell cycle. We further confirmed that BOL potently suppressed tumor growth in vivo. Mechanismly, we discovered that BOL directly bound to STAT3, and prevent the activation of STAT3 signaling at low nanomolar concentrations. Overall, our study demonstrated that BOL potently inhibited the growth and metastasis of OS, and efficiently suppressed STAT3 signaling pathway. These results suggest that BOL could be a promising therapeutic candidate for OS.
Collapse
Affiliation(s)
- Jinglei Miao
- Department of Spine Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China
| | - Shijie Chen
- Department of Spine Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China
| | - Hongqing Cao
- Department of Spine Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China
| | - Zhiyu Ding
- Department of Spine Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China
| | - Yuezhan Li
- Department of Spine Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China
| | - Weiguo Wang
- Department of Spine Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China
| | - Keshav Nundlall
- Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
| | - Youwen Deng
- Department of Spine Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China
| | - Jinsong Li
- Department of Spine Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China
| |
Collapse
|
34
|
de Oliveira JR, Pereira ABM, de Souza HI, Dos Santos WM, de Assunção TSF, de Vito FB, de Souza HM, da Silva PR, da Silva MV, Junior VR, Rogerio AP. Anti-inflammatory actions of aspirin-triggered resolvin D1 (AT-RvD1) in bronchial epithelial cells stimulated by cigarette smoke extract. Prostaglandins Other Lipid Mediat 2024; 172:106833. [PMID: 38460760 DOI: 10.1016/j.prostaglandins.2024.106833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 03/01/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Abstract
Smoking causes several diseases such as chronic obstructive pulmonary disease (COPD). Aspirin-triggered-resolvin D1 (AT-RvD1) is a lipid mediator produced during the resolution of inflammation and demonstrates anti-inflammatory and pro-resolution effects in several inflammatory experimental models including in the airways. Here we evaluated the role of AT-RvD1 (100 nM) in bronchial epithelial cells (BEAS-2B) stimulated by cigarette smoke extract (CSE; 1%; 1 cigarette) for 24 h. CSE induced the productions of IL-1β, TNF-α, IL-10, IL-4 and IFN-γ as well as the activations of NF-κB and STAT3 and the expression of ALX/FPR2 receptor. AT-RvD1 reduced the IL-1β and TNF-α production and increased the production of IFN-γ. These effects were reversed BOC2, an antagonist of ALX/FPR2 receptor for AT-RvD1. The production of IL-4 and IL-10 were not altered by AT-RvD1. In addition, AT-RvD1 reduced the phosphorylation of NF-κB and STAT3 when compared to CSE-stimulated BEAS-2B cells. No alteration of ALX/FPR2 expression was observed by AT-RvD1 when compared to CSE group. In the human monocytic leukemia cell line, the relative number of copies of IL-1β and IL-4 was significantly higher in CSE + AT-RvD1 group compared CSE group, however, the expression of M1 cytokine was more pronounced than M2 profile. AT-RvD1 could be an important target for the reduction of inflammation in the airways associated with smoking.
Collapse
Affiliation(s)
- Jhony Robson de Oliveira
- Institute of Health Sciences, Department of Clinical Medicine, Laboratory of Experimental Immunopharmacology, Federal University of Triângulo Mineiro, Uberaba, MG 38025-350, Brazil
| | - Aline Beatriz Mahler Pereira
- Institute of Health Sciences, Department of Clinical Medicine, Laboratory of Experimental Immunopharmacology, Federal University of Triângulo Mineiro, Uberaba, MG 38025-350, Brazil
| | - Henrique Ismarsi de Souza
- Institute of Health Sciences, Department of Clinical Medicine, Laboratory of Experimental Immunopharmacology, Federal University of Triângulo Mineiro, Uberaba, MG 38025-350, Brazil
| | - Wanessa Maria Dos Santos
- Institute of Health Sciences, Department of Clinical Medicine, Laboratory of Experimental Immunopharmacology, Federal University of Triângulo Mineiro, Uberaba, MG 38025-350, Brazil
| | - Thaís Sorares Farnesi de Assunção
- Laboratory of Immunology, Institute of Biological and Natural Sciences, Department of Microbiology, Immunology and Parasitology, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Fernanda Bernadelli de Vito
- Institute of Biological and Natural Sciences, Department of Genetics, Federal University of Triangulo Mineiro, Uberaba, MG, Brazil
| | - Helio Moraes de Souza
- Laboratory of Immunology, Institute of Biological and Natural Sciences, Department of Microbiology, Immunology and Parasitology, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Paulo Roberto da Silva
- Institute of Health Sciences, Department of Clinical Medicine, Laboratory of Experimental Immunopharmacology, Federal University of Triângulo Mineiro, Uberaba, MG 38025-350, Brazil
| | - Marcos Vinicius da Silva
- Laboratory of Parasitology, Institute of Biological and Natural Sciences, Department of Microbiology, Immunology and Parasitology, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Virmondes Rodrigues Junior
- Laboratory of Immunology, Institute of Biological and Natural Sciences, Department of Microbiology, Immunology and Parasitology, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Alexandre Paula Rogerio
- Institute of Health Sciences, Department of Clinical Medicine, Laboratory of Experimental Immunopharmacology, Federal University of Triângulo Mineiro, Uberaba, MG 38025-350, Brazil.
| |
Collapse
|
35
|
Kuo MY, Dai WC, Chang JL, Chang JS, Lee TM, Chang CC. Fucoxanthin induces human melanoma cytotoxicity by thwarting the JAK2/STAT3/BCL-xL signaling axis. ENVIRONMENTAL TOXICOLOGY 2024; 39:3356-3366. [PMID: 38444163 DOI: 10.1002/tox.24193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/23/2024] [Accepted: 02/10/2024] [Indexed: 03/07/2024]
Abstract
Melanoma is the most lethal skin malignancy. Fucoxanthin is a marine carotenoid with significant anticancer activities. Intriguingly, Fucoxanthin's impact on human melanoma remains elusive. Signal Transducer and Activator of Transcription 3 (STAT3) represents a promising target in cancer therapy due to its persistent activation in various cancers, including melanoma. Herein, we revealed that Fucoxanthin is cytotoxic to human melanoma cell lines A2758 and A375 while showing limited cytotoxicity to normal human melanocytes. Apoptosis is a primary reason for Fucoxanthin's melanoma cytotoxicity, as the pan-caspase inhibitor z-VAD-fmk drastically abrogated Fucoxanthin-elicited clonogenicity blockage. Besides, Fucoxanthin downregulated tyrosine 705-phosphorylated STAT3 (p-STAT3 (Y705)), either inherently present in melanoma cells or inducible by interleukin 6 (IL-6) stimulation. Notably, ectopic expression of STAT3-C, a dominant-active STAT3 mutant, abolished Fucoxanthin-elicited melanoma cell apoptosis and clonogenicity inhibition, supporting the pivotal role of STAT3 blockage in Fucoxanthin's melanoma cytotoxicity. Moreover, Fucoxanthin lowered BCL-xL levels by blocking STAT3 activation, while ectopic BCL-xL expression rescued melanoma cells from Fucoxanthin-induced killing. Lastly, Fucoxanthin was found to diminish the levels of JAK2 with dual phosphorylation at tyrosine residues 1007 and 1008 in melanoma cells, suggesting that Fucoxanthin impairs STAT3 signaling by blocking JAK2 activation. Collectively, we present the first evidence that Fucoxanthin is cytotoxic selectively against human melanoma cells while sparing normal melanocytes. Mechanistically, Fucoxanthin targets the JAK2/STAT3/BCL-xL antiapoptotic axis to provoke melanoma cell death. This discovery implicates the potential application of Fucoxanthin as a chemopreventive or therapeutic strategy for melanoma management.
Collapse
Affiliation(s)
- Min-Yung Kuo
- Pediatric Surgery Division, Department of Surgery, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan
| | - Wen-Chyi Dai
- Doctoral Program in Biotechnology Industrial Innovation and Management, National Chung Hsing University, Taichung, Taiwan
| | - Jie-Li Chang
- Taichung Municipal Taichung First Senior High School, Taichung, Taiwan
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, Taiwan
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Tse-Min Lee
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Chia-Che Chang
- Doctoral Program in Biotechnology Industrial Innovation and Management, National Chung Hsing University, Taichung, Taiwan
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, Master Program in Precision Health, Doctoral Program in Translational Medicine, Rong Hsing Research Center for Translational Medicine, The iEGG and Animal Biotechnology Research Center, National Chung Hsing University, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| |
Collapse
|
36
|
Ebrahimi B, Viswanadhapalli S, Pratap UP, Rahul G, Yang X, Pitta Venkata P, Drel V, Santhamma B, Konda S, Li X, Sanchez ALR, Yan H, Sareddy GR, Xu Z, Singh BB, Valente PT, Chen Y, Lai Z, Rao M, Kost ER, Curiel T, Tekmal RR, Nair HB, Vadlamudi RK. Pharmacological inhibition of the LIF/LIFR autocrine loop reveals vulnerability of ovarian cancer cells to ferroptosis. NPJ Precis Oncol 2024; 8:118. [PMID: 38789520 PMCID: PMC11126619 DOI: 10.1038/s41698-024-00612-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Of all gynecologic cancers, epithelial-ovarian cancer (OCa) stands out with the highest mortality rates. Despite all efforts, 90% of individuals who receive standard surgical and cytotoxic therapy experience disease recurrence. The precise mechanism by which leukemia inhibitory factor (LIF) and its receptor (LIFR) contribute to the progression of OCa remains unknown. Analysis of cancer databases revealed that elevated expression of LIF or LIFR was associated with poor progression-free survival of OCa patients and a predictor of poor response to chemotherapy. Using multiple primary and established OCa cell lines or tissues that represent five subtypes of epithelial-OCa, we demonstrated that LIF/LIFR autocrine signaling is active in OCa. Moreover, treatment with LIFR inhibitor, EC359 significantly reduced OCa cell viability and cell survival with an IC50 ranging from 5-50 nM. Furthermore, EC359 diminished the stemness of OCa cells. Mechanistic studies using RNA-seq and rescue experiments unveiled that EC359 primarily induced ferroptosis by suppressing the glutathione antioxidant defense system. Using multiple in vitro, ex vivo and in vivo models including cell-based xenografts, patient-derived explants, organoids, and xenograft tumors, we demonstrated that EC359 dramatically reduced the growth and progression of OCa. Additionally, EC359 therapy considerably improved tumor immunogenicity by robust CD45+ leukocyte tumor infiltration and polarizing tumor-associated macrophages (TAMs) toward M1 phenotype while showing no impact on normal T-, B-, and other immune cells. Collectively, our findings indicate that the LIF/LIFR autocrine loop plays an essential role in OCa progression and that EC359 could be a promising therapeutic agent for OCa.
Collapse
Affiliation(s)
- Behnam Ebrahimi
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Suryavathi Viswanadhapalli
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.
| | - Uday P Pratap
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Gopalam Rahul
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Xue Yang
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
- Department of Obstetrics and Gynecology, Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China
| | - Prabhakar Pitta Venkata
- Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Viktor Drel
- Department of Periodontics, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | | | | | - Xiaonan Li
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | | | - Hui Yan
- Department of microbiology and immunology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Gangadhara R Sareddy
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Zhenming Xu
- Department of microbiology and immunology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Brij B Singh
- Department of Periodontics, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Philip T Valente
- Department of Pathology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Yidong Chen
- Department of Population Sciences, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Zhao Lai
- Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Manjeet Rao
- Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Edward R Kost
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Tyler Curiel
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth, NH, 03755, USA
| | - Rajeshwar R Tekmal
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | | | - Ratna K Vadlamudi
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.
- Audie L. Murphy Division, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA.
| |
Collapse
|
37
|
Abe Y, Sano T, Otsuka N, Ogawa M, Tanaka N. PRMT5-mediated methylation of STAT3 is required for lung cancer stem cell maintenance and tumour growth. Commun Biol 2024; 7:593. [PMID: 38760429 PMCID: PMC11101626 DOI: 10.1038/s42003-024-06290-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 05/03/2024] [Indexed: 05/19/2024] Open
Abstract
STAT3 is constitutively activated in many cancer types, including lung cancer, and can induce cancer cell proliferation and cancer stem cell (CSC) maintenance. STAT3 is activated by tyrosine kinases, such as JAK and SRC, but the mechanism by which STAT3 maintains its activated state in cancer cells remains unclear. Here, we show that PRMT5 directly methylates STAT3 and enhances its activated tyrosine phosphorylation in non-small cell lung cancer (NSCLC) cells. PRMT5 expression is also induced by STAT3, suggesting the presence of a positive feedback loop in cancer cells. Furthermore, methylation of STAT3 at arginine 609 by PRMT5 is important for its transcriptional activity and support of tumour growth and CSC maintenance. Indeed, NSCLC cells expressing the STAT3 mutant which R609 was replaced to alanine (R609K) show significantly impaired tumour growth in nude mice. Overall, our study reveals a mechanism by which STAT3 remains activated in NSCLC and provides a new target for cancer therapeutic approaches.
Collapse
Affiliation(s)
- Yoshinori Abe
- Laboratory of Molecular Analysis, Nippon Medical School, Tokyo, Japan
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, Japan
| | - Takumi Sano
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, Japan
| | - Naoki Otsuka
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, Japan
| | - Masashi Ogawa
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, Japan
| | - Nobuyuki Tanaka
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, Japan.
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan.
| |
Collapse
|
38
|
Vitali E, Valente G, Panzardi A, Laffi A, Zerbi A, Uccella S, Mazziotti G, Lania A. Pancreatic neuroendocrine tumor progression and resistance to everolimus: the crucial role of NF-kB and STAT3 interplay. J Endocrinol Invest 2024; 47:1101-1117. [PMID: 37882947 DOI: 10.1007/s40618-023-02221-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/09/2023] [Indexed: 10/27/2023]
Abstract
PURPOSE The finding of mTOR overactivation in patients affected by pancreatic neuroendocrine tumors (Pa-NETs) led to their treatment with the mTOR inhibitor everolimus. Unfortunately, the efficacy of everolimus is restricted by the occurrence of resistance. The mechanisms leading to Pa-NETs' progression and resistance are not well understood. Notably, chronic inflammation is implicated in NET development. NF-kB is involved in inflammation and drug resistance mechanisms through the activation of several mediators, including STAT3. In this respect, NF-κB and STAT3 interaction is implicated in the crosstalk between inflammatory and tumor cells. METHODS We investigated the expression of NF-kB in different Pa-NETs by RT-qPCR and immunohistochemistry. Then, we studied the role of NF-κB and STAT3 interplay in QGP-1 cells. Subsequently, we assessed the impact of NF-κB and STAT3 inhibitors in QGP-1 cell proliferation and spheroids growth. Finally, we evaluated the implication of the NF-kB pathway in everolimus-resistant Pa-NET cells. RESULTS We found that the increased NF-kB expression correlates with a higher grade in Pa-NETs. The activation of the STAT3 pathway induced by TNFα is mediated by NF-kB p65. NF-kB p65 and STAT3 inhibitors decrease QGP-1 viability, spheroids growth, and Pa-NETs cell proliferation. These effects are maintained in everolimus-resistant QGP-1R cells. Interestingly, we found that NF-kB, STAT3, IL-8, and SOCS3 are overexpressed in QGP-1R compared to QGP-1. CONCLUSION Since the NF-kB pathway is implicated in Pa-NETs' progression and resistance to everolimus, these data could explain the potential use of NF-kB as a novel therapeutic target in Pa-NET patients.
Collapse
Affiliation(s)
- E Vitali
- Laboratory of Cellular and Molecular Endocrinology, IRCCS Humanitas Research Hospital, Manzoni 56, 20089, Rozzano, Milan, Italy.
| | - G Valente
- Laboratory of Cellular and Molecular Endocrinology, IRCCS Humanitas Research Hospital, Manzoni 56, 20089, Rozzano, Milan, Italy
| | - A Panzardi
- Laboratory of Cellular and Molecular Endocrinology, IRCCS Humanitas Research Hospital, Manzoni 56, 20089, Rozzano, Milan, Italy
| | - A Laffi
- Oncology Unit, IRCCS Humanitas Research Hospital, Manzoni 56, 20089, Rozzano, Milan, Italy
| | - A Zerbi
- Department of Biomedical Sciences, Humanitas University, Rita Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy
- Surgery Unit, IRCCS Humanitas Research Hospital, Manzoni 56, 20089, Rozzano, Milan, Italy
| | - S Uccella
- Department of Biomedical Sciences, Humanitas University, Rita Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy
- Pathology Unit, IRCCS Humanitas Research Hospital, Manzoni 56, 20089, Rozzano, ilan, Italy
| | - G Mazziotti
- Department of Biomedical Sciences, Humanitas University, Rita Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy
- Endocrinology, Diabetology and Andrology Unit, IRCCS Humanitas Research Hospital, Manzoni 54, 20089, Rozzano, Milan, Italy
| | - A Lania
- Department of Biomedical Sciences, Humanitas University, Rita Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy
- Endocrinology, Diabetology and Andrology Unit, IRCCS Humanitas Research Hospital, Manzoni 54, 20089, Rozzano, Milan, Italy
| |
Collapse
|
39
|
Janjua D, Thakur K, Aggarwal N, Chaudhary A, Yadav J, Chhokar A, Tripathi T, Joshi U, Senrung A, Bharti AC. Prognostic and therapeutic potential of STAT3: Opportunities and challenges in targeting HPV-mediated cervical carcinogenesis. Crit Rev Oncol Hematol 2024; 197:104346. [PMID: 38608913 DOI: 10.1016/j.critrevonc.2024.104346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/28/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
Cervical cancer (CaCx) ranks as the fourth most prevalent cancer among women globally. Persistent infection of high-risk human papillomaviruses (HR-HPVs) is major etiological factor associated with CaCx. Signal Transducer and Activator of Transcription 3 (STAT3), a prominent member of the STAT family, has emerged as independent oncogenic driver. It is a target of many oncogenic viruses including HPV. How STAT3 influences HPV viral gene expression or gets affected by HPV is an area of active investigation. A better understanding of host-virus interaction will provide a prognostic and therapeutic window for CaCx control and management. In this comprehensive review, we delve into carcinogenic role of STAT3 in development of HPV-induced CaCx. With an emphasis on fascinating interplay between STAT3 and HPV genome, the review explores the diverse array of opportunities and challenges associated with this field to harness the prognostic and therapeutic potential of STAT3 in CaCx.
Collapse
Affiliation(s)
- Divya Janjua
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Kulbhushan Thakur
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Nikita Aggarwal
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Apoorva Chaudhary
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Joni Yadav
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Arun Chhokar
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India; Department of Zoology, Deshbandhu College, University of Delhi, Delhi, India
| | - Tanya Tripathi
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Udit Joshi
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Anna Senrung
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India; Department of Zoology, Daulat Ram College, University of Delhi, Delhi, India
| | - Alok Chandra Bharti
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India.
| |
Collapse
|
40
|
Sobah ML, Liongue C, Ward AC. Stat3 Regulates Developmental Hematopoiesis and Impacts Myeloid Cell Function via Canonical and Non-Canonical Modalities. J Innate Immun 2024; 16:262-282. [PMID: 38643762 PMCID: PMC11249464 DOI: 10.1159/000538364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 03/12/2024] [Indexed: 04/23/2024] Open
Abstract
INTRODUCTION Signal transducer and activator of transcription (STAT) 3 is extensively involved in the development, homeostasis, and function of immune cells, with STAT3 disruption associated with human immune-related disorders. The roles ascribed to STAT3 have been assumed to be due to its canonical mode of action as an inducible transcription factor downstream of multiple cytokines, although alternative noncanonical functional modalities have also been identified. The relative involvement of each mode was further explored in relevant zebrafish models. METHODS Genome editing with CRISPR/Cas9 was used to generate mutants of the conserved zebrafish Stat3 protein: a loss of function knockout (KO) mutant and a mutant lacking C-terminal sequences including the transactivation domain (ΔTAD). Lines harboring these mutations were analyzed with respect to blood and immune cell development and function in comparison to wild-type zebrafish. RESULTS The Stat3 KO mutant showed perturbation of hematopoietic lineages throughout primitive and early definitive hematopoiesis. Neutrophil numbers did not increase in response to lipopolysaccharide (LPS) or granulocyte colony-stimulating factor (G-CSF) and their migration was significantly diminished, the latter correlating with abrogation of the Cxcl8b/Cxcr2 pathway, with macrophage responses perturbed. Intriguingly, many of these phenotypes were not shared by the Stat3 ΔTAD mutant. Indeed, only neutrophil and macrophage development were disrupted in these mutants with responsiveness to LPS and G-CSF maintained, and neutrophil migration actually increased. CONCLUSION This study has identified roles for zebrafish Stat3 within hematopoietic stem cells impacting multiple lineages throughout primitive and early definitive hematopoiesis, myeloid cell responses to G-CSF and LPS and neutrophil migration. Many of these roles showed conservation, but notably several involved noncanonical modalities, providing additional insights for relevant diseases.
Collapse
Affiliation(s)
| | - Clifford Liongue
- School of Medicine, Deakin University, Geelong, VIC, Australia
- Institute of Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC, Australia
| | - Alister C. Ward
- School of Medicine, Deakin University, Geelong, VIC, Australia
- Institute of Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC, Australia
| |
Collapse
|
41
|
Martincuks A, Zhang C, Austria T, Li YJ, Huang R, Lugo Santiago N, Kohut A, Zhao Q, Borrero RM, Shen B, Cristea M, Wang EW, Song M, Rodriguez-Rodriguez L, Yu H. Targeting PARG induces tumor cell growth inhibition and antitumor immune response by reducing phosphorylated STAT3 in ovarian cancer. J Immunother Cancer 2024; 12:e007716. [PMID: 38580335 PMCID: PMC11002370 DOI: 10.1136/jitc-2023-007716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND Ovarian cancer is the most lethal gynecological malignancy, with limited treatment options after failure of standard therapies. Despite the potential of poly(ADP-ribose) polymerase inhibitors in treating DNA damage response (DDR)-deficient ovarian cancer, the development of resistance and immunosuppression limit their efficacy, necessitating alternative therapeutic strategies. Inhibitors of poly(ADP-ribose) glycohydrolase (PARG) represent a novel class of inhibitors that are currently being assessed in preclinical and clinical studies for cancer treatment. METHODS By using a PARG small-molecule inhibitor, COH34, and a cell-penetrating antibody targeting the PARG's catalytic domain, we investigated the effects of PARG inhibition on signal transducer and activator of transcription 3 (STAT3) in OVCAR8, PEO1, and Brca1-null ID8 ovarian cancer cell lines, as well as in immune cells. We examined PARG inhibition-induced effects on STAT3 phosphorylation, nuclear localization, target gene expression, and antitumor immune responses in vitro, in patient-derived tumor organoids, and in an immunocompetent Brca1-null ID8 ovarian mouse tumor model that mirrors DDR-deficient human high-grade serous ovarian cancer. We also tested the effects of overexpressing a constitutively activated STAT3 mutant on COH34-induced tumor cell growth inhibition. RESULTS Our findings show that PARG inhibition downregulates STAT3 activity through dephosphorylation in ovarian cancer cells. Importantly, overexpression of a constitutively activated STAT3 mutant in tumor cells attenuates PARG inhibitor-induced growth inhibition. Additionally, PARG inhibition reduces STAT3 phosphorylation in immune cells, leading to the activation of antitumor immune responses, shown in immune cells cocultured with ovarian cancer patient tumor-derived organoids and in immune-competent mice-bearing mouse ovarian tumors. CONCLUSIONS We have identified a novel antitumor mechanism underlying PARG inhibition beyond its primary antitumor effects through blocking DDR in ovarian cancer. Furthermore, targeting PARG activates antitumor immune responses, thereby potentially increasing response rates to immunotherapy in patients with ovarian cancer.
Collapse
Affiliation(s)
- Antons Martincuks
- Department of Immuno-Oncology, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | - Chunyan Zhang
- Department of Immuno-Oncology, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | - Theresa Austria
- Department of Immuno-Oncology, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | - Yi-Jia Li
- Department of Immuno-Oncology, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | - Rui Huang
- Department of Immuno-Oncology, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | - Nicole Lugo Santiago
- Department of Surgery, City of Hope National Medical Center, Duarte, California, USA
| | - Adrian Kohut
- Department of Surgery, City of Hope National Medical Center, Duarte, California, USA
| | - Qianqian Zhao
- Department of Immuno-Oncology, City of Hope Comprehensive Cancer Center, Duarte, California, USA
- City of Hope Irell & Manella Graduate School of Biological Sciences, Duarte, California, USA
| | - Rosemarie Martinez Borrero
- Department of Immuno-Oncology, City of Hope Comprehensive Cancer Center, Duarte, California, USA
- City of Hope Irell & Manella Graduate School of Biological Sciences, Duarte, California, USA
| | - Binghui Shen
- Department of Cancer Genetics and Epigenetics, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | - Mihaela Cristea
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California, USA
| | - Edward W Wang
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California, USA
| | - Mihae Song
- Department of Surgery, City of Hope National Medical Center, Duarte, California, USA
| | | | - Hua Yu
- Department of Immuno-Oncology, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| |
Collapse
|
42
|
D'Amico S, Kirillov V, Petrenko O, Reich NC. STAT3 is a genetic modifier of TGF-beta induced EMT in KRAS mutant pancreatic cancer. eLife 2024; 13:RP92559. [PMID: 38573819 PMCID: PMC10994661 DOI: 10.7554/elife.92559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024] Open
Abstract
Oncogenic mutations in KRAS are among the most common in cancer. Classical models suggest that loss of epithelial characteristics and the acquisition of mesenchymal traits are associated with cancer aggressiveness and therapy resistance. However, the mechanistic link between these phenotypes and mutant KRAS biology remains to be established. Here, we identify STAT3 as a genetic modifier of TGF-beta-induced epithelial to mesenchymal transition. Gene expression profiling of pancreatic cancer cells identifies more than 200 genes commonly regulated by STAT3 and oncogenic KRAS. Functional classification of the STAT3-responsive program reveals its major role in tumor maintenance and epithelial homeostasis. The signatures of STAT3-activated cell states can be projected onto human KRAS mutant tumors, suggesting that they faithfully reflect characteristics of human disease. These observations have implications for therapeutic intervention and tumor aggressiveness.
Collapse
Affiliation(s)
- Stephen D'Amico
- Department of Microbiology and Immunology, Stony Brook UniversityStony BrookUnited States
| | - Varvara Kirillov
- Department of Microbiology and Immunology, Stony Brook UniversityStony BrookUnited States
| | - Oleksi Petrenko
- Department of Microbiology and Immunology, Stony Brook UniversityStony BrookUnited States
| | - Nancy C Reich
- Department of Microbiology and Immunology, Stony Brook UniversityStony BrookUnited States
| |
Collapse
|
43
|
Liao Y, Yan J, Beri NR, Giulino-Roth L, Cesarman E, Gewurz BE. Germinal center cytokine driven epigenetic control of Epstein-Barr virus latency gene expression. PLoS Pathog 2024; 20:e1011939. [PMID: 38683861 PMCID: PMC11081508 DOI: 10.1371/journal.ppat.1011939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/09/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024] Open
Abstract
Epstein-Barr virus (EBV) persistently infects 95% of adults worldwide and is associated with multiple human lymphomas that express characteristic EBV latency programs used by the virus to navigate the B-cell compartment. Upon primary infection, the EBV latency III program, comprised of six Epstein-Barr Nuclear Antigens (EBNA) and two Latent Membrane Protein (LMP) antigens, drives infected B-cells into germinal center (GC). By incompletely understood mechanisms, GC microenvironmental cues trigger the EBV genome to switch to the latency II program, comprised of EBNA1, LMP1 and LMP2A and observed in GC-derived Hodgkin lymphoma. To gain insights into pathways and epigenetic mechanisms that control EBV latency reprogramming as EBV-infected B-cells encounter microenvironmental cues, we characterized GC cytokine effects on EBV latency protein expression and on the EBV epigenome. We confirmed and extended prior studies highlighting GC cytokine effects in support of the latency II transition. The T-follicular helper cytokine interleukin 21 (IL-21), which is a major regulator of GC responses, and to a lesser extent IL-4 and IL-10, hyper-induced LMP1 expression, while repressing EBNA expression. However, follicular dendritic cell cytokines including IL-15 and IL-27 downmodulate EBNA but not LMP1 expression. CRISPR editing highlighted that STAT3 and STAT5 were necessary for cytokine mediated EBNA silencing via epigenetic effects at the EBV genomic C promoter. By contrast, STAT3 was instead necessary for LMP1 promoter epigenetic remodeling, including gain of activating histone chromatin marks and loss of repressive polycomb repressive complex silencing marks. Thus, EBV has evolved to coopt STAT signaling to oppositely regulate the epigenetic status of key viral genomic promoters in response to GC cytokine cues.
Collapse
Affiliation(s)
- Yifei Liao
- Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Integrated Solutions to Infectious Diseases, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jinjie Yan
- Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Integrated Solutions to Infectious Diseases, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, China
| | - Nina R. Beri
- Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Integrated Solutions to Infectious Diseases, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Lisa Giulino-Roth
- Weill Cornell Medical College, New York, New York, United States of America
| | - Ethel Cesarman
- Weill Cornell Medical College, New York, New York, United States of America
| | - Benjamin E. Gewurz
- Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Integrated Solutions to Infectious Diseases, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Harvard Program in Virology, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
44
|
Wang MJ, Xia Y, Gao QL. DNA Damage-driven Inflammatory Cytokines: Reprogramming of Tumor Immune Microenvironment and Application of Oncotherapy. Curr Med Sci 2024; 44:261-272. [PMID: 38561595 DOI: 10.1007/s11596-024-2859-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/29/2024] [Indexed: 04/04/2024]
Abstract
DNA damage occurs across tumorigenesis and tumor development. Tumor intrinsic DNA damage can not only increase the risk of mutations responsible for tumor generation but also initiate a cellular stress response to orchestrate the tumor immune microenvironment (TIME) and dominate tumor progression. Accumulating evidence documents that multiple signaling pathways, including cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) and ataxia telangiectasia-mutated protein/ataxia telangiectasia and Rad3-related protein (ATM/ATR), are activated downstream of DNA damage and they are associated with the secretion of diverse cytokines. These cytokines possess multifaced functions in the anti-tumor immune response. Thus, it is necessary to deeply interpret the complex TIME reshaped by damaged DNA and tumor-derived cytokines, critical for the development of effective tumor therapies. This manuscript comprehensively reviews the relationship between the DNA damage response and related cytokines in tumors and depicts the dual immunoregulatory roles of these cytokines. We also summarize clinical trials targeting signaling pathways and cytokines associated with DNA damage and provide future perspectives on emerging technologies.
Collapse
Affiliation(s)
- Meng-Jie Wang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yu Xia
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Qing-Lei Gao
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
45
|
Wang W, Lopez McDonald MC, Hariprasad R, Hamilton T, Frank DA. Oncogenic STAT Transcription Factors as Targets for Cancer Therapy: Innovative Strategies and Clinical Translation. Cancers (Basel) 2024; 16:1387. [PMID: 38611065 PMCID: PMC11011165 DOI: 10.3390/cancers16071387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Despite advances in our understanding of molecular aspects of oncogenesis, cancer remains a leading cause of death. The malignant behavior of a cancer cell is driven by the inappropriate activation of transcription factors. In particular, signal transducers and activators of transcription (STATs), which regulate many critical cellular processes such as proliferation, apoptosis, and differentiation, are frequently activated inappropriately in a wide spectrum of human cancers. Multiple signaling pathways converge on the STATs, highlighting their importance in the development and progression of oncogenic diseases. STAT3 and STAT5 are two members of the STAT protein family that are the most frequently activated in cancers and can drive cancer pathogenesis directly. The development of inhibitors targeting STAT3 and STAT5 has been the subject of intense investigations in the last decade, although effective treatment options remain limited. In this review, we investigate the specific roles of STAT3 and STAT5 in normal physiology and cancer biology, discuss the opportunities and challenges in pharmacologically targeting STAT proteins and their upstream activators, and offer insights into novel therapeutic strategies to identify STAT inhibitors as cancer therapeutics.
Collapse
Affiliation(s)
- Weiyuan Wang
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA 30322, USA; (W.W.); (M.C.L.M.); (T.H.)
| | - Melanie Cristina Lopez McDonald
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA 30322, USA; (W.W.); (M.C.L.M.); (T.H.)
| | | | - Tiara Hamilton
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA 30322, USA; (W.W.); (M.C.L.M.); (T.H.)
| | - David A. Frank
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA 30322, USA; (W.W.); (M.C.L.M.); (T.H.)
| |
Collapse
|
46
|
Tanaka T, Takahashi K, Inoue Y, Endo N, Shimoda E, Ueno K, Ichiyanagi T, Ohta T, Ishihara A. Inhibition of melanoma cell proliferation by strobilurins isolated from mushrooms and their synthetic analogues. Biosci Biotechnol Biochem 2024; 88:389-398. [PMID: 38271595 DOI: 10.1093/bbb/zbae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/12/2024] [Indexed: 01/27/2024]
Abstract
Strobilurins A and X, isolated from Mucidula venosolamellata culture extracts, demonstrated potent inhibition of human melanoma G-361 cell proliferation. Strobilurin X exhibited milder inhibitory effects on human fibroblast cells (NB1RGB) compared to strobilurin A. Additional strobilurin-related compounds were isolated from the other mushroom species. Oudemansins A and B displayed weaker activities on G-361 cells than strobilurins A and B, respectively, emphasizing the importance of a conjugated double-bond structure. Among isolated compounds, strobilurin G showed the lowest IC50 value for G-361 cells. Additional strobilurins bearing various substituents on the benzene ring were synthesized. Synthetic intermediates lacking the methyl β-methoxyacrylate group and a strobilurin analogue bearing modified β-methoxyacrylate moiety showed almost no inhibitory activity against G-361 cells. The introduction of long or bulky substituents at the 4' position of the benzene ring of strobilurins enhanced the activity and selectivity, suggesting differential recognition of the benzene ring by G-361 and NB1RGB cells.
Collapse
Affiliation(s)
- Tomoya Tanaka
- Graduate School of Sustainability Sciences, Tottori University, Tottori, Japan
| | - Kenji Takahashi
- Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori, Japan
- Fungus/Mushroom Resource and Research Center, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Yuki Inoue
- Department of Agricultural, Life, and Environmental Sciences, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Naoki Endo
- Fungus/Mushroom Resource and Research Center, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Emiko Shimoda
- Department of Agricultural, Life, and Environmental Sciences, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Kotomi Ueno
- Department of Agricultural, Life, and Environmental Sciences, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Tsuyoshi Ichiyanagi
- Fungus/Mushroom Resource and Research Center, Faculty of Agriculture, Tottori University, Tottori, Japan
- Department of Agricultural, Life, and Environmental Sciences, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Toshio Ohta
- Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori, Japan
- Fungus/Mushroom Resource and Research Center, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Atsushi Ishihara
- Fungus/Mushroom Resource and Research Center, Faculty of Agriculture, Tottori University, Tottori, Japan
- Department of Agricultural, Life, and Environmental Sciences, Faculty of Agriculture, Tottori University, Tottori, Japan
| |
Collapse
|
47
|
Hall J, Zhang Z, Bhattacharya S, Wang D, Alcantara M, Liang Y, Swiderski P, Forman S, Kwak L, Vaidehi N, Kortylewski M. Oligo-PROTAC strategy for cell-selective and targeted degradation of activated STAT3. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102137. [PMID: 38384444 PMCID: PMC10879796 DOI: 10.1016/j.omtn.2024.102137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 01/31/2024] [Indexed: 02/23/2024]
Abstract
Decoy oligodeoxynucleotides (ODNs) allow targeting undruggable transcription factors, such as STAT3, but their limited potency and lack of delivery methods hampered translation. To overcome these challenges, we conjugated a STAT3-specific decoy to thalidomide, a ligand to cereblon in E3 ubiquitin ligase complex, to generate a proteolysis-targeting chimera (STAT3DPROTAC). STAT3DPROTAC downregulated STAT3 in target cells, but not STAT1 or STAT5. Computational modeling of the STAT3DPROTAC ternary complex predicted two surface lysines, K601 and K626, in STAT3 as potential ubiquitination sites. Accordingly, K601/K626 point mutations in STAT3, as well as proteasome inhibition or cereblon deletion, alleviated STAT3DPROTAC effect. Next, we conjugated STAT3DPROTAC to a CpG oligonucleotide targeting Toll-like receptor 9 (TLR9) to generate myeloid/B cell-selective C-STAT3DPROTAC. Naked C-STAT3DPROTAC was spontaneously internalized by TLR9+ myeloid cells, B cells, and human and mouse lymphoma cells but not by T cells. C-STAT3DPROTAC effectively decreased STAT3 protein levels and also STAT3-regulated target genes critical for lymphoma cell proliferation and/or survival (BCL2L1, CCND2, and MYC). Finally, local C-STAT3DPROTAC administration to human Ly3 lymphoma-bearing mice triggered tumor regression, while control C-STAT3D and C-SCR treatments had limited effects. Our results underscore the feasibility of using a PROTAC strategy for cell-selective, decoy oligonucleotide-based STAT3 targeting of and potentially other tumorigenic transcription factors for cancer therapy.
Collapse
Affiliation(s)
- Jeremy Hall
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Zhuoran Zhang
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Supriyo Bhattacharya
- Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Dongfang Wang
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Marice Alcantara
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Yong Liang
- DNA/RNA Synthesis Core Facility, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Piotr Swiderski
- DNA/RNA Synthesis Core Facility, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Stephen Forman
- Department of Hematology & Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Larry Kwak
- Department of Hematology & Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Nagarajan Vaidehi
- Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Marcin Kortylewski
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
48
|
Chen B, Li Y, Li W, Ye S, Zhu L, Ding Y. Antitumor Activity and Mechanism of Terpenoids in Seaweeds Based on Literature Review and Network Pharmacology. Adv Biol (Weinh) 2024; 8:e2300541. [PMID: 38134388 DOI: 10.1002/adbi.202300541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/05/2023] [Indexed: 12/24/2023]
Abstract
Seaweeds are a treasure trove of natural secondary metabolites. Terpenoids extracted from seaweeds are shown to possess a variety of antitumor cellular activities. However, due to the complex and diverse structures of terpenoids, their therapeutic targets and complex mechanisms of action have not been clarified. The present study summarises the research on terpenoids from seaweeds in oncological diseases over the last 20 years. Terpenoids show different degrees of inhibitory effects on different types of tumor cells, suggesting that terpenoids in seaweeds may have potential antitumor disease potential. Terpenoids with potential antitumor activity and their mechanism of action are investigated using network pharmacology. A total of 125 terpenoids and 286 targets are obtained. Proto-oncogene tyrosine-protein kinase Src(SRC), Signal transducer and activator of transcription 3 (STAT3), Mitogen-activated protein kinase (MAPK3, MAPK1), Heat shock protein HSP 90-alpha (HSP90AA1), Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA), and RAC-alpha serine/threonine-protein kinase (AKT1) are defined as core targets. According to GO function and Kyoto encyclopedia of genes and genomes(KEGG) enrichment analysis, terpenoids may affect the Phoshatidylinositol 3'-kinase (PI3K)-Akt signaling pathway, Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor resistance, Prostate cancer, MAPK signaling pathway, and Proteoglycans in cancer. In addition, the molecular docking results show that the selected terpenoids are all able to bind strongly to the active protein. Terpenoids may slow down the progression of cancer by controlling apoptosis, proliferation, and protein and enzyme binding.
Collapse
Affiliation(s)
- Baoguo Chen
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, 116034, China
| | - Yaxin Li
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, 116034, China
| | - Wei Li
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu, 41062, South Korea
| | - Shuhong Ye
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, 116034, China
| | - Lin Zhu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, 116034, China
| | - Yan Ding
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, 116034, China
| |
Collapse
|
49
|
Long X, Zhang S, Wang Y, Chen J, Lu Y, Hou H, Lin B, Li X, Shen C, Yang R, Zhu H, Cui R, Cao D, Chen G, Wang D, Chen Y, Zhai S, Zeng Z, Wu S, Lou M, Chen J, Zou J, Zheng M, Qin J, Wang X. Targeting JMJD1C to selectively disrupt tumor T reg cell fitness enhances antitumor immunity. Nat Immunol 2024; 25:525-536. [PMID: 38356061 DOI: 10.1038/s41590-024-01746-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 01/09/2024] [Indexed: 02/16/2024]
Abstract
Regulatory T (Treg) cells are critical for immune tolerance but also form a barrier to antitumor immunity. As therapeutic strategies involving Treg cell depletion are limited by concurrent autoimmune disorders, identification of intratumoral Treg cell-specific regulatory mechanisms is needed for selective targeting. Epigenetic modulators can be targeted with small compounds, but intratumoral Treg cell-specific epigenetic regulators have been unexplored. Here, we show that JMJD1C, a histone demethylase upregulated by cytokines in the tumor microenvironment, is essential for tumor Treg cell fitness but dispensable for systemic immune homeostasis. JMJD1C deletion enhanced AKT signals in a manner dependent on histone H3 lysine 9 dimethylation (H3K9me2) demethylase and STAT3 signals independently of H3K9me2 demethylase, leading to robust interferon-γ production and tumor Treg cell fragility. We have also developed an oral JMJD1C inhibitor that suppresses tumor growth by targeting intratumoral Treg cells. Overall, this study identifies JMJD1C as an epigenetic hub that can integrate signals to establish tumor Treg cell fitness, and we present a specific JMJD1C inhibitor that can target tumor Treg cells without affecting systemic immune homeostasis.
Collapse
Affiliation(s)
- Xuehui Long
- Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Sulin Zhang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yuliang Wang
- Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Jingjing Chen
- Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Yanlai Lu
- Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Hui Hou
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Bichun Lin
- Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Xutong Li
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Chang Shen
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Ruirui Yang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Huamin Zhu
- Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Rongrong Cui
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Duanhua Cao
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Geng Chen
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Dan Wang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yun Chen
- Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Sulan Zhai
- Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Zhiqin Zeng
- Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Shusheng Wu
- Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Mengting Lou
- Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Junhong Chen
- Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Jian Zou
- Department of Laboratory Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Mingyue Zheng
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
| | - Jun Qin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Xiaoming Wang
- Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
50
|
Wang X, Yuan Z, Li Z, He X, Zhang Y, Wang X, Su J, Wu X, Li M, Du F, Chen Y, Deng S, Zhao Y, Shen J, Yi T, Xiao Z. Key oncogenic signaling pathways affecting tumor-infiltrating lymphocytes infiltration in hepatocellular carcinoma: basic principles and recent advances. Front Immunol 2024; 15:1354313. [PMID: 38426090 PMCID: PMC10902128 DOI: 10.3389/fimmu.2024.1354313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
The incidence of hepatocellular carcinoma (HCC) ranks first among primary liver cancers, and its mortality rate exhibits a consistent annual increase. The treatment of HCC has witnessed a significant surge in recent years, with the emergence of targeted immune therapy as an adjunct to early surgical resection. Adoptive cell therapy (ACT) using tumor-infiltrating lymphocytes (TIL) has shown promising results in other types of solid tumors. This article aims to provide a comprehensive overview of the intricate interactions between different types of TILs and their impact on HCC, elucidate strategies for targeting neoantigens through TILs, and address the challenges encountered in TIL therapies along with potential solutions. Furthermore, this article specifically examines the impact of oncogenic signaling pathways activation within the HCC tumor microenvironment on the infiltration dynamics of TILs. Additionally, a concise overview is provided regarding TIL preparation techniques and an update on clinical trials investigating TIL-based immunotherapy in solid tumors.
Collapse
Affiliation(s)
- Xiang Wang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Zijun Yuan
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Zhengbo Li
- Department of Laboratory Medicine, The Longmatan District People’s Hospital, Luzhou, China
| | - Xinyu He
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yinping Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xingyue Wang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jiahong Su
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Shuai Deng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Tao Yi
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| |
Collapse
|