1
|
Parchure A, Von Blume J. Chromogranin B Purification for Condensate Formation and Client Partitioning Assays In Vitro. Bio Protoc 2024; 14:e5095. [PMID: 39512880 PMCID: PMC11540053 DOI: 10.21769/bioprotoc.5095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/01/2024] [Accepted: 09/06/2024] [Indexed: 11/15/2024] Open
Abstract
Chromogranin B and other members of the granin protein family form condensates that recruit clients like proinsulin. The condensation in the lumen of trans-Golgi network (TGN) is critical for the biogenesis of secretory granules. Here, we describe a protocol to purify the tagged version of chromogranin B close to its native form at the TGN, which can then be utilized for microscopy-based assays to monitor condensate formation in vitro and client partitioning depending on the material properties of chromogranin B assemblies. Key features • First instance of purification of full-length and tagged version of members of the chromogranin family of proteins. • Allows purification of proteins with post-translational modifications that are acquired en route in the secretory pathway, thus closely resembling their native form at the TGN.
Collapse
Affiliation(s)
- Anup Parchure
- Section of Endocrinology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
| | - Julia Von Blume
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
2
|
Mahata S, Jati S, Munoz-Mayorga D, Shahabi S, Tang K, Tao Y, Dickson D, Litvan I, Ghosh G, Chen X. Chromogranin A Deficiency Attenuates Tauopathy by Altering Epinephrine-Alpha-Adrenergic Receptor Signaling. RESEARCH SQUARE 2024:rs.3.rs-4797912. [PMID: 39149499 PMCID: PMC11326371 DOI: 10.21203/rs.3.rs-4797912/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Metabolic disorders such as insulin resistance and hypertension are potential risk factors for aging and neurodegenerative diseases. These conditions are reversed in Chromogranin A knockout (CgA-KO) mice. This study investigates the role of CgA in Alzheimer's disease (AD) and corticobasal degeneration (CBD). CgA ablation in tauopathy mice (hTau) (CgA-KO/hTau) exhibited reduced tau aggregation, spreading, extended lifespan, and improved cognitive function. Transcriptomic and metabolite analysis of mouse cortices revealed altered alpha1-adrenergic receptors (Adra1) and high epinephrine (EPI) levels in hTau mice compared to WT mice, mirroring observations in AD and CBD patients. CgA-KO/hTau mice exhibited a reversal of EPI levels in the cortex and the expression of Adra1, nearly returning them to WT levels. Treatment of hippocampal slices with EPI or Adra1 agonist intensified, while an Adra1 antagonist inhibited tau hyperphosphorylation and aggregation. These findings highlight the interplay between the EPI-Adra signaling system and CgA in tauopathy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Xu Chen
- University of California, San Diego
| |
Collapse
|
3
|
Jati S, Munoz-Mayorga D, Shahabi S, Tang K, Tao Y, Dickson DW, Litvan I, Ghosh G, Mahata SK, Chen X. Chromogranin A (CgA) Deficiency Attenuates Tauopathy by Altering Epinephrine-Alpha-Adrenergic Receptor Signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.11.598548. [PMID: 38915622 PMCID: PMC11195202 DOI: 10.1101/2024.06.11.598548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Our previous studies have indicated that insulin resistance, hyperglycemia, and hypertension in aged wild-type (WT) mice can be reversed in mice lacking chromogranin-A (CgA-KO mice). These health conditions are associated with a higher risk of Alzheimer's disease (AD). CgA, a neuroendocrine secretory protein has been detected in protein aggregates in the brains of AD patients. Here, we determined the role of CgA in tauopathies, including AD (secondary tauopathy) and corticobasal degeneration (CBD, primary tauopathy). We found elevated levels of CgA in both AD and CBD brains, which were positively correlated with increased phosphorylated tau in the frontal cortex. Furthermore, CgA ablation in a human P301S tau (hTau) transgenic mice (CgA-KO/hTau) exhibited reduced tau aggregation, resistance to tau spreading, and an extended lifespan, coupled with improved cognitive function. Transcriptomic analysis of mice cortices highlighted altered levels of alpha-adrenergic receptors (Adra) in hTau mice compared to WT mice, akin to AD patients. Since CgA regulates the release of the Adra ligands epinephrine (EPI) and norepinephrine (NE), we determined their levels and found elevated EPI levels in the cortices of hTau mice, AD and CBD patients. CgA-KO/hTau mice exhibited reversal of EPI levels in the cortex and the expression of several affected genes, including Adra1 and 2, nearly returning them to WT levels. Treatment of hippocampal slice cultures with EPI or an Adra1 agonist intensified, while an Adra1 antagonist inhibited, tau hyperphosphorylation and aggregation. These findings reveal a critical role of CgA in regulation of tau pathogenesis via the EPI-Adra signaling axis.
Collapse
|
4
|
Aizenshtadt A, Wang C, Abadpour S, Menezes PD, Wilhelmsen I, Dalmao‐Fernandez A, Stokowiec J, Golovin A, Johnsen M, Combriat TMD, Røberg‐Larsen H, Gadegaard N, Scholz H, Busek M, Krauss SJK. Pump-Less, Recirculating Organ-on-Chip (rOoC) Platform to Model the Metabolic Crosstalk between Islets and Liver. Adv Healthc Mater 2024; 13:e2303785. [PMID: 38221504 PMCID: PMC11468483 DOI: 10.1002/adhm.202303785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/05/2023] [Indexed: 01/16/2024]
Abstract
Type 2 diabetes mellitus (T2DM), obesity, and metabolic dysfunction-associated steatotic liver disease (MASLD) are epidemiologically correlated disorders with a worldwide growing prevalence. While the mechanisms leading to the onset and development of these conditions are not fully understood, predictive tissue representations for studying the coordinated interactions between central organs that regulate energy metabolism, particularly the liver and pancreatic islets, are needed. Here, a dual pump-less recirculating organ-on-chip platform that combines human pluripotent stem cell (sc)-derived sc-liver and sc-islet organoids is presented. The platform reproduces key aspects of the metabolic cross-talk between both organs, including glucose levels and selected hormones, and supports the viability and functionality of both sc-islet and sc-liver organoids while preserving a reduced release of pro-inflammatory cytokines. In a model of metabolic disruption in response to treatment with high lipids and fructose, sc-liver organoids exhibit hallmarks of steatosis and insulin resistance, while sc-islets produce pro-inflammatory cytokines on-chip. Finally, the platform reproduces known effects of anti-diabetic drugs on-chip. Taken together, the platform provides a basis for functional studies of obesity, T2DM, and MASLD on-chip, as well as for testing potential therapeutic interventions.
Collapse
Affiliation(s)
- Aleksandra Aizenshtadt
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
- Dep. of Immunology and Transfusion MedicineOslo University HospitalP.O. Box 4950Oslo0424Norway
| | - Chencheng Wang
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
- Dep. of Transplantation MedicineExperimental Cell Transplantation Research GroupOslo University HospitalP.O. Box 4950Oslo0424Norway
| | - Shadab Abadpour
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
- Dep. of Transplantation MedicineExperimental Cell Transplantation Research GroupOslo University HospitalP.O. Box 4950Oslo0424Norway
- Institute for Surgical ResearchOslo University HospitalOsloNorway
| | - Pedro Duarte Menezes
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
- James Watt School of EngineeringUniversity of GlasgowRankine BuildingGlasgowG12 8LTUK
| | - Ingrid Wilhelmsen
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
- Dep. of Immunology and Transfusion MedicineOslo University HospitalP.O. Box 4950Oslo0424Norway
| | - Andrea Dalmao‐Fernandez
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
- Department of PharmacyFaculty of Mathematics and Natural SciencesUniversity of OsloP.O. Box 1083Oslo0316Norway
| | - Justyna Stokowiec
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
- Dep. of Immunology and Transfusion MedicineOslo University HospitalP.O. Box 4950Oslo0424Norway
| | - Alexey Golovin
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
- Dep. of Immunology and Transfusion MedicineOslo University HospitalP.O. Box 4950Oslo0424Norway
| | - Mads Johnsen
- Section for Chemical Life SciencesDepartment of ChemistryUniversity of OsloP.O. Box 1033Oslo0315Norway
| | - Thomas M. D. Combriat
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
| | - Hanne Røberg‐Larsen
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
- Section for Chemical Life SciencesDepartment of ChemistryUniversity of OsloP.O. Box 1033Oslo0315Norway
| | - Nikolaj Gadegaard
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
- James Watt School of EngineeringUniversity of GlasgowRankine BuildingGlasgowG12 8LTUK
| | - Hanne Scholz
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
- Dep. of Transplantation MedicineExperimental Cell Transplantation Research GroupOslo University HospitalP.O. Box 4950Oslo0424Norway
| | - Mathias Busek
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
- Dep. of Immunology and Transfusion MedicineOslo University HospitalP.O. Box 4950Oslo0424Norway
| | - Stefan J. K. Krauss
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
- Dep. of Immunology and Transfusion MedicineOslo University HospitalP.O. Box 4950Oslo0424Norway
| |
Collapse
|
5
|
Mukherjee M, Mukherjee C, Ghosh V, Jain A, Sadhukhan S, Dagar S, Sahu BS. Endoplasmic reticulum stress impedes regulated secretion by governing key exocytotic and granulogenic molecular switches. J Cell Sci 2024; 137:jcs261257. [PMID: 38348894 DOI: 10.1242/jcs.261257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 02/05/2024] [Indexed: 03/20/2024] Open
Abstract
Dense core vesicles (DCVs) and synaptic vesicles are specialised secretory vesicles in neurons and neuroendocrine cells, and abnormal release of their cargo is associated with various pathophysiologies. Endoplasmic reticulum (ER) stress and inter-organellar communication are also associated with disease biology. To investigate the functional status of regulated exocytosis arising from the crosstalk of a stressed ER and DCVs, ER stress was modelled in PC12 neuroendocrine cells using thapsigargin. DCV exocytosis was severely compromised in ER-stressed PC12 cells and was reversed to varying magnitudes by ER stress attenuators. Experiments with tunicamycin, an independent ER stressor, yielded similar results. Concurrently, ER stress also caused impaired DCV exocytosis in insulin-secreting INS-1 cells. Molecular analysis revealed blunted SNAP25 expression, potentially attributed to augmented levels of ATF4, an inhibitor of CREB that binds to the CREB-binding site. The effects of loss of function of ATF4 in ER-stressed cells substantiated this attribution. Our studies revealed severe defects in DCV exocytosis in ER-stressed cells for the first time, mediated by reduced levels of key exocytotic and granulogenic switches regulated via the eIF2α (EIF2A)-ATF4 axis.
Collapse
Affiliation(s)
- Mohima Mukherjee
- National Brain Research Centre, Manesar, Gurgaon, Haryana 122052, India
| | | | - Vinayak Ghosh
- National Brain Research Centre, Manesar, Gurgaon, Haryana 122052, India
| | - Aamna Jain
- National Brain Research Centre, Manesar, Gurgaon, Haryana 122052, India
| | - Souren Sadhukhan
- National Brain Research Centre, Manesar, Gurgaon, Haryana 122052, India
| | - Sushma Dagar
- National Brain Research Centre, Manesar, Gurgaon, Haryana 122052, India
| | | |
Collapse
|
6
|
Campelo F, Tian M, von Blume J. Rediscovering the intricacies of secretory granule biogenesis. Curr Opin Cell Biol 2023; 85:102231. [PMID: 37657367 DOI: 10.1016/j.ceb.2023.102231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 09/03/2023]
Abstract
Regulated secretion, an essential cellular process, relies on secretory granules (SGs) for the controlled release of a diverse range of cargo molecules, including proteins, peptides, hormones, enzymes, and neurotransmitters. SG biogenesis encompasses cargo selection, sorting, packaging, and trafficking, with the trans-Golgi Network (TGN) playing a central role. Research in the last three decades has revealed significant components required for SG biogenesis; however, no cargo receptor transferring granule cargo from the TGN to immature SGs (ISGs) has yet been identified. Consequently, recent research has devoted significant attention to studying receptor-independent cargo sorting mechanisms, shedding new light on the complexities of regulated secretion. Understanding the underlying molecular and biophysical mechanisms behind cargo sorting into ISGs holds great promise for advancing our knowledge of cellular communication and disease mechanisms.
Collapse
Affiliation(s)
- Felix Campelo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860, Castelldefels, Barcelona, Spain
| | - Meng Tian
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Julia von Blume
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
7
|
Przybylla R, Krohn M, Sellin ML, Frank M, Oswald S, Linnebacher M. Novel In Vitro Models for Cell Differentiation and Drug Transport Studies of the Human Intestine. Cells 2023; 12:2371. [PMID: 37830585 PMCID: PMC10572004 DOI: 10.3390/cells12192371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/14/2023] Open
Abstract
The most common in vitro model for absorption, distribution, metabolism, and excretion (ADME) purposes is currently the Caco-2 cell line. However, clear differences in gene and protein expression towards the small intestine and an, at best, fair prediction accuracy of intestinal drug absorption restrict the usefulness of a model for intestinal epithelial cells. To overcome these limitations, we evaluated a panel of low-passaged patient-derived colorectal cancer cell lines of the HROC collection concerning similarities to small intestinal epithelial cells and their potential to predict intestinal drug absorption. After initial screening of a larger panel, ten cell lines with confluent outgrowth and long-lasting barrier-forming potential were further characterized in close detail. Tight junctional complexes and microvilli structures were detected in all lines, anda higher degree of differentiation was observed in 5/10 cell lines. All lines expressed multiple transporter molecules, with the expression levels in three lines being close to those of small intestinal epithelial cells. Compared with the Caco-2 model, three HROC lines demonstrated both higher similarity to jejunal epithelial tissue cells and higher regulatory potential of relevant drug transporters. In summary, these lines would be better-suited human small intestinal epithelium models for basic and translational research, especially for ADME studies.
Collapse
Affiliation(s)
- Randy Przybylla
- Molecular Oncology and Immunotherapy, Clinic of General Surgery, Rostock University Medical Centre, 18057 Rostock, Germany; (R.P.); (M.K.)
| | - Mathias Krohn
- Molecular Oncology and Immunotherapy, Clinic of General Surgery, Rostock University Medical Centre, 18057 Rostock, Germany; (R.P.); (M.K.)
| | - Marie-Luise Sellin
- Research Laboratory for Biomechanics and Implant Technology, Department of Orthopedics, Rostock University Medical Centre, 18057 Rostock, Germany;
| | - Marcus Frank
- Medical Biology and Electron Microscopy Centre, 18057 Rostock, Germany;
- Department Life, Light and Matter, University of Rostock, 18059 Rostock, Germany
| | - Stefan Oswald
- Institute of Pharmacology and Toxicology, Rostock University Medical Centre, 18057 Rostock, Germany;
| | - Michael Linnebacher
- Molecular Oncology and Immunotherapy, Clinic of General Surgery, Rostock University Medical Centre, 18057 Rostock, Germany; (R.P.); (M.K.)
| |
Collapse
|
8
|
Štepihar D, Florke Gee RR, Hoyos Sanchez MC, Fon Tacer K. Cell-specific secretory granule sorting mechanisms: the role of MAGEL2 and retromer in hypothalamic regulated secretion. Front Cell Dev Biol 2023; 11:1243038. [PMID: 37799273 PMCID: PMC10548473 DOI: 10.3389/fcell.2023.1243038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/31/2023] [Indexed: 10/07/2023] Open
Abstract
Intracellular protein trafficking and sorting are extremely arduous in endocrine and neuroendocrine cells, which synthesize and secrete on-demand substantial quantities of proteins. To ensure that neuroendocrine secretion operates correctly, each step in the secretion pathways is tightly regulated and coordinated both spatially and temporally. At the trans-Golgi network (TGN), intrinsic structural features of proteins and several sorting mechanisms and distinct signals direct newly synthesized proteins into proper membrane vesicles that enter either constitutive or regulated secretion pathways. Furthermore, this anterograde transport is counterbalanced by retrograde transport, which not only maintains membrane homeostasis but also recycles various proteins that function in the sorting of secretory cargo, formation of transport intermediates, or retrieval of resident proteins of secretory organelles. The retromer complex recycles proteins from the endocytic pathway back to the plasma membrane or TGN and was recently identified as a critical player in regulated secretion in the hypothalamus. Furthermore, melanoma antigen protein L2 (MAGEL2) was discovered to act as a tissue-specific regulator of the retromer-dependent endosomal protein recycling pathway and, by doing so, ensures proper secretory granule formation and maturation. MAGEL2 is a mammalian-specific and maternally imprinted gene implicated in Prader-Willi and Schaaf-Yang neurodevelopmental syndromes. In this review, we will briefly discuss the current understanding of the regulated secretion pathway, encompassing anterograde and retrograde traffic. Although our understanding of the retrograde trafficking and sorting in regulated secretion is not yet complete, we will review recent insights into the molecular role of MAGEL2 in hypothalamic neuroendocrine secretion and how its dysregulation contributes to the symptoms of Prader-Willi and Schaaf-Yang patients. Given that the activation of many secreted proteins occurs after they enter secretory granules, modulation of the sorting efficiency in a tissue-specific manner may represent an evolutionary adaptation to environmental cues.
Collapse
Affiliation(s)
- Denis Štepihar
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX, United States
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Rebecca R. Florke Gee
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX, United States
| | - Maria Camila Hoyos Sanchez
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX, United States
| | - Klementina Fon Tacer
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX, United States
| |
Collapse
|
9
|
Iyer DR, Venkatraman J, Tanguy E, Vitale N, Mahapatra NR. Chromogranin A and its derived peptides: potential regulators of cholesterol homeostasis. Cell Mol Life Sci 2023; 80:271. [PMID: 37642733 PMCID: PMC11072126 DOI: 10.1007/s00018-023-04908-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/31/2023]
Abstract
Chromogranin A (CHGA), a member of the granin family of proteins, has been an attractive therapeutic target and candidate biomarker for several cardiovascular, neurological, and inflammatory disorders. The prominence of CHGA stems from the pleiotropic roles of several bioactive peptides (e.g., catestatin, pancreastatin, vasostatins) generated by its proteolytic cleavage and by their wide anatomical distribution. These peptides are emerging as novel modulators of cardiometabolic diseases that are often linked to high blood cholesterol levels. However, their impact on cholesterol homeostasis is poorly understood. The dynamic nature of cholesterol and its multitudinous roles in almost every aspect of normal body function makes it an integral component of metabolic physiology. A tightly regulated coordination of cholesterol homeostasis is imperative for proper functioning of cellular and metabolic processes. The deregulation of cholesterol levels can result in several pathophysiological states. Although studies till date suggest regulatory roles for CHGA and its derived peptides on cholesterol levels, the mechanisms by which this is achieved still remain unclear. This review aims to aggregate and consolidate the available evidence linking CHGA with cholesterol homeostasis in health and disease. In addition, we also look at common molecular regulatory factors (viz., transcription factors and microRNAs) which could govern the expression of CHGA and genes involved in cholesterol homeostasis under basal and pathological conditions. In order to gain further insights into the pathways mediating cholesterol regulation by CHGA/its derived peptides, a few prospective signaling pathways are explored, which could act as primers for future studies.
Collapse
Affiliation(s)
- Dhanya R Iyer
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Janani Venkatraman
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Emeline Tanguy
- Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212 and Université de Strasbourg, 5 Rue Blaise Pascal, 67000, Strasbourg, France
| | - Nicolas Vitale
- Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212 and Université de Strasbourg, 5 Rue Blaise Pascal, 67000, Strasbourg, France.
| | - Nitish R Mahapatra
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India.
| |
Collapse
|
10
|
Maneu V, Borges R, Gandía L, García AG. Forty years of the adrenal chromaffin cell through ISCCB meetings around the world. Pflugers Arch 2023; 475:667-690. [PMID: 36884064 PMCID: PMC10185644 DOI: 10.1007/s00424-023-02793-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/20/2023] [Accepted: 01/28/2023] [Indexed: 03/09/2023]
Abstract
This historical review focuses on the evolution of the knowledge accumulated during the last two centuries on the biology of the adrenal medulla gland and its chromaffin cells (CCs). The review emerged in the context of a series of meetings that started on the Spanish island of Ibiza in 1982 with the name of the International Symposium on Chromaffin Cell Biology (ISCCB). Hence, the review is divided into two periods namely, before 1982 and from this year to 2022, when the 21st ISCCB meeting was just held in Hamburg, Germany. The first historical period extends back to 1852 when Albert Kölliker first described the fine structure and function of the adrenal medulla. Subsequently, the adrenal staining with chromate salts identified the CCs; this was followed by the establishment of the embryological origin of the adrenal medulla, and the identification of adrenaline-storing vesicles. By the end of the nineteenth century, the basic morphology, histochemistry, and embryology of the adrenal gland were known. The twentieth century began with breakthrough findings namely, the experiment of Elliott suggesting that adrenaline was the sympathetic neurotransmitter, the isolation of pure adrenaline, and the deciphering of its molecular structure and chemical synthesis in the laboratory. In the 1950s, Blaschko isolated the catecholamine-storing vesicles from adrenal medullary extracts. This switched the interest in CCs as models of sympathetic neurons with an explosion of studies concerning their functions, i.e., uptake of catecholamines by chromaffin vesicles through a specific coupled transport system; the identification of several vesicle components in addition to catecholamines including chromogranins, ATP, opioids, and other neuropeptides; the calcium-dependence of the release of catecholamines; the underlying mechanism of exocytosis of this release, as indicated by the co-release of proteins; the cross-talk between the adrenal cortex and the medulla; and the emission of neurite-like processes by CCs in culture, among other numerous findings. The 1980s began with the introduction of new high-resolution techniques such as patch-clamp, calcium probes, marine toxins-targeting ion channels and receptors, confocal microscopy, or amperometry. In this frame of technological advances at the Ibiza ISCCB meeting in 1982, 11 senior researchers in the field predicted a notable increase in our knowledge in the field of CCs and the adrenal medulla; this cumulative knowledge that occurred in the last 40 years of history of the CC is succinctly described in the second part of this historical review. It deals with cell excitability, ion channel currents, the exocytotic fusion pore, the handling of calcium ions by CCs, the kinetics of exocytosis and endocytosis, the exocytotic machinery, and the life cycle of secretory vesicles. These concepts together with studies on the dynamics of membrane fusion with super-resolution imaging techniques at the single-protein level were extensively reviewed by top scientists in the field at the 21st ISCCB meeting in Hamburg in the summer of 2022; this frontier topic is also briefly reviewed here. Many of the concepts arising from those studies contributed to our present understanding of synaptic transmission. This has been studied in physiological or pathophysiological conditions, in CCs from animal disease models. In conclusion, the lessons we have learned from CC biology as a peripheral model for brain and brain disease pertain more than ever to cutting-edge research in neurobiology. In the 22nd ISCCB meeting in Israel in 2024 that Uri Asheri is organizing, we will have the opportunity of seeing the progress of the questions posed in Ibiza, and on other questions that undoubtedly will arise.
Collapse
Affiliation(s)
- Victoria Maneu
- Departamento de Óptica, Farmacología y Anatomía, Universidad de Alicante, Alicante, Spain
| | - Ricardo Borges
- Unidad de Farmacología, Departamento de Medicina Física y Farmacología, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain
| | - Luis Gandía
- Instituto Fundación Teófilo Hernando, Madrid, Spain
- Departamento de Farmacología y Terapéutica, Universidad Autónoma de Madrid, Madrid, Spain
| | - Antonio G. García
- Instituto Fundación Teófilo Hernando, Madrid, Spain
- Departamento de Farmacología y Terapéutica, Universidad Autónoma de Madrid, Madrid, Spain
- Facultad de Medicina, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
11
|
Atanga R, Singh V, In JG. Intestinal Enteroendocrine Cells: Present and Future Druggable Targets. Int J Mol Sci 2023; 24:ijms24108836. [PMID: 37240181 DOI: 10.3390/ijms24108836] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/03/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Enteroendocrine cells are specialized secretory lineage cells in the small and large intestines that secrete hormones and peptides in response to luminal contents. The various hormones and peptides can act upon neighboring cells and as part of the endocrine system, circulate systemically via immune cells and the enteric nervous system. Locally, enteroendocrine cells have a major role in gastrointestinal motility, nutrient sensing, and glucose metabolism. Targeting the intestinal enteroendocrine cells or mimicking hormone secretion has been an important field of study in obesity and other metabolic diseases. Studies on the importance of these cells in inflammatory and auto-immune diseases have only recently been reported. The rapid global increase in metabolic and inflammatory diseases suggests that increased understanding and novel therapies are needed. This review will focus on the association between enteroendocrine changes and metabolic and inflammatory disease progression and conclude with the future of enteroendocrine cells as potential druggable targets.
Collapse
Affiliation(s)
- Roger Atanga
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Varsha Singh
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Julie G In
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
12
|
Parchure A, Tian M, Stalder D, Boyer CK, Bearrows SC, Rohli KE, Zhang J, Rivera-Molina F, Ramazanov BR, Mahata SK, Wang Y, Stephens SB, Gershlick DC, von Blume J. Liquid-liquid phase separation facilitates the biogenesis of secretory storage granules. J Cell Biol 2022; 221:e202206132. [PMID: 36173346 PMCID: PMC9526250 DOI: 10.1083/jcb.202206132] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 02/03/2023] Open
Abstract
Insulin is synthesized by pancreatic β-cells and stored into secretory granules (SGs). SGs fuse with the plasma membrane in response to a stimulus and deliver insulin to the bloodstream. The mechanism of how proinsulin and its processing enzymes are sorted and targeted from the trans-Golgi network (TGN) to SGs remains mysterious. No cargo receptor for proinsulin has been identified. Here, we show that chromogranin (CG) proteins undergo liquid-liquid phase separation (LLPS) at a mildly acidic pH in the lumen of the TGN, and recruit clients like proinsulin to the condensates. Client selectivity is sequence-independent but based on the concentration of the client molecules in the TGN. We propose that the TGN provides the milieu for converting CGs into a "cargo sponge" leading to partitioning of client molecules, thus facilitating receptor-independent client sorting. These findings provide a new receptor-independent sorting model in β-cells and many other cell types and therefore represent an innovation in the field of membrane trafficking.
Collapse
Affiliation(s)
- Anup Parchure
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | - Meng Tian
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | - Danièle Stalder
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Cierra K. Boyer
- Departments of Pharmacology and Neuroscience, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA
- Internal Medicine, Division of Endocrinology and Metabolism, University of Iowa, Iowa City, IA
| | - Shelby C. Bearrows
- Departments of Pharmacology and Neuroscience, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA
- Internal Medicine, Division of Endocrinology and Metabolism, University of Iowa, Iowa City, IA
| | - Kristen E. Rohli
- Departments of Pharmacology and Neuroscience, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA
- Internal Medicine, Division of Endocrinology and Metabolism, University of Iowa, Iowa City, IA
| | - Jianchao Zhang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI
- Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI
| | - Felix Rivera-Molina
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | - Bulat R. Ramazanov
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | - Sushil K. Mahata
- Department of Medicine, University of California San Diego, La Jolla, CA
- VA San Diego Healthcare System, San Diego, CA
| | - Yanzhuang Wang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI
- Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI
| | - Samuel B. Stephens
- Departments of Pharmacology and Neuroscience, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA
| | - David C. Gershlick
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Julia von Blume
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
13
|
Srivastava H, Lippincott MJ, Currie J, Canfield R, Lam MPY, Lau E. Protein prediction models support widespread post-transcriptional regulation of protein abundance by interacting partners. PLoS Comput Biol 2022; 18:e1010702. [PMID: 36356032 PMCID: PMC9681107 DOI: 10.1371/journal.pcbi.1010702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 11/22/2022] [Accepted: 11/01/2022] [Indexed: 11/12/2022] Open
Abstract
Protein and mRNA levels correlate only moderately. The availability of proteogenomics data sets with protein and transcript measurements from matching samples is providing new opportunities to assess the degree to which protein levels in a system can be predicted from mRNA information. Here we examined the contributions of input features in protein abundance prediction models. Using large proteogenomics data from 8 cancer types within the Clinical Proteomic Tumor Analysis Consortium (CPTAC) data set, we trained models to predict the abundance of over 13,000 proteins using matching transcriptome data from up to 958 tumor or normal adjacent tissue samples each, and compared predictive performances across algorithms, data set sizes, and input features. Over one-third of proteins (4,648) showed relatively poor predictability (elastic net r ≤ 0.3) from their cognate transcripts. Moreover, we found widespread occurrences where the abundance of a protein is considerably less well explained by its own cognate transcript level than that of one or more trans locus transcripts. The incorporation of additional trans-locus transcript abundance data as input features increasingly improved the ability to predict sample protein abundance. Transcripts that contribute to non-cognate protein abundance primarily involve those encoding known or predicted interaction partners of the protein of interest, including not only large multi-protein complexes as previously shown, but also small stable complexes in the proteome with only one or few stable interacting partners. Network analysis further shows a complex proteome-wide interdependency of protein abundance on the transcript levels of multiple interacting partners. The predictive model analysis here therefore supports that protein-protein interaction including in small protein complexes exert post-transcriptional influence on proteome compositions more broadly than previously recognized. Moreover, the results suggest mRNA and protein co-expression analysis may have utility for finding gene interactions and predicting expression changes in biological systems.
Collapse
Affiliation(s)
- Himangi Srivastava
- Department of Medicine/Cardiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- Consortium for Fibrosis Research and Translation, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Michael J. Lippincott
- Department of Medicine/Cardiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Jordan Currie
- Department of Medicine/Cardiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Robert Canfield
- Department of Medicine/Cardiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Maggie P. Y. Lam
- Department of Medicine/Cardiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- Consortium for Fibrosis Research and Translation, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Edward Lau
- Department of Medicine/Cardiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- Consortium for Fibrosis Research and Translation, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| |
Collapse
|
14
|
Bosi E, Marchetti P, Rutter GA, Eizirik DL. Human alpha cell transcriptomic signatures of types 1 and 2 diabetes highlight disease-specific dysfunction pathways. iScience 2022; 25:105056. [PMID: 36134336 PMCID: PMC9483809 DOI: 10.1016/j.isci.2022.105056] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/10/2022] [Accepted: 08/26/2022] [Indexed: 01/24/2023] Open
Abstract
Although glucagon secretion is perturbed in both T1D and T2D, the pathophysiological changes in individual pancreatic alpha cells are still obscure. Using recently curated single-cell RNASeq data from T1D or T2D donors and their controls, we identified alpha cell transcriptomic alterations consistent with both common and discrete pathways. Although alterations in alpha cell identity gene (ARX, MAFB) expression were conserved, cytokine-regulated genes and genes involved in glucagon biosynthesis and processing were up-regulated in T1D. Conversely, mitochondrial genes associated with ROS (COX7B, NQO2) were dysregulated in T2D. Additionally, T1D alpha cells displayed altered expression of autoimmune-induced ER stress genes (ERLEC1, HSP90), whilst those from T2D subjects showed modified glycolytic and citrate cycle gene (LDHA?, PDHB, PDK4) expression. Thus, despite conserved alterations related to loss of function, alpha cells display disease-specific gene signatures which may be secondary to the main pathogenic events in each disease, namely immune- or metabolism-mediated-stress, in T1D and T2D, respectively.
Collapse
Affiliation(s)
- Emanuele Bosi
- Department of Experimental and Clinical Medicine, Pancreatic Islets Laboratory, University of Pisa, Pisa, Italy
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genova, Italy
- Corresponding author
| | - Piero Marchetti
- Department of Experimental and Clinical Medicine, Pancreatic Islets Laboratory, University of Pisa, Pisa, Italy
| | - Guy Allen Rutter
- CR-CHUM and Université de Montréal, Montréal, QC, Canada
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Decio Laks Eizirik
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
15
|
Eiden LE, Hernández VS, Jiang SZ, Zhang L. Neuropeptides and small-molecule amine transmitters: cooperative signaling in the nervous system. Cell Mol Life Sci 2022; 79:492. [PMID: 35997826 PMCID: PMC11072502 DOI: 10.1007/s00018-022-04451-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 06/15/2022] [Accepted: 06/23/2022] [Indexed: 12/17/2022]
Abstract
Neuropeptides are expressed in cell-specific patterns throughout mammalian brain. Neuropeptide gene expression has been useful for clustering neurons by phenotype, based on single-cell transcriptomics, and for defining specific functional circuits throughout the brain. How neuropeptides function as first messengers in inter-neuronal communication, in cooperation with classical small-molecule amine transmitters (SMATs) is a current topic of systems neurobiology. Questions include how neuropeptides and SMATs cooperate in neurotransmission at the molecular, cellular and circuit levels; whether neuropeptides and SMATs always co-exist in neurons; where neuropeptides and SMATs are stored in the neuron, released from the neuron and acting, and at which receptors, after release; and how neuropeptides affect 'classical' transmitter function, both directly upon co-release, and indirectly, via long-term regulation of gene transcription and neuronal plasticity. Here, we review an extensive body of data about the distribution of neuropeptides and their receptors, their actions after neuronal release, and their function based on pharmacological and genetic loss- and gain-of-function experiments, that addresses these questions, fundamental to understanding brain function, and development of neuropeptide-based, and potentially combinatorial peptide/SMAT-based, neurotherapeutics.
Collapse
Affiliation(s)
- Lee E Eiden
- Section On Molecular Neuroscience, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, 49 Convent Drive, Room 5A38, Bethesda, MD, 20892, USA.
| | - Vito S Hernández
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Sunny Z Jiang
- Section On Molecular Neuroscience, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, 49 Convent Drive, Room 5A38, Bethesda, MD, 20892, USA
| | - Limei Zhang
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City, Mexico.
| |
Collapse
|
16
|
Ishii J, Sato-Yazawa H, Kashiwagi K, Nakadate K, Iwamoto M, Kohno K, Miyata-Hiramatsu C, Masawa M, Onozaki M, Noda S, Miyazawa T, Takagi M, Yazawa T. Endocrine secretory granule production is caused by a lack of REST and intragranular secretory content and accelerated by PROX1. J Mol Histol 2022; 53:437-448. [PMID: 35094211 PMCID: PMC9117388 DOI: 10.1007/s10735-021-10055-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/23/2021] [Indexed: 12/30/2022]
Abstract
Endocrine secretory granules (ESGs) are morphological characteristics of endocrine/neuroendocrine cells and store peptide hormones/neurotransmitters. ESGs contain prohormones and ESG-related molecules, mainly chromogranin/secretogranin family proteins. However, the precise mechanism of ESG formation has not been elucidated. In this study, we experimentally induced ESGs in the non-neuroendocrine lung cancer cell line H1299. Since repressive element 1 silencing transcription factor (REST) and prospero homeobox 1 (PROX1) are closely associated with the expression of ESG-related molecules, we edited the REST gene and/or transfected PROX1 and then performed molecular biology, immunocytochemistry, and electron and immunoelectron microscopy assays to determine whether ESG-related molecules and ESGs were induced in H1299 cells. Although chromogranin/secretogranin family proteins were induced in H1299 cells by knockout of REST and the induction was accelerated by the PROX1 transgene, the ESGs could not be defined by electron microscopy. However, a small number of ESGs were detected in the H1299 cells lacking REST and expressing pro-opiomelanocortin (POMC) by electron microscopy. Furthermore, many ESGs were produced in the REST-lacking and PROX1- and POMC-expressing H1299 cells. These findings suggest that a lack of REST and the expression of genes related to ESG content are indispensable for ESG production and that PROX1 accelerates ESG production. Trial registration: Not applicable.
Collapse
Affiliation(s)
- Jun Ishii
- Department of Pathology, Dokkyo Medical University School of Medicine and Graduate School of Medicine, Mibu-machi, Tochigi, Japan
| | - Hanako Sato-Yazawa
- Department of Pathology, Dokkyo Medical University School of Medicine and Graduate School of Medicine, Mibu-machi, Tochigi, Japan
| | - Korehito Kashiwagi
- Department of Pathology, Dokkyo Medical University School of Medicine and Graduate School of Medicine, Mibu-machi, Tochigi, Japan
| | - Kazuhiko Nakadate
- Education Research Center, Meiji Pharmaceutical University, Kiyose-shi, Tokyo, Japan
| | - Masami Iwamoto
- Department of Pathology, Dokkyo Medical University School of Medicine and Graduate School of Medicine, Mibu-machi, Tochigi, Japan
- Department of Pathology, The Jikei University, Minato-ku, Tokyo, Japan
| | - Kakeru Kohno
- Department of Pathology, Dokkyo Medical University School of Medicine and Graduate School of Medicine, Mibu-machi, Tochigi, Japan
- Institute of Life Innovation Studies, Toyo University, Itakura-machi, Gunma, Japan
| | - Chie Miyata-Hiramatsu
- Department of Pathology, Dokkyo Medical University School of Medicine and Graduate School of Medicine, Mibu-machi, Tochigi, Japan
| | - Meitetsu Masawa
- Department of Respiratory Medicine, Dokkyo Medical University School of Medicine and Graduate School of Medicine, Mibu-machi, Tochigi, Japan
| | - Masato Onozaki
- Department of Diagnostic Pathology, Dokkyo Medical University School of Medicine and Graduate School of Medicine, Mibu-machi, Tochigi, Japan
| | - Shuhei Noda
- Department of Diagnostic Pathology, Dokkyo Medical University School of Medicine and Graduate School of Medicine, Mibu-machi, Tochigi, Japan
| | - Tadasuke Miyazawa
- Department of Pathology, Dokkyo Medical University School of Medicine and Graduate School of Medicine, Mibu-machi, Tochigi, Japan
| | - Megumi Takagi
- Department of Pathology, Dokkyo Medical University School of Medicine and Graduate School of Medicine, Mibu-machi, Tochigi, Japan
| | - Takuya Yazawa
- Department of Pathology, Dokkyo Medical University School of Medicine and Graduate School of Medicine, Mibu-machi, Tochigi, Japan.
| |
Collapse
|
17
|
Reck J, Beuret N, Demirci E, Prescianotto-Baschong C, Spiess M. Small disulfide loops in peptide hormones mediate self-aggregation and secretory granule sorting. Life Sci Alliance 2022; 5:5/5/e202101279. [PMID: 35086936 PMCID: PMC8807871 DOI: 10.26508/lsa.202101279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 11/24/2022] Open
Abstract
Unlike constitutively secreted proteins, peptide hormones are stored in densely packed secretory granules, before regulated release upon stimulation. Secretory granules are formed at the TGN by self-aggregation of prohormones as functional amyloids. The nonapeptide hormone vasopressin, which forms a small disulfide loop, was shown to be responsible for granule formation of its precursor in the TGN as well as for toxic fibrillar aggregation of unfolded mutants in the ER. Several other hormone precursors also contain similar small disulfide loops suggesting their function as a general device to mediate aggregation for granule sorting. To test this hypothesis, we studied the capacity of small disulfide loops of different hormone precursors to mediate aggregation in the ER and the TGN. They indeed induced ER aggregation in Neuro-2a and COS-1 cells. Fused to a constitutively secreted reporter protein, they also promoted sorting into secretory granules, enhanced stimulated secretion, and increased Lubrol insolubility in AtT20 cells. These results support the hypothesis that small disulfide loops act as novel signals for sorting into secretory granules by self-aggregation.
Collapse
|
18
|
Performance Evaluation of the KRYPTOR Compact PLUS Analyzer-Based B.R.A.H.M.S. CgA Ⅱ KRYPTOR Assay for Chromogranin A Measurement. Diagnostics (Basel) 2021; 11:diagnostics11122400. [PMID: 34943638 PMCID: PMC8700334 DOI: 10.3390/diagnostics11122400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 12/04/2022] Open
Abstract
Numerous immunoassays have been developed to measure the levels of chromogranin A (CgA), a useful biomarker for diagnosing and monitoring generally heterogeneous neuroendocrine tumors (NETs). Here, we evaluated the imprecision and linearity of three such assays: KRYPTOR (ThermoFisher Scientific), NEOLISA (EuroDiagnostica), and CgA-RIA (CisBio), using 123 samples for each assay. The correlation coefficients between the assays were 0.932 (CgA-RIA versus NEOLISA), 0.956 (KRYPTOR versus CgA-RIA), and 0.873 (NEOLISA versus KRYPTOR). KRYPTOR showed good precision, with percent coefficients of variation less than 5% for low and high concentration quality controls. Linearity was maintained over a wide concentration range. Comparison of CgA levels from three disease entities (NETs, non-NET pancreatic tumors, and prostate cancer) and healthy controls showed that patients with NETs had significantly higher CgA levels (n = 57, mean: 1.82 ± 0.43 log ng/mL) than healthy individuals (n = 20, mean: 1.51 ± 0.23 log ng/mL; p = 0.018). No other significant differences between groups were observed. All three immunoassays showed strong correlations in measured CgA levels. Because KRYPTOR operation uses a fully automated random-access system and requires shorter incubation times and smaller sample volumes, the KRYPTOR assay may improve laboratory workflow while maintaining satisfactory analytical performance.
Collapse
|
19
|
Ford C, Parchure A, von Blume J, Burd CG. Cargo sorting at the trans-Golgi network at a glance. J Cell Sci 2021; 134:jcs259110. [PMID: 34870705 PMCID: PMC8714066 DOI: 10.1242/jcs.259110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The Golgi functions principally in the biogenesis and trafficking of glycoproteins and lipids. It is compartmentalized into multiple flattened adherent membrane sacs termed cisternae, which each contain a distinct repertoire of resident proteins, principally enzymes that modify newly synthesized proteins and lipids sequentially as they traffic through the stack of Golgi cisternae. Upon reaching the final compartments of the Golgi, the trans cisterna and trans-Golgi network (TGN), processed glycoproteins and lipids are packaged into coated and non-coated transport carriers derived from the trans Golgi and TGN. The cargoes of clathrin-coated vesicles are chiefly residents of endo-lysosomal organelles, while uncoated carriers ferry cargo to the cell surface. There are outstanding questions regarding the mechanisms of protein and lipid sorting within the Golgi for export to different organelles. Nonetheless, conceptual advances have begun to define the key molecular features of cargo clients and the mechanisms underlying their sorting into distinct export pathways, which we have collated in this Cell Science at a Glance article and the accompanying poster.
Collapse
Affiliation(s)
| | | | - Julia von Blume
- Department of Cell Biology, Yale School of Medicine, Yale University, New Haven, CT 06520, USA
| | - Christopher G. Burd
- Department of Cell Biology, Yale School of Medicine, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
20
|
Tanguy E, Wolf A, Wang Q, Chasserot-Golaz S, Ory S, Gasman S, Vitale N. Phospholipase D1-generated phosphatidic acid modulates secretory granule trafficking from biogenesis to compensatory endocytosis in neuroendocrine cells. Adv Biol Regul 2021; 83:100844. [PMID: 34876384 DOI: 10.1016/j.jbior.2021.100844] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022]
Abstract
Calcium-regulated exocytosis is a multi-step process that allows specialized secretory cells to release informative molecules such as neurotransmitters, neuropeptides, and hormones for intercellular communication. The biogenesis of secretory vesicles from the Golgi cisternae is followed by their transport towards the cell periphery and their docking and fusion to the exocytic sites of the plasma membrane allowing release of vesicular content. Subsequent compensatory endocytosis of the protein and lipidic constituents of the vesicles maintains cell homeostasis. Despite the fact that lipids represent the majority of membrane constituents, little is known about their contribution to these processes. Using a combination of electrochemical measurement of single chromaffin cell catecholamine secretion and electron microscopy of roof-top membrane sheets associated with genetic, silencing and pharmacological approaches, we recently reported that diverse phosphatidic acid (PA) species regulates catecholamine release efficiency by controlling granule docking and fusion kinetics. The enzyme phospholipase D1 (PLD1), producing PA from phosphatidylcholine, seems to be the major responsible of these effects in this model. Here, we extended this work using spinning disk confocal microscopy showing that inhibition of PLD activity also reduced the velocity of granules undergoing a directed motion. Furthermore, a dopamine β-hydroxylase (DβH) internalization assay revealed that PA produced by PLD is required for an optimal recovery of vesicular membrane content by compensatory endocytosis. Thus, among numerous roles that have been attributed to PA our work gives core to the key regulatory role in secretion that has been proposed in different cell models. Few leads to explain these multiple functions of PA along the secretory pathway are discussed.
Collapse
Affiliation(s)
- Emeline Tanguy
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, F-67000, Strasbourg, France
| | - Alexander Wolf
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, F-67000, Strasbourg, France
| | - Qili Wang
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, F-67000, Strasbourg, France
| | - Sylvette Chasserot-Golaz
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, F-67000, Strasbourg, France
| | - Stéphane Ory
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, F-67000, Strasbourg, France
| | - Stéphane Gasman
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, F-67000, Strasbourg, France
| | - Nicolas Vitale
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, F-67000, Strasbourg, France.
| |
Collapse
|
21
|
Xiang C, Chen P, Zhang Q, Li Y, Pan Y, Xie W, Sun J, Liu Z. Intestinal microbiota modulates adrenomedullary response through Nod1 sensing in chromaffin cells. iScience 2021; 24:102849. [PMID: 34381974 PMCID: PMC8333343 DOI: 10.1016/j.isci.2021.102849] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/07/2021] [Accepted: 07/09/2021] [Indexed: 12/20/2022] Open
Abstract
The intestinal microbiota closely interacts with the neuroendocrine system and exerts profound effects on host physiology. Here, we report that nucleotide-binding oligomerization domain 1 (Nod1) ligand derived from intestinal bacteria modulates catecholamine storage and secretion in mouse adrenal chromaffin cells. The cytosolic peptidoglycan receptor Nod1 is involved in chromogranin A (Chga) retention in dense core granules (DCGs) in chromaffin cells. Mechanistically, upon recognizing its ligand, Nod1 localizes to DCGs, and recruits Rab2a, which is critical for Chga and epinephrine retention in DCGs. Depletion of Nod1 ligand or deficiency of Nod1 leads to a profound defect in epinephrine storage in chromaffin cells and subsequently less secretion upon stimulation. The intestine-adrenal medulla cross talk bridged by Nod1 ligand modulates adrenal medullary responses during the immobilization-induced stress response in mice. Thus, our study uncovers a mechanism by which intestinal microbes modulate epinephrine secretion in response to stress, which may provide further understanding of the gut-brain axis.
Collapse
Affiliation(s)
- Chen Xiang
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peihua Chen
- University of Chinese Academy of Sciences, Beijing 100049, China
- The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, CAS; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, CAS, Beijing, 100101, China
| | - Qin Zhang
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yinghui Li
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Pan
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenchun Xie
- Key Laboratory of Interdisciplinary Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Guang Dong Bio-healtech Advanced Co., Ltd., Foshan, 528000, P. R. China
| | - Jianyuan Sun
- University of Chinese Academy of Sciences, Beijing 100049, China
- The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, CAS; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, CAS, Beijing, 100101, China
| | - Zhihua Liu
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Immunology, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| |
Collapse
|
22
|
Noborn F, Nikpour M, Persson A, Nilsson J, Larson G. Expanding the Chondroitin Sulfate Glycoproteome - But How Far? Front Cell Dev Biol 2021; 9:695970. [PMID: 34490248 PMCID: PMC8418075 DOI: 10.3389/fcell.2021.695970] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/27/2021] [Indexed: 12/15/2022] Open
Abstract
Chondroitin sulfate proteoglycans (CSPGs) are found at cell surfaces and in connective tissues, where they interact with a multitude of proteins involved in various pathophysiological processes. From a methodological perspective, the identification of CSPGs is challenging, as the identification requires the combined sequencing of specific core proteins, together with the characterization of the CS polysaccharide modification(s). According to the current notion of CSPGs, they are often considered in relation to a functional role in which a given proteoglycan regulates a specific function in cellular physiology. Recent advances in glycoproteomic methods have, however, enabled the identification of numerous novel chondroitin sulfate core proteins, and their glycosaminoglycan attachment sites, in humans and in various animal models. In addition, these methods have revealed unexpected structural complexity even in the linkage regions. These findings indicate that the number and structural complexity of CSPGs are much greater than previously perceived. In light of these findings, the prospect of finding additional CSPGs, using improved methods for structural and functional characterizations, and studying novel sample matrices in humans and in animal models is discussed. Further, as many of the novel CSPGs are found in low abundance and with not yet assigned functions, these findings may challenge the traditional notion of defining proteoglycans. Therefore, the concept of proteoglycans is considered, discussing whether "a proteoglycan" should be defined mainly on the basis of an assigned function or on the structural evidence of its existence.
Collapse
Affiliation(s)
- Fredrik Noborn
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Mahnaz Nikpour
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Andrea Persson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Jonas Nilsson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Proteomics Core Facility, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Göran Larson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
23
|
Ramazanov BR, Tran ML, von Blume J. Sending out molecules from the TGN. Curr Opin Cell Biol 2021; 71:55-62. [PMID: 33706234 PMCID: PMC8328904 DOI: 10.1016/j.ceb.2021.02.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/27/2021] [Accepted: 02/04/2021] [Indexed: 01/20/2023]
Abstract
The sorting of secreted cargo proteins and their export from the trans-Golgi network (TGN) remains an enigma in the field of membrane trafficking; although the sorting mechanisms of many transmembrane proteins have been well described. The sorting of secreted proteins at the TGN is crucial for the release of signaling factors, as well as extracellular matrix proteins. These proteins are required for cell-cell communication and integrity of an organism. Missecretion of these factors can cause diseases such as neurological disorders, autoimmune disease, or cancer. The major open question is how soluble proteins that are not associated with the membrane are packed into TGN derived transport carriers to facilitate their transport to the plasma membrane. Recent investigations have identified novel types of protein and lipid machinery that facilitate the packing of these molecules into a TGN derived vesicle. In addition, novel research has uncovered an exciting link between cargo sorting and export in which TGN structure and dynamics, as well as TGN/endoplasmic reticulum contact sites, play a significant role. Here, we have reviewed the progress made in our understanding of these processes.
Collapse
Affiliation(s)
- Bulat R Ramazanov
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Mai Ly Tran
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Julia von Blume
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
24
|
Tao-Cheng JH, Crocker V, Moreira SL, Azzam R. Optimization of protocols for pre-embedding immunogold electron microscopy of neurons in cell cultures and brains. Mol Brain 2021; 14:86. [PMID: 34082785 PMCID: PMC8173732 DOI: 10.1186/s13041-021-00799-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/27/2021] [Indexed: 02/08/2023] Open
Abstract
Immunogold labeling allows localization of proteins at the electron microscopy (EM) level of resolution, and quantification of signals. The present paper summarizes methodological issues and experiences gained from studies on the distribution of synaptic and other neuron-specific proteins in cell cultures and brain tissues via a pre-embedding method. An optimal protocol includes careful determination of a fixation condition for any particular antibody, a well-planned tissue processing procedure, and a strict evaluation of the credibility of the labeling. Here, tips and caveats on different steps of the sample preparation protocol are illustrated with examples. A good starting condition for EM-compatible fixation and permeabilization is 4% paraformaldehyde in PBS for 30 min at room temperature, followed by 30 min incubation with 0.1% saponin. An optimal condition can then be readjusted for each particular antibody. Each lot of the secondary antibody (conjugated with a 1.4 nm small gold particle) needs to be evaluated against known standards for labeling efficiency. Silver enhancement is required to make the small gold visible, and quality of the silver-enhanced signals can be affected by subsequent steps of osmium tetroxide treatment, uranyl acetate en bloc staining, and by detergent or ethanol used to clean the diamond knife for cutting thin sections. Most importantly, verification of signals requires understanding of the protein of interest in order to validate for correct localization of antibodies at expected epitopes on particular organelles, and quantification of signals needs to take into consideration the penetration gradient of reagents and clumping of secondary antibodies.
Collapse
Affiliation(s)
- Jung-Hwa Tao-Cheng
- NINDS Electron Microscopy Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Virginia Crocker
- NINDS Electron Microscopy Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sandra Lara Moreira
- NINDS Electron Microscopy Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Rita Azzam
- NINDS Electron Microscopy Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
25
|
Isolation and Proteomics of the Insulin Secretory Granule. Metabolites 2021; 11:metabo11050288. [PMID: 33946444 PMCID: PMC8147143 DOI: 10.3390/metabo11050288] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/28/2021] [Accepted: 04/28/2021] [Indexed: 12/21/2022] Open
Abstract
Insulin, a vital hormone for glucose homeostasis is produced by pancreatic beta-cells and when secreted, stimulates the uptake and storage of glucose from the blood. In the pancreas, insulin is stored in vesicles termed insulin secretory granules (ISGs). In Type 2 diabetes (T2D), defects in insulin action results in peripheral insulin resistance and beta-cell compensation, ultimately leading to dysfunctional ISG production and secretion. ISGs are functionally dynamic and many proteins present either on the membrane or in the lumen of the ISG may modulate and affect different stages of ISG trafficking and secretion. Previously, studies have identified few ISG proteins and more recently, proteomics analyses of purified ISGs have uncovered potential novel ISG proteins. This review summarizes the proteins identified in the current ISG proteomes from rat insulinoma INS-1 and INS-1E cell lines. Here, we also discuss techniques of ISG isolation and purification, its challenges and potential future directions.
Collapse
|
26
|
Ma CIJ, Burgess J, Brill JA. Maturing secretory granules: Where secretory and endocytic pathways converge. Adv Biol Regul 2021; 80:100807. [PMID: 33866198 DOI: 10.1016/j.jbior.2021.100807] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/10/2021] [Accepted: 03/18/2021] [Indexed: 10/21/2022]
Abstract
Secretory granules (SGs) are specialized organelles responsible for the storage and regulated release of various biologically active molecules from the endocrine and exocrine systems. Thus, proper SG biogenesis is critical to normal animal physiology. Biogenesis of SGs starts at the trans-Golgi network (TGN), where immature SGs (iSGs) bud off and undergo maturation before fusing with the plasma membrane (PM). How iSGs mature is unclear, but emerging studies have suggested an important role for the endocytic pathway. The requirement for endocytic machinery in SG maturation blurs the line between SGs and another class of secretory organelles called lysosome-related organelles (LROs). Therefore, it is important to re-evaluate the differences and similarities between SGs and LROs.
Collapse
Affiliation(s)
- Cheng-I Jonathan Ma
- Cell Biology Program, The Hospital for Sick Children, PGCRL Building, Room 15.9716, 686 Bay Street, Toronto, Ontario, M5G 0A4, Canada; Institute of Medical Science, University of Toronto, Medical Sciences Building, Room 2374, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Jason Burgess
- Cell Biology Program, The Hospital for Sick Children, PGCRL Building, Room 15.9716, 686 Bay Street, Toronto, Ontario, M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Medical Sciences Building, Room 4396, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Julie A Brill
- Cell Biology Program, The Hospital for Sick Children, PGCRL Building, Room 15.9716, 686 Bay Street, Toronto, Ontario, M5G 0A4, Canada; Institute of Medical Science, University of Toronto, Medical Sciences Building, Room 2374, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada; Department of Molecular Genetics, University of Toronto, Medical Sciences Building, Room 4396, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada.
| |
Collapse
|
27
|
Persson A, Nikpour M, Vorontsov E, Nilsson J, Larson G. Domain Mapping of Chondroitin/Dermatan Sulfate Glycosaminoglycans Enables Structural Characterization of Proteoglycans. Mol Cell Proteomics 2021; 20:100074. [PMID: 33757834 PMCID: PMC8724862 DOI: 10.1016/j.mcpro.2021.100074] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/22/2021] [Accepted: 03/17/2021] [Indexed: 12/20/2022] Open
Abstract
Of all posttranslational modifications known, glycosaminoglycans (GAGs) remain one of the most challenging to study, and despite the recent years of advancement in MS technologies and bioinformatics, detailed knowledge about the complete structures of GAGs as part of proteoglycans (PGs) is limited. To address this issue, we have developed a protocol to study PG-derived GAGs. Chondroitin/dermatan sulfate conjugates from the rat insulinoma cell line, INS-1832/13, known to produce primarily the PG chromogranin-A, were enriched by anion-exchange chromatography after pronase digestion. Following benzonase and hyaluronidase digestions, included in the sample preparation due to the apparent interference from oligonucleotides and hyaluronic acid in the analysis, the GAGs were orthogonally depolymerized and analyzed using nano-flow reversed-phase LC-MS/MS in negative mode. To facilitate the data interpretation, we applied an automated LC-MS peak detection and intensity measurement via the Proteome Discoverer software. This approach effectively provided a detailed structural description of the nonreducing end, internal, and linkage region domains of the CS/DS of chromogranin-A. The copolymeric CS/DS GAGs constituted primarily consecutive glucuronic-acid-containing disaccharide units, or CS motifs, of which the N-acetylgalactosamine residues were 4-O-sulfated, interspersed by single iduronic-acid-containing disaccharide units. Our data suggest a certain heterogeneity of the GAGs due to the identification of not only CS/DS GAGs but also of GAGs entirely of CS character. The presented protocol allows for the detailed characterization of PG-derived GAGs, which may greatly increase the knowledge about GAG structures in general and eventually lead to better understanding of how GAG structures are related to biological functions. Protocol developed to structurally characterize glycosaminoglycans of proteoglycans. Comprehensive characterization of cellular glycosaminoglycan structures. Relative quantification of nonreducing end, internal, and linkage region domains. Overall chondroitin/dermatan sulfate glycosaminoglycan structures of chromogranin-A.
Collapse
Affiliation(s)
- Andrea Persson
- Department of Laboratory Medicine, Sahlgrenska Academy at the University of Gothenburg, Sweden.
| | - Mahnaz Nikpour
- Department of Laboratory Medicine, Sahlgrenska Academy at the University of Gothenburg, Sweden
| | - Egor Vorontsov
- Proteomics Core Facility, Sahlgrenska Academy at the University of Gothenburg, Sweden
| | - Jonas Nilsson
- Department of Laboratory Medicine, Sahlgrenska Academy at the University of Gothenburg, Sweden; Proteomics Core Facility, Sahlgrenska Academy at the University of Gothenburg, Sweden; Laboratory of Clinical Chemistry, Sahlgrenska University Hospital, Västra Götaland Region, Sweden
| | - Göran Larson
- Department of Laboratory Medicine, Sahlgrenska Academy at the University of Gothenburg, Sweden; Laboratory of Clinical Chemistry, Sahlgrenska University Hospital, Västra Götaland Region, Sweden.
| |
Collapse
|
28
|
Catestatin peptide of chromogranin A as a potential new target for several risk factors management in the course of metabolic syndrome. Biomed Pharmacother 2020; 134:111113. [PMID: 33341043 DOI: 10.1016/j.biopha.2020.111113] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/29/2020] [Accepted: 12/04/2020] [Indexed: 12/12/2022] Open
Abstract
Obesity, lipodystrophy, diabetes, and hypertension collectively constitute the main features of Metabolic Syndrome (MetS), together with insulin resistance (IR), which is considered as a defining element. MetS generally leads to the development of cardiovascular disease (CVD), which is a determinant cause of mortality and morbidity in humans and animals. Therefore, it is essential to implement and put in place adequate management strategies for the treatment of this disease. Catestatin is a bioactive peptide with 21 amino acids, which is derived through cleaving of the prohormone chromogranin A (CHGA/CgA) that is co-released with catecholamines from secretory vesicles and, which is responsible for hepatic/plasma lipids and insulin levels regulation, improves insulin sensitivity, reduces hypertension and attenuates obesity in murine models. In humans, there were few published studies, which showed that low levels of catestatin are significant risk factors for hypertension in adult patients. These accumulating evidence documents clearly that catestatin peptide (CST) is linked to inflammatory and metabolic syndrome diseases and can be a novel regulator of insulin and lipid levels, blood pressure, and cardiac function. The goal of this review is to provide an overview of the CST effects in metabolic syndrome given its role in metabolic regulation and thus, provide new insights into the use of CST as a diagnostic marker and therapeutic target.
Collapse
|
29
|
Voronkova IA, Eremkina AK, Krupinova YA, Gurevich LE, Mokrysheva NG. [Neuroendocrine markers in parathyroid tumors]. Arkh Patol 2020; 82:70-78. [PMID: 33274631 DOI: 10.17116/patol20208206170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The parathyroid glands (PTGs) are a key regulator of calcium and phosphorus metabolism in the human body. In terms of their, morphological and immunophenotypic characteristics, PTGs are neuroendocrine organs, and their neoplasms are neuroendocrine tumors. These neoplasms include adenoma and cancer; in addition, glandular hyperplasia may develop, which is most characteristic of multiple endocrine neoplasia (MEN1, MEN2a, and MEN4) syndromes. The morphological characteristics of pathologically altered PTGs in MEN syndromes are variable. The analysis and generalization of knowledge about the features and expression of various immunohistochemical markers in PTG tissue in health and in diseases are useful in the practical work of not only pathologists, but also clinicians of various specialties.
Collapse
Affiliation(s)
- I A Voronkova
- National Medical Research Center of Endocrinology of the Ministry of Health of Russia, Moscow, Russia.,M.F. Vladimirsky Moscow Regional Research and Clinical Institute, Moscow, Russia
| | - A K Eremkina
- National Medical Research Center of Endocrinology of the Ministry of Health of Russia, Moscow, Russia
| | - Yu A Krupinova
- National Medical Research Center of Endocrinology of the Ministry of Health of Russia, Moscow, Russia
| | - L E Gurevich
- M.F. Vladimirsky Moscow Regional Research and Clinical Institute, Moscow, Russia
| | - N G Mokrysheva
- National Medical Research Center of Endocrinology of the Ministry of Health of Russia, Moscow, Russia
| |
Collapse
|
30
|
Yu J, He X, Wei A, Liu T, Zhang Q, Pan Y, Hao Z, Yang L, Yuan Y, Zhang Z, Zhang C, Hao C, Liu Z, Li W. HPS1 Regulates the Maturation of Large Dense Core Vesicles and Lysozyme Secretion in Paneth Cells. Front Immunol 2020; 11:560110. [PMID: 33224134 PMCID: PMC7674556 DOI: 10.3389/fimmu.2020.560110] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022] Open
Abstract
HPS1, a BLOC-3 subunit that acts as a guanine nucleotide exchange factor of Rab32/38, may play a role in the removal of VAMP7 during the maturation of large dense core vesicles of Paneth cells. Loss of HPS1 impairs lysozyme secretion and alters the composition of intestinal microbiota, which may explain the susceptibility of HPS-associated inflammatory bowel disease. Hermansky-Pudlak syndrome (HPS) is characterized by oculocutaneous albinism, bleeding tendency, and other chronic organ lesions due to defects in tissue-specific lysosome-related organelles (LROs). For some HPS subtypes, such as HPS-1, it is common to have symptoms of HPS-associated inflammatory bowel disease (IBD). However, its underlying mechanism is largely unknown. HPS1 is a subunit of the BLOC-3 complex which functions in the biogenesis of LROs. Large dense core vesicles (LDCVs) in Paneth cells of the intestine are a type of LROs. We here first report the abnormal LDCV morphology (increased number and enlarged size) in HPS1-deficient pale ear (ep) mice. Similar to its role in melanosome maturation, HPS1 plays an important function in the removal of VAMP7 from LDCVs to promote the maturation of LDCVs. The immature LDCVs in ep mice are defective in regulated secretion of lysozyme, a key anti-microbial peptide in the intestine. We observed changes in the composition of intestinal microbiota in both HPS-1 patients and ep mice. These findings provide insights into the underlying mechanism of HPS-associated IBD development, which may be implicated in possible therapeutic intervention of this devastating condition.
Collapse
Affiliation(s)
- Jiaying Yu
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, MOE Key Laboratory of Major Diseases in Children, Genetics and Birth Defects Control Center, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China.,University of Chinese Academy of Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xin He
- University of Chinese Academy of Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Aihua Wei
- Department of Dermatology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Teng Liu
- Department of Dermatology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Qin Zhang
- Institute for Immunology, Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Ying Pan
- Institute for Immunology, Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Zhenhua Hao
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, MOE Key Laboratory of Major Diseases in Children, Genetics and Birth Defects Control Center, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Lin Yang
- University of Chinese Academy of Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yefeng Yuan
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, MOE Key Laboratory of Major Diseases in Children, Genetics and Birth Defects Control Center, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Zhao Zhang
- University of Chinese Academy of Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Chang Zhang
- University of Chinese Academy of Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Chanjuan Hao
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, MOE Key Laboratory of Major Diseases in Children, Genetics and Birth Defects Control Center, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Zhihua Liu
- Institute for Immunology, Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Wei Li
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, MOE Key Laboratory of Major Diseases in Children, Genetics and Birth Defects Control Center, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
31
|
Chen H, Victor AK, Klein J, Tacer KF, Tai DJ, de Esch C, Nuttle A, Temirov J, Burnett LC, Rosenbaum M, Zhang Y, Ding L, Moresco JJ, Diedrich JK, Yates JR, Tillman HS, Leibel RL, Talkowski ME, Billadeau DD, Reiter LT, Potts PR. Loss of MAGEL2 in Prader-Willi syndrome leads to decreased secretory granule and neuropeptide production. JCI Insight 2020; 5:138576. [PMID: 32879135 PMCID: PMC7526459 DOI: 10.1172/jci.insight.138576] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/22/2020] [Indexed: 12/17/2022] Open
Abstract
Prader-Willi syndrome (PWS) is a developmental disorder caused by loss of maternally imprinted genes on 15q11-q13, including melanoma antigen gene family member L2 (MAGEL2). The clinical phenotypes of PWS suggest impaired hypothalamic neuroendocrine function; however, the exact cellular defects are unknown. Here, we report deficits in secretory granule (SG) abundance and bioactive neuropeptide production upon loss of MAGEL2 in humans and mice. Unbiased proteomic analysis of Magel2pΔ/m+ mice revealed a reduction in components of SG in the hypothalamus that was confirmed in 2 PWS patient-derived neuronal cell models. Mechanistically, we show that proper endosomal trafficking by the MAGEL2-regulated WASH complex is required to prevent aberrant lysosomal degradation of SG proteins and reduction of mature SG abundance. Importantly, loss of MAGEL2 in mice, NGN2-induced neurons, and human patients led to reduced neuropeptide production. Thus, MAGEL2 plays an important role in hypothalamic neuroendocrine function, and cellular defects in this pathway may contribute to PWS disease etiology. Moreover, these findings suggest unanticipated approaches for therapeutic intervention.
Collapse
Affiliation(s)
- Helen Chen
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - A Kaitlyn Victor
- Department of Neurology, Department of Pediatrics, and Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Jonathon Klein
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Klementina Fon Tacer
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Derek Jc Tai
- Center for Genomic Medicine, Department of Neurology, Department of Pathology, and Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA.,Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute, Cambridge, Massachusetts, USA
| | - Celine de Esch
- Center for Genomic Medicine, Department of Neurology, Department of Pathology, and Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA.,Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute, Cambridge, Massachusetts, USA
| | - Alexander Nuttle
- Center for Genomic Medicine, Department of Neurology, Department of Pathology, and Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA.,Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute, Cambridge, Massachusetts, USA
| | - Jamshid Temirov
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Lisa C Burnett
- Levo Therapeutics, Inc., Skokie, Illinois, USA.,Division of Molecular Genetics, Department of Pediatrics, and Naomi Berrie Diabetes Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
| | - Michael Rosenbaum
- Division of Molecular Genetics, Department of Pediatrics, and Naomi Berrie Diabetes Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
| | - Yiying Zhang
- Division of Molecular Genetics, Department of Pediatrics, and Naomi Berrie Diabetes Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
| | - Li Ding
- Division of Oncology Research and Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, Minnesota, USA
| | - James J Moresco
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Jolene K Diedrich
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - John R Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Heather S Tillman
- Veterinary Pathology Core, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Rudolph L Leibel
- Division of Molecular Genetics, Department of Pediatrics, and Naomi Berrie Diabetes Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
| | - Michael E Talkowski
- Center for Genomic Medicine, Department of Neurology, Department of Pathology, and Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA.,Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute, Cambridge, Massachusetts, USA
| | - Daniel D Billadeau
- Division of Oncology Research and Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, Minnesota, USA
| | - Lawrence T Reiter
- Department of Neurology, Department of Pediatrics, and Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Patrick Ryan Potts
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
32
|
Yao Q, Tong Y, Peng R, Liu Z, Li Y. Associations of serum chromogranin A with depressive symptoms in men with unipolar depressive disorder. Gen Hosp Psychiatry 2020; 66:120-124. [PMID: 32829062 DOI: 10.1016/j.genhosppsych.2020.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 12/31/2022]
Abstract
OBJECTIVE The aim of the present study was to determine the changes of serum chromogranin A (CgA) levels upon depression by investigating the relationship between serum CgA levels and the depressive symptoms assessed by 24-item Hamilton Rating Scale for Depression (HRSD-24). METHOD Serum CgA levels were measured by enzyme-linked immunosorbent assay in 133 male patients with major depressive disorder (MDD) and were compared with those of 47 healthy controls. Then generalized linear regression, logistic regression and restricted cubic spline models were performed to examine the association between serum CgA levels and depressive symptoms. RESULTS Serum CgA levels were lower in MDD patients than in controls (P < 0.001) and were inversely associated with scores on HRSD-24 in unadjusted, age, smoking, alcohol consumption, traumatic life events and family history of depression-adjusted and fully adjusted linear regression model. The fully adjusted regression coefficient with 95% confidence intervals was -0.028 (-0.045, -0.010) for serum CgA levels and HRSD-24 score. Serum CgA levels were inversely associated with depressive symptoms (HRSD ≥20) in each logistic regression model. CONCLUSION Serum CgA decrease was noted in male patients of MDD and may be inversely associated with depressive symptoms.
Collapse
Affiliation(s)
- Qian Yao
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, No. 99 Zhangzhidong Road, Wuchang District, Wuhan 430060, China
| | - Yongqing Tong
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, No. 99 Zhangzhidong Road, Wuchang District, Wuhan 430060, China
| | - Rui Peng
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, No. 99 Zhangzhidong Road, Wuchang District, Wuhan 430060, China
| | - Zhongchun Liu
- Department of Psychiatry, Renmin Hospital of Wuhan University, No. 99 Zhangzhidong Road, Wuchang District, Wuhan 430060, China.
| | - Yan Li
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, No. 99 Zhangzhidong Road, Wuchang District, Wuhan 430060, China.
| |
Collapse
|
33
|
Tomita T. Significance of chromogranin A and synaptophysin in pancreatic neuroendocrine tumors. Bosn J Basic Med Sci 2020; 20:336-346. [PMID: 32020844 PMCID: PMC7416176 DOI: 10.17305/bjbms.2020.4632] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 02/04/2020] [Indexed: 01/17/2023] Open
Abstract
The two most commonly used immunohistochemical markers for neuroendocrine cells and their tumors are chromogranin A (CgA) and synaptophysin (SPY). CgA is a marker for neuroendocrine secretory granules of four pancreatic hormones and gastrin while SPY is a marker for synaptic vesicles in neuroendocrine cells, which release classic neurotransmitters such as acetylcholine and others. CgA is involved in synthesis and secretion of peptide hormones through exocytosis while the function of SPY is elusive. Thirty-five pancreatic neuroendocrine tumors (Pan-NETs) were studied, consisting of 14 insulinomas, 8 gastrinomas, 2 glucagonomas, 6 pancreatic polypeptidomas and 5 non-functioning tumors, and were immunostained for four pancreatic hormones, gastrin, CgA, and SPY. Majority of Pan-NETs were less immunostained for the endocrine hormones and CgA than the normal pancreatic endocrine cells. CgA immunostaining mostly correlates with each hormone staining in non-β-cell tumors, while SPY immunostaining recognizes endocrine cells diffusely in the cytoplasm. CgA immunostaining is less in insulinomas than in non-β-cell tumors, and CgA immunostaining may distinguish CgA-weaker insulinomas from CgA-stronger non-β-cell tumors. CgA immunostaining may be used as an independent marker for biological aggressiveness in non-β-cell Pan-NETs. The serum CgA levels are higher in subjects harboring non-β-cell tumors than those harboring insulinomas, and the serum CgA elevates in parallel to the increasing metastatic tumor mass. Thus, CgA positive immunostaining in Pan-NETs correlates with the elevated serum levels of CgA for diagnosing CgA-positive non-β-cell Pan-NETs and the increasing serum CgA levels indicate increasing metastatic tumor mass.
Collapse
Affiliation(s)
- Tatsuo Tomita
- Departments of Integrative Biosciences and Pathology, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
34
|
Mono- and Poly-unsaturated Phosphatidic Acid Regulate Distinct Steps of Regulated Exocytosis in Neuroendocrine Cells. Cell Rep 2020; 32:108026. [DOI: 10.1016/j.celrep.2020.108026] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/16/2020] [Accepted: 07/21/2020] [Indexed: 12/21/2022] Open
|
35
|
Carmon O, Laguerre F, Riachy L, Delestre-Delacour C, Wang Q, Tanguy E, Jeandel L, Cartier D, Thahouly T, Haeberlé AM, Fouillen L, Rezazgui O, Schapman D, Haefelé A, Goumon Y, Galas L, Renard PY, Alexandre S, Vitale N, Anouar Y, Montero-Hadjadje M. Chromogranin A preferential interaction with Golgi phosphatidic acid induces membrane deformation and contributes to secretory granule biogenesis. FASEB J 2020; 34:6769-6790. [PMID: 32227388 DOI: 10.1096/fj.202000074r] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/28/2020] [Accepted: 03/14/2020] [Indexed: 12/14/2022]
Abstract
Chromogranin A (CgA) is a key luminal actor of secretory granule biogenesis at the trans-Golgi network (TGN) level but the molecular mechanisms involved remain obscure. Here, we investigated the possibility that CgA acts synergistically with specific membrane lipids to trigger secretory granule formation. We show that CgA preferentially interacts with the anionic glycerophospholipid phosphatidic acid (PA). In accordance, bioinformatic analysis predicted a PA-binding domain (PABD) in CgA sequence that effectively bound PA (36:1) or PA (40:6) in membrane models. We identified PA (36:1) and PA (40:6) as predominant species in Golgi and granule membranes of secretory cells, and we found that CgA interaction with these PA species promotes artificial membrane deformation and remodeling. Furthermore, we demonstrated that disruption of either CgA PABD or phospholipase D (PLD) activity significantly alters secretory granule formation in secretory cells. Our findings show for the first time the ability of CgA to interact with PLD-generated PA, which allows membrane remodeling and curvature, key processes necessary to initiate secretory granule budding.
Collapse
Affiliation(s)
- Ophélie Carmon
- Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale de Normandie, Normandie University, UNIROUEN, INSERM, U1239, Rouen, France
| | - Fanny Laguerre
- Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale de Normandie, Normandie University, UNIROUEN, INSERM, U1239, Rouen, France
| | - Lina Riachy
- Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale de Normandie, Normandie University, UNIROUEN, INSERM, U1239, Rouen, France
| | - Charlène Delestre-Delacour
- Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale de Normandie, Normandie University, UNIROUEN, INSERM, U1239, Rouen, France
| | - Qili Wang
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Université de Strasbourg, Strasbourg, France
| | - Emeline Tanguy
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Université de Strasbourg, Strasbourg, France
| | - Lydie Jeandel
- Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale de Normandie, Normandie University, UNIROUEN, INSERM, U1239, Rouen, France
| | - Dorthe Cartier
- Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale de Normandie, Normandie University, UNIROUEN, INSERM, U1239, Rouen, France
| | - Tamou Thahouly
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Université de Strasbourg, Strasbourg, France
| | - Anne-Marie Haeberlé
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Université de Strasbourg, Strasbourg, France
| | - Laetitia Fouillen
- Laboratoire de Biogénèse Membranaire, CNRS, Plateforme Métabolome, Université de Bordeaux, UMR-5200, Villenave D'Ornon, France
| | - Olivier Rezazgui
- INSA Rouen, CNRS, Normandie University, UNIROUEN, COBRA, UMR 6014 and FR 3038, Rouen, France
| | - Damien Schapman
- Normandie University, UNIROUEN, INSERM, PRIMACEN, Rouen, France
| | - Alexandre Haefelé
- INSA Rouen, CNRS, Normandie University, UNIROUEN, COBRA, UMR 6014 and FR 3038, Rouen, France
| | - Yannick Goumon
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Université de Strasbourg, Strasbourg, France
| | - Ludovic Galas
- Normandie University, UNIROUEN, INSERM, PRIMACEN, Rouen, France
| | - Pierre-Yves Renard
- INSA Rouen, CNRS, Normandie University, UNIROUEN, COBRA, UMR 6014 and FR 3038, Rouen, France
| | - Stéphane Alexandre
- Polymères, Biopolymères, Surfaces Laboratory, CNRS, Normandie University, UNIROUEN, UMR 6270, Rouen, France
| | - Nicolas Vitale
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Université de Strasbourg, Strasbourg, France
| | - Youssef Anouar
- Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale de Normandie, Normandie University, UNIROUEN, INSERM, U1239, Rouen, France
| | - Maité Montero-Hadjadje
- Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale de Normandie, Normandie University, UNIROUEN, INSERM, U1239, Rouen, France
| |
Collapse
|
36
|
Castañeyra-Ruiz L, Castañeyra A, González-Santana A, Machado JD, Borges R. Combining the lack of chromogranins with chronic L-DOPA treatment affects motor activity in mice. Cell Tissue Res 2020; 380:59-66. [PMID: 31900665 DOI: 10.1007/s00441-019-03159-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/10/2019] [Indexed: 11/29/2022]
Abstract
We have tested whether the lack of chromogranins (Cgs) A and B could provoke CNS disorders when combined with an excess of dopamine. We chronically treated (over 6 months) mice lacking both chromogranins A and B (Cgs-KO) with a low oral dosage of L-DOPA/benserazide (10/2.5 mg/kg). Motor performance in the rota-rod test, open field activity, and metabolic cages indicated a progressive impairment in motor coordination in these mice, and an increase in rearing behavior, which was accompanied by an increase in DA within the substantia nigra. We conclude that mild chronic L-DOPA treatment does not produce nigro-striatal toxicity that could be associated with parkinsonism, neither in control nor Cgs-KO mice. Rather, Cgs-KO mice exhibit behaviors compatible with an amphetamine-like effect, probably caused by the excess of catecholamines in the CNS.
Collapse
Affiliation(s)
- Leandro Castañeyra-Ruiz
- Department of Neurosurgery, School of Medicine, Washington University in Saint Louis, St. Louis, MO, USA
- Unidad de Farmacología, Facultad de Medicina, Universidad de La Laguna, E-38200, La Laguna, Tenerife, Spain
| | - Agustín Castañeyra
- Dept. Ciencias Médicas Basicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain
| | - Ayoze González-Santana
- Department of Neurosurgery, School of Medicine, Washington University in Saint Louis, St. Louis, MO, USA
- Unidad de Farmacología, Facultad de Medicina, Universidad de La Laguna, E-38200, La Laguna, Tenerife, Spain
- Dept. Ciencias Médicas Basicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain
| | - José D Machado
- Unidad de Farmacología, Facultad de Medicina, Universidad de La Laguna, E-38200, La Laguna, Tenerife, Spain
| | - Ricardo Borges
- Unidad de Farmacología, Facultad de Medicina, Universidad de La Laguna, E-38200, La Laguna, Tenerife, Spain.
| |
Collapse
|
37
|
Laguerre F, Anouar Y, Montero-Hadjadje M. Chromogranin A in the early steps of the neurosecretory pathway. IUBMB Life 2019; 72:524-532. [PMID: 31891241 DOI: 10.1002/iub.2218] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 12/10/2019] [Indexed: 12/20/2022]
Abstract
Chromogranin A (CgA) is a soluble glycoprotein stored with hormones and neuropeptides in secretory granules (SG) of most (neuro)endocrine cells and neurons. Since its discovery in 1967, many studies have reported its structural characteristics, biological roles, and mechanisms of action. Indeed, CgA is both a precursor of various biologically active peptides and a granulogenic protein regulating the storage and secretion of hormones and neuropeptides. This review emphasizes the findings and theoretical concepts around the CgA-linked molecular machinery controlling hormone/neuropeptide aggregation and the interaction of CgA-hormone/neuropeptide aggregates with the trans-Golgi membrane to allow hormone/neuropeptide targeting and SG biogenesis. We will also discuss the intriguing alteration of CgA expression and secretion in various neurological disorders, which could provide insights to elucidate the molecular mechanisms underlying these pathophysiological conditions.
Collapse
Affiliation(s)
- Fanny Laguerre
- Normandie Univ, UNIROUEN, INSERM, U1239, Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale de Normandie, Rouen, France
| | - Youssef Anouar
- Normandie Univ, UNIROUEN, INSERM, U1239, Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale de Normandie, Rouen, France
| | - Maité Montero-Hadjadje
- Normandie Univ, UNIROUEN, INSERM, U1239, Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale de Normandie, Rouen, France
| |
Collapse
|
38
|
Habuta M, Fujita H, Sato K, Bando T, Inoue J, Kondo Y, Miyaishi S, Kumon H, Ohuchi H. Dickkopf3 (Dkk3) is required for maintaining the integrity of secretory vesicles in the mouse adrenal medulla. Cell Tissue Res 2019; 379:157-167. [DOI: 10.1007/s00441-019-03113-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 09/22/2019] [Indexed: 01/21/2023]
|
39
|
Carbone E, Borges R, Eiden LE, García AG, Hernández‐Cruz A. Chromaffin Cells of the Adrenal Medulla: Physiology, Pharmacology, and Disease. Compr Physiol 2019; 9:1443-1502. [DOI: 10.1002/cphy.c190003] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
40
|
Matsuo K, Taniguchi K, Hamamoto H, Ito Y, Futaki S, Inomata Y, Shima T, Asakuma M, Lee SW, Tanaka K, Okuda J, Kondo Y, Uchiyama K. Delta-like 3 localizes to neuroendocrine cells and plays a pivotal role in gastrointestinal neuroendocrine malignancy. Cancer Sci 2019; 110:3122-3131. [PMID: 31369178 PMCID: PMC6778628 DOI: 10.1111/cas.14157] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/23/2019] [Accepted: 07/31/2019] [Indexed: 01/09/2023] Open
Abstract
Delta‐like 3 (DLL3) is a member of the Delta/Serrate/Lag2 (DSL) group of Notch receptor ligands. Five DSL ligands are known in mammals, among which DLL3 has a unique structure. In the last few years, DLL3 has attracted attention as a novel molecular targeting gene in neuroendocrine carcinoma of the lung due to its high expression. However, the expression pattern and functions of DLL3 in the gastrointestinal tract and gastrointestinal neuroendocrine carcinoma remain unclear. In this study, we examined the expression and role of DLL3 in the gastrointestinal tract, as well as in gastrointestinal neuroendocrine carcinoma. Immunohistochemical staining of the human normal gastrointestinal tract revealed that DLL3 localized in neuroendocrine cells. DLL3 showed intense staining in chromogranin A‐positive gastric cancer specimens. Real‐time quantitative RT‐PCR and western blotting analyses showed considerable upregulation of DLL3 in gastrointestinal neuroendocrine carcinoma cell lines. Immuno‐electron microscopy demonstrated abundant expression of DLL3 in neurosecretory granules in these cells. Furthermore, gene silencing of DLL3 caused significant growth inhibition through the induction of intrinsic apoptosis. Our findings suggest that DLL3 is expressed in neuroendocrine cells of the gastrointestinal tract and that it has a pivotal role in gastrointestinal neuroendocrine carcinoma cells. Based on these findings, further investigations are required to achieve a breakthrough in developing therapeutic strategies for gastrointestinal neuroendocrine carcinoma.
Collapse
Affiliation(s)
- Kentaro Matsuo
- Department of General and Gastroenterological Surgery, Osaka Medical College, Takatsuki, Japan
| | - Kohei Taniguchi
- Department of General and Gastroenterological Surgery, Osaka Medical College, Takatsuki, Japan.,Translational Research Program, Osaka Medical College, Takatsuki, Japan
| | - Hiroki Hamamoto
- Department of General and Gastroenterological Surgery, Osaka Medical College, Takatsuki, Japan
| | - Yuko Ito
- Department of Anatomy and Cell Biology, Osaka Medical College, Takatsuki, Japan
| | - Sugiko Futaki
- Department of Anatomy and Cell Biology, Osaka Medical College, Takatsuki, Japan
| | - Yosuke Inomata
- Department of General and Gastroenterological Surgery, Osaka Medical College, Takatsuki, Japan
| | - Takafumi Shima
- Department of General and Gastroenterological Surgery, Osaka Medical College, Takatsuki, Japan
| | - Mitsuhiro Asakuma
- Department of General and Gastroenterological Surgery, Osaka Medical College, Takatsuki, Japan
| | - Sang-Woong Lee
- Department of General and Gastroenterological Surgery, Osaka Medical College, Takatsuki, Japan
| | - Keitaro Tanaka
- Department of General and Gastroenterological Surgery, Osaka Medical College, Takatsuki, Japan
| | - Junji Okuda
- Osaka Medical College Hospital Cancer Center, Takatsuki, Japan
| | - Yoichi Kondo
- Department of Anatomy and Cell Biology, Osaka Medical College, Takatsuki, Japan
| | - Kazuhisa Uchiyama
- Department of General and Gastroenterological Surgery, Osaka Medical College, Takatsuki, Japan
| |
Collapse
|
41
|
Intricacies of the Molecular Machinery of Catecholamine Biosynthesis and Secretion by Chromaffin Cells of the Normal Adrenal Medulla and in Pheochromocytoma and Paraganglioma. Cancers (Basel) 2019; 11:cancers11081121. [PMID: 31390824 PMCID: PMC6721535 DOI: 10.3390/cancers11081121] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 12/11/2022] Open
Abstract
The adrenal medulla is composed predominantly of chromaffin cells producing and secreting the catecholamines dopamine, norepinephrine, and epinephrine. Catecholamine biosynthesis and secretion is a complex and tightly controlled physiologic process. The pathways involved have been extensively studied, and various elements of the underlying molecular machinery have been identified. In this review, we provide a detailed description of the route from stimulus to secretion of catecholamines by the normal adrenal chromaffin cell compared to chromaffin tumor cells in pheochromocytomas. Pheochromocytomas are adrenomedullary tumors that are characterized by uncontrolled synthesis and secretion of catecholamines. This uncontrolled secretion can be partly explained by perturbations of the molecular catecholamine secretory machinery in pheochromocytoma cells. Chromaffin cell tumors also include sympathetic paragangliomas originating in sympathetic ganglia. Pheochromocytomas and paragangliomas are usually locally confined tumors, but about 15% do metastasize to distant locations. Histopathological examination currently poorly predicts future biologic behavior, thus long term postoperative follow-up is required. Therefore, there is an unmet need for prognostic biomarkers. Clearer understanding of the cellular mechanisms involved in the secretory characteristics of pheochromocytomas and sympathetic paragangliomas may offer one approach for the discovery of novel prognostic biomarkers for improved therapeutic targeting and monitoring of treatment or disease progression.
Collapse
|
42
|
Mice overexpressing chromogranin A display hypergranulogenic adrenal glands with attenuated ATP levels contributing to the hypertensive phenotype. J Hypertens 2019; 36:1115-1128. [PMID: 29389743 DOI: 10.1097/hjh.0000000000001678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Elevated circulating chromogranin A (CHGA) is observed in human hypertension. CHGA is critical for granulogenesis and exocytosis of catecholamine stores from secretory large dense core vesicles (LDCV). This study aims to understand the morphological, molecular and phenotypic changes because of excess CHGA and the mechanistic link eventuating in hyper-adrenergic hypertension. METHODS Blood pressure and heart rate was monitored in mouse models expressing normal and elevated level of CHGA by telemetry. Catecholamine and oxidative stress radicals were measured. Adrenal ultrastructure, LDCV content and mitochondrial abundance were compared and respiration analyzed by Seahorse assay. Effect of CHGA dosage on adrenal ATP content, electron transport chain components and uncoupling protein 2 (UCP-2) were compared in vivo and in vitro. RESULTS Mice with excess-CHGA displayed hypertensive phenotype, higher heart rate and increased sympathetic tone. They had elevated plasma catecholamine and adrenal ROS levels. Excess-CHGA caused an increase in size and abundance of LDCV and adrenal mitochondria. Nonetheless, they had attenuated levels of ATP. Isolated adrenal mitochondria from mice with elevated CHGA showed higher maximal respiration rates in the presence of protonophore, which uncouples oxidative phosphorylation. Elevated CHGA resulted in overexpression of UCP2 and diminished ATP. In vitro in chromaffin cells overexpressing CHGA, concomitant increase in UCP2 protein and decreased ATP was detected. CONCLUSION Elevated CHGA expression resulted in underlying bioenergetic dysfunction in ATP production despite higher mitochondrial mass. The outcome was unregulated negative feedback of LDCV exocytosis and secretion, resulting in elevated levels of circulating catecholamine and consequently the hypertensive phenotype.
Collapse
|
43
|
Modulation of the coronary tone in the expanding scenario of Chromogranin-A and its derived peptides. Future Med Chem 2019; 11:1501-1511. [DOI: 10.4155/fmc-2018-0585] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The cardiac function critically depends on an adequate myocardial oxygenation and on a correct coronary blood flow. Endothelial, hormonal and extravascular factors work together generating a fine balance between oxygen supply and oxygen utilization through the coronary circulation. Among the regulatory factors that contribute to the coronary tone, increasing attention is paid to the cardiac endocrines, such as chromogranin A, a prohormone for many biologically active peptides, including vasostatin and catestatin. In this review, we will summarize the available evidences about the coronary effects of these molecules, and their putative mechanism of action. Laboratory and clinical data on chromogranin A and its derived fragments will be analyzed in relation to the scenario of the endocrine heart, and of its putative clinical perspectives.
Collapse
|
44
|
Zhou W, Davis EA, Dailey MJ. Obesity, independent of diet, drives lasting effects on intestinal epithelial stem cell proliferation in mice. Exp Biol Med (Maywood) 2019; 243:826-835. [PMID: 29932373 DOI: 10.1177/1535370218777762] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The intestinal epithelium plays an essential role in nutrient absorption, hormone release, and barrier function. Maintenance of the epithelium is driven by continuous cell renewal by intestinal epithelial stem cells located in the intestinal crypts. Obesity affects this process and results in changes in the size and function of the tissue. Because both the amount of food intake and the composition of the diet are contributing factors to developing and maintaining obesity, it is necessary to tease apart the separate contributions of obesity versus the type/amount of diet in driving the epithelial changes. C57BL/6J mice were fed a 60% high-fat diet versus a 10% low-fat diet for three months. A pair fed group was included (mice were fed with high-fat diet, but in equal kcal as that eaten by the low-fat diet- fed mice to keep them lean). We investigated the differences in (1) crypt-villus morphology in vivo, (2) the number and function of differentiated epithelial cell types in vivo, and (3) lasting effects on intestinal epithelial stem cell proliferation and growth in vitro. We found that high-fat diet-induced obesity, independent of the high-fat diet, increased crypt depth, villus height, the number of intestinal epithelial stem cells and goblet cells in vivo, and enhanced the size of the enterospheres developed from isolated IESCs in vitro. In addition, there is an interaction of obesity, type of diet, and availability of the diet (pair fed versus ad libitum) on protein and mRNA expression of alkaline phosphatase (an enzyme of enterocytes). These results suggest that high-fat diet-induced obesity, independent of the high-fat diet, induces lasting effects on intestinal epithelial stem cell proliferation, and drives the differentiation into goblet cells, but an interaction of obesity and diet drives alterations in the function of the enterocytes. Impact statement This study investigates whether obesity or the type/amount of diet differentially alters the proliferation, differentiation, growth, and function of the intestinal epithelial tissue. Although diet-induced obesity is known to alter the growth and function of the epithelium in vivo and cause lasting effects in intestinal epithelial stem cells (IESCs) in vitro, we are the first to tease apart the separate contributions of obesity versus the type/amount of diet in these processes. We found that high-fat diet (HFD)-induced obesity, independent of the HFD, drives lasting effects on IESC proliferation and differentiation into goblet cells, which may contribute to the growth of the epithelium. In addition, there is an interaction of obesity, type of diet, and availability of the diet (PF versus ad libitum) on the function of enterocytes. Identification of the factors driving the epithelial changes may provide new therapeutic strategies to control altered tissue growth and function associated with obesity.
Collapse
Affiliation(s)
- Weinan Zhou
- 1 Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Elizabeth A Davis
- 2 Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Megan J Dailey
- 1 Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,2 Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
45
|
Harno E, Gali Ramamoorthy T, Coll AP, White A. POMC: The Physiological Power of Hormone Processing. Physiol Rev 2019; 98:2381-2430. [PMID: 30156493 DOI: 10.1152/physrev.00024.2017] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Pro-opiomelanocortin (POMC) is the archetypal polypeptide precursor of hormones and neuropeptides. In this review, we examine the variability in the individual peptides produced in different tissues and the impact of the simultaneous presence of their precursors or fragments. We also discuss the problems inherent in accurately measuring which of the precursors and their derived peptides are present in biological samples. We address how not being able to measure all the combinations of precursors and fragments quantitatively has affected our understanding of the pathophysiology associated with POMC processing. To understand how different ratios of peptides arise, we describe the role of the pro-hormone convertases (PCs) and their tissue specificities and consider the cellular processing pathways which enable regulated secretion of different peptides that play crucial roles in integrating a range of vital physiological functions. In the pituitary, correct processing of POMC peptides is essential to maintain the hypothalamic-pituitary-adrenal axis, and this processing can be disrupted in POMC-expressing tumors. In hypothalamic neurons expressing POMC, abnormalities in processing critically impact on the regulation of appetite, energy homeostasis, and body composition. More work is needed to understand whether expression of the POMC gene in a tissue equates to release of bioactive peptides. We suggest that this comprehensive view of POMC processing, with a focus on gaining a better understanding of the combination of peptides produced and their relative bioactivity, is a necessity for all involved in studying this fascinating physiological regulatory phenomenon.
Collapse
Affiliation(s)
- Erika Harno
- Division of Diabetes, Endocrinology and Gastrointestinal Sciences, Faculty of Biology, Medicine and Health, University of Manchester , Manchester , United Kingdom ; and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science , Cambridge , United Kingdom
| | - Thanuja Gali Ramamoorthy
- Division of Diabetes, Endocrinology and Gastrointestinal Sciences, Faculty of Biology, Medicine and Health, University of Manchester , Manchester , United Kingdom ; and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science , Cambridge , United Kingdom
| | - Anthony P Coll
- Division of Diabetes, Endocrinology and Gastrointestinal Sciences, Faculty of Biology, Medicine and Health, University of Manchester , Manchester , United Kingdom ; and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science , Cambridge , United Kingdom
| | - Anne White
- Division of Diabetes, Endocrinology and Gastrointestinal Sciences, Faculty of Biology, Medicine and Health, University of Manchester , Manchester , United Kingdom ; and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science , Cambridge , United Kingdom
| |
Collapse
|
46
|
Thompson MJ, Parameswaran V, Burgess JR. Clinical utility of chromogranin A for the surveillance of succinate dehydrogenase B- and succinate dehydrogenase D-related paraganglioma. Ann Clin Biochem 2018; 56:163-169. [PMID: 30373390 DOI: 10.1177/0004563218811865] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Patients with mutations of succinate dehydrogenase B (SDHB) and succinate dehydrogenase D (SDHD) are at high risk of paraganglioma necessitating surveillance. Chromogranin A has been proposed as a biochemical marker of paraganglioma. We sought to determine the diagnostic utility of chromogranin A in a population-based SDHx sample. METHODS Tasmania is an island state with one tertiary referral centre for endocrine neoplasia. We performed a cross-sectional analysis of all adult SDHB ( n = 52) and SDHD ( n = 10) patients undergoing paraganglioma surveillance between 2011 and 2017. Chromogranin A was referenced against the outcome of paraganglioma surveillance with a minimum of 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) and plasma metanephrines (metanephrine and normetanephrine). RESULTS Chromogranin A correctly predicted the result of paraganglioma surveillance more often in patients with SDHB compared with those with SDHD (77% vs. 22%, P = 0.003). In the SDHB group, chromogranin A demonstrated a sensitivity of 67% and specificity of 79% compared with 22% and 0% in the SDHD group. Chromogranin A identified one of three PET/CT-visualized SDHB-related paragangliomas with normal plasma metanephrines at the expense of nine false-positive results. A normal chromogranin A demonstrated a negative predictive value of 92% for SDHB-related paraganglioma. In patients with SDHB, plasma normetanephrine and metanephrine offered superior specificity (100%, P = 0.01 and 100%, P < 0.01, respectively) with comparable sensitivity (67%, P = 1.0 and 11%, P = 0.06, respectively) to chromogranin A. CONCLUSION Chromogranin A does not provide additive benefit to standard surveillance for predicting the presence of SDHB- or SDHD-related paraganglioma, but has a useful negative predictive value when normal in patients with SDHB mutation.
Collapse
Affiliation(s)
- Michael Jw Thompson
- Department of Diabetes and Endocrinology, Royal Hobart Hospital, School of Medicine, University of Tasmania, Tasmania, Australia
| | - Venkat Parameswaran
- Department of Diabetes and Endocrinology, Royal Hobart Hospital, School of Medicine, University of Tasmania, Tasmania, Australia
| | - John R Burgess
- Department of Diabetes and Endocrinology, Royal Hobart Hospital, School of Medicine, University of Tasmania, Tasmania, Australia
| |
Collapse
|
47
|
Muntjewerff EM, Dunkel G, Nicolasen MJT, Mahata SK, van den Bogaart G. Catestatin as a Target for Treatment of Inflammatory Diseases. Front Immunol 2018; 9:2199. [PMID: 30337922 PMCID: PMC6180191 DOI: 10.3389/fimmu.2018.02199] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 09/05/2018] [Indexed: 12/12/2022] Open
Abstract
It is increasingly clear that inflammatory diseases and cancers are influenced by cleavage products of the pro-hormone chromogranin A (CgA), such as the 21-amino acids long catestatin (CST). The goal of this review is to provide an overview of the anti-inflammatory effects of CST and its mechanism of action. We discuss evidence proving that CST and its precursor CgA are crucial for maintaining metabolic and immune homeostasis. CST could reduce inflammation in various mouse models for diabetes, colitis and atherosclerosis. In these mouse models, CST treatment resulted in less infiltration of immune cells in affected tissues, although in vitro monocyte migration was increased by CST. Both in vivo and in vitro, CST can shift macrophage differentiation from a pro- to an anti-inflammatory phenotype. Thus, the concept is emerging that CST plays a role in tissue homeostasis by regulating immune cell infiltration and macrophage differentiation. These findings warrant studying the effects of CST in humans and make it an interesting therapeutic target for treatment and/or diagnosis of various metabolic and immune diseases.
Collapse
Affiliation(s)
- Elke M Muntjewerff
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Gina Dunkel
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Mara J T Nicolasen
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Sushil K Mahata
- VA San Diego Healthcare System, San Diego, CA, United States.,Department of Medicine, University of California at San Diego, La Jolla, CA, United States
| | - Geert van den Bogaart
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands.,Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| |
Collapse
|
48
|
AMPK Activation of PGC-1α/NRF-1-Dependent SELENOT Gene Transcription Promotes PACAP-Induced Neuroendocrine Cell Differentiation Through Tolerance to Oxidative Stress. Mol Neurobiol 2018; 56:4086-4101. [DOI: 10.1007/s12035-018-1352-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 09/13/2018] [Indexed: 12/19/2022]
|
49
|
Thomsen SK, Raimondo A, Hastoy B, Sengupta S, Dai XQ, Bautista A, Censin J, Payne AJ, Umapathysivam MM, Spigelman AF, Barrett A, Groves CJ, Beer NL, Manning Fox JE, McCarthy MI, Clark A, Mahajan A, Rorsman P, MacDonald PE, Gloyn AL. Type 2 diabetes risk alleles in PAM impact insulin release from human pancreatic β-cells. Nat Genet 2018; 50:1122-1131. [PMID: 30054598 PMCID: PMC6237273 DOI: 10.1038/s41588-018-0173-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 06/06/2018] [Indexed: 12/30/2022]
Abstract
The molecular mechanisms underpinning susceptibility loci for type 2 diabetes (T2D) remain poorly understood. Coding variants in peptidylglycine α-amidating monooxygenase (PAM) are associated with both T2D risk and insulinogenic index. Here, we demonstrate that the T2D risk alleles impact negatively on overall PAM activity via defects in expression and catalytic function. PAM deficiency results in reduced insulin content and altered dynamics of insulin secretion in a human β-cell model and primary islets from cadaveric donors. Thus, our results demonstrate a role for PAM in β-cell function, and establish molecular mechanisms for T2D risk alleles at this locus.
Collapse
Affiliation(s)
- Soren K Thomsen
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, UK
- Vertex Pharmaceuticals Europe Ltd, Milton Park, Abingdon, UK
| | - Anne Raimondo
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, UK
- National Health and Medical Research Council, Canberra, Australia
| | - Benoit Hastoy
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, UK
| | - Shahana Sengupta
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, UK
- MRC Harwell Institute, Harwell Campus, Oxfordshire, UK
| | - Xiao-Qing Dai
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Austin Bautista
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Jenny Censin
- Big Data Institute at the Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Anthony J Payne
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Mahesh M Umapathysivam
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, UK
| | - Aliya F Spigelman
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Amy Barrett
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, UK
| | - Christopher J Groves
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, UK
| | - Nicola L Beer
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, UK
| | - Jocelyn E Manning Fox
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Mark I McCarthy
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Churchill Hospital, Oxford, UK
| | - Anne Clark
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, UK
| | - Anubha Mahajan
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Churchill Hospital, Oxford, UK
| | - Patrick E MacDonald
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Anna L Gloyn
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, UK.
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
- Oxford NIHR Biomedical Research Centre, Churchill Hospital, Oxford, UK.
| |
Collapse
|
50
|
Stephens SB, Edwards RJ, Sadahiro M, Lin WJ, Jiang C, Salton SR, Newgard CB. The Prohormone VGF Regulates β Cell Function via Insulin Secretory Granule Biogenesis. Cell Rep 2018; 20:2480-2489. [PMID: 28877479 DOI: 10.1016/j.celrep.2017.08.050] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 07/25/2017] [Accepted: 08/15/2017] [Indexed: 12/18/2022] Open
Abstract
The prohormone VGF is expressed in neuroendocrine and endocrine tissues and regulates nutrient and energy status both centrally and peripherally. We and others have shown that VGF-derived peptides have direct action on the islet β cell as secretagogues and cytoprotective agents; however, the endogenous function of VGF in the β cell has not been described. Here, we demonstrate that VGF regulates secretory granule formation. VGF loss-of-function studies in both isolated islets and conditional knockout mice reveal a profound decrease in stimulus-coupled insulin secretion. Moreover, VGF is necessary to facilitate efficient exit of granule cargo from the trans-Golgi network and proinsulin processing. It also functions to replenish insulin granule stores following nutrient stimulation. Our data support a model in which VGF operates at a critical node of granule biogenesis in the islet β cell to coordinate insulin biosynthesis with β cell secretory capacity.
Collapse
Affiliation(s)
- Samuel B Stephens
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27704, USA; Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27704, USA; Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27704, USA.
| | - Robert J Edwards
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27704, USA
| | - Masato Sadahiro
- Department of Neuroscience, Icahn School of Medicine at Mt. Sinai, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mt. Sinai, New York, NY 10029, USA
| | - Wei-Jye Lin
- Department of Neuroscience, Icahn School of Medicine at Mt. Sinai, New York, NY 10029, USA
| | - Cheng Jiang
- Department of Neuroscience, Icahn School of Medicine at Mt. Sinai, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mt. Sinai, New York, NY 10029, USA
| | - Stephen R Salton
- Department of Neuroscience, Icahn School of Medicine at Mt. Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mt. Sinai, New York, NY 10029, USA
| | - Christopher B Newgard
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27704, USA; Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27704, USA; Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27704, USA; Department of Medicine, Division of Endocrinology, Duke University Medical Center, Durham, NC 27704, USA
| |
Collapse
|