1
|
Suleri A, Rommel AS, Dmitrichenko O, Muetzel RL, Cecil CAM, de Witte L, Bergink V. The association between maternal immune activation and brain structure and function in human offspring: a systematic review. Mol Psychiatry 2024:10.1038/s41380-024-02760-w. [PMID: 39342040 DOI: 10.1038/s41380-024-02760-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024]
Abstract
Maternal immune activation (MIA) during pregnancy, as a result of infectious or inflammatory stimuli, has gained increasing attention for its potential role in adverse child neurodevelopment, with studies focusing on associations in children born preterm. This systematic review summarizes research on the link between several types of prenatal MIA and subsequent child structural and/or functional brain development outcomes. We identified 111 neuroimaging studies in five MIA areas: inflammatory biomarkers (n = 13), chorioamnionitis (n = 18), other types of infections (n = 18), human immunodeficiency virus (HIV) (n = 42), and Zika virus (n = 20). Overall, there was large heterogeneity in the type of MIA exposure examined and in study methodology. Most studies had a prospective single cohort design and mainly focused on potential effects on the brain up to one year after birth. The median sample size was 53 participants. Severe infections, i.e., HIV and Zika virus, were associated with various types of cerebral lesions (e.g., microcephaly, atrophy, or periventricular leukomalacia) that were consistently identified across studies. For less severe infections and chronic inflammation, findings were generally inconsistent and mostly included deviations in white matter structure/function. Current findings have been mainly observed in the infants' brain, presenting an opportunity for future studies to investigate whether these associations persist throughout development. Additionally, the inconsistent findings, encompassing both regions of interest and null results, call into question whether prenatal exposure to less severe infections and chronic inflammation exerts a small effect or no effect on child brain development.
Collapse
Affiliation(s)
- Anna Suleri
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, Rotterdam, The Netherlands
- The Generation R Study Group, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Anna-Sophie Rommel
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Olga Dmitrichenko
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ryan L Muetzel
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Charlotte A M Cecil
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Biomedical Data Sciences, Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Lot de Witte
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Radboud UMC, Nijmegen, The Netherlands
| | - Veerle Bergink
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
2
|
Thompson DK, Cai S, Kelly CE, Alexander B, Matthews LG, Mainzer R, Doyle LW, Cheong JLY, Inder TE, Yang JYM, Anderson PJ. Brain volume and neurodevelopment at 13 years following sepsis in very preterm infants. Pediatr Res 2024:10.1038/s41390-024-03407-w. [PMID: 39003332 DOI: 10.1038/s41390-024-03407-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/05/2024] [Accepted: 06/17/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND Associations of neonatal infection with brain growth and later neurodevelopmental outcomes in very preterm (VP) infants are unclear. This study aimed to assess associations of neonatal sepsis in VP infants with (1) brain growth from term-equivalent age to 13 years; and (2) 13-year brain volume and neurodevelopmental outcomes. METHODS 224 infants born VP ( < 30 weeks' gestation/<1250 g birthweight) were recruited. Longitudinal brain volumes for 68 cortical and 14 subcortical regions were derived from MRI at term-equivalent, 7 and/or 13 years of age for 216 children (79 with neonatal sepsis and 137 without). 177 children (79%) had neurodevelopmental assessments at age 13. Of these, 63 with neonatal sepsis were compared with 114 without. Brain volumetric growth trajectories across time points were compared between sepsis and no-sepsis groups using mixed effects models. Linear regressions compared brain volume and neurodevelopmental outcome measures at 13 years between sepsis and no sepsis groups. RESULTS Growth trajectories were similar and there was little evidence for differences in brain volumes or neurodevelopmental domains at age 13 years between those with or without sepsis. CONCLUSIONS Neonatal sepsis in children born VP does not appear to disrupt subsequent brain development, or to have functional consequences in early adolescence. IMPACT STATEMENT Neonatal sepsis has been associated with poorer short-term neurodevelopmental outcomes and reduced brain volumes in very preterm infants. This manuscript provides new insights into the long-term brain development and neurodevelopmental outcomes of very preterm-born children who did or did not have neonatal sepsis. We found that regional brain volumes up to 13 years, and neurodevelopmental outcomes at age 13, were similar between those with and without neonatal sepsis. The links between neonatal sepsis and long-term neurodevelopment remain unclear.
Collapse
Affiliation(s)
- Deanne K Thompson
- Victorian Infant Brain Studies, Murdoch Children's Research Institute, Parkville, VIC, 3052, Australia.
- Developmental Imaging, Murdoch Children's Research Institute, Parkville, VIC, 3052, Australia.
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, 3052, Australia.
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Faculty of Medicine Nursing and Health Sciences, Monash University, Clayton, VIC, 3800, Australia.
| | - Shirley Cai
- Victorian Infant Brain Studies, Murdoch Children's Research Institute, Parkville, VIC, 3052, Australia
- Developmental Imaging, Murdoch Children's Research Institute, Parkville, VIC, 3052, Australia
- Melbourne Medicine School, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Claire E Kelly
- Victorian Infant Brain Studies, Murdoch Children's Research Institute, Parkville, VIC, 3052, Australia
- Developmental Imaging, Murdoch Children's Research Institute, Parkville, VIC, 3052, Australia
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Faculty of Medicine Nursing and Health Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - Bonnie Alexander
- Developmental Imaging, Murdoch Children's Research Institute, Parkville, VIC, 3052, Australia
- Neuroscience Advanced Clinical Imaging Service (NACIS), Department of Neurosurgery, Royal Children's Hospital, Parkville, VIC, 3052, Australia
| | - Lillian G Matthews
- Victorian Infant Brain Studies, Murdoch Children's Research Institute, Parkville, VIC, 3052, Australia
- Developmental Imaging, Murdoch Children's Research Institute, Parkville, VIC, 3052, Australia
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Rheanna Mainzer
- Victorian Infant Brain Studies, Murdoch Children's Research Institute, Parkville, VIC, 3052, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, 3052, Australia
- Clinical Epidemiology and Biostatistics Unit, Murdoch Children's Research Institute, Parkville, VIC, 3052, Australia
| | - Lex W Doyle
- Victorian Infant Brain Studies, Murdoch Children's Research Institute, Parkville, VIC, 3052, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, 3052, Australia
- Neonatal Services, The Royal Women's Hospital, Parkville, VIC, 3052, Australia
- Department of Obstetrics, Gynaecology and Newborn Health, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Jeanie L Y Cheong
- Victorian Infant Brain Studies, Murdoch Children's Research Institute, Parkville, VIC, 3052, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, 3052, Australia
- Neonatal Services, The Royal Women's Hospital, Parkville, VIC, 3052, Australia
- Department of Obstetrics, Gynaecology and Newborn Health, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Terrie E Inder
- Victorian Infant Brain Studies, Murdoch Children's Research Institute, Parkville, VIC, 3052, Australia
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Center for Neonatal Research, Children's Hospital of Orange County, Orange, CA, 92866, USA
- Department of Pediatrics, University of California, Irvine, CA, 92697, USA
| | - Joseph Y M Yang
- Developmental Imaging, Murdoch Children's Research Institute, Parkville, VIC, 3052, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, 3052, Australia
- Neuroscience Advanced Clinical Imaging Service (NACIS), Department of Neurosurgery, Royal Children's Hospital, Parkville, VIC, 3052, Australia
- Neuroscience Research, Murdoch Children's Research Institute, Parkville, VIC, 3052, Australia
| | - Peter J Anderson
- Victorian Infant Brain Studies, Murdoch Children's Research Institute, Parkville, VIC, 3052, Australia
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Faculty of Medicine Nursing and Health Sciences, Monash University, Clayton, VIC, 3800, Australia
| |
Collapse
|
3
|
Wei J, Zhang L, Xu H, Luo Q. Preterm birth, a consequence of immune deviation mediated hyperinflammation. Heliyon 2024; 10:e28483. [PMID: 38689990 PMCID: PMC11059518 DOI: 10.1016/j.heliyon.2024.e28483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 05/02/2024] Open
Abstract
Preterm birth represents a multifaceted syndrome with intricacies still present in our comprehension of its etiology. In the context of a semi-allograft, the prosperity from implantation to pregnancy to delivery hinges on the establishment of a favorable maternal-fetal immune microenvironment and a successful trilogy of immune activation, immune tolerance and then immune activation transitions. The occurrence of spontaneous preterm birth could be related to abnormalities within the immune trilogy, stemming from deviation in maternal and fetal immunity. These immune deviations, characterized by insufficient immune tolerance and early immune activation, ultimately culminated in an unsustainable pregnancy. In this review, we accentuated the role of both innate and adaptive immune reason in promoting spontaneous preterm birth, reviewed the risk of preterm birth from vaginal microbiome mediated by immune changes and the potential of vaginal microbiomes and metabolites as a new predictive marker, and discuss the changes in the role of progesterone and its interaction with immune cells in a preterm birth population. Our objective was to contribute to the growing body of knowledge in the field, shedding light on the immunologic reason of spontaneous preterm birth and effective biomarkers for early prediction, providing a roadmap for forthcoming investigations.
Collapse
Affiliation(s)
- Juan Wei
- Department of Obstetrics, Women's Hospital, of Zhejiang University School of Medicine, Hangzhou, 310006, China
- Key Laboratory of Reproductive Genetics, Ministry of Education, China
| | - LiYuan Zhang
- Department of Obstetrics, Women's Hospital, of Zhejiang University School of Medicine, Hangzhou, 310006, China
- Key Laboratory of Reproductive Genetics, Ministry of Education, China
| | - Heng Xu
- Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Qiong Luo
- Department of Obstetrics, Women's Hospital, of Zhejiang University School of Medicine, Hangzhou, 310006, China
- Key Laboratory of Reproductive Genetics, Ministry of Education, China
| |
Collapse
|
4
|
Madrid M, Bojalil R, Brianza-Padilla M, Zapoteco-Nava J, Márquez-Velasco R, Rivera-González R. The molecular profile of the inflammatory process differs among various neurodevelopmental disorders with or without cognitive component: A hypothesis of persistent systemic dysfunction and hyper-resolution. Front Pediatr 2023; 11:1132175. [PMID: 37152315 PMCID: PMC10157392 DOI: 10.3389/fped.2023.1132175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/20/2023] [Indexed: 05/09/2023] Open
Abstract
Introduction Challenges of diverse origin in childhood can alter the growth and development of the central nervous system, affecting structures and functions. As a consequence of the damage suffered during the perinatal period, long periods of dysfunctionality may occur, such as regulatory disorders, which may result in remaining in a process of low-grade inflammation. We previously found that perinatal risks and neurological signs are associated with long-term changes in circulating concentrations of molecules of the inflammatory process, findings that are consistent with the postulate that long periods of dysfunction may condition long-lasting low-grade inflammation or parainflammation. The aim of this study was to assess whether different expressions of neurological disorders show variations in their inflammatory molecule profiles or whether there is a common pattern. Methods We included screening for (a) caregiver-perceived risk detection of regulatory disturbances, using the DeGangi instrument; (b) dysautonomia or asymmetries, through neurodevelopmental assessments; (c) cognitive developmental disturbances (using the Bailey instrument). We assessed protein molecules on a multiplex system, and lipid molecules by ELISA. Results We found a similar, although not identical, pattern of cytokine profiles with the presence of risk of regulatory disturbances, dysautonomia and asymmetries; but an opposite inflammatory profile was associated with cognitive impairment. Discussion Our results suggest that there are diverse, probably limited, molecular footprints associated with impaired function, and that these footprints may depend on the response requirements necessary to adjust to the altered internal environment. Here we propose a theoretical model that suggests possible scenarios for inflammatory outcomes associated with chronic challenges.
Collapse
Affiliation(s)
- Miriam Madrid
- Department of Health Care, Universidad Autónoma Metropolitana-Xochimilco, Mexico City, Mexico
| | - Rafael Bojalil
- Department of Health Care, Universidad Autónoma Metropolitana-Xochimilco, Mexico City, Mexico
- Correspondence: Rafael Bojalil
| | | | - Jasbet Zapoteco-Nava
- Neurodevelopmental Research Center, Instituto Nacional de Pediatría, Mexico City, Mexico
| | - Ricardo Márquez-Velasco
- Department of Immunology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | | |
Collapse
|
5
|
Liu Y, Na Q, Liu J, Liu A, Oppong A, Lee JY, Chudnovets A, Lei J, Sharma R, Kannan S, Kannan RM, Burd I. Dendrimer-Based N-Acetyl Cysteine Maternal Therapy Ameliorates Placental Inflammation via Maintenance of M1/M2 Macrophage Recruitment. Front Bioeng Biotechnol 2022; 10:819593. [PMID: 35155393 PMCID: PMC8831692 DOI: 10.3389/fbioe.2022.819593] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 01/03/2022] [Indexed: 11/25/2022] Open
Abstract
Intrauterine inflammation (IUI) is the primary cause of spontaneous preterm birth and predisposes neonates to long-term sequelae, including adverse neurological outcomes. N-acetyl-L-cysteine (NAC) is the amino acid L-cysteine derivative and a precursor to the antioxidant glutathione (GSH). NAC is commonly used clinically as an antioxidant with anti-inflammatory properties. Poor bioavailability and high protein binding of NAC necessitates the use of high doses resulting in side effects including nausea, vomiting, and gastric disruptions. Therefore, dendrimer-based therapy can specifically target the drug to the cells involved in inflammation, reducing side effects with efficacy at much lower doses than the free drug. Towards development of the new therapies for the treatment of maternal inflammation, we successfully administered dendrimer-based N-Acetyl Cysteine (DNAC) in an animal model of IUI to reduce preterm birth and perinatal inflammatory response. This study explored the associated immune mechanisms of DNAC treatment on placental macrophages following IUI, especially on M1/M2 type macrophage polarization. Our results demonstrated that intraperitoneal maternal DNAC administration significantly reduced the pro-inflammatory cytokine mRNA of Il1β and Nos2, and decreased CD45+ leukocyte infiltration in the placenta following IUI. Furthermore, we found that DNAC altered placental immune profile by stimulating macrophages to change to the M2 phenotype while decreasing the M1 phenotype, thus suppressing the inflammatory responses in the placenta. Our study provides evidence for DNAC therapy to alleviate IUI via the maintenance of macrophage M1/M2 imbalance in the placenta.
Collapse
Affiliation(s)
- Yang Liu
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Quan Na
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jin Liu
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Anguo Liu
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Akosua Oppong
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Ji Yeon Lee
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Anna Chudnovets
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jun Lei
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Rishi Sharma
- Center for Nanomedicine, Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Sujatha Kannan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Rangaramanujam M Kannan
- Center for Nanomedicine, Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Irina Burd
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
6
|
Reiss JD, Peterson LS, Nesamoney SN, Chang AL, Pasca AM, Marić I, Shaw GM, Gaudilliere B, Wong RJ, Sylvester KG, Bonifacio SL, Aghaeepour N, Gibbs RS, Stevenson DK. Perinatal infection, inflammation, preterm birth, and brain injury: A review with proposals for future investigations. Exp Neurol 2022; 351:113988. [DOI: 10.1016/j.expneurol.2022.113988] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 01/06/2022] [Accepted: 01/13/2022] [Indexed: 11/26/2022]
|
7
|
Martini S, Castellini L, Parladori R, Paoletti V, Aceti A, Corvaglia L. Free Radicals and Neonatal Brain Injury: From Underlying Pathophysiology to Antioxidant Treatment Perspectives. Antioxidants (Basel) 2021; 10:2012. [PMID: 34943115 PMCID: PMC8698308 DOI: 10.3390/antiox10122012] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/09/2021] [Accepted: 12/16/2021] [Indexed: 01/23/2023] Open
Abstract
Free radicals play a role of paramount importance in the development of neonatal brain injury. Depending on the pathophysiological mechanisms underlying free radical overproduction and upon specific neonatal characteristics, such as the GA-dependent maturation of antioxidant defenses and of cerebrovascular autoregulation, different profiles of injury have been identified. The growing evidence on the detrimental effects of free radicals on the brain tissue has led to discover not only potential biomarkers for oxidative damage, but also possible neuroprotective therapeutic approaches targeting oxidative stress. While a more extensive validation of free radical biomarkers is required before considering their use in routine neonatal practice, two important treatments endowed with antioxidant properties, such as therapeutic hypothermia and magnesium sulfate, have become part of the standard of care to reduce the risk of neonatal brain injury, and other promising therapeutic strategies are being tested in clinical trials. The implementation of currently available evidence is crucial to optimize neonatal neuroprotection and to develop individualized diagnostic and therapeutic approaches addressing oxidative brain injury, with the final aim of improving the neurological outcome of this population.
Collapse
Affiliation(s)
- Silvia Martini
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (A.A.); (L.C.)
- Neonatal Intensive Care Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Laura Castellini
- School of Medicine and Surgery, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy;
| | - Roberta Parladori
- Specialty School of Pediatrics, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy;
| | - Vittoria Paoletti
- Neonatal Intensive Care Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Arianna Aceti
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (A.A.); (L.C.)
- Neonatal Intensive Care Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Luigi Corvaglia
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (A.A.); (L.C.)
- Neonatal Intensive Care Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| |
Collapse
|
8
|
Turesky TK, Shama T, Kakon SH, Haque R, Islam N, Someshwar A, Gagoski B, Petri WA, Nelson CA, Gaab N. Brain morphometry and diminished physical growth in Bangladeshi children growing up in extreme poverty: A longitudinal study. Dev Cogn Neurosci 2021; 52:101029. [PMID: 34801857 PMCID: PMC8605388 DOI: 10.1016/j.dcn.2021.101029] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 09/14/2021] [Accepted: 10/24/2021] [Indexed: 11/25/2022] Open
Abstract
Diminished physical growth is a common marker of malnutrition and it affects approximately 200 million children worldwide. Despite its importance and prevalence, it is not clear whether diminished growth relates to brain development and general cognitive ability. Further, diminished growth is more common in areas of extreme poverty, raising the possibility that it may mediate previously shown links between socioeconomic status (SES) and brain structure. To address these gaps, 79 children growing up in an extremely poor, urban area of Bangladesh underwent MRI at age six years. Structural brain images were submitted to Mindboggle software, a Docker-compliant and high-reproducibility tool for tissue segmentation and regional estimations of volume, surface area, cortical thickness, sulcal depth, and mean curvature. Diminished growth predicted brain morphometry and mediated the link between SES and brain morphometry most consistently for subcortical and white matter subcortical volumes. Meanwhile, brain volume in left pallidum and right ventral diencephalon mediated the relationship between diminished growth and full-scale IQ. These findings offer malnutrition as one possible pathway through which SES affects brain development and general cognitive ability in areas of extreme poverty.
Collapse
Affiliation(s)
- Ted K Turesky
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of Medicine, Boston Children's Hospital, Boston, MA, United States; Harvard Graduate School of Education, Cambridge, MA, United States; Harvard Medical School, Boston, MA, United States.
| | - Talat Shama
- The International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | | | - Rashidul Haque
- The International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Nazrul Islam
- National Institute of Neuroscience and Hospital, Dhaka, Bangladesh
| | - Amala Someshwar
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of Medicine, Boston Children's Hospital, Boston, MA, United States
| | - Borjan Gagoski
- Harvard Graduate School of Education, Cambridge, MA, United States; Fetal-Neonatal Neuroimaging and Development Science Center, Boston Children's Hospital, Boston, MA, United States
| | - William A Petri
- Division of Infectious Diseases and International Health, Department of Medicine, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Charles A Nelson
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of Medicine, Boston Children's Hospital, Boston, MA, United States; Harvard Graduate School of Education, Cambridge, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Nadine Gaab
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of Medicine, Boston Children's Hospital, Boston, MA, United States; Harvard Graduate School of Education, Cambridge, MA, United States; Harvard Medical School, Boston, MA, United States
| |
Collapse
|
9
|
Melo AM, Taher NAB, Doherty DG, Molloy EJ. The role of lymphocytes in neonatal encephalopathy. Brain Behav Immun Health 2021; 18:100380. [PMID: 34755125 PMCID: PMC8560973 DOI: 10.1016/j.bbih.2021.100380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/27/2021] [Accepted: 10/18/2021] [Indexed: 01/19/2023] Open
Abstract
Neonatal encephalopathy is a syndrome characterised by abnormal neurological function often caused by a hypoxic insult during childbirth. Triggers such as hypoxia-ischaemia result in the release of cytokines and chemokines inducing the infiltration of neutrophils, natural killer cells, B cells, T cells and innate T cells into the brain. However, the role of these cells in the development of the brain injury is poorly understood. We review the mechanisms by which lymphocytes contribute to brain damage in NE. NK, T and innate T cells release proinflammatory cytokines contributing to the neurodegeneration in the secondary and tertiary phase of injury, whereas B cells and regulatory T cells produce IL-10 protecting the brain in NE. Targeting lymphocytes may have therapeutic potential in the treatment of NE in terms of management of inflammation and brain damage, particularly in the tertiary or persistent phases.
Collapse
Key Words
- Blood-brain barrier, BBB
- Hypoxia-ischaemia encephalopathy, HIE
- Hypoxia-ischaemia, HI
- Hypoxic-ischaemia
- Immune response
- Lymphocytes
- Neonatal encephalopathy
- Neonatal encephalopathy, NE
- Regulatory T cells, Tregs
- T cell receptors, TCRs
- T helper, Th
- Therapeutic hypothermia, TH
- White Matter Injury, WMI
- activating transcription factor-6, ATF6
- central nervous system, CNS
- granulocyte-macrophage colony-stimulating factor, GM-CSF
- interleukin, IL
- major histocompatibility complex, MHC
- natural killer, NK cells
- tumour necrosis factor-alpha, TNF-α
Collapse
Affiliation(s)
- Ashanty M. Melo
- Discipline of Paediatrics and Immunology Trinity College Dublin, Crumlin, Dublin, Ireland
- Discipline of Immunology Trinity College Dublin, Crumlin, Dublin, Ireland
- Discipline of Trinity Translational Medicine Institute (TTMI), Trinity College Dublin, Crumlin, Dublin, Ireland
| | - Nawal AB. Taher
- Discipline of Paediatrics and Immunology Trinity College Dublin, Crumlin, Dublin, Ireland
- Discipline of Immunology Trinity College Dublin, Crumlin, Dublin, Ireland
- Discipline of Trinity Translational Medicine Institute (TTMI), Trinity College Dublin, Crumlin, Dublin, Ireland
| | - Derek G. Doherty
- Discipline of Immunology Trinity College Dublin, Crumlin, Dublin, Ireland
- Discipline of Trinity Translational Medicine Institute (TTMI), Trinity College Dublin, Crumlin, Dublin, Ireland
| | - Eleanor J. Molloy
- Discipline of Paediatrics and Immunology Trinity College Dublin, Crumlin, Dublin, Ireland
- Discipline of Immunology Trinity College Dublin, Crumlin, Dublin, Ireland
- Discipline of Trinity Translational Medicine Institute (TTMI), Trinity College Dublin, Crumlin, Dublin, Ireland
- Discipline of Trinity Research in Childhood Centre, Trinity College Dublin, Crumlin, Dublin, Ireland
- Discipline of Paediatrics, Children's Hospital Ireland (CHI) at Tallaght & Crumlin, Crumlin, Dublin, Ireland
- Discipline of Coombe Women and Infants University Hospital, Crumlin, Dublin, Ireland
- Discipline of Neonatology & National Children's Research Centre, Crumlin, Dublin, Ireland
- Discipline of National Children's Research Centre, Crumlin, Dublin, Ireland
| |
Collapse
|
10
|
Sacchi C, O'Muircheartaigh J, Batalle D, Counsell SJ, Simonelli A, Cesano M, Falconer S, Chew A, Kennea N, Nongena P, Rutherford MA, Edwards AD, Nosarti C. Neurodevelopmental Outcomes following Intrauterine Growth Restriction and Very Preterm Birth. J Pediatr 2021; 238:135-144.e10. [PMID: 34245768 DOI: 10.1016/j.jpeds.2021.07.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/23/2021] [Accepted: 07/01/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVES To evaluate whether intrauterine growth restriction (IUGR) adds further neurodevelopmental risk to that posed by very preterm birth alone in terms of alterations in brain growth and poorer toddlerhood outcomes. STUDY DESIGN Participants were 314 infants of very preterm birth enrolled in the Evaluation of Preterm Imaging Study (e-Prime) who were subsequently followed up in toddlerhood. IUGR was identified postnatally from discharge records (n = 49) and defined according to prenatal evaluation of growth restriction confirmed by birth weight <10th percentile for gestational age and/or alterations in fetal Doppler. Appropriate for gestational age (AGA; n = 265) was defined as birth weight >10th percentile for gestational age at delivery. Infants underwent magnetic resonance imaging at term-equivalent age (median = 42 weeks); T2-weighted images were obtained for voxelwise gray matter volumes. Follow-up assessments were conducted at corrected median age of 22 months using the Bayley Scales of Infant and Toddler Development III and the Modified-Checklist for Autism in Toddlers. RESULTS Infants of very preterm birth with IUGR displayed a relative volumetric decrease in gray matter in limbic regions and a relative increase in frontoinsular, temporal-parietal, and frontal areas compared with peers of very preterm birth who were AGA. At follow-up, toddlers born very preterm with IUGR had significantly lower cognitive (effect size = 0.42) and motor (effect size = 0.41) scores and were more likely to have a positive Modified-Checklist for Autism in Toddlers screening for autism (OR = 2.12) compared with peers of very preterm birth who were AGA. CONCLUSIONS IUGR might confer a neurodevelopmental risk that is greater than that posed by very preterm alone, in terms of both alterations in brain growth and poorer toddlerhood outcomes.
Collapse
Affiliation(s)
- Chiara Sacchi
- Department of Developmental and Social Psychology, University of Padova, Padua, Italy
| | - Jonathan O'Muircheartaigh
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom; Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Dafnis Batalle
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom; Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Serena Jane Counsell
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Alessandra Simonelli
- Department of Developmental and Social Psychology, University of Padova, Padua, Italy
| | - Michela Cesano
- Department of Developmental and Social Psychology, University of Padova, Padua, Italy
| | - Shona Falconer
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Andrew Chew
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Nigel Kennea
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Phumza Nongena
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Mary Ann Rutherford
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Anthony David Edwards
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Chiara Nosarti
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom; Department of Child & Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom.
| |
Collapse
|
11
|
Peterson LS, Hedou J, Ganio EA, Stelzer IA, Feyaerts D, Harbert E, Adusumelli Y, Ando K, Tsai ES, Tsai AS, Han X, Ringle M, Houghteling P, Reiss JD, Lewis DB, Winn VD, Angst MS, Aghaeepour N, Stevenson DK, Gaudilliere B. Single-Cell Analysis of the Neonatal Immune System Across the Gestational Age Continuum. Front Immunol 2021; 12:714090. [PMID: 34497610 PMCID: PMC8420969 DOI: 10.3389/fimmu.2021.714090] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/02/2021] [Indexed: 12/21/2022] Open
Abstract
Although most causes of death and morbidity in premature infants are related to immune maladaptation, the premature immune system remains poorly understood. We provide a comprehensive single-cell depiction of the neonatal immune system at birth across the spectrum of viable gestational age (GA), ranging from 25 weeks to term. A mass cytometry immunoassay interrogated all major immune cell subsets, including signaling activity and responsiveness to stimulation. An elastic net model described the relationship between GA and immunome (R=0.85, p=8.75e-14), and unsupervised clustering highlighted previously unrecognized GA-dependent immune dynamics, including decreasing basal MAP-kinase/NFκB signaling in antigen presenting cells; increasing responsiveness of cytotoxic lymphocytes to interferon-α; and decreasing frequency of regulatory and invariant T cells, including NKT-like cells and CD8+CD161+ T cells. Knowledge gained from the analysis of the neonatal immune landscape across GA provides a mechanistic framework to understand the unique susceptibility of preterm infants to both hyper-inflammatory diseases and infections.
Collapse
Affiliation(s)
- Laura S Peterson
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| | - Julien Hedou
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Edward A Ganio
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Ina A Stelzer
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Dorien Feyaerts
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Eliza Harbert
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| | - Yamini Adusumelli
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| | - Kazuo Ando
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Eileen S Tsai
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Amy S Tsai
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Xiaoyuan Han
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Megan Ringle
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| | - Pearl Houghteling
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| | - Jonathan D Reiss
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| | - David B Lewis
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| | - Virginia D Winn
- Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA, United States
| | - Martin S Angst
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Nima Aghaeepour
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States.,Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, United States.,Department of Biomedical Data Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - David K Stevenson
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| | - Brice Gaudilliere
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States.,Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
12
|
Prasad JD, Gunn KC, Davidson JO, Galinsky R, Graham SE, Berry MJ, Bennet L, Gunn AJ, Dean JM. Anti-Inflammatory Therapies for Treatment of Inflammation-Related Preterm Brain Injury. Int J Mol Sci 2021; 22:4008. [PMID: 33924540 PMCID: PMC8069827 DOI: 10.3390/ijms22084008] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 12/13/2022] Open
Abstract
Despite the prevalence of preterm brain injury, there are no established neuroprotective strategies to prevent or alleviate mild-to-moderate inflammation-related brain injury. Perinatal infection and inflammation have been shown to trigger acute neuroinflammation, including proinflammatory cytokine release and gliosis, which are associated with acute and chronic disturbances in brain cell survival and maturation. These findings suggest the hypothesis that the inhibition of peripheral immune responses following infection or nonspecific inflammation may be a therapeutic strategy to reduce the associated brain injury and neurobehavioral deficits. This review provides an overview of the neonatal immunity, neuroinflammation, and mechanisms of inflammation-related brain injury in preterm infants and explores the safety and efficacy of anti-inflammatory agents as potentially neurotherapeutics.
Collapse
Affiliation(s)
- Jaya D. Prasad
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1010, New Zealand; (J.D.P.); (K.C.G.); (J.O.D.); (L.B.); (A.J.G.)
| | - Katherine C. Gunn
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1010, New Zealand; (J.D.P.); (K.C.G.); (J.O.D.); (L.B.); (A.J.G.)
| | - Joanne O. Davidson
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1010, New Zealand; (J.D.P.); (K.C.G.); (J.O.D.); (L.B.); (A.J.G.)
| | - Robert Galinsky
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia;
| | - Scott E. Graham
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1010, New Zealand;
| | - Mary J. Berry
- Department of Pediatrics and Health Care, University of Otago, Dunedin 9016, New Zealand;
| | - Laura Bennet
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1010, New Zealand; (J.D.P.); (K.C.G.); (J.O.D.); (L.B.); (A.J.G.)
| | - Alistair J. Gunn
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1010, New Zealand; (J.D.P.); (K.C.G.); (J.O.D.); (L.B.); (A.J.G.)
| | - Justin M. Dean
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1010, New Zealand; (J.D.P.); (K.C.G.); (J.O.D.); (L.B.); (A.J.G.)
| |
Collapse
|
13
|
Wang T, Zhang Y, Chen W, Tao J, Xue Q, Ge W, Dou W, Ma C. Proteomic changes in the hippocampus and motor cortex in a rat model of cerebral palsy: Effects of topical treatment. Biomed Pharmacother 2021; 133:110844. [PMID: 33186793 DOI: 10.1016/j.biopha.2020.110844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 09/21/2020] [Accepted: 10/04/2020] [Indexed: 11/21/2022] Open
Abstract
Cerebral palsy (CP) is a non-progressive motor-impairment disorder related to brain injury early in development. To gain new insights into the mechanisms of CP and the therapeutic efficacy of Baimai ointment, we used a high-throughput quantitative proteomic approach to evaluate proteomic changes in the hippocampus and motor cortex in a rat model of CP induced by lipopolysaccharide (LPS) combined with hypoxia/ischemia (H/I). More than 2000 proteins were identified in each brain region with high confidence. Quantitative analysis demonstrated profound disturbances in the proteomes of the hippocampus and motor cortex after LPS + H/I, in addition to the disruption of the motor system. In contrast, the topical application of Baimai ointment not only alleviated the motor deficit in the CP model rats, but also restored the proteomes in the brain cortex. Furthermore, astrocytes in the hippocampus were strongly activated in the Baimai-treated CP rat brains, associated with an increase in neurotrophic factors. Proteomic analysis demonstrated that the CP model induced neuroinflammatory responses in the brain which were reversed by the topical application of Baimai ointment. This study highlights the unexpected roles of hippocampus and motor cortex neurons in CP progress and treatment, thus providing potentially novel therapeutic targets for CP.
Collapse
Affiliation(s)
- Tao Wang
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Human Anatomy, Histology and Embryology, Neuroscience Center, Joint Laboratory of Anesthesia and Pain, School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Dongcheng District, Beijing 100005, China
| | - Yusheng Zhang
- National Key Laboratory of Medical Molecular Biology & Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, 5 Dong Dan San Tiao, Dongcheng District, Beijing 100005, China
| | - Weiwu Chen
- School of Business Administration, Shenyang Pharmaceutical University, Shenyang, China
| | - Jin Tao
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Human Anatomy, Histology and Embryology, Neuroscience Center, Joint Laboratory of Anesthesia and Pain, School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Dongcheng District, Beijing 100005, China
| | - Qiao Xue
- Tibet Cheezheng Tibetan Medicine Co., Ltd., Beijing, China
| | - Wei Ge
- National Key Laboratory of Medical Molecular Biology & Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, 5 Dong Dan San Tiao, Dongcheng District, Beijing 100005, China
| | - Wanchen Dou
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China.
| | - Chao Ma
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Human Anatomy, Histology and Embryology, Neuroscience Center, Joint Laboratory of Anesthesia and Pain, School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Dongcheng District, Beijing 100005, China.
| |
Collapse
|
14
|
Interleukin-8 dysregulation is implicated in brain dysmaturation following preterm birth. Brain Behav Immun 2020; 90:311-318. [PMID: 32920182 DOI: 10.1016/j.bbi.2020.09.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/05/2020] [Accepted: 09/05/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Preterm birth is associated with dysconnectivity of structural brain networks, impaired cognition and psychiatric disease. Systemic inflammation contributes to cerebral dysconnectivity, but the immune mediators driving this association are poorly understood. We analysed information from placenta, umbilical cord and neonatal blood, and brain MRI to determine which immune mediators link perinatal systemic inflammation with dysconnectivity of structural brain networks. METHODS Participants were 102 preterm infants (mean gestational age 29+1 weeks, range 23+3-32+0). Placental histopathology identified reaction patterns indicative of histologic chorioamnionitis (HCA), and a customized immunoassay of 24 inflammation-associated proteins selected to reflect the neonatal innate and adaptive immune response was performed from umbilical cord (n = 55) and postnatal day 5 blood samples (n = 71). Brain MRI scans were acquired at term-equivalent age (41+0 weeks [range 38+0-44+4 weeks]) and alterations in white matter connectivity were inferred from mean diffusivity and neurite density index across the white matter skeleton. RESULTS HCA was associated with elevated concentrations of C5a, C9, CRP, IL-1β, IL-6, IL-8 and MCP-1 in cord blood, and IL-8 concentration predicted HCA with an area under the receiver operator curve of 0.917 (95% CI 0.841 - 0.993, p < 0.001). Fourteen analytes explained 66% of the variance in the postnatal profile (BDNF, C3, C5a, C9, CRP, IL-1β, IL-6, IL-8, IL-18, MCP-1, MIP-1β, MMP-9, RANTES and TNF-α). Of these, IL-8 was associated with altered neurite density index across the white matter skeleton after adjustment for gestational age at birth and at scan (β = 0.221, p = 0.037). CONCLUSIONS These findings suggest that IL-8 dysregulation has a role in linking perinatal systemic inflammation and atypical white matter development in preterm infants.
Collapse
|
15
|
Wang SH, Tsao PN. Phenotypes of Bronchopulmonary Dysplasia. Int J Mol Sci 2020; 21:ijms21176112. [PMID: 32854293 PMCID: PMC7503264 DOI: 10.3390/ijms21176112] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/20/2020] [Accepted: 08/22/2020] [Indexed: 12/18/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is the most common chronic morbidity in preterm infants. In the absence of effective interventions, BPD is currently a major therapeutic challenge. Several risk factors are known for this multifactorial disease that results in disrupted lung development. Inflammation plays an important role and leads to persistent airway and pulmonary vascular disease. Since corticosteroids are potent anti-inflammatory agents, postnatal corticosteroids have been used widely for BPD prevention and treatment. However, the clinical responses vary to a great degree across individuals, and steroid-related complications remain major concerns. Emerging studies on the molecular mechanism of lung alveolarization during inflammatory stress will elucidate the complicated pathway and help discover novel therapeutic targets. Moreover, with the advances in metabolomics, there are new opportunities to identify biomarkers for early diagnosis and prognosis prediction of BPD. Pharmacometabolomics is another novel field aiming to identify the metabolomic changes before and after a specific drug treatment. Through this "metabolic signature," a more precise treatment may be developed, thereby avoiding unnecessary drug exposure in non-responders. In the future, more clinical, genetic, and translational studies would be required to improve the classification of BPD phenotypes and achieve individualized care to enhance the respiratory outcomes in preterm infants.
Collapse
Affiliation(s)
- Shih-Hsin Wang
- Department of Pediatrics, Far Eastern Memorial Hospital, New Taipei City 22060, Taiwan;
| | - Po-Nien Tsao
- Department of Pediatrics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei 100225, Taiwan
- Center for Developmental Biology & Regenerative Medicine, National Taiwan University, Taipei 100226, Taiwan
- Correspondence: ; Tel.: +886-2-23123456 (ext. 71013)
| |
Collapse
|
16
|
Gomez-Lopez N, Romero R, Garcia-Flores V, Leng Y, Miller D, Hassan SS, Hsu CD, Panaitescu B. Inhibition of the NLRP3 inflammasome can prevent sterile intra-amniotic inflammation, preterm labor/birth, and adverse neonatal outcomes†. Biol Reprod 2020; 100:1306-1318. [PMID: 30596885 DOI: 10.1093/biolre/ioy264] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/10/2018] [Accepted: 12/26/2018] [Indexed: 01/20/2023] Open
Abstract
Sterile intra-amniotic inflammation is commonly observed in patients with spontaneous preterm labor, a syndrome that commonly precedes preterm birth, the leading cause of perinatal morbidity and mortality worldwide. However, the mechanisms leading to sterile intra-amniotic inflammation are poorly understood and no treatment exists for this clinical condition. Herein, we investigated whether the alarmin S100B could induce sterile intra-amniotic inflammation by activating the NLRP3 inflammasome, and whether the inhibition of this pathway could prevent preterm labor/birth and adverse neonatal outcomes. We found that the ultrasound-guided intra-amniotic administration of S100B induced a 50% rate of preterm labor/birth and a high rate of neonatal mortality (59.7%) without altering the fetal and placental weights. Using a multiplex cytokine array and immunoblotting, we reported that S100B caused a proinflammatory response in the amniotic cavity and induced the activation of the NLRP3 inflammasome in the fetal membranes, indicated by the upregulation of the NLRP3 protein and increased release of active caspase-1 and mature IL-1β. Inhibition of the NLRP3 inflammasome via the specific inhibitor MCC950 prevented preterm labor/birth by 35.7% and reduced neonatal mortality by 26.7%. Yet, inhibition of the NLRP3 inflammasome at term did not drastically obstruct the physiological process of parturition. In conclusion, the data presented herein indicate that the alarmin S100B can induce sterile intra-amniotic inflammation, preterm labor/birth, and adverse neonatal outcomes by activating the NLRP3 inflammasome, which can be prevented by inhibiting such a pathway. These findings provide evidence that sterile intra-amniotic inflammation could be treated by targeting the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA.,Department of Immunology, Microbiology and Biochemistry, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA.,Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, USA.,Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
| | - Valeria Garcia-Flores
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Yaozhu Leng
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Derek Miller
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Sonia S Hassan
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA.,Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Chaur-Dong Hsu
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA.,Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Bogdan Panaitescu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
17
|
Chudnovets A, Lei J, Na Q, Dong J, Narasimhan H, Klein SL, Burd I. Dose-dependent structural and immunological changes in the placenta and fetal brain in response to systemic inflammation during pregnancy. Am J Reprod Immunol 2020; 84:e13248. [PMID: 32306461 DOI: 10.1111/aji.13248] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/22/2020] [Accepted: 04/10/2020] [Indexed: 12/12/2022] Open
Abstract
PROBLEM Systemic maternal inflammation is associated with adverse neonatal sequelae. We tested the hypothesis that IL-1β is a key inflammatory regulator of adverse pregnancy outcomes. METHOD OF STUDY Pregnant mice were treated with intraperitoneal injections of IL-1β (0, 0.1, 0.5, or 1 μg) from embryonic day (E)14 to E17. Placenta and fetal brains were harvested and analyzed for morphologic changes and IL-1β signaling markers. RESULTS As compared with non-treated dams, maternal injections with IL-1β resulted in increased p-NF-κB and caspase-1 in placentas and fetal brains, but not consistently in spleens, suggesting induction of intrinsic IL-1β production. These findings were confirmed by increased levels of IL-1β in the placentas of the IL-1β-treated dams. Systemic treatment of dams with IL-1β suppressed Stat1 signaling. Maternal inflammation caused by IL-1β treatment reduced fetal viability to 80.6% and 58.9%, in dams treated with either 0.5 or 1 μg of IL-1β, respectively. In the placentas, there was an IL-1β dose-dependent distortion of the labyrinth structure, decreased numbers of mononuclear trophoblast giant cells, and reduced proportions of endothelial cells as compared to placentas from control dams. In fetal brains collected at E17, there was an IL-1β dose-dependent reduction in cortical neuronal morphology. CONCLUSION This work demonstrates that systemic IL-1β injection causes dose-dependent structural and functional changes in the placenta and fetal brain.
Collapse
Affiliation(s)
- Anna Chudnovets
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jun Lei
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Quan Na
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jie Dong
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Harish Narasimhan
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Sabra L Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Irina Burd
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
18
|
Turesky T, Xie W, Kumar S, Sliva DD, Gagoski B, Vaughn J, Zöllei L, Haque R, Kakon SH, Islam N, Petri WA, Nelson CA, Gaab N. Relating anthropometric indicators to brain structure in 2-month-old Bangladeshi infants growing up in poverty: A pilot study. Neuroimage 2020; 210:116540. [PMID: 31945509 PMCID: PMC7068701 DOI: 10.1016/j.neuroimage.2020.116540] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 11/06/2019] [Accepted: 01/10/2020] [Indexed: 01/03/2023] Open
Abstract
Anthropometric indicators, including stunting, underweight, and wasting, have previously been associated with poor neurocognitive outcomes. This link may exist because malnutrition and infection, which are known to affect height and weight, also impact brain structure according to animal models. However, a relationship between anthropometric indicators and brain structural measures has not been tested yet, perhaps because stunting, underweight, and wasting are uncommon in higher-resource settings. Further, with diminished anthropometric growth prevalent in low-resource settings, where biological and psychosocial hazards are most severe, one might expect additional links between measures of poverty, anthropometry, and brain structure. To begin to examine these relationships, we conducted an MRI study in 2-3-month-old infants growing up in the extremely impoverished urban setting of Dhaka, Bangladesh. The sample size was relatively small because the challenges of investigating infant brain structure in a low-resource setting needed to be realized and resolved before introducing a larger cohort. Initially, fifty-four infants underwent T1 sequences using 3T MRI, and resulting structural images were segmented into gray and white matter maps, which were carefully evaluated for accurate tissue labeling by a pediatric neuroradiologist. Gray and white matter volumes from 29 infants (79 ± 10 days-of-age; F/M = 12/17), whose segmentations were of relatively high quality, were submitted to semi-partial correlation analyses with stunting, underweight, and wasting, which were measured using height-for-age (HAZ), weight-for-age (WAZ), and weight-for-height (WHZ) scores. Positive semi-partial correlations (after adjusting for chronological age and sex and correcting for multiple comparisons) were observed between white matter volume and HAZ and WAZ; however, WHZ was not correlated with any measure of brain volume. No associations were observed between income-to-needs or maternal education and brain volumetric measures, suggesting that measures of poverty were not associated with total brain tissue volume in this sample. Overall, these results provide the first link between diminished anthropometric growth and white matter volume in infancy. Challenges of conducting a developmental neuroimaging study in a low-resource country are also described.
Collapse
Affiliation(s)
- Ted Turesky
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of Medicine, Boston Children's Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States.
| | - Wanze Xie
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of Medicine, Boston Children's Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Swapna Kumar
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of Medicine, Boston Children's Hospital, Boston, MA, United States
| | - Danielle D Sliva
- Department of Neuroscience, Brown University, Providence, RI, United States
| | - Borjan Gagoski
- Department of Radiology, Harvard Medical School, Boston, MA, United States; Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA, United States
| | - Jennifer Vaughn
- Department of Radiology, Harvard Medical School, Boston, MA, United States
| | - Lilla Zöllei
- A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
| | - Rashidul Haque
- The International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | | | - Nazrul Islam
- National Institute of Neuroscience and Hospital, Dhaka, Bangladesh
| | - William A Petri
- Division of Infectious Diseases and International Health, Department of Medicine, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Charles A Nelson
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of Medicine, Boston Children's Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States; Harvard Graduate School of Education, Cambridge, MA, United States
| | - Nadine Gaab
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of Medicine, Boston Children's Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States
| |
Collapse
|
19
|
Rackaityte E, Halkias J. Mechanisms of Fetal T Cell Tolerance and Immune Regulation. Front Immunol 2020; 11:588. [PMID: 32328065 PMCID: PMC7160249 DOI: 10.3389/fimmu.2020.00588] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/13/2020] [Indexed: 12/19/2022] Open
Abstract
The developing human fetus generates both tolerogenic and protective immune responses in response to the unique requirements of gestation. Thus, a successful human pregnancy depends on a fine balance between two opposing immunological forces: the semi-allogeneic fetus learns to tolerate both self- and maternal- antigens and, in parallel, develops protective immunity in preparation for birth. This critical window of immune development bridges prenatal immune tolerance with the need for postnatal environmental protection, resulting in a vulnerable neonatal period with heightened risk of infection. The fetal immune system is highly specialized to mediate this transition and thus serves a different function from that of the adult. Adaptive immune memory is already evident in the fetal intestine. Fetal T cells with pro-inflammatory potential are born in a tolerogenic environment and are tightly controlled by both cell-intrinsic and -extrinsic mechanisms, suggesting that compartmentalization and specialization, rather than immaturity, define the fetal immune system. Dysregulation of fetal tolerance generates an inflammatory response with deleterious effects to the pregnancy. This review aims to discuss the recent advances in our understanding of the cellular and molecular composition of fetal adaptive immunity and the mechanisms that govern T cell development and function. We also discuss the tolerance promoting environment that impacts fetal immunity and the consequences of its breakdown. A greater understanding of fetal mechanisms of immune activation and regulation has the potential to uncover novel paradigms of immune balance which may be leveraged to develop therapies for transplantation, autoimmune disease, and birth-associated inflammatory pathologies.
Collapse
Affiliation(s)
- Elze Rackaityte
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, United States
| | - Joanna Halkias
- Division of Neonatology, Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, CA, United States
| |
Collapse
|
20
|
Imai K, Kotani T, Tsuda H, Kobayashi T, Ushida T, Moriyama Y, Kikkawa F. Determination of the cytokine levels in fetal pleural effusion and their association with fetal/neonatal findings. Cytokine 2019; 127:154945. [PMID: 31805478 DOI: 10.1016/j.cyto.2019.154945] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/16/2019] [Accepted: 11/25/2019] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Few studies have investigated the distribution of multiple cytokines in fetal pleural effusion, and its clinical implications are uncertain. This study aimed to determine cytokine levels in fetal pleural effusion and their clinical role in affected fetuses. METHODS We obtained fetal pleural fluid samples from 18 infants and investigated the profiles of 40 cytokines using multiplex immunoassay. Relationships among cytokines were estimated by Spearman correlation analysis. Possible associations of cytokine levels with fetal adverse outcomes, including perinatal demise and neurodevelopmental impairment, were studied using univariate logistic regression analysis. RESULTS Several pro-inflammatory cytokines and CCL chemokines were highly correlated with each other. In contrast, CXCL chemokines had relatively weak correlations with other cytokines. The levels of IL-1β, IL-2, and CCL20 were significantly associated with the occurrence of fetal adverse outcomes. Based on our findings, IL-1β had the strongest causal link to adverse outcomes among the cytokines [odds ratio (OR): 19.74; 95% confidence interval (CI): 1.14-341.9; p = 0.040]. CONCLUSIONS Cytokine levels in fetal pleural effusion varied considerably among cases with or without adverse outcomes. These results provide important information for further clarifying the pathophysiology of fetal pleural effusion and a novel clinical implication that could predict the occurrence of adverse outcomes.
Collapse
Affiliation(s)
- Kenji Imai
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Tomomi Kotani
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroyuki Tsuda
- Department of Obstetrics and Gynecology, Japanese Red Cross Nagoya Daiichi Hospital, Nagoya, Japan
| | - Tomoko Kobayashi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takafumi Ushida
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshinori Moriyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Fumitaka Kikkawa
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
21
|
Frascoli M, Coniglio L, Witt R, Jeanty C, Fleck-Derderian S, Myers DE, Lee TH, Keating S, Busch MP, Norris PJ, Tang Q, Cruz G, Barcellos LF, Gomez-Lopez N, Romero R, MacKenzie TC. Alloreactive fetal T cells promote uterine contractility in preterm labor via IFN-γ and TNF-α. Sci Transl Med 2019; 10:10/438/eaan2263. [PMID: 29695455 DOI: 10.1126/scitranslmed.aan2263] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 12/13/2017] [Accepted: 04/05/2018] [Indexed: 12/15/2022]
Abstract
Healthy pregnancy is the most successful form of graft tolerance, whereas preterm labor (PTL) may represent a breakdown in maternal-fetal tolerance. Although maternal immune responses have been implicated in pregnancy complications, fetal immune responses against maternal antigens are often not considered. To examine the fetal immune system in the relevant clinical setting, we analyzed maternal and cord blood in patients with PTL and healthy term controls. We report here that the cord blood of preterm infants has higher amounts of inflammatory cytokines and a greater activation of dendritic cells. Moreover, preterm cord blood is characterized by the presence of a population of central memory cells with a type 1 T helper phenotype, which is absent in term infants, and an increase in maternal microchimerism. T cells from preterm infants mount a robust proliferative, proinflammatory response to maternal antigens compared to term infants yet fail to respond to third-party antigens. Furthermore, we show that T cells from preterm infants stimulate uterine myometrial contractility through interferon-γ and tumor necrosis factor-α. In parallel, we found that adoptive transfer of activated T cells directly into mouse fetuses resulted in pregnancy loss. Our findings indicate that fetal inflammation and rejection of maternal antigens can contribute to the signaling cascade that promotes uterine contractility and that aberrant fetal immune responses should be considered in the pathogenesis of PTL.
Collapse
Affiliation(s)
- Michela Frascoli
- Eli and Edythe Broad Center of Regeneration Medicine, University of California, San Francisco, CA 94143, USA.,Department of Surgery, University of California, San Francisco, CA 94143, USA
| | - Lacy Coniglio
- Eli and Edythe Broad Center of Regeneration Medicine, University of California, San Francisco, CA 94143, USA.,Department of Surgery, University of California, San Francisco, CA 94143, USA
| | - Russell Witt
- Eli and Edythe Broad Center of Regeneration Medicine, University of California, San Francisco, CA 94143, USA.,Department of Surgery, University of California, San Francisco, CA 94143, USA
| | - Cerine Jeanty
- Eli and Edythe Broad Center of Regeneration Medicine, University of California, San Francisco, CA 94143, USA.,Department of Surgery, University of California, San Francisco, CA 94143, USA
| | | | - Dana E Myers
- Obstetrics and Gynecology, University of California, San Francisco, CA 94143, USA
| | - Tzong-Hae Lee
- Blood Systems Research Institute, San Francisco, CA 94118, USA
| | - Sheila Keating
- Blood Systems Research Institute, San Francisco, CA 94118, USA
| | - Michael P Busch
- Blood Systems Research Institute, San Francisco, CA 94118, USA
| | - Philip J Norris
- Blood Systems Research Institute, San Francisco, CA 94118, USA
| | - Qizhi Tang
- Department of Surgery, University of California, San Francisco, CA 94143, USA
| | - Giovanna Cruz
- Division of Epidemiology, Genetic Epidemiology and Genomics Laboratory, School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Lisa F Barcellos
- Division of Epidemiology, Genetic Epidemiology and Genomics Laboratory, School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)/National Institutes of Health (NIH)/U.S. Department of Health and Human Services (DHHS), Bethesda, MD 20892, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA.,Department of Microbiology, Immunology, and Biochemistry, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Roberto Romero
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)/National Institutes of Health (NIH)/U.S. Department of Health and Human Services (DHHS), Bethesda, MD 20892, USA.,Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48824, USA.,Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
| | - Tippi C MacKenzie
- Eli and Edythe Broad Center of Regeneration Medicine, University of California, San Francisco, CA 94143, USA. .,Department of Surgery, University of California, San Francisco, CA 94143, USA.,Center for Maternal-Fetal Precision Medicine, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
22
|
Turesky TK, Jensen SK, Yu X, Kumar S, Wang Y, Sliva DD, Gagoski B, Sanfilippo J, Zöllei L, Boyd E, Haque R, Hafiz Kakon S, Islam N, Petri WA, Nelson CA, Gaab N. The relationship between biological and psychosocial risk factors and resting-state functional connectivity in 2-month-old Bangladeshi infants: A feasibility and pilot study. Dev Sci 2019; 22:e12841. [PMID: 31016808 PMCID: PMC6713583 DOI: 10.1111/desc.12841] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 01/25/2023]
Abstract
Childhood poverty has been associated with structural and functional alterations in the developing brain. However, poverty does not alter brain development directly, but acts through associated biological or psychosocial risk factors (e.g. malnutrition, family conflict). Yet few studies have investigated risk factors in the context of infant neurodevelopment, and none have done so in low-resource settings such as Bangladesh, where children are exposed to multiple, severe biological and psychosocial hazards. In this feasibility and pilot study, usable resting-state fMRI data were acquired in infants from extremely poor (n = 16) and (relatively) more affluent (n = 16) families in Dhaka, Bangladesh. Whole-brain intrinsic functional connectivity (iFC) was estimated using bilateral seeds in the amygdala, where iFC has shown susceptibility to early life stress, and in sensory areas, which have exhibited less susceptibility to early life hazards. Biological and psychosocial risk factors were examined for associations with iFC. Three resting-state networks were identified in within-group brain maps: medial temporal/striatal, visual, and auditory networks. Infants from extremely poor families compared with those from more affluent families exhibited greater (i.e. less negative) iFC in precuneus for amygdala seeds; however, no group differences in iFC were observed for sensory area seeds. Height-for-age, a proxy for malnutrition/infection, was not associated with amygdala/precuneus iFC, whereas prenatal family conflict was positively correlated. Findings suggest that it is feasible to conduct infant fMRI studies in low-resource settings. Challenges and practical steps for successful implementations are discussed.
Collapse
Affiliation(s)
- Ted K. Turesky
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of MedicineBoston Children’s HospitalBostonMassachusetts
- Harvard Medical SchoolBostonMassachusetts
| | - Sarah K.G. Jensen
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of MedicineBoston Children’s HospitalBostonMassachusetts
- Harvard Medical SchoolBostonMassachusetts
| | - Xi Yu
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of MedicineBoston Children’s HospitalBostonMassachusetts
- Harvard Medical SchoolBostonMassachusetts
| | - Swapna Kumar
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of MedicineBoston Children’s HospitalBostonMassachusetts
| | - Yingying Wang
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of MedicineBoston Children’s HospitalBostonMassachusetts
- Harvard Medical SchoolBostonMassachusetts
- College of Education and Human SciencesUniversity of Nebraska‐LincolnLincolnNebraska
| | - Danielle D. Sliva
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of MedicineBoston Children’s HospitalBostonMassachusetts
- Department of NeuroscienceBrown UniversityProvidenceRhode Island
| | - Borjan Gagoski
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of MedicineBoston Children’s HospitalBostonMassachusetts
- Harvard Medical SchoolBostonMassachusetts
| | - Joseph Sanfilippo
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of MedicineBoston Children’s HospitalBostonMassachusetts
| | - Lilla Zöllei
- A.A. Martinos Center for Biomedical ImagingMassachusetts General HospitalBostonMassachusetts
| | - Emma Boyd
- A.A. Martinos Center for Biomedical ImagingMassachusetts General HospitalBostonMassachusetts
| | - Rashidul Haque
- The International Centre for Diarrhoeal Disease ResearchDhakaBangladesh
| | | | - Nazrul Islam
- National Institute of Neurosciences & HospitalDhakaBangladesh
| | - William A. Petri
- Division of Infectious Diseases and International Health, Department of Medicine, School of MedicineUniversity of VirginiaCharlottesvilleVirginia
| | - Charles A. Nelson
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of MedicineBoston Children’s HospitalBostonMassachusetts
- Harvard Medical SchoolBostonMassachusetts
- Harvard Graduate School of EducationCambridgeMassachusetts
| | - Nadine Gaab
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of MedicineBoston Children’s HospitalBostonMassachusetts
- Harvard Medical SchoolBostonMassachusetts
| |
Collapse
|
23
|
Liu C, Chen Y, Zhao D, Zhang J, Zhang Y. Association Between Funisitis and Childhood Intellectual Development: A Prospective Cohort Study. Front Neurol 2019; 10:612. [PMID: 31263446 PMCID: PMC6584799 DOI: 10.3389/fneur.2019.00612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 05/24/2019] [Indexed: 01/13/2023] Open
Abstract
Background: Previous studies have suggested that prenatal inflammation could damage the immature brain of preterm infants. In this study, we aimed to investigate whether funisitis could affect childhood neurodevelopment. We hypothesized that childhood neurodevelopment would vary across groups with or without funisitis. Material sand Methods: Using data from the U.S. Collaborative Perinatal Project (1959–1976), 29,725 subjects with available intelligence quotient (IQ) were studied. Detailed placental examinations were conducted according to a standard protocol with quality control procedures. Multivariate logistic regression models were applied to evaluate the relationship between funisitis and IQ at age 4 or 7 years after adjusting for confounders. Results: Early preterm birth children with funisitis had a 3.0-fold (95% confidence interval 1.2, 7.3) risk of low full-scale IQ (<70) at age 4 years, which disappeared until age 7 years. Term birth children with funisitis had 1.9-fold (95% confidence interval 1.2, 3.0) risk of low performance IQ at age 7 years, but they did not have increased risk of low full-scale IQ. No difference in IQ score was found in late preterm birth children. Conclusion: Funisitis may injure the developmental brain of infants, leading to the relative low IQ in childhood at age 4, but the negative effect is only existed in performance IQ at age of 7.
Collapse
Affiliation(s)
- Chengbo Liu
- Department of Neonatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yan Chen
- Department of Neonatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Dongying Zhao
- Department of Neonatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jun Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yongjun Zhang
- Department of Neonatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
24
|
Halkias J, Rackaityte E, Hillman SL, Aran D, Mendoza VF, Marshall LR, MacKenzie TC, Burt TD. CD161 contributes to prenatal immune suppression of IFNγ-producing PLZF+ T cells. J Clin Invest 2019; 129:3562-3577. [PMID: 31145102 DOI: 10.1172/jci125957] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND While the human fetal immune system defaults to a program of tolerance, there is concurrent need for protective immunity to meet the antigenic challenges encountered after birth. Activation of T cells in utero is associated with the fetal inflammatory response with broad implications for the health of the fetus and of the pregnancy. However, the characteristics of the fetal effector T cells that contribute to this process are largely unknown. METHODS We analyzed primary human fetal lymphoid and mucosal tissues and performed phenotypic, functional, and transcriptional analysis to identify T cells with pro-inflammatory potential. The frequency and function of fetal-specific effector T cells was assessed in the cord blood of infants with localized and systemic inflammatory pathologies and compared to healthy term controls. RESULTS We identified a transcriptionally distinct population of CD4+ T cells characterized by expression of the transcription factor Promyelocytic Leukemia Zinc Finger (PLZF). PLZF+ CD4+ T cells were specifically enriched in the fetal intestine, possessed an effector memory phenotype, and rapidly produced pro-inflammatory cytokines. Engagement of the C-type lectin CD161 on these cells inhibited TCR-dependent production of IFNγ in a fetal-specific manner. IFNγ-producing PLZF+ CD4+ T cells were enriched in the cord blood of infants with gastroschisis, a natural model of chronic inflammation originating from the intestine, as well as in preterm birth, suggesting these cells contribute to fetal systemic immune activation. CONCLUSION Our work reveals a fetal-specific program of protective immunity whose dysregulation is associated with fetal and neonatal inflammatory pathologies.
Collapse
Affiliation(s)
| | - Elze Rackaityte
- Biomedical Sciences Program, UCSF, San Francisco, California, USA
| | - Sara L Hillman
- Maternal and Fetal Medicine Department, Institute for Women's Health, University College London, London, United Kingdom
| | - Dvir Aran
- Institute for Computational Health Sciences, UCSF, San Francisco, California, USA
| | - Ventura F Mendoza
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, California, USA
| | - Lucy R Marshall
- Division of Infection Immunity and Inflammation, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Tippi C MacKenzie
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, California, USA.,Department of Surgery, UCSF, San Francisco, California, USA
| | - Trevor D Burt
- Division of Neonatology, Department of Pediatrics, and.,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, California, USA
| |
Collapse
|
25
|
Bachnas MA, Akbar MIA, Dachlan EG, Dekker G. The role of magnesium sulfate (MgSO 4) in fetal neuroprotection. J Matern Fetal Neonatal Med 2019; 34:966-978. [PMID: 31092073 DOI: 10.1080/14767058.2019.1619688] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Prevention of neurologic disability associated with preterm birth is one of the major challenges in current perinatal medicine. Magnesium sulfate (MgSO4), the focus of this review has been proposed as major step forward for that matter. MgSO4 is easily accessible, cheap, and has been proposed as a mandatory part of the management of inevitable preterm birth. The results of the various RCT's on the use of MgSO4 for neuroprotection has been the subject of many systematic reviews, other studies focused on dosing schedules, side effects and only a few focused on exploring magnesium's mechanism of action. Meanwhile, many guidelines worldwide have plugged MgSO4 as an essential ingredient of daily best practice when managing inevitable preterm birth because it has been shown to reduce the risk of severe neurologic deficit, in particular, cerebral palsy in appropriately selected patients. The more premature, the greater benefit associated with the use of antenatal MgSO4. The dose of 4 g given intravenously 15 min continued by 1 g/h until maximum 24 h and minimum for 4 h is the standard regiment proposed in most guidelines. It should be noted, however, that a recent study found that a total dose of 64 g was associated with the maximum protective effect. Only the protocol used by the largest RCT, the BEAM trial, with a loading dose of 6 g initially followed by a 2-g/h maintenance dose, if continued for 24 h would give a total dose over 50 g. Other studies report on an increased risk of neonatal death with these high doses. Several studies expressed concerns about the risk of serious side effects for both mother and neonate. The results from the systematic review showed that the most commonly used dosage, 4 g bolus continued by 1 g/h maintenance, did not increase neonatal mortality and other suspected neonatal complication such as neonatal asphyxia, spontaneous intestinal perforation, necrotizing enterocolitis, and feeding intolerance. Giving a single bolus injection of 4 g MgSO4 for stimulating BDNF production in highly "suspicious" preterm labor, and 4 g again when preterm birth become inevitable may be best from a safety perspective and also appears to have a stronger rationale.
Collapse
Affiliation(s)
- Muhammad Adrianes Bachnas
- Maternal Fetal Medicine Division, Obstetrics and Gynecology Department, Faculty of Medicine Universitas Sebelas Maret, Dr. Moewardi General Hospital, Surakarta, Indonesia
| | - Muhammad Ilham Aldika Akbar
- Maternal Fetal Medicine Division, Obstetrics and Gynecology Department, Faculty of Medicine Universitas Airlangga, Dr.Soetomo Hospital, Universitas Airlangga Hospital, Surabaya, Surakarta, Indonesia
| | - Erry Gumilar Dachlan
- Maternal Fetal Medicine Division, Obstetrics and Gynecology Department, Faculty of Medicine Universitas Airlangga, Dr.Soetomo Hospital, Universitas Airlangga Hospital, Surabaya, Surakarta, Indonesia
| | - Gustaaf Dekker
- Obstetrics and Gynaecology Department, Lyell-McEwin Hospital, the University of Adelaide, Adelaide, Australia
| |
Collapse
|
26
|
Microorganisms in the Placenta: Links to Early-Life Inflammation and Neurodevelopment in Children. Clin Microbiol Rev 2019; 32:32/3/e00103-18. [PMID: 31043389 DOI: 10.1128/cmr.00103-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Prenatal exposure to various stressors can influence both early and later life childhood health. Microbial infection of the intrauterine environment, specifically within the placenta, has been associated with deleterious birth outcomes, such as preterm birth, as well as adverse neurological outcomes later in life. The relationships among microorganisms in the placenta, placental function, and fetal development are not well understood. Microorganisms have been associated with perinatal inflammatory responses that have the potential for disrupting fetal brain development. Microbial presence has also been associated with epigenetic modifications in the placenta, as well other tissues. Here we review research detailing the presence of microorganisms in the placenta and associations among such microorganisms, placental DNA methylation, perinatal inflammation, and neurodevelopmental outcomes.
Collapse
|
27
|
Pregnolato S, Chakkarapani E, Isles AR, Luyt K. Glutamate Transport and Preterm Brain Injury. Front Physiol 2019; 10:417. [PMID: 31068830 PMCID: PMC6491644 DOI: 10.3389/fphys.2019.00417] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 03/27/2019] [Indexed: 12/19/2022] Open
Abstract
Preterm birth complications are the leading cause of child death worldwide and a top global health priority. Among the survivors, the risk of life-long disabilities is high, including cerebral palsy and impairment of movement, cognition, and behavior. Understanding the molecular mechanisms of preterm brain injuries is at the core of future healthcare improvements. Glutamate excitotoxicity is a key mechanism in preterm brain injury, whereby the accumulation of extracellular glutamate damages the delicate immature oligodendrocytes and neurons, leading to the typical patterns of injury seen in the periventricular white matter. Glutamate excitotoxicity is thought to be induced by an interaction between environmental triggers of injury in the perinatal period, particularly cerebral hypoxia-ischemia and infection/inflammation, and developmental and genetic vulnerabilities. To avoid extracellular build-up of glutamate, the brain relies on rapid uptake by sodium-dependent glutamate transporters. Astrocytic excitatory amino acid transporter 2 (EAAT2) is responsible for up to 95% of glutamate clearance, and several lines of evidence suggest that it is essential for brain functioning. While in the adult EAAT2 is predominantly expressed by astrocytes, EAAT2 is transiently upregulated in the immature oligodendrocytes and selected neuronal populations during mid-late gestation, at the peak time for preterm brain injury. This developmental upregulation may interact with perinatal hypoxia-ischemia and infection/inflammation and contribute to the selective vulnerability of the immature oligodendrocytes and neurons in the preterm brain. Disruption of EAAT2 may involve not only altered expression but also impaired function with reversal of transport direction. Importantly, elevated EAAT2 levels have been found in the reactive astrocytes and macrophages of human infant post-mortem brains with severe white matter injury (cystic periventricular leukomalacia), potentially suggesting an adaptive mechanism against excitotoxicity. Interestingly, EAAT2 is suppressed in animal models of acute hypoxic-ischemic brain injury at term, pointing to an important and complex role in newborn brain injuries. Enhancement of EAAT2 expression and transport function is gathering attention as a potential therapeutic approach for a variety of adult disorders and awaits exploration in the context of the preterm brain injuries.
Collapse
Affiliation(s)
- Silvia Pregnolato
- Department of Neonatal Neurology, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Elavazhagan Chakkarapani
- Department of Neonatal Neurology, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Anthony R Isles
- Behavioural Genetics Group, MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Karen Luyt
- Department of Neonatal Neurology, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
28
|
Yellowhair TR, Noor S, Mares B, Jose C, Newville JC, Maxwell JR, Northington FJ, Milligan ED, Robinson S, Jantzie LL. Chorioamnionitis in Rats Precipitates Extended Postnatal Inflammatory Lymphocyte Hyperreactivity. Dev Neurosci 2019; 40:1-11. [PMID: 30921800 PMCID: PMC6765467 DOI: 10.1159/000497273] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/25/2019] [Indexed: 12/16/2022] Open
Abstract
Preterm birth is an important cause of perinatal brain injury (PBI). Neurological injury in extremely preterm infants often begins in utero with chorioamnionitis (CHORIO) or inflammation/infection of the placenta and concomitant placental insufficiency. Studies in humans have shown dysregulated inflammatory signaling throughout the placental-fetal brain axis and altered peripheral immune responses in children born preterm with cerebral palsy (CP). We hypothesized that peripheral immune responses would be altered in our well-established rat model of CP. Specifically, we proposed that isolated peripheral blood mononuclear cells (PBMCs) would be hyperresponsive to a second hit of inflammation throughout an extended postnatal time course. Pregnant Sprague-Dawley dams underwent a laparotomy on embryonic day 18 (E18) with occlusion of the uterine arteries (for 60 min) followed by intra-amniotic injection of lipopolysaccharide (LPS, 4 μg/sac) to induce injury in utero. Shams underwent laparotomy only, with equivalent duration of anesthesia. Laparotomies were then closed, and the rat pups were born at E22. PBMCs were isolated from pups on postnatal day 7 (P7) and P21, and subsequently stimulated in vitro with LPS for 3 or 24 h. A secreted inflammatory profile analysis of conditioned media was performed using multiplex electrochemiluminescent immunoassays, and the composition of inflammatory cells was assayed with flow cytometry (FC). Results indicate that CHORIO PBMCs challenged with LPS are hyperreactive and secrete significantly more tumor necrosis factor α (TNFα) and C-X-C chemokine ligand 1 at P7. FC confirmed increased intracellular TNFα in CHORIO pups at P7 following LPS stimulation, in addition to increased numbers of CD11b/c immunopositive myeloid cells. Notably, TNFα secretion was sustained until P21, with increased interleukin 6, concomitant with increased expression of integrin β1, suggesting both sustained peripheral immune hyperreactivity and a heightened activation state. Taken together, these data indicate that in utero injury primes the immune system and augments enhanced inflammatory signaling. The insidious effects of primed peripheral immune cells may compound PBI secondary to CHORIO and/or placental insufficiency, and thereby render the brain susceptible to future chronic neurological disease. Further understanding of inflammatory mechanisms in PBI may yield clinically important biomarkers and facilitate individualized repair strategies and treatments.
Collapse
Affiliation(s)
- Tracylyn R Yellowhair
- Department of Pediatrics, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Shahani Noor
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Brittney Mares
- Department of Pediatrics, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Clement Jose
- Department of Pediatrics, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Jessie C Newville
- Department of Pediatrics, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Jessie R Maxwell
- Department of Pediatrics, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Frances J Northington
- Division of Newborn Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Erin D Milligan
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Shenandoah Robinson
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lauren L Jantzie
- Department of Pediatrics, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA,
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA,
- Division of Newborn Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA,
| |
Collapse
|
29
|
Tsimis ME, Lei J, Rosenzweig JM, Arif H, Shabi Y, Alshehri W, Talbot CC, Baig-Ward KM, Segars J, Graham EM, Burd I. P2X7 receptor blockade prevents preterm birth and perinatal brain injury in a mouse model of intrauterine inflammation. Biol Reprod 2018; 97:230-239. [PMID: 29044426 DOI: 10.1093/biolre/iox081] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 07/25/2017] [Indexed: 01/02/2023] Open
Abstract
The P2X7 is an adenosine triphosphate (ATP)-gated ion channel involved in several facets of immune activation and neuronal function through its importance in interleukin (IL)-1β secretion. We hypothesized that blockade of P2X7 would prevent perinatal brain injury associated with exposure to intrauterine (IU) inflammation. Dams received 45 mg/kg of Brilliant Blue G (BBG), a specific P2X7 receptor (P2X7R) antagonist, on gestation day 17 (E17) prior to administration of lipopolysaccharide (LPS) or phosphate-buffered saline (PBS). Furthermore, we utilized embryo transfer experiments to delineate whether the P2X7 was the key mediator of IU inflammation-associated brain injury on maternal or fetal sides. In these experiments, P2X7-/- dams were embryo-transferred wild type embryos and wild type dams were embryo-transferred P2X7-/- embryos. In the mouse model of intrauterine inflammation, pharmacologic blockade of P2X7R reduced preterm birth rate, improved offspring performance on neuromotor tests as well as the dendritic arborization and density of cortical neurons. Embryo transfer experiments demonstrated the importance of maternal P2X7R in IU inflammation-mediated effects on offspring. Both genetic and pharmacologic blockade of IL-1β signaling, by targeting maternal P2X7R, ameliorated perinatal brain injury following exposure to IU inflammation. Specific targeting of maternal P2X7R may provide a clinically useful tool to prevent both preterm birth and prematurity-associated perinatal brain injury, and further studies are urgently needed.
Collapse
Affiliation(s)
- Michael E Tsimis
- Department of Gynecology and Obstetrics, Division of Maternal-Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jun Lei
- Department of Gynecology and Obstetrics, Division of Maternal-Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jason M Rosenzweig
- Department of Gynecology and Obstetrics, Division of Maternal-Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hattan Arif
- Department of Gynecology and Obstetrics, Division of Maternal-Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yahya Shabi
- Department of Gynecology and Obstetrics, Division of Maternal-Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Wael Alshehri
- Department of Gynecology and Obstetrics, Division of Maternal-Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Connie C Talbot
- Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - K Maravet Baig-Ward
- Department of Gynecology and Obstetrics, Division of Reproductive Science and Women's Health Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - James Segars
- Department of Gynecology and Obstetrics, Division of Reproductive Science and Women's Health Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ernest M Graham
- Department of Gynecology and Obstetrics, Division of Maternal-Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Neuroscience Intensive Care Nursery Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Irina Burd
- Department of Gynecology and Obstetrics, Division of Maternal-Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Neuroscience Intensive Care Nursery Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
30
|
Gussenhoven R, Westerlaken RJJ, Ophelders DRMG, Jobe AH, Kemp MW, Kallapur SG, Zimmermann LJ, Sangild PT, Pankratova S, Gressens P, Kramer BW, Fleiss B, Wolfs TGAM. Chorioamnionitis, neuroinflammation, and injury: timing is key in the preterm ovine fetus. J Neuroinflammation 2018; 15:113. [PMID: 29673373 PMCID: PMC5907370 DOI: 10.1186/s12974-018-1149-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 04/04/2018] [Indexed: 01/11/2023] Open
Abstract
Background Antenatal infection (i.e., chorioamnionitis) is an important risk factor for adverse neurodevelopmental outcomes after preterm birth. Destructive and developmental disturbances of the white matter are hallmarks of preterm brain injury. Understanding the temporal effects of antenatal infection in relation to the onset of neurological injury is crucial for the development of neurotherapeutics for preterm infants. However, these dynamics remain unstudied. Methods Time-mated ewes were intra-amniotically injected with lipopolysaccharide at 5, 12, or 24 h or 2, 4, 8, or 15 days before preterm delivery at 125 days gestational age (term ~ 150 days). Post mortem analyses for peripheral immune activation, neuroinflammation, and white matter/neuronal injury were performed. Moreover, considering the neuroprotective potential of erythropoietin (EPO) for perinatal brain injury, we evaluated (phosphorylated) EPO receptor (pEPOR) expression in the fetal brain following LPS exposure. Results Intra-amniotic exposure to this single bolus of LPS resulted in a biphasic systemic IL-6 and IL-8 response. In the developing brain, intra-amniotic LPS exposure induces a persistent microgliosis (IBA-1 immunoreactivity) but a shorter-lived increase in the pro-inflammatory marker COX-2. Cell death (caspase-3 immunoreactivity) was only observed when LPS exposure was greater than 8 days in the white matter, and there was a reduction in the number of (pre) oligodendrocytes (Olig2- and PDGFRα-positive cells) within the white matter at 15 days post LPS exposure only. pEPOR expression displayed a striking biphasic regulation following LPS exposure which may help explain contradicting results among clinical trials that tested EPO for the prevention of preterm brain injury. Conclusion We provide increased understanding of the spatiotemporal pathophysiological changes in the preterm brain following intra-amniotic inflammation which may aid development of new interventions or implement interventions more effectively to prevent perinatal brain damage.
Collapse
Affiliation(s)
- Ruth Gussenhoven
- Department of Pediatrics, Maastricht University Medical Center, 6202, AZ, Maastricht, The Netherlands.,School for Mental Health and Neuroscience (MHeNs), Maastricht University Medical Center, 6229, ER, Maastricht, The Netherlands
| | - Rob J J Westerlaken
- Department of Pediatrics, Maastricht University Medical Center, 6202, AZ, Maastricht, The Netherlands
| | - Daan R M G Ophelders
- Department of Pediatrics, Maastricht University Medical Center, 6202, AZ, Maastricht, The Netherlands.,School of Oncology and Developmental Biology (GROW), Maastricht University Medical Center, 6229, ER, Maastricht, the Netherlands
| | - Alan H Jobe
- Division of Neonatology/Pulmonary Biology, The Perinatal Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, 45208, USA
| | - Matthew W Kemp
- School of Women's and Infants' Health, The University of Western Australia (M550), Crawley, WA, 6009, Australia
| | - Suhas G Kallapur
- Division of Neonatology/Pulmonary Biology, The Perinatal Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, 45208, USA
| | - Luc J Zimmermann
- Department of Pediatrics, Maastricht University Medical Center, 6202, AZ, Maastricht, The Netherlands.,School of Oncology and Developmental Biology (GROW), Maastricht University Medical Center, 6229, ER, Maastricht, the Netherlands
| | - Per T Sangild
- Department of Comparative Pediatrics and Nutrition, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg DK 1870 C, Copenhagen, Denmark.,Departments of Pediatrics and Adolescent Medicine, Rigshospitalet, Copenhagen, 2100, Denmark
| | - Stanislava Pankratova
- Department of Comparative Pediatrics and Nutrition, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg DK 1870 C, Copenhagen, Denmark.,Departments of Pediatrics and Adolescent Medicine, Rigshospitalet, Copenhagen, 2100, Denmark
| | - Pierre Gressens
- Department of Perinatal Imaging and Health, Department of Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas Hospital, London, SE1 7EH, UK.,PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,PremUP, Université Paris Diderot, Sorbonne Paris Cite, Paris, France
| | - Boris W Kramer
- Department of Pediatrics, Maastricht University Medical Center, 6202, AZ, Maastricht, The Netherlands.,School for Mental Health and Neuroscience (MHeNs), Maastricht University Medical Center, 6229, ER, Maastricht, The Netherlands.,School of Oncology and Developmental Biology (GROW), Maastricht University Medical Center, 6229, ER, Maastricht, the Netherlands
| | - Bobbi Fleiss
- Department of Perinatal Imaging and Health, Department of Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas Hospital, London, SE1 7EH, UK.,PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,PremUP, Université Paris Diderot, Sorbonne Paris Cite, Paris, France
| | - Tim G A M Wolfs
- Department of Pediatrics, Maastricht University Medical Center, 6202, AZ, Maastricht, The Netherlands. .,School of Oncology and Developmental Biology (GROW), Maastricht University Medical Center, 6229, ER, Maastricht, the Netherlands. .,Department of BioMedical Engineering, Maastricht University Medical Center, 6229, ER, Maastricht, The Netherlands.
| |
Collapse
|
31
|
Xia L, Chen M, Bi D, Song J, Zhang X, Wang Y, Zhu D, Shang Q, Xu F, Wang X, Xing Q, Zhu C. Combined Analysis of Interleukin-10 Gene Polymorphisms and Protein Expression in Children With Cerebral Palsy. Front Neurol 2018; 9:182. [PMID: 29623066 PMCID: PMC5874289 DOI: 10.3389/fneur.2018.00182] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 03/08/2018] [Indexed: 01/05/2023] Open
Abstract
Background Interleukin-10 (IL-10) is an important anti-inflammatory and immunosuppressive cytokine, and it has indispensable functions in both the onset and development of inflammatory disorders. The association between persistent inflammation and the development of cerebral palsy (CP) has attracted much attention. Objective The purpose of this study was to investigate whether IL-10 gene polymorphisms and plasma protein expression are associated with CP and to analyze the role of IL-10 in CP. Methods A total of 282 CP patients and 197 healthy controls were genotyped for IL-10 polymorphisms (rs1554286, rs1518111, rs3024490, rs1800871, and rs1800896). Among them, 95 CP patients and 93 healthy controls were selected for plasma IL-10 measurement. Results The differences in the rs3024490 (p = 0.033) and rs1800871 (p = 0.033) allele frequencies of IL-10 were determined between CP patients and controls. The frequencies of allele and genotype between CP patients with spastic tetraplegia and normal controls of IL-10 polymorphisms showed significant differences for rs1554286, rs151811, rs3024490, rs1800871, and rs1800896 (pallele = 0.015, 0.009, 0.006, 0.003, and 0.006, pgenotype = 0.039, 0.018, 0.027, 0.012, and 0.03, respectively). The plasma IL-10 protein level in CP patients was higher than normal controls (9.13 ± 0.77 vs. 6.73 ± 0.63 pg/ml, p = 0.017). IL-10 polymorphisms and protein association analysis showed that the TT genotype had higher plasma IL-10 protein levels compared to the GG + GT genotype at rs3024490 (11.14 ± 7.27 vs. 7.44 ± 6.95 pg/ml, p = 0.045, respectively) in CP cases. Conclusion These findings provide an important contribution toward explaining the pleiotropic role of IL-10 in the complex etiology of CP.
Collapse
Affiliation(s)
- Lei Xia
- Henan Key Laboratory of Child Brain Injury, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mingjie Chen
- Institute of Biomedical Science, Children's Hospital, Fudan University, Shanghai, China
| | - Dan Bi
- Henan Key Laboratory of Child Brain Injury, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Juan Song
- Henan Key Laboratory of Child Brain Injury, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoli Zhang
- Henan Key Laboratory of Child Brain Injury, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yangong Wang
- Institute of Biomedical Science, Children's Hospital, Fudan University, Shanghai, China
| | - Dengna Zhu
- Henan Key Laboratory of Child Brain Injury, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qing Shang
- Department of Pediatrics, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Falin Xu
- Henan Key Laboratory of Child Brain Injury, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoyang Wang
- Henan Key Laboratory of Child Brain Injury, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Perinatal Center, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Qinghe Xing
- Institute of Biomedical Science, Children's Hospital, Fudan University, Shanghai, China.,Shanghai Center for Women and Children's Health, Shanghai, China
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
32
|
Panfoli I, Candiano G, Malova M, De Angelis L, Cardiello V, Buonocore G, Ramenghi LA. Oxidative Stress as a Primary Risk Factor for Brain Damage in Preterm Newborns. Front Pediatr 2018; 6:369. [PMID: 30555809 PMCID: PMC6281966 DOI: 10.3389/fped.2018.00369] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 11/12/2018] [Indexed: 12/28/2022] Open
Abstract
The risk of oxidative stress is high in preterm newborns. Room air exposure of an organism primed to develop in a hypoxic environment, lacking antioxidant defenses, and subjected to hyperoxia, hypoxia, and ischemia challenges the newborn with oxidative stress production. Free radicals can be generated by a multitude of other mechanisms, such as glutamate excitotoxicity, excess free iron, inflammation, and immune reactions. Free radical-induced damage caused by oxidative stress appears to be the major candidate for the pathogenesis of most of the complications of prematurity, brain being especially at risk, with short to long-term consequences. We review the role of free radical oxidative damage to the newborn brain and propose a mechanism of oxidative injury, taking into consideration the particular maturation-dependent vulnerability of the oligodendrocyte precursors. Prompted by our observation of an increase in plasma Adenosine concentrations significantly associated with brain white matter lesions in some premature infants, we discuss a possible bioenergetics hypothesis, correlated to the oxidative challenge of the premature infant. We aim at explaining both the oxidative stress generation and the mechanism promoting the myelination disturbances. Being white matter abnormalities among the most common lesions of prematurity, the use of Adenosine as a biomarker of brain damage appears promising in order to design neuroprotective strategies.
Collapse
Affiliation(s)
| | - Giovanni Candiano
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Mariya Malova
- Neonatal Intensive Care Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Laura De Angelis
- Neonatal Intensive Care Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Valentina Cardiello
- Neonatal Intensive Care Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Giuseppe Buonocore
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Luca A Ramenghi
- Neonatal Intensive Care Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy
| |
Collapse
|
33
|
Preclinical chorioamnionitis dysregulates CXCL1/CXCR2 signaling throughout the placental-fetal-brain axis. Exp Neurol 2017; 301:110-119. [PMID: 29117499 DOI: 10.1016/j.expneurol.2017.11.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 10/28/2017] [Accepted: 11/03/2017] [Indexed: 12/31/2022]
Abstract
In the United States, perinatal brain injury (PBI) is a major cause of infant mortality and childhood disability. For a large proportion of infants with PBI, central nervous system (CNS) injury begins in utero with inflammation (chorioamnionitis/CHORIO) and/or hypoxia-ischemia. While studies show CHORIO contributes to preterm CNS injury and is also a common independent risk factor for brain injury in term infants, the molecular mechanisms mediating inflammation in the placental-fetal-brain axis that result in PBI remain a gap in knowledge. The chemokine (C-X-C motif) ligand 1 (CXCL1), and its cognate receptor, CXCR2, have been clinically implicated in CHORIO and in mature CNS injury, although their specific role in PBI pathophysiology is poorly defined. Given CXCL1/CXCR2 signaling is essential to neural cell development and neutrophil recruitment, a key pathological hallmark of CHORIO, we hypothesized CHORIO would upregulate CXCL1/CXCR2 expression in the placenta and fetal circulation, concomitant with increased CXCL1/CXCR2 signaling in the developing brain, immune cell activation, neutrophilia, and microstructural PBI. On embryonic day 18 (E18), a laparotomy was performed in pregnant Sprague Dawley rats to induce CHORIO. Specifically, uterine arteries were occluded for 60min to induce placental transient systemic hypoxia-ischemia (TSHI), followed by intra-amniotic injection of lipopolysaccharide (LPS). Pups were born at E22. Placentae, serum and brain were collected along an extended time course from E19 to postnatal day (P)15 and analyzed using multiplex electrochemiluminescence (MECI), Western blot, qPCR, flow cytometry (FC) and diffusion tensor imaging (DTI). Results demonstrate that compared to sham, CHORIO increases placental CXCL1 and CXCR2 mRNA levels, concomitant with increased CXCR2+ neutrophils. Interestingly, pup serum CXCL1 expression in CHORIO parallels this increase, with sustained elevation through P15. Analyses of CHORIO brains reveal similarly increased CXCL1/CXCR2 expression through P7, together with increased neutrophilia, microgliosis and peripheral macrophages. Similar to the placenta, cerebral neutrophilia was defined by increased CXCR2 surface expression and elevated myeloperoxidase expression (MPO), consistent with immune cell activation. Evaluation of microstructural brain injury at P15 with DTI reveals aberrant microstructural integrity in the callosal and capsular white matter, with reduced fractional anisotropy in superficial and deep layers of overlying cortex. In summary, using an established model of CHORIO that exhibits mature CNS deficits mimicking those of preterm survivors, we show CHORIO induces injury throughout the placental-fetal-brain axis with a CXCL1/CXCR2 inflammatory signature, neutrophilia, and microstructural abnormalities. These data are concomitant with abnormal cerebral CXCL1/CXCR2 expression, and support temporal aberrations in CXCL1/CXCR2 and neutrophil dynamics in the placental-fetal-brain axis following CHORIO. These investigations define novel targets for directed therapies for infants at high risk for PBI.
Collapse
|
34
|
Lai JCY, Rocha-Ferreira E, Ek CJ, Wang X, Hagberg H, Mallard C. Immune responses in perinatal brain injury. Brain Behav Immun 2017; 63:210-223. [PMID: 27865947 DOI: 10.1016/j.bbi.2016.10.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/28/2016] [Accepted: 10/30/2016] [Indexed: 12/13/2022] Open
Abstract
The perinatal period has often been described as immune deficient. However, it has become clear that immune responses in the neonate following exposure to microbes or as a result of tissue injury may be substantial and play a role in perinatal brain injury. In this article we will review the immune cell composition under normal physiological conditions in the perinatal period, both in the human and rodent. We will summarize evidence of the inflammatory responses to stimuli and discuss how neonatal immune activation, both in the central nervous system and in the periphery, may contribute to perinatal hypoxic-ischemic brain injury.
Collapse
Affiliation(s)
- Jacqueline C Y Lai
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Box 432, 405 30 Gothenburg, Sweden
| | - Eridan Rocha-Ferreira
- Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Box 432, 405 30 Gothenburg, Sweden
| | - C Joakim Ek
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Box 432, 405 30 Gothenburg, Sweden
| | - Xiaoyang Wang
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Box 432, 405 30 Gothenburg, Sweden
| | - Henrik Hagberg
- Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Box 432, 405 30 Gothenburg, Sweden
| | - Carina Mallard
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Box 432, 405 30 Gothenburg, Sweden.
| |
Collapse
|
35
|
Dorce ALC, Martins ADN, Dorce VAC, Nencioni ALA. Perinatal effects of scorpion venoms: maternal and offspring development. J Venom Anim Toxins Incl Trop Dis 2017. [PMID: 28630618 PMCID: PMC5471709 DOI: 10.1186/s40409-017-0121-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Scorpion envenomation is a public health problem, especially in tropical and subtropical countries. Considering the high incidence of scorpionism in some areas, pregnant women and nursing mothers may be possible victims. Scorpion stings alter the release of neurotransmitters and some cytokines. These mediators act as organizers and programmers in the adequate formation of the nerves, and non-physiological concentrations of them during the brain organization originate disorders and diseases that can appear later in the life of the individual. Despite the importance of this subject, there are only a few studies showing the effects of scorpion venom on maternal reproductive development, in the morphology and physical and behavioral development of offspring. The present review article summarizes the major findings on this issue. Biochemical changes in the blood – such as hyperglycemia, increase on the level of sodium and on the creatinine concentration – are observed after scorpion sting in humans and experimental animals. Some studies in the literature demonstrate that the scorpion venom affects the maternal reproductive development in humans and in experimental animals, increasing the frequency and amplitude of uterine contraction and the number of resorptions. The venom can also lead to some alterations in the embryonic or fetal development increasing the total weight of fetuses and of some organs. Moreover, it affects the general activity and locomotion during childhood and adulthood, and the anxiety level in adult females and males. It also alters the number of hippocampal neurons and interferes in the level of some cytokines. Altogether, it is evident that the venom, when administered during the pregnancy or lactation, affects the development of the offspring. Studies are being conducted to determine the actual participation of the venom in the development of the offspring, and to what extent they are detrimental to animal development.
Collapse
Affiliation(s)
- Ana Leticia Coronado Dorce
- Laboratory of Pharmacology, Butantan Institute, Av. Dr. Vital Brasil, 1500, São Paulo, SP CEP 05503-900 Brazil
| | - Adriana do Nascimento Martins
- Laboratory of Pharmacology, Butantan Institute, Av. Dr. Vital Brasil, 1500, São Paulo, SP CEP 05503-900 Brazil.,Graduate Program in Sciences - Toxinology, Butantan Institute, Av. Dr. Vital Brasil 1500, São Paulo, SP CEP 05503-900 Brazil
| | | | - Ana Leonor Abrahão Nencioni
- Laboratory of Pharmacology, Butantan Institute, Av. Dr. Vital Brasil, 1500, São Paulo, SP CEP 05503-900 Brazil
| |
Collapse
|
36
|
Urinary Levels of IL-1 β and GDNF in Preterm Neonates as Potential Biomarkers of Motor Development: A Prospective Study. Mediators Inflamm 2017; 2017:8201423. [PMID: 28553016 PMCID: PMC5434239 DOI: 10.1155/2017/8201423] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/22/2017] [Indexed: 01/07/2023] Open
Abstract
Objectives. To evaluate the association between inflammatory biomarkers, neurotrophic factors, birth conditions, and the presence of motor development abnormalities in preterm neonates. Methods. Plasma and urinary levels of cytokines (IL-1β, IL-6, IL-10, TNF, and IL-12p70), chemokines (CXCL8/IL-8, CCL2/MCP-1, CCL5/RANTES, CXCL10/IP-10, and CXCL9/MIG), and neurotrophic factors (BDNF and GDNF) were evaluated in 40 preterm neonates born between 28 and 32 incomplete weeks of gestation, at four distinct time points: at birth (umbilical cord blood) (T0), at 48 (T1), at 72 hours (T2), and at 3 weeks after birth (T3). Biomarkers levels were compared between different time points and then associated with Test of Infant Motor Performance (TIMP) percentiles. Results. Maternal age, plasma, and urinary concentrations of inflammatory molecules and neurotrophic factors were significantly different between groups with normal versus lower than expected motor development. Higher levels of GDNF were found in the group with lower than expected motor development, while IL-1β and CXCL8/IL-8 values were higher in the group with typical motor development. Conclusion. Measurements of cytokines and neurotrophic factors in spot urine may be useful in the follow-up of motor development in preterm neonates.
Collapse
|
37
|
Holm M, Austeng D, Fichorova RN, Allred EN, Kuban KC, O'Shea TM, Dammann O, Leviton A. Postnatal systemic inflammation and neuro-ophthalmologic dysfunctions in extremely low gestational age children. Acta Paediatr 2017; 106:454-457. [PMID: 27987368 DOI: 10.1111/apa.13708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/06/2016] [Accepted: 12/12/2016] [Indexed: 12/24/2022]
Abstract
AIM Compared to infants born at term, children born very preterm are at increased risk of visual dysfunctions and neonatal systemic inflammation. Here, we explore whether these two propensities are related. METHODS As part of the ELGAN study, the concentrations of 16 mediators of inflammation were measured in blood obtained on postnatal days 1, 7, 14, 21 and 28 from 1062 children born before the 28th week of gestation. Presence of visual field deficit, strabismus and/or impaired visual fixation was recorded at age two. The concentrations of each protein were divided into quartiles within gestational week categories. We calculated odds ratios with 99% confidence intervals for having each disorder comparing children with concentration in the top quartile of each protein to children whose concentration was in the lower quartiles on the corresponding day. Analyses were adjusted for gestational age and birth weight Z-score. RESULTS Only one of 80 assessments (16 proteins on five different days) was significant for visual field deficit, and one for impaired fixation. No association was found between strabismus and any inflammatory mediator. CONCLUSION None of the three neuro-ophthalmologic dysfunctions assessed at two years appears to be associated with systemic inflammation measured the first four postnatal weeks.
Collapse
Affiliation(s)
- Mari Holm
- Department of Laboratory Medicine; Children's and Women's Health; Faculty of Medicine; Norwegian University of Science and Technology (NTNU); Trondheim Norway
| | - Dordi Austeng
- Department of Neuroscience (INM); Faculty of Medicine; Norwegian University of Science and Technology (NTNU); Trondheim Norway
- Department of Ophthalmology; Trondheim University Hospital; Trondheim Norway
| | - Raina N. Fichorova
- Department of Obstetrics, Gynecology, and Reproductive Biology; Laboratory of Genital Tract Biology; Brigham and Women's Hospital, and Harvard Medical School; Boston MA USA
| | - Elizabeth N. Allred
- Neuroepidemiology Unit; Department of Neurology; Boston Children's Hospital, and Harvard Medical School; Boston MA USA
| | - Karl C. Kuban
- Division of Pediatric Neurology; Department of Pediatrics; Boston University; Boston MA USA
| | - T. Michael O'Shea
- Division of Neonatology; Department of Pediatrics; Wake Forest School of Medicine; Winston-Salem NC USA
| | - Olaf Dammann
- Department of Public Health and Community Medicine; Tufts University School of Medicine; Boston MA USA
- Perinatal Epidemiology Unit; Hannover Medical School; Hannover Germany
| | - Alan Leviton
- Neuroepidemiology Unit; Department of Neurology; Boston Children's Hospital, and Harvard Medical School; Boston MA USA
| | | |
Collapse
|
38
|
Altered Intracellular ATP Production by Activated CD4+ T-Cells in Very Preterm Infants. J Immunol Res 2016; 2016:8374328. [PMID: 28070527 PMCID: PMC5187601 DOI: 10.1155/2016/8374328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/27/2016] [Accepted: 11/13/2016] [Indexed: 11/18/2022] Open
Abstract
Background. The neonatal immune system is not fully developed at birth; newborns have adequate lymphocytes counts but these cells lack function. Objective. To assess the activity of T-cells and the influence of the main perinatal factors in very preterm infants (birth weight < 1500 g). Design. Blood samples from 59 preterm infants (21/59 were dizygotic twins) were collected at birth and at 30 days of life to measure CD4+ T-cell activity using the ImmuKnow™ assay. Fifteen healthy adults were included as a control group. Results. CD4+ T-cell activity was lower in VLBW infants compared with adults (p < 0.001). Twins showed lower immune activity compared to singletons (p = 0.005). Infants born vaginally showed higher CD4+ T-cell activity compared to those born by C-section (p = 0.031); infants born after prolonged Premature Rupture of Membranes (pPROM) showed higher CD4+ T-cell activity at birth (p = 0.002) compared to infants born without pPROM. Low CD4+ T-cell activity at birth is associated with necrotizing enterocolitis (NEC) in the first week of life (p = 0.049). Conclusions. Preterm infants show a lack in CD4+ T-cell activity at birth. Perinatal factors such as intrauterine inflammation, mode of delivery, and zygosity can influence the adaptive immune activation capacity at birth and can contribute to exposing these infants to serious complications such as NEC.
Collapse
|
39
|
Cord blood TNF-α and IL-6 levels as diagnostic indicators of brain damage in neonates with non-asphyxia fetal distress. Arch Gynecol Obstet 2016; 295:337-342. [DOI: 10.1007/s00404-016-4241-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 11/14/2016] [Indexed: 11/25/2022]
|
40
|
Anblagan D, Pataky R, Evans MJ, Telford EJ, Serag A, Sparrow S, Piyasena C, Semple SI, Wilkinson AG, Bastin ME, Boardman JP. Association between preterm brain injury and exposure to chorioamnionitis during fetal life. Sci Rep 2016; 6:37932. [PMID: 27905410 PMCID: PMC5131360 DOI: 10.1038/srep37932] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 11/02/2016] [Indexed: 12/27/2022] Open
Abstract
Preterm infants are susceptible to inflammation-induced white matter injury but the exposures that lead to this are uncertain. Histologic chorioamnionitis (HCA) reflects intrauterine inflammation, can trigger a fetal inflammatory response, and is closely associated with premature birth. In a cohort of 90 preterm infants with detailed placental histology and neonatal brain magnetic resonance imaging (MRI) data at term equivalent age, we used Tract-based Spatial Statistics (TBSS) to perform voxel-wise statistical comparison of fractional anisotropy (FA) data and computational morphometry analysis to compute the volumes of whole brain, tissue compartments and cerebrospinal fluid, to test the hypothesis that HCA is an independent antenatal risk factor for preterm brain injury. Twenty-six (29%) infants had HCA and this was associated with decreased FA in the genu, cingulum cingulate gyri, centrum semiovale, inferior longitudinal fasciculi, limbs of the internal capsule, external capsule and cerebellum (p < 0.05, corrected), independent of degree of prematurity, bronchopulmonary dysplasia and postnatal sepsis. This suggests that diffuse white matter injury begins in utero for a significant proportion of preterm infants, which focuses attention on the development of methods for detecting fetuses and placentas at risk as a means of reducing preterm brain injury.
Collapse
Affiliation(s)
- Devasuda Anblagan
- MRC Centre for Reproductive Health, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.,Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Rozalia Pataky
- MRC Centre for Reproductive Health, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Margaret J Evans
- Department of Pathology, Royal Infirmary of Edinburgh, 51 Little France Crescent, Edinburgh, EH16 4SA, UK
| | - Emma J Telford
- MRC Centre for Reproductive Health, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Ahmed Serag
- MRC Centre for Reproductive Health, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Sarah Sparrow
- MRC Centre for Reproductive Health, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Chinthika Piyasena
- Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Scott I Semple
- Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.,Clinical Research Imaging Centre, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | | | - Mark E Bastin
- Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - James P Boardman
- MRC Centre for Reproductive Health, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.,Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| |
Collapse
|
41
|
Mason MR, Stagg AJ, Knight SC, Lamont RF. The Measurement of Dendritic Cells in Umbilical Cord Blood: A Novel Technique Using Small Volumes of Whole Blood. ACTA ACUST UNITED AC 2016; 12:246-52. [PMID: 15866115 DOI: 10.1016/j.jsgi.2004.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
OBJECTIVE To develop a technique that would permit the identification of dendritic cells (DC) in small volumes of preterm neonatal cord blood in order to investigate neonatal immune response in relation to infection and preterm labor. METHODS We used three-color flow cytometry and a fixed quantity of fluorospheres to determine absolute cell numbers. Four red cell lysis techniques, sample dilution, time delay experiments, and a comparison with traditional Ficoll cell separation techniques were performed. Absolute numbers of DC recovered using each technique were calculated and compared. RESULTS With increasing time delay, there was a statistically significant reduction in the numbers of leukocytes in adult blood. In contrast, there was a significant increase in leukocytes in umbilical cord blood. Sample dilution did not significantly affect the total number of leukocytes or DC. The use of the reagent Optilyse B (Immunotech, Oxford, UK) combined with an additional washing step produced the best discrimination of all populations based on light scatter properties. For the same blood sample, antibody labeling of whole blood resulted in a greater recovery of DC when compared to prior cell purification using a Ficoll density gradient. CONCLUSION Using traditional Ficoll cell separation, cell manipulation requires large volumes of blood and leads to cell loss and alteration in phenotype. We have validated a novel method using small volumes of whole blood, diluted if necessary, and using red cell lysis to enable analysis of small volumes of preterm neonatal cord blood. This may permit further analysis of the contribution of the fetal immune response in the development of spontaneous preterm labor and preterm birth due to infection.
Collapse
Affiliation(s)
- M Ruth Mason
- Department of Obstetrics and Gynaecology, Northwick Park and St Mark's NHS Trust, Imperial College, London, United Kingdom
| | | | | | | |
Collapse
|
42
|
Hoeijmakers L, Heinen Y, van Dam AM, Lucassen PJ, Korosi A. Microglial Priming and Alzheimer's Disease: A Possible Role for (Early) Immune Challenges and Epigenetics? Front Hum Neurosci 2016; 10:398. [PMID: 27555812 PMCID: PMC4977314 DOI: 10.3389/fnhum.2016.00398] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 07/26/2016] [Indexed: 12/11/2022] Open
Abstract
Neuroinflammation is thought to contribute to Alzheimer's disease (AD) pathogenesis that is, to a large extent, mediated by microglia. Given the tight interaction between the immune system and the brain, peripheral immune challenges can profoundly affect brain function. Indeed, both preclinical and clinical studies have indicated that an aberrant inflammatory response can elicit behavioral impairments and cognitive deficits, especially when the brain is in a vulnerable state, e.g., during early development, as a result of aging, or under disease conditions like AD. However, how exactly peripheral immune challenges affect brain function and whether this is mediated by aberrant microglial functioning remains largely elusive. In this review, we hypothesize that: (1) systemic immune challenges occurring during vulnerable periods of life can increase the propensity to induce later cognitive dysfunction and accelerate AD pathology; and (2) that "priming" of microglial cells is instrumental in mediating this vulnerability. We highlight how microglia can be primed by both neonatal infections as well as by aging, two periods of life during which microglial activity is known to be specifically upregulated. Lasting changes in (the ratios of) specific microglial phenotypes can result in an exaggerated pro-inflammatory cytokine response to subsequent inflammatory challenges. While the resulting changes in brain function are initially transient, a continued and/or excess release of such pro-inflammatory cytokines can activate various downstream cellular cascades known to be relevant for AD. Finally, we discuss microglial priming and the aberrant microglial response as potential target for treatment strategies for AD.
Collapse
Affiliation(s)
- Lianne Hoeijmakers
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam Amsterdam, Netherlands
| | - Yvonne Heinen
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam Amsterdam, Netherlands
| | - Anne-Marie van Dam
- Department of Anatomy and Neurosciences, Neuroscience Campus Amsterdam, VU University Medical Center Amsterdam, Netherlands
| | - Paul J Lucassen
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam Amsterdam, Netherlands
| | - Aniko Korosi
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam Amsterdam, Netherlands
| |
Collapse
|
43
|
Graham EM, Burd I, Everett AD, Northington FJ. Blood Biomarkers for Evaluation of Perinatal Encephalopathy. Front Pharmacol 2016; 7:196. [PMID: 27468268 PMCID: PMC4942457 DOI: 10.3389/fphar.2016.00196] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 06/20/2016] [Indexed: 12/17/2022] Open
Abstract
Recent research in identification of brain injury after trauma shows many possible blood biomarkers that may help identify the fetus and neonate with encephalopathy. Traumatic brain injury shares many common features with perinatal hypoxic-ischemic encephalopathy. Trauma has a hypoxic component, and one of the 1st physiologic consequences of moderate-severe traumatic brain injury is apnea. Trauma and hypoxia-ischemia initiate an excitotoxic cascade and free radical injury followed by the inflammatory cascade, producing injury in neurons, glial cells and white matter. Increased excitatory amino acids, lipid peroxidation products, and alteration in microRNAs and inflammatory markers are common to both traumatic brain injury and perinatal encephalopathy. The blood-brain barrier is disrupted in both leading to egress of substances normally only found in the central nervous system. Brain exosomes may represent ideal biomarker containers, as RNA and protein transported within the vesicles are protected from enzymatic degradation. Evaluation of fetal or neonatal brain derived exosomes that cross the blood-brain barrier and circulate peripherally has been referred to as the "liquid brain biopsy." A multiplex of serum biomarkers could improve upon the current imprecise methods of identifying fetal and neonatal brain injury such as fetal heart rate abnormalities, meconium, cord gases at delivery, and Apgar scores. Quantitative biomarker measurements of perinatal brain injury and recovery could lead to operative delivery only in the presence of significant fetal risk, triage to appropriate therapy after birth and measure the effectiveness of treatment.
Collapse
Affiliation(s)
- Ernest M. Graham
- Division of Maternal-Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of MedicineBaltimore, MD, USA
- Neuroscience Intensive Care Nursery Program, Johns Hopkins University School of MedicineBaltimore, MD, USA
| | - Irina Burd
- Division of Maternal-Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of MedicineBaltimore, MD, USA
- Neuroscience Intensive Care Nursery Program, Johns Hopkins University School of MedicineBaltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of MedicineBaltimore, MD, USA
- Integrated Research Center for Fetal Medicine, Johns Hopkins University School of MedicineBaltimore, MD, USA
| | - Allen D. Everett
- Neuroscience Intensive Care Nursery Program, Johns Hopkins University School of MedicineBaltimore, MD, USA
- Division of Cardiology, Department of Pediatrics, Johns Hopkins University School of MedicineBaltimore, MD, USA
| | - Frances J. Northington
- Neuroscience Intensive Care Nursery Program, Johns Hopkins University School of MedicineBaltimore, MD, USA
- Division of Neonatology, Department of Pediatrics, Johns Hopkins University School of MedicineBaltimore, MD, USA
| |
Collapse
|
44
|
Costa D, Castelo R. Umbilical cord gene expression reveals the molecular architecture of the fetal inflammatory response in extremely preterm newborns. Pediatr Res 2016; 79:473-81. [PMID: 26539667 PMCID: PMC4823644 DOI: 10.1038/pr.2015.233] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 08/17/2015] [Indexed: 12/21/2022]
Abstract
BACKGROUND The fetal inflammatory response (FIR) in placental membranes to an intrauterine infection often precedes premature birth raising neonatal mortality and morbidity. However, the precise molecular events behind FIR still remain largely unknown, and little has been investigated at gene expression level. METHODS We collected publicly available microarray expression data profiling umbilical cord (UC) tissue derived from the cohort of extremely low gestational age newborns (ELGANs) and interrogate them for differentially expressed (DE) genes between FIR and non-FIR-affected ELGANs. RESULTS We found a broad and complex FIR UC gene expression signature, changing up to 19% (3,896/20,155) of all human genes at 1% false discovery rate. Significant changes of a minimum 50% magnitude (1,097/3,896) affect the upregulation of many inflammatory pathways and molecules, such as cytokines, toll-like receptors, and calgranulins. Remarkably, they also include the downregulation of neurodevelopmental pathways and genes, such as Fragile-X mental retardation 1 (FMR1), contactin 1 (CNTN1), and adenomatous polyposis coli (APC). CONCLUSION The FIR expression signature in UC tissue contains molecular clues about signaling pathways that trigger FIR, and it is consistent with an acute inflammatory response by fetal innate and adaptive immune systems, which participate in the pathogenesis of neonatal brain damage.
Collapse
Affiliation(s)
- Daniel Costa
- Department of Pediatrics, Hospital de Figueres, Figueres, Spain
| | - Robert Castelo
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain,Research Program on Biomedical Informatics, Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain,()
| |
Collapse
|
45
|
Sciaky-Tamir Y, Hershkovitz R, Mazor M, Shelef I, Erez O. The use of imaging technology in the assessment of the fetal inflammatory response syndrome-imaging of the fetal thymus. Prenat Diagn 2016; 35:413-9. [PMID: 25601186 DOI: 10.1002/pd.4560] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Revised: 12/07/2014] [Accepted: 01/09/2015] [Indexed: 12/28/2022]
Abstract
The fetal inflammatory response syndrome (FIRS) describes a state of extensive fetal multi organ involvement during chorioamnionitis, and is associated with grave implications on perinatal outcome. The syndrome has been linked to the preterm parturition syndrome and is associated with inflammation/infection processes in most of the fetal organs. The fetal thymus, a major organ in the developing immune system involutes during severe neonatal disease and has been shown to be smaller in fetuses with FIRS. Various methods for imaging of the fetal thymus and measurement are described. Currently the only method to diagnose FIRS prenatally is through amniocentesis. We suggest that women who are admitted with preterm labor with intact membranes and those with PPROM should have a detailed sonographic examination of the fetal thymus as a surrogate marker of fetal involvement in intrauterine infection/inflammation processes.
Collapse
Affiliation(s)
- Yael Sciaky-Tamir
- Department of Obstetrics and Gynecology, Faculty of Health Sciences, School of Medicine, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | | | | | | |
Collapse
|
46
|
Wu J, Li X. Plasma Tumor Necrosis Factor-alpha (TNF-α) Levels Correlate with Disease Severity in Spastic Diplegia, Triplegia, and Quadriplegia in Children with Cerebral Palsy. Med Sci Monit 2015; 21:3868-74. [PMID: 26656070 PMCID: PMC4678922 DOI: 10.12659/msm.895400] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background Inflammatory responses in utero and in neonates have been involved in the development of white matter lesions. This study aimed to investigate the role of tumor necrosis factor-alpha (TNF-α) in spastic cerebral palsy. Material/Methods Plasma TNF-α was measured by ELISA in 54 children with spastic cerebral palsy and 28 aged-matched controls. Both groups were split into age subgroups (1–3 vs. 4–12). Gross motor function and activities of daily living were assessed on enrollment and after 6 months of rehabilitation. Results TNF-α was higher in patients with cerebral palsy than in controls in young (P<0.001) and older subjects (P<0.001). TNF-α levels were comparable in both control subgroups (P=0.819). Younger patients with cerebral palsy had significantly higher TNF-α levels compared with older ones (P<0.001). Pre-rehabilitation TNF-α levels correlated with improvements in activities of daily living after rehabilitation (P<0.001). Conclusions Children with cerebral palsy showed higher plasma levels of TNF-α than controls. In addition, pre-treatment TNF-α levels were correlated with the improvements after rehabilitation therapy.
Collapse
Affiliation(s)
- Jianxian Wu
- Department of Rehabilitation, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China (mainland)
| | - Xueming Li
- Department of Rehabilitation, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China (mainland)
| |
Collapse
|
47
|
Abstract
Premature infants suffer significant respiratory morbidity during infancy with long-term negative consequences on health, quality of life, and health care costs. Enhanced susceptibility to a variety of infections and inflammation play a large role in early and prolonged lung disease following premature birth, although the mechanisms of susceptibility and immune dysregulation are active areas of research. This article reviews aspects of host-pathogen interactions and immune responses that are altered by preterm birth and that impact chronic respiratory morbidity in these children.
Collapse
Affiliation(s)
- Gloria S. Pryhuber
- Division of Neonatology, Department of Pediatrics, University of Rochester Medical Center, 601 Elmwood Avenue, Box 651, Rochester, NY 14642, USA,Department of Environmental Medicine, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA,Division of Neonatology, Department of Pediatrics, University of Rochester Medical Center, 601 Elmwood Avenue, Box 651, Rochester, NY 14642.
| |
Collapse
|
48
|
Abstract
Enterococcus fecalis is a nosocomial, opportunistic pathogen, known to cause late-onset sepsis in preterm neonates and is notorious for its association with high mortality and resistance to commonly used antibiotics, such as penicillin, ampicillin, aminoglycosides, and vancomycin. Neonatal leukemoid reaction, defined as the white blood cell count ≥50×10/L or absolute neutrophil count >30×10/L, is a poor prognostic factor in chorioamnionitis. Occurrence of neonatal leukemoid reaction in E. fecalis-mediated sepsis is rare. We report development of leukemoid reaction in a preterm, extremely low-birth-weight neonate with early-onset sepsis caused by E. fecalis that was resistant to ampicillin and aminoglycosides.
Collapse
|
49
|
Jin C, Londono I, Mallard C, Lodygensky GA. New means to assess neonatal inflammatory brain injury. J Neuroinflammation 2015; 12:180. [PMID: 26407958 PMCID: PMC4583178 DOI: 10.1186/s12974-015-0397-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 09/10/2015] [Indexed: 01/23/2023] Open
Abstract
Preterm infants are especially vulnerable to infection-induced white matter injury, associated with cerebral palsy, cognitive and psychomotor impairment, and other adverse neurological outcomes. The etiology of such lesions is complex and multifactorial. Furthermore, timing and length of exposure to infection also influence neurodevelopmental outcomes. Different mechanisms have been posited to mediate the observed brain injury including microglial activation followed by subsequent release of pro-inflammatory species, glutamate-induced excitotoxicity, and vulnerability of developing oligodendrocytes to cerebral insults. The prevalence of such neurological impairments requires an urgent need for early detection and effective neuroprotective strategies. Accordingly, noninvasive methods of monitoring disease progression and therapy effectiveness are essential. While diagnostic tools using biomarkers from bodily fluids may provide useful information regarding potential risks of developing neurological diseases, the use of magnetic resonance imaging/spectroscopy has emerged as a promising candidate for such purpose. Various pharmacological agents have demonstrated protective effects in the immature brain in animal models; however, few studies have progressed to clinical trials with promising results.
Collapse
Affiliation(s)
- Chen Jin
- Department of Pediatrics, Sainte-Justine Hospital and Research Center, Université de Montréal, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, Québec, H3T 1C5, Canada.
| | - Irene Londono
- Department of Pediatrics, Sainte-Justine Hospital and Research Center, Université de Montréal, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, Québec, H3T 1C5, Canada.
| | - Carina Mallard
- Perinatal Center, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 405 30, Gothenburg, Sweden.
| | - Gregory A Lodygensky
- Department of Pediatrics, Sainte-Justine Hospital and Research Center, Université de Montréal, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, Québec, H3T 1C5, Canada. .,Montreal Heart Institute, 5000 Rue Bélanger, Montréal, Québec, Canada. .,Department of Neuroscience and Pharmacology, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
50
|
Scheible KM, Emo J, Yang H, Holden-Wiltse J, Straw A, Huyck H, Misra S, Topham DJ, Ryan RM, Reynolds AM, Mariani TJ, Pryhuber GS. Developmentally determined reduction in CD31 during gestation is associated with CD8+ T cell effector differentiation in preterm infants. Clin Immunol 2015; 161:65-74. [PMID: 26232733 DOI: 10.1016/j.clim.2015.07.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 05/12/2015] [Accepted: 07/01/2015] [Indexed: 12/12/2022]
Abstract
Homeostatic T cell proliferation is more robust during human fetal development. In order to understand the relative effect of normal fetal homeostasis and perinatal exposures on CD8+ T cell behavior in PT infants, we characterized umbilical cord blood CD8+ T cells from infants born between 23-42weeks gestation. Subjects were recruited as part of the NHLBI-sponsored Prematurity and Respiratory Outcomes Program. Cord blood from PT infants had fewer naïve CD8+ T cells and lower regulatory CD31 expression on both naïve and effector, independent of prenatal exposures. CD8+ T cell in vitro effector function was greater at younger gestational ages, an effect that was exaggerated in infants with prior inflammatory exposures. These results suggest that CD8+ T cells earlier in gestation have loss of regulatory co-receptor CD31 and greater effector differentiation, which may place PT neonates at unique risk for CD8+ T cell-mediated inflammation and impaired T cell memory formation.
Collapse
Affiliation(s)
- Kristin M Scheible
- University of Rochester, Department of Pediatrics, 601 Elmwood Avenue, Rochester, NY 14642, United States.
| | - Jason Emo
- University of Rochester, Department of Pediatrics, 601 Elmwood Avenue, Rochester, NY 14642, United States
| | - Hongmei Yang
- University of Rochester, Department of Biostatistics and Computational Biology, 601 Elmwood Avenue, Rochester, NY 14642, United States
| | - Jeanne Holden-Wiltse
- University of Rochester, Department of Biostatistics and Computational Biology, 601 Elmwood Avenue, Rochester, NY 14642, United States
| | - Andrew Straw
- University of Rochester, Department of Biostatistics and Computational Biology, 601 Elmwood Avenue, Rochester, NY 14642, United States
| | - Heidie Huyck
- University of Rochester, Department of Pediatrics, 601 Elmwood Avenue, Rochester, NY 14642, United States
| | - Sara Misra
- University of Rochester, Department of Pediatrics, 601 Elmwood Avenue, Rochester, NY 14642, United States
| | - David J Topham
- University of Rochester, Department of Microbiology and Immunology, 601 Elmwood Avenue, Rochester, NY 14642, United States
| | - Rita M Ryan
- Medical University of South Carolina, Department of Pediatrics, Rutledge Tower, 135 Rutledge Avenue, Charleston, SC 29425, United States
| | - Anne Marie Reynolds
- State University of New York at Buffalo, Department of Pediatrics, 219 Bryant Street, Buffalo, NY 14222, United States
| | - Thomas J Mariani
- University of Rochester, Department of Pediatrics, 601 Elmwood Avenue, Rochester, NY 14642, United States; University of Rochester, Pediatric Molecular and Personalized Medicine Program, 601 Elmwood Avenue, Rochester, NY 14642, United States
| | - Gloria S Pryhuber
- University of Rochester, Department of Pediatrics, 601 Elmwood Avenue, Rochester, NY 14642, United States
| |
Collapse
|