1
|
Hodgdon EA, Anderson R, Azzawi HA, Wilson TW, Calhoun VD, Wang YP, Solis I, Greve DN, Stephen JM, Ciesielski KTR. MRI morphometry of the anterior and posterior cerebellar vermis and its relationship to sensorimotor and cognitive functions in children. Dev Cogn Neurosci 2024; 67:101385. [PMID: 38713999 PMCID: PMC11096723 DOI: 10.1016/j.dcn.2024.101385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/07/2024] [Accepted: 04/15/2024] [Indexed: 05/09/2024] Open
Abstract
INTRODUCTION The human cerebellum emerges as a posterior brain structure integrating neural networks for sensorimotor, cognitive, and emotional processing across the lifespan. Developmental studies of the cerebellar anatomy and function are scant. We examine age-dependent MRI morphometry of the anterior cerebellar vermis, lobules I-V and posterior neocortical lobules VI-VII and their relationship to sensorimotor and cognitive functions. METHODS Typically developing children (TDC; n=38; age 9-15) and healthy adults (HAC; n=31; 18-40) participated in high-resolution MRI. Rigorous anatomically informed morphometry of the vermis lobules I-V and VI-VII and total brain volume (TBV) employed manual segmentation computer-assisted FreeSurfer Image Analysis Program [http://surfer.nmr.mgh.harvard.edu]. The neuropsychological scores (WASI-II) were normalized and related to volumes of anterior, posterior vermis, and TBV. RESULTS TBVs were age independent. Volumes of I-V and VI-VII were significantly reduced in TDC. The ratio of VI-VII to I-V (∼60%) was stable across age-groups; I-V correlated with visual-spatial-motor skills; VI-VII with verbal, visual-abstract and FSIQ. CONCLUSIONS In TDC neither anterior I-V nor posterior VI-VII vermis attained adult volumes. The "inverted U" developmental trajectory of gray matter peaking in adolescence does not explain this finding. The hypothesis of protracted development of oligodendrocyte/myelination is suggested as a contributor to TDC's lower cerebellar vermis volumes.
Collapse
Affiliation(s)
- Elizabeth A Hodgdon
- Pediatric Neuroscience Laboratory, Psychology Clinical Neuroscience Center, Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Ryan Anderson
- Pediatric Neuroscience Laboratory, Psychology Clinical Neuroscience Center, Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Hussein Al Azzawi
- Pediatric Neuroscience Laboratory, Psychology Clinical Neuroscience Center, Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Tony W Wilson
- Institute of Human Neuroscience, Boys Town National Research Hospital, 14090 Mother Teresa Lane, Boys Town, NE 68010, USA
| | - Vince D Calhoun
- Mind Research Network and Lovelace Biomedical and Environmental Research Institute, 1101 Yale Blvd N.E., Albuquerque, NM 87106, USA; Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State, Georgia Tech, Emory, Atlanta, GA, USA
| | - Yu-Ping Wang
- Department of Biomedical Engineering, Tulane University, 6823 St. Charles Ave, New Orleans, LA 70118, USA
| | - Isabel Solis
- Pediatric Neuroscience Laboratory, Psychology Clinical Neuroscience Center, Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Douglas N Greve
- MGH/MIT Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Julia M Stephen
- Mind Research Network and Lovelace Biomedical and Environmental Research Institute, 1101 Yale Blvd N.E., Albuquerque, NM 87106, USA
| | - Kristina T R Ciesielski
- Pediatric Neuroscience Laboratory, Psychology Clinical Neuroscience Center, Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA; MGH/MIT Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Courchesne E, Taluja V, Nazari S, Aamodt CM, Pierce K, Duan K, Stophaeros S, Lopez L, Barnes CC, Troxel J, Campbell K, Wang T, Hoekzema K, Eichler EE, Nani JV, Pontes W, Sanchez SS, Lombardo MV, de Souza JS, Hayashi MAF, Muotri AR. Embryonic origin of two ASD subtypes of social symptom severity: the larger the brain cortical organoid size, the more severe the social symptoms. Mol Autism 2024; 15:22. [PMID: 38790065 PMCID: PMC11127428 DOI: 10.1186/s13229-024-00602-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Social affective and communication symptoms are central to autism spectrum disorder (ASD), yet their severity differs across toddlers: Some toddlers with ASD display improving abilities across early ages and develop good social and language skills, while others with "profound" autism have persistently low social, language and cognitive skills and require lifelong care. The biological origins of these opposite ASD social severity subtypes and developmental trajectories are not known. METHODS Because ASD involves early brain overgrowth and excess neurons, we measured size and growth in 4910 embryonic-stage brain cortical organoids (BCOs) from a total of 10 toddlers with ASD and 6 controls (averaging 196 individual BCOs measured/subject). In a 2021 batch, we measured BCOs from 10 ASD and 5 controls. In a 2022 batch, we tested replicability of BCO size and growth effects by generating and measuring an independent batch of BCOs from 6 ASD and 4 control subjects. BCO size was analyzed within the context of our large, one-of-a-kind social symptom, social attention, social brain and social and language psychometric normative datasets ranging from N = 266 to N = 1902 toddlers. BCO growth rates were examined by measuring size changes between 1- and 2-months of organoid development. Neurogenesis markers at 2-months were examined at the cellular level. At the molecular level, we measured activity and expression of Ndel1; Ndel1 is a prime target for cell cycle-activated kinases; known to regulate cell cycle, proliferation, neurogenesis, and growth; and known to be involved in neuropsychiatric conditions. RESULTS At the BCO level, analyses showed BCO size was significantly enlarged by 39% and 41% in ASD in the 2021 and 2022 batches. The larger the embryonic BCO size, the more severe the ASD social symptoms. Correlations between BCO size and social symptoms were r = 0.719 in the 2021 batch and r = 0. 873 in the replication 2022 batch. ASD BCOs grew at an accelerated rate nearly 3 times faster than controls. At the cell level, the two largest ASD BCOs had accelerated neurogenesis. At the molecular level, Ndel1 activity was highly correlated with the growth rate and size of BCOs. Two BCO subtypes were found in ASD toddlers: Those in one subtype had very enlarged BCO size with accelerated rate of growth and neurogenesis; a profound autism clinical phenotype displaying severe social symptoms, reduced social attention, reduced cognitive, very low language and social IQ; and substantially altered growth in specific cortical social, language and sensory regions. Those in a second subtype had milder BCO enlargement and milder social, attention, cognitive, language and cortical differences. LIMITATIONS Larger samples of ASD toddler-derived BCO and clinical phenotypes may reveal additional ASD embryonic subtypes. CONCLUSIONS By embryogenesis, the biological bases of two subtypes of ASD social and brain development-profound autism and mild autism-are already present and measurable and involve dysregulated cell proliferation and accelerated neurogenesis and growth. The larger the embryonic BCO size in ASD, the more severe the toddler's social symptoms and the more reduced the social attention, language ability, and IQ, and the more atypical the growth of social and language brain regions.
Collapse
Affiliation(s)
- Eric Courchesne
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, 8110 La Jolla Shores Dr., La Jolla, CA, 92037, USA.
| | - Vani Taluja
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, 8110 La Jolla Shores Dr., La Jolla, CA, 92037, USA
| | - Sanaz Nazari
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, 8110 La Jolla Shores Dr., La Jolla, CA, 92037, USA
| | - Caitlin M Aamodt
- Department of Pediatrics and Department of Molecular and Cellular Medicine, University of California, San Diego, Gilman Drive, La Jolla, CA, 92093, USA
| | - Karen Pierce
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, 8110 La Jolla Shores Dr., La Jolla, CA, 92037, USA
| | - Kuaikuai Duan
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, 8110 La Jolla Shores Dr., La Jolla, CA, 92037, USA
| | - Sunny Stophaeros
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, 8110 La Jolla Shores Dr., La Jolla, CA, 92037, USA
| | - Linda Lopez
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, 8110 La Jolla Shores Dr., La Jolla, CA, 92037, USA
| | - Cynthia Carter Barnes
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, 8110 La Jolla Shores Dr., La Jolla, CA, 92037, USA
| | - Jaden Troxel
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, 8110 La Jolla Shores Dr., La Jolla, CA, 92037, USA
| | - Kathleen Campbell
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, 8110 La Jolla Shores Dr., La Jolla, CA, 92037, USA
| | - Tianyun Wang
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing, 100191, China
- Neuroscience Research Institute, Peking University, Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of China, Beijing, 100191, China
| | - Kendra Hoekzema
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA
| | - Joao V Nani
- Department of Pediatrics and Department of Molecular and Cellular Medicine, University of California, San Diego, Gilman Drive, La Jolla, CA, 92093, USA
- Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Wirla Pontes
- Department of Pediatrics and Department of Molecular and Cellular Medicine, University of California, San Diego, Gilman Drive, La Jolla, CA, 92093, USA
| | - Sandra Sanchez Sanchez
- Department of Pediatrics and Department of Molecular and Cellular Medicine, University of California, San Diego, Gilman Drive, La Jolla, CA, 92093, USA
| | - Michael V Lombardo
- Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Janaina S de Souza
- Department of Pediatrics and Department of Molecular and Cellular Medicine, University of California, San Diego, Gilman Drive, La Jolla, CA, 92093, USA
| | - Mirian A F Hayashi
- Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Alysson R Muotri
- Department of Pediatrics and Department of Molecular and Cellular Medicine, University of California, San Diego, Gilman Drive, La Jolla, CA, 92093, USA.
- Rady Children's Hospital, Center for Academic Research and Training in Anthropogeny (CARTA), Archealization Center (ArchC), Kavli Institute for Brain and Mind, La Jolla, CA, USA.
| |
Collapse
|
3
|
Zosen D, Austdal LPE, Bjørnstad S, Lumor JS, Paulsen RE. Antiepileptic drugs lamotrigine and valproate differentially affect neuronal maturation in the developing chick embryo, yet with PAX6 as a potential common mediator. Neurotoxicol Teratol 2022; 90:107057. [DOI: 10.1016/j.ntt.2021.107057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/14/2021] [Accepted: 12/14/2021] [Indexed: 10/19/2022]
|
4
|
Mansour Y, Burchell A, Kulesza RJ. Central Auditory and Vestibular Dysfunction Are Key Features of Autism Spectrum Disorder. Front Integr Neurosci 2021; 15:743561. [PMID: 34658804 PMCID: PMC8513787 DOI: 10.3389/fnint.2021.743561] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 09/07/2021] [Indexed: 12/27/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by repetitive behaviors, poor social skills, and difficulties with communication. Beyond these core signs and symptoms, the majority of subjects with ASD have some degree of auditory and vestibular dysfunction. Dysfunction in these sensory modalities is significant as normal cognitive development depends on an accurate representation of our environment. The hearing difficulties in ASD range from deafness to hypersensitivity and subjects with ASD have abnormal sound-evoked brainstem reflexes and brainstem auditory evoked potentials. Vestibular dysfunction in ASD includes postural instability, gait dysfunction, and impaired gaze. Untreated vestibular dysfunction in children can lead to delayed milestones such as sitting and walking and poor motor coordination later in life. Histopathological studies have revealed that subjects with ASD have significantly fewer neurons in the auditory hindbrain and surviving neurons are smaller and dysmorphic. These findings are consistent with auditory dysfunction. Further, the cerebellum was one of the first brain structures implicated in ASD and studies have revealed loss of Purkinje cells and the presence of ectopic neurons. Together, these studies suggest that normal auditory and vestibular function play major roles in the development of language and social abilities, and dysfunction in these systems may contribute to the core symptoms of ASD. Further, auditory and vestibular dysfunction in children may be overlooked or attributed to other neurodevelopmental disorders. Herein we review the literature on auditory and vestibular dysfunction in ASD. Based on these results we developed a brainstem model of central auditory and vestibular dysfunction in ASD and propose that simple, non-invasive but quantitative testing of hearing and vestibular function be added to newborn screening protocols.
Collapse
Affiliation(s)
- Yusra Mansour
- Department of Otolaryngology, Henry Ford Macomb Hospital, Detroit, MI, United States
- Department of Anatomy, Lake Erie College of Osteopathic Medicine, Erie, PA, United States
| | - Alyson Burchell
- Department of Anatomy, Lake Erie College of Osteopathic Medicine, Erie, PA, United States
| | - Randy J. Kulesza
- Department of Anatomy, Lake Erie College of Osteopathic Medicine, Erie, PA, United States
| |
Collapse
|
5
|
Hooshmandi M, Truong VT, Fields E, Thomas RE, Wong C, Sharma V, Gantois I, Soriano Roque P, Chalkiadaki K, Wu N, Chakraborty A, Tahmasebi S, Prager-Khoutorsky M, Sonenberg N, Suvrathan A, Watt AJ, Gkogkas CG, Khoutorsky A. 4E-BP2-dependent translation in cerebellar Purkinje cells controls spatial memory but not autism-like behaviors. Cell Rep 2021; 35:109036. [PMID: 33910008 DOI: 10.1016/j.celrep.2021.109036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 02/15/2021] [Accepted: 04/06/2021] [Indexed: 11/19/2022] Open
Abstract
Recent studies have demonstrated that selective activation of mammalian target of rapamycin complex 1 (mTORC1) in the cerebellum by deletion of the mTORC1 upstream repressors TSC1 or phosphatase and tensin homolog (PTEN) in Purkinje cells (PCs) causes autism-like features and cognitive deficits. However, the molecular mechanisms by which overactivated mTORC1 in the cerebellum engenders these behaviors remain unknown. The eukaryotic translation initiation factor 4E-binding protein 2 (4E-BP2) is a central translational repressor downstream of mTORC1. Here, we show that mice with selective ablation of 4E-BP2 in PCs display a reduced number of PCs, increased regularity of PC action potential firing, and deficits in motor learning. Surprisingly, although spatial memory is impaired in these mice, they exhibit normal social interaction and show no deficits in repetitive behavior. Our data suggest that, downstream of mTORC1/4E-BP2, there are distinct cerebellar mechanisms independently controlling social behavior and memory formation.
Collapse
Affiliation(s)
- Mehdi Hooshmandi
- Department of Anesthesia and Faculty of Dentistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Vinh Tai Truong
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada
| | - Eviatar Fields
- Department of Biology, McGill University, Montreal, QC H3A 1A3, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 2B4, Canada
| | - Riya Elizabeth Thomas
- Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 2B4, Canada; Centre for Research in Neuroscience, Research Institute of the McGill University Health Centre, Montreal QC, H3G1A4, Canada; Department of Neurology and Neurosurgery, Department of Pediatrics, McGill University, Montreal QC, H3G1A4, Canada
| | - Calvin Wong
- Department of Anesthesia and Faculty of Dentistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Vijendra Sharma
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada
| | - Ilse Gantois
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada
| | - Patricia Soriano Roque
- Department of Anesthesia and Faculty of Dentistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Kleanthi Chalkiadaki
- Division of Biomedical Research, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, University Campus, 45110 Ioannina, Greece
| | - Neil Wu
- Department of Anesthesia and Faculty of Dentistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Anindyo Chakraborty
- Department of Anesthesia and Faculty of Dentistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Soroush Tahmasebi
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | - Nahum Sonenberg
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada
| | - Aparna Suvrathan
- Centre for Research in Neuroscience, Research Institute of the McGill University Health Centre, Montreal QC, H3G1A4, Canada; Department of Neurology and Neurosurgery, Department of Pediatrics, McGill University, Montreal QC, H3G1A4, Canada
| | - Alanna J Watt
- Department of Biology, McGill University, Montreal, QC H3A 1A3, Canada
| | - Christos G Gkogkas
- Division of Biomedical Research, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, University Campus, 45110 Ioannina, Greece.
| | - Arkady Khoutorsky
- Department of Anesthesia and Faculty of Dentistry, McGill University, Montreal, QC H3G 1Y6, Canada; Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC H3A 0G1, Canada.
| |
Collapse
|
6
|
Mana S, Paillère Martinot ML, Martinot JL. Brain imaging findings in children and adolescents with mental disorders: A cross-sectional review. Eur Psychiatry 2020; 25:345-54. [PMID: 20620025 DOI: 10.1016/j.eurpsy.2010.04.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 04/08/2010] [Accepted: 04/22/2010] [Indexed: 01/18/2023] Open
Abstract
AbstractBackgroundWhile brain imaging studies of juvenile patients has expanded in recent years to investigate the cerebral neurophysiologic correlates of psychiatric disorders, this research field remains scarce. The aim of the present review was to cluster the main mental disorders according to the differential brain location of the imaging findings recently reported in children and adolescents reports. A second objective was to describe the worldwide distribution and the main directions of the recent magnetic resonance imaging (MRI) and positron tomography (PET) studies in these patients.MethodsA survey of 423 MRI and PET articles published between 2005 and 2008 was performed. A principal component analysis (PCA), then an activation likelihood estimate (ALE) meta-analysis, were applied on brain regional information retrieved from articles in order to cluster the various disorders with respect to the cerebral structures where alterations were reported. Furthermore, descriptive analysis characterized the literature production.ResultsTwo hundred and seventy-four articles involving children and adolescent patients were analyzed. Both the PCA and ALE methods clustered, three groups of diagnosed psychiatric disorders, according to the brain structural and functional locations: one group of affective disorders characterized by abnormalities of the frontal-limbic regions; a group of mental disorders with “cognition deficits” mainly related to cortex abnormalities; and one psychomotor condition associated with abnormalities in the basal ganglia. The descriptive analysis indicates a focus on attention deficit hyperactivity disorders and autism spectrum disorders, a general steady rise in the number of annual reports, and lead of US research.ConclusionThis cross-sectional review of child and adolescent mental disorders based on neuroimaging findings suggests overlaps of brain locations that allow to cluster the diagnosed disorders into three sets with respectively marked affective, cognitive, and psychomotor phenomenology. Furthermore, the brain imaging research effort was unequally distributed across disorders, and did not reflect their prevalence.
Collapse
Affiliation(s)
- S Mana
- Service hospitalier central de médecine nucléaire et neurospin, INSERM-CEA, Research Unit 1000 Neuroimaging & psychiatry, University Paris Sud and University Paris Descartes, 4, place Gl.-Leclerc, 91401 Orsay, France.
| | | | | |
Collapse
|
7
|
The Reeler Mouse: A Translational Model of Human Neurological Conditions, or Simply a Good Tool for Better Understanding Neurodevelopment? J Clin Med 2019; 8:jcm8122088. [PMID: 31805691 PMCID: PMC6947477 DOI: 10.3390/jcm8122088] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/26/2019] [Accepted: 11/28/2019] [Indexed: 12/25/2022] Open
Abstract
The first description of the Reeler mutation in mouse dates to more than fifty years ago, and later, its causative gene (reln) was discovered in mouse, and its human orthologue (RELN) was demonstrated to be causative of lissencephaly 2 (LIS2) and about 20% of the cases of autosomal-dominant lateral temporal epilepsy (ADLTE). In both human and mice, the gene encodes for a glycoprotein referred to as reelin (Reln) that plays a primary function in neuronal migration during development and synaptic stabilization in adulthood. Besides LIS2 and ADLTE, RELN and/or other genes coding for the proteins of the Reln intracellular cascade have been associated substantially to other conditions such as spinocerebellar ataxia type 7 and 37, VLDLR-associated cerebellar hypoplasia, PAFAH1B1-associated lissencephaly, autism, and schizophrenia. According to their modalities of inheritances and with significant differences among each other, these neuropsychiatric disorders can be modeled in the homozygous (reln−/−) or heterozygous (reln+/−) Reeler mouse. The worth of these mice as translational models is discussed, with focus on their construct and face validity. Description of face validity, i.e., the resemblance of phenotypes between the two species, centers onto the histological, neurochemical, and functional observations in the cerebral cortex, hippocampus, and cerebellum of Reeler mice and their human counterparts.
Collapse
|
8
|
Gill JS, Sillitoe RV. Functional Outcomes of Cerebellar Malformations. Front Cell Neurosci 2019; 13:441. [PMID: 31636540 PMCID: PMC6787289 DOI: 10.3389/fncel.2019.00441] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 09/18/2019] [Indexed: 12/20/2022] Open
Abstract
The cerebellum is well-established as a primary center for controlling sensorimotor functions. However, recent experiments have demonstrated additional roles for the cerebellum in higher-order cognitive functions such as language, emotion, reward, social behavior, and working memory. Based on the diversity of behaviors that it can influence, it is therefore not surprising that cerebellar dysfunction is linked to motor diseases such as ataxia, dystonia, tremor, and Parkinson's disease as well to non-motor disorders including autism spectrum disorders (ASD), schizophrenia, depression, and anxiety. Regardless of the condition, there is a growing consensus that developmental disturbances of the cerebellum may be a central culprit in triggering a number of distinct pathophysiological processes. Here, we consider how cerebellar malformations and neuronal circuit wiring impact brain function and behavior during development. We use the cerebellum as a model to discuss the expanding view that local integrated brain circuits function within the context of distributed global networks to communicate the computations that drive complex behavior. We highlight growing concerns that neurological and neuropsychiatric diseases with severe behavioral outcomes originate from developmental insults to the cerebellum.
Collapse
Affiliation(s)
- Jason S. Gill
- Section of Pediatric Neurology and Developmental Neuroscience, Baylor College of Medicine, Houston, TX, United States
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute of Texas Children’s Hospital, Houston, TX, United States
| | - Roy V. Sillitoe
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute of Texas Children’s Hospital, Houston, TX, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
9
|
Lucibello S, Verdolotti T, Giordano FM, Lapenta L, Infante A, Piludu F, Tartaglione T, Chieffo D, Colosimo C, Mercuri E, Battini R. Brain morphometry of preschool age children affected by autism spectrum disorder: Correlation with clinical findings. Clin Anat 2018; 32:143-150. [DOI: 10.1002/ca.23252] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 07/13/2018] [Indexed: 01/28/2023]
Affiliation(s)
- S. Lucibello
- Pediatric Neurology Unit; Fondazione Policlinico A. Gemelli IRCSS; Rome Italy
| | - T. Verdolotti
- Radiology and Neuroradiology Unit; Fondazione Policlinico A. Gemelli IRCSS; Rome Italy
| | - F. M. Giordano
- Radiology and Neuroradiology Unit; Fondazione Policlinico A. Gemelli IRCSS; Rome Italy
| | - L. Lapenta
- Pediatric Neurology Unit; Fondazione Policlinico A. Gemelli IRCSS; Rome Italy
| | - A. Infante
- Radiology and Neuroradiology Unit; Fondazione Policlinico A. Gemelli IRCSS; Rome Italy
| | - F. Piludu
- Radiology and Neuroradiology Unit; Fondazione Policlinico A. Gemelli IRCSS; Rome Italy
| | - T. Tartaglione
- Radiology and Neuroradiology Unit; Fondazione Policlinico A. Gemelli IRCSS; Rome Italy
- Catholic University of Sacred Heart; Rome Italy
| | - D. Chieffo
- Pediatric Neurology Unit; Fondazione Policlinico A. Gemelli IRCSS; Rome Italy
| | - C. Colosimo
- Radiology and Neuroradiology Unit; Fondazione Policlinico A. Gemelli IRCSS; Rome Italy
- Catholic University of Sacred Heart; Rome Italy
| | - E. Mercuri
- Pediatric Neurology Unit; Fondazione Policlinico A. Gemelli IRCSS; Rome Italy
- Catholic University of Sacred Heart; Rome Italy
| | - R. Battini
- Pediatric Neurology Unit; Fondazione Policlinico A. Gemelli IRCSS; Rome Italy
- Department of Clinical and Experimental Medicine; University of Pisa; Pisa Italy
| |
Collapse
|
10
|
Perkins EM, Clarkson YL, Suminaite D, Lyndon AR, Tanaka K, Rothstein JD, Skehel PA, Wyllie DJA, Jackson M. Loss of cerebellar glutamate transporters EAAT4 and GLAST differentially affects the spontaneous firing pattern and survival of Purkinje cells. Hum Mol Genet 2018; 27:2614-2627. [PMID: 29741614 PMCID: PMC6049029 DOI: 10.1093/hmg/ddy169] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/30/2018] [Accepted: 05/01/2018] [Indexed: 12/20/2022] Open
Abstract
Loss of excitatory amino acid transporters (EAATs) has been implicated in a number of human diseases including spinocerebellar ataxias, Alzhiemer's disease and motor neuron disease. EAAT4 and GLAST/EAAT1 are the two predominant EAATs responsible for maintaining low extracellular glutamate levels and preventing neurotoxicity in the cerebellum, the brain region essential for motor control. Here using genetically modified mice we identify new critical roles for EAAT4 and GLAST/EAAT1 as modulators of Purkinje cell (PC) spontaneous firing patterns. We show high EAAT4 levels, by limiting mGluR1 signalling, are essential in constraining inherently heterogeneous firing of zebrin-positive PCs. Moreover mGluR1 antagonists were found to restore regular spontaneous PC activity and motor behaviour in EAAT4 knockout mice. In contrast, GLAST/EAAT1 expression is required to sustain normal spontaneous simple spike activity in low EAAT4 expressing (zebrin-negative) PCs by restricting NMDA receptor activation. Blockade of NMDA receptor activity restores spontaneous activity in zebrin-negative PCs of GLAST knockout mice and furthermore alleviates motor deficits. In addition both transporters have differential effects on PC survival, with zebrin-negative PCs more vulnerable to loss of GLAST/EAAT1 and zebrin-positive PCs more vulnerable to loss of EAAT4. These findings reveal that glutamate transporter dysfunction through elevated extracellular glutamate and the aberrant activation of extrasynaptic receptors can disrupt cerebellar output by altering spontaneous PC firing. This expands our understanding of disease mechanisms in cerebellar ataxias and establishes EAATs as targets for restoring homeostasis in a variety of neurological diseases where altered cerebellar output is now thought to play a key role in pathogenesis.
Collapse
Affiliation(s)
- Emma M Perkins
- The Centre for Discovery Brain Sciences, The University of Edinburgh, Hugh Robson Building, Edinburgh, UK
| | - Yvonne L Clarkson
- The Centre for Discovery Brain Sciences, The University of Edinburgh, Hugh Robson Building, Edinburgh, UK
| | - Daumante Suminaite
- The Centre for Discovery Brain Sciences, The University of Edinburgh, Hugh Robson Building, Edinburgh, UK
| | - Alastair R Lyndon
- School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, John Muir Building, Riccarton, Edinburgh, UK
| | - Kohichi Tanaka
- Laboratory of Molecular Neuroscience, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-Ku, Tokyo, Japan
| | - Jeffrey D Rothstein
- Department of Neurology and Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Paul A Skehel
- The Centre for Discovery Brain Sciences, The University of Edinburgh, Hugh Robson Building, Edinburgh, UK
| | - David J A Wyllie
- The Centre for Discovery Brain Sciences, The University of Edinburgh, Hugh Robson Building, Edinburgh, UK
- Centre for Brain Development and Repair, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, India
| | - Mandy Jackson
- The Centre for Discovery Brain Sciences, The University of Edinburgh, Hugh Robson Building, Edinburgh, UK
| |
Collapse
|
11
|
Freedman EG, Foxe JJ. Eye movements, sensorimotor adaptation and cerebellar-dependent learning in autism: toward potential biomarkers and subphenotypes. Eur J Neurosci 2018; 47:549-555. [PMID: 28612953 PMCID: PMC11800192 DOI: 10.1111/ejn.13625] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 05/15/2017] [Accepted: 05/30/2017] [Indexed: 11/30/2022]
Abstract
Because of the wide range of symptoms expressed in individuals with autism spectrum disorder (ASD) and their idiosyncratic severity, it is unlikely that a single remedial approach will be universally effective. Resolution of this dilemma requires identifying subgroups within the autism spectrum, based on symptom set and severity, on an underlying neuro-structural difference, and on specific behavioral dysfunction. This will provide critical insight into the disorder and may lead to better diagnoses, and more targeted remediation in these subphenotypes of people with ASD. In this review, we discuss findings that appear to link the structure of the cerebellar vermis and plasticity of the saccadic eye-movement system in people with an autism spectrum disorder (ASD). Differences in cerebellar vermis structure in ASD could critically impact visuo-sensorimotor development in early infancy, which may in turn manifest as the visual orienting, communication and social interaction differences often seen in this population. It may be possible to distinguish a subpopulation of children with vermal hypoplasia, to establish whether this group manifests more severe deficits in visual orienting and in adaptation to persistent visual errors, and to establish whether this putative subphenotype of ASD is associated with a specific and distinct clinical symptom profile.
Collapse
Affiliation(s)
- Edward G Freedman
- Department of Neuroscience, The Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642, USA
| | - John J Foxe
- Department of Neuroscience, The Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642, USA
| |
Collapse
|
12
|
Morimoto C, Hida E, Shima K, Okamura H. Temporal Processing Instability with Millisecond Accuracy is a Cardinal Feature of Sensorimotor Impairments in Autism Spectrum Disorder: Analysis Using the Synchronized Finger-Tapping Task. J Autism Dev Disord 2017; 48:351-360. [PMID: 28988374 DOI: 10.1007/s10803-017-3334-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
To identify a specific sensorimotor impairment feature of autism spectrum disorder (ASD), we focused on temporal processing with millisecond accuracy. A synchronized finger-tapping task was used to characterize temporal processing in individuals with ASD as compared to typically developing (TD) individuals. We found that individuals with ASD showed more variability in temporal processing parameters than TD individuals. In addition, temporal processing instability was related to altered motor performance. Further, receiver operating characteristic (ROC) curve analyses indicated that altered temporal processing can be useful for distinguishing between individuals with and without ASD. These results suggest that instability of temporal processing with millisecond accuracy is a fundamental feature of sensorimotor impairments in ASD.
Collapse
Affiliation(s)
- Chie Morimoto
- Department of Psychosocial Rehabilitation, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Eisuke Hida
- Department of Biostatistics and Data Science, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, 565-0871, Japan
| | - Keisuke Shima
- Division of Intelligent Systems Engineering, Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai Hodogaya-ku, Yokohama, 240-8501, Japan
| | - Hitoshi Okamura
- Department of Psychosocial Rehabilitation, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| |
Collapse
|
13
|
Abstract
Autism Spectrum Disorders (ASDs) are a heterogeneous group of neurodevelopmental disorders that are diagnosed solely on the basis of behaviour. A large body of work has reported neuroanatomical differences between individuals with ASD and neurotypical controls. Despite the huge clinical and genetic heterogeneity that typifies autism, some of these anatomical features appear to be either present in most cases or so dramatically altered in some that their presence is now reasonably well replicated in a number of studies. One such finding is the tendency towards overgrowth of the frontal cortex during the early postnatal period. Although these reports have been focused primarily on the presumed pathological anatomy, they are providing us with important insights into normal brain anatomy and are stimulating new ideas and hypotheses about the normal trajectory of brain development and the function of specific anatomical brain structures. The use of model systems that include genetic model organisms such as the mouse and, more recently, human induced pluripotent stem cell-derived brain organoids to model normal and pathological human cortical development, is proving particularly informative. Here we review some of the neuroanatomical alterations reported in autism, with a particular focus on well-validated findings and recent advances in the field, and ask what these observations can tell us about normal and abnormal brain development.
Collapse
Affiliation(s)
- Alex P. A. Donovan
- Department of Craniofacial Development and Stem Cell Biology, and MRC Centre for Neurodevelopmental DisordersKing's College LondonLondonUK
| | - M. Albert Basson
- Department of Craniofacial Development and Stem Cell Biology, and MRC Centre for Neurodevelopmental DisordersKing's College LondonLondonUK
| |
Collapse
|
14
|
Perkins EM, Suminaite D, Clarkson YL, Lee SK, Lyndon AR, Rothstein JD, Wyllie DJ, Tanaka K, Jackson M. Posterior cerebellar Purkinje cells in an SCA5/SPARCA1 mouse model are especially vulnerable to the synergistic effect of loss of β-III spectrin and GLAST. Hum Mol Genet 2016; 25:4448-4461. [PMID: 28173092 PMCID: PMC5409221 DOI: 10.1093/hmg/ddw274] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/05/2016] [Accepted: 08/11/2016] [Indexed: 12/26/2022] Open
Abstract
Clinical phenotypes of spinocerebellar ataxia type-5 (SCA5) and spectrin-associated autosomal recessive cerebellar ataxia type-1 (SPARCA1) are mirrored in mice lacking β-III spectrin (β-III-/-). One function of β-III spectrin is the stabilization of the Purkinje cell-specific glutamate transporter EAAT4 at the plasma membrane. In β-III-/- mice EAAT4 levels are reduced from an early age. In contrast levels of the predominant cerebellar glutamate transporter GLAST, expressed in Bergmann glia, only fall progressively from 3 months onwards. Here we elucidated the roles of these two glutamate transporters in cerebellar pathogenesis mediated through loss of β-III spectrin function by studying EAAT4 and GLAST knockout mice as well as crosses of both with β-III-/- mice. Our data demonstrate that EAAT4 loss, but not abnormal AMPA receptor composition, in young β-III-/- mice underlies early Purkinje cell hyper-excitability and that subsequent loss of GLAST, superimposed on the earlier deficiency of EAAT4, is responsible for Purkinje cell loss and progression of motor deficits. Yet the loss of GLAST appears to be independent of EAAT4 loss, highlighting that other aspects of Purkinje cell dysfunction underpin the pathogenic loss of GLAST. Finally, our results demonstrate that Purkinje cells in the posterior cerebellum of β-III-/- mice are most susceptible to the combined loss of EAAT4 and GLAST, with degeneration of proximal dendrites, the site of climbing fibre innervation, most pronounced. This highlights the necessity for efficient glutamate clearance from these regions and identifies dysregulation of glutamatergic neurotransmission particularly within the posterior cerebellum as a key mechanism in SCA5 and SPARCA1 pathogenesis.
Collapse
Affiliation(s)
- Emma M. Perkins
- The Centre for Integrative Physiology, The University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, UK
| | - Daumante Suminaite
- The Centre for Integrative Physiology, The University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, UK
| | - Yvonne L. Clarkson
- The Centre for Integrative Physiology, The University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, UK
| | - Sin Kwan Lee
- The Centre for Integrative Physiology, The University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, UK
| | - Alastair R. Lyndon
- School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, John Muir Building, Riccarton, Edinburgh, UK
| | - Jeffrey D. Rothstein
- Department of Neurology and Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - David J.A. Wyllie
- The Centre for Integrative Physiology, The University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, UK
- Centre for Brain Development and Repair, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, India
| | - Kohichi Tanaka
- Laboratory of Molecular Neuroscience, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-Ku, Tokyo, Japan
| | - Mandy Jackson
- The Centre for Integrative Physiology, The University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, UK
| |
Collapse
|
15
|
Perkins E, Suminaite D, Jackson M. Cerebellar ataxias: β-III spectrin's interactions suggest common pathogenic pathways. J Physiol 2016; 594:4661-76. [PMID: 26821241 PMCID: PMC4983618 DOI: 10.1113/jp271195] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 12/14/2015] [Indexed: 12/12/2022] Open
Abstract
Spinocerebellar ataxias (SCAs) are a genetically heterogeneous group of disorders all characterised by postural abnormalities, motor deficits and cerebellar degeneration. Animal and in vitro models have revealed β‐III spectrin, a cytoskeletal protein present throughout the soma and dendritic tree of cerebellar Purkinje cells, to be required for the maintenance of dendritic architecture and for the trafficking and/or stabilisation of several membrane proteins: ankyrin‐R, cell adhesion molecules, metabotropic glutamate receptor‐1 (mGluR1), voltage‐gated sodium channels (Nav) and glutamate transporters. This scaffold of interactions connects β‐III spectrin to a wide variety of proteins implicated in the pathology of many SCAs. Heterozygous mutations in the gene encoding β‐III spectrin (SPTBN2) underlie SCA type‐5 whereas homozygous mutations cause spectrin associated autosomal recessive ataxia type‐1 (SPARCA1), an infantile form of ataxia with cognitive impairment. Loss‐of β‐III spectrin function appears to underpin cerebellar dysfunction and degeneration in both diseases resulting in thinner dendrites, excessive dendritic protrusion with loss of planarity, reduced resurgent sodium currents and abnormal glutamatergic neurotransmission. The initial physiological consequences are a decrease in spontaneous activity and excessive excitation, likely to be offsetting each other, but eventually hyperexcitability gives rise to dark cell degeneration and reduced cerebellar output. Similar molecular mechanisms have been implicated for SCA1, 2, 3, 7, 13, 14, 19, 22, 27 and 28, highlighting alterations to intrinsic Purkinje cell activity, dendritic architecture and glutamatergic transmission as possible common mechanisms downstream of various loss‐of‐function primary genetic defects. A key question for future research is whether similar mechanisms underlie progressive cerebellar decline in normal ageing.
![]()
Collapse
Affiliation(s)
- Emma Perkins
- Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
| | - Daumante Suminaite
- Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
| | - Mandy Jackson
- Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
| |
Collapse
|
16
|
Jumah F, Ghannam M, Jaber M, Adeeb N, Tubbs RS. Neuroanatomical variation in autism spectrum disorder: A comprehensive review. Clin Anat 2016; 29:454-65. [PMID: 27004599 DOI: 10.1002/ca.22717] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 03/18/2016] [Indexed: 01/27/2023]
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterized by impairments in socialization, communication, and behavior. Many investigators have described the anatomical abnormalities in autistic brains, in an attempt to correlate them with the manifestations of ASD. Herein, we reviewed all the available literature about the neuroanatomical findings in ASD available via "PubMed" and "Google Scholar." References found in review articles were also searched manually. There was substantial discrepancy throughout the literature regarding the reported presence and significance of neuroanatomical findings in ASD, and this is thoroughly discussed in the present review.
Collapse
Affiliation(s)
- Fareed Jumah
- Department of Neuroscience, an-Najah National University Hospital, Nablus, Palestine
| | - Malik Ghannam
- Department of Neuroscience, an-Najah National University Hospital, Nablus, Palestine
| | - Mohammad Jaber
- Department of Neuroscience, an-Najah National University Hospital, Nablus, Palestine
| | - Nimer Adeeb
- Department of Neurosurgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - R Shane Tubbs
- Department of Anatomical Sciences, St. George's University, Grenada.,Seattle Science Foundation, Seattle, Washington
| |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW This review discusses the ways that rodent models of autism spectrum disorders (ASDs) have been used to gain critical information about convergent molecular pathways, the mechanisms underlying altered microcircuit structure and function, and as a screen for potential cutting edge-treatments for ASDs. RECENT FINDINGS There is convergent evidence that impaired developmental pruning of connections may be a common finding among several mouse models of ASDs. Recent studies have uncovered impaired autophagy by pathological mTOR activation as a potential contributor to microcircuit dysfunction and behavior. ASD-related disinhibition and exaggerated synaptic plasticity in multiple distinct circuits in cortex and reward circuits in striatum also contribute to social dysfunction and repetitive behaviors. New exciting molecular therapeutic techniques have reversed cognitive deficits in models of ASD, indicating that mouse models could be used for preclinical translational studies of new treatments. SUMMARY Rodent models of ASDs coupled to new emerging technologies for genome editing, cell-specific functional and structural imaging, and neuronal activity manipulation will yield critical insights into ASD pathogenesis and fuel the emergence of new treatments.
Collapse
|
18
|
Li J, You Y, Yue W, Jia M, Yu H, Lu T, Wu Z, Ruan Y, Wang L, Zhang D. Genetic Evidence for Possible Involvement of the Calcium Channel Gene CACNA1A in Autism Pathogenesis in Chinese Han Population. PLoS One 2015; 10:e0142887. [PMID: 26566276 PMCID: PMC4643966 DOI: 10.1371/journal.pone.0142887] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 10/28/2015] [Indexed: 02/06/2023] Open
Abstract
Autism spectrum disorders (ASD) are a group of neurodevelopmental disorders. Recent studies suggested that calcium channel genes might be involved in the genetic etiology of ASD. CACNA1A, encoding an alpha-1 subunit of voltage-gated calcium channel, has been reported to play an important role in neural development. Previous study detected that a single nucleotide polymorphism (SNP) in CACNA1A confers risk to ASD in Central European population. However, the genetic relationship between autism and CACNA1A in Chinese Han population remains unclear. To explore the association of CACNA1A with autism, we performed a family-based association study. First, we carried out a family-based association test between twelve tagged SNPs and autism in 239 trios. To further confirm the association, the sample size was expanded to 553 trios by recruiting 314 additional trios. In a total of 553 trios, we identified association of rs7249246 and rs12609735 with autism though this would not survive after Bonferroni correction. Our findings suggest that CACNA1A might play a role in the etiology of autism.
Collapse
Affiliation(s)
- Jun Li
- Institute of Mental Health, The Sixth Hospital, Peking University, Beijing, China
- Key Laboratory of Mental Health, Ministry of Health & National Clinical Research Center for Mental Disorders (Peking University), Beijing, China
| | - Yang You
- Institute of Mental Health, The Sixth Hospital, Peking University, Beijing, China
- Key Laboratory of Mental Health, Ministry of Health & National Clinical Research Center for Mental Disorders (Peking University), Beijing, China
| | - Weihua Yue
- Institute of Mental Health, The Sixth Hospital, Peking University, Beijing, China
- Key Laboratory of Mental Health, Ministry of Health & National Clinical Research Center for Mental Disorders (Peking University), Beijing, China
| | - Meixiang Jia
- Institute of Mental Health, The Sixth Hospital, Peking University, Beijing, China
- Key Laboratory of Mental Health, Ministry of Health & National Clinical Research Center for Mental Disorders (Peking University), Beijing, China
| | - Hao Yu
- Institute of Mental Health, The Sixth Hospital, Peking University, Beijing, China
- Key Laboratory of Mental Health, Ministry of Health & National Clinical Research Center for Mental Disorders (Peking University), Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, P. R. China
| | - Tianlan Lu
- Institute of Mental Health, The Sixth Hospital, Peking University, Beijing, China
- Key Laboratory of Mental Health, Ministry of Health & National Clinical Research Center for Mental Disorders (Peking University), Beijing, China
| | - Zhiliu Wu
- Institute of Mental Health, The Sixth Hospital, Peking University, Beijing, China
- Key Laboratory of Mental Health, Ministry of Health & National Clinical Research Center for Mental Disorders (Peking University), Beijing, China
| | - Yanyan Ruan
- Institute of Mental Health, The Sixth Hospital, Peking University, Beijing, China
- Key Laboratory of Mental Health, Ministry of Health & National Clinical Research Center for Mental Disorders (Peking University), Beijing, China
| | - Lifang Wang
- Institute of Mental Health, The Sixth Hospital, Peking University, Beijing, China
- Key Laboratory of Mental Health, Ministry of Health & National Clinical Research Center for Mental Disorders (Peking University), Beijing, China
- * E-mail: (DZ); (LFW)
| | - Dai Zhang
- Institute of Mental Health, The Sixth Hospital, Peking University, Beijing, China
- Key Laboratory of Mental Health, Ministry of Health & National Clinical Research Center for Mental Disorders (Peking University), Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, P. R. China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, P. R. China
- * E-mail: (DZ); (LFW)
| |
Collapse
|
19
|
Miller M, Chukoskie L, Zinni M, Townsend J, Trauner D. Dyspraxia, motor function and visual-motor integration in autism. Behav Brain Res 2014; 269:95-102. [PMID: 24742861 PMCID: PMC4072207 DOI: 10.1016/j.bbr.2014.04.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 03/12/2014] [Accepted: 04/07/2014] [Indexed: 11/28/2022]
Abstract
This project assessed dyspraxia in high-functioning school aged children with autism with a focus on Ideational Praxis. We examined the association of specific underlying motor function including eye movement with ideational dyspraxia (sequences of skilled movements) as well as the possible role of visual-motor integration in dyspraxia. We found that compared to IQ-, sex- and age-matched typically developing children, the children with autism performed significantly worse on: Ideational and Buccofacial praxis; a broad range of motor tests, including measures of simple motor skill, timing and accuracy of saccadic eye movements and motor coordination; and tests of visual-motor integration. Impairments in individual children with autism were heterogeneous in nature, although when we examined the praxis data as a function of a qualitative measure representing motor timing, we found that children with poor motor timing performed worse on all praxis categories and had slower and less accurate eye movements while those with regular timing performed as well as typical children on those same tasks. Our data provide evidence that both motor function and visual-motor integration contribute to dyspraxia. We suggest that dyspraxia in autism involves cerebellar mechanisms of movement control and the integration of these mechanisms with cortical networks implicated in praxis.
Collapse
Affiliation(s)
- M Miller
- School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - L Chukoskie
- Institute for Neural Computation, University of California, San Diego, La Jolla, CA, USA
| | - M Zinni
- Department of Neurosciences, University of California, San Diego, 9500 Gilman Drive, MC-0959, La Jolla, CA 92093-0959, USA
| | - J Townsend
- Department of Neurosciences, University of California, San Diego, 9500 Gilman Drive, MC-0959, La Jolla, CA 92093-0959, USA.
| | - D Trauner
- Department of Neurosciences, University of California, San Diego, 9500 Gilman Drive, MC-0959, La Jolla, CA 92093-0959, USA
| |
Collapse
|
20
|
Stoodley CJ. Distinct regions of the cerebellum show gray matter decreases in autism, ADHD, and developmental dyslexia. Front Syst Neurosci 2014; 8:92. [PMID: 24904314 PMCID: PMC4033133 DOI: 10.3389/fnsys.2014.00092] [Citation(s) in RCA: 169] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 04/30/2014] [Indexed: 01/18/2023] Open
Abstract
Differences in cerebellar structure have been identified in autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD), and developmental dyslexia. However, it is not clear if different cerebellar regions are involved in each disorder, and thus whether cerebellar anatomical differences reflect a generic developmental vulnerability or disorder-specific characteristics. To clarify this, we conducted an anatomic likelihood estimate (ALE) meta-analysis on voxel-based morphometry (VBM) studies which compared ASD (17 studies), ADHD (10 studies), and dyslexic (10 studies) participants with age-matched typically-developing (TD) controls. A second ALE analysis included studies in which the cerebellum was a region of interest (ROI). There were no regions of significantly increased gray matter (GM) in the cerebellum in ASD, ADHD, or dyslexia. Data from ASD studies revealed reduced GM in the inferior cerebellar vermis (lobule IX), left lobule VIIIB, and right Crus I. In ADHD, significantly decreased GM was found bilaterally in lobule IX, whereas participants with developmental dyslexia showed GM decreases in left lobule VI. There was no overlap between the cerebellar clusters identified in each disorder. We evaluated the functional significance of the regions revealed in both whole-brain and cerebellar ROI ALE analyses using Buckner and colleagues' 7-network functional connectivity map available in the SUIT cerebellar atlas. The cerebellar regions identified in ASD showed functional connectivity with frontoparietal, default mode, somatomotor, and limbic networks; in ADHD, the clusters were part of dorsal and ventral attention networks; and in dyslexia, the clusters involved ventral attention, frontoparietal, and default mode networks. The results suggest that different cerebellar regions are affected in ASD, ADHD, and dyslexia, and these cerebellar regions participate in functional networks that are consistent with the characteristic symptoms of each disorder.
Collapse
|
21
|
Petrinovic MM, Künnecke B. Neuroimaging endophenotypes in animal models of autism spectrum disorders: lost or found in translation? Psychopharmacology (Berl) 2014; 231:1167-89. [PMID: 23852013 DOI: 10.1007/s00213-013-3200-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 06/26/2013] [Indexed: 11/26/2022]
Abstract
RATIONALE Autism spectrum disorder(s) (ASDs) is a neurodevelopmental disorder characterized by stereotyped behaviours and impairments in communication and social interactions. This heterogeneity has been a major obstacle in uncovering the aetiology and biomarkers of ASDs. Rodent models with genetic modifications or environmental insults have been created to study particular endophenotypes and bridge the gap between genetics and behavioural phenotypes. Translational neuroimaging modalities with their ability to screen the brain noninvasively and yield structural, biochemical and functional information provide a unique platform for discovery and evaluation of such endophenotypes in preclinical and clinical research. OBJECTIVES We reviewed literature on translational neuroimaging in rodent models of ASDs. The most prominent models will be described and the respective neuroimaging endophenotypes will be discussed with reference to human data. A perspective on future directions of translational neuroimaging in animal models of ASDs will be given. RESULTS AND CONCLUSIONS To date, we experience a proliferation of rodent models which recapitulate specific liabilities identified in ASDs patients. Translational neuroimaging in these models is emerging but is skewed towards magnetic resonance imaging (MRI) modalities. Volumetric and structural assessments of the brain are dominating and a host of endophenotypes have been reported that allude to findings in ASDs patients but with only few to converge among the models. Caveats of current studies are the diverging biological conditions related to genetic background and age of the animals. It is anticipated that longitudinal and functional assessments will gain much importance and will help elucidating mechanistic relationship between behavioural and structural endophenotypes.
Collapse
Affiliation(s)
- Marija M Petrinovic
- F. Hoffmann-La Roche AG, pRED, Pharma Research and Early Development, DTA Neuroscience, Building 68, Room 327A, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | | |
Collapse
|
22
|
Yang W, Liu J, Zheng F, Jia M, Zhao L, Lu T, Ruan Y, Zhang J, Yue W, Zhang D, Wang L. The evidence for association of ATP2B2 polymorphisms with autism in Chinese Han population. PLoS One 2013; 8:e61021. [PMID: 23620727 PMCID: PMC3631200 DOI: 10.1371/journal.pone.0061021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 03/05/2013] [Indexed: 12/27/2022] Open
Abstract
Background Autism is a neurodevelopmental disorder with a high estimated heritability. ATP2B2, located on human chromosome 3p25.3, encodes the plasma membrane calcium-transporting ATPase 2 which extrudes Ca2+ from cytosol into extracellular space. Recent studies reported association between ATP2B2 and autism in samples from Autism Genetic Resource Exchange (AGRE) and Italy. In this study, we investigated whether ATP2B2 polymorphisms were associated with autism in Chinese Han population. Methods We performed a family based association study between five SNPs (rs35678 in exon, rs241509, rs3774180, rs3774179, and rs2278556 in introns) in ATP2B2 and autism in 427 autism trios of Han Chinese descent. All SNPs were genotyped using the Sequenom genotyping platform. The family-based association test (FBAT) program was used to perform association test for SNPs and haplotype analyses. Results This study demonstrated a preferential transmission of T allele of rs3774179 to affected offsprings under an additive model (T>C, Z = 2.482, p = 0.013). While C allele of rs3774179 showed an undertransmission from parents to affected children under an additive and a dominant model, respectively (Z = −2.482, p = 0.013; Z = −2.591, p = 0.0096). Haplotype analyses revealed that three haplotypes were significantly associated with autism. The haplotype C-C (rs3774180–rs3774179) showed a significant undertransmission from parents to affected offsprings both in specific and global haplotype FBAT (Z = −2.037, p = 0.042; Global p = 0.03). As for the haplotype constructed by rs3774179 and rs2278556, C-A might be a protective haplotype (Z = −2.206, p = 0.027; Global p = 0.04), while T-A demonstrated an excess transmission from parents to affected offsprings (Z = 2.143, p = 0.032). These results were still significant after using the permutation method to obtain empirical p values. Conclusions Our research suggested that ATP2B2 might play a role in the etiology of autism in Chinese Han population.
Collapse
Affiliation(s)
- Wen Yang
- Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, People’s Republic of China
- Institute of Mental Health, Peking University, Beijing, People’s Republic of China
| | - Jing Liu
- Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, People’s Republic of China
- Institute of Mental Health, Peking University, Beijing, People’s Republic of China
| | - Fanfan Zheng
- Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, People’s Republic of China
- Institute of Mental Health, Peking University, Beijing, People’s Republic of China
| | - Meixiang Jia
- Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, People’s Republic of China
- Institute of Mental Health, Peking University, Beijing, People’s Republic of China
| | - Linnan Zhao
- Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, People’s Republic of China
- Institute of Mental Health, Peking University, Beijing, People’s Republic of China
| | - Tianlan Lu
- Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, People’s Republic of China
- Institute of Mental Health, Peking University, Beijing, People’s Republic of China
| | - Yanyan Ruan
- Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, People’s Republic of China
- Institute of Mental Health, Peking University, Beijing, People’s Republic of China
| | - Jishui Zhang
- Beijing Children’s Hospital Affiliated to Capital University of Medical Sciences, Beijing, People’s Republic of China
| | - Weihua Yue
- Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, People’s Republic of China
- Institute of Mental Health, Peking University, Beijing, People’s Republic of China
| | - Dai Zhang
- Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, People’s Republic of China
- Institute of Mental Health, Peking University, Beijing, People’s Republic of China
- Peking-Tsinghua Center for Life Sciences, Beijing, People’s Republic of China
- * E-mail: (DZ); (LFW)
| | - Lifang Wang
- Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, People’s Republic of China
- Institute of Mental Health, Peking University, Beijing, People’s Republic of China
- * E-mail: (DZ); (LFW)
| |
Collapse
|
23
|
Weisenfeld NI, Peters JM, Tsai PT, Prabhu SP, Dies KA, Sahin M, Warfield SK. A magnetic resonance imaging study of cerebellar volume in tuberous sclerosis complex. Pediatr Neurol 2013; 48:105-10. [PMID: 23337002 PMCID: PMC3763730 DOI: 10.1016/j.pediatrneurol.2012.10.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 10/29/2012] [Indexed: 11/18/2022]
Abstract
The cerebellum plays an important role in motor learning and cognition, and structural cerebellar abnormalities have been associated with cognitive impairment. In tuberous sclerosis complex, neurologic outcome is highly variable, and no consistent imaging or pathologic determinant of cognition has been firmly established. The cerebellum calls for specific attention because mouse models of tuberous sclerosis complex have demonstrated a loss of cerebellar Purkinje cells, and cases of human histologic data have demonstrated a similar loss in patients. We hypothesized that there might be a common cerebellar finding in tuberous sclerosis complex that could be measured as morphometric changes with magnetic resonance imaging. Using a robust, automated image analysis procedure, we studied 36 patients with tuberous sclerosis complex and age-matched control subjects and observed significant volume loss among patients in the cerebellar cortices and vermis. Furthermore, this effect was strongest in a subgroup of 19 patients with a known, pathogenic mutation of the tuberous sclerosis 2 gene and impacted all cerebellar structures. We conclude that patients with tuberous sclerosis complex exhibit volume loss in the cerebellum, and this loss is larger and more widespread in patients with a tuberous sclerosis 2 mutation.
Collapse
Affiliation(s)
- Neil I Weisenfeld
- Department of Radiology, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | | | | | |
Collapse
|
24
|
Fatemi SH, Aldinger KA, Ashwood P, Bauman ML, Blaha CD, Blatt GJ, Chauhan A, Chauhan V, Dager SR, Dickson PE, Estes AM, Goldowitz D, Heck DH, Kemper TL, King BH, Martin LA, Millen KJ, Mittleman G, Mosconi MW, Persico AM, Sweeney JA, Webb SJ, Welsh JP. Consensus paper: pathological role of the cerebellum in autism. CEREBELLUM (LONDON, ENGLAND) 2012; 11:777-807. [PMID: 22370873 PMCID: PMC3677555 DOI: 10.1007/s12311-012-0355-9] [Citation(s) in RCA: 474] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
There has been significant advancement in various aspects of scientific knowledge concerning the role of cerebellum in the etiopathogenesis of autism. In the current consensus paper, we will observe the diversity of opinions regarding the involvement of this important site in the pathology of autism. Recent emergent findings in literature related to cerebellar involvement in autism are discussed, including: cerebellar pathology, cerebellar imaging and symptom expression in autism, cerebellar genetics, cerebellar immune function, oxidative stress and mitochondrial dysfunction, GABAergic and glutamatergic systems, cholinergic, dopaminergic, serotonergic, and oxytocin-related changes in autism, motor control and cognitive deficits, cerebellar coordination of movements and cognition, gene-environment interactions, therapeutics in autism, and relevant animal models of autism. Points of consensus include presence of abnormal cerebellar anatomy, abnormal neurotransmitter systems, oxidative stress, cerebellar motor and cognitive deficits, and neuroinflammation in subjects with autism. Undefined areas or areas requiring further investigation include lack of treatment options for core symptoms of autism, vermal hypoplasia, and other vermal abnormalities as a consistent feature of autism, mechanisms underlying cerebellar contributions to cognition, and unknown mechanisms underlying neuroinflammation.
Collapse
Affiliation(s)
- S Hossein Fatemi
- University of Minnesota Medical School, 420 Delaware St. SE, Minneapolis, MN 55455, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Dean SL, Knutson JF, Krebs-Kraft DL, McCarthy MM. Prostaglandin E2 is an endogenous modulator of cerebellar development and complex behavior during a sensitive postnatal period. Eur J Neurosci 2012; 35:1218-29. [PMID: 22512254 DOI: 10.1111/j.1460-9568.2012.08032.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Prostaglandins are lipid-derived molecules that mediate the generation of fever in the central nervous system. In addition to their proinflammatory role, prostaglandins also impact neuronal development and synaptic plasticity, sometimes in a sex-specific manner. The cerebellum has a high expression of prostaglandin receptors during development, but the role that these molecules play during normal cerebellar maturation is unknown. We demonstrate here that disrupting prostaglandin synthesis with cyclo-oxygenase inhibitors during a time-sensitive window in early postnatal life alters cerebellar Purkinje cell development in rats, resulting in initially increased dendritic growth in both sexes. We show that this results in later cerebellar atrophy in males only, resulting in a sex-specific loss of cerebellar volume. Further, although performance in motor tasks is spared, social interaction and the sensory threshold are altered in males developmentally exposed to cyclo-oxygenase inhibitors. This work demonstrates a previously unknown role for prostaglandins in cerebellar development and emphasizes the role that the cerebellum plays outside motor tasks, in cognitive and sensory domains that may help to explain its connection to complex neurodevelopmental disorders such as autism.
Collapse
Affiliation(s)
- Shannon L Dean
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | |
Collapse
|
26
|
Abstract
Autism spectrum disorders (ASD) represent complex neurodevelopmental disorders characterized by impairments in reciprocal social interactions, abnormal development and use of language, and monotonously repetitive behaviors. With an estimated heritability of more than 90%, it is the most strongly genetically influenced psychiatric disorder of the young age. In spite of the complexity of this disorder, there has recently been much progress in the research on etiology, early diagnosing, and therapy of autism. Besides already advanced neuropathologic research, several new technological innovations, such as sleep functional MRI, diffusion tensor imaging (DTI) and proton magnetic resonance spectroscopy imaging ((1)H-MRS) divulged promising breakthroughs in exploring subtle morphological and neurochemical changes in the autistic brain. This review provides a comprehensive summary of morphological and neurochemical alterations in autism known to date, as well as a short introduction to the functional research that has begun to advance in the last decade. Finally, we mention the progress in establishing new standardized diagnostic measures and its importance in early recognition and treatment of ASD.
Collapse
|
27
|
|
28
|
Cheung C, Yu K, Fung G, Leung M, Wong C, Li Q, Sham P, Chua S, McAlonan G. Autistic disorders and schizophrenia: related or remote? An anatomical likelihood estimation. PLoS One 2010; 5:e12233. [PMID: 20805880 PMCID: PMC2923607 DOI: 10.1371/journal.pone.0012233] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Accepted: 07/19/2010] [Indexed: 01/06/2023] Open
Abstract
Shared genetic and environmental risk factors have been identified for autistic spectrum disorders (ASD) and schizophrenia. Social interaction, communication, emotion processing, sensorimotor gating and executive function are disrupted in both, stimulating debate about whether these are related conditions. Brain imaging studies constitute an informative and expanding resource to determine whether brain structural phenotype of these disorders is distinct or overlapping. We aimed to synthesize existing datasets characterizing ASD and schizophrenia within a common framework, to quantify their structural similarities. In a novel modification of Anatomical Likelihood Estimation (ALE), 313 foci were extracted from 25 voxel-based studies comprising 660 participants (308 ASD, 352 first-episode schizophrenia) and 801 controls. The results revealed that, compared to controls, lower grey matter volumes within limbic-striato-thalamic circuitry were common to ASD and schizophrenia. Unique features of each disorder included lower grey matter volume in amygdala, caudate, frontal and medial gyrus for schizophrenia and putamen for autism. Thus, in terms of brain volumetrics, ASD and schizophrenia have a clear degree of overlap that may reflect shared etiological mechanisms. However, the distinctive neuroanatomy also mapped in each condition raises the question about how this is arrived in the context of common etiological pressures.
Collapse
Affiliation(s)
- Charlton Cheung
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Frings M, Gaertner K, Buderath P, Gerwig M, Christiansen H, Schoch B, Gizewski ER, Hebebrand J, Timmann D. Timing of conditioned eyeblink responses is impaired in children with attention-deficit/hyperactivity disorder. Exp Brain Res 2009; 201:167-76. [PMID: 19777220 DOI: 10.1007/s00221-009-2020-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Accepted: 09/14/2009] [Indexed: 11/29/2022]
Abstract
Structural changes of the cerebellum have been reported in several psychiatric diseases like schizophrenia, autism and attention-deficit/hyperactivity disorder (ADHD). Beside behavioral deficits children with ADHD often show slight motor abnormalities. Cerebellar malfunction may contribute. The cerebellum is a structure essential for motor coordination, various forms of motor learning and timing of motor responses. In the present study, eyeblink conditioning was applied to investigate learning and timing of motor responses both in children with ADHD and children with cerebellar lesions. Acquisition, timing and extinction of conditioned eyeblink responses were investigated in children with ADHD, children with chronic surgical cerebellar lesions and controls using a standard delay paradigm with two different interstimulus intervals. Timing of conditioned eyeblink responses was significantly impaired in children with ADHD in the long interstimulus interval condition. Also in children with cerebellar lesions conditioned responses (CR) tended to occur earlier than in controls. Incidences of CRs were significantly reduced in children with cerebellar lesions and tended to be less in children with ADHD than in controls. Extinction of the CRs was impaired in children with cerebellar lesions in both interstimulus interval conditions and in children with ADHD in the long interstimulus interval condition. Cerebellar malfunction may contribute to disordered eyeblink conditioning in ADHD. However, because CR abnormalities differed between ADHD and cerebellar subjects, dysfunction of non-cerebellar structures cannot be excluded.
Collapse
Affiliation(s)
- Markus Frings
- Department of Neurology, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Cheung C, Chua SE, Cheung V, Khong PL, Tai KS, Wong TKW, Ho TP, McAlonan GM. White matter fractional anisotrophy differences and correlates of diagnostic symptoms in autism. J Child Psychol Psychiatry 2009; 50:1102-12. [PMID: 19490309 DOI: 10.1111/j.1469-7610.2009.02086.x] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Individuals with autism have impairments in 3 domains: communication, social interaction and repetitive behaviours. Our previous work suggested early structural and connectivity abnormalities in prefrontal-striato-temporal-cerebellar networks but it is not clear how these are linked to diagnostic indices. METHOD Children with autism (IQ > 70) aged 6 to 14 years old and matched typically developing controls were studied using diffusion tensor imaging. Voxel-based methods were used to compare fractional anisotrophy (FA) measures in each group and to correlate FA measures in the autism group with the diagnostic phenotype described by the Autism Diagnostic Interview - Revised (ADI-R) algorithm for ICD-10. RESULTS After controlling for the effects of age and white matter volume, we found that FA in the autism group was significantly lower than controls in bilateral prefrontal and temporal regions, especially in the right ventral temporal lobe adjacent to the fusiform gyrus. FA was greater in autism in the right inferior frontal gyrus and left occipital lobe. We observed a tight correlation between lower FA and higher ADI-R diagnostic algorithm scores across white matter tracts extending from these focal regions of group difference. Communication and social reciprocity impairments correlated with lower FA throughout fronto-striato-temporal pathways. Repetitive behaviours correlated with white matter indices in more posterior brain pathways, including splenium of the corpus callosum and cerebellum. CONCLUSIONS Our data support the position that diagnostic symptoms of autism are associated with a core disruption of white matter development.
Collapse
Affiliation(s)
- C Cheung
- Department of Psychiatry, University of Hong Kong, Pokfulam, Hong Kong.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Mostofsky SH, Powell SK, Simmonds DJ, Goldberg MC, Caffo B, Pekar JJ. Decreased connectivity and cerebellar activity in autism during motor task performance. Brain 2009; 132:2413-25. [PMID: 19389870 PMCID: PMC2732264 DOI: 10.1093/brain/awp088] [Citation(s) in RCA: 306] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 01/30/2009] [Accepted: 03/02/2009] [Indexed: 11/14/2022] Open
Abstract
Although motor deficits are common in autism, the neural correlates underlying the disruption of even basic motor execution are unknown. Motor deficits may be some of the earliest identifiable signs of abnormal development and increased understanding of their neural underpinnings may provide insight into autism-associated differences in parallel systems critical for control of more complex behaviour necessary for social and communicative development. Functional magnetic resonance imaging was used to examine neural activation and connectivity during sequential, appositional finger tapping in 13 children, ages 8-12 years, with high-functioning autism (HFA) and 13 typically developing (TD), age- and sex-matched peers. Both groups showed expected primary activations in cortical and subcortical regions associated with motor execution [contralateral primary sensorimotor cortex, contralateral thalamus, ipsilateral cerebellum, supplementary motor area (SMA)]; however, the TD group showed greater activation in the ipsilateral anterior cerebellum, while the HFA group showed greater activation in the SMA. Although activation differences were limited to a subset of regions, children with HFA demonstrated diffusely decreased connectivity across the motor execution network relative to control children. The between-group dissociation of cerebral and cerebellar motor activation represents the first neuroimaging data of motor dysfunction in children with autism, providing insight into potentially abnormal circuits impacting development. Decreased cerebellar activation in the HFA group may reflect difficulty shifting motor execution from cortical regions associated with effortful control to regions associated with habitual execution. Additionally, diffusely decreased connectivity may reflect poor coordination within the circuit necessary for automating patterned motor behaviour. The findings might explain impairments in motor development in autism, as well as abnormal and delayed acquisition of gestures important for socialization and communication.
Collapse
|
32
|
D’Cruz AM, Mosconi MW, Steele S, Rubin LH, Luna B, Minshew N, Sweeney JA. Lateralized response timing deficits in autism. Biol Psychiatry 2009; 66:393-7. [PMID: 19232577 PMCID: PMC3145409 DOI: 10.1016/j.biopsych.2009.01.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Revised: 01/07/2009] [Accepted: 01/07/2009] [Indexed: 11/25/2022]
Abstract
BACKGROUND Procedural learning is an implicit process in which a behavioral response is refined through repeated performance. Neural systems supporting this cognitive process include specific frontostriatal systems responsible for the preparation and timing of planned motor responses. Evaluating performance on procedural learning tasks can provide unique information about neurodevelopmental disorders in which frontostriatal disturbances have been reported, such as autism. METHODS Fifty-two individuals with autism and 54 age-, IQ-, and gender-matched healthy individuals performed an oculomotor serial reaction time task and a sensorimotor control task. RESULTS Whereas the rate of procedural learning and the precision of planned motor responses were unimpaired in autism, a lateralized alteration in the ability to time predictive responses was observed. Rightward saccadic responses were speeded in individuals with autism relative to healthy control subjects. CONCLUSIONS Speeded rightward predictive saccades suggest atypical functioning of left hemisphere striatal chronometric systems in autism.
Collapse
|
33
|
Intersubjectivity, affective neuroscience, and the neurobiology of autistic spectrum disorders: a systematic review. Keio J Med 2008; 57:15-36. [PMID: 18382122 DOI: 10.2302/kjm.57.15] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Intersubjectivity is an approach to the study of social interaction viewed from a perspective which rejects the view that reducing any such analysis to study at the level of the individual is adequate to address the issues of social functioning. It also stresses the view that social processes cannot be reduced to cognitive ones - most of the important questions in the study of developmental psychopathology deal with issues which have commonality with many other species and are patent well before the ontological emergence of 'cognitive' abilities. In this paper we review the evidence in this area, and discuss a range of issues relevant to autistic spectrum disorders. We focus in particular on social interaction; the role of the Intrinsic Motive Formation and recent work on mirror neurons in autism; genetic and teratogenic factors in the genesis of autism; and the role of a number of biological factors in pathogenesis - tryptophan; vitamin B12; sterol metabolism; glutamate and GABA; and the Fragile-X expansion.
Collapse
|
34
|
Wang L, Jia M, Yue W, Tang F, Qu M, Ruan Y, Lu T, Zhang H, Yan H, Liu J, Guo Y, Zhang J, Yang X, Zhang D. Association of the ENGRAILED 2 (EN2) gene with autism in Chinese Han population. Am J Med Genet B Neuropsychiatr Genet 2008; 147B:434-8. [PMID: 17948901 DOI: 10.1002/ajmg.b.30623] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Human ENGRAILED 2 (EN2) gene is localized to 7q36, an autism susceptibility locus. En2 knockout mice display hypoplasia of cerebellum and a decrease in the number of Purkinje cell, which are similar to those reported for individuals with autism. Furthermore, deficits in social behavior were detected in En2(-/-) mice. Two recent studies have demonstrated that two intronic SNPs (rs1861972, rs1861973) in the EN2 gene are significantly associated with autism. To investigate whether this finding could be replicated in Chinese Han population, we performed the association study between eight single nucleotide polymorphisms (SNPs) of the EN2 gene and autism in 210 Chinese Han trios, using the family-based association test (FBAT). The present study demonstrated that a preferential transmission of the rs3824068 A-allele to affected offspring (A > G: Z = 2.399, P = 0.0165). After the Bonferroni correction, this statistical significance of preferential transmission did not remain. However, when haplotypes were constructed with multiple markers, a number of haplotypes including three two-marker haplotypes, nine three-marker haplotypes, one four-marker haplotype, and one six-marker haplotype, all of which contain the major allele A of rs3824068, displayed significantly associated with autism. These results were still significant after using the permutation method to obtain empirical P values. Thus, our data provide evidence that the EN2 gene may be implicated in the predisposition to autism in the Chinese Han population.
Collapse
Affiliation(s)
- Lifang Wang
- Key laboratory for Mental Health, Ministry of Health, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Amaral DG, Schumann CM, Nordahl CW. Neuroanatomy of autism. Trends Neurosci 2008; 31:137-45. [PMID: 18258309 DOI: 10.1016/j.tins.2007.12.005] [Citation(s) in RCA: 990] [Impact Index Per Article: 58.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Revised: 12/03/2007] [Accepted: 12/04/2007] [Indexed: 01/15/2023]
Abstract
Autism spectrum disorder is a heterogeneous, behaviorally defined, neurodevelopmental disorder that occurs in 1 in 150 children. Individuals with autism have deficits in social interaction and verbal and nonverbal communication and have restricted or stereotyped patterns of behavior. They might also have co-morbid disorders including intellectual impairment, seizures and anxiety. Postmortem and structural magnetic resonance imaging studies have highlighted the frontal lobes, amygdala and cerebellum as pathological in autism. However, there is no clear and consistent pathology that has emerged for autism. Moreover, recent studies emphasize that the time course of brain development rather than the final product is most disturbed in autism. We suggest that the heterogeneity of both the core and co-morbid features predicts a heterogeneous pattern of neuropathology in autism. Defined phenotypes in larger samples of children and well-characterized brain tissue will be necessary for clarification of the neuroanatomy of autism.
Collapse
Affiliation(s)
- David G Amaral
- The M.I.N.D. Institute, Department of Psychiatry and Behavioral Sciences, University of California, Davis, 2825 50th Street, Sacramento, CA 95817, USA.
| | | | | |
Collapse
|
36
|
Perry W, Minassian A, Lopez B, Maron L, Lincoln A. Sensorimotor gating deficits in adults with autism. Biol Psychiatry 2007; 61:482-6. [PMID: 16460695 DOI: 10.1016/j.biopsych.2005.09.025] [Citation(s) in RCA: 254] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2005] [Revised: 07/12/2005] [Accepted: 09/20/2005] [Indexed: 11/22/2022]
Abstract
BACKGROUND Prepulse inhibition (PPI) is an operational measure of sensorimotor gating and is impaired in a family of neuropsychiatric disorders characterized by abnormalities of inhibitory function. Adults with autistic disorder (AD) exhibit clinical features of inhibitory deficits, such as restrictive and repetitive behaviors, that may be explained by deficits in sensorimotor gating. METHODS Acoustic startle reactivity, habituation, and PPI (30-, 60-, 120-msec interstimulus intervals) were assessed in 14 adult men diagnosed with AD and 16 typically developing normal comparison (NC) participants. All participants were administered measures of intelligence and frontal-executive functioning. RESULTS Adults with AD exhibited significantly less PPI in the 60-msec condition than NC participants, which was correlated with increased ratings of restricted and repetitive behaviors. The groups did not differ on measures of startle amplitude or overall habituation. There was, however, a significant group-by-block habituation effect. Furthermore, PPI was not related to intelligence but was moderately associated with performance on a measure of frontal-executive functioning. CONCLUSIONS Adults with AD have sensorimotor gating deficits similar to other neurodevelopmental disorders, implicating a failure of normal inhibitory regulation of sensory, motor, and attentional mechanisms. Thus, PPI deficits may be indirectly linked to one of the hallmark features of AD.
Collapse
Affiliation(s)
- William Perry
- Department of Psychiatry, University of California, San Diego, California, USA.
| | | | | | | | | |
Collapse
|
37
|
|
38
|
Eluvathingal TJ, Behen ME, Chugani HT, Janisse J, Bernardi B, Chakraborty P, Juhasz C, Muzik O, Chugani DC. Cerebellar lesions in tuberous sclerosis complex: neurobehavioral and neuroimaging correlates. J Child Neurol 2006; 21:846-51. [PMID: 17005099 DOI: 10.1177/08830738060210100301] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We assessed the structural and functional imaging features of cerebellar lesions and their neurobehavioral correlates in a large cohort of patients with tuberous sclerosis complex. A consecutive series of 78 patients with tuberous sclerosis complex underwent magnetic resonance imaging (MRI) and positron emission tomography (PET) studies with [(18)F]fluorodeoxyglucose (FDG) and alpha-[(11)C]methyl-l-tryptophan (AMT) as part of their evaluation for epilepsy surgery. Neurobehavioral assessment included the Gilliam Autism Rating Scales (GARS) and the Vineland Adaptive Behavior Scales (VABS). Twenty-one patients (27%) had cerebellar lesions (10 boys; mean age 9 +/- 8 years; 9 had right-sided, 10 had left-sided, and 2 had bilateral cerebellar lesions). The lesions showed decreased glucose metabolism (0.79 +/- 0.10) and increased (1.04 +/- 0.10) AMT uptake compared with the normal (nonlesional) cerebellar cortex. Comparisons between patients with (n = 20) and without (n = 57) a cerebellar lesion on neurobehavioral functioning, controlling for the number and location of cortical tubers, revealed that the cerebellar lesion group had higher overall autistic symptomatology. Within-group analyses of the cerebellar lesion group revealed that children with right-sided cerebellar lesions had higher social isolation and communicative and developmental disturbance compared with children with left-sided cerebellar lesions. The side of the cerebellar lesion was not related to adaptive behavior functioning. These findings provide additional empiric support for a role of the cerebellum in autistic symptomatology. Further investigation of the potential role of the right cerebellum in autism, particularly with regard to the dentatothalamofrontal circuit, is warranted.
Collapse
|
39
|
Penet MF, Laigle C, Fur YL, Confort-Gouny S, Heurteaux C, Cozzone PJ, Viola A. In vivo Characterization of Brain Morphometric and Metabolic Endophenotypes in Three Inbred Strains of Mice Using Magnetic Resonance Techniques. Behav Genet 2006; 36:732-44. [PMID: 16710778 DOI: 10.1007/s10519-006-9077-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
C57BL6J, FVB/N and 129/SvJ mice are commonly used as background strains to engineer genetic models of brain pathologies and psychiatric disorders. Magnetic resonance imaging (MRI) and spectroscopy provide alternative approaches to neuroanatomy, histology and neurohistochemistry for investigating the correlation between genes and brain neuroanatomy and neurometabolism in vivo. We used these techniques to non-invasively characterize the cerebral morphologic and metabolic endophenotypes of inbred mouse strains commonly used in neurological and behavioral research. We observed a great variability in the volume of ventricles and of structures involved in cognitive function (cerebellum and hippocampus) among these strains. In addition, distinct metabolic profiles were evidenced with variable levels of N-acetylaspartate, a neuronal marker, and of choline, a compound found in membranes and myelin. Besides, significant differences in high-energy phosphates and phospholipids were detected. Our findings demonstrate the great morphologic and metabolic heterogeneity among C57BL/ 6J, FVB/N and 129/SvJ mice. They emphasize the importance of selecting the appropriate genetic background for over-expressing or silencing a gene and provide some directions for modeling symptoms that characterize psychiatric disorders such as autism, schizophrenia and depression.
Collapse
Affiliation(s)
- Marie-France Penet
- Faculté de Médecine, Centre de Résonance Magnétique Biologique et Médicale, UMR CNRS 6612, Université de la Méditérranée, 27 Bd J. Moulin, Marseille 13005, France
| | | | | | | | | | | | | |
Collapse
|
40
|
van Harskamp NJ, Rudge P, Cipolotti L. Cognitive and social impairments in patients with superficial siderosis. Brain 2005; 128:1082-92. [PMID: 15788543 DOI: 10.1093/brain/awh487] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Superficial siderosis of the CNS is a rare condition, caused by deposition of haemosiderin in the superficial layers of the CNS due to repeated chronic subarachnoid or intraventricular haemorrhage. Typically, the hindbrain structures, especially the cerebellum, are most affected. There is a surprising lack of studies investigating in detail the behavioural functioning of patients with such a condition. In this study, we document for the first time the cognitive, social and emotional processing of six patients with a confirmed clinical diagnosis of superficial siderosis. They were aged between 40 and 62 years, with a mean age of 50.2 years; four were male. We administered a comprehensive battery of general cognitive ability and social cognitive tasks. A review of MRI was also undertaken. The findings indicate selective cognitive impairments affecting speech production, visual recall memory and executive functions. In addition, a selective pattern of social dysfunction, affecting the ability to represent other people's mental states, was found. These behavioural dysfunctions are reported in the context of MRI-documented lesions maximally involving the cerebellum, in particular the superior vermis, as well as the medial and inferior frontal cortex. These results suggest that superficial siderosis is associated with a distinct pattern of cognitive and social impairments. They are consistent with the recently proposed role of the cerebellum as a modulator of cognitive, social and emotional functions.
Collapse
Affiliation(s)
- N J van Harskamp
- Department of Neuropsychology, National Hospital for Neurology and Neurosurgery, London, UK
| | | | | |
Collapse
|
41
|
Kaufmann WE, Cortell R, Kau ASM, Bukelis I, Tierney E, Gray RM, Cox C, Capone GT, Stanard P. Autism spectrum disorder in fragile X syndrome: communication, social interaction, and specific behaviors. Am J Med Genet A 2005; 129A:225-34. [PMID: 15326621 DOI: 10.1002/ajmg.a.30229] [Citation(s) in RCA: 332] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The present study extends our previous work on social behavior impairment in young males with fragile X syndrome (FraX). Specifically, we evaluated whether the autistic phenomenon in FraX is expressed as a range of behavioral impairments as in idiopathic autism (Aut). We also examined whether there are behaviors, identified as items of the Autism Diagnostic Interview-Revised (ADI-R), that in FraX predispose to or differentiate subjects with autism spectrum disorder (ASD) diagnosis. Finally, regression models were utilized to test the relative contribution of reduced communication and socialization skills to ADI-R scores and diagnoses. A cohort of 56 boys (3-8 years) with FraX was examined in terms of scores on measures of cognition (IQ was a co-variate in most analyses.), autistic behavior, problem/aberrant behavior, adaptive behavior, and language development. We found that, indeed, in terms of problem behavior and adaptive skills, there is a range of severity from FraX + Aut to FraX + PDD (Pervasive Developmental Disorder) to FraX + none. ADI-R items representing "Play" types of interaction appear to be "susceptibility" factors since they were abnormal across the FraX cohort. Integrated regression models demonstrated that items reflecting complex social interaction differentiated the FraX + ASD (Aut + PDD) subgroup from the rest of the FraX cohort, while abnormalities in basic verbal and non-verbal communication distinguished the most severely affected boys with FraX + Aut from the milder FraX + PDD cohort. Models incorporating language, adaptive communication, and adaptive socialization skills revealed that socialization was not only the main influence on scores but also a predictor of ASD diagnosis. Altogether, our findings demonstrate that the diagnosis of ASD in FraX reflects, to a large extent, an impairment in social interaction that is expressed with variable severity in young males with FraX.
Collapse
|
42
|
Allen G, Müller RA, Courchesne E. Cerebellar function in autism: functional magnetic resonance image activation during a simple motor task. Biol Psychiatry 2004; 56:269-78. [PMID: 15312815 DOI: 10.1016/j.biopsych.2004.06.005] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2003] [Revised: 05/17/2004] [Accepted: 06/04/2004] [Indexed: 11/16/2022]
Abstract
BACKGROUND The cerebellum is one of the most consistent sites of neuroanatomic abnormality in autism, yet it is still unclear how such pathology impacts cerebellar function. In normal subjects, we previously demonstrated with functional magnetic resonance imaging (fMRI) a dissociation between cerebellar regions involved in attention and those involved in a simple motor task, with motor activation localized to the anterior cerebellum ipsilateral to the moving hand. The purpose of the present investigation was to examine activation in the cerebella of autistic patients and normal control subjects performing this motor task. METHODS We studied eight autistic patients and eight matched normal subjects, using fMRI. An anatomic region-of-interest approach was used, allowing a detailed examination of cerebellar function. RESULTS Autistic individuals showed significantly increased motor activation in the ipsilateral anterior cerebellar hemisphere relative to normal subjects, in addition to atypical activation in contralateral and posterior cerebellar regions. Moreover, increased activation was correlated with the degree of cerebellar structural abnormality. CONCLUSIONS These findings strongly suggest dysfunction of the autistic cerebellum that is a reflection of cerebellar anatomic abnormality. This neurofunctional deficit might be a key contributor to the development of certain diagnostic features of autism (e.g., impaired communication and social interaction, restricted interests, and stereotyped behaviors).
Collapse
Affiliation(s)
- Greg Allen
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | | |
Collapse
|
43
|
Abstract
The object of this review is to assemble much of the literature concerning Purkinje cell death in cerebellar pathology and to relate this to what is now known about the complex topography of the cerebellar cortex. A brief introduction to Purkinje cells, and their regionalization is provided, and then the data on Purkinje cell death in mouse models and, where appropriate, their human counterparts, have been arranged according to several broad categories--naturally-occurring and targeted mutations leading to Purkinje cell death, Purkinje cell death due to toxins, Purkinje cell death in ischemia, Purkinje cell death in infection and in inherited disorders, etc. The data reveal that cerebellar Purkinje cell death is much more topographically complex than is usually appreciated.
Collapse
Affiliation(s)
- Justyna R Sarna
- Genes Development Research Group, Department of Cell Biology & Anatomy, Faculty of Medicine, The University of Calgary, 3330 Hospital Drive NW, Calgary, Alta., Canada T2N 4N1
| | | |
Collapse
|
44
|
|
45
|
Manning-Courtney P, Brown J, Molloy CA, Reinhold J, Murray D, Sorensen-Burnworth R, Messerschmidt T, Kent B. Diagnosis and treatment of autism spectrum disorders. Curr Probl Pediatr Adolesc Health Care 2003; 33:283-304. [PMID: 14534514 DOI: 10.1016/s1538-5442(03)00108-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
46
|
Buitelaar JK, Willemsen-Swinkels SH. Medication treatment in subjects with autistic spectrum disorders. Eur Child Adolesc Psychiatry 2001; 9 Suppl 1:I85-97. [PMID: 11140783 DOI: 10.1007/s007870070022] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Autism is a pervasive developmental disorder that is aetiologically and clinically heterogeneous. Twin and family genetic studies provide evidence for strong genetic components. An international consortium using an affected sib pair strategy has found a promising linkage to a region on chromosome 7. In 10-15 % of the cases autism is due to associated medical conditions that affect normal brain functioning. Post-mortem studies on small case series report cellular abnormalities in the limbic system and cerebellum. Between 10 and 20 % of subjects with autism have macrocephalia, which is in accordance with MRI findings of an increased total brain tissue volume and enlargement most prominent in the occipital and parietal lobes. The most robust and well-replicated neurobiological abnormality in autism is an elevation of whole blood serotonin found in over 30% of the patients. Pharmacological interventions with serotonin reuptake blockers or with atypical neuroleptics that block both dopamine (D2) and serotonin (5-HT2) receptors seem to offer clinical benefit and merit further study.
Collapse
Affiliation(s)
- J K Buitelaar
- University Medical Center Utrecht, Dept of Child Psychiatry, The Netherlands.
| | | |
Collapse
|
47
|
Townsend J, Westerfield M, Leaver E, Makeig S, Jung T, Pierce K, Courchesne E. Event-related brain response abnormalities in autism: evidence for impaired cerebello-frontal spatial attention networks. BRAIN RESEARCH. COGNITIVE BRAIN RESEARCH 2001; 11:127-45. [PMID: 11240116 DOI: 10.1016/s0926-6410(00)00072-0] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Although under some conditions the attention-related late positive event-related potential (ERP) response (LPC) is apparently normal in autism during visual processing, the LPC elicited by visuospatial processing may be compromised. Results from this study provide evidence for abnormalities in autism in two components of the LPC generated during spatial processing. The early frontal distribution of the LPC which may reflect attention orienting was delayed or missing in autistic subjects during conditions in which attention was to peripheral visual fields. The later parietal distribution of the LPC which may be associated with context updating was smaller in amplitude in autistic subjects regardless of attention location. Both abnormalities suggest disruption of function in spatial attention networks in autism. Evidence that the cerebellar abnormalities in autism may underlie these deficits comes from: (1) similar results in ERP responses and spatial attention deficits in patients with cerebellar lesions; (2) brain-behavior correlations in normally functioning individuals associating the size of the posterior cerebellar vermis and the latency of the frontal LPC; and (3) a previously reported complementary correlation between the size of the posterior vermal lobules and spatial orienting speed. Although the scalp-recorded LPC is thought to be cortically generated, it may be modulated by subcortical neural activity. The cerebellum may serve as a modulating influence by affecting the task-related antecedent attentional process. The electrophysiological abnormalities reported here index spatial attention deficits in autism that may reflect cerebellar influence on both frontal and parietal spatial attention function.
Collapse
Affiliation(s)
- J Townsend
- Department of Neurosciences 0217, University of California, San Diego, La Jolla 92093-0217, USA.
| | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Neuroimaging in child psychiatry is a rapidly developing field and the number of different techniques being used is increasing rapidly. This review describes the current status of neuroimaging in childhood psychopathology and discusses limitations of the various studies. As yet, no specific and consistent abnormality has been detected in childhood psychiatric disorders. Obsessive compulsive disorder has shown the most consistent findings so far, with orbitofrontal cortex and the caudate nucleus being implicated. Better understanding of the corticostriatal neural networks will shed more light on the neurodevelopmental disorders of childhood.
Collapse
Affiliation(s)
- P J Santosh
- Institute of Psychiatry, Denmark Hill, London SE5 8AF, UK.
| |
Collapse
|
49
|
Buitelaar JK, Willemsen-Swinkels SH. Autism: current theories regarding its pathogenesis and implications for rational pharmacotherapy. Paediatr Drugs 2000; 2:67-81. [PMID: 10937459 DOI: 10.2165/00148581-200002010-00006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Autism is a pervasive developmental disorder that is aetiologically and clinically heterogeneous. Twin and family-genetic studies provide evidence for strong genetic components. An international consortium using an affected sib pair strategy has found a promising linkage to a region on chromosome 7. In 10 to 15% of cases autism is due to associated medical conditions that affect normal brain functioning. Postmortem studies on small case series report cellular abnormalities in the limbic system and cerebellum. Between 10 and 20% of individuals with autism have macrocephalia, which is in accordance with magnetic resonance imaging (MRI) findings of an increased total brain tissue volume and enlargement most prominent in the occipital and parietal lobes. The most robust and well replicated neurobiological abnormality in autism is an elevation of whole blood serotonin (5-hydroxytryptamine; 5-HT) found in over 30% of patients. Pharmacological interventions with serotonin reuptake inhibitors or with atypical neuroleptics that block both dopamine (D2) and serotonin (5-HT2) receptors seem to offer clinical benefit and merit further study.
Collapse
Affiliation(s)
- J K Buitelaar
- Department of Child Psychiatry, University Medical Centre Utrecht, The Netherlands.
| | | |
Collapse
|
50
|
Abstract
Recent autopsy and/or quantitative magnetic resonance imaging studies of autistic patients have identified agenesis of the superior olive, dysgenesis of the facial nucleus, reduced numbers of Purkinje neurons, hypoplasia of the brainstem and posterior cerebellum, and increased neuron-packing density of the medial, cortical and central nuclei of the amygdala and the medial septum. As neurogenesis occurs for these different neuron types during approximately the fifth week of gestation, the possibility is raised that this may be a 'window of vulnerability' for autism; the likely etiologic heterogeneity of autism suggests that other windows of vulnerability are also possible.
Collapse
Affiliation(s)
- E Courchesne
- Department of Neurosciences, School of Medicine, University of California, San Diego, CA 92093, USA.
| |
Collapse
|