1
|
Tay N, Alshammari A, Kaur S, Pettit A, Mu E, Reid A, Winkler I, Vetter I, Starobova H. A comprehensive protocol for simplified mouse DRG fixation, processing and F4/80 immunohistochemistry: Overcoming common challenges. J Neurosci Methods 2025; 418:110434. [PMID: 40132688 DOI: 10.1016/j.jneumeth.2025.110434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/08/2025] [Accepted: 03/19/2025] [Indexed: 03/27/2025]
Abstract
BACKGROUND Dorsal root ganglia (DRGs) contain the cell bodies of sensory neurons and non-neuronal cells that play a role in the pathophysiology of painful inflammatory conditions, such as neuropathic pain. Immunohistochemistry (IHC) is a valuable tool for visualising and quantifying immune cell markers in DRGs, providing important insights into these mechanisms. However, isolating DRGs while preserving cell morphology for IHC staining is technically challenging due to their small size and location within the spinal column. OBJECTIVE Using F4/80, a pan monocyte-macrophage marker, we present an optimised protocol for the fixation, harvesting, processing, and IHC staining of formalin-fixed-paraffin-embedded (FFPE) mouse DRGs. This method is designed to maintain tissue integrity and ensure compatibility with downstream histopathological analysis. NEW METHOD The entire spinal column of mouse was fixed in 10 % neutral-buffered formalin at room temperature for 24 h before DRG isolation. DRGs were processed for 9 h, and antigen retrieval was performed using proteinase K. RESULTS The optimised immersion-fixation approach preserved cellular morphology and antigenicity, ensuring high-quality histological outcomes. COMPARISON WITH EXISTING METHODS While transcardial perfusion remains the gold standard for tissue fixation, it is time-intensive, requires training and raises ethical concerns. Our optimised method of whole spinal column fixation with subsequent tissue isolation is non-invasive and reduces the time between death and fixation in comparison to post-isolation fixation. Additionally, it delivers histological quality likely comparable to that of perfusion-based techniques. CONCLUSION This protocol is supported by a grading system to help evaluate variables and select conditions best suited to their experimental goals.
Collapse
Affiliation(s)
- Nicolette Tay
- School of Pharmacy and Pharmaceutical Sciences, The University of Queensland, Woolloongabba, QLD, Australia
| | - Ammar Alshammari
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Simranpreet Kaur
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Allison Pettit
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Erica Mu
- Histology Core Facility, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Anna Reid
- Histology Core Facility, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Ingrid Winkler
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Irina Vetter
- School of Pharmacy and Pharmaceutical Sciences, The University of Queensland, Woolloongabba, QLD, Australia; Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Hana Starobova
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia.
| |
Collapse
|
2
|
Altunay ZM, Biswas J, Cheung HW, Pijewski RS, Papile LE, Akinlaja YO, Tang A, Kresic LC, Schouw AD, Ugrak MV, Caro K, Peña Palomino PA, Ressl S, Nishiyama A, Crocker SJ, Martinelli DC. C1ql1 expression in oligodendrocyte progenitor cells promotes oligodendrocyte differentiation. FEBS J 2025; 292:52-74. [PMID: 39257292 PMCID: PMC11706710 DOI: 10.1111/febs.17256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/16/2024] [Accepted: 08/14/2024] [Indexed: 09/12/2024]
Abstract
Myelinating oligodendrocytes arise from the stepwise differentiation of oligodendrocyte progenitor cells (OPCs). Approximately 5% of all adult brain cells are OPCs. Why would a mature brain need such a large number of OPCs? New myelination is possibly required for higher-order functions such as cognition and learning. Additionally, this pool of OPCs represents a source of new oligodendrocytes to replace those lost during injury, inflammation, or in diseases such as multiple sclerosis (MS). How OPCs are instructed to differentiate into oligodendrocytes is poorly understood, and for reasons presently unclear, resident pools of OPCs are progressively less utilized in MS. The complement component 1, q subcomponent-like (C1QL) protein family has been studied for their functions at neuron-neuron synapses, but we show that OPCs express C1ql1. We created OPC-specific conditional knockout mice and show that C1QL1 deficiency reduces the differentiation of OPCs into oligodendrocytes and reduces myelin production during both development and recovery from cuprizone-induced demyelination. In vivo over-expression of C1QL1 causes the opposite phenotype: increased oligodendrocyte density and myelination during recovery from demyelination. We further used primary cultured OPCs to show that C1QL1 levels can bidirectionally regulate the extent of OPC differentiation in vitro. Our results suggest that C1QL1 may initiate a previously unrecognized signaling pathway to promote differentiation of OPCs into oligodendrocytes. This study has relevance for possible novel therapies for demyelinating diseases and may illuminate a previously undescribed mechanism to regulate the function of myelination in cognition and learning.
Collapse
Affiliation(s)
- Zeynep M. Altunay
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, USA
| | - Joyshree Biswas
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, USA
| | - Hiu W. Cheung
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, USA
| | - Robert S. Pijewski
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, USA
- Department of Biology, Anna Maria College, Paxton, MA, USA
| | - Lucille E. Papile
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, USA
| | - Yetunde O. Akinlaja
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Andrew Tang
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, USA
| | - Lyndsay C. Kresic
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, USA
| | - Alexander D. Schouw
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, USA
| | - Maksym V. Ugrak
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, USA
| | - Keaven Caro
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, USA
| | | | - Susanne Ressl
- Department of Neuroscience, The University of Texas at Austin, Austin, TX, USA
| | - Akiko Nishiyama
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
- The Connecticut Institute for the Brain and Cognitive Sciences (IBACS), Storrs, CT, USA
| | - Stephen J. Crocker
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, USA
- The Connecticut Institute for the Brain and Cognitive Sciences (IBACS), Storrs, CT, USA
| | - David C. Martinelli
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, USA
- The Connecticut Institute for the Brain and Cognitive Sciences (IBACS), Storrs, CT, USA
| |
Collapse
|
3
|
Lin Y, Singh S, Xu C, Wang Z, Feng C, Jiang D, Luo L, Li W, Che W, Zhu G. Protocol for tyramide signal amplification immunohistochemical detection of Notch1 signaling in the vascular system. STAR Protoc 2024; 5:103519. [PMID: 39661510 DOI: 10.1016/j.xpro.2024.103519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/02/2024] [Accepted: 11/22/2024] [Indexed: 12/13/2024] Open
Abstract
Notch signaling is a pivotal regulator in the vascular system that is essential for development, angiogenesis, and maintaining vascular homeostasis. Here, we present a protocol for tyramide signal amplification (TSA) immunohistochemistry, tailored explicitly for detecting Notch signaling components in vascular tissues. We describe steps for utilizing tailored antigen retrieval techniques, specific blocking solutions, and a complex of avidin/biotin-horseradish peroxidase conjugate with tyramide, along with optimized washing steps. For complete details on the use and execution of this protocol, please refer to Zhu et al.1.
Collapse
Affiliation(s)
- Ying Lin
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shekhar Singh
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chong Xu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China; Department of Cardiology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Zeyu Wang
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Cailin Feng
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Dongyang Jiang
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lingfeng Luo
- Division of Vascular Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA; Stanford Cardiovascular Institute, Stanford, CA, USA
| | - Weiming Li
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wenliang Che
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Guofu Zhu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
Amaro-Leal Â, Afonso AI, Machado F, Shvachiy L, Rocha I, Outeiro TF, Geraldes V. Dose-Dependent Cognitive Decline, Anxiety, and Locomotor Impairments Induced by Doxorubicin: Evidence from an Animal Model. BIOLOGY 2024; 13:939. [PMID: 39596894 PMCID: PMC11592173 DOI: 10.3390/biology13110939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024]
Abstract
Cognitive impairment and anxiety are common side effects of chemotherapy, particularly with the use of doxorubicin (DOX), known as "chemobrain". This study aimed to examine the dose-dependent effects of DOX on cognitive decline, anxiety, and locomotor activity in healthy female Wistar rats. The rats were divided into groups receiving low (2 mg/kg), intermediate (4 mg/kg), and high (5 mg/kg) doses of DOX for four weeks, alongside a control group. Behavioral tests, including open field, elevated plus maze, and Y-maze tests, assessed anxiety, locomotion, and cognitive performance, while brain tissue analysis evaluated neuroinflammation using markers such as GFAP and Iba-1. The results showed that all doses of DOX induced anxiety-like behavior, reduced locomotion, and caused neuroinflammation in the hippocampus, with more severe effects at higher doses. Notably, high-dose DOX also caused short-term memory deficits. These findings highlight the dose-dependent nature of DOX's impact on behavior and cognition, suggesting that DOX plays a key role in the development of cognitive symptoms during chemotherapy. Further research is needed to understand the mechanisms behind these effects and to explore potential interventions.
Collapse
Affiliation(s)
- Ângela Amaro-Leal
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, 2829-511 Almada, Portugal
| | - Ana I. Afonso
- Faculdade de Medicina, Universidade de Lisboa, Av. Prof Egas Moniz, 1649-028 Lisbon, Portugal
- Centro Cardiovascular da Universidade de Lisboa, Faculdade de Medicina, Universidade de Lisboa, Av. Prof Egas Moniz, 1649-028 Lisbon, Portugal
| | - Filipa Machado
- Faculdade de Medicina, Universidade de Lisboa, Av. Prof Egas Moniz, 1649-028 Lisbon, Portugal
| | - Liana Shvachiy
- Centro Cardiovascular da Universidade de Lisboa, Faculdade de Medicina, Universidade de Lisboa, Av. Prof Egas Moniz, 1649-028 Lisbon, Portugal
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Isabel Rocha
- Faculdade de Medicina, Universidade de Lisboa, Av. Prof Egas Moniz, 1649-028 Lisbon, Portugal
- Centro Cardiovascular da Universidade de Lisboa, Faculdade de Medicina, Universidade de Lisboa, Av. Prof Egas Moniz, 1649-028 Lisbon, Portugal
| | - Tiago F. Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37073 Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, 37075 Göttingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK
- Scientific Employee with an Honorary Contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 37075 Göttingen, Germany
| | - Vera Geraldes
- Faculdade de Medicina, Universidade de Lisboa, Av. Prof Egas Moniz, 1649-028 Lisbon, Portugal
- Centro Cardiovascular da Universidade de Lisboa, Faculdade de Medicina, Universidade de Lisboa, Av. Prof Egas Moniz, 1649-028 Lisbon, Portugal
| |
Collapse
|
5
|
Ma W, Frigon EM, Maranzano J, Zeighami Y, Dadar M. Differential effects of prolonged post-fixation on immunohistochemical and histochemical staining for postmortem human brains. Front Neuroanat 2024; 18:1477973. [PMID: 39611118 PMCID: PMC11602276 DOI: 10.3389/fnana.2024.1477973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/23/2024] [Indexed: 11/30/2024] Open
Abstract
Purpose Immunohistochemical (IHC) and histochemical (HC) staining techniques are widely used on human brains that are post-fixed in formalin and stored in brain banks worldwide for varying durations, from months to decades. Understanding the effects of prolonged post-fixation, postmortem interval (PMI), and age on these staining procedures is important for accurately interpreting their outcomes, thereby improving the diagnosis and research of brain disorders afflicting millions of people worldwide. Methods In this study, we conducted both IHC and HC staining on the prefrontal cortex of postmortem human brains post-fixed for 1, 5, 10, 15, and 20 years. For IHC staining, we used two antibodies for each marker: the neuron marker neuronal nuclear antigen (NeuN), the astrocyte marker glial fibrillary acidic protein (GFAP), and the microglia marker ionized calcium-binding adaptor molecule 1 (Iba1). For HC staining, we conducted hematoxylin and eosin Y (H&E), cresyl violet (CV), and Luxol fast blue (LFB) stains to examine neuropils, neurons, and myelin, respectively. Results We observed that the intensity of NeuN, Iba1, CV, or LFB staining was negatively correlated with post-fixation durations. Conversely, we detected a positive correlation between the intensity of GFAP and H&E staining and post-fixation durations. Moreover, there was no correlation between the intensity of NeuN, GFAP, Iba1, H&E, CV, and LFB staining and PMI. Additionally, no correlation was found between these staining intensities and age, except for the intensity of GFAP immunostained by one antiserum, which was negatively correlated with age. Conclusion Taken together, these findings suggest that prolonged post-fixation has both positive and negative effects, while age and PMI exert limited influence on these IHC and HC parameters. Therefore, it is essential to consider these differential changes when interpreting results derived from tissues with extended post-fixation durations. Furthermore, if feasible, we recommend conducting IHC and HC staining on human brains with the same post-fixation time spans and using the most optimal antibodies to mitigate the impact on subsequent analyses.
Collapse
Affiliation(s)
- Weiya Ma
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Eve-Marie Frigon
- Department of Anatomy, University of Quebec in Trois-Rivieres, Trois-Rivieres, QC, Canada
| | - Josefina Maranzano
- Department of Anatomy, University of Quebec in Trois-Rivieres, Trois-Rivieres, QC, Canada
- Department of Neurology and Neurosurgery, McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Yashar Zeighami
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Mahsa Dadar
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| |
Collapse
|
6
|
Rosen GA, Kirsch D, Nicks R, Kelley H, Mathias R, Cormier KA, Kubilus CA, Dec B, Stein TD, Alvarez VE, Alosco ML, McKee AC, Huber BR. SHARD: an improved method for staining and visualizing multiplex immunofluorescence in optically cleared postmortem human brain tissue. Front Neurosci 2024; 18:1474617. [PMID: 39445075 PMCID: PMC11496292 DOI: 10.3389/fnins.2024.1474617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024] Open
Abstract
Postmortem human brain tissue is a critical resource for studying neurodegenerative disease, providing critical insights into cellular morphology, pathology, and network connectivity. To improve standard microscopy and enable high-resolution, three-dimensional (3D) images of tissues at the subcellular level, tissue-clearing methods have been developed. These 3D images allow for the analysis of large regions of interest and can be used to study structural and spatial changes that occur during neurodegeneration. Additionally, 3D imaging facilitates the visualization of whole-cell morphology, especially in cells with long processes that would otherwise be truncated in single-plane images. Human brain tissue is especially challenging for tissue clearing due to the abundance of lipids in myelin and the need for optimal fixation and low postmortem intervals. Formaldehyde-based fixatives, commonly used in preserving tissue, hinder antibody binding by crosslinking important antibody epitopes, and fluorescent microscopy requires the incorporation of fluorescent labels through passive diffusion or electrophoresis. Recent studies have focused on optimally fixed human brain tissue with short postmortem intervals, limiting the general applicability of these methods. To address these challenges, we developed SHARD (SHIELD, antigen retrieval, and delipidation), a simple and widely applicable method for clearing and labeling human brain tissue, which can be applied to long-term banked human brain tissue preserved in formaldehyde. SHARD is a novel addition to the SHIELD tissue clarification method, combining antigen retrieval, tissue clearing, and staining of 200-μm sections from long-term banked human brain tissue. The SHARD method is effective for postmortem intervals (PMIs) ranging from 10 to 72 h in multiple neurodegenerative diseases and control samples. In this study, we demonstrate that the SHARD method significantly enhances the immunostaining of glial fibrillary acidic protein (GFAP), an astrocytic cytoskeletal marker. Overall, the combination of antigen retrieval and tissue delipidation holds great potential for achieving detailed 3D immunostaining in long-term formaldehyde-fixed postmortem human brain tissue, opening new avenues for research and discovery.
Collapse
Affiliation(s)
- Grace A. Rosen
- VA Boston Healthcare System, US Department of Veterans Affairs, Boston, MA, United States
- Department of Neurology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- National Center for PTSD, US Department of Veterans Affairs, Boston, MA, United States
| | - Daniel Kirsch
- Department of Pathology and Laboratory Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Raymond Nicks
- Boston University Alzheimer's Disease Research Center and Boston University CTE Center, Boston, MA, United States
| | - Hunter Kelley
- VA Boston Healthcare System, US Department of Veterans Affairs, Boston, MA, United States
- National Center for PTSD, US Department of Veterans Affairs, Boston, MA, United States
- Boston University Alzheimer's Disease Research Center and Boston University CTE Center, Boston, MA, United States
| | - Rebecca Mathias
- VA Boston Healthcare System, US Department of Veterans Affairs, Boston, MA, United States
- Department of Neurology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Kerry A. Cormier
- VA Boston Healthcare System, US Department of Veterans Affairs, Boston, MA, United States
- Department of Neurology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Boston University Alzheimer's Disease Research Center and Boston University CTE Center, Boston, MA, United States
- VA Bedford Healthcare System, US Department of Veterans Affairs, Bedford, MA, United States
| | - Caroline A. Kubilus
- Department of Neurology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Boston University Alzheimer's Disease Research Center and Boston University CTE Center, Boston, MA, United States
- VA Bedford Healthcare System, US Department of Veterans Affairs, Bedford, MA, United States
| | - Bryan Dec
- Boston University Alzheimer's Disease Research Center and Boston University CTE Center, Boston, MA, United States
| | - Thor D. Stein
- VA Boston Healthcare System, US Department of Veterans Affairs, Boston, MA, United States
- Department of Neurology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Department of Pathology and Laboratory Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Boston University Alzheimer's Disease Research Center and Boston University CTE Center, Boston, MA, United States
| | - Victor E. Alvarez
- VA Boston Healthcare System, US Department of Veterans Affairs, Boston, MA, United States
- Department of Neurology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- National Center for PTSD, US Department of Veterans Affairs, Boston, MA, United States
- Boston University Alzheimer's Disease Research Center and Boston University CTE Center, Boston, MA, United States
- VA Bedford Healthcare System, US Department of Veterans Affairs, Bedford, MA, United States
| | - Michael L. Alosco
- Department of Neurology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Boston University Alzheimer's Disease Research Center and Boston University CTE Center, Boston, MA, United States
- Department of Neurology, Boston Medical Center, Boston, MA, United States
- Department of Anatomy and Neurobiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Ann C. McKee
- VA Boston Healthcare System, US Department of Veterans Affairs, Boston, MA, United States
- Department of Neurology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Department of Pathology and Laboratory Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Boston University Alzheimer's Disease Research Center and Boston University CTE Center, Boston, MA, United States
- VA Bedford Healthcare System, US Department of Veterans Affairs, Bedford, MA, United States
| | - Bertrand R. Huber
- VA Boston Healthcare System, US Department of Veterans Affairs, Boston, MA, United States
- Department of Neurology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- National Center for PTSD, US Department of Veterans Affairs, Boston, MA, United States
- Boston University Alzheimer's Disease Research Center and Boston University CTE Center, Boston, MA, United States
| |
Collapse
|
7
|
Ramirez-Franco J, Debreux K, Sangiardi M, Belghazi M, Kim Y, Lee SH, Lévêque C, Seagar M, El Far O. The downregulation of Kv 1 channels in Lgi1 -/-mice is accompanied by a profound modification of its interactome and a parallel decrease in Kv 2 channels. Neurobiol Dis 2024; 196:106513. [PMID: 38663634 DOI: 10.1016/j.nbd.2024.106513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/12/2024] [Accepted: 04/23/2024] [Indexed: 05/03/2024] Open
Abstract
In animal models of LGI1-dependent autosomal dominant lateral temporal lobe epilepsy, Kv1 channels are downregulated, suggesting their crucial involvement in epileptogenesis. The molecular basis of Kv1 channel-downregulation in LGI1 knock-out mice has not been elucidated and how the absence of this extracellular protein induces an important modification in the expression of Kv1 remains unknown. In this study we analyse by immunofluorescence the modifications in neuronal Kv1.1 and Kv1.2 distribution throughout the hippocampal formation of LGI1 knock-out mice. We show that Kv1 downregulation is not restricted to the axonal compartment, but also takes place in the somatodendritic region and is accompanied by a drastic decrease in Kv2 expression levels. Moreover, we find that the downregulation of these Kv channels is associated with a marked increase in bursting patterns. Finally, mass spectrometry uncovered key modifications in the Kv1 interactome that highlight the epileptogenic implication of Kv1 downregulation in LGI1 knock-out animals.
Collapse
Affiliation(s)
- Jorge Ramirez-Franco
- INSERM UMR_S 1072, Unité de Neurobiologie des canaux Ioniques et de la Synapse, Aix-Marseille Université, 13015 Marseille, France.
| | - Kévin Debreux
- INSERM UMR_S 1072, Unité de Neurobiologie des canaux Ioniques et de la Synapse, Aix-Marseille Université, 13015 Marseille, France
| | - Marion Sangiardi
- INSERM UMR_S 1072, Unité de Neurobiologie des canaux Ioniques et de la Synapse, Aix-Marseille Université, 13015 Marseille, France
| | - Maya Belghazi
- Marseille Protéomique (MaP), Plateforme Protéomique IMM, CNRS FR3479, Aix-Marseille Université, 31 Chemin Joseph Aiguier, 13009 Marseille, France
| | - Yujin Kim
- Department of Physiology, Cell Physiology Lab, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, South Korea
| | - Suk-Ho Lee
- Department of Physiology, Cell Physiology Lab, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, South Korea
| | - Christian Lévêque
- INSERM UMR_S 1072, Unité de Neurobiologie des canaux Ioniques et de la Synapse, Aix-Marseille Université, 13015 Marseille, France
| | - Michael Seagar
- INSERM UMR_S 1072, Unité de Neurobiologie des canaux Ioniques et de la Synapse, Aix-Marseille Université, 13015 Marseille, France
| | - Oussama El Far
- INSERM UMR_S 1072, Unité de Neurobiologie des canaux Ioniques et de la Synapse, Aix-Marseille Université, 13015 Marseille, France.
| |
Collapse
|
8
|
Pandurangan K, Jayakumar J, Savoia S, Nanda R, Lata S, Kumar EH, S S, Vasudevan S, Srinivasan C, Joseph J, Sivaprakasam M, Verma R. Systematic development of immunohistochemistry protocol for large cryosections-specific to non-perfused fetal brain. J Neurosci Methods 2024; 405:110085. [PMID: 38387804 DOI: 10.1016/j.jneumeth.2024.110085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/01/2024] [Accepted: 02/18/2024] [Indexed: 02/24/2024]
Abstract
BACKGROUND Immunohistochemistry (IHC) is an important technique in understanding the expression of neurochemical molecules in the developing human brain. Despite its routine application in the research and clinical setup, the IHC protocol specific for soft fragile fetal brains that are fixed using the non-perfusion method is still limited in studying the whole brain. NEW METHOD This study shows that the IHC protocols, using a chromogenic detection system, used in animals and adult humans are not optimal in the fetal brains. We have optimized key steps from Antigen retrieval (AR) to chromogen visualization for formalin-fixed whole-brain cryosections (20 µm) mounted on glass slides. RESULTS We show the results from six validated, commonly used antibodies to study the fetal brain. We achieved optimal antigen retrieval with 0.1 M Boric Acid, pH 9.0 at 70°C for 20 minutes. We also present the optimal incubation duration and temperature for protein blocking and the primary antibody that results in specific antigen labeling with minimal tissue damage. COMPARISON WITH EXISTING METHODS The IHC protocol commonly used for adult human and animal brains results in significant tissue damage in the fetal brains with little or suboptimal antigen expression. Our new method with important modifications including the temperature, duration, and choice of the alkaline buffer for AR addresses these pitfalls and provides high-quality results. CONCLUSION The optimized IHC protocol for the developing human brain (13-22 GW) provides a high-quality, repeatable, and reliable method for studying chemoarchitecture in neurotypical and pathological conditions across different gestational ages.
Collapse
Affiliation(s)
- Karthika Pandurangan
- Sudha Gopalakrishnan Brain Centre, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India.
| | - Jaikishan Jayakumar
- Sudha Gopalakrishnan Brain Centre, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India; Center for Computational Brain Research, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India.
| | | | - Reetuparna Nanda
- Sudha Gopalakrishnan Brain Centre, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India.
| | - S Lata
- Mediscan Systems, Chennai, Tamil Nadu, India.
| | | | - Suresh S
- Mediscan Systems, Chennai, Tamil Nadu, India.
| | - Sudha Vasudevan
- Department of Obstetrics & Gynaecology, Saveetha Medical College, Thandalam, Chennai, Tamil Nadu, India.
| | - Chitra Srinivasan
- Department of Pathology, Saveetha Medical College, Thandalam, Chennai, Tamil Nadu, India.
| | - Jayaraj Joseph
- Sudha Gopalakrishnan Brain Centre, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India; Healthcare Technology Innovation Centre, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India; Department of Electrical Engineering, Indian Institute of Technology, Madras, Chennai, Tamil Nadu, India.
| | - Mohanasankar Sivaprakasam
- Sudha Gopalakrishnan Brain Centre, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India; Healthcare Technology Innovation Centre, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India; Department of Electrical Engineering, Indian Institute of Technology, Madras, Chennai, Tamil Nadu, India.
| | - Richa Verma
- Sudha Gopalakrishnan Brain Centre, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India.
| |
Collapse
|
9
|
Das-Earl P, Schreihofer DA, Sumien N, Schreihofer AM. Temporal and region-specific tau hyperphosphorylation in the medulla and forebrain coincides with development of functional changes in male obese Zucker rats. J Neurophysiol 2024; 131:689-708. [PMID: 38416718 PMCID: PMC11305650 DOI: 10.1152/jn.00409.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/14/2024] [Accepted: 02/26/2024] [Indexed: 03/01/2024] Open
Abstract
Metabolic syndrome (MetS) is associated with development of tauopathies that contribute to cognitive decline. Without functional leptin receptors, male obese Zucker rats (OZRs) develop MetS, and they have increased phosphorylated tau (ptau) with impaired cognitive function. In addition to regulating energy balance, leptin enhances activation of the hippocampus, which is essential for spatial learning and memory. Whether spatial learning and memory are always impaired in OZRs or develop with MetS is unknown. We hypothesized that male OZRs develop MetS traits that promote regional increases in ptau and functional deficits associated with those brain regions. In the medulla and cortex, tau-pSer199,202 and tau-pSer396 were comparable in juvenile (7-8 wk old) lean Zucker rats (LZRs) and OZRs but increased in 18- to 19-wk-old OZRs. Elevated tau-pSer396 was concentrated in the dorsal vagal complex of the medulla, and by this age OZRs had hypertension with increased arterial pressure variability. In the hippocampus, tau-pSer199,202 and tau-pSer396 were still comparable in 18- to 19-wk-old OZRs and LZRs but elevated in 28- to 29-wk-old OZRs, with emergence of deficits in Morris water maze performance. Comparable escape latencies observed during acquisition in 18- to 19-wk-old OZRs and LZRs were increased in 28- to 29-wk-old OZRs, with greater use of nonspatial search strategies. Increased ptau developed with changes in the insulin/phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway in the hippocampus and cortex but not medulla, suggesting different underlying mechanisms. These data demonstrate that leptin is not required for spatial learning and memory in male OZRs. Furthermore, early development of MetS-associated autonomic dysfunction by the medulla may be predictive of later hippocampal dysfunction and cognitive impairment.NEW & NOTEWORTHY Male obese Zucker rats (OZRs) lack functional leptin receptors and develop metabolic syndrome (MetS). At 16-19 wk, OZRs are insulin resistant, with increased ptau in dorsal medulla and impaired autonomic regulation of AP. At 28-29 wk OZRs develop increased ptau in hippocampus with deficits in spatial learning and memory. Juvenile OZRs lack elevated ptau and these deficits, demonstrating that leptin is not essential for normal function. Elevated ptau and deficits emerge before the onset of diabetes in insulin-resistant OZRs.
Collapse
Affiliation(s)
- Paromita Das-Earl
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Derek A Schreihofer
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Nathalie Sumien
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Ann M Schreihofer
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States
| |
Collapse
|
10
|
Bautista J, García-Cabezas MÁ, Medalla M, Rosene DL, Zikopoulos B, Barbas H. Pattern of ventral temporal lobe interconnections in rhesus macaques. J Comp Neurol 2023; 531:1963-1986. [PMID: 37919833 PMCID: PMC11142421 DOI: 10.1002/cne.25550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 07/26/2023] [Accepted: 10/13/2023] [Indexed: 11/04/2023]
Abstract
The entorhinal cortex (EC, A28) is linked through reciprocal pathways with nearby perirhinal and visual, auditory, and multimodal association cortices in the temporal lobe, in pathways associated with the flow of information for memory processing. The density and laminar organization of these pathways is not well understood in primates. We studied interconnections within the ventral temporal lobe in young adult rhesus monkeys of both sexes with the aid of neural tracers injected in temporal areas (Ts1, Ts2, TE1, area 36, temporal polar area TPro, and area 28) to determine the density and laminar distribution of projection neurons within the temporal lobe. These temporal areas can be categorized into three different cortical types based on their laminar architecture: the sensory association areas Ts1, Ts2, and TE1 have six layers (eulaminate); the perirhinal limbic areas TPro and area 36 have an incipient layer IV (dysgranular); and area 28 lacks layer IV (agranular). We found that (1) temporal areas that are similar in laminar architecture by cortical type are strongly interconnected, and (2) the laminar pattern of connections is dependent on the difference in cortical laminar structure between linked areas. Thus, agranular A28 is more strongly connected with other agranular/dysgranular areas than with eulaminate cortices. Further, A28 predominantly projected via feedback-like pathways that originated in the deep layers, and received feedforward-like projections from areas of greater laminar differentiation, which emanated from the upper layers. Our results are consistent with the Structural Model, which relates the density and laminar distribution of connections to the relationship of the laminar structure between the linked areas. These connections were viewed in the context of the inhibitory microenvironment of A28, which is the key recipient of pathways from the cortex and of the output of hippocampus. Our findings revealed a higher population of calretinin (CR)-expressing neurons in EC, with a significantly higher density in its lateral division. Medial EC had a higher density of CR neurons in the deep layers, particularly in layer Va. In contrast, parvalbumin (PV) neurons were more densely distributed in the deep layers of the lateral subdivisions of rostral EC, especially in layer Va, whereas the densities of calbindin (CB) neurons in the medial and lateral EC were comparable in all layers, except for layer IIIa, in which medial EC had a higher CB population than the lateral. The pattern of connections in the inhibitory microenvironment of EC, which sends and receives input from the hippocampus, may shed light on signal propagation in this network associated with diverse aspects of memory, and disruptions in neurologic and psychiatric diseases that affect this region.
Collapse
Affiliation(s)
- Julied Bautista
- Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, Massachusetts, USA
| | - Miguel Á. García-Cabezas
- Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, Massachusetts, USA
| | - Maria Medalla
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, Massachusetts, USA
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts, USA
| | - Douglas L. Rosene
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, Massachusetts, USA
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts, USA
| | - Basilis Zikopoulos
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, Massachusetts, USA
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts, USA
- Human Systems Neuroscience Laboratory, Boston University, Boston, Massachusetts, USA
| | - Helen Barbas
- Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, Massachusetts, USA
- Graduate Program in Neuroscience, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, Massachusetts, USA
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
11
|
Santana-Cordón L, Afonso-Oramas D, Lemus-Mesa A, González-Gómez M, Barroso-Chinea P. Morphological study of neuropeptide Y expression in human and mouse anterior insular cortex: Overexpression in the insular cortex and nucleus accumbens in obese mice on a long-term obesogenic diet. Ann Anat 2023; 250:152127. [PMID: 37355144 DOI: 10.1016/j.aanat.2023.152127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 06/26/2023]
Abstract
BACKGROUND The anterior lobe of the insular cortex (aINS) is a cortical region that has reciprocal connections with limbic centers such as the anterior cingulate cortex, prefrontal cortex, amygdala and nucleus accumbens (NAc). In fact, the aINS has been involved in the integration of autonomic information for emotional and motivational functions. The compulsive consumption of drugs or high-fat foods induces alterations at both behavioural and brain levels. Brain reward circuits are altered in response to continued intake, in particular the dopaminergic projections from the ventral tegmental area (VTA) to the NAc. The aINS has multiple connections with the components of this system. In recent years, efforts have been made to better understand the fundamental role of the aINS in addiction, making it one of the key centres of interest for research into new treatments for addiction. OBJECTIVES The present work focuses on studying 1.- whether the human aINS expresses orexigenic peptides such as neuropeptide Y (NPY), a peptide known to induce hyperphagia, and which has been implicated in the onset and development of obesity, 2.- the long-term effect of an obesogenic diet on NPY expression in the aINS and NAc of C57BL/6 mice. METHODS A total of 17 female C57BL/6 J mice were used in this study. Female mice were fed ad libitum with water and, either a standard diet (SD) or a high-fat diet (HFD) to induce obesity. There were seven female mice on the SD and ten on the HFD. The duration of the experiment was 180 days. We also studied 3 human adult brains (1 male and 2 females, mean age 55.7 ± 5.2 years). The morphological study was performed using immunohistochemistry and double immunofluorescence techniques to study the neurochemical profile of NPY neurons of the aINS and NAc of humans and mice. RESULTS Our morphological analysis demonstrates for the first time the basal expression of NPY in different layers of the human cortex (II, III, IV, V/VI), in a pattern similar to previous studies in other species. Furthermore, we observed an increase in the number of NPY-positive cells and their intracytoplasmic signal in the aINS and NAc of the obese mice subjected to a long-term obesogenic diet. CONCLUSIONS To our knowledge, this is the first study to show the distribution and expression of NPY in the human INS and how its expression is altered after prolonged treatment with an obesogenic diet in obese mice. Our findings may contribute to the understanding of the pathophysiological mechanisms underlying obesity in regions related to the reward system and associated with uncontrolled intake of high-fat foods, thus facilitating the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Laura Santana-Cordón
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain
| | - Domingo Afonso-Oramas
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain; Instituto de Tecnologías Biomédicas de Canarias (ITB), Universidad de La Laguna, Tenerife, Spain; Instituto Universitario de Neurociencias. Universidad de La Laguna, Tenerife, Spain.
| | - Alejandro Lemus-Mesa
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain
| | - Miriam González-Gómez
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain; Instituto de Tecnologías Biomédicas de Canarias (ITB), Universidad de La Laguna, Tenerife, Spain; Instituto Universitario de Neurociencias. Universidad de La Laguna, Tenerife, Spain
| | - Pedro Barroso-Chinea
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain; Instituto de Tecnologías Biomédicas de Canarias (ITB), Universidad de La Laguna, Tenerife, Spain; Instituto Universitario de Neurociencias. Universidad de La Laguna, Tenerife, Spain.
| |
Collapse
|
12
|
Kamte YS, Chandwani MN, London NM, Potosnak CE, Leak RK, O'Donnell LA. Perturbations in neural stem cell function during a neurotropic viral infection in juvenile mice. J Neurochem 2023; 166:809-829. [PMID: 37530081 DOI: 10.1111/jnc.15914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 08/03/2023]
Abstract
Viral infections of the central nervous system (CNS) often cause worse neurological outcomes in younger hosts. Throughout childhood, the brain undergoes extensive development and refinement to produce functional neural networks. Network function is maintained partly with the help of neural stem cells (NSCs) that replace neuronal and glia subtypes in the two neurogenic niches of the brain (the hippocampus and subventricular zone). Accumulating evidence suggests that viruses disrupt NSC function in adulthood and infancy, but the in vivo impact of childhood infections on acute and long-term NSC function is unknown. Using a juvenile mouse model of measles virus (MeV) infection, where only mature neurons in the brain are infected, we defined the effects of the antiviral immune response on NSCs from juvenile to adult stages of life. We found that (a) virus persists in the brains of survivors despite an anti-viral immune response; (b) NSC numbers decrease dramatically during early infection, but ultimately stabilize in adult survivors; (c) infection is associated with mild apoptosis throughout the juvenile brain, but NSC proliferation is unchanged; (d) the loss of NSC numbers is dependent upon the stage of NSC differentiation; and (e) immature neurons increase early during infection, concurrent with depletion of NSC pools. Collectively, we show that NSCs are exquisitely sensitive to the inflammatory microenvironment created during neuron-restricted MeV infection in juveniles, responding with an early loss of NSCs but increased neurogenesis. These studies provide insight into potential cellular mechanisms associated with long-term neurological deficits in survivors of childhood CNS infections.
Collapse
Affiliation(s)
- Yashika S Kamte
- School of Pharmacy and the Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - Manisha N Chandwani
- School of Pharmacy and the Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - Natalie M London
- School of Pharmacy and the Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - Chloe E Potosnak
- School of Pharmacy and the Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - Rehana K Leak
- School of Pharmacy and the Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - Lauren A O'Donnell
- School of Pharmacy and the Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
13
|
Chou S, Fish KN, Lewis DA, Sweet RA. Terminal type-specific cannabinoid CB1 receptor alterations in patients with schizophrenia: A pilot study. Neurobiol Dis 2023; 185:106262. [PMID: 37586566 PMCID: PMC10958392 DOI: 10.1016/j.nbd.2023.106262] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND Individuals with schizophrenia are at elevated genetic risks for comorbid cannabis use, and often experience exacerbations of cognitive and psychotic symptoms when exposed to cannabis. These findings have led a number of investigators to examine cannabinoid CB1 receptor (CB1R) alterations in schizophrenia, though with conflicting results. We recently demonstrated the presence of CB1R in both excitatory and inhibitory boutons in the human prefrontal cortex, with differential levels of the receptor between bouton types. We hypothesized that the differential enrichment of CB1R between bouton types - a factor previously unaccounted for when examining CB1R changes in schizophrenia - may resolve prior discrepant reports and increase our insight into the effects of CB1R alterations on the pathophysiology of schizophrenia. METHODS Using co-labeling immunohistochemistry and fluorescent microscopy, we examined total CB1R levels and CB1R levels within excitatory (vGlut1-positive) and inhibitory (vGAT-positive) boutons of prefrontal cortex samples from ten pairs of individuals (nine male pairs and one female pair) diagnosed with schizophrenia and non-psychiatric comparisons. RESULTS Significantly higher total CB1R levels were found within samples from individuals with schizophrenia. Terminal type-specific analyses identified significantly higher CB1R levels within excitatory boutons in samples from individuals with schizophrenia relative to comparisons. In contrast, CB1R levels within the subset of inhibitory boutons that normally express high CB1R levels (presumptive cholecystokinin neuron boutons) were lower in samples from individuals with schizophrenia relative to comparison samples. CONCLUSION Given CB1R's role in suppressing neurotransmission upon activation, these results suggest an overall shift in excitatory and inhibitory balance regulation toward a net reduction of excitatory activity in schizophrenia.
Collapse
Affiliation(s)
- Shinnyi Chou
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, United States of America
| | - Kenneth N Fish
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, United States of America
| | - David A Lewis
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, United States of America
| | - Robert A Sweet
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, United States of America.
| |
Collapse
|
14
|
Rashid M, Olson EC. Delayed cortical development in mice with a neural specific deletion of β1 integrin. Front Neurosci 2023; 17:1158419. [PMID: 37250402 PMCID: PMC10213249 DOI: 10.3389/fnins.2023.1158419] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/24/2023] [Indexed: 05/31/2023] Open
Abstract
The adhesion systems employed by migrating cortical neurons are not well understood. Genetic deletion studies of focal adhesion kinase (FAK) and paxillin in mice suggested that these classical focal adhesion molecules control the morphology and speed of cortical neuron migration, but whether β1 integrins also regulate migration morphology and speed is not known. We hypothesized that a β1 integrin adhesion complex is required for proper neuronal migration and for proper cortical development. To test this, we have specifically deleted β1 integrin from postmitotic migrating and differentiating neurons by crossing conditional β1 integrin floxed mice into the NEX-Cre transgenic line. Similar to our prior findings with conditional paxillin deficiency, we found that both homozygous and heterozygous deletion of β1 integrin causes transient mispositioning of cortical neurons in the developing cortex when analyzed pre- and perinatally. Paxillin and β1 integrin colocalize in the migrating neurons and deletion of paxillin in the migrating neuron causes an overall reduction of the β1 integrin immunofluorescence signal and reduction in the number of activated β1 integrin puncta in the migrating neurons. These findings suggest that these molecules may form a functional complex in migrating neurons. Similarly, there was an overall reduced number of paxillin+ puncta in the β1 integrin deficient neurons, despite the normal distribution of FAK and Cx26, a connexin required for cortical migration. The double knockout of paxillin and β1 integrin produces a cortical malpositioning phenotype similar to the paxillin or β1 integrin single knockouts, as would be expected if paxillin and β1 integrin function on a common pathway. Importantly, an isolation-induced pup vocalization test showed that β1 integrin mutants produced a significantly smaller number of calls compared to their littermate controls when analyzed at postnatal day 4 (P4) and revealed a several days trend in reduced vocalization development compared to controls. The current study establishes a role for β1 integrin in cortical development and suggests that β1 integrin deficiency leads to migration and neurodevelopmental delays.
Collapse
Affiliation(s)
- Mamunur Rashid
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY, United States
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, United States
| | - Eric C. Olson
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY, United States
| |
Collapse
|
15
|
Muniz Partida C, Walters E. A novel immunohistochemical protocol for paraffin embedded tissue sections using free-floating techniques. Front Neuroanat 2023; 17:1154568. [PMID: 37235185 PMCID: PMC10206034 DOI: 10.3389/fnana.2023.1154568] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Immunohistochemistry (IHC) is a well-established and widely used protocol used to visualize tissue architecture, protein expression and localization. Free-floating methods for IHC employ tissue sections that are cut from a cryostat or vibratome. The limitations of these tissue sections are tissue fragility, poor morphology, and the need to use sections of 20-50 μm. In addition, there is a void of information regarding the use of free floating immunohistochemical techniques on paraffin embedded tissue. To address this, we developed a free-float IHC protocol with paraffin embedded tissue (PFFP) that saves time, resources, and tissues. PFFP localized GFAP, olfactory marker protein, tyrosine hydroxylase, and Nestin expression in mouse hippocampal, olfactory bulb, striatum, and cortical tissue. Successful localization of these antigens was achieved using PFFP with and without antigen retrieval, with subsequent chromogenic DAB (3,3'-diaminobenzidine) development and immunofluorescence detection methods. The application of the PFFP in combination with methodologies of in situ hybridization, protein/protein interactions, laser capture dissection, and pathological diagnosis expands the versatility of paraffin embedded tissues.
Collapse
|
16
|
Chou S, Fish KN, Lewis DA, Sweet RA. Terminal type-specific cannabinoid CB1 receptor alterations in patients with schizophrenia: a pilot study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.11.536217. [PMID: 37090672 PMCID: PMC10120624 DOI: 10.1101/2023.04.11.536217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Background Individuals with schizophrenia are at elevated genetic risks for comorbid cannabis use, and often experience exacerbations of cognitive and psychotic symptoms when exposed to cannabis. These findings have led a number of investigators to examine cannabinoid CB1 receptor (CB1R) alterations in schizophrenia, though with conflicting results. We recently demonstrated the presence of CB1R in both excitatory and inhibitory boutons in the human prefrontal cortex, with differential levels of the receptor between bouton types. We hypothesized that the differential enrichment of CB1R between bouton types - a factor previously unaccounted for when examining CB1R changes in schizophrenia - may resolve prior discrepant reports and increase our insight into the effects of CB1R alterations on the pathophysiology of schizophrenia. Methods Using co-labeling immunohistochemistry and fluorescent microscopy, we examined total CB1R levels and CB1R levels within excitatory (vGlut1-positive) and inhibitory (vGAT-positive) boutons of prefrontal cortex samples from ten pairs of individuals diagnosed with schizophrenia and non-psychiatric comparisons. Results Significantly higher total CB1R levels were found within samples from individuals with schizophrenia. Terminal type-specific analyses identified significantly higher CB1R levels within excitatory boutons in samples from individuals with schizophrenia relative to comparisons. In contrast, CB1R levels within the subset of inhibitory boutons that normally express high CB1R levels (presumptive cholecystokinin neuron boutons) were lower in samples from individuals with schizophrenia relative to comparison samples. Conclusion Given CB1R's role in suppressing neurotransmission upon activation, these results suggest an overall shift in excitatory and inhibitory balance regulation toward a net reduction of excitatory activity in schizophrenia.
Collapse
Affiliation(s)
- Shinnyi Chou
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, 15261
| | - Kenneth N Fish
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, 15261
| | - David A Lewis
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, 15261
| | - Robert A Sweet
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, 15261
| |
Collapse
|
17
|
Nishii K, Satoh Y, Higashi T, Matsui T, Ishizuka T, Kashitani M, Saitoh D, Kobayashi Y. Evans Blue and Fluorescein Isothiocyanate-Dextran Double Labeling Reveals Precise Sequence of Vascular Leakage and Glial Responses after Exposure to Mild-Level Blast-Associated Shock Waves. J Neurotrauma 2023. [PMID: 36680750 DOI: 10.1089/neu.2022.0155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Abstract Blast-induced shock waves (BSWs) are responsible for several aspects of psychiatric disorders that are collectively termed mild traumatic brain injury (mTBI). The pathophysiology of mTBI includes vascular leakage resulting from blood-brain barrier (BBB) disruption. In this study, the precise sequence of BBB breakdown was examined using an Evans blue and fluorescein isothiocyanate (FITC)-dextran double labeling technique. Evans blue solution was injected into the tail vein of male C57BL6/J mice just before and 4 h, 1 day, 3 days, and 7 days after a single BSW exposure at as low as 25-kPa peak overpressure. In contrast, the FITC-dextran solution was transcardially injected just before perfusion fixation. Differences in the labeling time-point revealed that BBB breakdown was initiated after approximately 3 h, with significant remodeling by 1 day, and continued until 7 days after BSW exposure. BBB breakdown was upregulated in three distinct regions, namely the brain surface and subsurface areas facing the skull, regions closely associated with capillaries, and the circumventricular organ and choroid plexus. These regions showed distinct responses to BSW; moreover, clusters of reactive astrocytes were closely associated with the sites of BBB breakdown. In severe cases, these reactive astrocytes recruited activated microglia. Our findings provide important insights into the pathogenesis underlying mTBI and indicate that even mild BSW exposure affects the whole brain.
Collapse
Affiliation(s)
- Kiyomasa Nishii
- Department of Anatomy and Neurobiology, Research Institute, National Defense Medical College, Saitama, Japan
| | - Yasushi Satoh
- Department of Biochemistry, Research Institute, National Defense Medical College, Saitama, Japan
| | - Takahito Higashi
- Department of Anatomy and Neurobiology, Research Institute, National Defense Medical College, Saitama, Japan
| | - Toshiyasu Matsui
- Department of Anatomy and Neurobiology, Research Institute, National Defense Medical College, Saitama, Japan
| | - Toshiaki Ishizuka
- Department of Pharmacology, Research Institute, National Defense Medical College, Saitama, Japan
| | - Masashi Kashitani
- Department of Aerospace Engineering, National Defense Academy, Kanagawa, Japan
| | - Daizoh Saitoh
- Division of Traumatology, Research Institute, National Defense Medical College, Saitama, Japan
| | - Yasushi Kobayashi
- Department of Anatomy and Neurobiology, Research Institute, National Defense Medical College, Saitama, Japan
| |
Collapse
|
18
|
Shvachiy L, Amaro-Leal Â, Outeiro TF, Rocha I, Geraldes V. Intermittent Lead Exposure Induces Behavioral and Cardiovascular Alterations Associated with Neuroinflammation. Cells 2023; 12:cells12050818. [PMID: 36899953 PMCID: PMC10000953 DOI: 10.3390/cells12050818] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023] Open
Abstract
The nervous system is the primary target for lead exposure and the developing brain appears to be especially susceptible, namely the hippocampus. The mechanisms of lead neurotoxicity remain unclear, but microgliosis and astrogliosis are potential candidates, leading to an inflammatory cascade and interrupting the pathways involved in hippocampal functions. Moreover, these molecular changes can be impactful as they may contribute to the pathophysiology of behavioral deficits and cardiovascular complications observed in chronic lead exposure. Nevertheless, the health effects and the underlying influence mechanism of intermittent lead exposure in the nervous and cardiovascular systems are still vague. Thus, we used a rat model of intermittent lead exposure to determine the systemic effects of lead and on microglial and astroglial activation in the hippocampal dentate gyrus throughout time. In this study, the intermittent group was exposed to lead from the fetal period until 12 weeks of age, no exposure (tap water) until 20 weeks, and a second exposure from 20 to 28 weeks of age. A control group (without lead exposure) matched in age and sex was used. At 12, 20 and 28 weeks of age, both groups were submitted to a physiological and behavioral evaluation. Behavioral tests were performed for the assessment of anxiety-like behavior and locomotor activity (open-field test), and memory (novel object recognition test). In the physiological evaluation, in an acute experiment, blood pressure, electrocardiogram, and heart and respiratory rates were recorded, and autonomic reflexes were evaluated. The expression of GFAP, Iba-1, NeuN and Synaptophysin in the hippocampal dentate gyrus was assessed. Intermittent lead exposure induced microgliosis and astrogliosis in the hippocampus of rats and changes in behavioral and cardiovascular function. We identified increases in GFAP and Iba1 markers together with presynaptic dysfunction in the hippocampus, concomitant with behavioral changes. This type of exposure produced significant long-term memory dysfunction. Regarding physiological changes, hypertension, tachypnea, baroreceptor reflex impairment and increased chemoreceptor reflex sensitivity were observed. In conclusion, the present study demonstrated the potential of lead intermittent exposure inducing reactive astrogliosis and microgliosis, along with a presynaptic loss that was accompanied by alterations of homeostatic mechanisms. This suggests that chronic neuroinflammation promoted by intermittent lead exposure since fetal period may increase the susceptibility to adverse events in individuals with pre-existing cardiovascular disease and/or in the elderly.
Collapse
Affiliation(s)
- Liana Shvachiy
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37075 Göttingen, Germany
- Cardiovascular Centre of the University of Lisbon, 1649-028 Lisbon, Portugal
- Institute of Physiology, Faculty of Medicine of the University of Lisbon, 1649-028 Lisbon, Portugal
| | - Ângela Amaro-Leal
- Cardiovascular Centre of the University of Lisbon, 1649-028 Lisbon, Portugal
- Institute of Physiology, Faculty of Medicine of the University of Lisbon, 1649-028 Lisbon, Portugal
| | - Tiago F. Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37075 Göttingen, Germany
- Max Planck Institute for Natural Science, 37075 Göttingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne NE2 4HH, UK
- Scientific Employee with an Honorary Contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 37073 Göttingen, Germany
| | - Isabel Rocha
- Cardiovascular Centre of the University of Lisbon, 1649-028 Lisbon, Portugal
- Institute of Physiology, Faculty of Medicine of the University of Lisbon, 1649-028 Lisbon, Portugal
| | - Vera Geraldes
- Cardiovascular Centre of the University of Lisbon, 1649-028 Lisbon, Portugal
- Institute of Physiology, Faculty of Medicine of the University of Lisbon, 1649-028 Lisbon, Portugal
- Correspondence: ; Tel.: +351-217999435
| |
Collapse
|
19
|
Reveley C, Ye FQ, Mars RB, Matrov D, Chudasama Y, Leopold DA. Diffusion MRI anisotropy in the cerebral cortex is determined by unmyelinated tissue features. Nat Commun 2022; 13:6702. [PMID: 36335105 PMCID: PMC9637141 DOI: 10.1038/s41467-022-34328-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/19/2022] [Indexed: 11/07/2022] Open
Abstract
Diffusion magnetic resonance imaging (dMRI) is commonly used to assess the tissue and cellular substructure of the human brain. In the white matter, myelinated axons are the principal neural elements that shape dMRI through the restriction of water diffusion; however, in the gray matter the relative contributions of myelinated axons and other tissue features to dMRI are poorly understood. Here we investigate the determinants of diffusion in the cerebral cortex. Specifically, we ask whether myelinated axons significantly shape dMRI fractional anisotropy (dMRI-FA), a measure commonly used to characterize tissue properties in humans. We compared ultra-high resolution ex vivo dMRI data from the brain of a marmoset monkey with both myelin- and Nissl-stained histological sections obtained from the same brain after scanning. We found that the dMRI-FA did not match the spatial distribution of myelin in the gray matter. Instead dMRI-FA was more closely related to the anisotropy of stained tissue features, most prominently those revealed by Nissl staining and to a lesser extent those revealed by myelin staining. Our results suggest that unmyelinated neurites such as large caliber apical dendrites are the primary features shaping dMRI measures in the cerebral cortex.
Collapse
Affiliation(s)
- Colin Reveley
- grid.4991.50000 0004 1936 8948Wellcome Centre for Integrative Neuroimaging, Centre for fMRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Headington, Oxford, OX9 3DU UK ,grid.12082.390000 0004 1936 7590Department of Informatics, University of Sussex, Falmer, Brighton, BN1 9QJ UK
| | - Frank Q. Ye
- grid.94365.3d0000 0001 2297 5165Neurophysiology Imaging Facility, National Institute of Mental Health, National Institute of Neurological Disorders and Stroke, National Eye Institute, National Institutes of Health, Bethesda, MD USA
| | - Rogier B. Mars
- grid.4991.50000 0004 1936 8948Wellcome Centre for Integrative Neuroimaging, Centre for fMRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Headington, Oxford, OX9 3DU UK ,grid.5590.90000000122931605Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Denis Matrov
- grid.94365.3d0000 0001 2297 5165Section on Behavioral Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, MD USA
| | - Yogita Chudasama
- grid.94365.3d0000 0001 2297 5165Section on Behavioral Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, MD USA
| | - David A. Leopold
- grid.94365.3d0000 0001 2297 5165Neurophysiology Imaging Facility, National Institute of Mental Health, National Institute of Neurological Disorders and Stroke, National Eye Institute, National Institutes of Health, Bethesda, MD USA ,grid.94365.3d0000 0001 2297 5165Section on Cognitive Neurophysiology and Imaging, Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD USA
| |
Collapse
|
20
|
Walker CD, Sexton HG, Hyde J, Greene B, Risher ML. Diverging Effects of Adolescent Ethanol Exposure on Tripartite Synaptic Development across Prefrontal Cortex Subregions. Cells 2022; 11:3111. [PMID: 36231073 PMCID: PMC9561972 DOI: 10.3390/cells11193111] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/27/2022] [Accepted: 09/30/2022] [Indexed: 11/26/2022] Open
Abstract
Adolescence is a developmental period that encompasses, but is not limited to, puberty and continues into early adulthood. During this period, maturation and refinement are observed across brain regions such as the prefrontal cortex (PFC), which is critical for cognitive function. Adolescence is also a time when excessive alcohol consumption in the form of binge drinking peaks, increasing the risk of long-term cognitive deficits and the risk of developing an alcohol use disorder later in life. Animal models have revealed that adolescent ethanol (EtOH) exposure results in protracted disruption of neuronal function and performance on PFC-dependent tasks that require higher-order decision-making. However, the role of astrocytes in EtOH-induced disruption of prefrontal cortex-dependent function has yet to be elucidated. Astrocytes have complex morphologies with an extensive network of peripheral astrocyte processes (PAPs) that ensheathe pre- and postsynaptic terminals to form the 'tripartite synapse.' At the tripartite synapse, astrocytes play several critical roles, including synaptic maintenance, dendritic spine maturation, and neurotransmitter clearance through proximity-dependent interactions. Here, we investigate the effects of adolescent binge EtOH exposure on astrocyte morphology, PAP-synaptic proximity, synaptic stabilization proteins, and dendritic spine morphology in subregions of the PFC that are important in the emergence of higher cognitive function. We found that adolescent binge EtOH exposure resulted in subregion specific changes in astrocyte morphology and astrocyte-neuronal interactions. While this did not correspond to a loss of astrocytes, synapses, or dendritic spines, there was a corresponding region-specific and EtOH-dependent shift in dendritic spine phenotype. Lastly, we found that changes in astrocyte-neuronal interactions were not a consequence of changes in the expression of key synaptic structural proteins neurexin, neuroligin 1, or neuroligin 3. These data demonstrate that adolescent EtOH exposure results in enduring effects on neuron-glia interactions that persist into adulthood in a subregion-specific PFC manner, suggesting selective vulnerability. Further work is necessary to understand the functional and behavioral implications.
Collapse
Affiliation(s)
- Christopher Douglas Walker
- Department of Biomedical Research, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA
- Neurobiology Research Laboratory, Hershel ‘Woody’ Williams Veterans Affairs Medical Center, Huntington, WV 25704, USA
| | - Hannah Gray Sexton
- Department of Biomedical Research, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA
- Neurobiology Research Laboratory, Hershel ‘Woody’ Williams Veterans Affairs Medical Center, Huntington, WV 25704, USA
| | - Jentre Hyde
- Department of Biomedical Research, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA
| | - Brittani Greene
- Department of Biomedical Research, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA
| | - Mary-Louise Risher
- Department of Biomedical Research, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA
- Neurobiology Research Laboratory, Hershel ‘Woody’ Williams Veterans Affairs Medical Center, Huntington, WV 25704, USA
| |
Collapse
|
21
|
Kersten Y, Friedrich-Müller B, Nieder A. A brain atlas of the carrion crow (Corvus corone). J Comp Neurol 2022; 530:3011-3038. [PMID: 35938778 DOI: 10.1002/cne.25392] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 06/30/2022] [Accepted: 07/04/2022] [Indexed: 11/06/2022]
Abstract
Corvidae, passerine songbirds such as jays, crows, and ravens known as corvids, have become model systems for the study of avian cognition. The superior cognitive capabilities of corvids mainly emerge from a disproportionally large telencephalon found in these species. However, a systematic mapping of the neuroanatomy of the corvid brain, and the telencephalon in particular, is lacking so far. Here, we present a brain atlas of the carrion crow, Corvus corone, with special emphasis on the telencephalic pallium. We applied four staining techniques to brain slices (Nissl, myelin, combination of Nissl and myelin, and tyrosine hydroxylase targeting catecholaminergic neurons). This allowed us to identify brain nuclei throughout the brain and delineate the known pallial subdivisions termed hyperpallium, entopallium, mesopallium, nidopallium, arcopallium, and hippocampal complex. The extent of these subdivisions and brain nuclei are described according to stereotaxic coordinates. In addition, 3D depictions of pallial regions were reconstructed from these slices. While the overall organization of the carrion crow's brain matches other songbird brains, the relative proportions and expansions of associative pallial areas differ considerably in agreement with enhanced cognitive skills found in corvids. The presented global organization of the crow brain in stereotaxic coordinates will help to guide future neurobiological studies in corvids.
Collapse
Affiliation(s)
- Ylva Kersten
- Animal Physiology Unit, Institute of Neurobiology, University of Tübingen, Tübingen, Germany
| | | | - Andreas Nieder
- Animal Physiology Unit, Institute of Neurobiology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
22
|
From Molecular to Functional Effects of Different Environmental Lead Exposure Paradigms. BIOLOGY 2022; 11:biology11081164. [PMID: 36009791 PMCID: PMC9405384 DOI: 10.3390/biology11081164] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/22/2022] [Accepted: 07/30/2022] [Indexed: 12/05/2022]
Abstract
Simple Summary Our comparative study brings new insights regarding the effects of environmental lead exposure on the cardiorespiratory and nervous systems. We show how various kinds of exposure can lead to different toxicities, with various degrees of nefarious effects. The developmental period is of utmost importance to the toxicity of environmental lead; however, we found that the duration of exposure is the prime reason for stronger effects, even though the dual effect of intermittent exposure causes greater molecular neuronal alterations. Abstract Lead is a heavy metal whose widespread use has resulted in environmental contamination and significant health problems, particularly if the exposure occurs during developmental stages. It is a cumulative toxicant that affects multiple systems of the body, including the cardiovascular and nervous systems. Chronic lead exposure has been defined as a cause of behavioral changes, inflammation, hypertension, and autonomic dysfunction. However, different environmental lead exposure paradigms can occur, and the different effects of these have not been described in a broad comparative study. In the present study, rats of both sexes were exposed to water containing lead acetate (0.2% w/v), from the fetal period until adulthood. Developmental Pb-exposed (DevPb) pups were exposed to lead until 12 weeks of age (n = 13); intermittent Pb exposure (IntPb) pups drank leaded water until 12 weeks of age, tap water until 20 weeks, and leaded water for a second time from 20 to 28 weeks of age (n = 14); and the permanent (PerPb) exposure group were exposed to lead until 28 weeks of age (n = 14). A control group (without exposure, Ctrl), matched in age and sex was used. After exposure protocols, at 28 weeks of age, behavioral tests were performed for assessment of anxiety (elevated plus maze test), locomotor activity (open-field test), and memory (novel object recognition test). Metabolic parameters were evaluated for 24 h, and the acute experiment was carried out. Blood pressure (BP), electrocardiogram, and heart (HR) and respiratory (RF) rates were recorded. Baroreflex gain, chemoreflex sensitivity, and sympathovagal balance were calculated. Immunohistochemistry protocol for NeuN, Syn, Iba-1, and GFAP staining was performed. All Pb-exposed groups showed hypertension, concomitant with a decrease in baroreflex gain and chemoreceptor hypersensitivity, without significant changes in HR and RF. Long-term memory impairment associated with reactive astrogliosis and microgliosis in the dentate gyrus of the hippocampus, indicating the presence of neuroinflammation, was also observed. However, these alterations seemed to reverse after lead abstinence for a certain period (DevPb) and were enhanced when a second exposure occurred (IntPb), along with a synaptic loss. These results suggest that the duration of Pb exposure is more relevant than the timing of exposure, since the PerPb group presented more pronounced effects and a significant increase in the LF and HF bands and anxiety levels. In summary, this is the first study with the characterization and comparison of physiological, autonomic, behavioral, and molecular changes caused by different low-level environmental lead exposures, from the fetal period to adulthood, where the duration of exposure was the main factor for stronger adverse effects. These kinds of studies are of immense importance, showing the importance of the surrounding environment in health from childhood until adulthood, leading to the creation of new policies for toxicant usage control.
Collapse
|
23
|
Cell type specific cannabinoid CB1 receptor distribution across the human and non-human primate cortex. Sci Rep 2022; 12:9605. [PMID: 35688916 PMCID: PMC9187707 DOI: 10.1038/s41598-022-13724-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/13/2022] [Indexed: 11/30/2022] Open
Abstract
Alterations in cannabinoid CB1 receptor (CB1R) are implicated in various psychiatric disorders. CB1R participates in both depolarization induced suppression of inhibition (DSI) and depolarization induced suppression of excitation (DSE), suggesting its involvement in regulating excitatory and inhibitory (E/I) balance. Prior studies examining neuronal cell type specific CB1R distribution have been conducted near exclusively within rodents. Identification of these distribution patterns within the human and non-human primate cortex is essential to increase our insight into its function. Using co-labeling immunohistochemistry and fluorescent microscopy, we examined CB1R protein levels within excitatory and inhibitory boutons of male human and non-human primate prefrontal cortex and auditory cortices, regions involved in the behavioral effects of exogenous cannabinoid exposures. We found that CB1R was present in both bouton populations within all brain regions examined in both species. Significantly higher CB1R levels were found within inhibitory than within excitatory boutons across all regions in both species, although the cell type by brain region interactions differed between the two species. Our results support the importance of conducting more in-depth CB1R examinations to understand how cell type and brain region dependent differences contribute to regional E/I balance regulation, and how aberrations in CB1R distribution may contribute to pathology.
Collapse
|
24
|
Kishimoto-Urata M, Urata S, Kagoya R, Imamura F, Nagayama S, Reyna RA, Maruyama J, Yamasoba T, Kondo K, Hasegawa-Ishii S, Paessler S. Prolonged and extended impacts of SARS-CoV-2 on the olfactory neurocircuit. Sci Rep 2022; 12:5728. [PMID: 35388072 PMCID: PMC8987081 DOI: 10.1038/s41598-022-09731-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/21/2022] [Indexed: 12/27/2022] Open
Abstract
The impact of SARS-CoV-2 on the olfactory pathway was studied over several time points using Syrian golden hamsters. We found an incomplete recovery of the olfactory sensory neurons, prolonged activation of glial cells in the olfactory bulb, and a decrease in the density of dendritic spines within the hippocampus. These data may be useful for elucidating the mechanism underlying long-lasting olfactory dysfunction and cognitive impairment as a post-acute COVID-19 syndrome.
Collapse
Affiliation(s)
- Megumi Kishimoto-Urata
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
- Department of Otolaryngology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shinji Urata
- Department of Otolaryngology, University of Texas Medical Branch, Galveston, TX, USA
- Department of Otolaryngology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ryoji Kagoya
- Department of Otolaryngology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Fumiaki Imamura
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
| | - Shin Nagayama
- Department of Neurobiology and Anatomy, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Rachel A Reyna
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Junki Maruyama
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Tatsuya Yamasoba
- Department of Otolaryngology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kenji Kondo
- Department of Otolaryngology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| | | | - Slobodan Paessler
- Department of Otolaryngology, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
25
|
Cai W, Srivastava P, Feng D, Lin Y, Vanderburg CR, Xu Y, Mclean P, Frosch MP, Fisher DE, Schwarzschild MA, Chen X. Melanocortin 1 receptor activation protects against alpha-synuclein pathologies in models of Parkinson's disease. Mol Neurodegener 2022; 17:16. [PMID: 35197079 PMCID: PMC8867846 DOI: 10.1186/s13024-022-00520-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 02/11/2022] [Indexed: 12/02/2022] Open
Abstract
Background Epidemiological studies suggest a link between the melanoma-related pigmentation gene melanocortin 1 receptor (MC1R) and risk of Parkinson’s disease (PD). We previously showed that MC1R signaling can facilitate nigrostriatal dopaminergic neuron survival. The present study investigates the neuroprotective potential of MC1R against neurotoxicity induced by alpha-synuclein (αSyn), a key player in PD genetics and pathogenesis. Methods Nigral dopaminergic neuron toxicity induced by local overexpression of aSyn was assessed in mice that have an inactivating mutation of MC1R, overexpress its wild-type transgene, or were treated with MC1R agonists. The role of nuclear factor erythroid 2-related factor 2 (Nrf2) in MC1R-mediated protection against αSyn was characterized in vitro. Furthermore, MC1R expression was determined in human postmortem midbrain from patients with PD and unaffected subjects. Results Targeted expression of αSyn in the nigrostriatal pathway induced exacerbated synuclein pathologies in MC1R mutant mice, which were accompanied by neuroinflammation and altered Nrf2 responses, and reversed by the human MC1R transgene. Two MC1R agonists were neuroprotective against αSyn-induced dopaminergic neurotoxicity. In vitro experiments showed that Nrf2 was a necessary mediator of MC1R effects. Lastly, MC1R was present in dopaminergic neurons in the human substantia nigra and appeared to be reduced at the tissue level in PD patients. Conclusion Our study supports an interaction between MC1R and αSyn that can be mediated by neuronal MC1R possibly through Nrf2. It provides evidence for MC1R as a therapeutic target and a rationale for development of MC1R-activating strategies for PD. Supplementary Information The online version contains supplementary material available at 10.1186/s13024-022-00520-4.
Collapse
Affiliation(s)
- Waijiao Cai
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA.,Department of Integrative Medicine, HuaShan Hospital, Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Pranay Srivastava
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA.,Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Towson, MD, USA
| | - Danielle Feng
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Yue Lin
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Charles R Vanderburg
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA.,Harvard NeuroDiscovery Advanced Tissue Resource Center, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Yuehang Xu
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | | | - Matthew P Frosch
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA.,Harvard NeuroDiscovery Advanced Tissue Resource Center, Massachusetts General Hospital, Harvard Medical School, Boston, USA.,Neuropathology Service, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - David E Fisher
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Michael A Schwarzschild
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA.,Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Towson, MD, USA
| | - Xiqun Chen
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA. .,Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Towson, MD, USA.
| |
Collapse
|
26
|
Rosa ER, Jesús ME, Gloria BK. Behavioral and Fluorescent-Based Immunohistochemistry Protocols for Examining Antidepressant-Like Effects of Melatonin in Mice. Methods Mol Biol 2022; 2550:463-476. [PMID: 36180714 DOI: 10.1007/978-1-0716-2593-4_45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Antidepressants are characterized by their ability to decrease despair behavior assessed in mice as a decrease in immobility time in the forced swimming test (FST) (antidepressant-like behavior). This behavioral parameter is associated with increased neurogenesis in the dentate gyrus of the hippocampus of the rodents summitted to this test. Herein, we describe an optimized protocol used to characterize the melatonin antidepressant-like effect associated with its pro-neurogenic activity after an acute and a triple administration to mice measured by the FST and fluorescence-based immunohistochemistry in brain tissue, respectively.
Collapse
Affiliation(s)
- Estrada-Reyes Rosa
- Laboratorio de Fitofarmacología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Muñoz Estrada Jesús
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Benítez-King Gloria
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico.
| |
Collapse
|
27
|
Kuc CA, Brott JT, Thorpe HHA, Smart A, Vessey JP. Staufen 1 is expressed by neural precursor cells in the developing murine cortex but is dispensable for NPC self-renewal and neuronal differentiation in vitro. Brain Res 2021; 1773:147700. [PMID: 34678304 DOI: 10.1016/j.brainres.2021.147700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/14/2021] [Accepted: 10/17/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND Proper development of the cerebral cortex relies on asymmetric divisions of neural precursor cells (NPCs) to produce a recurring NPC and a differentiated neuron. Asymmetric divisions are promoted by the differential localization of cell-fate determinants, such as mRNA, between daughter cells. Staufen 1 (Stau1) is an RNA-binding protein known to localize mRNA in mature hippocampal neurons. Its expression pattern and role in the developing mammalian cortex remains unknown. RESULTS Both stau1 mRNA and Stau1 protein were found to be expressed in all cells of the developing murine cortex. Stau1 protein expression was characterized spatially and temporally throughout cortical development and found to be present in all stages investigated. We observed expression in the nucleus, cytoplasm and distal processes of both NPCs and newly born neurons and found it to shuttle between the nucleus and the cytoplasm. Upon shRNA-mediated knock-down of Stau1 in primary cultures of the developing cortex, we did not observe any phenotype in NPCs. They were able to both self-renew and generate neurons in the absence of Stau1 expression. CONCLUSIONS We propose that Stau1 is either dispensable for the development of the cerebral cortex or that its paralogue, Stau2, is able to compensate for its loss.
Collapse
Affiliation(s)
- C A Kuc
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, Guelph, ON, Canada
| | - J T Brott
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, Guelph, ON, Canada
| | - H H A Thorpe
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, Guelph, ON, Canada
| | - A Smart
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, Guelph, ON, Canada
| | - J P Vessey
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
28
|
Razavi Y, Keyhanfar F, Haghparast A, Shabani R, Mehdizadeh M. Cannabidiol promotes neurogenesis in the dentate gyrus during an abstinence period in rats following chronic exposure to methamphetamine. Metab Brain Dis 2021; 36:1381-1390. [PMID: 34143376 DOI: 10.1007/s11011-021-00774-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/06/2021] [Indexed: 10/21/2022]
Abstract
Chronic methamphetamine (meth) abuse can lead to certain deficits in the hippocampal function by affecting the hippocampal neurogenesis and plasticity. To determine whether cannabidiol (CBD) can promote proliferation and maturation of neuronal progenitor cells, this study investigated the CBD effect on neurogenesis in the hippocampal dentate gyrus (DG) following chronic exposure to meth in rats. The rats received 2 mg/kg of meth twice a day for ten days. Next, immunofluorescence was performed to evaluate the effect of intracerebroventricular (ICV) administration of CBD (50 μg/5 μL) over an abstinence period (ten days) on the expression levels of neurogenesis markers, such as Ki67, NeuN, and doublecortin (DCX). Moreover, neuronal degeneration in the hippocampus was assessed using Nissl staining. According to our findings, repeated ICV administration of CBD improved cell proliferation and neurogenesis and increased the number of Ki-67 and DCX-positive cells in the abstinence period. Meanwhile, meth treatment subjects caused a significant decrease in the number of neurogenesis makers, as compared to the control group. The neurogenesis markers (Ki-67 and DCX) could be somewhat reversed, while NeuN did not show any significant increase in the CBD group. Our findings demonstrated that CBD can induce neuroprotective effects by modulating neurogenesis. Therefore, it can provide a promising therapeutic approach to improve cognitive performance following chronic exposure to psychostimulant drugs, including meth.
Collapse
Affiliation(s)
- Yasaman Razavi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Fariborz Keyhanfar
- Department of Pharmacology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ronak Shabani
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Mehdizadeh
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
29
|
Refining the Identity and Role of Kv4 Channels in Mouse Substantia Nigra Dopaminergic Neurons. eNeuro 2021; 8:ENEURO.0207-21.2021. [PMID: 34131060 PMCID: PMC8293280 DOI: 10.1523/eneuro.0207-21.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 05/17/2021] [Indexed: 11/21/2022] Open
Abstract
Substantia nigra pars compacta (SNc) dopaminergic (DA) neurons display a peculiar electrical phenotype characterized in vitro by a spontaneous tonic regular activity (pacemaking activity), a broad action potential (AP) and a biphasic postinhibitory response. The transient A-type current (IA) is known to play a crucial role in this electrical phenotype, and so far, this current was considered to be carried exclusively by Kv4.3 potassium channels. Using Kv4.3−/− transgenic mice, we demonstrate that the constitutive loss of this channel is associated with increased exploratory behavior and impaired motor learning at the behavioral level. Consistently, it is also associated with a lack of compensatory changes in other ion currents at the cellular level. Using antigen retrieval (AR) immunohistochemistry, we then demonstrate that Kv4.2 potassium channels are also expressed in SNc DA neurons, although their contribution to IA appears significant only in a minority of neurons (∼5–10%). Using correlative analysis on recorded electrophysiological parameters and multicompartment modeling, we then demonstrate that, rather than its conductance level, IA gating kinetics (inactivation time constant) appear as the main biophysical property defining postinhibitory rebound delay and pacemaking frequency. Moreover, we show that the hyperpolarization-activated current (IH) has an opposing and complementary influence on the same firing features.
Collapse
|
30
|
Moldavan M, Cravetchi O, Allen CN. Diurnal properties of tonic and synaptic GABA A receptor-mediated currents in suprachiasmatic nucleus neurons. J Neurophysiol 2021; 126:637-652. [PMID: 34259044 DOI: 10.1152/jn.00556.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Synaptic and extrasynaptic GABAA receptor (GABAAR)-mediated neurotransmission is a critical component of the suprachiasmatic nucleus (SCN) neuronal network. However, the properties of the GABAA tonic current (Itonic) and its origin remain unexplored. Spontaneous GABAA postsynaptic currents (sGPSCs) and Itonic were recorded from SCN neurons with the whole cell voltage-clamp technique at different times of the day. GABAAR antagonists (bicuculline, gabazine, and picrotoxin) inhibited sGPSC and induced an outward shift of the holding current, which defined the Itonic amplitude. The sGPSC frequency, synaptic charge transfer, and Itonic amplitude all demonstrated significant diurnal rhythms, with peaks in the middle of the day [zeitgeber time (ZT)7-8] and nadirs at night (ZT19-20). The Itonic amplitude increased proportionally with the sGPSC frequency and synaptic charge transfer during the day and required action potential-mediated GABA release, which was confirmed by TTX application. The activation of presynaptic GABAB receptors by baclofen did not significantly alter the Itonic of neurons with low-frequency sGPSC. The equilibrium potential (Eq) for Itonic was similar to the Eq for chloride and GABAA receptor-activated currents. Itonic showed outward rectification at membrane potentials over the range of -70 to -10 mV and then was linear at voltages greater than -10 mV. GABAAR containing α4-, α5-, and δ-subunits were expressed in SCN, and their contribution to Itonic was confirmed by application of the GABAAR agonist 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP) and the GABAAR inverse agonist 11,12,13,13a-tetrahydro-7-methoxy-9-oxo-9H-imidazo[1,5-a]pyrrolo[2,1-c][1,4]benzodiazepine-1-carboxylic acid ethyl ester (L655,708). Thus, the Itonic was mediated by extrasynaptic GABAARs activated predominantly by GABA diffusing out of GABAergic synapses.NEW & NOTEWORTHY A tonic current (Itonic) mediated by GABAA receptors (GABAARs) containing α4-, α5- and δ-subunits was observed in the suprachiasmatic nucleus. The Itonic amplitude strongly depended on the action potential-mediated synaptic release of GABA. The equilibrium potential for Itonic corresponds to that for GABAA currents. The frequency of GABAA postsynaptic currents and Itonic amplitude increased during the day, with peak in the middle of the day, and then gradually declined with a nadir at night, thus showing a diurnal rhythm.
Collapse
Affiliation(s)
- Michael Moldavan
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, Oregon
| | - Olga Cravetchi
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, Oregon
| | - Charles N Allen
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, Oregon.,Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
31
|
Fish KN, Rocco BR, DeDionisio AM, Dienel SJ, Sweet RA, Lewis DA. Altered Parvalbumin Basket Cell Terminals in the Cortical Visuospatial Working Memory Network in Schizophrenia. Biol Psychiatry 2021; 90:47-57. [PMID: 33892915 PMCID: PMC8243491 DOI: 10.1016/j.biopsych.2021.02.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 01/21/2021] [Accepted: 02/11/2021] [Indexed: 12/28/2022]
Abstract
BACKGROUND Visuospatial working memory (vsWM), which is commonly impaired in schizophrenia, involves information processing across the primary visual cortex, association visual cortex, posterior parietal cortex, and dorsolateral prefrontal cortex (DLPFC). Within these regions, vsWM requires inhibition from parvalbumin-expressing basket cells (PVBCs). Here, we analyzed indices of PVBC axon terminals across regions of the vsWM network in schizophrenia. METHODS For 20 matched pairs of subjects with schizophrenia and unaffected comparison subjects, tissue sections from the primary visual cortex, association visual cortex, posterior parietal cortex, and DLPFC were immunolabeled for PV, the 65- and 67-kDa isoforms of glutamic acid decarboxylase (GAD65 and GAD67) that synthesize GABA (gamma-aminobutyric acid), and the vesicular GABA transporter. The density of PVBC terminals and of protein levels per terminal was quantified in layer 3 of each cortical region using fluorescence confocal microscopy. RESULTS In comparison subjects, all measures, except for GAD65 levels, exhibited a caudal-to-rostral decline across the vsWM network. In subjects with schizophrenia, the density of detectable PVBC terminals was significantly lower in all regions except the DLPFC, whereas PVBC terminal levels of PV, GAD67, and GAD65 proteins were lower in all regions. A composite measure of inhibitory strength was lower in subjects with schizophrenia, although the magnitude of the diagnosis effect was greater in the primary visual, association visual, and posterior parietal cortices than in the DLPFC. CONCLUSIONS In schizophrenia, alterations in PVBC terminals across the vsWM network suggest the presence of a shared substrate for cortical dysfunction during vsWM tasks. However, regional differences in the magnitude of the disease effect on an index of PVBC inhibitory strength suggest region-specific alterations in information processing during vsWM tasks.
Collapse
Affiliation(s)
- Kenneth N Fish
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania.
| | - Brad R Rocco
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Adam M DeDionisio
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Samuel J Dienel
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Robert A Sweet
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - David A Lewis
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
32
|
Kontou G, Antonoudiou P, Podpolny M, Szulc BR, Arancibia-Carcamo IL, Higgs NF, Lopez-Domenech G, Salinas PC, Mann EO, Kittler JT. Miro1-dependent mitochondrial dynamics in parvalbumin interneurons. eLife 2021; 10:65215. [PMID: 34190042 PMCID: PMC8294849 DOI: 10.7554/elife.65215] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 06/25/2021] [Indexed: 12/22/2022] Open
Abstract
The spatiotemporal distribution of mitochondria is crucial for precise ATP provision and calcium buffering required to support neuronal signaling. Fast-spiking GABAergic interneurons expressing parvalbumin (PV+) have a high mitochondrial content reflecting their large energy utilization. The importance for correct trafficking and precise mitochondrial positioning remains poorly elucidated in inhibitory neurons. Miro1 is a Ca²+-sensing adaptor protein that links mitochondria to the trafficking apparatus, for their microtubule-dependent transport along axons and dendrites, in order to meet the metabolic and Ca2+-buffering requirements of the cell. Here, we explore the role of Miro1 in PV+ interneurons and how changes in mitochondrial trafficking could alter network activity in the mouse brain. By employing live and fixed imaging, we found that the impairments in Miro1-directed trafficking in PV+ interneurons altered their mitochondrial distribution and axonal arborization, while PV+ interneuron-mediated inhibition remained intact. These changes were accompanied by an increase in the ex vivo hippocampal γ-oscillation (30–80 Hz) frequency and promoted anxiolysis. Our findings show that precise regulation of mitochondrial dynamics in PV+ interneurons is crucial for proper neuronal signaling and network synchronization.
Collapse
Affiliation(s)
- Georgina Kontou
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Pantelis Antonoudiou
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Marina Podpolny
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Blanka R Szulc
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - I Lorena Arancibia-Carcamo
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Nathalie F Higgs
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Guillermo Lopez-Domenech
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Patricia C Salinas
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Edward O Mann
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.,Oxford Ion Channel Initiative, University of Oxford, Oxford, United Kingdom
| | - Josef T Kittler
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| |
Collapse
|
33
|
Deng Y, Wang H, Joni M, Sekhri R, Reiner A. Progression of basal ganglia pathology in heterozygous Q175 knock-in Huntington's disease mice. J Comp Neurol 2021; 529:1327-1371. [PMID: 32869871 PMCID: PMC8049038 DOI: 10.1002/cne.25023] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/07/2020] [Accepted: 08/26/2020] [Indexed: 12/29/2022]
Abstract
We used behavioral testing and morphological methods to detail the progression of basal ganglia neuron type-specific pathology and the deficits stemming from them in male heterozygous Q175 mice, compared to age-matched WT males. A rotarod deficit was not present in Q175 mice until 18 months, but increased open field turn rate (reflecting hyperkinesia) and open field anxiety were evident at 6 months. No loss of striatal neurons was seen out to 18 months, but ENK+ and DARPP32+ striatal perikarya were fewer by 6 months, due to diminished expression, with further decline by 18 months. No reduction in SP+ striatal perikarya or striatal interneurons was seen in Q175 mice at 18 months, but cholinergic interneurons showed dendrite attenuation by 6 months. Despite reduced ENK expression in indirect pathway striatal perikarya, ENK-immunostained terminals in globus pallidus externus (GPe) were more abundant at 6 months and remained so out to 18 months. Similarly, SP-immunostained terminals from striatal direct pathway neurons were more abundant in globus pallidus internus and substantia nigra at 6 months and remained so at 18 months. FoxP2+ arkypallidal GPe neurons and subthalamic nucleus neurons were lost by 18 months but not prototypical PARV+ GPe neurons or dopaminergic nigral neurons. Our results show that striatal projection neuron abnormalities and behavioral abnormalities reflecting them develop between 2 and 6 months of age in Q175 male heterozygotes, indicating early effects of the HD mutation. The striatal pathologies resemble those in human HD, but are less severe at 18 months than even in premanifest HD.
Collapse
Affiliation(s)
- Yunping Deng
- Department of Anatomy and NeurobiologyThe University of Tennessee Health Science CenterMemphisTennesseeUSA
| | - Hongbing Wang
- Department of Anatomy and NeurobiologyThe University of Tennessee Health Science CenterMemphisTennesseeUSA
| | - Marion Joni
- Department of Anatomy and NeurobiologyThe University of Tennessee Health Science CenterMemphisTennesseeUSA
| | - Radhika Sekhri
- Department of PathologyThe University of Tennessee Health Science CenterMemphisTennesseeUSA
| | - Anton Reiner
- Department of Anatomy and NeurobiologyThe University of Tennessee Health Science CenterMemphisTennesseeUSA
- Department of OphthalmologyThe University of Tennessee Health Science CenterMemphisTennesseeUSA
| |
Collapse
|
34
|
Ekuban FA, Zong C, Takikawa M, Morikawa K, Sakurai T, Ichihara S, Itoh K, Yamamoto M, Ohsako S, Ichihara G. Genetic ablation of Nrf2 exacerbates neurotoxic effects of acrylamide in mice. Toxicology 2021; 456:152785. [PMID: 33872730 DOI: 10.1016/j.tox.2021.152785] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/20/2021] [Accepted: 04/12/2021] [Indexed: 12/20/2022]
Abstract
Acrylamide (ACR), a recognized neurotoxicant in humans and experimental animals, is widely used in industry and in food generated through Maillard reaction. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a master regulator of the cellular defense system and activates antioxidants and cytoprotective genes. The exact roles of Nrf2 in environmental electrophile-induced neurotoxicity is poorly understood. The aim of this study was to determine the roles of Nrf2 in ACR-induced neurotoxicity including degeneration of monoaminergic axons and sensorimotor dysfunction. Male 10-week-old C57BL/6JJcl Nrf2-knockout mice and wild type (WT) counterparts were each divided into four groups of 12 and provided with drinking water containing acrylamide at 0, 67, 110 or 200 ppm for four weeks. The effects of acrylamide were examined by landing foot spread test, immunohistochemistry for noradrenaline (NA) and serotonin (5-HT)-containing axons and Iba1-positive microglia in the prefrontal cortex as well as quantitative real-time polymerase chain reaction (qRT-PCR) on antioxidant, proinflammatory and anti-inflammatory genes in the prefrontal cortex. Relative to the wild type, exposure of Nrf2-knockout mice to acrylamide increased hindlimb splay length, microglial area and process length as well as decreasing the density of NA and 5-HT-immunoreactive axons to a greater extent. Moreover, deletion of Nrf2 gene suppressed acrylamide-induced mRNA upregulation of Nrf2-antioxidants, NAD(P): quinone oxidoreductase 1 (NQO1), superoxide dismutase-1 (SOD-1) and heme oxygenase-1 (HO-1) as well as anti-inflammatory markers such as, arginase-1 (Arg1), found in the inflammatory zone-1 (Fizz1), chitinase-like 3 (Chi3l3), interleukin-4 receptor alpha (IL-4Rα), cluster of differentiation 206 (CD206) and transforming growth factor beta-1 (TGFβ1) while enhancing acrylamide-induced upregulation of pro-inflammatory cytokines, interleukin-1 beta (IL-1β), tumor necrosis-alpha (TNF-α) and inducible nitric oxide synthase (iNOS) in the prefrontal cortex. The results demonstrate susceptibility of mice lacking the Nrf2 gene to acrylamide-induced neurotoxicity and neuroinflammation with the activation of microglia. Moreover, the results suggest the role of Nrf2 not only in induction of antioxidant gene expression, but also in suppression of proinflammatory cytokine gene expression.
Collapse
Affiliation(s)
- Frederick Adams Ekuban
- Department of Occupational and Environmental Health, Tokyo University of Science, Noda, Japan
| | - Cai Zong
- Department of Occupational and Environmental Health, Tokyo University of Science, Noda, Japan
| | - Madoka Takikawa
- Department of Occupational and Environmental Health, Tokyo University of Science, Noda, Japan
| | - Kota Morikawa
- Department of Occupational and Environmental Health, Tokyo University of Science, Noda, Japan
| | - Toshihiro Sakurai
- Department of Occupational and Environmental Health, Tokyo University of Science, Noda, Japan
| | - Sahoko Ichihara
- Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, Shimotsuke, Japan
| | - Ken Itoh
- Department of Stress Response Hirosaki University, Hirosaki, Japan
| | - Masayuki Yamamoto
- Department of Molecular Biochemistry Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Seiichiroh Ohsako
- Laboratory of Environmental Health Sciences, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Gaku Ichihara
- Department of Occupational and Environmental Health, Tokyo University of Science, Noda, Japan.
| |
Collapse
|
35
|
Rink S, Pavlov S, Wöhler A, Bendella H, Manthou M, Papamitsou T, Dunlop SA, Angelov DN. Numbers of Axons in Spared Neural Tissue Bridges But Not Their Widths or Areas Correlate With Functional Recovery in Spinal Cord-Injured Rats. J Neuropathol Exp Neurol 2021; 79:1203-1217. [PMID: 32594136 DOI: 10.1093/jnen/nlaa050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 04/11/2020] [Accepted: 05/08/2020] [Indexed: 11/14/2022] Open
Abstract
The relationships between various parameters of tissue damage and subsequent functional recovery after spinal cord injury (SCI) are not well understood. Patients may regain micturition control and walking despite large postinjury medullar cavities. The objective of this study was to establish possible correlations between morphological findings and degree of functional recovery after spinal cord compression at vertebra Th8 in rats. Recovery of motor (Basso, Beattie, Bresnahan, foot-stepping angle, rump-height index, and ladder climbing), sensory (withdrawal latency), and bladder functions was analyzed at 1, 3, 6, 9, and 12 weeks post-SCI. Following perfusion fixation, spinal cord tissue encompassing the injury site was cut in longitudinal frontal sections. Lesion lengths, lesion volumes, and areas of perilesional neural tissue bridges were determined after staining with cresyl violet. The numbers of axons in these bridges were quantified after staining for class III β-tubulin. We found that it was not the area of the spared tissue bridges, which is routinely determined by magnetic resonance imaging (MRI), but the numbers of axons in them that correlated with functional recovery after SCI (Spearman's ρ > 0.8; p < 0.001). We conclude that prognostic statements based only on MRI measurements should be considered with caution.
Collapse
Affiliation(s)
- Svenja Rink
- Department of Prosthetic Dentistry, School of Dental and Oral Medicine, University of Cologne, Germany
| | - Stoyan Pavlov
- Department of Anatomy, Histology and Embryology, Medical University, Varna, Bulgaria
| | | | - Habib Bendella
- Department of Neurosurgery, University of Witten/Herdecke, Cologne Merheim Medical Center (CMMC), Cologne, Germany
| | - Marilena Manthou
- Department of Histology and Embryology, Aristotle University Thessaloniki, Greece
| | - Theodora Papamitsou
- Department of Histology and Embryology, Aristotle University Thessaloniki, Greece
| | - Sarah A Dunlop
- School of Biological Sciences, The University of Western Australia, Australia
| | | |
Collapse
|
36
|
Yokokawa K, Iwahara N, Hisahara S, Emoto MC, Saito T, Suzuki H, Manabe T, Matsumura A, Matsushita T, Suzuki S, Kawamata J, Sato-Akaba H, Fujii HG, Shimohama S. Transplantation of Mesenchymal Stem Cells Improves Amyloid-β Pathology by Modifying Microglial Function and Suppressing Oxidative Stress. J Alzheimers Dis 2020; 72:867-884. [PMID: 31640102 PMCID: PMC6918908 DOI: 10.3233/jad-190817] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cells (MSC) are increasingly being studied as a source of cell therapy for neurodegenerative diseases, and several groups have reported their beneficial effects on Alzheimer’s disease (AD). In this study using AD model mice (APdE9), we found that transplantation of MSC via the tail vein improved spatial memory in the Morris water maze test. Using electron paramagnetic resonance imaging to evaluate the in vivo redox state of the brain, we found that MSC transplantation suppressed oxidative stress in AD model mice. To elucidate how MSC treatment ameliorates oxidative stress, we focused on amyloid-β (Aβ) pathology and microglial function. MSC transplantation reduced Aβ deposition in the cortex and hippocampus. Transplantation of MSC also decreased Iba1-positive area in the cortex and reduced activated ameboid shaped microglia. On the other hand, MSC transplantation accelerated accumulation of microglia around Aβ deposits and prompted microglial Aβ uptake and clearance as shown by higher frequency of Aβ-containing microglia. MSC transplantation also increased CD14-positive microglia in vivo, which play a critical role in Aβ uptake. To confirm the effects of MSC on microglia, we co-cultured the mouse microglial cell line MG6 with MSC. Co-culture with MSC enhanced Aβ uptake by MG6 cells accompanied by upregulation of CD14 expression. Additionally, co-culture of MG6 cells with MSC induced microglial phenotype switching from M1 to M2 and suppressed production of proinflammatory cytokines. These data indicate that MSC treatment has the potential to ameliorate oxidative stress through modification of microglial functions, thereby improving Aβ pathology in AD model mice.
Collapse
Affiliation(s)
- Kazuki Yokokawa
- Department of Neurology, School of Medicine, Sapporo Medical University, Chuo-ku, Sapporo, Hokkaido, Japan
| | - Naotoshi Iwahara
- Department of Neurology, School of Medicine, Sapporo Medical University, Chuo-ku, Sapporo, Hokkaido, Japan.,Department of Pharmacology, School of Medicine, Sapporo Medical University, Chuo-ku, Sapporo, Hokkaido, Japan
| | - Shin Hisahara
- Department of Neurology, School of Medicine, Sapporo Medical University, Chuo-ku, Sapporo, Hokkaido, Japan
| | - Miho C Emoto
- Department of Clinical Laboratory Science, School of Medical Technology, Health Sciences University of Hokkaido, Sapporo, Hokkaido, Japan
| | - Taro Saito
- Department of Neurology, School of Medicine, Sapporo Medical University, Chuo-ku, Sapporo, Hokkaido, Japan
| | - Hiromi Suzuki
- Department of Neurology, School of Medicine, Sapporo Medical University, Chuo-ku, Sapporo, Hokkaido, Japan
| | - Tatsuo Manabe
- Department of Neurology, School of Medicine, Sapporo Medical University, Chuo-ku, Sapporo, Hokkaido, Japan
| | - Akihiro Matsumura
- Department of Neurology, School of Medicine, Sapporo Medical University, Chuo-ku, Sapporo, Hokkaido, Japan
| | - Takashi Matsushita
- Department of Neurology, School of Medicine, Sapporo Medical University, Chuo-ku, Sapporo, Hokkaido, Japan
| | - Syuuichirou Suzuki
- Department of Neurology, School of Medicine, Sapporo Medical University, Chuo-ku, Sapporo, Hokkaido, Japan
| | - Jun Kawamata
- Department of Neurology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Hideo Sato-Akaba
- Department of System Innovation, Graduate School of Engineering Science, Osaka University, Osaka, Japan
| | - Hirotada G Fujii
- Cancer Preventive Institute, Health Sciences University of Hokkaido, Ishikari, Hokkaido, Japan
| | - Shun Shimohama
- Department of Neurology, School of Medicine, Sapporo Medical University, Chuo-ku, Sapporo, Hokkaido, Japan
| |
Collapse
|
37
|
Immunofluorescent Staining of Adult Murine Paraffin-Embedded Skeletal Tissue. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2020; 2230:337-344. [PMID: 33197023 DOI: 10.1007/978-1-0716-1028-2_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Immunohistochemistry, or immunolabeling, is a key method for the identification of protein expression and localization. Successful detection relies on a low signal-to-noise ratio, which is affected greatly by antibody specificity as well as the staining protocol. Immunohistochemistry in the mouse is challenging, particularly in adult skeletal tissue, due to the need for long decalcification, high autofluorescence and high levels of endogenous peroxidase. Here, we describe a highly sensitive protocol for protein detection in decalcified paraffin-embedded sections from adult mouse skeletal tissue. By using four levels of amplification, this method allows for the identification of even low-abundance proteins.
Collapse
|
38
|
Nordman J, Li Z. The Dorsal Raphe Regulates the Duration of Attack through the Medial Orbitofrontal Cortex and Medial Amygdala. eNeuro 2020; 7:ENEURO.0331-20.2020. [PMID: 33055195 PMCID: PMC7665904 DOI: 10.1523/eneuro.0331-20.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/21/2020] [Accepted: 09/25/2020] [Indexed: 12/20/2022] Open
Abstract
The dorsal raphe (DR) is an evolutionarily conserved brain structure that is involved in aggressive behavior. It projects onto numerous cortical and limbic areas underlying attack behavior. The specific neurocircuit through which the DR regulates aggression, however, is largely unclear. In this study we show that DR neurons expressing CaMKIIα are activated by attack behavior in mice. These neurons project to the medial aspect of the orbitofrontal cortex (OFC; MeOC) and the medial amygdala (MeA), two key regions within the neural circuit known to control aggressive behavior. Using an in vivo optogenetic approach, we show that attack bouts are shortened by inhibiting CaMKIIα+ neurons in the DR and their axons at the MeOC and prolonged by stimulating the DR-MeOC axons during an attack. By contrast, stimulating the axons of CaMKIIα+ DR neurons at the MeA shortens attack. Notably, neither the DR-MeOC or DR-MeA pathway initiates attack when stimulated. These results indicate that the DR-MeOC and DR-MeA pathways regulate the duration of attack behavior in opposite directions, revealing a circuit mechanism for the control of attack by the DR.
Collapse
Affiliation(s)
- Jacob Nordman
- Section on Synapse Development Plasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892
- National Institute of General Medical Sciences, National Institutes of Health, Bethesda, MD 20892
| | - Zheng Li
- Section on Synapse Development Plasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
39
|
Ramon-Duaso C, Gener T, Consegal M, Fernández-Avilés C, Gallego JJ, Castarlenas L, Swanson MS, de la Torre R, Maldonado R, Puig MV, Robledo P. Methylphenidate Attenuates the Cognitive and Mood Alterations Observed in Mbnl2 Knockout Mice and Reduces Microglia Overexpression. Cereb Cortex 2020; 29:2978-2997. [PMID: 30060068 DOI: 10.1093/cercor/bhy164] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 05/25/2018] [Indexed: 12/15/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a multisystem disorder affecting muscle and central nervous system (CNS) function. The cellular mechanisms underlying CNS alterations are poorly understood and no useful treatments exist for the neuropsychological deficits observed in DM1 patients. We investigated the progression of behavioral deficits present in male and female muscleblind-like 2 (Mbnl2) knockout (KO) mice, a rodent model of CNS alterations in DM1, and determined the biochemical and electrophysiological correlates in medial prefrontal cortex (mPFC), striatum and hippocampus (HPC). Male KO exhibited more cognitive impairment and depressive-like behavior than female KO mice. In the mPFC, KO mice showed an overexpression of proinflammatory microglia, increased transcriptional levels of Dat, Drd1, and Drd2, exacerbated dopamine levels, and abnormal neural spiking and oscillatory activities in the mPFC and HPC. Chronic treatment with methylphenidate (MPH) (1 and 3 mg/kg) reversed the behavioral deficits, reduced proinflammatory microglia in the mPFC, normalized prefrontal Dat and Drd2 gene expression, and increased Bdnf and Nrf2 mRNA levels. These findings unravel the mechanisms underlying the beneficial effects of MPH on cognitive deficits and depressive-like behaviors observed in Mbnl2 KO mice, and suggest that MPH could be a potential candidate to treat the CNS deficiencies in DM1 patients.
Collapse
Affiliation(s)
- Carla Ramon-Duaso
- Integrative Pharmacology and Systems Neuroscience, IMIM-Hospital del Mar Research Institute, Barcelona, Spain
| | - Thomas Gener
- Integrative Pharmacology and Systems Neuroscience, IMIM-Hospital del Mar Research Institute, Barcelona, Spain
| | - Marta Consegal
- Integrative Pharmacology and Systems Neuroscience, IMIM-Hospital del Mar Research Institute, Barcelona, Spain
| | - Cristina Fernández-Avilés
- Integrative Pharmacology and Systems Neuroscience, IMIM-Hospital del Mar Research Institute, Barcelona, Spain
| | - Juan José Gallego
- Integrative Pharmacology and Systems Neuroscience, IMIM-Hospital del Mar Research Institute, Barcelona, Spain
| | - Laura Castarlenas
- Integrative Pharmacology and Systems Neuroscience, IMIM-Hospital del Mar Research Institute, Barcelona, Spain
| | - Maurice S Swanson
- Department of Molecular Genetics and Microbiology and the Center for NeuroGenetics, University of Florida, College of Medicine, Gainesville, FL, USA
| | - Rafael de la Torre
- Integrative Pharmacology and Systems Neuroscience, IMIM-Hospital del Mar Research Institute, Barcelona, Spain.,CIBER de la Fisiopatología de la Obesidad y la Nutrición (CIBERON), Instituto de Salud Carlos III, Madrid, Spain
| | - Rafael Maldonado
- Integrative Pharmacology and Systems Neuroscience, IMIM-Hospital del Mar Research Institute, Barcelona, Spain.,Laboratory of Neuropharmacology, Department of Experimental al Health Sciences, Pompeu Fabra University, Barcelona, Spain
| | - M Victoria Puig
- Integrative Pharmacology and Systems Neuroscience, IMIM-Hospital del Mar Research Institute, Barcelona, Spain
| | - Patricia Robledo
- Integrative Pharmacology and Systems Neuroscience, IMIM-Hospital del Mar Research Institute, Barcelona, Spain.,Laboratory of Neuropharmacology, Department of Experimental al Health Sciences, Pompeu Fabra University, Barcelona, Spain
| |
Collapse
|
40
|
Nordman JC, Ma X, Gu Q, Potegal M, Li H, Kravitz AV, Li Z. Potentiation of Divergent Medial Amygdala Pathways Drives Experience-Dependent Aggression Escalation. J Neurosci 2020; 40:4858-4880. [PMID: 32424020 PMCID: PMC7326350 DOI: 10.1523/jneurosci.0370-20.2020] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/25/2020] [Accepted: 04/14/2020] [Indexed: 12/20/2022] Open
Abstract
Heightened aggression can be serious concerns for the individual and society at large and are symptoms of many psychiatric illnesses, such as post-traumatic stress disorder. The circuit and synaptic mechanisms underlying experience-induced aggression increase, however, are poorly understood. Here we find that prior attack experience leading to an increase in aggressive behavior, known as aggression priming, activates neurons within the posterior ventral segment of the medial amygdala (MeApv). Optogenetic stimulation of MeApv using a synaptic depression protocol suppresses aggression priming, whereas high-frequency stimulation enhances aggression, mimicking attack experience. Interrogation of the underlying neural circuitry revealed that the MeApv mediates aggression priming via synaptic connections with the ventromedial hypothalamus (VmH) and bed nucleus of the stria terminalis (BNST). These pathways undergo NMDAR-dependent synaptic potentiation after attack. Furthermore, we find that the MeApv-VmH synapses selectively control attack duration, whereas the MeApv-BNST synapses modulate attack frequency, both with no effect on social behavior. Synaptic potentiation of the MeApv-VmH and MeApv-BNST pathways contributes to increased aggression induced by traumatic stress, and weakening synaptic transmission at these synapses blocks the effect of traumatic stress on aggression. These results reveal a circuit and synaptic basis for aggression modulation by experience that can be potentially leveraged toward clinical interventions.SIGNIFICANCE STATEMENT Heightened aggression can have devastating social consequences and may be associated with psychiatric disorders, such as post-traumatic stress disorder. The circuit and synaptic mechanisms underlying experience-induced aggression escalation, however, are poorly understood. Here we identify two aggression pathways between the posterior ventral segment of the medial amygdala and its downstream synaptic partners, the ventromedial hypothalamus and bed nucleus of the stria terminalis that undergo synaptic potentiation after attack and traumatic stress to enhance aggression. Notably, weakening synaptic transmission in these circuits blocks aggression priming, naturally occurring aggression, and traumatic stress-induced aggression increase. These results illustrate a circuit and synaptic basis of aggression modulation by experience, which can be potentially targeted for clinical interventions.
Collapse
Affiliation(s)
- Jacob C Nordman
- Section on Synapse Development and Plasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892
- National Institute of General Medical Sciences, National Institutes of Health, Bethesda, Maryland 20892
| | - Xiaoyu Ma
- Section on Synapse Development and Plasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892
| | - Qinhua Gu
- Section on Synapse Development and Plasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892
| | - Michael Potegal
- Program in Occupational Therapy, Center for Neurobehavioral Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - He Li
- Department of Psychiatry, Uniformed Services University, Bethesda, Maryland 20892
| | - Alexxai V Kravitz
- Eating and Addiction Section, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Zheng Li
- Section on Synapse Development and Plasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
41
|
Collins L, Brunjes P. Experimental Demyelination of the Lateral Olfactory Tract and Anterior Commissure. Neuroscience 2020; 434:93-101. [PMID: 32224229 DOI: 10.1016/j.neuroscience.2020.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 03/13/2020] [Accepted: 03/18/2020] [Indexed: 11/27/2022]
Abstract
Demyelination significantly affects brain function. Several experimental methods, each inducing varying levels of myelin and neuronal damage, have been developed to understand the process of myelin loss and to find new therapies to promote remyelination. The present work investigates the effect of one such method, lysolecithin administration, on the white matter tracts in the olfactory system. The olfactory forebrain contains two distinct tracts with differing developmental histories, axonal composition, and function: the lateral olfactory tract (LOT), which carries ipsilateral olfactory information from the olfactory bulb to olfactory cortex, and the anterior commissure (AC), which interconnects olfactory regions across hemispheres. The effects of lysolecithin injections were assessed in two ways: (1) the expression of myelin basic protein, a component of compacted myelin sheaths, was quantified using immunohistochemistry and (2) electron microscopy was used to obtain measurements of myelin thickness of individual axons as well as qualitative descriptions of the extent of damage to myelin and surrounding tissue. Data were collected at 7, 14, 21, and 30 days post-injection (dpi). While both the LOT and AC exhibited significant demyelination at 7 dpi and had returned to control levels by 30 dpi, the process differed between the two tracts. Remyelination occurred more rapidly in the LOT: substantial recovery was observed in the LOT by 14 dpi, but not in the AC until 21 dpi. The findings indicate that (a) the LOT and AC are indeed suitable tracts for studying lysolecithin-induced de- and remyelination and (b) experimental demyelination proceeds differently between the two tracts.
Collapse
Affiliation(s)
- Lindsay Collins
- University of Virginia, Department of Psychology, United States; University of Oregon, Institute of Neuroscience, United States.
| | - Peter Brunjes
- University of Virginia, Department of Psychology, United States
| |
Collapse
|
42
|
Choi JG, Khan Z, Choi SZ, Kim SY, Oh MS. DA-9801, a standardized Dioscorea extract, improves memory function via the activation of nerve growth factor-mediated signaling. Nutr Neurosci 2020; 25:219-230. [DOI: 10.1080/1028415x.2020.1743916] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Jin Gyu Choi
- Department of Oriental Pharmaceutical Science, College of Pharmacy and Kyung Hee East–West Pharmaceutical Research Institute, Kyung Hee University, Dongdaemun-gu, Republic of Korea
| | - Zahra Khan
- College of Pharmacy and Gachon Institute of Pharmaceutical Science, Gachon University, Yeonsu-gu, Republic of Korea
| | | | - Sun Yeou Kim
- College of Pharmacy and Gachon Institute of Pharmaceutical Science, Gachon University, Yeonsu-gu, Republic of Korea
| | - Myung Sook Oh
- Department of Oriental Pharmaceutical Science, College of Pharmacy and Kyung Hee East–West Pharmaceutical Research Institute, Kyung Hee University, Dongdaemun-gu, Republic of Korea
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Dongdaemun-gu, Republic of Korea
| |
Collapse
|
43
|
Collins LN, Brunjes PC. The mouse olfactory peduncle 4: Development of synapses, perineuronal nets, and capillaries. J Comp Neurol 2020; 528:637-649. [PMID: 31571216 PMCID: PMC6944759 DOI: 10.1002/cne.24778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 09/03/2019] [Accepted: 09/04/2019] [Indexed: 11/09/2022]
Abstract
Olfaction is critical for survival in neonatal mammals. However, little is known about the neural substrate for this ability as few studies of synaptic development in several olfactory processing regions have been reported. Odor information detected in the nasal cavity is first processed by the olfactory bulb and then sent via the lateral olfactory tract to a series of olfactory cortical areas. The first of these, the anterior olfactory nucleus pars principalis (AONpP), is a simple, two layered cortex with an outer plexiform and inner cell zone (Layers 1 and 2, respectively). Five sets of studies examined age-related changes in the AONpP. First, immunocytochemistry for glutamatergic (VGlut1 and VGlut2) and GABAergic (VGAT) synapses demonstrated that overall synaptic patterns remained uniform with age. The second set quantified synaptic development with electron microscopy and found different developmental patterns between Layers 1 and 2. As many of the interhemispheric connections in the olfactory system arise from AONpP, the third set examined the development of crossed projections using anterograde tracers and electron microscopy to explore the maturation of this pathway. A fourth study examined ontogenetic changes in immunostaining for the proteoglycans aggrecan and brevican, markers of mesh-like extracellular structures known as perineuronal nets whose maturation is associated with the end of early critical periods of synaptogenesis. A final study found no age-related changes in the density of vasculature in the peduncle from P5 to P30. This work is among the first to examine early postnatal changes in this initial cortical region of the olfactory system.
Collapse
Affiliation(s)
- Lindsay N. Collins
- Department Psychology, University of Virginia, Charlottesville, Virginia 22904 USA
| | - Peter C. Brunjes
- Department Psychology, University of Virginia, Charlottesville, Virginia 22904 USA
| |
Collapse
|
44
|
Swier VJ, White KA, Meyerholz DK, Chefdeville A, Khanna R, Sieren JC, Quelle DE, Weimer JM. Validating indicators of CNS disorders in a swine model of neurological disease. PLoS One 2020; 15:e0228222. [PMID: 32074109 PMCID: PMC7029865 DOI: 10.1371/journal.pone.0228222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/09/2020] [Indexed: 11/18/2022] Open
Abstract
Genetically modified swine disease models are becoming increasingly important for studying molecular, physiological and pathological characteristics of human disorders. Given the limited history of these model systems, there remains a great need for proven molecular reagents in swine tissue. Here, to provide a resource for neurological models of disease, we validated antibodies by immunohistochemistry for use in examining central nervous system (CNS) markers in a recently developed miniswine model of neurofibromatosis type 1 (NF1). NF1 is an autosomal dominant tumor predisposition disorder stemming from mutations in NF1, a gene that encodes the Ras-GTPase activating protein neurofibromin. Patients classically present with benign neurofibromas throughout their bodies and can also present with neurological associated symptoms such as chronic pain, cognitive impairment, and behavioral abnormalities. As validated antibodies for immunohistochemistry applications are particularly difficult to find for swine models of neurological disease, we present immunostaining validation of antibodies implicated in glial inflammation (CD68), oligodendrocyte development (NG2, O4 and Olig2), and neuron differentiation and neurotransmission (doublecortin, GAD67, and tyrosine hydroxylase) by examining cellular localization and brain region specificity. Additionally, we confirm the utility of anti-GFAP, anti-Iba1, and anti-MBP antibodies, previously validated in swine, by testing their immunoreactivity across multiple brain regions in mutant NF1 samples. These immunostaining protocols for CNS markers provide a useful resource to the scientific community, furthering the utility of genetically modified miniswine for translational and clinical applications.
Collapse
Affiliation(s)
- Vicki J. Swier
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, South Dakota, United States of America
| | - Katherine A. White
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, South Dakota, United States of America
| | - David K. Meyerholz
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Aude Chefdeville
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, United States of America
| | - Rajesh Khanna
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, United States of America
- Graduate Interdisciplinary Program in Neuroscience; College of Medicine, University of Arizona, Tucson, Arizona, United States of America
| | - Jessica C. Sieren
- Department of Radiology and Biomedical Engineering, University of Iowa, Iowa City, Iowa, United States of America
| | - Dawn E. Quelle
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa, United States of America
| | - Jill M. Weimer
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, South Dakota, United States of America
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, South Dakota, United States of America
- * E-mail:
| |
Collapse
|
45
|
von Eugen K, Tabrik S, Güntürkün O, Ströckens F. A comparative analysis of the dopaminergic innervation of the executive caudal nidopallium in pigeon, chicken, zebra finch, and carrion crow. J Comp Neurol 2020; 528:2929-2955. [PMID: 32020608 DOI: 10.1002/cne.24878] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/16/2020] [Accepted: 01/28/2020] [Indexed: 12/17/2022]
Abstract
Despite the long, separate evolutionary history of birds and mammals, both lineages developed a rich behavioral repertoire of remarkably similar executive control generated by distinctly different brains. The seat for executive functioning in birds is the nidopallium caudolaterale (NCL) and the mammalian equivalent is known as the prefrontal cortex (PFC). Both are densely innervated by dopaminergic fibers, and are an integration center of sensory input and motor output. Whereas the variation of the PFC has been well documented in different mammalian orders, we know very little about the NCL across the avian clade. In order to investigate whether this structure adheres to species-specific variations, this study aimed to describe the trajectory of the NCL in pigeon, chicken, carrion crow and zebra finch. We employed immunohistochemistry to map dopaminergic innervation, and executed a Gallyas stain to visualize the dorsal arcopallial tract that runs between the NCL and the arcopallium. Our analysis showed that whereas the trajectory of the NCL in the chicken is highly comparable to the pigeon, the two Passeriformes show a strikingly different pattern. In both carrion crow and zebra finch, we identified four different subareas of high dopaminergic innervation that span the entire caudal forebrain. Based on their sensory input, motor output, and involvement in dopamine-related cognitive control of the delineated areas here, we propose that at least three morphologically different subareas constitute the NCL in these songbirds. Thus, our study shows that comparable to the PFC in mammals, the NCL in birds varies considerably across species.
Collapse
Affiliation(s)
- Kaya von Eugen
- Institute of Cognitive Neuroscience, Biopsychology, Ruhr University Bochum, Bochum, Germany
| | - Sepideh Tabrik
- Neurologische Klinik, Universitätsklinikum Bergmannsheil GmbH, Bochum, Germany
| | - Onur Güntürkün
- Institute of Cognitive Neuroscience, Biopsychology, Ruhr University Bochum, Bochum, Germany
| | - Felix Ströckens
- Institute of Cognitive Neuroscience, Biopsychology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
46
|
Funk D, Coen K, Tamadon S, Lê AD. Effects of the Alpha-1 Antagonist Prazosin on KOR Agonist-Induced Reinstatement of Alcohol Seeking. Int J Neuropsychopharmacol 2019; 22:724-734. [PMID: 31556948 PMCID: PMC6872965 DOI: 10.1093/ijnp/pyz049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/20/2019] [Accepted: 09/16/2019] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Stress is associated with relapse to alcohol seeking during abstinence, but the processes underlying this relationship are poorly understood. Noradrenaline is a key transmitter in stress responses and in stress-induced drug seeking. The alpha-1 adrenoceptor antagonist prazosin has been investigated as a treatment for alcoholism and for chronic stress disorders that are frequently comorbid with alcoholism. In rats, we previously showed that prazosin blocks reinstatement of alcohol seeking induced by footshock and yohimbine stressors and reduces yohimbine-induced brain activation. The role of alpha-1 adrenoceptors in reinstatement induced by other stressors is not known. Our most recent work is on the role of kappa opioid receptors in stress-induced reinstatement of alcohol seeking and have reported that the selective kappa opioid receptor agonist U50,488 induces reinstatement and neuronal activation in stress- and relapse-related brain regions. Here we determine the involvement of alpha-1 receptors in reinstatement and brain activation induced by U50,488. METHODS We trained male Long-Evans rats to self-administer alcohol (12% w/v), extinguished alcohol-reinforced responding, and then determined the effects of prazosin (1 mg/kg) on U50,488 (2.5 mg/kg)-induced reinstatement and regional Fos expression. RESULTS Prazosin blocked U50,488-induced reinstatement and decreased U50,488-induced Fos expression in the orbitofrontal cortex, nucleus accumbens core, ventral bed nucleus of the stria terminalis, central and basolateral amygdalar nuclei and ventral tegmental area. CONCLUSIONS These findings suggest that prazosin may reduce U50,488-induced relapse by inhibiting activity in 1 or more of these brain areas.
Collapse
Affiliation(s)
- Douglas Funk
- Neurobiology of Alcohol Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada,Correspondence: Douglas Funk; Neurobiology of Alcohol Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 33 Russell St., Toronto, Ontario, Canada M5S 2S1 ()
| | - Kathleen Coen
- Neurobiology of Alcohol Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
| | - Sahar Tamadon
- Neurobiology of Alcohol Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
| | - A D Lê
- Neurobiology of Alcohol Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada,Department of Psychiatry, University of Toronto, Toronto, Canada
| |
Collapse
|
47
|
Chavoshinezhad S, Mohseni Kouchesfahani H, Ahmadiani A, Dargahi L. Interferon beta ameliorates cognitive dysfunction in a rat model of Alzheimer's disease: Modulation of hippocampal neurogenesis and apoptosis as underlying mechanism. Prog Neuropsychopharmacol Biol Psychiatry 2019; 94:109661. [PMID: 31152860 DOI: 10.1016/j.pnpbp.2019.109661] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 05/08/2019] [Accepted: 05/28/2019] [Indexed: 12/21/2022]
Abstract
Neuronal apoptosis and impaired hippocampal neurogenesis are major players in cognitive/memory dysfunctions including Alzheimer's disease (AD). Interferon beta (IFNβ) is a cytokine with anti-apoptotic and neuroprotective properties on the central nervous system (CNS) cells which specifically affects neural progenitor cells (NPCs) even in the adult brain. In this study, we examined the effect of IFNβ on memory impairment as well as hippocampal neurogenesis and apoptosis in a rat model of AD. AD model was induced by lentiviral-mediated overexpression of mutant APP in the hippocampus of adult rats. Intranasal (IN) administration of IFNβ (0.5 μg/kg and 1 μg/kg doses) was started from day 23 after virus injection and continued every other day to the final day of experiments. The expression levels of APP, neurogenesis (Nestin, Ki67, DCX, and Reelin) and apoptosis (Bax/Bcl-2 ratio, cleaved-caspase-3 and seladin-1) markers were evaluated by immunohistochemistry, real-time PCR, immunofluorescence and western blotting. Moreover, thioflavin T and Nissl stainings were used to assess Aβ plaque levels and neuronal degeneration in the hippocampus, respectively. Our results showed that IFNβ treatment reduced APP expression and Aβ plaque formation, and concomitantly ameliorated spatial learning and memory deficits examined in Y-maze and Morris water maze tests. Moreover, in parallel with reducing apoptosis and neural loss in the hippocampal subfields, IFNβ decreased ectopic neurogenesis in the CA1 and CA3 regions of the AD rat hippocampus. However, IFNβ increased neurogenesis in the dentate gyrus neurogenic niche. Our findings suggest that IFNβ exerts neuroprotective effects at least partly by inhibition of apoptosis and modulation of neurogenesis. Taken together, IFNβ can be a promising therapeutic approach to improve cognitive performance in AD-like neurodegenerative context.
Collapse
Affiliation(s)
- Sara Chavoshinezhad
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | | | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Dargahi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
48
|
Niño-Rivero S, Torterolo P, Lagos P. Melanin-concentrating hormone receptor-1 is located in primary cilia of the dorsal raphe neurons. J Chem Neuroanat 2019; 98:55-62. [DOI: 10.1016/j.jchemneu.2019.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 02/25/2019] [Accepted: 03/22/2019] [Indexed: 12/19/2022]
|
49
|
Rohde K, Hertz H, Rath MF. Homeobox genes in melatonin-producing pinealocytes: Otx2 and Crx act to promote hormone synthesis in the mature rat pineal gland. J Pineal Res 2019; 66:e12567. [PMID: 30803008 DOI: 10.1111/jpi.12567] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/15/2019] [Accepted: 02/20/2019] [Indexed: 02/03/2023]
Abstract
Homeobox genes encode transcription factors that regulate developmental processes; however, in the pineal gland, a neuroendocrine organ responsible for nocturnal melatonin synthesis, expression of the homeobox genes Otx2 (orthodenticle homeobox 2) and Crx (cone-rod homeobox) persists postnatally. We here show that OTX2 and CRX are exclusively present in melatonin-producing pinealocytes of the rat pineal gland. To understand the roles of Otx2 and Crx in the mature pineal gland, we used siRNA technology in cultured rat pinealocytes with the nocturnal situation mimicked by adding norepinephrine to the culture media. siRNA-induced knockdown of Otx2 was found to reduce expression levels of the enzymes involved in melatonin synthesis at both transcript and protein levels. Similar results were obtained when knocking down Crx. Knocking down Otx2 and Crx simultaneously produced an even larger reduction in both transcript and protein levels of the melatonin-producing enzymes and also reduced the levels of melatonin released to the culture media. These results suggest that Otx2 and Crx, both alone and in combination, act to control pineal melatonin synthesis.
Collapse
Affiliation(s)
- Kristian Rohde
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Hertz
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Martin F Rath
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
50
|
Mason DM, Wang Y, Bhatia TN, Miner KM, Trbojevic SA, Stolz JF, Luk KC, Leak RK. The center of olfactory bulb-seeded α-synucleinopathy is the limbic system and the ensuing pathology is higher in male than in female mice. Brain Pathol 2019; 29:741-770. [PMID: 30854742 DOI: 10.1111/bpa.12718] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 03/03/2019] [Indexed: 12/18/2022] Open
Abstract
At early disease stages, Lewy body disorders are characterized by limbic vs. brainstem α-synucleinopathy, but most preclinical studies have focused solely on the nigrostriatal pathway. Furthermore, male gender and advanced age are two major risk factors for this family of conditions, but their influence on the topographical extents of α-synucleinopathy and the degree of cell loss are uncertain. To fill these gaps, we infused α-synuclein fibrils in the olfactory bulb/anterior olfactory nucleus complex-one of the earliest and most frequently affected brain regions in Lewy body disorders-in 3-month-old female and male mice and in 11-month-old male mice. After 6 months, we observed that α-synucleinopathy did not expand significantly beyond the limbic connectome in the 9-month-old male and female mice or in the 17-month-old male mice. However, the 9-month-old male mice had developed greater α-synucleinopathy, smell impairment and cell loss than age-matched females. By 10.5 months post-infusion, fibril treatment hastened mortality in the 21.5-month-old males, but the inclusions remained centered in the limbic system in the survivors. Although fibril infusions reduced the number of cells expressing tyrosine hydroxylase in the substantia nigra of young males at 6 months post-infusion, this was not attributable to true cell death. Furthermore, mesencephalic α-synucleinopathy, if present, was centered in mesolimbic circuits (ventral tegmental area/accumbens) rather than within strict boundaries of the nigral pars compacta, which were defined here by tyrosine hydroxylase immunolabel. Nonprimate models cannot be expected to faithfully recapitulate human Lewy body disorders, but our murine model seems reasonably suited to (i) capture some aspects of Stage IIb of Lewy body disorders, which displays a heavier limbic than brainstem component compared to incipient Parkinson's disease; and (ii) leverage sex differences and the acceleration of mortality following induction of olfactory α-synucleinopathy.
Collapse
Affiliation(s)
- Daniel M Mason
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA
| | - Yaqin Wang
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA
| | - Tarun N Bhatia
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA
| | - Kristin M Miner
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA
| | - Sara A Trbojevic
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA
| | - John F Stolz
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA
| | - Kelvin C Luk
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Rehana K Leak
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA
| |
Collapse
|