1
|
Turner MB, Dalmasso C, Loria AS. The adipose tissue keeps the score: priming of the adrenal-adipose tissue axis by early life stress predisposes women to obesity and cardiometabolic risk. Front Endocrinol (Lausanne) 2024; 15:1481923. [PMID: 39493777 PMCID: PMC11527639 DOI: 10.3389/fendo.2024.1481923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 09/26/2024] [Indexed: 11/05/2024] Open
Abstract
Adverse Childhood Experiences (ACEs) refer to early life stress events, including abuse, neglect, and other psychosocial childhood traumas that can have long-lasting effects on a wide range of physiological functions. ACEs provoke sex-specific effects, whereas women have been shown to display a strong positive correlation with obesity and cardiometabolic disease. Notably, rodent models of chronic behavioral stress during postnatal life recapitulate several effects of ACEs in a sex-specific fashion. In this review, we will discuss the potential mechanisms uncovered by models of early life stress that may explain the greater susceptibility of females to obesity and metabolic risk compared with their male counterparts. We highlight the early life stress-induced neuroendocrine shaping of the adrenal-adipose tissue axis as a primary event conferring sex-dependent heightened sensitivity to obesity.
Collapse
Affiliation(s)
| | | | - Analia S. Loria
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
2
|
Zuloaga DG, Lafrican JJ, Zuloaga KL. Androgen regulation of behavioral stress responses and the hypothalamic-pituitary-adrenal axis. Horm Behav 2024; 162:105528. [PMID: 38503191 PMCID: PMC11144109 DOI: 10.1016/j.yhbeh.2024.105528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/02/2024] [Accepted: 03/06/2024] [Indexed: 03/21/2024]
Abstract
Testosterone is a powerful steroid hormone that can impact the brain and behavior in various ways, including regulating behavioral and neuroendocrine (hypothalamic-pituitary-adrenal (HPA) axis) stress responses. Early in life androgens can act to alter development of brain regions associated with stress regulation, which ultimately impacts the display of stress responses later in life. Adult circulating androgens can also influence the expression of distinct genes and proteins that regulate stress responses. These changes in the brain are hypothesized to underlie the potent effects of androgens in regulating behaviors related to stress and stress-induced activation of the HPA axis. Androgens can induce alterations in these functions through direct binding to the androgen receptor (AR) or following conversion to estrogens and subsequent binding to estrogen receptors including estrogen receptor alpha (ERα), beta (ERβ), and G protein-coupled estrogen receptor 1 (GPER1). In this review, we focus on the role of androgens in regulating behavioral and neuroendocrine stress responses at different stages of the lifespan and the sex hormone receptors involved in regulating these effects. We also review the specific brain regions and cell phenotypes upon which androgens are proposed to act to regulate stress responses with an emphasis on hypothalamic and extended amygdala subregions. This knowledge of androgen effects on these neural systems is critical for understanding how sex hormones regulate stress responses.
Collapse
Affiliation(s)
- Damian G Zuloaga
- Department of Psychology, University at Albany, Albany, NY, USA.
| | | | - Kristen L Zuloaga
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| |
Collapse
|
3
|
Chauhan R, Archibong AE, Ramesh A. Imprinting and Reproductive Health: A Toxicological Perspective. Int J Mol Sci 2023; 24:16559. [PMID: 38068882 PMCID: PMC10706004 DOI: 10.3390/ijms242316559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/16/2023] [Accepted: 11/19/2023] [Indexed: 12/18/2023] Open
Abstract
This overview discusses the role of imprinting in the development of an organism, and how exposure to environmental chemicals during fetal development leads to the physiological and biochemical changes that can have adverse lifelong effects on the health of the offspring. There has been a recent upsurge in the use of chemical products in everyday life. These chemicals include industrial byproducts, pesticides, dietary supplements, and pharmaceutical products. They mimic the natural estrogens and bind to estradiol receptors. Consequently, they reduce the number of receptors available for ligand binding. This leads to a faulty signaling in the neuroendocrine system during the critical developmental process of 'imprinting'. Imprinting causes structural and organizational differentiation in male and female reproductive organs, sexual behavior, bone mineral density, and the metabolism of exogenous and endogenous chemical substances. Several studies conducted on animal models and epidemiological studies provide profound evidence that altered imprinting causes various developmental and reproductive abnormalities and other diseases in humans. Altered metabolism can be measured by various endpoints such as the profile of cytochrome P-450 enzymes (CYP450's), xenobiotic metabolite levels, and DNA adducts. The importance of imprinting in the potentiation or attenuation of toxic chemicals is discussed.
Collapse
Affiliation(s)
- Ritu Chauhan
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208, USA;
| | - Anthony E. Archibong
- Department of Microbiology, Immunology and Physiology, Meharry Medical College, Nashville, TN 37208, USA;
| | - Aramandla Ramesh
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208, USA;
| |
Collapse
|
4
|
Luna-Ramirez RI, Kelly AC, Anderson MJ, Bidwell CA, Goyal R, Limesand SW. Elevated Norepinephrine Stimulates Adipocyte Hyperplasia in Ovine Fetuses With Placental Insufficiency and IUGR. Endocrinology 2023; 165:bqad177. [PMID: 38035825 PMCID: PMC10726312 DOI: 10.1210/endocr/bqad177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/01/2023] [Accepted: 11/22/2023] [Indexed: 12/02/2023]
Abstract
Prevailing hypoxemia and hypoglycemia in near-term fetuses with placental insufficiency-induced intrauterine growth restriction (IUGR) chronically increases norepinephrine concentrations, which lower adrenergic sensitivity and lipid mobilization postnatally, indicating a predisposition for adiposity. To determine adrenergic-induced responses, we examined the perirenal adipose tissue transcriptome from IUGR fetuses with or without hypercatecholaminemia. IUGR was induced in sheep with maternal hyperthermia, and hypercatecholaminemia in IUGR was prevented with bilateral adrenal demedullation. Adipose tissue was collected from sham-operated control (CON) and IUGR fetuses and adrenal-demedullated control (CAD) and IUGR (IAD) fetuses. Norepinephrine concentrations were lower in IAD fetuses than in IUGR fetuses despite both being hypoxemic and hypoglycemic. In IUGR fetuses, perirenal adipose tissue mass relative to body mass was greater compared with the CON, adrenal-demedullated control, and IAD groups. Transcriptomic analysis identified 581 differentially expressed genes (DEGs) in CON vs IUGR adipose tissue and 193 DEGs in IUGR vs IAD adipose tissue. Integrated functional analysis of these 2 comparisons showed enrichment for proliferator-activated receptor signaling and metabolic pathways and identified adrenergic responsive genes. Within the adrenergic-regulated DEGs, we identified transcripts that regulate adipocyte proliferation and differentiation: adipogenesis regulatory factor, C/CCAAT/enhancer binding protein α, and sterol carrier protein 2. DEGs associated with the metabolic pathway included pyruvate dehydrogenase kinase 4, 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 4, IGF-binding proteins (IGFBP-5 and IGFBP-7). Sex-specific expression differences were also found for adipogenesis regulatory factor, pyruvate dehydrogenase kinase 4, IGFBP5, and IGFBP7. These findings indicate that sustained adrenergic stimulation during IUGR leads to adipocyte hyperplasia with alterations in metabolism, proliferation, and preadipocyte differentiation pathways.
Collapse
Affiliation(s)
- Rosa I Luna-Ramirez
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85719, USA
| | - Amy C Kelly
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85719, USA
| | - Miranda J Anderson
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85719, USA
| | | | - Ravi Goyal
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85719, USA
| | - Sean W Limesand
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85719, USA
| |
Collapse
|
5
|
Lagunas N, Fernández-García JM, Blanco N, Ballesta A, Carrillo B, Arevalo MA, Collado P, Pinos H, Grassi D. Organizational Effects of Estrogens and Androgens on Estrogen and Androgen Receptor Expression in Pituitary and Adrenal Glands in Adult Male and Female Rats. Front Neuroanat 2022; 16:902218. [PMID: 35815333 PMCID: PMC9261283 DOI: 10.3389/fnana.2022.902218] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/11/2022] [Indexed: 01/15/2023] Open
Abstract
Sex steroid hormones, such as androgens and estrogens, are known to exert organizational action at perinatal periods and activational effects during adulthood on the brain and peripheral tissues. These organizational effects are essential for the establishment of biological axes responsible for regulating behaviors, such as reproduction, stress, and emotional responses. Estradiol (E2), testosterone, and their metabolites exert their biological action through genomic and non-genomic mechanisms, bounding to canonical receptors, such as estrogen receptor (ER)α, ERβ, and androgen receptor (AR) or membrane receptors, such as the G protein-coupled estrogen receptor (GPER), respectively. Expression of ERs and AR was found to be different between males and females both in the brain and peripheral tissues, suggesting a sex-dependent regulation of their expression and function. Therefore, studying the ERs and AR distribution and expression levels is key to understand the central and peripheral role of sex steroids in the establishment of sex-specific behaviors in males and females. We investigated the organizational effects of estrogens and androgens in the pituitary and adrenal glands of adult male and female rats. For this, selective blockade of AR with flutamide or 5α-reductase with finasteride or aromatase with letrozole during the first 5 days of life has been performed in male and female pups and then quantification of ERs and AR expression in both glands has been carried out in adulthood. Data show that inhibition of dihydrotestosterone (DHT) and E2 production during the first five postnatal days mainly decreases the ER expression in male to female values and AR expression in female to male levels in the pituitary gland and increases AR expression in female to male levels in the adrenal gland. In contrast, blocking the action of androgens differentially modulates the ERs in males and females and decreases AR in both males and females in both glands. Altogether, the results suggest that neonatal modifications of the androgen and estrogen pathways can potentially lead to permanent modifications of the neuroendocrine functions of the pituitary and adrenal glands in the adulthood of both sexes.
Collapse
Affiliation(s)
- Natalia Lagunas
- Department of Legal Medicine, Psychiatry and Pathology, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - José Manuel Fernández-García
- Department of Psychobiology, National University of Distance Education, Madrid, Spain
- Department of Psychology, Universidad Villanueva, Madrid, Spain
| | - Noemí Blanco
- Department of Psychobiology, National University of Distance Education, Madrid, Spain
| | - Antonio Ballesta
- Department of Psychobiology, National University of Distance Education, Madrid, Spain
- Department of Psychology, Faculty of Biomedical Science and Health, European University of Madrid, Madrid, Spain
| | - Beatriz Carrillo
- Department of Psychobiology, National University of Distance Education, Madrid, Spain
- University Institute of Research-UNED-Institute of Health Carlos III (IMIENS), Madrid, Spain
| | - Maria-Angeles Arevalo
- Neuroactive Steroids Lab, Cajal Institute, CSIC, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Paloma Collado
- Department of Psychobiology, National University of Distance Education, Madrid, Spain
- University Institute of Research-UNED-Institute of Health Carlos III (IMIENS), Madrid, Spain
| | - Helena Pinos
- Department of Psychobiology, National University of Distance Education, Madrid, Spain
- University Institute of Research-UNED-Institute of Health Carlos III (IMIENS), Madrid, Spain
| | - Daniela Grassi
- Department of Psychobiology, National University of Distance Education, Madrid, Spain
- Neuroactive Steroids Lab, Cajal Institute, CSIC, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
- Department of Anatomy, Histology and Neuroscience, Autonomous University of Madrid, Madrid, Spain
- *Correspondence: Daniela Grassi
| |
Collapse
|
6
|
Madhavpeddi L, Hammond B, Carbone DL, Kang P, Handa RJ, Hale TM. Impact of Angiotensin II Antagonism on the Sex-Selective Dysregulation of Cardiovascular Function Induced by In Utero Dexamethasone Exposure. Am J Physiol Heart Circ Physiol 2022; 322:H597-H606. [PMID: 35179975 PMCID: PMC8934675 DOI: 10.1152/ajpheart.00587.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In utero exposure to glucocorticoids in late gestation programs changes in cardiovascular function. The objective of this study was to determine the degree to which angiotensin II mediates sex-biased changes in autonomic function as well as basal and stress-responsive cardiovascular function following in utero glucocorticoid exposure. Pregnant rats were administered the synthetic glucocorticoid dexamethasone (DEX 0.4mg/kg per day, s.c.) or vehicle on gestation days 18-21. Mean arterial pressure, heart rate, and heart rate variability (HRV) were measured via radiotelemetry in freely moving, conscious adult rats. To evaluate the impact of stress, rats were placed in a restraint tube for 20 minutes. In a separate cohort of rats, restraint stress was performed before and after chronic treatment with the angiotensin type 1 receptor antagonist, losartan (30mg/kg per day, i.p). Frequency domain analysis of HRV was evaluated, and data integrated into low frequency (LF: 0.20-0.75Hz) and high frequency (HF: 0.75-2.00Hz) bands. Prenatal DEX resulted in an exaggerated pressor and heart rate response to restraint in female offspring that was attenuated by prior losartan treatment. HF power was higher in vehicle-exposed female rats, compared to DEX females. Following losartan, HF power was equivalent between female vehicle and DEX-exposed rats. In utero exposure to DEX produced female-biased alterations in stress-responsive cardiovascular function which may be indicative of a reduction in parasympathetic activity. Moreover, these findings suggest this autonomic dysregulation may be mediated in part by long-term changes in renin-angiotensin signaling.
Collapse
Affiliation(s)
- Lakshmi Madhavpeddi
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona, United States
| | - Bradley Hammond
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona, United States
| | - David L Carbone
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona, United States
| | - Paul Kang
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona, United States
| | - Robert J Handa
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona, United States.,Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Taben M Hale
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona, United States
| |
Collapse
|
7
|
Romeo RD, Sciortino RK. Age-dependent changes in hormonal stress reactivity following repeated restraint stress throughout adolescence in male rats. Stress 2021; 24:496-503. [PMID: 33587012 DOI: 10.1080/10253890.2021.1873945] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Stress-related psychological dysfunctions show a marked increase during adolescence, yet the mechanisms that mediate these vulnerabilities are unknown. Notably, however, adolescence is associated with changes in hormonal stress reactivity mediated by the hypothalamic-pituitary-adrenal (HPA) axis, which might contribute to these dysfunctions. Specifically, pre-adolescent animals display prolonged stress-induced HPA responses compared to adults. Previous experience with stressors further modify these changes in stress reactivity, such that repeated exposure to the same stressor results in an augmented HPA response prior to adolescence, but a habituated response in adulthood. It is unclear when during adolescence the habituated, adult-like response develops to a repeated stressor. Using male rats at various ages that span adolescence (30-70 days of age), we show that by mid-adolescence (i.e. 42 days of age), animals show neither a facilitated nor a habituated HPA hormonal response following four days of repeated restraint stress (4RS) compared to a single restraint session (1RS). We also show that the habituated HPA response to 4RS develops between late-adolescence and young adulthood (i.e. between 56 and 70 days of age, respectively). Further, we find age- and experience-dependent changes in progesterone and testosterone secretion, indicating that the interaction between development and experience affects stress-induced hormonal responses outside of canonical HPA-related hormones. Despite these hormonal differences mediated by age and experience, repeated restraint stress resulted in decreased fecal boli production at all four ages, suggesting dissociation between hormonal and autonomic reactivity during adolescence. These data indicate that HPA plasticity is significantly affected by adolescence and that a habituated hormonal response to homotypic stress does not occur until young adulthood. A greater appreciation of these changes in stress reactivity will contribute to our understanding of the psychological vulnerabilities often associated with stressful adolescence.
Collapse
Affiliation(s)
- Russell D Romeo
- Departments of Psychology and Neuroscience and Behavior, Barnard College of Columbia University, New York, NY, USA
| | - Rose K Sciortino
- Departments of Psychology and Neuroscience and Behavior, Barnard College of Columbia University, New York, NY, USA
| |
Collapse
|
8
|
Moisan MP. Sexual Dimorphism in Glucocorticoid Stress Response. Int J Mol Sci 2021; 22:ijms22063139. [PMID: 33808655 PMCID: PMC8003420 DOI: 10.3390/ijms22063139] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 03/16/2021] [Indexed: 12/18/2022] Open
Abstract
Chronic stress is encountered in our everyday life and is thought to contribute to a number of diseases. Many of these stress-related disorders display a sex bias. Because glucocorticoid hormones are the main biological mediator of chronic stress, researchers have been interested in understanding the sexual dimorphism in glucocorticoid stress response to better explain the sex bias in stress-related diseases. Although not yet demonstrated for glucocorticoid regulation, sex chromosomes do influence sex-specific biology as soon as conception. Then a transient rise in testosterone start to shape the male brain during the prenatal period differently to the female brain. These organizational effects are completed just before puberty. The cerebral regions implicated in glucocorticoid regulation at rest and after stress are thereby impacted in a sex-specific manner. After puberty, the high levels of all gonadal hormones will interact with glucocorticoid hormones in specific crosstalk through their respective nuclear receptors. In addition, stress occurring early in life, in particular during the prenatal period and in adolescence will prime in the long-term glucocorticoid stress response through epigenetic mechanisms, again in a sex-specific manner. Altogether, various molecular mechanisms explain sex-specific glucocorticoid stress responses that do not exclude important gender effects in humans.
Collapse
|
9
|
Vinberg M, Wium-Andersen MK, Wium-Andersen IK, Jørgensen MB, Christensen K, Osler M. Intrauterine testosterone exposure and depression risk in opposite-sex and same-sex twins, a Danish register study. Psychol Med 2021; 52:1-6. [PMID: 33722322 DOI: 10.1017/s003329172100057x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Males have a lower prevalence of depression than females and testosterone may be a contributing factor. A comparison of opposite-sex and same-sex twins can be used indirectly to establish the role of prenatal testosterone exposure and the risk of depression. We therefore aimed to explore differences in depression risk using opposite-sex and same-sex twins. METHODS We included 126 087 opposite-sex and same-sex twins from the Danish Twin Registry followed in nationwide Danish registers. We compared sex-specific incidences of depression diagnosis and prescriptions of antidepressants between opposite-sex and same-sex twins using Cox proportional hazard regression. RESULTS During follow-up, 2664 (2.1%) twins were diagnosed with depression and 19 514 (15.5%) twins had purchased at least one prescription of antidepressants. First, in male twins, we found that the opposite-sex male twins had the same risk of depression compared to the same-sex male twins {hazard ratio (HR) = 1.01 [95% confidence interval (CI) 0.88-1.17)]}. Revealing the risk of use of antidepressants, the opposite-sex male twins had a slightly higher risk of 4% (HR = 1.04 (95% CI 1.00-1.11)) compared with the same-sex male twins. Second, in the female opposite-sex twins, we revealed a slightly higher, however, not statistically significant risk of depression (HR = 1.08 (95% CI 0.97-1.29)) or purchase of antidepressants (HR = 1.01 (95% CI 0.96-1.05)) when compared to the same-sex female twins. CONCLUSIONS We found limited support for the hypothesis that prenatal exposure to testosterone was associated with the risk of depression later in life.
Collapse
Affiliation(s)
- M Vinberg
- Mental Health Services, Capital Region of Denmark, Psychiatric Centre North Zealand, Hillerød, Denmark
- Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - M K Wium-Andersen
- Psychiatric Center Copenhagen, Rigshospitalet, Copenhagen, Denmark
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Frederiksberg, Denmark
| | - I K Wium-Andersen
- Psychiatric Center Copenhagen, Rigshospitalet, Copenhagen, Denmark
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Frederiksberg, Denmark
| | - M B Jørgensen
- Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Psychiatric Center Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - K Christensen
- Department of Public Health, The Danish Aging Research Center and The Danish Twin Registry, University of Southern Denmark, Odense, Denmark
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - M Osler
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Frederiksberg, Denmark
- Department of Public Health, Section of Epidemiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
10
|
Staurengo-Ferrari L, Green PG, Araldi D, Ferrari LF, Miaskowski C, Levine JD. Sexual dimorphism in the contribution of neuroendocrine stress axes to oxaliplatin-induced painful peripheral neuropathy. Pain 2021; 162:907-918. [PMID: 32947545 PMCID: PMC7886966 DOI: 10.1097/j.pain.0000000000002073] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/24/2020] [Indexed: 01/05/2023]
Abstract
ABSTRACT Although clinical studies support the suggestion that stress is a risk factor for painful chemotherapy-induced peripheral neuropathy (CIPN), there is little scientific validation to support this link. Here, we evaluated the impact of stress on CIPN induced by oxaliplatin, and its underlying mechanisms, in male and female rats. A single dose of oxaliplatin produced mechanical hyperalgesia of similar magnitude in both sexes, still present at similar magnitude in both sexes, on day 28. Adrenalectomy mitigated oxaliplatin-induced hyperalgesia, in both sexes. To confirm the role of neuroendocrine stress axes in CIPN, intrathecal administration of antisense oligodeoxynucleotide targeting β₂-adrenergic receptor mRNA both prevented and reversed oxaliplatin-induced hyperalgesia, only in males. By contrast, glucocorticoid receptor antisense oligodeoxynucleotide prevented and reversed oxaliplatin-induced hyperalgesia in both sexes. Unpredictable sound stress enhanced CIPN, in both sexes. The administration of stress hormones, epinephrine, corticosterone, and their combination, at stress levels, mimicked the effects of sound stress on CIPN, in males. In females, only corticosterone mimicked the effect of sound stress. Also, a risk factor for CIPN, early-life stress, was evaluated by producing both stress-sensitive (produced by neonatal limited bedding) and stress-resilient (produced by neonatal handling) phenotypes in adults. Although neonatal limited bedding significantly enhanced CIPN only in female adults, neonatal handling significantly attenuated CIPN, in both sexes. Our study demonstrates a sexually dimorphic role of the 2 major neuroendocrine stress axes in oxaliplatin-induced neuropathic pain.
Collapse
Affiliation(s)
- Larissa Staurengo-Ferrari
- Departments of Medicine and Oral & Maxillofacial Surgery, Division of Neuroscience, UCSF Pain and Addiction Research Center, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Paul G. Green
- Departments of Preventative & Restorative Dental Sciences and Oral & Maxillofacial Surgery, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Dionéia Araldi
- Departments of Medicine and Oral & Maxillofacial Surgery, Division of Neuroscience, UCSF Pain and Addiction Research Center, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Luiz F. Ferrari
- Departments of Medicine and Oral Surgery, and Division of Neuroscience, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA. Current address: Department of Anesthesiology, University of Utah, 30 N Medical Dr. RM 3C4444, Salt Lake City, UT 84132
| | - Christine Miaskowski
- Departments of Physiological Nursing and Anesthesia, UCSF Pain and Addiction Research Center, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Jon D. Levine
- Departments of Medicine and Oral & Maxillofacial Surgery, Division of Neuroscience, UCSF Pain and Addiction Research Center, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| |
Collapse
|
11
|
Rolon S, Huynh C, Guenther M, Gardezi M, Phillips J, Gehrand AL, Raff H. Insulin and glucose responses to hypoxia in male and female neonatal rats: Effects of the androgen receptor antagonist flutamide. Physiol Rep 2021; 9:e14663. [PMID: 33393733 PMCID: PMC7780235 DOI: 10.14814/phy2.14663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 01/12/2023] Open
Abstract
Hypoxia is common with preterm birth and may lead to long-term effects on adult pancreatic endocrine function and insulin sensitivity. This phenomenon may be sexually dimorphic due to the hypoxia-induced augmentation of the neonatal androgen surge in male newborns. We evaluated this phenomenon by pretreating neonatal rats on postnatal days (PD) 1, 6, 13, or 20 with flutamide (a nonsteroidal androgen receptor antagonist) at a standard or a high dose (10 or 50 mg/kg) compared to vehicle control. One day later, neonatal rats were exposed to either acute normoxic or hypoxic separation (fasting) for 90 min, and blood was sampled for the measurement of insulin and glucose and the calculation of HOMA-IR as an index of insulin resistance. During normoxic and hypoxic separation (fasting), flutamide increased insulin secretion in PD2, PD7, and PD14 pups, high dose flutamide attenuated insulin secretion, and high dose flutamide attenuated the increase in HOMA-IR due to hypoxia. Our studies suggest a unique role of the androgen receptor in the control of neonatal pancreatic function, possibly by blocking a direct effect of neonatal testosterone or in response to indirect regulatory effects of androgens on insulin sensitivity.
Collapse
Affiliation(s)
- Santiago Rolon
- Endocrine Research LaboratoryAurora St. Luke's Medical CenterAdvocate Aurora Research InstituteMilwaukeeWIUSA
- Department of MedicineMedical College of WisconsinMilwaukeeWIUSA
| | - Christine Huynh
- Endocrine Research LaboratoryAurora St. Luke's Medical CenterAdvocate Aurora Research InstituteMilwaukeeWIUSA
| | - Maya Guenther
- Endocrine Research LaboratoryAurora St. Luke's Medical CenterAdvocate Aurora Research InstituteMilwaukeeWIUSA
| | - Minhal Gardezi
- Endocrine Research LaboratoryAurora St. Luke's Medical CenterAdvocate Aurora Research InstituteMilwaukeeWIUSA
| | - Jonathan Phillips
- Endocrine Research LaboratoryAurora St. Luke's Medical CenterAdvocate Aurora Research InstituteMilwaukeeWIUSA
| | - Ashley L. Gehrand
- Endocrine Research LaboratoryAurora St. Luke's Medical CenterAdvocate Aurora Research InstituteMilwaukeeWIUSA
| | - Hershel Raff
- Endocrine Research LaboratoryAurora St. Luke's Medical CenterAdvocate Aurora Research InstituteMilwaukeeWIUSA
- Department of MedicineMedical College of WisconsinMilwaukeeWIUSA
- Department of SurgeryMedical College of WisconsinMilwaukeeWIUSA
- Department of PhysiologyMedical College of WisconsinMilwaukeeWIUSA
| |
Collapse
|
12
|
Zuloaga DG, Heck AL, De Guzman RM, Handa RJ. Roles for androgens in mediating the sex differences of neuroendocrine and behavioral stress responses. Biol Sex Differ 2020; 11:44. [PMID: 32727567 PMCID: PMC7388454 DOI: 10.1186/s13293-020-00319-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 07/09/2020] [Indexed: 12/17/2022] Open
Abstract
Estradiol and testosterone are powerful steroid hormones that impact brain function in numerous ways. During development, these hormones can act to program the adult brain in a male or female direction. During adulthood, gonadal steroid hormones can activate or inhibit brain regions to modulate adult functions. Sex differences in behavioral and neuroendocrine (i.e., hypothalamic pituitary adrenal (HPA) axis) responses to stress arise as a result of these organizational and activational actions. The sex differences that are present in the HPA and behavioral responses to stress are particularly important considering their role in maintaining homeostasis. Furthermore, dysregulation of these systems can underlie the sex biases in risk for complex, stress-related diseases that are found in humans. Although many studies have explored the role of estrogen and estrogen receptors in mediating sex differences in stress-related behaviors and HPA function, much less consideration has been given to the role of androgens. While circulating androgens can act by binding and activating androgen receptors, they can also act by metabolism to estrogenic molecules to impact estrogen signaling in the brain and periphery. This review focuses on androgens as an important hormone for modulating the HPA axis and behaviors throughout life and for setting up sex differences in key stress regulatory systems that could impact risk for disease in adulthood. In particular, impacts of androgens on neuropeptide systems known to play key roles in HPA and behavioral responses to stress (corticotropin-releasing factor, vasopressin, and oxytocin) are discussed. A greater knowledge of androgen action in the brain is key to understanding the neurobiology of stress in both sexes.
Collapse
Affiliation(s)
| | - Ashley L Heck
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | | | - Robert J Handa
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
13
|
Gehrand AL, Phillips J, Malott K, Raff H. Corticosterone, Adrenal, and the Pituitary-Gonadal Axis in Neonatal Rats: Effect of Maternal Separation and Hypoxia. Endocrinology 2020; 161:5847844. [PMID: 32459830 PMCID: PMC7310600 DOI: 10.1210/endocr/bqaa085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/21/2020] [Indexed: 01/25/2023]
Abstract
Hypoxia, a common stressor in prematurity, leads to sexually dimorphic, short- and long-term effects on the adult hypothalamic-pituitary-adrenal (HPA) and hypothalamic-pituitary-gonadal (HPG) axes. We hypothesized that these effects are due to stress-induced increases in testosterone during early postnatal life. We evaluated this phenomenon by systematically assessing the short-term effects of normoxic or hypoxic separation on male and female pups at birth, postnatal hours (H) 2, 4, and 8, and postnatal days (PD) 2 to 7. Our findings were (a) hypoxic separation led to a large increase in plasma corticosterone from 4H-PD4, (b) neither normoxic nor hypoxic separation affected critical adrenal steroidogenic pathway genes; however, a significant decrease in baseline Cyp11a1, Mc2r, Mrap, and Star adrenal expression during the first week of neonatal life confirmed the start of the adrenal stress hyporesponsive period, (c) a luteinizing hormone/follicle-stimulating hormone-independent increase in plasma testosterone occurred in normoxic and hypoxic separated male pups at birth, (d) testicular Cyp11a1, Lhcgr, and Star expression was high at birth and decreased thereafter suggesting a hyporesponsive period in the testes, and (e) elevated estrogen in the early neonatal period occurred independently of gonadotropin stimulation. We conclude that a large corticosterone response to hypoxia during the first 5 days of life occurs as an adaptation to neonatal stress, that the testosterone surge during the first hours after birth occurs independently of gonadotropins but is associated with upregulation of the steroidogenic pathway genes in the testes, and that high postnatal estrogen production also occurs independently of gonadotropins.
Collapse
Affiliation(s)
- Ashley L Gehrand
- Endocrine Research Laboratory, Aurora St. Luke’s Medical Center, Aurora Research Institute, Milwaukee, Wisconsin
| | - Jonathan Phillips
- Endocrine Research Laboratory, Aurora St. Luke’s Medical Center, Aurora Research Institute, Milwaukee, Wisconsin
| | - Kevin Malott
- Endocrine Research Laboratory, Aurora St. Luke’s Medical Center, Aurora Research Institute, Milwaukee, Wisconsin
| | - Hershel Raff
- Endocrine Research Laboratory, Aurora St. Luke’s Medical Center, Aurora Research Institute, Milwaukee, Wisconsin
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Correspondence: Hershel Raff, PhD, Endocrinology Research Laboratory, Aurora St. Luke’s Medical Center, 2801 West KK River Parkway, Suite 245, Milwaukee, WI 53215. E-mail:
| |
Collapse
|
14
|
Wiersielis KR, Samuels BA, Roepke TA. Perinatal exposure to bisphenol A at the intersection of stress, anxiety, and depression. Neurotoxicol Teratol 2020; 79:106884. [PMID: 32289443 DOI: 10.1016/j.ntt.2020.106884] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 04/04/2020] [Accepted: 04/07/2020] [Indexed: 12/13/2022]
Abstract
Endocrine-disrupting compounds (EDCs) are common contaminants in our environment that interfere with typical endocrine function. EDCs can act on steroid and nuclear receptors or alter hormone production. One particular EDC of critical concern is bisphenol A (BPA) due to its potential harm during the perinatal period of development. Previous studies suggest that perinatal exposure to BPA alters several neurotransmitter systems and disrupts behaviors associated with depression and anxiety in the rodent offspring later in life. Thus, dysregulation in neurotransmission may translate to behavioral phenotypes observed in mood and arousal. Many of the systems disrupted by BPA also overlap with the stress system, although little evidence exists on the effects of perinatal BPA exposure in relation to stress and behavior. The purpose of this review is to explore studies involved in perinatal BPA exposure and the stress response at neurochemical and behavioral endpoints. Although more research is needed, we suggest that perinatal BPA exposure is likely inducing variations in behavioral phenotypes that modulate their action through dysregulation of neurotransmitter systems sensitive to stress and endocrine disruption.
Collapse
Affiliation(s)
- Kimberly R Wiersielis
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ. USA.
| | - Benjamin A Samuels
- Department of Psychology, School of Arts and Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ. USA
| | - Troy A Roepke
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ. USA
| |
Collapse
|
15
|
Rolon S, Huynh C, Guenther M, Gardezi M, Phillips J, Gehrand AL, Raff H. The effects of flutamide on the neonatal rat hypothalamic-pituitary-adrenal and gonadal axes in response to hypoxia. Physiol Rep 2019; 7:e14318. [PMID: 31876126 PMCID: PMC6930936 DOI: 10.14814/phy2.14318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Hypoxia is common with preterm birth and may lead to long-term effects on the adult hypothalamic-pituitary-adrenal (HPA) axis that are sexually dimorphic due to neonatal androgens. Although the adult rat adrenal does not express appreciable CYP17 activity, the neonatal rat adrenal may synthesize androgens that could be a critical local factor in the development of adrenal function. We evaluated these phenomena by pretreating the neonatal rats on postnatal days (PD) 1, 6, 13, 20 with flutamide (a nonsteroidal androgen receptor antagonist) at a standard or a high dose (10 mg/kg or 50 mg/kg) compared to vehicle control. One day later, neonatal rats were exposed to acute hypoxia and blood was sampled. We found that (a) in PD2 pups, flutamide augmented corticosterone responses in a sexually dimorphic pattern and without an increase in ACTH, (b) PD7 and PD14 pups had the smallest corticosterone response to hypoxia (c) PD21 pups had an adult-like corticosterone response to hypoxia that was sexually dimorphic, (d) flutamide attenuated ACTH responses in PD7 hypoxic pups, and (e) high-dose flutamide suppressed the HPA axis, FSH, and estradiol. Flutamide demonstrated mixed antagonist and agonist effects that changed during the first three weeks of neonatal life. We conclude that the use of flutamide in neonatal rats to evaluate androgen-induced programming of subsequent adult behavior is not optimal. However, our studies suggest neonatal androgens play a role in regulation of adrenal function that is sexually dimorphic and changes during early development.
Collapse
Affiliation(s)
- Santiago Rolon
- Endocrine Research LaboratoryAurora St. Luke’s Medical CenterAurora Research InstituteMilwaukeeWisconsin
- Department of MedicineMedical College of WisconsinMilwaukeeWisconsin
| | - Christine Huynh
- Endocrine Research LaboratoryAurora St. Luke’s Medical CenterAurora Research InstituteMilwaukeeWisconsin
| | - Maya Guenther
- Endocrine Research LaboratoryAurora St. Luke’s Medical CenterAurora Research InstituteMilwaukeeWisconsin
| | - Minhal Gardezi
- Endocrine Research LaboratoryAurora St. Luke’s Medical CenterAurora Research InstituteMilwaukeeWisconsin
| | - Jonathan Phillips
- Endocrine Research LaboratoryAurora St. Luke’s Medical CenterAurora Research InstituteMilwaukeeWisconsin
| | - Ashley L. Gehrand
- Endocrine Research LaboratoryAurora St. Luke’s Medical CenterAurora Research InstituteMilwaukeeWisconsin
| | - Hershel Raff
- Endocrine Research LaboratoryAurora St. Luke’s Medical CenterAurora Research InstituteMilwaukeeWisconsin
- Department of MedicineMedical College of WisconsinMilwaukeeWisconsin
- Department of SurgeryMedical College of WisconsinMilwaukeeWisconsin
- Department of PhysiologyMedical College of WisconsinMilwaukeeWisconsin
| |
Collapse
|
16
|
Heck AL, Handa RJ. Sex differences in the hypothalamic-pituitary-adrenal axis' response to stress: an important role for gonadal hormones. Neuropsychopharmacology 2019; 44:45-58. [PMID: 30111811 PMCID: PMC6235871 DOI: 10.1038/s41386-018-0167-9] [Citation(s) in RCA: 247] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 07/19/2018] [Accepted: 07/22/2018] [Indexed: 12/11/2022]
Abstract
The hypothalamic-pituitary-adrenal (HPA) axis, a neuroendocrine network that controls hormonal responses to internal and external challenges in an organism's environment, exhibits strikingly sex-biased activity. In adult female rodents, acute HPA function following a stressor is markedly greater than it is in males, and this difference has largely been attributed to modulation by the gonadal hormones testosterone and estradiol. These gonadal hormones are produced by the hypothalamic-pituitary-gonadal (HPG) axis and have been shown to determine sex differences in adult HPA function after acute stress via their activational and organizational effects. Although these actions of gonadal hormones are well supported, the possibility that sex chromosomes similarly influence HPA activity is unexplored. Moreover, questions remain regarding sex differences in the activity of the HPA axis following chronic stress and the underlying contributions of gonadal hormones and sex chromosomes. The present review examines what is currently known about sex differences in the neuroendocrine response to stress, as well as outstanding questions regarding this sex bias. Although it primarily focuses on the rodent literature, a brief discussion of sex differences in the human HPA axis is also included.
Collapse
Affiliation(s)
- Ashley L. Heck
- 0000 0004 1936 8083grid.47894.36Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523 USA
| | - Robert J. Handa
- 0000 0004 1936 8083grid.47894.36Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523 USA
| |
Collapse
|
17
|
Sze Y, Gill AC, Brunton PJ. Sex-dependent changes in neuroactive steroid concentrations in the rat brain following acute swim stress. J Neuroendocrinol 2018; 30:e12644. [PMID: 30194779 PMCID: PMC6221110 DOI: 10.1111/jne.12644] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/05/2018] [Accepted: 09/06/2018] [Indexed: 01/20/2023]
Abstract
Sex differences in hypothalamic-pituitary-adrenal (HPA) axis activity are well established in rodents. In addition to glucocorticoids, stress also stimulates the secretion of progesterone and deoxycorticosterone (DOC) from the adrenal gland. Neuroactive steroid metabolites of these precursors can modulate HPA axis function; however, it is not known whether levels of these steroids differ between male and females following stress. In the present study, we aimed to establish whether neuroactive steroid concentrations in the brain display sex- and/or region-specific differences under basal conditions and following exposure to acute stress. Brains were collected from male and female rats killed under nonstress conditions or following exposure to forced swimming. Liquid chromatography-mass spectrometry was used to quantify eight steroids: corticosterone, DOC, dihydrodeoxycorticosterone (DHDOC), pregnenolone, progesterone, dihydroprogesterone (DHP), allopregnanolone and testosterone in plasma, and in five brain regions (frontal cortex, hypothalamus, hippocampus, amygdala and brainstem). Corticosterone, DOC and progesterone concentrations were significantly greater in the plasma and brain of both sexes following stress; however, the responses in plasma were greater in females compared to males. This sex difference was also observed in the majority of brain regions for DOC and progesterone but not for corticosterone. Despite observing no stress-induced changes in circulating concentrations of pregnenolone, DHDOC or DHP, concentrations were significantly greater in the brain and this effect was more pronounced in females than males. Basal plasma and brain concentrations of allopregnanolone were significantly higher in females; moreover, stress had a greater impact on central allopregnanolone concentrations in females. Stress had no effect on circulating or brain concentrations of testosterone in males. These data indicate the existence of sex and regional differences in the generation of neuroactive steroids in the brain following acute stress, especially for the 5α-reduced steroids, and further suggest a sex-specific expression of steroidogenic enzymes in the brain. Thus, differential neurosteroidogenesis may contribute to sex differences in HPA axis responses to stress.
Collapse
Affiliation(s)
- Ying Sze
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUK
- The Roslin InstituteUniversity of EdinburghEdinburghUK
| | - Andrew C. Gill
- The Roslin InstituteUniversity of EdinburghEdinburghUK
- School of ChemistryUniversity of LincolnLincolnUK
| | - Paula J. Brunton
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUK
- The Roslin InstituteUniversity of EdinburghEdinburghUK
| |
Collapse
|
18
|
Gehrand AL, Hoeynck B, Jablonski M, Leonovicz C, Cullinan WE, Raff H. Programming of the Adult HPA Axis After Neonatal Separation and Environmental Stress in Male and Female Rats. Endocrinology 2018; 159:2777-2789. [PMID: 29878093 DOI: 10.1210/en.2018-00370] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 05/29/2018] [Indexed: 11/19/2022]
Abstract
Maternal separation, hypoxia, and hypothermia are common stressors in the premature neonate. Using our rat model of human prematurity, we evaluated sexual dimorphisms in the long-term effects of these neonatal stressors on behavior of the hypothalamic-pituitary-adrenal (HPA) axis in adult rats. Neonatal rats were exposed daily on postnatal days 2 to 6 to maternal separation with normoxia, with hypoxia allowing spontaneous hypothermia, with hypothermia per se, and with hypoxia while maintaining isothermia with external heat. The major findings were that (a) prior maternal-neonatal separation during the first week of postnatal life attenuated the plasma ACTH and corticosterone response to restraint stress in adult male but not female rats, (b) prior neonatal hypothermia augmented the plasma ACTH and corticosterone response to restraint stress in adult male rats, but not female rats, and (c) changes in hypothalamic, pituitary, and adrenal mRNA expression did not account for most of these HPA axis effects. Most of the programming effects on adult HPA axis was attributed to prior maternal-neonatal separation alone (with normoxia) because the addition of hypoxia with spontaneous hypothermia, hypothermia per se, and hypoxia while preventing hypothermia during maternal-neonatal separation had minimal effects on the HPA axis. These results may inform strategies to prevent sexually dimorphic sequelae of neonatal stress including those due to medical interventions.
Collapse
Affiliation(s)
- Ashley L Gehrand
- Endocrine Research Laboratory, Aurora St. Luke's Medical Center, Aurora Research Institute, Milwaukee, Wisconsin
| | - Brian Hoeynck
- Endocrine Research Laboratory, Aurora St. Luke's Medical Center, Aurora Research Institute, Milwaukee, Wisconsin
| | - Mack Jablonski
- Endocrine Research Laboratory, Aurora St. Luke's Medical Center, Aurora Research Institute, Milwaukee, Wisconsin
| | - Cole Leonovicz
- Endocrine Research Laboratory, Aurora St. Luke's Medical Center, Aurora Research Institute, Milwaukee, Wisconsin
| | - William E Cullinan
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin
| | - Hershel Raff
- Endocrine Research Laboratory, Aurora St. Luke's Medical Center, Aurora Research Institute, Milwaukee, Wisconsin
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
19
|
Alvarez P, Green PG, Levine JD. Neonatal Handling Produces Sex Hormone-Dependent Resilience to Stress-Induced Muscle Hyperalgesia in Rats. THE JOURNAL OF PAIN 2018; 19:670-677. [PMID: 29432863 DOI: 10.1016/j.jpain.2018.01.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 01/18/2018] [Accepted: 01/30/2018] [Indexed: 12/28/2022]
Abstract
Neonatal handling (NH) of male rat pups strongly attenuates stress response and stress-induced persistent muscle hyperalgesia in adults. Because female sex is a well established risk factor for stress-induced chronic muscle pain, we explored whether NH provides resilience to stress-induced hyperalgesia in adult female rats. Rat pups underwent NH, or standard (control) care. Muscle mechanical nociceptive threshold was assessed before and after water avoidance (WA) stress, when they were adults. In contrast to male rats, NH produced only a modest protection against WA stress-induced muscle hyperalgesia in female rats. Gonadectomy completely abolished NH-induced resilience in male rats but produced only a small increase in this protective effect in female rats. The administration of the antiestrogen drug fulvestrant, in addition to gonadectomy, did not enhance the protective effect of NH in female rats. Finally, knockdown of the androgen receptor by intrathecal antisense treatment attenuated the protective effect of NH in intact male rats. Together, these data indicate that androgens play a key role in NH-induced resilience to WA stress-induced muscle hyperalgesia. PERSPECTIVE NH induces androgen-dependent resilience to stress-induced muscle pain. Therefore, androgens may contribute to sex differences observed in chronic musculoskeletal pain and its enhancement by stress.
Collapse
Affiliation(s)
- Pedro Alvarez
- Department of Oral and Maxillofacial Surgery, University of California, San Francisco, California; Division of Neuroscience, University of California, San Francisco, California
| | - Paul G Green
- Division of Neuroscience, University of California, San Francisco, California; Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, California
| | - Jon D Levine
- Department of Oral and Maxillofacial Surgery, University of California, San Francisco, California; Division of Neuroscience, University of California, San Francisco, California; Department of Medicine, University of California, San Francisco, California.
| |
Collapse
|
20
|
Eckstrum KS, Edwards W, Banerjee A, Wang W, Flaws JA, Katzenellenbogen JA, Kim SH, Raetzman LT. Effects of Exposure to the Endocrine-Disrupting Chemical Bisphenol A During Critical Windows of Murine Pituitary Development. Endocrinology 2018; 159:119-131. [PMID: 29092056 PMCID: PMC5761589 DOI: 10.1210/en.2017-00565] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 10/03/2017] [Indexed: 11/19/2022]
Abstract
Critical windows of development are often more sensitive to endocrine disruption. The murine pituitary gland has two critical windows of development: embryonic gland establishment and neonatal hormone cell expansion. During embryonic development, one environmentally ubiquitous endocrine-disrupting chemical, bisphenol A (BPA), has been shown to alter pituitary development by increasing proliferation and gonadotrope number in females but not males. However, the effects of exposure during the neonatal period have not been examined. Therefore, we dosed pups from postnatal day (PND)0 to PND7 with 0.05, 0.5, and 50 μg/kg/d BPA, environmentally relevant doses, or 50 μg/kg/d estradiol (E2). Mice were collected after dosing at PND7 and at 5 weeks. Dosing mice neonatally with BPA caused sex-specific gene expression changes distinct from those observed with embryonic exposure. At PND7, pituitary Pit1 messenger RNA (mRNA) expression was decreased with BPA 0.05 and 0.5 μg/kg/d in males only. Expression of Pomc mRNA was decreased at 0.5 μg/kg/d BPA in males and at 0.5 and 50 μg/kg/d BPA in females. Similarly, E2 decreased Pomc mRNA in both males and females. However, no noticeable corresponding changes were found in protein expression. Both E2 and BPA suppressed Pomc mRNA in pituitary organ cultures; this repression appeared to be mediated by estrogen receptor-α and estrogen receptor-β in females and G protein-coupled estrogen receptor in males, as determined by estrogen receptor subtype-selective agonists. These data demonstrated that BPA exposure during neonatal pituitary development has unique sex-specific effects on gene expression and that Pomc repression in males and females can occur through different mechanisms.
Collapse
Affiliation(s)
- Kirsten S. Eckstrum
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Whitney Edwards
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Annesha Banerjee
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Wei Wang
- Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Jodi A. Flaws
- Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | | | - Sung Hoon Kim
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Lori T. Raetzman
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| |
Collapse
|
21
|
Stempa T, Muchenje V, Abrahams AM, Bradley G. Sex and breed affect plasma glucose, lactate, cortisol, meat quality but not muscle glycolytic potential of Dorper and Merino lambs. ANIMAL PRODUCTION SCIENCE 2018. [DOI: 10.1071/an16522] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Response to pre-slaughter stress differs depending on animal-related factors such as sex and breed. The present study investigated breed and sex effects on plasma stress indicators, muscle glycolytic potential and the quality of meat from 8-month-old lambs of Dorper (n = 52) and Merino (n = 48) breeds. Blood samples were collected at exsanguination for the measurement of glucose, lactate and cortisol levels. Representative meat samples were collected from the Muscularis longissimus thoracis et lumborum for the measurement of glycogen, lactate, glycolytic potential levels, pH and colour coordinates. Results showed that the ewes had higher levels of plasma lactate, cortisol and meat pH than the rams, meaning that the ewes perceived the slaughter process to be more stressful compared with the rams. The Dorper also had higher levels of plasma lactate and lower meat lightness compared with the Merino breed. Significant sex and breed interactions on the meat pH45 min and colour coordinates were observed. Significant correlations were found among plasma cortisol, pH and colour. The results indicate that ewes and Dorper were more stressed than the rams and Merino breed respectively. In this study it can be concluded that the ewes and Dorper breed perceived the slaughter process to be more stressful compared with the rams and Merino breed.
Collapse
|
22
|
Kreisman MJ, Song CI, Yip K, Natale BV, Natale DR, Breen KM. Androgens Mediate Sex-Dependent Gonadotropin Expression During Late Prenatal Development in the Mouse. Endocrinology 2017; 158:2884-2894. [PMID: 28911172 PMCID: PMC5659668 DOI: 10.1210/en.2017-00285] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 07/05/2017] [Indexed: 12/22/2022]
Abstract
Central organization of the hypothalamic-pituitary-gonadal axis is initiated during fetal life. At this critical time, gonadal hormones mediate sex-specific development of the hypothalamic-pituitary axis, which then dictates reproductive physiology and behavior in adulthood. Although studies have investigated the effects of prenatal androgens on central factors influencing gonadotropin-releasing hormone (GnRH) release, the impact of fetal androgens on gonadotrope function has been overlooked. In the current study, we demonstrated that gonadotropin gene expression and protein production were robustly elevated in female mice compared with males during late fetal development and that this sex difference was dependent on fetal androgens. Treatment of dams from embryonic day (E)15.5 to E17.5 with testosterone, dihydrotestosterone (DHT), or the androgen antagonist flutamide eliminated the sex difference at E18.5. Specifically, flutamide relieved the suppression in male gene expression, elevating the level to that of females, whereas testosterone or DHT attenuated female gene expression to male levels. The gonadotrope population is equivalent in males and females, and gonadotropic cells in both sexes express androgen receptors, suggesting that androgen-dependent transcriptional regulation can occur in these cells in either sex. Studies using mouse models lacking GnRH signaling show that GnRH is necessary for enhanced gonadotropin expression in females and is therefore required to observe the sex difference. Collectively, these data suggest that circuits controlling GnRH input to the fetal pituitary are unrestrained in females yet robustly inhibited in males via circulating androgens and demonstrate plasticity in gonadotropin synthesis and secretion in both sexes depending on the androgen milieu during late prenatal development.
Collapse
Affiliation(s)
- Michael J. Kreisman
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, California 92093-0674
- Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, California 92093-0674
| | - Christopher I. Song
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, California 92093-0674
- Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, California 92093-0674
| | - Kathleen Yip
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, California 92093-0674
- Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, California 92093-0674
| | - Bryony V. Natale
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, California 92093-0674
| | - David R. Natale
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, California 92093-0674
| | - Kellie M. Breen
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, California 92093-0674
- Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, California 92093-0674
| |
Collapse
|
23
|
Oyola MG, Handa RJ. Hypothalamic-pituitary-adrenal and hypothalamic-pituitary-gonadal axes: sex differences in regulation of stress responsivity. Stress 2017; 20:476-494. [PMID: 28859530 PMCID: PMC5815295 DOI: 10.1080/10253890.2017.1369523] [Citation(s) in RCA: 392] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Gonadal hormones play a key role in the establishment, activation, and regulation of the hypothalamic-pituitary-adrenal (HPA) axis. By influencing the response and sensitivity to releasing factors, neurotransmitters, and hormones, gonadal steroids help orchestrate the gain of the HPA axis to fine-tune the levels of stress hormones in the general circulation. From early life to adulthood, gonadal steroids can differentially affect the HPA axis, resulting in sex differences in the responsivity of this axis. The HPA axis influences many physiological functions making an organism's response to changes in the environment appropriate for its reproductive status. Although the acute HPA response to stressors is a beneficial response, constant activation of this circuitry by chronic or traumatic stressful episodes may lead to a dysregulation of the HPA axis and cause pathology. Compared to males, female mice and rats show a more robust HPA axis response, as a result of circulating estradiol levels which elevate stress hormone levels during non-threatening situations, and during and after stressors. Fluctuating levels of gonadal steroids in females across the estrous cycle are a major factor contributing to sex differences in the robustness of HPA activity in females compared to males. Moreover, gonadal steroids may also contribute to epigenetic and organizational influences on the HPA axis even before puberty. Correspondingly, crosstalk between the hypothalamic-pituitary-gonadal (HPG) and HPA axes could lead to abnormalities of stress responses. In humans, a dysregulated stress response is one of the most common symptoms seen across many neuropsychiatric disorders, and as a result, such interactions may exacerbate peripheral pathologies. In this review, we discuss the HPA and HPG axes and review how gonadal steroids interact with the HPA axis to regulate the stress circuitry during all stages in life.
Collapse
Affiliation(s)
- Mario G Oyola
- a Department of Biomedical Sciences , Colorado State University , Fort Collins , CO , USA
| | - Robert J Handa
- a Department of Biomedical Sciences , Colorado State University , Fort Collins , CO , USA
| |
Collapse
|
24
|
Girard-Joyal O, Ismail N. Effect of LPS treatment on tyrosine hydroxylase expression and Parkinson-like behaviors. Horm Behav 2017; 89:1-12. [PMID: 28025041 DOI: 10.1016/j.yhbeh.2016.12.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 12/13/2016] [Accepted: 12/20/2016] [Indexed: 01/18/2023]
Abstract
Puberty is a critical period of development during which the brain undergoes reorganizing and remodeling. Exposure to stress during this period is thought to interfere with normal brain development and increase susceptibility to mental illnesses. In female mice, pubertal exposure to lipopolysaccharide (LPS), a bacterial endotoxin, has been shown to alter sexual, anxiety-like, and depression-like behaviors and cognition in an enduring manner. However, the mechanisms underlying these effects remain unknown. The present study examined age and sex difference in tyrosine hydroxylase (TH) expression and dopamine-dependent and Parkinson-like behaviors following LPS treatment. The results show that LPS treatment during adulthood causes an enduring increase in TH expression in many of the brain regions examined. In contrast, there is no change in TH expression following LPS treatment during puberty. However, pubertal LPS treatment induces enduring behavioral deficits in tests of Parkinson-like behaviors, more so in male than in female mice. These results suggest that the low levels of TH following exposure to pubertal immune challenge may predispose mice to Parkinson-like behavior. These findings add to our understanding of stress and immune responses during puberty and their impact on mental health later in life.
Collapse
Affiliation(s)
| | - Nafissa Ismail
- School of Psychology, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
25
|
Schore AN. ALL OUR SONS: THE DEVELOPMENTAL NEUROBIOLOGY AND NEUROENDOCRINOLOGY OF BOYS AT RISK. Infant Ment Health J 2017; 38:15-52. [PMID: 28042663 DOI: 10.1002/imhj.21616] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Why are boys at risk? To address this question, I use the perspective of regulation theory to offer a model of the deeper psychoneurobiological mechanisms that underlie the vulnerability of the developing male. The central thesis of this work dictates that significant gender differences are seen between male and female social and emotional functions in the earliest stages of development, and that these result from not only differences in sex hormones and social experiences but also in rates of male and female brain maturation, specifically in the early developing right brain. I present interdisciplinary research which indicates that the stress-regulating circuits of the male brain mature more slowly than those of the female in the prenatal, perinatal, and postnatal critical periods, and that this differential structural maturation is reflected in normal gender differences in right-brain attachment functions. Due to this maturational delay, developing males also are more vulnerable over a longer period of time to stressors in the social environment (attachment trauma) and toxins in the physical environment (endocrine disruptors) that negatively impact right-brain development. In terms of differences in gender-related psychopathology, I describe the early developmental neuroendocrinological and neurobiological mechanisms that are involved in the increased vulnerability of males to autism, early onset schizophrenia, attention deficit hyperactivity disorder, and conduct disorders as well as the epigenetic mechanisms that can account for the recent widespread increase of these disorders in U.S. culture. I also offer a clinical formulation of early assessments of boys at risk, discuss the impact of early childcare on male psychopathogenesis, and end with a neurobiological model of optimal adult male socioemotional functions.
Collapse
|
26
|
Gillette R, Reilly MP, Topper VY, Thompson LM, Crews D, Gore AC. Anxiety-like behaviors in adulthood are altered in male but not female rats exposed to low dosages of polychlorinated biphenyls in utero. Horm Behav 2017; 87:8-15. [PMID: 27794483 PMCID: PMC5603326 DOI: 10.1016/j.yhbeh.2016.10.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 10/20/2016] [Accepted: 10/23/2016] [Indexed: 11/24/2022]
Abstract
Exposure to polychlorinated biphenyls (PCBs), a class of endocrine-disrupting chemicals, can result in altered reproductive behavior in adulthood, especially when exposure occurs during critical periods of brain sexual differentiation in the fetus. Whether PCBs alter other sexually dimorphic behaviors such as those involved in anxiety is poorly understood. To address this, pregnant rat dams were injected twice, on gestational days 16 and 18, with the weakly estrogenic PCB mixture Aroclor 1221 (A1221) at one of two low dosages (0.5mg/kg or 1.0mg/kg, hereafter 1.0 and 0.5), estradiol benzoate (EB; 50μg/kg) as a positive estrogenic control, or the vehicle (3% DMSO in sesame oil). We also conducted a comprehensive assessment of developmental milestones of the F1 male and female offspring. There were no effects of treatment on sex ratio at birth and age at eye opening. Puberty, assessed by vaginal opening in females and preputial separation in males, was not affected in females but was advanced in males treated with A1221 (1.0). Males and females treated with A1221 (both dosages) were heavier in early adulthood relative to controls. The earliest manifestation of this effect developed in males prior to puberty and in females slightly later, during puberty. Anxiety-like behaviors were tested using the light:dark box and elevated plus maze tests in adulthood. In females, anxiety behaviors were unaffected by treatment. Males treated with A1221 (1.0) showed reduced indices of anxiety and increased activity in the light:dark box but not the elevated plus maze. EB failed to replicate the phenotype produced by A1221 for any of the developmental and behavioral endpoints. Collectively, these results indicate that PCBs increase body weight in both sexes, but their effects on anxiety-like behaviors are specific to males. Furthermore, differences between the results of A1221 and EB suggest that the PCBs are likely acting through mechanisms distinct from their estrogenic activity.
Collapse
Affiliation(s)
- Ross Gillette
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, United States
| | - Michael P Reilly
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, United States
| | - Viktoria Y Topper
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, United States
| | - Lindsay M Thompson
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, United States
| | - David Crews
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, United States; Section of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, United States
| | - Andrea C Gore
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, United States; Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, United States.
| |
Collapse
|
27
|
Cai KC, van Mil S, Murray E, Mallet JF, Matar C, Ismail N. Age and sex differences in immune response following LPS treatment in mice. Brain Behav Immun 2016; 58:327-337. [PMID: 27506825 DOI: 10.1016/j.bbi.2016.08.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/28/2016] [Accepted: 08/04/2016] [Indexed: 11/30/2022] Open
Abstract
Puberty is an important developmental event that is marked by the reorganizing and remodeling of the brain. Exposure to stress during this critical period of development can have enduring effects on both reproductive and non-reproductive behaviors. The purpose of this study was to investigate age and sex differences in immune response by examining sickness behavior, body temperature changes, and serum cytokine levels following an immune challenge. The effects of circulating gonadal hormones on age and sex differences in immune response were also examined. Results showed that male mice display more sickness behavior and greater fluctuations in body temperature following LPS treatment than female mice. Moreover, adult male mice display more sickness behavior and a greater drop in body temperature following LPS treatment compared to pubertal male mice. Following gonadectomy, pubertal and adult males displayed steeper and prolonged drops in body temperature compared to sham-operated counterparts. Gonadectomy did not eliminate sex differences in LPS-induced body temperature changes, suggesting that additional factors contribute to the observed differences. LPS treatment increased cytokine levels in all mice. However, the increase in pro-inflammatory cytokines was higher in adult compared to pubertal mice, while the increase in anti-inflammatory cytokines was greater in pubertal than in adult mice. Our findings contribute to a better understanding of age and sex differences in acute immune response following LPS treatment and possible mechanisms involved in the enduring alterations in behavior and brain function following pubertal exposure to LPS.
Collapse
Affiliation(s)
- Kyle Chiman Cai
- School of Psychology, Faculty of Social Sciences, University of Ottawa, Canada
| | - Spencer van Mil
- School of Psychology, Faculty of Social Sciences, University of Ottawa, Canada
| | - Emma Murray
- School of Psychology, Faculty of Social Sciences, University of Ottawa, Canada
| | - Jean-François Mallet
- Department of Nutrition, Faculty of Health Sciences, University of Ottawa, Canada
| | - Chantal Matar
- Department of Nutrition, Faculty of Health Sciences, University of Ottawa, Canada
| | - Nafissa Ismail
- School of Psychology, Faculty of Social Sciences, University of Ottawa, Canada.
| |
Collapse
|
28
|
Reproductive and pituitary-adrenal axis parameters in normal and prenatally stressed prepubertal blue foxes (Alopex lagopus). ACTA ACUST UNITED AC 2016. [DOI: 10.1017/s135772980005863x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractMan-animal relationships are involved in the process of fox domestication. Handling being an important part of man-animal contacts, causes stress responses in farm-bred blue foxes. The purpose of this study was to determine how prenatal stress induced by handling pregnant vixens influences certain morphometric and hormonal parameters of adrenocortical and gonadal function in the prepubertal offspring. Blue fox females were subjected to daily handling sessions, each of 1 min, in the last trimester of pregnancy (term = 52 days). Plasma concentrations of ACTH, cortisol, progesterone, oestradiol and testosterone, as well as the in vitro adrenal and gonadal production of steroids were measured by radio-immunoassay in control (C, no. = 56) and prenatally stressed (PS, no. = 56) blue fox cubs of both sexes at the age of 6 to 7 months. Prenatal stress decreased plasma concentration of cortisol (C: 31·0 (s.e. 4·3) v. PS: 22·7(s.e. 1·6) ng/ml, P < 0·05) as well as progesterone (C: 1·00(s.e. 0·10) v. PS: 0·65(s.e. 0·05) ng/ml, P < 0·05) in female cubs. Prenatal stress did not cause any changes in adrenal or gonadal weights, plasma concentrations of testosterone or oestradiol, or in vitro adrenal or gonadal steroid production, in either sex. It is concluded that persistent handling of pregnant blue foxes did not affect the prepubertal development of the reproductive system but resulted in disregulation in the hypothalamic-pituitary-adrenal axis in the female offspring.
Collapse
|
29
|
Green MR, McCormick CM. Sex and stress steroids in adolescence: Gonadal regulation of the hypothalamic-pituitary-adrenal axis in the rat. Gen Comp Endocrinol 2016; 234:110-6. [PMID: 26851306 DOI: 10.1016/j.ygcen.2016.02.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 02/02/2016] [Indexed: 01/19/2023]
Abstract
This review provides an overview of the current understanding of the role of the hypothalamic-pituitary-gonadal (HPG) axis in regulating the hypothalamic-pituitary-adrenal (HPA) axis response to stressors. HPA function is influenced by both organizational (programming) and activational effects of gonadal hormones. Typically, in adult rats, estradiol increases and androgens decrease the HPA response to stressors, thereby contributing to sex differences in HPA function, and sensitivity of the HPA axis to gonadal steroids is in part determined by exposure to these hormones in early development. Although developmental differences in HPA function are well characterized, the extent to which gonadal steroids contribute to age differences in HPA function is not well understood. Deficits in the understanding of the relationships between the HPA and HPG axes are greatest for the adolescent period of development. The critical outstanding questions are, when do gonadal hormones begin to regulate HPA function in adolescence, and what mechanisms precipitate change in sensitivity of the HPA axis to the HPG axis at this stage of life.
Collapse
Affiliation(s)
- Matthew R Green
- Department of Psychology, Brock University, 500 Glenridge Avenue, St. Catharines, Ontario L2S 3A1, Canada
| | - Cheryl M McCormick
- Department of Psychology, Brock University, 500 Glenridge Avenue, St. Catharines, Ontario L2S 3A1, Canada; Centre for Neuroscience, Brock University, 500 Glenridge Avenue, St. Catharines, Ontario L2S 3A1, Canada.
| |
Collapse
|
30
|
Abstract
Gonadal steroids seem to regulate affective state in some people (but not all), despite the absence of abnormal steroid hormone levels or dysfunction of the reproductive endocrine axis. In this article, we attempt to explain this paradox 1) by describing the molecular mechanisms by which gonadal steroids can regulate neuronal function; 2) by describing the specific regulatory impact of gonadal steroids on two systems im plicated in the pathophysiology of mood disorders; and 3) by defining the role of gonadal steroids in several mood disorders linked to periods of reproductive change. We suggest that the context in which the neuro- regulatory actions of gonadal steroids occur determines the impact of steroid signaling on the regulation of affective state. NEUROSCIENTIST 5:227-237, 1999
Collapse
Affiliation(s)
- Catherine A. Roca
- Behavioral Endocnnology Branch National Institute of
Mental Health Bethesda, Maryland
| | - Peter J. Schmidt
- Behavioral Endocnnology Branch National Institute of
Mental Health Bethesda, Maryland
| | - David R. Rubinow
- Behavioral Endocnnology Branch National Institute of
Mental Health Bethesda, Maryland
| |
Collapse
|
31
|
Gallelli MF, Lombardo D, Vissio P, Quiroga A, Caggiano N, Soler E, Meikle A, Castillo VA. Immunohistochemical analysis of the hypothalamic-pituitary-adrenal axis in dogs: Sex-linked and seasonal variation. Res Vet Sci 2016; 104:10-6. [PMID: 26850531 DOI: 10.1016/j.rvsc.2015.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 10/29/2015] [Accepted: 11/11/2015] [Indexed: 11/19/2022]
Abstract
This study evaluated sexual dimorphism and seasonal variations in corticotrophs and adrenal zona fasciculata in dogs, as well as the expression of oestrogen receptor alpha (ERα). An immunohistochemical analysis was conducted in pituitaries for ACTH and in adrenal glands for ERα and for the melanocortin-2-receptor (MC2R) in winter and summer. Double immunofluorescence was performed to identify ERα in corticotrophs. Females had a greater proportion of corticotrophs per field (p<0.01), with a greater cellular area and optical density (p<0.001) than males. Optical density of corticotrophs was greater in winter for both sexes (p<0.001). In zona fasciculata, ERα and MC2R expression was greater in females (p<0.001) and was greater in winter (p<0.001). ERα was identified in corticotrophs. This study is the first to demonstrate ERα expression in corticotrophs and the adrenal cortex in dogs, providing evidence for sexual dimorphism and seasonal variations.
Collapse
Affiliation(s)
- M F Gallelli
- UBACyT scholarship holder, Argentina; Hospital Escuela-Unidad de Endocrinología, A. Clínica Médica de Pequeños Animales, Fac. de Ciencias Veterinarias-UBA, Av. Chorroarin 280, Buenos Aires CP 1427, Argentina.
| | - D Lombardo
- Cátedra de Histología, Fac. de Ciencias Veterinarias-UBA, Av. Chorroarin 280, Buenos Aires CP 1427, Argentina
| | - P Vissio
- Laboratorio de Neuroendocrinología del Crecimiento y la Reproducción, DBBE, FCEN-UBA/IBBEA-CONICET-UBA, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
| | - A Quiroga
- Área de Patología Especial, Fac. De Ciencias Veterinarias, UNLP. Calle 60 y 118, CP 1900 Buenos Aires, Argentina
| | - N Caggiano
- Área de Patología Especial, Fac. De Ciencias Veterinarias, UNLP. Calle 60 y 118, CP 1900 Buenos Aires, Argentina
| | - E Soler
- Hospital Escuela-Unidad de Endocrinología, A. Clínica Médica de Pequeños Animales, Fac. de Ciencias Veterinarias-UBA, Av. Chorroarin 280, Buenos Aires CP 1427, Argentina
| | - A Meikle
- Laboratorio de Técnicas Nucleares, Fac. De Ciencias Veterinarias, UDELAR, Lasplacesr 1550-1620, CP 11600 Montevideo, Uruguay
| | - V A Castillo
- Hospital Escuela-Unidad de Endocrinología, A. Clínica Médica de Pequeños Animales, Fac. de Ciencias Veterinarias-UBA, Av. Chorroarin 280, Buenos Aires CP 1427, Argentina
| |
Collapse
|
32
|
Radley J, Morilak D, Viau V, Campeau S. Chronic stress and brain plasticity: Mechanisms underlying adaptive and maladaptive changes and implications for stress-related CNS disorders. Neurosci Biobehav Rev 2015; 58:79-91. [PMID: 26116544 PMCID: PMC4684432 DOI: 10.1016/j.neubiorev.2015.06.018] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 06/17/2015] [Accepted: 06/19/2015] [Indexed: 02/06/2023]
Abstract
Stress responses entail neuroendocrine, autonomic, and behavioral changes to promote effective coping with real or perceived threats to one's safety. While these responses are critical for the survival of the individual, adverse effects of repeated exposure to stress are widely known to have deleterious effects on health. Thus, a considerable effort in the search for treatments to stress-related CNS disorders necessitates unraveling the brain mechanisms responsible for adaptation under acute conditions and their perturbations following chronic stress exposure. This paper is based upon a symposium from the 2014 International Behavioral Neuroscience Meeting, summarizing some recent advances in understanding the effects of stress on adaptive and maladaptive responses subserved by limbic forebrain networks. An important theme highlighted in this review is that the same networks mediating neuroendocrine, autonomic, and behavioral processes during adaptive coping also comprise targets of the effects of repeated stress exposure in the development of maladaptive states. Where possible, reference is made to the similarity of neurobiological substrates and effects observed following repeated exposure to stress in laboratory animals and the clinical features of stress-related disorders in humans.
Collapse
Affiliation(s)
- Jason Radley
- Department of Psychological and Brain Sciences and Interdisciplinary Neuroscience Program, University of Iowa, IA, United States
| | - David Morilak
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, TX, United States
| | - Victor Viau
- Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Serge Campeau
- Department of Psychology and Neuroscience, University of Colorado at Boulder, Boulder, CO, United States.
| |
Collapse
|
33
|
Butkevich IP, Mikhailenko VA, Vershinina EA, Ulanova NA. Differences in adaptive behaviors of adolescent male and female rats exposed at birth to inflammatory pain or stress. J EVOL BIOCHEM PHYS+ 2015. [DOI: 10.1134/s0022093015040067] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Quinnies KM, Doyle TJ, Kim KH, Rissman EF. Transgenerational Effects of Di-(2-Ethylhexyl) Phthalate (DEHP) on Stress Hormones and Behavior. Endocrinology 2015; 156:3077-83. [PMID: 26168342 PMCID: PMC4541619 DOI: 10.1210/en.2015-1326] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Exposure to di-(2-ethylhexyl) phthalate (DEHP) has been linked to male reproductive abnormalities. Here, we assessed transgenerational actions of DEHP on several behaviors and stress responses. We used 2 doses of DEHP (150- and 200-mg/kg body weight) and a treatment regimen previously shown to produce transgenerational effects on male reproduction. Mice, 3 generations removed from DEHP exposure (F3), were tested for social behavior and anxiety on the elevated plus maze. We collected blood and pituitaries from undisturbed and restrained mice. Body weights, anogenital distances, and reproductive organ weights were collected at killing. In social interaction tests juvenile males from the DEHP lineage (200 mg/kg) displayed more digging and less self-grooming than did controls. Interestingly, 150-mg/kg lineage males, killed in early puberty, had smaller seminal vesicle weights than their controls. However, the 200-mg/kg males (killed on average 10 d later) did not show this effect. Females from a DEHP lineage had lower corticosterone concentrations than controls after restraint stress. We also found sex- and DEHP-specific mRNA expression changes in the pituitary in 2 of the 6 stress-related genes we measured. In particular, Gnas mRNA was elevated by the combination of DEHP lineage and stress. Thus, transgenerational effects of DEHP are noted in male behavior, and in females, DEHP had transgenerational effects on levels of corticosterone. Both of these results may be related to transgenerational modifications in the expression of several pituitary hormones involved in the hypothalamic-pituitary-adrenal axis.
Collapse
Affiliation(s)
- Kayla M Quinnies
- Neuroscience Graduate Program and Department of Biochemistry and Molecular Genetics (K.M.Q., E.F.R.), University of Virginia School of Medicine, Charlottesville, Virginia 22903; and School of Molecular Biosciences (T.J.D., K.H.K.), College of Veterinary Medicine, Washington State University, Pullman, Washington 99164
| | - Timothy J Doyle
- Neuroscience Graduate Program and Department of Biochemistry and Molecular Genetics (K.M.Q., E.F.R.), University of Virginia School of Medicine, Charlottesville, Virginia 22903; and School of Molecular Biosciences (T.J.D., K.H.K.), College of Veterinary Medicine, Washington State University, Pullman, Washington 99164
| | - Kwan Hee Kim
- Neuroscience Graduate Program and Department of Biochemistry and Molecular Genetics (K.M.Q., E.F.R.), University of Virginia School of Medicine, Charlottesville, Virginia 22903; and School of Molecular Biosciences (T.J.D., K.H.K.), College of Veterinary Medicine, Washington State University, Pullman, Washington 99164
| | - Emilie F Rissman
- Neuroscience Graduate Program and Department of Biochemistry and Molecular Genetics (K.M.Q., E.F.R.), University of Virginia School of Medicine, Charlottesville, Virginia 22903; and School of Molecular Biosciences (T.J.D., K.H.K.), College of Veterinary Medicine, Washington State University, Pullman, Washington 99164
| |
Collapse
|
35
|
Hennessy MB, Kaiser S, Tiedtke T, Sachser N. Stability and change: Stress responses and the shaping of behavioral phenotypes over the life span. Front Zool 2015; 12 Suppl 1:S18. [PMID: 26816517 PMCID: PMC4722350 DOI: 10.1186/1742-9994-12-s1-s18] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In mammals, maternal signals conveyed via influences on hypothalamic-pituitary-adrenal (HPA) activity may shape behavior of the young to be better adapted for prevailing environmental conditions. However, the mother's influence extends beyond classic stress response systems. In guinea pigs, several hours (h) of separation from the mother activates not only the HPA axis, but also the innate immune system, which effects immediate behavioral change, as well as modifies behavioral responsiveness in the future. Moreover, the presence of the mother potently suppresses the behavioral consequences of this innate immune activation. These findings raise the possibility that long-term adaptive behavioral change can be mediated by the mother's influence on immune-related activity of her pups. Furthermore, the impact of social partners on physiological stress responses and their behavioral outcomes are not limited to the infantile period. A particularly crucial period for social development in male guinea pigs is that surrounding the attainment of sexual maturation. At this time, social interactions with adults can dramatically affect circulating cortisol concentrations and social behavior in ways that appear to prepare the male to best cope in its likely future social environment. Despite such multiple social influences on the behavior of guinea pigs at different ages, inter-individual differences in the magnitude of the cortisol response remain surprisingly stable over most of the life span. Together, it appears that throughout the life span, physiological stress responses may be regulated by social stimuli. These influences are hypothesized to adjust behavior for predicted environmental conditions. In addition, stable individual differences might provide a means of facilitating adaptation to less predictable conditions.
Collapse
Affiliation(s)
| | - Sylvia Kaiser
- Department of Behavioural Biology, University of Muenster, Badestrasse 13, 48149, Muenster, Germany
| | - Tobias Tiedtke
- Department of Behavioural Biology, University of Muenster, Badestrasse 13, 48149, Muenster, Germany
| | - Norbert Sachser
- Department of Behavioural Biology, University of Muenster, Badestrasse 13, 48149, Muenster, Germany
| |
Collapse
|
36
|
Kuhn C. Emergence of sex differences in the development of substance use and abuse during adolescence. Pharmacol Ther 2015; 153:55-78. [PMID: 26049025 DOI: 10.1016/j.pharmthera.2015.06.003] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 04/29/2015] [Indexed: 12/24/2022]
Abstract
Substance use and abuse begin during adolescence. Male and female adolescent humans initiate use at comparable rates, but males increase use faster. In adulthood, more men than women use and abuse addictive drugs. However, some women progress more rapidly from initiation of use to entry into treatment. In animal models, adolescent males and females consume addictive drugs similarly. However, reproductively mature females acquire self-administration faster, and in some models, escalate use more. Sex/gender differences exist in neurobiologic factors mediating both reinforcement (dopamine, opioids) and aversiveness (CRF, dynorphin), as well as intrinsic factors (personality, psychiatric co-morbidities) and extrinsic factors (history of abuse, environment especially peers and family) which influence the progression from initial use to abuse. Many of these important differences emerge during adolescence, and are moderated by sexual differentiation of the brain. Estradiol effects which enhance both dopaminergic and CRF-mediated processes contribute to the female vulnerability to substance use and abuse. Testosterone enhances impulsivity and sensation seeking in both males and females. Several protective factors in females also influence initiation and progression of substance use including hormonal changes of pregnancy as well as greater capacity for self-regulation and lower peak levels of impulsivity/sensation seeking. Same sex peers represent a risk factor more for males than females during adolescence, while romantic partners increase risk for women during this developmental epoch. In summary, biologic factors, psychiatric co-morbidities as well as personality and environment present sex/gender-specific risks as adolescents begin to initiate substance use.
Collapse
Affiliation(s)
- Cynthia Kuhn
- Department of Pharmacology and Cancer Biology, Box 3813, Duke University Medical Center, Durham, NC 27710, United States.
| |
Collapse
|
37
|
Goel N, Workman JL, Lee TT, Innala L, Viau V. Sex differences in the HPA axis. Compr Physiol 2015; 4:1121-55. [PMID: 24944032 DOI: 10.1002/cphy.c130054] [Citation(s) in RCA: 252] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The hypothalamic-pituitary-adrenal (HPA) axis is a major component of the systems that respond to stress, by coordinating the neuroendocrine and autonomic responses. Tightly controlled regulation of HPA responses is critical for maintaining mental and physical health, as hyper- and hypo-activity have been linked to disease states. A long history of research has revealed sex differences in numerous components of the HPA stress system and its responses, which may partially form the basis for sex disparities in disease development. Despite this, many studies use male subjects exclusively, while fewer reports involve females or provide direct sex comparisons. The purpose of this article is to present sex comparisons in the functional and molecular aspects of the HPA axis, through various phases of activity, including basal, acute stress, and chronic stress conditions. The HPA axis in females initiates more rapidly and produces a greater output of stress hormones. This review focuses on the interactions between the gonadal hormone system and the HPA axis as the key mediators of these sex differences, whereby androgens increase and estrogens decrease HPA activity in adulthood. In addition to the effects of gonadal hormones on the adult response, morphological impacts of hormone exposure during development are also involved in mediating sex differences. Additional systems impinging on the HPA axis that contribute to sex differences include the monoamine neurotransmitters norepinephrine and serotonin. Diverse signals originating from the brain and periphery are integrated to determine the level of HPA axis activity, and these signals are, in many cases, sex-specific.
Collapse
Affiliation(s)
- Nirupa Goel
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | |
Collapse
|
38
|
Panagiotakopoulos L, Neigh GN. Development of the HPA axis: where and when do sex differences manifest? Front Neuroendocrinol 2014; 35:285-302. [PMID: 24631756 DOI: 10.1016/j.yfrne.2014.03.002] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 02/22/2014] [Accepted: 03/04/2014] [Indexed: 01/21/2023]
Abstract
Sex differences in the response to stress contribute to sex differences in somatic, neurological, and psychiatric diseases. Despite a growing literature on the mechanisms that mediate sex differences in the stress response, the ontogeny of these differences has not been comprehensively reviewed. This review focuses on the development of the hypothalamic-pituitary-adrenal (HPA) axis, a key component of the body's response to stress, and examines the critical points of divergence during development between males and females. Insight gained from animal models and clinical studies are presented to fully illustrate the current state of knowledge regarding sex differences in response to stress over development. An appreciation for the developmental timelines of the components of the HPA axis will provide a foundation for future areas of study by highlighting both what is known and calling attention to areas in which sex differences in the development of the HPA axis have been understudied.
Collapse
Affiliation(s)
| | - Gretchen N Neigh
- Emory University, Department of Physiology, United States; Emory University, Department of Psychiatry & Behavioral Sciences, United States.
| |
Collapse
|
39
|
|
40
|
Holder MK, Blaustein JD. Puberty and adolescence as a time of vulnerability to stressors that alter neurobehavioral processes. Front Neuroendocrinol 2014; 35:89-110. [PMID: 24184692 PMCID: PMC3946873 DOI: 10.1016/j.yfrne.2013.10.004] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 10/03/2013] [Accepted: 10/23/2013] [Indexed: 01/30/2023]
Abstract
Puberty and adolescence are major life transitions during which an individual's physiology and behavior changes from that of a juvenile to that of an adult. Here we review studies documenting the effects of stressors during pubertal and adolescent development on the adult brain and behavior. The experience of complex or compound stressors during puberty/adolescence generally increases stress reactivity, increases anxiety and depression, and decreases cognitive performance in adulthood. These behavioral changes correlate with decreased hippocampal volumes and alterations in neural plasticity. Moreover, stressful experiences during puberty disrupt behavioral responses to gonadal hormones both in sexual performance and on cognition and emotionality. These behavioral changes correlate with altered estrogen receptor densities in some estrogen-concentrating brain areas, suggesting a remodeling of the brain's response to hormones. A hypothesis is presented that activation of the immune system results in chronic neuroinflammation that may mediate the alterations of hormone-modulated behaviors in adulthood.
Collapse
Affiliation(s)
- Mary K Holder
- Neuroscience and Behavior Program, Tobin Hall, University of Massachusetts, Amherst, MA 01003-9271, USA; Center for Neuroendocrine Studies, Tobin Hall, University of Massachusetts, Amherst, MA 01003-9271, USA.
| | - Jeffrey D Blaustein
- Neuroscience and Behavior Program, Tobin Hall, University of Massachusetts, Amherst, MA 01003-9271, USA; Center for Neuroendocrine Studies, Tobin Hall, University of Massachusetts, Amherst, MA 01003-9271, USA.
| |
Collapse
|
41
|
Klein ZA, Romeo RD. Changes in hypothalamic-pituitary-adrenal stress responsiveness before and after puberty in rats. Horm Behav 2013; 64:357-63. [PMID: 23465865 DOI: 10.1016/j.yhbeh.2013.01.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 01/04/2013] [Accepted: 01/28/2013] [Indexed: 01/09/2023]
Abstract
This article is part of a Special Issue "Puberty and Adolescence". Many endocrine changes are associated with pubertal and adolescent development. One such change is the responsiveness of the hypothalamic-pituitary-adrenal (HPA) axis to physical and/or psychological stressors. Recent human and non-human animal studies have shown that hormonal stress reactivity increases significantly throughout puberty and adolescence. Specifically, exposure to various stressors results in greater adrenocorticotropic hormone (ACTH) and glucocorticoid responses in peripubertal compared to adult animals. This review will focus on how stress reactivity changes throughout puberty and adolescence, as well as potential mechanisms that mediate these changes in stress responsiveness. Though the implications of these pubertal shifts in stress responsiveness are not fully understood, the significant increase in stress-related mental and physical dysfunctions during this stage of development highlights the importance of studying pubertal and adolescent maturation of HPA function and its reactivity to stress.
Collapse
Affiliation(s)
- Zoe A Klein
- Department of Psychology and Neuroscience and Behavior Program, Barnard College of Columbia University, New York, NY 10027, USA
| | | |
Collapse
|
42
|
Vest RS, Pike CJ. Gender, sex steroid hormones, and Alzheimer's disease. Horm Behav 2013; 63:301-7. [PMID: 22554955 PMCID: PMC3413783 DOI: 10.1016/j.yhbeh.2012.04.006] [Citation(s) in RCA: 164] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Revised: 03/24/2012] [Accepted: 04/11/2012] [Indexed: 02/07/2023]
Abstract
Age-related loss of sex steroid hormones is a established risk factor for the development of Alzheimer's disease (AD) in women and men. While the relationships between the sex steroid hormones and AD are not fully understood, findings from both human and experimental paradigms indicate that depletion of estrogens in women and androgens in men increases vulnerability of the aging brain to AD pathogenesis. We review evidence of a wide range of beneficial neural actions of sex steroid hormones that may contribute to their hypothesized protective roles against AD. Both estrogens and androgens exert general neuroprotective actions relevant to a several neurodegenerative conditions, some in a sex-specific manner, including protection from neuron death and promotion of select aspects of neural plasticity. In addition, estrogens and androgens regulate key processes implicated in AD pathogenesis, in particular the accumulation of β-amyloid protein. We discuss evidence of hormone-specific mechanisms related to the regulation of the production and clearance of β-amyloid as critical protective pathways. Continued elucidation of these pathways promises to yield effective hormone-based strategies to delay development of AD.
Collapse
Affiliation(s)
- Rebekah S Vest
- USC Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | | |
Collapse
|
43
|
Babb JA, Masini CV, Day HEW, Campeau S. Sex differences in activated corticotropin-releasing factor neurons within stress-related neurocircuitry and hypothalamic-pituitary-adrenocortical axis hormones following restraint in rats. Neuroscience 2013; 234:40-52. [PMID: 23305762 DOI: 10.1016/j.neuroscience.2012.12.051] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 12/20/2012] [Accepted: 12/28/2012] [Indexed: 02/06/2023]
Abstract
Women may be more vulnerable to certain stress-related psychiatric illnesses than men due to differences in hypothalamic-pituitary-adrenocortical (HPA) axis function. To investigate potential sex differences in forebrain regions associated with HPA axis activation in rats, these experiments utilized acute exposure to a psychological stressor. Male and female rats in various stages of the estrous cycle were exposed to 30min of restraint, producing a robust HPA axis hormonal response in all animals, the magnitude of which was significantly higher in female rats. Although both male and female animals displayed equivalent c-fos expression in many brain regions known to be involved in the detection of threatening stimuli, three regions had significantly higher expression in females: the paraventricular nucleus of the hypothalamus (PVN), the anteroventral division of the bed nucleus of the stria terminalis (BSTav), and the medial preoptic area (MPOA). Dual fluorescence in situ hybridization analysis of neurons containing c-fos and corticotropin-releasing factor (CRF) mRNA in these regions revealed significantly more c-fos and CRF single-labeled neurons, as well as significantly more double-labeled neurons in females. Surprisingly, there was no effect of the estrous cycle on any measure analyzed, and an additional experiment revealed no demonstrable effect of estradiol replacement following ovariectomy on HPA axis hormone induction following stress. Taken together, these data suggest sex differences in HPA axis activation in response to perceived threat may be influenced by specific populations of CRF neurons in key stress-related brain regions, the BSTav, MPOA, and PVN, which may be independent of circulating sex steroids.
Collapse
Affiliation(s)
- J A Babb
- Department of Psychology and Neuroscience, University of Colorado at Boulder, USA
| | | | | | | |
Collapse
|
44
|
Bangasser DA, Valentino RJ. Sex differences in molecular and cellular substrates of stress. Cell Mol Neurobiol 2012; 32:709-23. [PMID: 22488525 DOI: 10.1007/s10571-012-9824-4] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 02/22/2012] [Indexed: 12/20/2022]
Abstract
Women are twice as likely as men to suffer from stress-related psychiatric disorders, like unipolar depression and post-traumatic stress disorder. Although the underlying neural mechanisms are not well characterized, the pivotal role of stress in the onset and severity of these diseases has led to the idea that sex differences in stress responses account for this sex bias. Corticotropin-releasing factor (CRF) orchestrates stress responses by acting both as a neurohormone to initiate the hypothalamic-pituitary-adrenal (HPA) axis and as a neuromodulator in the brain. One target of CRF modulation is the locus coeruleus (LC)-norepinephrine system, which coordinates arousal components of the stress response. Hypersecretion of CRF and dysregulation of targets downstream from CRF, such as the HPA axis and LC-norepinephrine system, are characteristic features of many stress-related psychiatric diseases, suggesting a causal role for CRF and its targets in the development of these disorders. This review will describe sex differences in CRF and the LC-norepinephrine system that can increase stress sensitivity in females, making them vulnerable to stress-related disorders. Evidence for gonadal hormone regulation of hypothalamic CRF is discussed as an effect that can lead to increased HPA axis activity in females. Sex differences in the structure of LC neurons that create the potential for hyperarousal in response to emotional stimuli are described. Finally, sex differences at the molecular level of the CRF(1) receptor that make the LC-norepinephrine system more reactive in females are reviewed. The implications of these sex differences for the treatment of stress-related psychiatric disorders also will be discussed.
Collapse
Affiliation(s)
- Debra A Bangasser
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | |
Collapse
|
45
|
Bingham B, Wang NXR, Innala L, Viau V. Postnatal aromatase blockade increases c-fos mRNA responses to acute restraint stress in adult male rats. Endocrinology 2012; 153:1603-8. [PMID: 22315450 DOI: 10.1210/en.2011-1749] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recent evidence suggests that the aromatization of testosterone to estrogen is important for the organizing effects of neonatal testosterone on neuroendocrine responses to acute challenges. However, the extent to which neonatal inhibition of aromatase alters the stress-induced activation of neural pathways has not been examined. Here we assessed central patterns of c-fos mRNA induced by 30 min of restraint in 65-d-old adult male rats that were implanted with sc capsules of the aromatase inhibitor 1,4,6-androstatriene-3,17-dione (ATD), introduced within 12 h of birth and removed on d 21 of weaning. Neonatal ATD decreased the expression of arginine vasopressin within extrahypothalamic regions in adults, confirming reduced estrogen exposure during development. As adults, ATD-treated animals showed higher corticosterone responses at 30 min of restraint exposure compared with control animals as well as higher c-fos expression levels in the paraventricular nucleus of the hypothalamus. ATD treatment also increased stress-induced c-fos within several limbic regions of the forebrain, in addition to areas involved in somatosensory processing. Based on these results, we propose that the conversion of testosterone to estrogen during the neonatal period exerts marked, system-wide effects to organize adult neuroendocrine responses to homeostatic threat.
Collapse
Affiliation(s)
- Brenda Bingham
- Department of Cellular and Physiological Sciences, Life Sciences Centre, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | | | |
Collapse
|
46
|
Lürzel S, Kaiser S, Krüger C, Sachser N. Inhibiting influence of testosterone on stress responsiveness during adolescence. Horm Behav 2011; 60:691-8. [PMID: 21983230 DOI: 10.1016/j.yhbeh.2011.09.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 08/26/2011] [Accepted: 09/11/2011] [Indexed: 12/17/2022]
Abstract
The maturation of the hypothalamo-pituitary-adrenal (HPA) axis is a key-component of the changes that occur during adolescence. In guinea pigs, HPA responsiveness during late adolescence depends strongly on the quantity and quality of social interactions: Males that lived in a large mixed-sex colony over the course of adolescence exhibit a lower stress response than males that were kept in pairs (one male/one female). Since colony-housed males have higher testosterone (T) levels than pair-housed males, and inhibiting effects of T on HPA function are well known, we tested the hypothesis that the decrease in stress responsiveness found in colony-housed males is due to their high T concentrations. We manipulated T levels in two experiments: 1) gonadectomy/sham-gonadectomy of colony-housed males (which usually have high T levels), 2) application of T undecanoate/vehicle to pair-housed males (which usually have low T levels). As expected, gonadectomized males showed a significantly increased stress response in comparison with sham-gonadectomized males, and T-injected males had a significantly lower stress response than vehicle-injected males. Both experiments thus confirm an inhibiting effect of T on HPA responsiveness during adolescence, which can mediate the influence of social interactions. The reduction in stress responsiveness is hypothesized to have a biologically adaptive value: A sudden increase in glucocorticoid concentrations can enhance aggressive behavior. Thus, pair-housed males might be adapted to aggressively defend their female ('resource defense strategy'), whereas colony-housed males display little aggressive behavior and are capable of integrating themselves into a colony ('queuing strategy').
Collapse
Affiliation(s)
- Stephanie Lürzel
- Department of Behavioural Biology, University of Münster, Badestraße 13, 48149 Münster, Germany.
| | | | | | | |
Collapse
|
47
|
Lürzel S, Kaiser S, Sachser N. Social interaction decreases stress responsiveness during adolescence. Psychoneuroendocrinology 2011; 36:1370-7. [PMID: 21493009 DOI: 10.1016/j.psyneuen.2011.03.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 02/24/2011] [Accepted: 03/18/2011] [Indexed: 01/31/2023]
Abstract
Adolescence is the transition from infancy to adulthood and encompasses major changes in the brain, the endocrine systems, and behavior. During late adolescence, male guinea pigs living in mixed-sex colonies exhibit a lower cortisol (C) response to novelty compared with animals in other ages and housing conditions. It was hypothesized that this reduction in stress responsiveness is induced by a high amount of social interactions in the colonies. In a previous study (Lürzel et al., 2010), late adolescent colony-housed males (CM) were compared with similarly aged males that were housed in heterosexual pairs (PM) as well as with males that were also housed in pairs, but regularly received additional social stimulation by allowing them ten times to interact with unfamiliar adult animals of both sexes for 10 min (SM). CM had a significantly lower stress response than PM, with SM being intermediate and not significantly different from either of the other groups. We assumed that the amount of social stimulation in SM was insufficient in order to achieve a significant reduction of stress responsiveness compared with PM. For the present study, we hypothesized that with a higher amount of social stimulation, a significant difference in stress responsiveness between PM and SM becomes apparent during late adolescence. Thus, PM were again compared with SM that, this time, had received twice as much social stimulation as in the previous study. As a result, stress responsiveness was indeed significantly lower in SM than in PM during late adolescence. Thus, a high amount of social interactions during the course of adolescence leads to a decreased stress responsiveness. Furthermore, SM showed an increase in testosterone (T) levels caused by social stimulation. We hypothesize that the reduction in stress responsiveness is brought about by high T levels that organize central neural structures over the course of adolescence.
Collapse
Affiliation(s)
- Stephanie Lürzel
- Department of Behavioural Biology, University of Münster, Badestraße 13, 48149 Münster, Germany.
| | | | | |
Collapse
|
48
|
Abstract
This study tested the hypothesis that the sexually dimorphic adrenocortical response to stress is already established before birth. Chronically instrumented late gestation pregnant sheep carrying 16 male and 15 female age-matched singleton fetuses were subjected to an acute episode of hypoxic stress. Maternal and fetal blood gases, adrenocorticotrophic hormone (ACTH), and cortisol were measured. In addition, six male and six female fetuses received the ACTH analog, Synacthen, and plasma cortisol was measured. During hypoxic stress, the increment in plasma cortisol was 2-fold greater in male versus females fetuses (30.6 ± 3.2 versus 14.3 ± 2.0 ng/mL; p < 0.001) mediated, in part, by greater adrenocortical sensitivity to ACTH. The data support the hypothesis tested and show that sex-specific differences in the cortisol stress response are present before birth with the output of cortisol being much greater in male than in female fetuses.
Collapse
Affiliation(s)
- Dino A Giussani
- Department of Physiology, University of Cambridge, Cambridge CB2 3EG, United Kingdom.
| | | | | |
Collapse
|
49
|
Postnatal blockade of androgen receptors or aromatase impair the expression of stress hypothalamic-pituitary-adrenal axis habituation in adult male rats. Psychoneuroendocrinology 2011; 36:249-57. [PMID: 20719434 DOI: 10.1016/j.psyneuen.2010.07.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 07/06/2010] [Accepted: 07/19/2010] [Indexed: 11/20/2022]
Abstract
Sex steroid hormones during development permanently alter, or organize, the brain and behavior, while during adulthood they act to reversibly modulate, or activate, physiology and behavior. Testosterone exerts both organizational and activational effects on the magnitude of the hypothalamic-pituitary-adrenal (HPA) axis response to acute stress. What has never been approached is how testosterone can organize habituation of the HPA axis, in which stress induced elevations in ACTH and corticosterone release decline over repeated exposures to the same stimulus. In the current study we examined HPA responses to repeated psychogenic stress in 65-day-old, adult male rats that received subcutaneous capsules containing the antiandrogen flutamide or the aromatase inhibitor 1,4,6-androstatriene-3,17-dione (ATD), introduced within 12h of birth and removed on day 21 of weaning. An additional group of castrated, adult male rats were used to differentiate organizational from activational effects of testosterone. All treatment groups displayed smaller declines in ACTH in response to repeated restraint compared to control animals. Remarkably, the normal decline in corticosterone failed to occur in flutamide- and ATD-treated animals. By contrast, males that were castrated as adults showed a significant reduction in corticosterone after repeated stress. Taken together, these findings underscore an organizing influence of both androgen receptors and estrogen conversion on HPA habituation to repeated psychogenic stress, which appears to occur independent of the activational effects of testosterone.
Collapse
|
50
|
McCormick CM. Effect of neonatal ovariectomy and estradiol treatment on corticosterone release in response to stress in the adult female rat. Stress 2011; 14:82-7. [PMID: 20666656 DOI: 10.3109/10253890.2010.490309] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Although organizational effects of sex hormones in early life on hypothalamic-pituitary-adrenal function have been reported for males, the findings are mixed for females, likely the result of not controlling for adult gonadal status. In experiment 1, females were ovariectomized (OVX) either on postnatal day 1 or as adults and given estradiol benzoate (EB) and progesterone implants or not as adults. Corticosterone release in response to restraint stress was responsive to hormonal replacement irrespective of timing of OVX: without replacement, both OVX groups had lower corticosterone concentrations after restraint stress than did OVX groups with replacement and gonadally intact females. Thus, neonatal OVX did not alter the activational effects of sex hormones in adulthood. In a second experiment, females administered a dose of EB on postnatal day 1 had a more rapid decline of corticosterone concentrations after restraint as adults compared to oil-treated females, irrespective of whether they were OVX as neonates or as adults (all groups were given estradiol replacement as adults). Thus, evidently there are organizational effects of the sex hormonal milieu of the neonatal female, although this is a modest effect compared to previous reports in males.
Collapse
Affiliation(s)
- Cheryl M McCormick
- Department of Psychology, Centre for Neurosciences, Brock University, Niagara Region, 500 Glenridge Avenue, St Catharines, Ont., Canada L2S 3A1.
| |
Collapse
|