1
|
Steffen A, Dombert K, Iglesias MJ, Nolte C, de Leone MJ, Yanovsky MJ, Mateos JL, Staiger D. Assessing the Role of AtGRP7 Arginine 141, a Target of Dimethylation by PRMT5, in Flowering Time Control and Stress Response. PLANTS (BASEL, SWITZERLAND) 2024; 13:2771. [PMID: 39409642 PMCID: PMC11478431 DOI: 10.3390/plants13192771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 09/27/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024]
Abstract
PROTEIN ARGININE METHYLTRANSFERASES (PRMTs) catalyze arginine (R) methylation that is critical for transcriptional and post-transcriptional gene regulation. In Arabidopsis, PRMT5 that catalyzes symmetric R dimethylation is best characterized. PRMT5 mutants are late-flowering and show altered responses to environmental stress. Among PRMT5 targets are Arabidopsis thaliana GLYCINE RICH RNA BINDING PROTEIN 7 (AtGRP7) and AtGRP8 that promote the transition to flowering. AtGRP7 R141 has been shown to be modified by PRMT5. Here, we tested whether this symmetric dimethylation of R141 is important for AtGRP7's physiological role in flowering time control. We constructed AtGRP7 mutant variants with non-methylable R141 (R141A, R141K). Genomic clones containing these variants complemented the late-flowering phenotype of the grp7-1 mutant to the same extent as wild-type AtGRP7. Furthermore, overexpression of AtGRP7 R141A or R141K promoted flowering similar to overexpression of the wild-type protein. Thus, flowering time does not depend on R141 and its modification. However, germination experiments showed that R141 contributes to the activity of AtGRP7 in response to abiotic stress reactions mediated by abscisic acid during early development. Immunoprecipitation of AtGRP7-GFP in the prmt5 background revealed that antibodies against dimethylated arginine still recognized AtGRP7, suggesting that additional methyltransferases may be responsible for modification of AtGRP7.
Collapse
Affiliation(s)
- Alexander Steffen
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany; (A.S.)
| | - Katarzyna Dombert
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany; (A.S.)
| | - María José Iglesias
- Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET-UBA), Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina;
| | - Christine Nolte
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany; (A.S.)
| | - María José de Leone
- Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires C1405BWE, Argentina; (M.J.d.L.); (M.J.Y.)
| | - Marcelo J. Yanovsky
- Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires C1405BWE, Argentina; (M.J.d.L.); (M.J.Y.)
| | - Julieta L. Mateos
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany; (A.S.)
- Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET-UBA), Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina;
| | - Dorothee Staiger
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany; (A.S.)
| |
Collapse
|
2
|
Zhang H, Wang X, Qu M, Yu H, Yin J, Liu X, Liu Y, Zhang B, Zhang Y, Wei Z, Yang F, Wang J, Shi C, Fan G, Sun J, Long L, Hutchins DA, Bowler C, Lin S, Wang D, Lin Q. Genome of Halimeda opuntia reveals differentiation of subgenomes and molecular bases of multinucleation and calcification in algae. Proc Natl Acad Sci U S A 2024; 121:e2403222121. [PMID: 39302967 PMCID: PMC11441479 DOI: 10.1073/pnas.2403222121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 08/16/2024] [Indexed: 09/22/2024] Open
Abstract
Algae mostly occur either as unicellular (microalgae) or multicellular (macroalgae) species, both being uninucleate. There are important exceptions, however, as some unicellular algae are multinucleate and macroscopic, some of which inhabit tropical seas and contribute to biocalcification and coral reef robustness. The evolutionary mechanisms and ecological significance of multinucleation and associated traits (e.g., rapid wound healing) are poorly understood. Here, we report the genome of Halimeda opuntia, a giant multinucleate unicellular chlorophyte characterized by interutricular calcification. We achieve a high-quality genome assembly that shows segregation into four subgenomes, with evidence for polyploidization concomitant with historical sea level and climate changes. We further find myosin VIII missing in H. opuntia and three other unicellular multinucleate chlorophytes, suggesting a potential mechanism that may underpin multinucleation. Genome analysis provides clues about how the unicellular alga could survive fragmentation and regenerate, as well as potential signatures for extracellular calcification and the coupling of calcification with photosynthesis. In addition, proteomic alkalinity shifts were found to potentially confer plasticity of H. opuntia to ocean acidification (OA). Our study provides crucial genetic information necessary for understanding multinucleation, cell regeneration, plasticity to OA, and different modes of calcification in algae and other organisms, which has important implications in reef conservation and bioengineering.
Collapse
Affiliation(s)
- Hao Zhang
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou510301, China
- Marine Biodiversity and Ecological Evolution Research Center, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou510301, China
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen361102, China
| | - Xin Wang
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou510301, China
- Marine Biodiversity and Ecological Evolution Research Center, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou510301, China
| | - Meng Qu
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou510301, China
- Marine Biodiversity and Ecological Evolution Research Center, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou510301, China
| | - Haiyan Yu
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou510301, China
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen361102, China
| | - Jianping Yin
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou510301, China
| | | | - Yuhong Liu
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou510301, China
| | - Bo Zhang
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou510301, China
| | - Yanhong Zhang
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou510301, China
| | - Zhangliang Wei
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou510301, China
| | - Fangfang Yang
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou510301, China
| | - Jingtian Wang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen361102, China
| | | | | | - Jun Sun
- College of Marine Science and Technology, China University of Geosciences, Wuhan430074, China
| | - Lijuan Long
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou510301, China
| | - David A. Hutchins
- Department of Biological Sciences, Marine and Environmental Biology, University of Southern California, Los Angeles, CA90007
| | - Chris Bowler
- Institut de Biologie de l’Ecole Normale Supérieure, Ecole Normale Supérieure, CNRS, INSERM, Paris Sciences et Lettres Research University, Paris75005, France
| | - Senjie Lin
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen361102, China
- Department of Marine Sciences, University of Connecticut, Groton, CT06340
| | - Dazhi Wang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen361102, China
| | - Qiang Lin
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou510301, China
- Marine Biodiversity and Ecological Evolution Research Center, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou510301, China
- University of Chinese Academy of Sciences, Beijing100049, China
| |
Collapse
|
3
|
Pečenková T, Potocký M, Stegmann M. More than meets the eye: knowns and unknowns of the trafficking of small secreted proteins in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3713-3730. [PMID: 38693754 DOI: 10.1093/jxb/erae172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 05/01/2024] [Indexed: 05/03/2024]
Abstract
Small proteins represent a significant portion of the cargo transported through plant secretory pathways, playing crucial roles in developmental processes, fertilization, and responses to environmental stresses. Despite the importance of small secreted proteins, substantial knowledge gaps persist regarding the regulatory mechanisms governing their trafficking along the secretory pathway, and their ultimate localization or destination. To address these gaps, we conducted a comprehensive literature review, focusing particularly on trafficking and localization of Arabidopsis small secreted proteins with potential biochemical and/or signaling roles in the extracellular space, typically those within the size range of 101-200 amino acids. Our investigation reveals that while at least six members of the 21 mentioned families have a confirmed extracellular localization, eight exhibit intracellular localization, including cytoplasmic, nuclear, and chloroplastic locations, despite the presence of N-terminal signal peptides. Further investigation into the trafficking and secretion mechanisms of small protein cargo could not only deepen our understanding of plant cell biology and physiology but also provide a foundation for genetic manipulation strategies leading to more efficient plant cultivation.
Collapse
Affiliation(s)
- Tamara Pečenková
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44, Prague 2, Czech Republic
| | - Martin Potocký
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44, Prague 2, Czech Republic
| | - Martin Stegmann
- Technical University Munich, School of Life Sciences, Phytopathology, Emil-Ramann-Str. 2, 85354 Freising, Germany
| |
Collapse
|
4
|
Zhang Y, Mo Y, Li J, Liu L, Gao Y, Zhang Y, Huang Y, Ren L, Zhu H, Jiang X, Ling Y. Divergence in regulatory mechanisms of GR-RBP genes in different plants under abiotic stress. Sci Rep 2024; 14:8743. [PMID: 38627506 PMCID: PMC11021534 DOI: 10.1038/s41598-024-59341-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/09/2024] [Indexed: 04/19/2024] Open
Abstract
The IVa subfamily of glycine-rich proteins (GRPs) comprises a group of glycine-rich RNA binding proteins referred to as GR-RBPa here. Previous studies have demonstrated functions of GR-RBPa proteins in regulating stress response in plants. However, the mechanisms responsible for the differential regulatory functions of GR-RBPa proteins in different plant species have not been fully elucidated. In this study, we identified and comprehensively studied a total of 34 GR-RBPa proteins from five plant species. Our analysis revealed that GR-RBPa proteins were further classified into two branches, with proteins in branch I being relatively more conserved than those in branch II. When subjected to identical stresses, these genes exhibited intensive and differential expression regulation in different plant species, corresponding to the enrichment of cis-acting regulatory elements involving in environmental and internal signaling in these genes. Unexpectedly, all GR-RBPa genes in branch I underwent intensive alternative splicing (AS) regulation, while almost all genes in branch II were only constitutively spliced, despite having more introns. This study highlights the complex and divergent regulations of a group of conserved RNA binding proteins in different plants when exposed to identical stress conditions. These species-specific regulations may have implications for stress responses and adaptations in different plant species.
Collapse
Affiliation(s)
- Yingjie Zhang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, People's Republic of China
| | - Yujian Mo
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, People's Republic of China
| | - Junyi Li
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, People's Republic of China
| | - Li Liu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, People's Republic of China
| | - Yanhu Gao
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, People's Republic of China
| | - Yueqin Zhang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, People's Republic of China
| | - Yongxiang Huang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, People's Republic of China
- South China Branch of National Saline-Alkali Tolerant Rice Technology Innovation Center, Zhanjiang, 524088, People's Republic of China
| | - Lei Ren
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, People's Republic of China
- South China Branch of National Saline-Alkali Tolerant Rice Technology Innovation Center, Zhanjiang, 524088, People's Republic of China
| | - Hongbo Zhu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, People's Republic of China
| | - Xingyu Jiang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, People's Republic of China.
- South China Branch of National Saline-Alkali Tolerant Rice Technology Innovation Center, Zhanjiang, 524088, People's Republic of China.
| | - Yu Ling
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, People's Republic of China.
- South China Branch of National Saline-Alkali Tolerant Rice Technology Innovation Center, Zhanjiang, 524088, People's Republic of China.
| |
Collapse
|
5
|
Kim YO, Safdar M, Kang H, Kim J. Glycine-Rich RNA-Binding Protein AtGRP7 Functions in Nickel and Lead Tolerance in Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2024; 13:187. [PMID: 38256744 PMCID: PMC10818801 DOI: 10.3390/plants13020187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024]
Abstract
Plant glycine-rich RNA-binding proteins (GRPs) play crucial roles in the response to environmental stresses. However, the functions of AtGRP7 in plants under heavy metal stress remain unclear. In the present study, in Arabidopsis, the transcript level of AtGRP7 was markedly increased by Ni but was decreased by Pb. AtGRP7-overexpressing plants improved Ni tolerance, whereas the knockout mutant (grp7) was more susceptible than the wild type to Ni. In addition, grp7 showed greatly enhanced Pb tolerance, whereas overexpression lines showed high Pb sensitivity. Ni accumulation was reduced in overexpression lines but increased in grp7, whereas Pb accumulation in grp7 was lower than that in overexpression lines. Ni induced glutathione synthase genes GS1 and GS2 in overexpression lines, whereas Pb increased metallothionein genes MT4a and MT4b and phytochelatin synthase genes PCS1 and PCS2 in grp7. Furthermore, Ni increased CuSOD1 and GR1 in grp7, whereas Pb significantly induced FeSOD1 and FeSOD2 in overexpression lines. The mRNA stability of GS2 and PCS1 was directly regulated by AtGRP7 under Ni and Pb, respectively. Collectively, these results indicate that AtGRP7 plays a crucial role in Ni and Pb tolerance by reducing Ni and Pb accumulation and the direct or indirect post-transcriptional regulation of genes related to heavy metal chelators and antioxidant enzymes.
Collapse
Affiliation(s)
- Yeon-Ok Kim
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea;
| | - Mahpara Safdar
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea;
- Department of Convergence Biosystems Engineering, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hunseung Kang
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jangho Kim
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea;
- Department of Convergence Biosystems Engineering, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
6
|
Wang J, Zhou P, Shen T, Xu S, Bai T, Ling J. Glycine N-Thiocarboxyanhydride: A Key to Glycine-Rich Protein Mimics. ACS Macro Lett 2023; 12:1466-1471. [PMID: 37856323 DOI: 10.1021/acsmacrolett.3c00491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Glycine-rich proteins (GRPs) containing a high content of glycine residues (>30%) possess unique structural stability. However, the controllable synthesis of glycine-rich poly(amino acid)s (PAAs) to mimic GRPs has not been realized yet due to the poor solubility of polyglycine segments. We developed a novel method to synthesize glycine-rich PAAs via the controlled ring-opening copolymerization of glycine-N-thiocarboxyanhydrides (Gly-NTA) with sarcosine-N-carboxyanhydride and ε-Cbz-l-lysine-N-carboxyanhydride. The random copolymerization is evidenced by a kinetic study that shows that the propagation rate constant of Gly-NTA is close to those of comonomers. The copolymers exhibit predictable molecular weights between 4.5 and 24.6 kg/mol and tunable glycine incorporation, varying from 10.3 to 59.2%. Poly(Gly-r-Sar) samples with various glycine contents form nanoparticles or a hydrogel in water. Remarkably, the β-sheet folding of poly(Gly-r-Lys) remains intact in a neutral environment where the amine groups are protonated. Overall, the strategy paves the way to engineer glycine-rich PAAs and thereby expands their applications.
Collapse
Affiliation(s)
- Jianping Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Peng Zhou
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Ting Shen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Songyi Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Tianwen Bai
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Jun Ling
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
7
|
Tan Z, Lu D, Yu Y, Li L, Dong W, Xu L, Yang Q, Wan X, Liang H. Genome-Wide Identification and Characterization of the bHLH Gene Family and Its Response to Abiotic Stresses in Carthamus tinctorius. PLANTS (BASEL, SWITZERLAND) 2023; 12:3764. [PMID: 37960120 PMCID: PMC10648185 DOI: 10.3390/plants12213764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/16/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023]
Abstract
The basic helix-loop-helix (bHLH) transcription factors possess DNA-binding and dimerization domains and are involved in various biological and physiological processes, such as growth and development, the regulation of secondary metabolites, and stress response. However, the bHLH gene family in C. tinctorius has not been investigated. In this study, we performed a genome-wide identification and analysis of bHLH transcription factors in C. tinctorius. A total of 120 CtbHLH genes were identified, distributed across all 12 chromosomes, and classified into 24 subfamilies based on their phylogenetic relationships. Moreover, the 120 CtbHLH genes were subjected to comprehensive analyses, including protein sequence alignment, evolutionary assessment, motif prediction, and the analysis of promoter cis-acting elements. The promoter region analysis revealed that CtbHLH genes encompass cis-acting elements and were associated with various aspects of plant growth and development, responses to phytohormones, as well as responses to both abiotic and biotic stresses. Expression profiles, sourced from transcriptome databases, indicated distinct expression patterns among these CtbHLH genes, which appeared to be either tissue-specific or specific to certain cultivars. To further explore their functionality, we determined the expression levels of fifteen CtbHLH genes known to harbor motifs related to abiotic and hormone responses. This investigation encompassed treatments with ABA, salt, drought, and MeJA. The results demonstrated substantial variations in the expression patterns of CtbHLH genes in response to these abiotic and hormonal treatments. In summary, our study establishes a solid foundation for future inquiries into the roles and regulatory mechanisms of the CtbHLH gene family.
Collapse
Affiliation(s)
- Zhengwei Tan
- Institute of Chinese Herbel Medicines, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (Z.T.); (D.L.); (Y.Y.); (L.L.); (W.D.); (L.X.); (Q.Y.)
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Dandan Lu
- Institute of Chinese Herbel Medicines, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (Z.T.); (D.L.); (Y.Y.); (L.L.); (W.D.); (L.X.); (Q.Y.)
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Yongliang Yu
- Institute of Chinese Herbel Medicines, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (Z.T.); (D.L.); (Y.Y.); (L.L.); (W.D.); (L.X.); (Q.Y.)
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Lei Li
- Institute of Chinese Herbel Medicines, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (Z.T.); (D.L.); (Y.Y.); (L.L.); (W.D.); (L.X.); (Q.Y.)
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Wei Dong
- Institute of Chinese Herbel Medicines, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (Z.T.); (D.L.); (Y.Y.); (L.L.); (W.D.); (L.X.); (Q.Y.)
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Lanjie Xu
- Institute of Chinese Herbel Medicines, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (Z.T.); (D.L.); (Y.Y.); (L.L.); (W.D.); (L.X.); (Q.Y.)
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Qing Yang
- Institute of Chinese Herbel Medicines, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (Z.T.); (D.L.); (Y.Y.); (L.L.); (W.D.); (L.X.); (Q.Y.)
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Xiufu Wan
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijng 100700, China;
| | - Huizhen Liang
- Institute of Chinese Herbel Medicines, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (Z.T.); (D.L.); (Y.Y.); (L.L.); (W.D.); (L.X.); (Q.Y.)
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| |
Collapse
|
8
|
Duan M, Zong M, Guo N, Han S, Wang G, Miao L, Liu F. Comprehensive Genome-Wide Identification of the RNA-Binding Glycine-Rich Gene Family and Expression Profiling under Abiotic Stress in Brassica oleracea. PLANTS (BASEL, SWITZERLAND) 2023; 12:3706. [PMID: 37960062 PMCID: PMC10649936 DOI: 10.3390/plants12213706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/21/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023]
Abstract
The RNA-binding glycine-rich proteins (RBGs) of the glycine-rich protein family play vital roles in regulating gene expression both at the transcriptional and post-transcriptional levels. However, the members and functions in response to abiotic stresses of the RBG gene family remain unclear in Brassica oleracea. In this study, a total of 19 BoiRBG genes were identified through genome-wide analysis in broccoli. The characteristics of BoiRBG sequences and their evolution were examined. An analysis of synteny indicated that the expansion of the BoiRBG gene family was primarily driven by whole-genome duplication and tandem duplication events. The BoiRBG expression patterns revealed that these genes are involved in reaction to diverse abiotic stress conditions (i.e., simulated drought, salinity, heat, cold, and abscisic acid) and different organs. In the present research, the up-regulation of BoiRBGA13 expression was observed when subjected to both NaCl-induced and cold stress conditions in broccoli. Moreover, the overexpression of BoiRBGA13 resulted in a noteworthy reduction in taproot lengths under NaCl stress, as well as the inhibition of seed germination under cold stress in broccoli, indicating that RBGs play different roles under various stresses. This study provides insights into the evolution and functions of BoiRBG genes in Brassica oleracea and other Brassicaceae family plants.
Collapse
Affiliation(s)
- Mengmeng Duan
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, State Key Laboratory of Vegetable Biobreeding, National Engineering Research Center for Vegetables, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing 100097, China; (M.D.); (M.Z.); (N.G.); (S.H.); (G.W.)
| | - Mei Zong
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, State Key Laboratory of Vegetable Biobreeding, National Engineering Research Center for Vegetables, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing 100097, China; (M.D.); (M.Z.); (N.G.); (S.H.); (G.W.)
| | - Ning Guo
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, State Key Laboratory of Vegetable Biobreeding, National Engineering Research Center for Vegetables, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing 100097, China; (M.D.); (M.Z.); (N.G.); (S.H.); (G.W.)
| | - Shuo Han
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, State Key Laboratory of Vegetable Biobreeding, National Engineering Research Center for Vegetables, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing 100097, China; (M.D.); (M.Z.); (N.G.); (S.H.); (G.W.)
| | - Guixiang Wang
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, State Key Laboratory of Vegetable Biobreeding, National Engineering Research Center for Vegetables, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing 100097, China; (M.D.); (M.Z.); (N.G.); (S.H.); (G.W.)
| | - Liming Miao
- Horticulture Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China;
| | - Fan Liu
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, State Key Laboratory of Vegetable Biobreeding, National Engineering Research Center for Vegetables, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing 100097, China; (M.D.); (M.Z.); (N.G.); (S.H.); (G.W.)
| |
Collapse
|
9
|
Cheng K, Zhang C, Lu Y, Li J, Tang H, Ma L, Zhu H. The Glycine-Rich RNA-Binding Protein Is a Vital Post-Transcriptional Regulator in Crops. PLANTS (BASEL, SWITZERLAND) 2023; 12:3504. [PMID: 37836244 PMCID: PMC10575402 DOI: 10.3390/plants12193504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023]
Abstract
Glycine-rich RNA binding proteins (GR-RBPs), a branch of RNA binding proteins (RBPs), play integral roles in regulating various aspects of RNA metabolism regulation, such as RNA processing, transport, localization, translation, and stability, and ultimately regulate gene expression and cell fate. However, our current understanding of GR-RBPs has predominantly been centered on Arabidopsis thaliana, a model plant for investigating plant growth and development. Nonetheless, an increasing body of literature has emerged in recent years, shedding light on the presence and functions of GRPs in diverse crop species. In this review, we not only delineate the distinctive structural domains of plant GR-RBPs but also elucidate several contemporary mechanisms of GR-RBPs in the post-transcriptional regulation of RNA. These mechanisms encompass intricate processes, including RNA alternative splicing, polyadenylation, miRNA biogenesis, phase separation, and RNA translation. Furthermore, we offer an exhaustive synthesis of the diverse roles that GR-RBPs fulfill within crop plants. Our overarching objective is to provide researchers and practitioners in the field of agricultural genetics with valuable insights that may inform and guide the application of plant genetic engineering for enhanced crop development and sustainable agriculture.
Collapse
Affiliation(s)
- Ke Cheng
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (K.C.); (Y.L.); (J.L.); (H.T.); (L.M.)
| | - Chunjiao Zhang
- Supervision, Inspection & Testing Center of Agricultural Products Quality, Ministry of Agriculture and Rural Affairs, Beijing 100083, China;
| | - Yao Lu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (K.C.); (Y.L.); (J.L.); (H.T.); (L.M.)
| | - Jinyan Li
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (K.C.); (Y.L.); (J.L.); (H.T.); (L.M.)
| | - Hui Tang
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (K.C.); (Y.L.); (J.L.); (H.T.); (L.M.)
| | - Liqun Ma
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (K.C.); (Y.L.); (J.L.); (H.T.); (L.M.)
| | - Hongliang Zhu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (K.C.); (Y.L.); (J.L.); (H.T.); (L.M.)
| |
Collapse
|
10
|
Chambard M, Albert B, Cadiou M, Auby S, Profizi C, Boulogne I. Living yeast-based biostimulants: different genes for the same results? FRONTIERS IN PLANT SCIENCE 2023; 14:1171564. [PMID: 37404542 PMCID: PMC10315835 DOI: 10.3389/fpls.2023.1171564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/31/2023] [Indexed: 07/06/2023]
Abstract
Nowadays, many products are available in the plant biostimulants market. Among them, living yeast-based biostimulants are also commercialized. Given the living aspect of these last products, the reproducibility of their effects should be investigated to ensure end-users' confidence. Therefore, this study aimed to compare the effects of a living yeast-based biostimulant between two different soybean cultures. These two cultures named C1 and C2 were conducted on the same variety and soil but in different locations and dates until the VC developmental stage (unifoliate leaves unrolled), with Bradyrhizobium japonicum (control and Bs condition) and with and without biostimulant coating seed treatment. The foliar transcriptomic analysis done first showed a high gene expression difference between the two cultures. Despite this first result, a secondary analysis seemed to show that this biostimulant led to a similar pathway enhancement in plants and with common genes even if the expressed genes were different between the two cultures. The pathways which seem to be reproducibly impacted by this living yeast-based biostimulant are abiotic stress tolerance and cell wall/carbohydrate synthesis. Impacting these pathways may protect the plant from abiotic stresses and maintain a higher level of sugars in plant.
Collapse
Affiliation(s)
- Marie Chambard
- Univ Rouen Normandie, GLYCOMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, IRIB, Rouen, France
| | | | | | - Sarah Auby
- Agrauxine by Lesaffre, Beaucouzé, France
| | | | - Isabelle Boulogne
- Univ Rouen Normandie, GLYCOMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, IRIB, Rouen, France
| |
Collapse
|
11
|
Roy S, Agarwal T, Das A, Halder T, Upadhyaya G, Chaubey B, Ray S. The C-terminal stretch of glycine-rich proline-rich protein (SbGPRP1) from Sorghum bicolor serves as an antimicrobial peptide by targeting the bacterial outer membrane protein. PLANT MOLECULAR BIOLOGY 2023; 111:131-151. [PMID: 36271987 DOI: 10.1007/s11103-022-01317-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
The C-terminal stretch in SbGPRP1 (Sorghum glycine-rich proline-rich protein) acts as an antimicrobial peptide in the host innate defense mechanism. Cationic antimicrobial proteins or peptides can either bind to the bacterial membrane or target a specific protein on the bacterial membrane thus leading to membrane perturbation. The 197 amino acid polypeptide of SbGPRP1 showed disordered structure at the N-terminal end and ordered conformation at the C-terminal end. In the present study, the expression of N-SbGPRP1, C-SbGPRP1, and ∆SbGPRP1 followed by antimicrobial assays showed potential antimicrobial property of the C-terminal peptide against gram-positive bacteria Bacillus subtilis and phytopathogen Rhodococcus fascians. The SbGPRP1 protein loses its antimicrobial property when the 23 amino acid sequence (GHGGHGVFGGGYGHGGYGHGYGG) from position 136 to 158 is deleted from the protein. Thus, it can be concluded that the 23 amino acid sequence is vital for the said antimicrobial property. NPN assay, SEM analysis, and electrolyte leakage assays showed potent antimicrobial activity for C-SbGPRP1. Overexpression of the C-SbGPRP1 mutant protein in tobacco followed by infection with Rhodococcus fascians inhibited bacterial growth as shown by SEM analysis. To determine if C-SbGPRP1 might target any protein on the bacterial membrane we isolated the bacterial membrane protein from both Bacillus subtilis and Rhodococcus fascians. Bacterial membrane protein that interacted with the column-bound C-SbGPRP1 was eluted and subjected to LC-MS/MS. LC-MS/MS data analysis showed peptide hit with membrane protein YszA from Bacillus subtilis and a membrane protein from Rhodococcus fascians. Isolated bacterial membrane protein from Bacillus subtilis or Rhodococcus fascians was able to reduce the antimicrobial activity of C-SbGPRP1. Furthermore, BiFC experiments showed interactions between C-SbGPRP1 and YszA protein from Bacillus subtilis leading to the conclusion that bacterial membrane protein was targeted in such membrane perturbation leading to antimicrobial activity.
Collapse
Affiliation(s)
- Shuddhanjali Roy
- Plant Functional Genomics Laboratory, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Tanushree Agarwal
- Plant Functional Genomics Laboratory, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Arup Das
- Plant Functional Genomics Laboratory, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Tanmoy Halder
- Plant Functional Genomics Laboratory, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Gouranga Upadhyaya
- Plant Functional Genomics Laboratory, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Binay Chaubey
- Functional Genomics Laboratory, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Sudipta Ray
- Plant Functional Genomics Laboratory, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India.
| |
Collapse
|
12
|
Elbasyoni IS, Eltaher S, Morsy S, Mashaheet AM, Abdallah AM, Ali HG, Mariey SA, Baenziger PS, Frels K. Novel Single-Nucleotide Variants for Morpho-Physiological Traits Involved in Enhancing Drought Stress Tolerance in Barley. PLANTS (BASEL, SWITZERLAND) 2022; 11:3072. [PMID: 36432800 PMCID: PMC9696095 DOI: 10.3390/plants11223072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/14/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Barley (Hordeum vulgare L.) thrives in the arid and semi-arid regions of the world; nevertheless, it suffers large grain yield losses due to drought stress. A panel of 426 lines of barley was evaluated in Egypt under deficit (DI) and full irrigation (FI) during the 2019 and 2020 growing seasons. Observations were recorded on the number of days to flowering (NDF), total chlorophyll content (CH), canopy temperature (CAN), grain filling duration (GFD), plant height (PH), and grain yield (Yield) under DI and FI. The lines were genotyped using the 9K Infinium iSelect single nucleotide polymorphisms (SNP) genotyping platform, which resulted in 6913 high-quality SNPs. In conjunction with the SNP markers, the phenotypic data were subjected to a genome-wide association scan (GWAS) using Bayesian-information and Linkage-disequilibrium Iteratively Nested Keyway (BLINK). The GWAS results indicated that 36 SNPs were significantly associated with the studied traits under DI and FI. Furthermore, eight markers were significant and common across DI and FI water regimes, while 14 markers were uniquely associated with the studied traits under DI. Under DI and FI, three (11_10326, 11_20042, and 11_20170) and five (11_20099, 11_10326, 11_20840, 12_30298, and 11_20605) markers, respectively, had pleiotropic effect on at least two traits. Among the significant markers, 24 were annotated to known barley genes. Most of these genes were involved in plant responses to environmental stimuli such as drought. Overall, nine of the significant markers were previously reported, and 27 markers might be considered novel. Several markers identified in this study could enable the prediction of barley accessions with optimal agronomic performance under DI and FI.
Collapse
Affiliation(s)
- Ibrahim S. Elbasyoni
- Crop Science Department, Faculty of Agriculture, Damanhour University, Damanhour 22516, Egypt
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Shamseldeen Eltaher
- Department of Plant Biotechnology, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City (USC), Sadat City 32897, Egypt
| | - Sabah Morsy
- Crop Science Department, Faculty of Agriculture, Damanhour University, Damanhour 22516, Egypt
| | - Alsayed M. Mashaheet
- Plant Pathology Department, Faculty of Agriculture, Damanhour University, Damanhour 22516, Egypt
| | - Ahmed M. Abdallah
- Natural Resources and Agricultural Engineering Department, Faculty of Agriculture, Damanhour University, Damanhour 22516, Egypt
| | - Heba G. Ali
- Barley Research Department, Field Crops Research Institute, Agricultural Research Center, 9 Gamma Street-Giza, Cairo 12619, Egypt
| | - Samah A. Mariey
- Barley Research Department, Field Crops Research Institute, Agricultural Research Center, 9 Gamma Street-Giza, Cairo 12619, Egypt
| | - P. Stephen Baenziger
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Katherine Frels
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| |
Collapse
|
13
|
Pereira Neto LG, Rossini BC, Marino CL, Toorop PE, Silva EAA. Comparative Seeds Storage Transcriptome Analysis of Astronium fraxinifolium Schott, a Threatened Tree Species from Brazil. Int J Mol Sci 2022; 23:ijms232213852. [PMID: 36430327 PMCID: PMC9696909 DOI: 10.3390/ijms232213852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/12/2022] Open
Abstract
Astronium fraxinifolium Schott (Anacardiaceae), also known as a 'gonçalo-alves', is a tree of the American tropics, with distribution in Mexico, part of Central America, Argentina, Bolivia, Brazil and Paraguay. In Brazil it is an endangered species that occurs in the Cerrado, Caatinga and in the Amazon biomes. In support of ex situ conservation, this work aimed to study two accessions with different longevity (p50) of A. fraxinifolium collected from two different geographic regions, and to evaluate the transcriptome during aging of the seeds in order to identify genes related to seed longevity. Artificial ageing was performed at a constant temperature of 45 °C and 60% relative humidity. RNA was extracted from 100 embryonic axes exposed to control and aging conditions for 21 days. The transcriptome analysis revealed differentially expressed genes such as Late Embryogenesis Abundant (LEA) genes, genes involved in the photosystem, glycine rich protein (GRP) genes, and several transcription factors associated with embryo development and ubiquitin-conjugating enzymes. Thus, these results contribute to understanding which genes play a role in seed ageing, and may serve as a basis for future functional characterization of the seed aging process in A. fraxinifolium.
Collapse
Affiliation(s)
| | - Bruno Cesar Rossini
- Biotechnology Institute, São Paulo State University “Júlio de Mesquita Filho”, Botucatu 18607-440, Brazil
- Correspondence:
| | - Celso Luis Marino
- Biotechnology Institute, São Paulo State University “Júlio de Mesquita Filho”, Botucatu 18607-440, Brazil
- Departament of Biological and Chemical Sciences, Biosciences Institute, São Paulo State University “Júlio de Mesquita Filho”, Botucatu 18618-689, Brazil
| | - Peter E. Toorop
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Wakehurst Place, Ardingly, West Sussex RH17 6TN, UK
| | - Edvaldo Aparecido Amaral Silva
- Departamento de Produção Vegetal, Faculdade de Ciências Agronômicas, Universidade Estadual Paulista, Botucatu 18610-034, Brazil
| |
Collapse
|
14
|
Zhang S, Chen K, Anwar A, Wang Y, Yao S, Chen R, Song S, Su W. BcGRP23: A novel gene involved in the chlorophyll metabolic pathway that is activated by BES1 in flowering Chinese cabbage. FRONTIERS IN PLANT SCIENCE 2022; 13:1010470. [PMID: 36352860 PMCID: PMC9639331 DOI: 10.3389/fpls.2022.1010470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/28/2022] [Indexed: 05/22/2023]
Abstract
Glycine-rich proteins (GRPs) are a large family of proteins that play vital roles in cell wall remodeling, metabolism and development, and abiotic stress response. Although the functions of GRPs in cell wall remodeling have been extensively characterized, only a few studies have explored their effects on chlorophyll metabolism and hormone response. Accordingly, we aimed to determine the molecular mechanism of BcGRP23 and its role in chlorophyll metabolism and the BRI1-EMS-SUPPRESSOR 1 (BES1) signaling pathway in flowering Chinese cabbage. The expression levels of BcGRP23 in the leaves and stems gradually decreased with increasing growth and development of flowering Chinese cabbage, while BcGRP23 was barely expressed after flowering. As plant growth continued, the GUS (β-glucuronidase) stain gradually became lighter in hypocotyls and was largely free of growth points. The petioles and stems of BcGRP23-silenced plants lost their green color, and the contents of chlorophyll a (Chl a) and Chl b were significantly reduced. Further research revealed that the expression levels of chlorophyll degradation-related genes were significantly increased in silenced plants compared with the control; however, the opposite was noted for the BcGRP23-overexpressing lines. The BcGRP23 promoter sequence contains numerous hormone-responsive elements. In fact, the expression of BcGRP23 was upregulated in flowering Chinese cabbage following treatment with the hormones indole-3-acetic acid (IAA), gibberellin (GA), 6-benzylaminopurine (6-BA), methyl jasmonate (MeJA), and brassinosteroid (BR). Treatment with BR led to the most significant upregulation. BES1, in response to BRs, directly activated the BcGRP23 promoter. Overall, BcGRP23 regulated the expression of chlorophyll degradation-related genes, thereby affecting the chlorophyll content. Furthermore, the expression of BcGRP23 was significantly regulated by exogenous BR application and was directly activated by BES1. These findings preliminarily suggest the molecular mechanism and regulatory pathway of BcGRP23 in the growth and development of flowering Chinese cabbage plants and their response to environmental stress.
Collapse
Affiliation(s)
- Shuaiwei Zhang
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Kemin Chen
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Ali Anwar
- Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yudan Wang
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Shengyi Yao
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Riyuan Chen
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Shiwei Song
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Wei Su
- College of Horticulture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
15
|
Ma L, Yang Y, Wang Y, Cheng K, Zhou X, Li J, Zhang J, Li R, Zhang L, Wang K, Zeng N, Gong Y, Zhu D, Deng Z, Qu G, Zhu B, Fu D, Luo Y, Zhu H. SlRBP1 promotes translational efficiency via SleIF4A2 to maintain chloroplast function in tomato. THE PLANT CELL 2022; 34:2747-2764. [PMID: 35385118 PMCID: PMC9252502 DOI: 10.1093/plcell/koac104] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 03/05/2022] [Indexed: 06/01/2023]
Abstract
Many glycine-rich RNA-binding proteins (GR-RBPs) have critical functions in RNA processing and metabolism. Here, we describe a role for the tomato (Solanum lycopersicum) GR-RBP SlRBP1 in regulating mRNA translation. We found that SlRBP1 knockdown mutants (slrbp1) displayed reduced accumulation of total chlorophyll and impaired chloroplast ultrastructure. These phenotypes were accompanied by deregulation of the levels of numerous key transcripts associated with chloroplast functions in slrbp1. Furthermore, native RNA immunoprecipitation-sequencing (nRIP-seq) recovered 61 SlRBP1-associated RNAs, most of which are involved in photosynthesis. SlRBP1 binding to selected target RNAs was validated by nRIP-qPCR. Intriguingly, the accumulation of proteins encoded by SlRBP1-bound transcripts, but not the mRNAs themselves, was reduced in slrbp1 mutants. Polysome profiling followed by RT-qPCR assays indicated that the polysome occupancy of target RNAs was lower in slrbp1 plants than in wild-type. Furthermore, SlRBP1 interacted with the eukaryotic translation initiation factor SleIF4A2. Silencing of SlRBP1 significantly reduced SleIF4A2 binding to SlRBP1-target RNAs. Taking these observations together, we propose that SlRBP1 binds to and channels RNAs onto the SleIF4A2 translation initiation complex and promotes the translation of its target RNAs to regulate chloroplast functions.
Collapse
Affiliation(s)
- Liqun Ma
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | | | - Yuqiu Wang
- School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, Beijing 100871, China
| | - Ke Cheng
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xiwen Zhou
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jinyan Li
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jingyu Zhang
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | | | - Lingling Zhang
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Keru Wang
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Ni Zeng
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yanyan Gong
- School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, Beijing 100871, China
| | - Danmeng Zhu
- School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, Beijing 100871, China
| | - Zhiping Deng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Guiqin Qu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Benzhong Zhu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Daqi Fu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yunbo Luo
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | | |
Collapse
|
16
|
Fradera-Soler M, Grace OM, Jørgensen B, Mravec J. Elastic and collapsible: current understanding of cell walls in succulent plants. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2290-2307. [PMID: 35167681 PMCID: PMC9015807 DOI: 10.1093/jxb/erac054] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 02/11/2022] [Indexed: 05/11/2023]
Abstract
Succulent plants represent a large functional group of drought-resistant plants that store water in specialized tissues. Several co-adaptive traits accompany this water-storage capacity to constitute the succulent syndrome. A widely reported anatomical adaptation of cell walls in succulent tissues allows them to fold in a regular fashion during extended drought, thus preventing irreversible damage and permitting reversible volume changes. Although ongoing research on crop and model species continuously reports the importance of cell walls and their dynamics in drought resistance, the cell walls of succulent plants have received relatively little attention to date, despite the potential of succulents as natural capital to mitigate the effects of climate change. In this review, we summarize current knowledge of cell walls in drought-avoiding succulents and their effects on tissue biomechanics, water relations, and photosynthesis. We also highlight the existing knowledge gaps and propose a hypothetical model for regulated cell wall folding in succulent tissues upon dehydration. Future perspectives of methodological development in succulent cell wall characterization, including the latest technological advances in molecular and imaging techniques, are also presented.
Collapse
Affiliation(s)
- Marc Fradera-Soler
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
- Royal Botanic Gardens, Kew, Richmond, Surrey, UK
- Correspondence: or
| | | | | | - Jozef Mravec
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
- Correspondence: or
| |
Collapse
|
17
|
Singh G, Singh V, Singh V. Systems scale characterization of circadian rhythm pathway in Camellia sinensis. Comput Struct Biotechnol J 2022; 20:598-607. [PMID: 35116135 PMCID: PMC8790616 DOI: 10.1016/j.csbj.2021.12.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 12/14/2021] [Accepted: 12/18/2021] [Indexed: 11/29/2022] Open
Abstract
Tea (Camellia sinensis) is among the most valuable commercial crops being a non-alcoholic beverage having antioxidant properties. Like in other plants, circadian oscillator in tea modulates several biological processes according to earth's revolution dependent variations in environmental cues like light and temperature. In the present study, we report genome wide identification and characterization of circadian oscillator (CO) proteins in tea. We first mined the genes (24, in total) involved in circadian rhythm pathway in the 56 plant species having available genomic information and then built their hidden Markov models (HMMs). Using these HMMs, 24 proteins were identified in tea and were further assessed for their functional annotation. Expression analysis of all these 24 CO proteins was then performed in 3 abiotic (A) and 3 biotic conditions (B) stress conditions and co-expressed as well as differentially expressed genes in the selected 6 stress conditions were elaborated. A methodology to identify the differentially expressed genes in specific types of stresses (A or B) is proposed and novel markers among CO proteins are presented. By mapping the identified CO proteins against the recently reported genome wide interologous protein-protein interaction network of tea (TeaGPIN), an interaction sub-network of tea CO proteins (TeaCO-PIN) is developed and analysed. Out of 24 CO proteins, structures of 4 proteins could be successfully predicted and validated using consensus of three structure prediction algorithms and their stability was further assessed using molecular dynamic simulations at 100 ns. Phylogenetic analysis of these proteins is performed to examine their molecular evolution.
Collapse
Affiliation(s)
| | | | - Vikram Singh
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Dharamshala 176206, India
| |
Collapse
|
18
|
Wang L, Liu Y, Aslam M, Jakada BH, Qin Y, Cai H. The Glycine-Rich Domain Protein GRDP2 Regulates Ovule Development via the Auxin Pathway in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2021; 12:698487. [PMID: 34777406 PMCID: PMC8585784 DOI: 10.3389/fpls.2021.698487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 10/11/2021] [Indexed: 05/22/2023]
Abstract
The glycine-rich domain proteins (GRDP) have been functionally implicated in the cell wall structure, biotic, and abiotic stress responses. However, little is known about GRDP genes in female gametophyte development of Arabidopsis. This study shows that GRDP2, a GRDP, plays a crucial role in female gametophyte development. In GRDP2 overexpression lines, grdp2-3, the embryo sacs were arrested at FG1 and no nucleus stages. Furthermore, callose staining shows that cell plate formation during megasporogenesis is disturbed in grdp2-3. In contrast, the pollen development is not affected in grdp2-3. The expression patterns of auxin-specific marker lines in female gametophytes showed that the auxin distribution and transport were significantly changed during megagametogenesis in grdp2-3. In addition, compared with the membrane-localized pattern of PIN1, PIN2, and PIN7 in WT, the signals were detected in the cytoplasm in grdp2-3. Together, our data suggest that GRDP2 plays an essential role in auxin-mediated female gametophyte development.
Collapse
Affiliation(s)
- Lulu Wang
- Guangxi Key Laboratory of Sugarcane Biology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
| | - Yanhui Liu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mohammad Aslam
- Guangxi Key Laboratory of Sugarcane Biology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
| | - Bello Hassan Jakada
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuan Qin
- Guangxi Key Laboratory of Sugarcane Biology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hanyang Cai
- Guangxi Key Laboratory of Sugarcane Biology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
19
|
Nunes LGP, Reichert T, Machini MT. His-Rich Peptides, Gly- and His-Rich Peptides: Functionally Versatile Compounds with Potential Multi-Purpose Applications. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10302-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
20
|
Tang Y, Huang C, Li Y, Wang Y, Zhang C. Genome-wide identification, phylogenetic analysis, and expression profiling of glycine-rich RNA-binding protein (GRPs) genes in seeded and seedless grapes ( Vitis vinifera). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:2231-2243. [PMID: 34744363 PMCID: PMC8526680 DOI: 10.1007/s12298-021-01082-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
UNLABELLED Glycine-rich RNA-binding proteins (GRPs) are essential for many physiological and biochemical processes in plants, especially the response to environmental stresses. GRPs exist widely in angiosperms and gymnosperms plant species; however, their roles in Vitis vinifera are still poorly understood. To characterize VviGRP gene family, we performed a genomic survey, bioinformatics and expression analysis of VviGRPs in grape. We identified nineteen VviGRPs gene family members. The result of bioinformatics analysis showed their motif distribution, gene structure characteristics and chromosomal locations. Then we carried out synteny and phylogenetic analysis to study the origin and evolutionary relationship of GRPs. Tissue-specific expression analysis showed that VviGRPs have different expression patterns. Meanwhile, we studied expression profiles of seventeen ovule-expressed genes during seed development of stenospermocarpic seedless and seeded grapes, and the result showed that most of them have much higher relative expression levels in stenospermocarpic seedless grapes than that of seeded one before 25 days after full bloom (DAFB). It is suggested that VviGRPs may involve in the seed development process. Taken together, our research indicated that VviGRPs are related to seed development and will be beneficial for further investigations into the seed abortion mechanism under stenospermocarpic grapes. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01082-3.
Collapse
Affiliation(s)
- Yujin Tang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, People’s Republic of China, Yangling, 712100 Shaanxi China
| | - Congbo Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, People’s Republic of China, Yangling, 712100 Shaanxi China
| | - Yan Li
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi China
| | - Yuejin Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, People’s Republic of China, Yangling, 712100 Shaanxi China
| | - Chaohong Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, People’s Republic of China, Yangling, 712100 Shaanxi China
| |
Collapse
|
21
|
Wang Y, Zhang C, Fang WH, Ma HY, Li XC. SpCrus2 Glycine-Rich Region Contributes Largely to the Antiviral Activity of the Whole-Protein Molecule by Interacting with VP26, a WSSV Structural Protein. Mar Drugs 2021; 19:md19100544. [PMID: 34677443 PMCID: PMC8537896 DOI: 10.3390/md19100544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/21/2021] [Accepted: 09/25/2021] [Indexed: 11/24/2022] Open
Abstract
Crustins are cysteine-rich cationic antimicrobial peptides with diverse biological functions including antimicrobial and proteinase inhibitory activities in crustaceans. Although a few crustins reportedly respond to white spot syndrome virus (WSSV) infection, the detailed antiviral mechanisms of crustins remain largely unknown. Our previous research has shown that SpCrus2, from mud crab Scylla paramamosain, is a type II crustin containing a glycine-rich region (GRR) and a cysteine-rich region (CRR). In the present study, we found that SpCrus2 was upregulated in gills after WSSV challenge. Knockdown of SpCrus2 by injecting double-stranded RNA (dsSpCrus2) resulted in remarkably increased virus copies in mud crabs after infection with WSSV. These results suggested that SpCrus2 played a critical role in the antiviral immunity of mud crab. A GST pull-down assay showed that recombinant SpCrus2 interacted specifically with WSSV structural protein VP26, and this result was further confirmed by a co-immunoprecipitation assay with Drosophila S2 cells. As the signature sequence of type II crustin, SpCrus2 GRR is a glycine-rich cationic polypeptide with amphipathic properties. Our study demonstrated that the GRR and CRR of SpCrus2 exhibited binding activities to VP26, with the former displaying more potent binding ability than the latter. Interestingly, pre-incubating WSSV particles with recombinant SpCrus2 (rSpCrus2), rGRR, or rCRR inhibited virus proliferation in vivo; moreover, rSpCrus2 and rGRR possessed similar antiviral abilities, which were much stronger than those of rCRR. These findings indicated that SpCrus2 GRR contributed largely to the antiviral ability of SpCrus2, and that the stronger antiviral ability of GRR might result from its stronger binding activity to the viral structural protein. Overall, this study provided new insights into the antiviral mechanism of SpCrus2 and the development of new antiviral drugs.
Collapse
Affiliation(s)
- Yue Wang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China;
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China;
- Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Nerus 21030, Malaysia
| | - Chao Zhang
- Chongqing Three Gorges Vocational College, Wanzhou, Chongqing 404155, China;
| | - Wen-Hong Fang
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China;
| | - Hong-Yu Ma
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China;
- Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Nerus 21030, Malaysia
- Correspondence: (H.-Y.M.); (X.-C.L.)
| | - Xin-Cang Li
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China;
- Correspondence: (H.-Y.M.); (X.-C.L.)
| |
Collapse
|
22
|
Changes in the expression level of genes encoding transcription factors and cell wall-related proteins during Meloidogyne arenaria infection of maize (Zea mays). Mol Biol Rep 2021; 48:6779-6786. [PMID: 34468910 PMCID: PMC8481208 DOI: 10.1007/s11033-021-06677-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/23/2021] [Indexed: 10/28/2022]
Abstract
BACKGROUND Meloidogyne arenaria is an economically important root-knot nematode (RKN) species whose hosts include maize (Zea mays). The plant response to RKN infection activates many cellular mechanisms, among others, changes in the expression level of genes encoding transcription and elongation factors as well as proteins related to cell wall organization. METHODS AND RESULTS This study is aimed at characterization of expression of selected transcription and elongation factors encoding the genes WRKY53, EF1a, and EF1b as well as the ones encoding two proteins associated with cell wall functioning (glycine-rich RNA-binding protein, GRP and polygalacturonase, PG) during the maize response to M. arenaria infection. The changes in the relative level of expression of genes encoding these proteins were assessed using the reverse transcription-quantitative real-time PCR. The material studied were leaves and root samples collected from four maize varieties showing different susceptibilities toward M. arenaria infection, harvested at three different time points. Significant changes in the expression level of GRP between susceptible and tolerant varieties were observed. CONCLUSIONS Results obtained in the study suggest pronounced involvement of glycine-rich RNA-binding protein and EF1b in the maize response and resistance to RKN.
Collapse
|
23
|
Kim EY, Kwon CW, Chang PS. Purification and characterization of a novel acid-tolerant and heterodimeric β-glucosidase from pumpkin (Cucurbita moschata) seed. J Biosci Bioeng 2021; 132:125-131. [PMID: 34078567 DOI: 10.1016/j.jbiosc.2021.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 10/21/2022]
Abstract
A novel β-glucosidase was purified from pumpkin (Cucurbita moschata) seed by anion exchange chromatography and gel permeation chromatography, and its molecular mass was determined to be 42.8 kDa by gel permeation chromatography. The heterodimeric structure consisting of two subunits, free from disulfide bonds, was determined by native-PAGE analysis followed by zymography. The enzyme was maximally active at pH 4.0 and 70°C, and Vmax, Km, and kcat values were 0.078 units mg-1 protein, 2.22 mM, and 13.29 min-1, respectively, employing p-nitrophenyl-β-d-glucopyranoside as the substrate. The high content of glycine determined by amino acid analysis implies that the enzyme possesses flexible conformations and interacts with cell membranes and walls in nature. Circular dichroism studies revealed that the high stability of the enzyme within the pH range of 2.0-10.0 is due to its reversible pH-responsive characteristics for α-helix-antiparallel β-sheet interconversion.
Collapse
Affiliation(s)
- Eui Young Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Chang Woo Kwon
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Pahn-Shick Chang
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea; Center for Agricultural Microorganism and Enzyme, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
24
|
Ma L, Cheng K, Li J, Deng Z, Zhang C, Zhu H. Roles of Plant Glycine-Rich RNA-Binding Proteins in Development and Stress Responses. Int J Mol Sci 2021; 22:ijms22115849. [PMID: 34072567 PMCID: PMC8198583 DOI: 10.3390/ijms22115849] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 01/02/2023] Open
Abstract
In recent years, much progress has been made in elucidating the functional roles of plant glycine-rich RNA-binding proteins (GR-RBPs) during development and stress responses. Canonical GR-RBPs contain an RNA recognition motif (RRM) or a cold-shock domain (CSD) at the N-terminus and a glycine-rich domain at the C-terminus, which have been associated with several different RNA processes, such as alternative splicing, mRNA export and RNA editing. However, many aspects of GR-RBP function, the targeting of their RNAs, interacting proteins and the consequences of the RNA target process are not well understood. Here, we discuss recent findings in the field, newly defined roles for GR-RBPs and the actions of GR-RBPs on target RNA metabolism.
Collapse
Affiliation(s)
- Liqun Ma
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (L.M.); (K.C.); (J.L.); (Z.D.)
| | - Ke Cheng
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (L.M.); (K.C.); (J.L.); (Z.D.)
| | - Jinyan Li
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (L.M.); (K.C.); (J.L.); (Z.D.)
| | - Zhiqi Deng
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (L.M.); (K.C.); (J.L.); (Z.D.)
| | - Chunjiao Zhang
- Supervision, Inspection & Testing Center of Agricultural Products Quality, Ministry of Agriculture and Rural Affairs, Beijing 100083, China;
| | - Hongliang Zhu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (L.M.); (K.C.); (J.L.); (Z.D.)
- Correspondence:
| |
Collapse
|
25
|
Castro-Bustos S, Maruri-López I, Ortega-Amaro MA, Serrano M, Ovando-Vázquez C, Jiménez-Bremont JF. An interactome analysis reveals that Arabidopsis thaliana GRDP2 interacts with proteins involved in post-transcriptional processes. Cell Stress Chaperones 2021; 27:165-176. [PMID: 35174430 PMCID: PMC8943079 DOI: 10.1007/s12192-022-01261-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 11/27/2022] Open
Abstract
The Arabidopsis thaliana glycine-rich domain protein 2 (AtGRDP2) gene encodes a protein of unknown function that is involved in plant growth and salt stress tolerance. The AtGRDP2 protein (787 aa, At4g37900) is constituted by three domains: a DUF1399 located at the N-terminus, a potential RNA Recognition Motif (RRM) in the central region, and a short glycine-rich domain at the C-terminus. Herein, we analyzed the subcellular localization of AtGRDP2 protein as a GFP translational fusion and found it was localized in the cytosol and the nucleus of tobacco leaf cells. Truncated versions of AtGRDP2 showed that the DUF1399 or the RRM domains were sufficient for nuclear localization. In addition, we performed a yeast two-hybrid split-ubiquitin assay (Y2H) to identify potential interactors for AtGRDP2 protein. The Y2H assay identified proteins associated with RNA binding functions such as PABN3 (At5g65260), EF-1α (At1g07920), and CL15 (At3g25920). Heterodimeric associations in planta between AtGRDP2 and its interactors were carried out by Bimolecular Fluorescence Complementation (BiFC) assays. The data revealed heterodimeric interactions between AtGRDP2 and PABN3 in the nucleus and AtGRDP2 with EF-1α in the cytosol, while AtGRDP2-CL15 associations occurred only in the chloroplasts. Finally, functional characterization of the protein-protein interaction regions revealed that both DUF1399 and RRM domains were key for heterodimerization with its interactors. The AtGRDP2 interaction with these proteins in different compartments suggests that this glycine-rich domain protein is involved in post-transcriptional processes.
Collapse
Affiliation(s)
- Saraí Castro-Bustos
- Laboratorio de Biotecnología Molecular de Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica A.C, San Luis Potosí, SLP, Mexico
| | - Israel Maruri-López
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
- Biological and Environmental Science and Engineering Division, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - María Azucena Ortega-Amaro
- Laboratorio de Biotecnología Molecular de Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica A.C, San Luis Potosí, SLP, Mexico
- Coordinación Académica Región Altiplano Oeste, Universidad Autónoma de San Luis Potosí, Salinas de Hidalgo, SLP, Mexico
| | - Mario Serrano
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Cesaré Ovando-Vázquez
- CONACyT-Centro Nacional de Supercómputo, Instituto Potosino de Investigación Científica y Tecnológica, A.C, San Luis Potosí, SLP, Mexico
| | - Juan Francisco Jiménez-Bremont
- Laboratorio de Biotecnología Molecular de Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica A.C, San Luis Potosí, SLP, Mexico.
| |
Collapse
|
26
|
Zhao X, Qiu T, Feng H, Yin C, Zheng X, Yang J, Peng YL, Zhao W. A novel glycine-rich domain protein, GRDP1, functions as a critical feedback regulator for controlling cell death and disease resistance in rice. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:608-622. [PMID: 32995857 DOI: 10.1093/jxb/eraa450] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
Lesion mimic mutants constitute a valuable genetic resource for unraveling the signaling pathways and molecular mechanisms governing the programmed cell death and defense responses of plants. Here, we identified a lesion mimic mutant, spl-D, from T-DNA insertion rice lines. The mutant exhibited higher accumulation of H2O2, spontaneous cell death, decreased chlorophyll content, up-regulation of defense-related genes, and enhanced disease resistance. The causative gene, OsGRDP1, encodes a cytosol- and membrane-associated glycine-rich domain protein. OsGRDP1 was expressed constitutively in all of the organs of the wild-type plant, but was up-regulated throughout plant development in the spl-D mutant. Both the overexpression and knockdown (RNAi) of OsGRDP1 resulted in the lesion mimic phenotype. Moreover, the intact-protein level of OsGRDP1 was reduced in the spotted leaves from both overexpression and RNAi plants, suggesting that the disruption of intact OsGRDP1 is responsible for lesion formation. OsGRDP1 interacted with an aspartic proteinase, OsAP25. In the spl-D and overexpression plants, proteinase activity was elevated, and lesion formation was partially suppressed by an aspartic proteinase inhibitor. Taken together, our results reveal that OsGRDP1 is a critical feedback regulator, thus contributing to the elucidation of the mechanism underlying cell death and disease resistance.
Collapse
Affiliation(s)
- Xiaosheng Zhao
- State Key Laboratory of Agrobiotechnology and College of Plant Protection, China Agricultural University, Beijing, China
| | - Tiancheng Qiu
- State Key Laboratory of Agrobiotechnology and College of Plant Protection, China Agricultural University, Beijing, China
| | - Huijing Feng
- State Key Laboratory of Agrobiotechnology and College of Plant Protection, China Agricultural University, Beijing, China
| | - Changfa Yin
- State Key Laboratory of Agrobiotechnology and College of Plant Protection, China Agricultural University, Beijing, China
| | - Xunmei Zheng
- State Key Laboratory of Agrobiotechnology and College of Plant Protection, China Agricultural University, Beijing, China
| | - Jun Yang
- State Key Laboratory of Agrobiotechnology and College of Plant Protection, China Agricultural University, Beijing, China
| | - You-Liang Peng
- State Key Laboratory of Agrobiotechnology and College of Plant Protection, China Agricultural University, Beijing, China
| | - Wensheng Zhao
- State Key Laboratory of Agrobiotechnology and College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
27
|
Tawab F, Munir I, Nasim Z, Khan MS, Tawab S, Nasim A, Iqbal A, Ahmad MA, Ali W, Munir R, Munir M, Asim N. Identification and characterization of a novel multi-stress responsive gene in Arabidopsis. PLoS One 2020; 15:e0244030. [PMID: 33332435 PMCID: PMC7746274 DOI: 10.1371/journal.pone.0244030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 12/01/2020] [Indexed: 12/04/2022] Open
Abstract
Abiotic stresses especially salinity, drought and high temperature result in considerable reduction of crop productivity. In this study, we identified AT4G18280 annotated as a glycine-rich cell wall protein-like (hereafter refer to as GRPL1) protein as a potential multistress-responsive gene. Analysis of public transcriptome data and GUS assay of pGRPL1::GUS showed a strong induction of GRPL1 under drought, salinity and heat stresses. Transgenic plants overexpressing GRPL1-3HA showed significantly higher germination, root elongation and survival rate under salt stress. Moreover, the 35S::GRPL1-3HA transgenic lines also showed higher survival rates under drought and heat stresses. GRPL1 showed similar expression patterns with Abscisic acid (ABA)-pathway genes under different growth and stress conditions, suggesting a possibility that GRPL1 might act in the ABA pathway that is further supported by the inability of ABA-deficient mutant (aba2-1) to induce GRPL1 under drought stress. Taken together, our data presents GRPL1 as a potential multi-stress responsive gene working downstream of ABA.
Collapse
Affiliation(s)
- Faiza Tawab
- Division of Biochemistry, Institute of Biotechnology and Genetic Engineering (IBGE), The University of Agriculture, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Iqbal Munir
- Division of Biochemistry, Institute of Biotechnology and Genetic Engineering (IBGE), The University of Agriculture, Peshawar, Khyber Pakhtunkhwa, Pakistan
- * E-mail:
| | - Zeeshan Nasim
- Division of Biochemistry, Institute of Biotechnology and Genetic Engineering (IBGE), The University of Agriculture, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Mohammad Sayyar Khan
- Genomics and Bioinformatics Division, Institute of Biotechnology and Genetic Engineering (IBGE), The University of Agriculture, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Saleha Tawab
- Agriculture Research System, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Adnan Nasim
- Agriculture Research System, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Aqib Iqbal
- Division of Biochemistry, Institute of Biotechnology and Genetic Engineering (IBGE), The University of Agriculture, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Mian Afaq Ahmad
- Division of Biochemistry, Institute of Biotechnology and Genetic Engineering (IBGE), The University of Agriculture, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Waqar Ali
- Department of Biotechnology, University of Malakand, Chakdara, Lower Dir, Khyber Pakhtunkhwa, Pakistan
| | - Raheel Munir
- Division of Biochemistry, Institute of Biotechnology and Genetic Engineering (IBGE), The University of Agriculture, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Maria Munir
- Division of Biochemistry, Institute of Biotechnology and Genetic Engineering (IBGE), The University of Agriculture, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Noreen Asim
- Genomics and Bioinformatics Division, Institute of Biotechnology and Genetic Engineering (IBGE), The University of Agriculture, Peshawar, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
28
|
Processing of coding and non-coding RNAs in plant development and environmental responses. Essays Biochem 2020; 64:931-945. [DOI: 10.1042/ebc20200029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 12/14/2022]
Abstract
Abstract
Precursor RNAs undergo extensive processing to become mature RNAs. RNA transcripts are subjected to 5′ capping, 3′-end processing, splicing, and modification; they also form dynamic secondary structures during co-transcriptional and post-transcriptional processing. Like coding RNAs, non-coding RNAs (ncRNAs) undergo extensive processing. For example, secondary small interfering RNA (siRNA) transcripts undergo RNA processing, followed by further cleavage to become mature siRNAs. Transcriptome studies have revealed roles for co-transcriptional and post-transcriptional RNA processing in the regulation of gene expression and the coordination of plant development and plant–environment interactions. In this review, we present the latest progress on RNA processing in gene expression and discuss phased siRNAs (phasiRNAs), a kind of germ cell-specific secondary small RNA (sRNA), focusing on their functions in plant development and environmental responses.
Collapse
|
29
|
Aceituno-Valenzuela U, Micol-Ponce R, Ponce MR. Genome-wide analysis of CCHC-type zinc finger (ZCCHC) proteins in yeast, Arabidopsis, and humans. Cell Mol Life Sci 2020; 77:3991-4014. [PMID: 32303790 PMCID: PMC11105112 DOI: 10.1007/s00018-020-03518-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 03/06/2020] [Accepted: 03/30/2020] [Indexed: 12/22/2022]
Abstract
The diverse eukaryotic proteins that contain zinc fingers participate in many aspects of nucleic acid metabolism, from DNA transcription to RNA degradation, post-transcriptional gene silencing, and small RNA biogenesis. These proteins can be classified into at least 30 types based on structure. In this review, we focus on the CCHC-type zinc fingers (ZCCHC), which contain an 18-residue domain with the CX2CX4HX4C sequence, where C is cysteine, H is histidine, and X is any amino acid. This motif, also named the "zinc knuckle", is characteristic of the retroviral Group Antigen protein and occurs alone or with other motifs. Many proteins containing zinc knuckles have been identified in eukaryotes, but only a few have been studied. Here, we review the available information on ZCCHC-containing factors from three evolutionarily distant eukaryotes-Saccharomyces cerevisiae, Arabidopsis thaliana, and Homo sapiens-representing fungi, plants, and metazoans, respectively. We performed systematic searches for proteins containing the CX2CX4HX4C sequence in organism-specific and generalist databases. Next, we analyzed the structural and functional information for all such proteins stored in UniProtKB. Excluding retrotransposon-encoded proteins and proteins harboring uncertain ZCCHC motifs, we found seven ZCCHC-containing proteins in yeast, 69 in Arabidopsis, and 34 in humans. ZCCHC-containing proteins mainly localize to the nucleus, but some are nuclear and cytoplasmic, or exclusively cytoplasmic, and one localizes to the chloroplast. Most of these factors participate in RNA metabolism, including transcriptional elongation, polyadenylation, translation, pre-messenger RNA splicing, RNA export, RNA degradation, microRNA and ribosomal RNA biogenesis, and post-transcriptional gene silencing. Several human ZCCHC-containing factors are derived from neofunctionalized retrotransposons and act as proto-oncogenes in diverse neoplastic processes. The conservation of ZCCHCs in orthologs of these three phylogenetically distant eukaryotes suggests that these domains have biologically relevant functions that are not well known at present.
Collapse
Affiliation(s)
- Uri Aceituno-Valenzuela
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202, Elche, Spain
| | - Rosa Micol-Ponce
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202, Elche, Spain
| | - María Rosa Ponce
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202, Elche, Spain.
| |
Collapse
|
30
|
Lou L, Ding L, Wang T, Xiang Y. Emerging Roles of RNA-Binding Proteins in Seed Development and Performance. Int J Mol Sci 2020; 21:ijms21186822. [PMID: 32957608 PMCID: PMC7555721 DOI: 10.3390/ijms21186822] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/10/2020] [Accepted: 09/10/2020] [Indexed: 02/01/2023] Open
Abstract
Seed development, dormancy, and germination are key physiological events that are not only important for seed generation, survival, and dispersal, but also contribute to agricultural production. RNA-binding proteins (RBPs) directly interact with target mRNAs and fine-tune mRNA metabolism by governing post-transcriptional regulation, including RNA processing, intron splicing, nuclear export, trafficking, stability/decay, and translational control. Recent studies have functionally characterized increasing numbers of diverse RBPs and shown that they participate in seed development and performance, providing significant insight into the role of RBP-mRNA interactions in seed processes. In this review, we discuss recent research progress on newly defined RBPs that have crucial roles in RNA metabolism and affect seed development, dormancy, and germination.
Collapse
|
31
|
The Glycine- and Proline-Rich Protein AtGPRP3 Negatively Regulates Plant Growth in Arabidopsis. Int J Mol Sci 2020; 21:ijms21176168. [PMID: 32859078 PMCID: PMC7504531 DOI: 10.3390/ijms21176168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/10/2020] [Accepted: 08/25/2020] [Indexed: 01/22/2023] Open
Abstract
Glycine- and proline-rich proteins (GPRPs) comprise a small conserved family that is widely distributed in the plant kingdom. GPRPs are relatively short peptides (<200 amino acids) that contain three typical domains, including an N-terminal XYPP-repeat domain, a middle hydrophobic domain rich in alanine, and a C-terminal HGK-repeat domain. These proteins have been proposed to play fundamental roles in plant growth and environmental adaptation, but their functions remain unknown. In this study, we selected an Arabidopsis GPRP (AtGPRP3) to profile the physiological role of GPRPs. Transcripts of AtGPRP3 could be detected in the whole Arabidopsis plant, but greater amounts were found in the rosette, followed by the cauline. The AtGPRP3::GFP fusion protein was mainly localized in the nucleus. The overexpression and knockout of AtGPRP3, respectively, retarded and accelerated the growth of Arabidopsis seedlings, while the increase in the growth rate of atgprp3 plants was offset by the complementary expression of AtGPRP3. CAT2 and CAT3, but not CAT1, interacted with AtGPRP3 in the nuclei of Arabidopsis protoplasts. The knockout of CAT2 by CRISPR-Cas9 retarded the growth of the Arabidopsis seedlings. Together, our data suggest that AtGPRP3 negatively regulates plant growth, potentially through CAT2 and CAT3.
Collapse
|
32
|
Wang X, Yan X, Tian X, Zhang Z, Wu W, Shang J, Ouyang J, Yao W, Li S. Glycine- and Proline-Rich Protein OsGPRP3 Regulates Grain Size and Quality in Rice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7581-7590. [PMID: 32579349 DOI: 10.1021/acs.jafc.0c01803] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The grain size and shape of rice are limited by the growth of the spikelet hulls and are important selective target during domestication and breeding. In this study, we identified a glycine- and proline-rich protein (OsGPRP3), which belongs to a conserved family rarely studied. We found that OsGPRP3 was highly expressed in the seed at 10 days after pollination (DAP) using qRT-PCR, pOsGPRP3::GUS and in situ hybridization. Knockout and knockdown of OsGPRP3 led to significant decrease of 1000-grain weight, grain width, and grain thickness. We further found that the content of storage protein and total lipid were decreased in osgprp3 lines. In particular, the contents of C14:0 (myristic acid), C16:0 (palmitic acid), C18:1 (oleic acid), and C18:2 (linoleic acid) were reduced in osgprp3 lines. Cytological experiments revealed that the cell width of spikelet hull in osgprp3 lines was significantly reduced than that in WT. Taken together, our results reveal that OsGPRP3 regulates the grain size and shape of rice by influencing the cell width of spikelet hulls and the accumulation of storage protein and lipids.
Collapse
Affiliation(s)
- Xin Wang
- Key Laboratory of Molecular Biology and Gene Engineering of Jiangxi Province, College of life sciences, Nanchang University, Nanchang 330031, China
| | - Xin Yan
- Key Laboratory of Molecular Biology and Gene Engineering of Jiangxi Province, College of life sciences, Nanchang University, Nanchang 330031, China
| | - Xiaoxiao Tian
- Key Laboratory of Molecular Biology and Gene Engineering of Jiangxi Province, College of life sciences, Nanchang University, Nanchang 330031, China
| | - Zongfei Zhang
- Key Laboratory of Molecular Biology and Gene Engineering of Jiangxi Province, College of life sciences, Nanchang University, Nanchang 330031, China
| | - Weiwei Wu
- Key Laboratory of Molecular Biology and Gene Engineering of Jiangxi Province, College of life sciences, Nanchang University, Nanchang 330031, China
| | - Junjun Shang
- Key Laboratory of Molecular Biology and Gene Engineering of Jiangxi Province, College of life sciences, Nanchang University, Nanchang 330031, China
| | - Jiexiu Ouyang
- Key Laboratory of Molecular Biology and Gene Engineering of Jiangxi Province, College of life sciences, Nanchang University, Nanchang 330031, China
| | - Wen Yao
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Shaobo Li
- Key Laboratory of Molecular Biology and Gene Engineering of Jiangxi Province, College of life sciences, Nanchang University, Nanchang 330031, China
| |
Collapse
|
33
|
Cheng B, Smyth HE, Furtado A, Henry RJ. Slower development of lower canopy beans produces better coffee. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4201-4214. [PMID: 32206798 PMCID: PMC7337091 DOI: 10.1093/jxb/eraa151] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/19/2020] [Indexed: 06/10/2023]
Abstract
The production of high-quality coffee is being challenged by changing climates in coffee-growing regions. The coffee beans from the upper and lower canopy at different development stages of the same plants were analyzed to investigate the impact of the microenvironment on gene expression and coffee quality. Compared with coffee beans from the upper canopy, lower canopy beans displayed more intense aroma with higher caffeine, trigonelline, and sucrose contents, associated with greater gene expression in the representative metabolic pathways. Global gene expression indicated a longer ripening in the lower canopy, resulting from higher expression of genes relating to growth inhibition and suppression of chlorophyll degradation during early bean ripening. Selection of genotypes or environments that enhance expression of the genes slowing bean development may produce higher quality coffee beans, allowing coffee production in a broader range of available future environments.
Collapse
Affiliation(s)
- Bing Cheng
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - Heather E Smyth
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - Agnelo Furtado
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - Robert J Henry
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
34
|
Michailidis M, Karagiannis E, Tanou G, Samiotaki M, Sarrou E, Karamanoli K, Lazaridou A, Martens S, Molassiotis A. Proteomic and metabolic analysis reveals novel sweet cherry fruit development regulatory points influenced by girdling. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 149:233-244. [PMID: 32086160 DOI: 10.1016/j.plaphy.2020.02.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/12/2020] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
Despite the application of girdling technique for several centuries, its impact on the metabolic shifts that underly fruit biology remains fragmentary. To characterize the influence of girdling on sweet cherry (Prunus avium L.) fruit development and ripening, second-year-old shoots of the cultivars 'Lapins' and 'Skeena' were girdled before full blossom. Fruit characteristics were evaluated across six developmental stages (S), from green-small fruit (stage S1) to full ripe stage (stage S6). In both cultivars, girdling significantly altered the fruit ripening physiognomy. Time course fruit metabolomic along with proteomic approaches unraveled common and cultivar-specific responses to girdling. Notably, several primary and secondary metabolites, such as soluble sugars (glucose, trehalose), alcohol (mannitol), phenolic compounds (rutin, naringenin-7-O-glucoside), including anthocyanins (cyanidin-3-O-rutinoside, cyanidin-3-O-galactoside, cyanidin-3.5-O-diglucoside) were accumulated by girdling, while various amino acids (glycine, threonine, asparagine) were decreased in both cultivars. Proteins predominantly associated with ribosome, DNA repair and recombination, chromosome, membrane trafficking, RNA transport, oxidative phosphorylation, and redox homeostasis were depressed in fruits of both girdled cultivars. This study provides the first system-wide datasets concerning metabolomic and proteomic changes in girdled fruits, which reveal that shoot girdling may induce long-term changes in sweet cherry metabolism.
Collapse
Affiliation(s)
- Michail Michailidis
- Laboratory of Pomology, School of Agriculture, Aristotle University of Thessaloniki, 57001, Thermi, Greece
| | - Evangelos Karagiannis
- Laboratory of Pomology, School of Agriculture, Aristotle University of Thessaloniki, 57001, Thermi, Greece
| | - Georgia Tanou
- Institute of Soil and Water Resources, ELGO-DEMETER, Thessaloniki, 57001, Greece
| | - Martina Samiotaki
- Institute of Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Vari, 16672, Greece
| | - Eirini Sarrou
- Institute of Plant Breeding and Genetic Resources, ELGO-DEMETER, Thessaloniki, 57001, Greece
| | - Katerina Karamanoli
- Laboratory of Agricultural Chemistry, School of Agriculture, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Athina Lazaridou
- Laboratory of Food Chemistry and Biochemistry, School of Agriculture, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Stefan Martens
- Department of Food Quality and Nutrition, Centro Ricerca e Innovazione, Fondazione Edmund Mach, 38010, San Michele all'Adige, Trento, Italy
| | - Athanassios Molassiotis
- Laboratory of Pomology, School of Agriculture, Aristotle University of Thessaloniki, 57001, Thermi, Greece.
| |
Collapse
|
35
|
Jung NU, Giarola V, Chen P, Knox JP, Bartels D. Craterostigma plantagineum cell wall composition is remodelled during desiccation and the glycine-rich protein CpGRP1 interacts with pectins through clustered arginines. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:661-676. [PMID: 31350933 DOI: 10.1111/tpj.14479] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/27/2019] [Accepted: 07/23/2019] [Indexed: 05/24/2023]
Abstract
Craterostigma plantagineum belongs to the desiccation-tolerant angiosperm plants. Upon dehydration, leaves fold and the cells shrink which is reversed during rehydration. To understand this process changes in cell wall pectin composition, and the role of the apoplastic glycine-rich protein 1 (CpGRP1) were analysed. Cellular microstructural changes in hydrated, desiccated and rehydrated leaf sections were analysed using scanning electron microscopy. Pectin composition in different cell wall fractions was analysed with monoclonal antibodies against homogalacturonan, rhamnogalacturonan I, rhamnogalacturonan II and hemicellulose epitopes. Our data demonstrate changes in pectin composition during dehydration/rehydration which is suggested to affect cell wall properties. Homogalacturonan was less methylesterified upon desiccation and changes were also demonstrated in the detection of rhamnogalacturonan I, rhamnogalacturonan II and hemicelluloses. CpGRP1 seems to have a central role in cell adaptations to water deficit, as it interacts with pectin through a cluster of arginine residues and de-methylesterified pectin presents more binding sites for the protein-pectin interaction than to pectin from hydrated leaves. CpGRP1 can also bind phosphatidic acid (PA) and cardiolipin. The binding of CpGRP1 to pectin appears to be dependent on the pectin methylesterification status and it has a higher affinity to pectin than its binding partner CpWAK1. It is hypothesised that changes in pectin composition are sensed by the CpGRP1-CpWAK1 complex therefore leading to the activation of dehydration-related responses and leaf folding. PA might participate in the modulation of CpGRP1 activity.
Collapse
Affiliation(s)
- Niklas U Jung
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), Faculty of Natural Sciences, University of Bonn, Kirschallee 1, Bonn, D-53115, Germany
| | - Valentino Giarola
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), Faculty of Natural Sciences, University of Bonn, Kirschallee 1, Bonn, D-53115, Germany
| | - Peilei Chen
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), Faculty of Natural Sciences, University of Bonn, Kirschallee 1, Bonn, D-53115, Germany
| | - John Paul Knox
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Dorothea Bartels
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), Faculty of Natural Sciences, University of Bonn, Kirschallee 1, Bonn, D-53115, Germany
| |
Collapse
|
36
|
Ye Y, Lin R, Su H, Chen H, Luo M, Yang L, Zhang M. The functional identification of glycine-rich TtASR from Tetragonia tetragonoides (Pall.) Kuntze involving in plant abiotic stress tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 143:212-223. [PMID: 31518852 DOI: 10.1016/j.plaphy.2019.09.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/06/2019] [Accepted: 09/06/2019] [Indexed: 06/10/2023]
Abstract
In this study, we reported on an ASR gene (TtASR) related to salt/drought tolerance from the edible halophyte Tetragonia tetragonoides (Pall.) Kuntze (Aizoaceae). A phylogenetic analysis revealed that TtASR was evolutionarily close to other two halophytic glycine-rich ASR members, SbASR-1 (from Salicornia brachiate) and SlASR (from Suaeda liaotungensis), with a typical abscisic acid (ABA)/water-deficit stress (WDS) domain at C-terminal. Quantitative RT-PCR analyses showed that TtASR was expressed in all tested different organs of the T. tetragonoides plant and that expression levels were apparently induced after salt, osmotic stress, and ABA treatments in T. tetragonoides seedlings. An induction of TtASR improved the growth performance of yeast and bacteria more than the control under high salinity, osmotic stress, and oxidative stress. TtASR was not a nuclear-specific protein in plant, and the transcriptional activation assay also demonstrated that TtASR could not activate reporter gene's expression in yeast. TtASR overexpressed Arabidopsis plants exhibited higher tolerance for salt/drought and oxidative stresses and lower ROS accumulation than wild type (WT) plants, accompanied by increased CAT, SOD activities, higher proline content, and lower MDA content in vivo. The results indicated that the TtASR was involved in plant responses to salt and drought, probably by mediating water homeostasis or by acting as ROS scavengers, and that it decreased the membrane damage and improved cellular osmotic adjustment that respond to abiotic stresses in microorganisms and plants.
Collapse
Affiliation(s)
- Yuyan Ye
- School of Life Sciences, Guangzhou University, Guangzhou, 510006, PR China.
| | - Ruoyi Lin
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, PR China; College of Resources and Environment, University of the Chinese Academy of Sciences, Beijing, 100039, PR China.
| | - Huaxiang Su
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, PR China; College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, 100039, PR China.
| | - Hongfeng Chen
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, PR China.
| | - Ming Luo
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, PR China.
| | - Lixiang Yang
- School of Life Sciences, Guangzhou University, Guangzhou, 510006, PR China.
| | - Mei Zhang
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, PR China.
| |
Collapse
|
37
|
Halder T, Upadhyaya G, Roy S, Biswas R, Das A, Bagchi A, Agarwal T, Ray S. Glycine rich proline rich protein from Sorghum bicolor serves as an antimicrobial protein implicated in plant defense response. PLANT MOLECULAR BIOLOGY 2019; 101:95-112. [PMID: 31236845 DOI: 10.1007/s11103-019-00894-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 06/19/2019] [Indexed: 06/09/2023]
Abstract
KEY MESSAGE Sorghum glycine rich proline rich protein (SbGPRP1) exhibit antimicrobial properties and play a crucial role during biotic stress condition. Several proteins in plants build up the innate immune response system in plants which get triggered during the occurrence of biotic stress. Here we report the functional characterization of a glycine-rich proline-rich protein (SbGPRP1) from Sorghum which was previously demonstrated to be involved in abiotic stresses. Expression studies carried out with SbGPRP1 showed induced expression upon application of phytohormones like salicylic acid which might be the key in fine-tuning the expression level. Upon challenging the Sorghum plants with a compatible pathogen the SbGprp1 transcript was found to be upregulated. SbGPRP1 encodes a 197 amino acid polypeptide which was bacterially-expressed and purified for in vitro assays. Gram-positive bacteria like Bacillus and phytopathogen Rhodococcus fascians showed inhibited growth in the presence of the protein. The NPN assay, electrolytic leakage and SEM analysis showed membrane damage in bacterial cells. Ectopic expression of SbGPRP1 in tobacco plants led to enhanced tolerance towards infection caused by R. fascians. Though the N-terminal part of the protein showed disorderness the C-terminal end was quite capable of forming several α-helices which was correlated with CD spectroscopic analysis. Here, we have tried to determine the structural model for the protein and predicted the association of antimicrobial activity with the C-terminal region of the protein.
Collapse
Affiliation(s)
- Tanmoy Halder
- Plant Functional Genomics Laboratory, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal, 700019, India
| | - Gouranga Upadhyaya
- Plant Functional Genomics Laboratory, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal, 700019, India
| | - Shuddhanjali Roy
- Plant Functional Genomics Laboratory, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal, 700019, India
| | - Ria Biswas
- Department of Biochemistry and Biophysics, University of Kalyani, Nadia, West Bengal, 741235, India
| | - Arup Das
- Plant Functional Genomics Laboratory, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal, 700019, India
| | - Angshuman Bagchi
- Department of Biochemistry and Biophysics, University of Kalyani, Nadia, West Bengal, 741235, India
| | - Tanushree Agarwal
- Plant Functional Genomics Laboratory, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal, 700019, India
| | - Sudipta Ray
- Plant Functional Genomics Laboratory, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal, 700019, India.
| |
Collapse
|
38
|
Šípošová K, Kollárová K, Lišková D, Vivodová Z. The effects of IBA on the composition of maize root cell walls. JOURNAL OF PLANT PHYSIOLOGY 2019; 239:10-17. [PMID: 31177026 DOI: 10.1016/j.jplph.2019.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 04/03/2019] [Accepted: 04/08/2019] [Indexed: 05/13/2023]
Abstract
Auxin is one of the crucial plant hormones which stimulates and controls cell and plant growth. The effects of auxin IBA (indole-3-butyric acid) during 10-days on maize plants growth in controlled conditions (hydroponic, 16-h photoperiod, 70% humidity, 25/20 °C temperature), depended on its concentration in the substrate. A high concentration (10-7 M) of IBA inhibited root growth, evoked the development of apoplasmic barriers (Casparian bands and suberin lamellae) closer to the root apex, and elevated the amount of lignin in roots. A low concentration (10-11 M) of IBA stimulated root growth but affected neither the development of apoplasmic barriers, nor the amount of lignin. Auxin in a 10-8 M concentration influenced the root growth to a minimal extent compare to the control, and it was the non-effective concentration. Plant cell walls as cell structures ensure cell enlargement and plant growth, and have to react to auxin stimulus by modification of their components. We found the most significant changes in the composition of the PF III fraction (lignocellulosic complex) of the cell wall. The presence of auxin in the substrate affected all three components of this fraction - Klason lignin and both the by acid (2 M TFA) non-hydrolysable and the hydrolysable parts of this complex. The ratio of the non-hydrolysable part to the Klason lignin increased from 1.3 to 3.3 with increasing auxin concentrations in the substrate. This may be related to the deposition of polysaccharides and lignin in the cell wall, which help maintain the specific tensile stress of, and turgor pressure on, the cell walls.
Collapse
Affiliation(s)
- Kristína Šípošová
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dubravska cesta 9, 845 23 Bratislava, Slovakia
| | - Karin Kollárová
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovakia
| | - Desana Lišková
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovakia
| | - Zuzana Vivodová
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovakia.
| |
Collapse
|
39
|
Pérez-Díaz J, Pérez-Díaz JR, Medeiros DB, Zuther E, Hong CY, Nunes-Nesi A, Hincha DK, Ruiz-Lara S, Casaretto JA. Transcriptome analysis reveals potential roles of a barley ASR gene that confers stress tolerance in transgenic rice. JOURNAL OF PLANT PHYSIOLOGY 2019; 238:29-39. [PMID: 31129469 DOI: 10.1016/j.jplph.2019.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 05/29/2023]
Abstract
Control of gene expression and induction of cellular protection mechanisms are two important processes that plants employ to protect themselves against abiotic stresses. ABA-, stress, and ripening-induced (ASR) proteins have been identified to participate in such responses. Previous studies have proposed that these proteins can act as transcription factors and as molecular chaperones protecting transgenic plants against stresses; however a gene network regulated by ASRs has not been explored. To expand our knowledge on the function of these proteins in cereals, we present the functional characterization of a barley ASR gene. Expression of HvASR5 was almost ubiquitous in different organs and responded to ABA and to different stress treatments. When expressed ectopically, HvASR5 was able to confer drought and salt stress tolerance to Arabidopsis thaliana and to improve growth performance of rice plants under stress conditions. A transcriptomic analysis with two transgenic rice lines overexpressing HvASR5 helped to identify potential downstream targets and understand ASR-regulated cellular processes. HvASR5 up-regulated the expression of a distinct set of genes associated with stress responses, metabolic processes (particularly carbohydrate metabolism), as well as reproduction and development. These data, together with the confirmed nuclear and cytoplasmic localization of HvASR5, further support the hypothesis that HvASR5 can also carry out roles as molecular protector and transcriptional regulator.
Collapse
Affiliation(s)
- Jorge Pérez-Díaz
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | | | - David B Medeiros
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Ellen Zuther
- Max-Planck-Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
| | - Chwan-Yang Hong
- Department of Agricultural Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Dirk K Hincha
- Max-Planck-Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
| | - Simón Ruiz-Lara
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - José A Casaretto
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile; Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
40
|
Lenka SK, Singh AK, Muthusamy SK, Smita S, Chinnusamy V, Bansal KC. Heterologous expression of rice RNA-binding glycine-rich (RBG) gene OsRBGD3 in transgenic Arabidopsis thaliana confers cold stress tolerance. FUNCTIONAL PLANT BIOLOGY : FPB 2019; 46:482-491. [PMID: 30940336 DOI: 10.1071/fp18241] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 01/23/2019] [Indexed: 06/09/2023]
Abstract
Imparting cold stress tolerance to crops is a major challenge in subtropical agriculture. New genes conferring cold tolerance needs to be identified and characterised for sustainable crop production in low-temperature stress affected areas. Here we report functional characterisation of OsRBGD3, classified previously as a class D glycine-rich RNA recognition motif (RRM) containing proteins from a drought-tolerant Indica rice cultivar N22. The gene was isolated by screening yeast one-hybrid library using the minimal promoter region of the OsMYB38 that is necessary for cold stress-responsive expression. OsRBGD3 exhibited cold, drought and salt stress inductive expression in a drought tolerant N22 rice cultivar as compared with susceptible variety IR64. OsRBGD3 was found to be localised to both nuclear and cytoplasmic subcellular destinations. Constitutive overexpression of the OsRBGD3 in transgenic Arabidopsis conferred tolerance to cold stress. ABA sensitivity was also observed in transgenic lines suggesting the regulatory role of this gene in the ABA signalling pathway. OsRBGD3 overexpression also attributed to significant root development and early flowering in transgenics. Hence, OsRBGD3 could be an important target for developing cold tolerant early flowering rice and other crops' genotypes for increasing production in low temperature affected areas.
Collapse
Affiliation(s)
- Sangram K Lenka
- ICAR-National Research Centre on Plant Biotechnology, Indian Agricultural Research Institute, New Delhi, 110012, India; and TERI-Deakin NanoBiotechnology Centre, The Energy and Resources Institute, New Delhi, 110003, India
| | - Amit K Singh
- ICAR-National Research Centre on Plant Biotechnology, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Senthilkumar K Muthusamy
- ICAR-National Research Centre on Plant Biotechnology, Indian Agricultural Research Institute, New Delhi, 110012, India; and ICAR-Central Tuber Crops Research Institute, Thiruvananthapuram, 695017, India
| | - Shuchi Smita
- ICAR-National Research Centre on Plant Biotechnology, Indian Agricultural Research Institute, New Delhi, 110012, India; and Department of Immunology, School of Medicine, University of Pittsburgh, PA 15261, USA
| | - Viswanathan Chinnusamy
- ICAR-Indian Agricultural Research Institute, Division of Plant Physiology, New Delhi, 110012, India
| | - Kailash C Bansal
- ICAR-National Research Centre on Plant Biotechnology, Indian Agricultural Research Institute, New Delhi, 110012, India; and TERI-Deakin NanoBiotechnology Centre, The Energy and Resources Institute, New Delhi, 110003, India; and Corresponding author.
| |
Collapse
|
41
|
Paiva ALB, Mudadu MA, Pereira EHT, Marri CA, Guerra-Duarte C, Diniz MRV. Transcriptome analysis of the spider Phoneutria pertyi venom glands reveals novel venom components for the genus Phoneutria. Toxicon 2019; 163:59-69. [PMID: 30902682 DOI: 10.1016/j.toxicon.2019.03.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/11/2019] [Accepted: 03/12/2019] [Indexed: 11/24/2022]
Abstract
Phoneutria nigriventer spider venom has been studied for more than 40 years and several components with pharmacological potential have been described in it. However, studies on venoms from other species of the Phoneutria genus are scarce. In this work, a conventional cDNA library from the species Phoneutria pertyi venom glands was constructed, aiming to identify novel putative cysteine-rich peptide toxins for the genus Phoneutria. 296 unique sequences were identified and 51 sequences corresponded to putative cysteine-rich peptide toxins. Besides cysteine-rich peptide toxins, other putative venom components such as protease inhibitors, defensins and serine proteinases were identified. Furthermore, by manual curation of the sequences with no match at UniProt, we were able to identify glycine-rich proteins (GRP), a class of venom component never described in Phoneutria genus. This work describes the first complete sequences of toxins from the venom of P. pertyi and reveals that, despite most of the retrieved toxins show a high identity to toxins identified in Phoneutria genus, novel putative toxins remains to be described.
Collapse
Affiliation(s)
- Ana L B Paiva
- Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, Minas Gerais, Brazil.
| | - Mauricio A Mudadu
- Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, Minas Gerais, Brazil
| | - Elaine H T Pereira
- Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, Minas Gerais, Brazil
| | - Camila A Marri
- Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, Minas Gerais, Brazil
| | - Clara Guerra-Duarte
- Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, Minas Gerais, Brazil
| | - Marcelo R V Diniz
- Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
42
|
Genome-wide identification and expression analysis of glycine-rich RNA-binding protein family in sweet potato wild relative Ipomoea trifida. Gene 2018; 686:177-186. [PMID: 30453066 DOI: 10.1016/j.gene.2018.11.044] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 10/08/2018] [Accepted: 11/15/2018] [Indexed: 01/31/2023]
Abstract
Glycine-rich RNA-binding proteins (GRPs) contain RNA recognition motif (RRM) and glycine-rich domains at the N- or C-terminus, respectively, and they participate in varied physiological and biochemical processes, as well as environmental stresses. Sweet potato from the genus Ipomoea is one of the most important crops. However, the role of the GRP gene family in Ipomoea plant species has not been reported yet. At the same time, the genome of sweet potato remains to be elucidated, but the genome of I. trifida which is most probably the progenitor of the sweet potato was released recently. In this regard, we carried out genome-wide analysis of GRP family members in I. trifida. Here, we identified nine GRP genes in I. trifida and investigated their motif distribution, promoters and gene structure. Subsequently, we performed phylogenetic analysis with the GRP genes from I. trifida, Arabidopsis thaliana, Zea mays L. and Oryza sativa to investigate their phylogenetic relationship. Moreover, we studied the expression patterns of ItGRPs in the roots, stems, young and mature leaves and flowers and found that ItGRP genes were tissue-specific. Meanwhile, the expression profiles under four abiotic stress conditions, including heat, cold, salt and drought stress treatments, revealed that some genes were markedly up-regulated or down-regulated. Taken together, our findings will provide reference to studies on the function of GRP genes in the development and stress response of I. trifida.
Collapse
|
43
|
Kumari A, Pandey-Rai S. Enhanced arsenic tolerance and secondary metabolism by modulation of gene expression and proteome profile in Artemisia annua L. after application of exogenous salicylic acid. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 132:590-602. [PMID: 30326438 DOI: 10.1016/j.plaphy.2018.10.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 10/09/2018] [Accepted: 10/09/2018] [Indexed: 05/19/2023]
Abstract
This study was designed to investigate the effect of exogenous application of salicylic acid (SA) on proteins pattern and secondary metabolites in arsenic (As) stressed Artemisia annua. A. annua was treated by As 100 μM, SA 100 μM and combined treatment of SA 100 μM + As 100 μM upto 3 days. Significant accumulation of As was observed in roots than shoots at As 100 μM treatment. Under As treatment, oxidative stress was induced as indicated by increased TBARS content. Biomass, carotenoid, flavonoids were enhanced whereas total chlorophyll pigment was reduced under As treatment. Combined treatment of SA 100 μM + As 100 μM was more effective for increment of biomass, total chlorophyll content, and flavonoids as compared to As 100 μM treatment. Protein profiling revealed 20 differentially abundant proteins by 2-DE PAGE and MALDI-TOF-MS analysis. Identified proteins were related to photosynthesis, energy metabolism, transcriptional regulators, secondary metabolism, lipid metabolism, transport proteins and unknown/hypothetical proteins. All identified proteins were significantly increased in abundance under combined treatments of SA 100 μM + As 100 μM. The expression analysis of key genes involved in biosynthesis of lipid metabolism, signal molecule, transcriptional regulators, artemisinin biosynthetic genes, isoprenoids pathway, terpenes and flavonoids pathway were significantly upregulated under combined treatments of SA 100 μM + As 100 μM, suggesting a fine linkage in regulation of primary and secondary metabolism to modulate tolerance capacity and to improve phytoremediation property of A. annua against arsenic toxicity.
Collapse
Affiliation(s)
- Anjana Kumari
- Laboratory of Morphogenesis, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Shashi Pandey-Rai
- Laboratory of Morphogenesis, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
44
|
Chen L, Cai Y, Liu X, Guo C, Yao W, Sun S, Wu C, Jiang B, Han T, Hou W. GmGRP-like gene confers Al tolerance in Arabidopsis. Sci Rep 2018; 8:13601. [PMID: 30206281 PMCID: PMC6134052 DOI: 10.1038/s41598-018-31703-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/23/2018] [Indexed: 11/09/2022] Open
Abstract
Aluminium (Al) toxicity restrains water and nutrient uptake and is toxic to plant roots, ultimately inhibiting crop production. Here, we isolated and characterized a soybean glycine-rich protein-like gene (GmGRPL) that is mainly expressed in the root and that is regulated by Al treatment. Overexpression of GmGRPL can alleviate Al-induced root growth inhibition in Arabidopsis. The levels of IAA and ethylene in GmGRPL-overexpressing hairy roots were lower than those in control and RNA interference-exposed GmGRPL hairy roots with or without Al stress, which were mainly regulated by TAA1 and ACO, respectively. In transgenic soybean hairy roots, the MDA, H2O2 and O2-·content in GmGRPL-overexpressing hairy roots were less than that in control and RNA interference-exposed GmGRPL hairy roots under Al stress. In addition, IAA and ACC can enhance the expression level of the GmGRPL promoter with or without Al stress. These results indicated that GmGRPL can alleviate Al-induced root growth inhibition by regulating the level of IAA and ethylene and improving antioxidant activity.
Collapse
Affiliation(s)
- Li Chen
- National Center for Transgenic Research in Plants, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yupeng Cai
- National Center for Transgenic Research in Plants, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiujie Liu
- National Center for Transgenic Research in Plants, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chen Guo
- National Center for Transgenic Research in Plants, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Weiwei Yao
- National Center for Transgenic Research in Plants, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shi Sun
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Cunxiang Wu
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Bingjun Jiang
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Tianfu Han
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wensheng Hou
- National Center for Transgenic Research in Plants, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
45
|
Sharma A, Dubey V, Sharma R, Devnath K, Gupta VK, Akhter J, Bhando T, Verma A, Ambatipudi K, Sarkar M, Pathania R. The unusual glycine-rich C terminus of the Acinetobacter baumannii RNA chaperone Hfq plays an important role in bacterial physiology. J Biol Chem 2018; 293:13377-13388. [PMID: 30002121 DOI: 10.1074/jbc.ra118.002921] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/28/2018] [Indexed: 11/06/2022] Open
Abstract
Acinetobacter baumannii is a Gram-negative nosocomial pathogen that causes soft tissue infections in patients who spend a long time in intensive care units. This recalcitrant bacterium is very well known for developing rapid drug resistance, which is a combined outcome of its natural competence and mobile genetic elements. Successful efforts to treat these infections would be aided by additional information on the physiology of A. baumannii Toward that end, we recently reported on a small RNA (sRNA), AbsR25, in this bacterium that regulates the genes of several efflux pumps. Because sRNAs often require the RNA chaperone Hfq for assistance in binding to their cognate mRNA targets, we identified and characterized this protein in A. baumannii The homolog in A. baumannii is a large protein with an extended C terminus unlike Hfqs in other Gram-negative pathogens. The extension has a compositional bias toward glycine and, to a lower extent, phenylalanine and glutamine, suggestive of an intrinsically disordered region. We studied the importance of this glycine-rich tail using truncated versions of Hfq in biophysical assays and complementation of an hfq deletion mutant, finding that the tail was necessary for high-affinity RNA binding. Further tests implicate Hfq in important cellular processes of A. baumannii like metabolism, drug resistance, stress tolerance, and virulence. Our findings underline the importance of the glycine-rich C terminus in RNA binding, ribo-regulation, and auto-regulation of Hfq, demonstrating this hitherto overlooked protein motif to be an indispensable part of the A. baumannii Hfq.
Collapse
Affiliation(s)
- Atin Sharma
- From the Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India and
| | - Vineet Dubey
- From the Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India and
| | - Rajnikant Sharma
- From the Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India and
| | - Kuldip Devnath
- From the Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India and
| | - Vivek Kumar Gupta
- From the Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India and
| | - Jawed Akhter
- From the Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India and
| | - Timsy Bhando
- From the Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India and
| | - Aparna Verma
- From the Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India and
| | - Kiran Ambatipudi
- From the Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India and
| | - Mihir Sarkar
- the Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar-Bareilly (UP) 243122, India
| | - Ranjana Pathania
- From the Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India and
| |
Collapse
|
46
|
Wang H, Zhang JX, Wang Y, Fang WH, Wang Y, Zhou JF, Zhao S, Li XC. Newly identified type II crustin (SpCrus2) in Scylla paramamosain contains a distinct cysteine distribution pattern exhibiting broad antimicrobial activity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 84:1-13. [PMID: 29409789 DOI: 10.1016/j.dci.2018.01.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/30/2018] [Accepted: 01/31/2018] [Indexed: 06/07/2023]
Abstract
Type II crustins are the most abundant type of crustins in shrimps that exhibit remarkable sequence diversities and broad antibacterial activities. This study characterized a novel type II crustin, SpCrus2, in the mud crab Scylla paramamosain. The SpCrus2 cDNA sequence is 620-bp long with a 495-bp open reading frame encoding a 164-amino acid protein. In the deduced protein, a 17-amino acid signal peptide, a glycine-rich hydrophobic region (GRR), and a cysteine-rich region (CRR) containing a whey acidic protein domain were predicted. SpCrus2 shares high similarity with most type II crustins (types IIa and IIb crustins) in shrimps but has a novel distribution pattern of cysteine residues that is distinct from most crustins. SpCrus2 and PlCrus3 from Pacifastacus leniusculus share high similarity and the same distribution pattern of cysteine residues. Thus, we proposed them as type IIc crustins. SpCrus2 is mainly distributed in the gills and can be up-regulated through Vibrio parahemolyticus or Staphylococcus aureus challenge. To investigate the biological functions of SpCrus2 and the underlying mechanisms, SpCrus2, GRR, CRR, and the mutant of CRR (CRR-M, the cysteine distribution pattern is mutated into that in most conventional crustins) were all overexpressed and purified. SpCrus2 GRR itself, as a glycine-rich amphiphilic peptide, exhibited evident antibacterial ability against Gram-negative bacteria, whereas CRR possessed potent antibacterial activity against Gram-positive bacteria. Either GRR or CRR exhibited weaker antibacterial activity than the whole protein of SpCrus2, indicating that GRR and CRR synergized to exert their potential antibacterial functions. In addition, CRR exhibited slightly stronger antimicrobial activity than CRR-M, suggesting that SpCrus2 containing this novel cysteine distribution pattern may exhibit stronger antimicrobial activity than most type II crustins with the conventional distribution pattern of cysteine residues. The likely antimicrobial ability of SpCrus2 may result from its microbial polysaccharide-binding and agglutination activities. Overall, this study characterized the first type II crustin in crabs and provided new insights into understanding the sequence and functional diversity of crustins and their immune functions in crustaceans.
Collapse
Affiliation(s)
- Hui Wang
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of East China Sea and Oceanic Fishery Resources Exploitation, Ministry of Agriculture, Shanghai 200090, China; School of Aquaculture and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Jing-Xiao Zhang
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of East China Sea and Oceanic Fishery Resources Exploitation, Ministry of Agriculture, Shanghai 200090, China
| | - Yue Wang
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of East China Sea and Oceanic Fishery Resources Exploitation, Ministry of Agriculture, Shanghai 200090, China
| | - Wen-Hong Fang
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of East China Sea and Oceanic Fishery Resources Exploitation, Ministry of Agriculture, Shanghai 200090, China
| | - Yuan Wang
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of East China Sea and Oceanic Fishery Resources Exploitation, Ministry of Agriculture, Shanghai 200090, China
| | - Jun-Fang Zhou
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of East China Sea and Oceanic Fishery Resources Exploitation, Ministry of Agriculture, Shanghai 200090, China
| | - Shu Zhao
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of East China Sea and Oceanic Fishery Resources Exploitation, Ministry of Agriculture, Shanghai 200090, China
| | - Xin-Cang Li
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of East China Sea and Oceanic Fishery Resources Exploitation, Ministry of Agriculture, Shanghai 200090, China.
| |
Collapse
|
47
|
HrpE, the major component of the Xanthomonas type three protein secretion pilus, elicits plant immunity responses. Sci Rep 2018; 8:9842. [PMID: 29959345 PMCID: PMC6026121 DOI: 10.1038/s41598-018-27869-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 06/11/2018] [Indexed: 02/06/2023] Open
Abstract
Like several pathogenic bacteria, Xanthomonas infect host plants through the secretion of effector proteins by the Hrp pilus of the Type Three Protein Secretion System (T3SS). HrpE protein was identified as the major structural component of this pilus. Here, using the Xanthomonas citri subsp. citri (Xcc) HrpE as a model, a novel role for this protein as an elicitor of plant defense responses was found. HrpE triggers defense responses in host and non-host plants revealed by the development of plant lesions, callose deposition, hydrogen peroxide production and increase in the expression levels of genes related to plant defense responses. Moreover, pre-infiltration of citrus or tomato leaves with HrpE impairs later Xanthomonas infections. Particularly, HrpE C-terminal region, conserved among Xanthomonas species, was sufficient to elicit these responses. HrpE was able to interact with plant Glycine-Rich Proteins from citrus (CsGRP) and Arabidopsis (AtGRP-3). Moreover, an Arabidopsis atgrp-3 knockout mutant lost the capacity to respond to HrpE. This work demonstrate that plants can recognize the conserved C-terminal region of the T3SS pilus HrpE protein as a danger signal to defend themselves against Xanthomonas, triggering defense responses that may be mediated by GRPs.
Collapse
|
48
|
Zhang N, Zhang L, Shi C, Zhao L, Cui D, Chen F. Identification of Proteins Using iTRAQ and Virus-Induced Gene Silencing Reveals Three Bread Wheat Proteins Involved in the Response to Combined Osmotic-Cold Stress. J Proteome Res 2018; 17:2256-2281. [DOI: 10.1021/acs.jproteome.7b00745] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Ning Zhang
- Agronomy College, National Key Laboratory of Wheat and Maize Crop, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China
| | - Lingran Zhang
- Agronomy College, National Key Laboratory of Wheat and Maize Crop, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China
| | - Chaonan Shi
- Agronomy College, National Key Laboratory of Wheat and Maize Crop, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China
| | - Lei Zhao
- Agronomy College, National Key Laboratory of Wheat and Maize Crop, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China
| | - Dangqun Cui
- Agronomy College, National Key Laboratory of Wheat and Maize Crop, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China
| | - Feng Chen
- Agronomy College, National Key Laboratory of Wheat and Maize Crop, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
49
|
Wang B, Wang G, Shen F, Zhu S. A Glycine-Rich RNA-Binding Protein, CsGR-RBP3, Is Involved in Defense Responses Against Cold Stress in Harvested Cucumber ( Cucumis sativus L.) Fruit. FRONTIERS IN PLANT SCIENCE 2018; 9:540. [PMID: 29740470 PMCID: PMC5925850 DOI: 10.3389/fpls.2018.00540] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 04/06/2018] [Indexed: 05/09/2023]
Abstract
Plant glycine-rich RNA-binding proteins (GR-RBPs) have been shown to play important roles in response to abiotic stresses in actively proliferating organs such as young plants, root tips, and flowers, but their roles in chilling responses of harvested fruit remains largely unknown. Here, we investigated the role of CsGR-RBP3 in the chilling response of cucumber fruit. Pre-storage cold acclimation at 10°C (PsCA) for 3 days significantly enhanced chilling tolerance of cucumber fruit compared with the control fruit that were stored at 5°C. In the control fruit, only one of the six cucumber CsGR-RBP genes, CsGR-RBP2, was enhanced whereas the other five, i.e., CsGR-RBP3, CsGR-RBP4, CsGR-RBP5, CsGR-RBP-blt801, and CsGR-RBP-RZ1A were not. However, in the fruit exposed to PsCA before storage at 5°C, CsGR-RBP2 transcript levels were not obviously different from those in the controls, whereas the other five were highly upregulated, with CsGR-RBP3 the most significantly induced. Treatment with endogenous ABA and NO biosynthesis inhibitors, tungstate and L-nitro-arginine methyl ester, respectively, prior to PsCA treatment, clearly downregulated CsGR-RBP3 expression and significantly aggravated chilling injury. These results suggest a strong connection between CsGR-RBP3 expression and chilling tolerance in cucumber fruit. Transient expression in tobacco suggests CsGR-RBP3 was located in the mitochondria, implying a role for CsGR-RBP3 in maintaining mitochondria-related functions under low temperature. Arabidopsis lines overexpressing CsGR-RBP3 displayed faster growth at 23°C, lower electrolyte leakage and higher Fv/Fm ratio at 0°C, and higher survival rate at -20°C, than wild-type plants. Under cold stress conditions, Arabidopsis plants overexpressing CsGR-RBP3 displayed lower reactive oxygen species levels, and higher catalase and superoxide dismutase expression and activities, compared with the wild-type plants. In addition, overexpression of CsGR-RBP3 significantly upregulated nine Arabidopsis genes involved in defense responses to various stresses, including chilling. These results strongly suggest CsGR-RBP3 plays a positive role in defense against chilling stress.
Collapse
Affiliation(s)
| | | | | | - Shijiang Zhu
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
50
|
Köster T, Meyer K. Plant Ribonomics: Proteins in Search of RNA Partners. TRENDS IN PLANT SCIENCE 2018; 23:352-365. [PMID: 29429586 DOI: 10.1016/j.tplants.2018.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 01/08/2018] [Accepted: 01/15/2018] [Indexed: 06/08/2023]
Abstract
Research into the regulation of gene expression underwent a shift from focusing on DNA-binding proteins as key transcriptional regulators to RNA-binding proteins (RBPs) that come into play once transcription has been initiated. RBPs orchestrate all RNA-processing steps in the cell. To obtain a global view of in vivo targets, the RNA complement associated with particular RBPs is determined via immunoprecipitation of the RBP and subsequent identification of bound RNAs via RNA-seq. Here, we describe technical advances in identifying RBP in vivo targets and their binding motifs. We provide an up-to-date view of targets of nucleocytoplasmic RBPs collected in arabidopsis. We also discuss current experimental limitations and provide an outlook on how the approaches may advance our understanding of post-transcriptional networks.
Collapse
Affiliation(s)
- Tino Köster
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany.
| | - Katja Meyer
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|