1
|
Kervezee L, Romijn M, van de Weijer KNG, Chen BSJ, Burchell GL, Tollenaar MS, Tamayo-Ortiz M, Philbrook LE, de Weerth C, Cao Y, Rotteveel J, Eiden RD, Azar R, Bush NR, Chis A, Kmita G, Clearfield MW, Beijers R, Gröschl M, Wudy SA, Kalsbeek A, Mörelius E, Finken MJJ. Development of 24-Hour Rhythms in Cortisol Secretion Across Infancy: A Systematic Review and Meta-Analysis of Individual Participant Data. J Clin Endocrinol Metab 2025; 110:e515-e524. [PMID: 39207206 PMCID: PMC11747683 DOI: 10.1210/clinem/dgae590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/07/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
CONTEXT In adults, cortisol levels show a pronounced 24-hour rhythm with a peak in the early morning. It is unknown at what age this early-morning peak in cortisol emerges during infancy, hampering the establishment of optimal dosing regimens for hydrocortisone replacement therapy in infants with an inborn form of adrenal insufficiency. OBJECTIVE We aimed to characterize daily variation in salivary cortisol concentration across the first year of life. METHODS We conducted a systematic review followed by an individual participant data meta-analysis of studies reporting on spontaneous (ie, not stress-induced) salivary cortisol concentrations in healthy infants aged 0-1 year. A one-stage approach using linear mixed-effects modeling was used to determine the interaction between age and time of day on cortisol concentrations. RESULTS Through the systematic review, 54 eligible publications were identified, reporting on 29 177 cortisol observations. Individual participant data were obtained from 15 study cohorts, combining 17 079 cortisol measurements from 1904 infants. The morning/evening cortisol ratio increased significantly from 1.7 (95% CI: 1.3-2.1) at birth to 3.7 (95% CI: 3.0-4.5) at 6 to 9 months (P < .0001). Cosinor analysis using all available data revealed the gradual emergence of a 24-hour rhythm during infancy. CONCLUSION The early-morning peak in cortisol secretion gradually emerges from birth onwards to form a stable morning/evening ratio from age 6 to 9 months. This might have implications for hydrocortisone replacement therapy in infants with an inborn form of adrenal insufficiency.
Collapse
Affiliation(s)
- Laura Kervezee
- Group of Circadian Medicine, Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands
| | - Michelle Romijn
- Department of Pediatric Endocrinology, Emma Children's Hospital, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Reproduction & Development Research Institute, 1105 AZ Amsterdam, The Netherlands
| | - Kirsten N G van de Weijer
- Department of Pediatric Endocrinology, Emma Children's Hospital, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands
| | - Britney S J Chen
- Department of Pediatric Endocrinology, Emma Children's Hospital, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands
| | - George L Burchell
- Medical Library, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Marieke S Tollenaar
- Department of Clinical Psychology, Institute of Psychology, Leiden University, 2333 AK Leiden, The Netherlands
| | - Marcela Tamayo-Ortiz
- Department of Environmental Health Sciences, Columbia Center for Children's Environmental Health, Columbia University Mailman School of Public Health, New York, NY 10032, USA
| | - Lauren E Philbrook
- Department of Psychological and Brain Sciences, Colgate University, Hamilton, NY 13346, USA
- Department of Human Development and Family Studies, The Pennsylvania State University, University Park, PA 16802, USA
| | - Carolina de Weerth
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, 6525 EN Nijmegen, The Netherlands
| | - Yang Cao
- Clinical Epidemiology and Biostatistics, Department of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro 70185, Sweden
- Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institute, Stockholm 17177, Sweden
| | - Joost Rotteveel
- Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institute, Stockholm 17177, Sweden
| | - Rina D Eiden
- Department of Psychology and the Social Science Research Institute, The Pennsylvania State University, University Park, PA 16801, USA
| | - Rima Azar
- Psychobiology of Stress & Health Lab, Psychology Department, Mount Allison University, New Brunswick, E4L 1C7, Canada
| | - Nicole R Bush
- Departments of Psychiatry and Pediatrics, University of California, San Francisco (UCSF), San Francisco, CA 94158, USA
| | - Adina Chis
- Department of Molecular Sciences, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
- Cognitive Neuroscience Laboratory, Babes-Bolyai University, 400294 Cluj-Napoca, Romania
| | - Grazyna Kmita
- Department of Clinical Psychology of Child and Family, Faculty of Psychology, University of Warsaw, 00-183 Warsaw, Poland
- Department of Early Psychological Intervention, Institute of Mother and Child, 01-211 Warsaw, Poland
| | | | - Roseriet Beijers
- Department of Developmental Psychology, Behavioral Science Institute, Radboud University, 6500 HB Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | | | - Stefan A Wudy
- Paediatric Endocrinology & Diabetology, Center of Child and Adolescent Medicine, Justus Liebig University, D-35392 Giessen, Germany
| | - Andries Kalsbeek
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Netherlands Institute for Neuroscience (NIN), an Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), 1105 BA Amsterdam, The Netherlands
- Laboratory of Endocrinology, Department of Laboratory Medicine, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Endocrinology, Metabolism and Nutrition, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Cellular and Molecular Mechanisms, 1105 AZ Amsterdam, The Netherlands
| | - Evalotte Mörelius
- Department of Health, Medicine and Caring Sciences, Linköping University, 58185 Linköping, Sweden
- School of Nursing and Midwifery, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Martijn J J Finken
- Department of Pediatric Endocrinology, Emma Children's Hospital, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Reproduction & Development Research Institute, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
2
|
Grace J, Duran E, Ann Ottinger M, Maness T. Sublethal effects of early-life exposure to common and emerging contaminants in birds. Curr Res Toxicol 2024; 7:100190. [PMID: 39220619 PMCID: PMC11365322 DOI: 10.1016/j.crtox.2024.100190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/03/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
The plight of wild birds is becoming critical due to exposure to environmental contaminants. Although laboratory studies have provided insights into the developmental effects of chemical exposures, less is known about the adverse effects of environmental chemicals in developing wild birds. Early life stages are critical windows during which long-term organization of physiological, behavioral, and neurological systems can occur. Thus, contaminant exposure at early life stages can directly influence survival and reproductive success, with consequences for population stability and resilience in wild species. This review synthesizes existing knowledge regarding both short- and long-term effects of early-life exposure to widespread contaminants in birds. We focus especially on wild birds and on contaminants of concern within the Gulf of Mexico as an example of a habitat under anthropogenic stress from exposure to a complex mixture of chemicals and changing land uses that exacerbate existing vulnerabilities of wildlife in this region. Chemical contaminants for discussion in this review are based on avian mortality records from the Wildlife Health Information Sharing Partnership (WHISPers) database and on additional review of the literature regarding avian contaminants of concern for the northern Gulf of Mexico, and include oil and associated polycyclic aromatic hydrocarbons, dioxin and dioxin-like compounds, flame retardants, pesticides, heavy metals, and plastics. We provide an overview of effects in bird species at both the pre-hatching and post-hatching early life stages, discuss differences in sensitivities by route of exposure, life stage, and life history, and provide recommendations for future research. We find that additional research is needed on altricial species, post-hatching early-life exposure, long-term effects, and on ecologically relevant contaminant concentrations and routes of exposure. Given the increasing frequency and intensity of anthropogenic stressors encountered by wild animals, understanding both lethal and sublethal impacts of contaminants on the health of individuals and populations will be critical to inform restoration, management, and mitigation efforts.
Collapse
Affiliation(s)
- Jacquelyn Grace
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX 77840-2258, USA
- Ecology and Evolutionary Biology Interdisciplinary Doctoral Program, Texas A&M University, College Station, TX 77840-2258, USA
| | - Elena Duran
- Ecology and Evolutionary Biology Interdisciplinary Doctoral Program, Texas A&M University, College Station, TX 77840-2258, USA
| | - Mary Ann Ottinger
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Terri Maness
- School of Biological Sciences, Louisiana Tech University, Ruston, LA 71272, USA
| |
Collapse
|
3
|
Shephard AM, Lagon SR, Jacobsen S, Millar K, Ledón-Rettig CC. Corticosterone Contributes to Diet-Induced Reprogramming of Post-Metamorphic Behavior in Spadefoot Toads. Integr Org Biol 2024; 6:obae012. [PMID: 38707679 PMCID: PMC11067961 DOI: 10.1093/iob/obae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/28/2024] [Accepted: 04/11/2024] [Indexed: 05/07/2024] Open
Abstract
Stressful experiences in early life can have phenotypic effects that persist into, or manifest during, adulthood. In vertebrates, such carryover effects can be driven by stress-induced secretion of glucocorticoid hormones, such as corticosterone, which can lead to developmental reprogramming of hypothalamic-pituitary-adrenal/interrenal axis activity and behavior. Nutritional stress in the form of early life nutrient restriction is well known to modify later life behaviors and stress activity through corticosterone-related mechanisms. However, it is not known whether corticosterone is also mechanistically involved in carryover effects induced by a different form of nutritional variation: the use of alternate or entirely novel types of dietary resources. The plains spadefoot (Spea bombifrons) presents an excellent system for testing this question, since larvae of this species have evolved to use 2 alternate diet types: an ancestral detritus-based diet and a more novel diet of live shrimp. While previous work has shown that feeding on the novel shrimp diet influences juvenile (i.e., post-metamorphic) behavior and corticosterone levels, it is unclear whether these diet-induced carryover effects are mediated by diet-induced corticosterone itself. To test for the mechanistic role of corticosterone in diet-induced carryover effects, we experimentally treated S. bombifrons larvae with exogenous corticosterone and measured subsequent effects on juvenile behavior and corticosterone levels. We found that while shrimp-fed larvae had elevated corticosterone levels, treatment of larvae with corticosterone itself had effects on juvenile behavior that partially resembled those carryover effects induced by the shrimp diet, such as altered food seeking and higher locomotor activity. However, unlike carryover effects caused by the shrimp diet, larval corticosterone exposure did not affect juvenile corticosterone levels. Overall, our study shows that corticosterone-related mechanisms are likely involved in carryover effects induced by a novel diet, yet such diet-induced carryover effects are not driven by corticosterone alone.
Collapse
Affiliation(s)
- A M Shephard
- Department of Biology, Indiana University Bloomington, Myers Hall, 915 East 3rd Street, Bloomington IN 47405, USA
| | - S R Lagon
- Department of Biology, Indiana University Bloomington, Myers Hall, 915 East 3rd Street, Bloomington IN 47405, USA
| | - S Jacobsen
- Department of Biology, Indiana University Bloomington, Myers Hall, 915 East 3rd Street, Bloomington IN 47405, USA
| | - K Millar
- Department of Biology, Indiana University Bloomington, Myers Hall, 915 East 3rd Street, Bloomington IN 47405, USA
| | - C C Ledón-Rettig
- Department of Biology, Indiana University Bloomington, Myers Hall, 915 East 3rd Street, Bloomington IN 47405, USA
| |
Collapse
|
4
|
Reyes-Contreras M, de Vries B, van der Molen JC, Groothuis TGG, Taborsky B. Egg-mediated maternal effects in a cooperatively breeding cichlid fish. Sci Rep 2023; 13:9759. [PMID: 37328515 PMCID: PMC10276030 DOI: 10.1038/s41598-023-35550-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 05/19/2023] [Indexed: 06/18/2023] Open
Abstract
Mothers can influence offspring phenotype through egg-mediated maternal effects, which can be influenced by cues mothers obtain from their environment during offspring production. Developing embryos use these components but have mechanisms to alter maternal signals. Here we aimed to understand the role of mothers and embryos in how maternal effects might shape offspring social phenotype. In the cooperatively breeding fish Neolamprologus pulcher different social phenotypes develop in large and small social groups differing in predation risk and social complexity. We manipulated the maternal social environment of N. pulcher females during egg laying by allocating them either to a small or a large social group. We compared egg mass and clutch size and the concentration of corticosteroid metabolites between social environments, and between fertilized and unfertilized eggs to investigate how embryos deal with maternal signalling. Mothers in small groups produced larger clutches but neither laid smaller eggs nor bestowed eggs differently with corticosteroids. Fertilized eggs scored lower on a principal component representing three corticosteroid metabolites, namely 11-deoxycortisol, cortisone, and 11-deoxycorticosterone. We did not detect egg-mediated maternal effects induced by the maternal social environment. We discuss that divergent social phenotypes induced by different group sizes may be triggered by own offspring experience.
Collapse
Affiliation(s)
- Maria Reyes-Contreras
- Division of Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, Wohlenstrasse 50A, 3032, Hinterkappelen, Switzerland
| | - Bonnie de Vries
- The Groningen Institute for Evolutionary Life Science, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - J C van der Molen
- Laboratorium Bijzondere Chemie, Cluster Endocrinologie and Metabole Ziekten, University Medical Center Groningen, 9700 RB, Groningen, The Netherlands
| | - T G G Groothuis
- The Groningen Institute for Evolutionary Life Science, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Barbara Taborsky
- Division of Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, Wohlenstrasse 50A, 3032, Hinterkappelen, Switzerland.
| |
Collapse
|
5
|
Developmental programming of mitochondrial substrate metabolism in skeletal muscle of adult sheep by cortisol exposure before birth. J Dev Orig Health Dis 2023; 14:77-87. [PMID: 35822505 DOI: 10.1017/s204017442200040x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Prenatal glucocorticoid overexposure causes adult metabolic dysfunction in several species but its effects on adult mitochondrial function remain largely unknown. Using respirometry, this study examined mitochondrial substrate metabolism of fetal and adult ovine biceps femoris (BF) and semitendinosus (ST) muscles after cortisol infusion before birth. Physiological increases in fetal cortisol concentrations pre-term induced muscle- and substrate-specific changes in mitochondrial oxidative phosphorylation capacity in adulthood. These changes were accompanied by muscle-specific alterations in protein content, fibre composition and abundance of the mitochondrial electron transfer system (ETS) complexes. In adult ST, respiration using palmitoyl-carnitine and malate was increased after fetal cortisol treatment but not with other substrate combinations. There were also significant increases in protein content and reductions in the abundance of all four ETS complexes, but not ATP synthase, in the ST of adults receiving cortisol prenatally. In adult BF, intrauterine cortisol treatment had no effect on protein content, respiratory rates, ETS complex abundances or ATP synthase. Activity of citrate synthase, a marker of mitochondrial content, was unaffected by intrauterine treatment in both adult muscles. In the ST but not BF, respiratory rates using all substrate combinations were significantly lower in the adults than fetuses, predominantly in the saline-infused controls. The ontogenic and cortisol-induced changes in mitochondrial function were, therefore, more pronounced in the ST than BF muscle. Collectively, the results show that fetal cortisol overexposure programmes mitochondrial substrate metabolism in specific adult muscles with potential consequences for adult metabolism and energetics.
Collapse
|
6
|
Hahn-Holbrook J, Davis EP, Sandman CA, Glynn LM. Maternal prenatal cortisol trajectories predict accelerated growth in infancy. Psychoneuroendocrinology 2023; 147:105957. [PMID: 36371954 PMCID: PMC10710294 DOI: 10.1016/j.psyneuen.2022.105957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 11/07/2022]
Abstract
Higher maternal cortisol in pregnancy has been linked to childhood obesity. Much of the previous research has been limited in that cortisol in pregnancy is only measured at one time-point, precluding the ability to examine critical timing effects of prenatal maternal cortisol. To fill this gap, this longitudinal study measured maternal plasma cortisol at 15, 19, 25, and 31 weeks of pregnancy, and assessed infant body mass index percentile (BMIP)1 at birth, 3, 6, 12, and 24 months in 189 mother-infant pairs. Three distinct patterns of maternal cortisol in pregnancy (typical, steep, and flat trajectories) were identified using general growth mixture modeling (GGMM)2 and then used to predict child growth patterns using multilevel modeling. Infants of mothers who had flat cortisol trajectories, characterized by relatively high cortisol in early gestation that plateaus by mid-gestation, experienced more rapid increases in BMIP from birth to 6 months, and had higher BMIPs at 3 and 6 months, than infants whose mothers had the typical slow cortisol rise over gestation, or steep (rapidly accelerating) trajectories. These results suggest that it is not just the total amount of maternal cortisol in pregnancy that shapes early infant growth, but instead the timing and trajectory of prenatal cortisol exposure. To better understand the early origins of obesity risk, future research is needed to investigate the factors that shape mothers' prenatal cortisol trajectories.
Collapse
Affiliation(s)
- Jennifer Hahn-Holbrook
- Department of Psychology, University of California, 5200 Lake Rd, Merced, CA 95343, the United States of America.
| | - Elysia Poggi Davis
- Department of Psychology, University of Denver, 2155 S Race St, Denver, CO 80210, the United States of America; Department of Pediatrics, University of California, Irvine, CA 333 The City Blvd. West, Suite 800, Orange, CA 92868-4482, the United States of America.
| | - Curt A Sandman
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA UCI School of Medicine Medical Education, 1001 Health Sciences Road, Irvine, CA 92697-4089, the United States of America.
| | - Laura M Glynn
- Department of Psychology, Chapman University, One University Drive, Orange, CA 92866, the United States of America.
| |
Collapse
|
7
|
Cayupe B, Troncoso B, Morgan C, Sáez-Briones P, Sotomayor-Zárate R, Constandil L, Hernández A, Morselli E, Barra R. The Role of the Paraventricular-Coerulear Network on the Programming of Hypertension by Prenatal Undernutrition. Int J Mol Sci 2022; 23:ijms231911965. [PMID: 36233268 PMCID: PMC9569920 DOI: 10.3390/ijms231911965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/22/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
A crucial etiological component in fetal programming is early nutrition. Indeed, early undernutrition may cause a chronic increase in blood pressure and cardiovascular diseases, including stroke and heart failure. In this regard, current evidence has sustained several pathological mechanisms involving changes in central and peripheral targets. In the present review, we summarize the neuroendocrine and neuroplastic modifications that underlie maladaptive mechanisms related to chronic hypertension programming after early undernutrition. First, we analyzed the role of glucocorticoids on the mechanism of long-term programming of hypertension. Secondly, we discussed the pathological plastic changes at the paraventricular nucleus of the hypothalamus that contribute to the development of chronic hypertension in animal models of prenatal undernutrition, dissecting the neural network that reciprocally communicates this nucleus with the locus coeruleus. Finally, we propose an integrated and updated view of the main neuroendocrine and central circuital alterations that support the occurrence of chronic increases of blood pressure in prenatally undernourished animals.
Collapse
Affiliation(s)
- Bernardita Cayupe
- Centro de Investigación Biomédica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile (USACH), Santiago 9170020, Chile
| | - Blanca Troncoso
- Escuela de Enfermería, Facultad de Ciencias Médicas, Universidad de Santiago de Chile, Santiago 9170020, Chile
| | - Carlos Morgan
- Laboratorio de Neurofarmacología y Comportamiento, Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile, Santiago 9170020, Chile
| | - Patricio Sáez-Briones
- Laboratorio de Neurofarmacología y Comportamiento, Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile, Santiago 9170020, Chile
| | - Ramón Sotomayor-Zárate
- Laboratorio de Neuroquímica y Neurofarmacología, Centro de Neurobiología y Fisiopatología Integrativa, Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Luis Constandil
- Laboratorio de Neurobiología, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170020, Chile
| | - Alejandro Hernández
- Laboratorio de Neurobiología, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170020, Chile
| | - Eugenia Morselli
- Department of Basic Sciences, Faculty of Medicine and Sciences, Universidad San Sebastián, Santiago 7510157, Chile
| | - Rafael Barra
- Centro de Investigación Biomédica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile (USACH), Santiago 9170020, Chile
- Correspondence: ; Tel.: +56-983831083
| |
Collapse
|
8
|
Gene Dysregulation in the Adult Rat Paraventricular Nucleus and Amygdala by Prenatal Exposure to Dexamethasone. LIFE (BASEL, SWITZERLAND) 2022; 12:life12071077. [PMID: 35888164 PMCID: PMC9316520 DOI: 10.3390/life12071077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/24/2022] [Accepted: 07/15/2022] [Indexed: 12/02/2022]
Abstract
Fetal programming is the concept that maternal stressors during critical periods of fetal development can alter offspring phenotypes postnatally. Excess glucocorticoids can interact with the fetus to effect genetic and epigenetic changes implicated in adverse developmental outcomes. The present study investigates how chronic exposure to the synthetic glucocorticoid dexamethasone during late gestation alters the expression of genes related to behavior in brain areas relevant to the regulation and function of the hypothalamic–pituitary–adrenal axis. Pregnant Wistar Kyoto rats received subcutaneous injections of dexamethasone (100 μg/kg) daily from gestational day 15–21 or vehicle only as sham controls. The amygdala and paraventricular nucleus (PVN) were micro-punched to extract mRNA for reverse transcription and quantitative polymerase chain reaction for the analysis of the expression of specific genes. In the PVN, the expression of the glucocorticoid receptor NR3C1 was downregulated in female rats in response to programming. The expression of CACNA1C encoding the Cav1.2 pore subunit of L-type voltage-gated calcium channels was downregulated in male and female rats prenatally exposed to dexamethasone. Collectively, the results suggest that prenatal exposure to elevated levels of glucocorticoids plays a role in the dysregulation of the hypothalamic–pituitary–adrenal axis and potentially learning and memory by altering the expression of specific genes within the amygdala and PVN.
Collapse
|
9
|
Lin B, Appleton AA. Developmental Origins of Pregnancy-Related Morbidity and Mortality in Black U.S. Women. Front Public Health 2022; 10:853018. [PMID: 35769781 PMCID: PMC9234444 DOI: 10.3389/fpubh.2022.853018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
In the US, Black women are at disproportionate risk for pregnancy-related morbidity and mortality (PRMM). Disparities in PRMM have been tied to elevated rates of obstetric cardiometabolic complications for Black women. Research seeking to elucidate the determinants of Black PRMM to date have focused predominantly on risk factors occurring during pregnancy (e.g., health risk behaviors, quantity and quality of prenatal care, provider behaviors, and attitudes). Meanwhile, other research investigating the developmental origins of health and disease (DOHaD) model indicates that the origins of adult cardiometabolic health can be traced back to stress exposures occurring during the intrauterine and early life periods. Despite the relevancy of this work to Black PRMM, the DOHaD model has never been applied to investigate the determinants of Black PRMM. We argue that the DOHaD model represents a compelling theoretical framework from which to conceptualize factors that drive racial disparities PRMM. Research and intervention working from a developmental origins orientation may help address this urgent public health crisis of Black PRMM.
Collapse
Affiliation(s)
- Betty Lin
- Department of Psychology, College of Arts and Sciences, University at Albany, State University of New York, Albany, NY, United States
- *Correspondence: Betty Lin
| | - Allison A. Appleton
- Department of Epidemiology and Biostatistics, School of Public Health, University at Albany, State University of New York, Rensselaer, NY, United States
| |
Collapse
|
10
|
Vautier AN, Cadaret CN. Long-Term Consequences of Adaptive Fetal Programming in Ruminant Livestock. FRONTIERS IN ANIMAL SCIENCE 2022. [DOI: 10.3389/fanim.2022.778440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Environmental perturbations during gestation can alter fetal development and postnatal animal performance. In humans, intrauterine growth restriction (IUGR) resulting from adaptive fetal programming is known as a leading cause of perinatal morbidity and mortality and predisposes offspring to metabolic disease, however, the prevalence and impact in livestock is not characterized as well. Multiple animal models have been developed as a proxy to determine mechanistic changes that underlie the postnatal phenotype resulting from these programming events in humans but have not been utilized as robustly in livestock. While the overall consequences are similar between models, the severity of the conditions appear to be dependent on type, timing, and duration of insult, indicating that some environmental insults are of more relevance to livestock production than others. Thus far, maternofetal stress during gestation has been shown to cause increased death loss, low birth weight, inefficient growth, and aberrant metabolism. A breadth of this data comes from the fetal ruminant collected near term or shortly thereafter, with fewer studies following these animals past weaning. Consequently, even less is known about how adaptive fetal programming impacts subsequent progeny. In this review, we summarize the current knowledge of the postnatal phenotype of livestock resulting from different models of fetal programming, with a focus on growth, metabolism, and reproductive efficiency. We further describe what is currently known about generational impacts of fetal programming in production systems, along with gaps and future directions to consider.
Collapse
|
11
|
Hamilton CM, Winter MJ, Margiotta-Casaluci L, Owen SF, Tyler CR. Are synthetic glucocorticoids in the aquatic environment a risk to fish? ENVIRONMENT INTERNATIONAL 2022; 162:107163. [PMID: 35240385 DOI: 10.1016/j.envint.2022.107163] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 05/27/2023]
Abstract
The glucocorticosteroid, or glucocorticoid (GC), system is largely conserved across vertebrates and plays a central role in numerous vital physiological processes including bone development, immunomodulation, and modification of glucose metabolism and the induction of stress-related behaviours. As a result of their wide-ranging actions, synthetic GCs are widely prescribed for numerous human and veterinary therapeutic purposes and consequently have been detected extensively within the aquatic environment. Synthetic GCs designed for humans are pharmacologically active in non-mammalian vertebrates, including fish, however they are generally detected in surface waters at low (ng/L) concentrations. In this review, we assess the potential environmental risk of synthetic GCs to fish by comparing available experimental data and effect levels in fish with those in mammals. We found the majority of compounds were predicted to have insignificant risk to fish, however some compounds were predicted to be of moderate and high risk to fish, although the dataset of compounds used for this analysis was small. Given the common mode of action and high level of inter-species target conservation exhibited amongst the GCs, we also give due consideration to the potential for mixture effects, which may be particularly significant when considering the potential for environmental impact from this class of pharmaceuticals. Finally, we also provide recommendations for further research to more fully understand the potential environmental impact of this relatively understudied group of commonly prescribed human and veterinary drugs.
Collapse
Affiliation(s)
- Charles M Hamilton
- Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, Devon EX4 4QD, UK
| | - Matthew J Winter
- Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, Devon EX4 4QD, UK
| | - Luigi Margiotta-Casaluci
- Department of Analytical, Environmental & Forensic Sciences, School of Cancer & Pharmaceutical Sciences, King's College London, London SE1 9NH, UK
| | - Stewart F Owen
- AstraZeneca, Global Environment, Macclesfield, Cheshire SK10 2NA, UK
| | - Charles R Tyler
- Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, Devon EX4 4QD, UK.
| |
Collapse
|
12
|
Martinez CA, Marteinsdottir I, Josefsson A, Sydsjö G, Theodorsson E, Rodriguez-Martinez H. Prenatal stress, anxiety and depression alter transcripts, proteins and pathways associated with immune responses at the maternal-fetal interface†. Biol Reprod 2021; 106:449-462. [PMID: 34935902 PMCID: PMC8934694 DOI: 10.1093/biolre/ioab232] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/15/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
During pregnancy, the immune system is modified to allow developmental developmental tolerance of the semi-allogeneic fetus and placenta to term. Pregnant women suffering from stress, anxiety and depression show dysfunctions of their immune system that may be responsible for fetal and/or newborn disorders, provided that provided that placental gene regulation is compromised. The present study explored the effects of maternal chronic self-perceived stress, anxiety and depression during pregnancy on the expression of immune related-genes and pathways in term placenta. Pregnancies were clinically monitored with the Beck's Anxiety Inventory (BAI) and Edinburgh Postnatal Depression Scale (EPDS). A cutoff threshold for BAI/EPDS of 10 divided patients into two groups: Index group (≥10, n = 11) and a Control group (<10, n = 11), whose placentae were sampled at delivery. The placental samples were subjected to RNA-Sequencing, demonstrating that stress, anxiety and depression during pregnancy induced a major downregulation of placental transcripts related to immune processes such as T-cell regulation, interleukin and cytokine signaling or innate immune responses. Expression differences of main immune related genes such as CD46, CD15, CD8α & β ILR7α and CCR4 among others, were found in the index group (P < 0.05). Moreover, the key immune-like pathway involved in humoral and cellular immunity named "Primary immunodeficiency" was significantly downregulated in the index group compared to controls. Our results show that mechanisms ruling immune system functions are compromised at the maternal-fetal interface following self-perceived depressive symptoms and anxiety during pregnancy. These findings may help unveil mechanisms ruling the impact of maternal psychiatric symptoms and lead to new prevention/intervention strategies in complicated pregnancies.
Collapse
Affiliation(s)
- Cristina A Martinez
- Department of Biomedical & Clinical Sciences, Obstetrics & Gynaecology, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Ina Marteinsdottir
- Department of Medicine and Optometry, Faculty of Health and Life Sciences, Linnaeus University, Hus Vita, Kalmar, Sweden
| | - Ann Josefsson
- Department of Biomedical & Clinical Sciences, Obstetrics & Gynaecology, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Gunilla Sydsjö
- Department of Biomedical & Clinical Sciences, Obstetrics & Gynaecology, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Elvar Theodorsson
- Division of Clinical Chemistry, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Heriberto Rodriguez-Martinez
- Department of Biomedical & Clinical Sciences, Obstetrics & Gynaecology, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
13
|
Yang SW, Oh MJ, Park KV, Han SW, Kim HS, Sohn IS, Kwon HS, Cho GJ, Hwang HS. Risk of Early Childhood Obesity in Offspring of Women with Preeclampsia: A Population-Based Study. J Clin Med 2021; 10:jcm10163758. [PMID: 34442053 PMCID: PMC8397009 DOI: 10.3390/jcm10163758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/10/2021] [Accepted: 08/21/2021] [Indexed: 12/19/2022] Open
Abstract
Preeclampsia (PE) is a major disease of pregnancy, with various short- or long-term complications for both the mother and offspring. We focused on the body mass index (BMI) of offspring and compared the incidence of obesity during early childhood between PE- and non-PE-affected pregnancies. Women with singleton births (n = 1,697,432) were identified from the Korea National Health Insurance database. The outcomes of offspring at 30-80 months of age were analyzed. The effects of PE on BMI and the incidence of obesity in the offspring were compared. The incidence of low birth weight (LBW) offspring was higher in the PE group (n = 29,710) than that in the non-PE group (n = 1,533,916) (24.70% vs. 3.33%, p < 0.01). However, BMI was significantly higher in the PE-affected offspring than that in non-PE-affected offspring. After adjusting for various factors, the risk of obesity was higher in the PE-affected offspring (odds ratio = 1.34, 95% confidence interval = 1.30-1.38). The BMI and incidence of obesity were higher during early childhood in the PE-affected offspring, even though the proportion of LBW was higher. These results may support the basic hypotheses for the occurrence of various cardiovascular and metabolic complications in PE-affected offspring. In addition, early-age incidence of obesity could influence PE management and child consultation in clinical applications.
Collapse
Affiliation(s)
- Seung-Woo Yang
- Department of Obstetrics and Gynecology, Sanggye Paik Hospital, School of Medicine, Inje University, Seoul 01757, Korea;
| | - Min-Jeong Oh
- Department of Obstetrics and Gynecology, College of Medicine, Korea University, Seoul 02841, Korea;
| | - Keon-Vin Park
- School of Industrial Management Engineering, Korea University, Seoul 02841, Korea; (K.-V.P.); (S.-W.H.)
| | - Sung-Won Han
- School of Industrial Management Engineering, Korea University, Seoul 02841, Korea; (K.-V.P.); (S.-W.H.)
| | - Hee-Sun Kim
- Department of Obstetrics and Gynecology, Dongguk University Ilsan Hospital, Dongguk University, Goyang 10326, Korea;
| | - In-Sook Sohn
- Division of Maternal and Fetal Medicine, Department of Obstetrics and Gynecology, Research Institute of Medical Science, School of Medicine, Konkuk University, Seoul 05030, Korea; (I.-S.S.); (H.-S.K.)
| | - Han-Sung Kwon
- Division of Maternal and Fetal Medicine, Department of Obstetrics and Gynecology, Research Institute of Medical Science, School of Medicine, Konkuk University, Seoul 05030, Korea; (I.-S.S.); (H.-S.K.)
| | - Geum-Joon Cho
- Department of Obstetrics and Gynecology, College of Medicine, Korea University, Seoul 02841, Korea;
- Correspondence: (G.-J.C.); (H.-S.H.)
| | - Han-Sung Hwang
- Division of Maternal and Fetal Medicine, Department of Obstetrics and Gynecology, Research Institute of Medical Science, School of Medicine, Konkuk University, Seoul 05030, Korea; (I.-S.S.); (H.-S.K.)
- Correspondence: (G.-J.C.); (H.-S.H.)
| |
Collapse
|
14
|
Alnoud MAH, Chen W, Liu N, Zhu W, Qiao J, Chang S, Wu Y, Wang S, Yang Y, Sun Q, Kang J. Sirt7-p21 Signaling Pathway Mediates Glucocorticoid-Induced Inhibition of Mouse Neural Stem Cell Proliferation. Neurotox Res 2021; 39:444-455. [PMID: 33025360 DOI: 10.1007/s12640-020-00294-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 11/24/2022]
Abstract
Prenatal glucocorticoid (GC) overexposure impacts fetal hippocampal neural stem cells (NSCs) and increases the risk for relative cognitive and mood disorders in offspring. However, the precise underlying mechanisms remain elusive. Here, we treated mouse hippocampal NSCs with dexamethasone (DEX) in vitro and found that DEX inhibited cell proliferation and Sirt7 expression. In addition, prenatal mouse overexposure to DEX induced the suppression of Sirt7 in the hippocampus of offspring. Sirt7 knockdown significantly decreased the percentage of proliferating cells but did not further reduce the NSC proliferation rate in the presence of DEX, whereas Sirt7 overexpression rescued DEX-induced inhibition of hippocampal NSC proliferation. Moreover, DEX inhibited Sirt7 expression through the glucocorticoid receptor (GR), and p21 was found to mediate the functional effect of DEX-induced Sirt7 suppression. In conclusion, our data demonstrate for the first time the effect of DEX on the Sirt7-p21 pathway in hippocampal NSCs, identifying a new potential therapeutic target for prenatal GC overexposure-related neurodevelopmental disorders in offspring.
Collapse
Affiliation(s)
- Mohammed A H Alnoud
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Wen Chen
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Nana Liu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Wei Zhu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Jing Qiao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Shujuan Chang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Yukang Wu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Shanshan Wang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Yiwei Yang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Qiaoyi Sun
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Jiuhong Kang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| |
Collapse
|
15
|
Tomaszewska E, Burmańczuk N, Dobrowolski P, Świątkiewicz M, Donaldson J, Burmańczuk A, Mielnik-Błaszczak M, Kuc D, Milewski S, Muszyński S. The Protective Role of Alpha-Ketoglutaric Acid on the Growth and Bone Development of Experimentally Induced Perinatal Growth-Retarded Piglets. Animals (Basel) 2021; 11:E137. [PMID: 33435211 PMCID: PMC7826854 DOI: 10.3390/ani11010137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 01/01/2023] Open
Abstract
The effect of alpha-ketoglutaric acid (AKG) supplementation to experimentally-induced, perinatal growth-retarded piglets was examined. Sows were treated with a synthetic glucocorticoid (Gc) during the last 25 days of pregnancy, and after the birth, piglets were randomly divided into three groups depending on the treatment. The Gc/Gc + AKG and Gc/AKG groups born by Gc-treated sows after the birth were treated with Gc or Gc + AKG for 35 days. Significantly lower serum growth hormone, IGF-I, osteocalcin, leptin, and cortisol concentrations were observed in the Gc/Gc + AKG group, while the bone alkaline phosphatase activity was significantly higher. Serum insulin concentration was higher in the control group. Serum alanine, lysine, histidine, and tryptophan concentrations were higher in the Gc/Gc + AKG and Gc/AKG groups. The perinatal action of Gc significantly affects histomorphometry of articular cartilage and trabecular bone and bone mechanics. The results clearly showed that dietary AKG had positive effects with regards to the profile of free amino acids. Taking into account the function of AKG as an energy donor and stimulator of collagen synthesis, it can be concluded that the anabolic role of AKG may be the main mechanism responsible for its protective effect against the GC-induced perinatal intensified catabolic state.
Collapse
Affiliation(s)
- Ewa Tomaszewska
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka St. 12, 20-950 Lublin, Poland;
| | - Natalia Burmańczuk
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka St. 12, 20-950 Lublin, Poland;
| | - Piotr Dobrowolski
- Department of Functional Anatomy and Cytobiology, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, Akademicka St. 19, 20-033 Lublin, Poland;
| | - Małgorzata Świątkiewicz
- Department of Animal Nutrition and Feed Science, National Research Institute of Animal Production, Krakowska St. 1, 32-083 Balice, Poland;
| | - Janine Donaldson
- Faculty of Health Sciences, School of Physiology, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa;
| | - Artur Burmańczuk
- Faculty of Veterinary Medicine, Institute of Preclinical Veterinary Sciences, University of Life Sciences in Lublin, Akademicka St. 12, 20-950 Lublin, Poland;
| | - Maria Mielnik-Błaszczak
- Department of Developmental Dentistry, Medical University of Lublin, 7 Karmelicka St., 20-081 Lublin, Poland; (M.M.-B.); (D.K.)
| | - Damian Kuc
- Department of Developmental Dentistry, Medical University of Lublin, 7 Karmelicka St., 20-081 Lublin, Poland; (M.M.-B.); (D.K.)
| | - Szymon Milewski
- Department of Biophysics, Faculty of Environmental Biology, University of Life Sciences in Lublin, Akademicka St. 13, 20-950 Lublin, Poland; (S.M.); (S.M.)
| | - Siemowit Muszyński
- Department of Biophysics, Faculty of Environmental Biology, University of Life Sciences in Lublin, Akademicka St. 13, 20-950 Lublin, Poland; (S.M.); (S.M.)
| |
Collapse
|
16
|
Xu R, Zhu Z, Tang W, Zhou Q, Zeng S. Inferior Adrenal Artery PI in Fetuses with IUGR: Value Indicating Early Blood Redistribution and Steroidogenic Response. J Clin Endocrinol Metab 2020; 105:5908703. [PMID: 32946562 DOI: 10.1210/clinem/dgaa610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/16/2020] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To characterize the inferior adrenal artery (IAA) pulsatility index (PI) in intrauterine growth-restricted (IUGR) fetuses without brain sparing. METHODS Twenty-three IUGR fetuses with a normal Doppler cerebroplacental ratio (CPR) and 23 normal controls were included in this prospective cross-sectional study. The PI of the IAA was recorded using routine transabdominal Doppler ultrasound. The differences in Doppler characteristics, perinatal outcomes, and steroidogenesis in the umbilical vein at birth (adrenocorticotropic hormone [ACTH] and cortisol [F] levels) were compared between the 2 groups. The correlations between IAA-PI and steroidogenesis were assessed in the IUGR group. RESULTS IAA-PI was significantly lower in IUGR fetuses than in normal controls (0.85 vs 1.18 at first scan, 0.78 vs 0.92 at last scan; both P < 0.001). The plasma F and ACTH levels in IUGR cases were significantly higher than those of the normal controls (18.2 vs 12.4 µg/dL and 280.5 vs 125.6 pg/mL for F and ACTH, respectively; both P < 0.001). There were negative correlations between IAA-PI and plasma F values and between IAA-PI and ACTH values in the IUGR group (r = -0.774 and -0.82 at first scan, r = -0.525 and -0.45 at last scan, respectively; P < 0.001). CONCLUSION Increased adrenal gland blood flow with concomitant increases in ACTH and F levels were observed in IUGR fetuses. IAA-PI is useful to assess early blood redistribution and may be beneficial for evaluating the steroidogenic response in high-risk pregnancies.
Collapse
Affiliation(s)
- Ran Xu
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ziling Zhu
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wenjuan Tang
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qichang Zhou
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shi Zeng
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
17
|
Influence of prenatal stress on metabolic abnormalities induced by postnatal intake of a high-fat diet in BALB/c mice. J Dev Orig Health Dis 2020; 12:721-730. [PMID: 33118903 DOI: 10.1017/s2040174420000987] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Prenatal insults during fetal development result in increased likelihood of developing chronic disease. Obesity, the biggest risk factor for the development of metabolic disease, is affected by several genetic and environmental factors. High-fat diet (HFD) consumption is usually linked with the development of obesity. The main goal of this study was to analyze the impact of the exposure to a HFD in prenatally stressed animals. For this purpose, we subjected pregnant BALB/c mice to restraint stress for 2 h a day between gestational day (GD) 14 and GD 21. Prenatally stressed and control offspring of both sexes were postnatally exposed to a HFD for 24 weeks. We found that prenatal stress (PS) per se produced disturbances in males such as increased total blood cholesterol and triglycerides, with a decrease in mRNA expression of sirtuin-1. When these animals were fed a HFD, we observed a rise in glucose and insulin levels and an increase in visceral adipose tissue gene expression of leptin, resistin, and interleukin-1 beta. Although females proved to be more resilient to PS consequences, when they were fed a HFD, they showed significant metabolic impairment. In addition to the changes observed in males, females also presented an increase in body weight and adiposity and a rise in cholesterol levels.
Collapse
|
18
|
Jeje SO, Adegbite LO, Akindele OO, Kunle-Alabi OT, Raji Y. Allium cepa Linn juice protect against alterations in reproductive functions induced by maternal dexamethsone treatment during lactation in male offspring of Wistar rats. Heliyon 2020; 6:e03872. [PMID: 32395653 PMCID: PMC7205748 DOI: 10.1016/j.heliyon.2020.e03872] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/02/2019] [Accepted: 04/23/2020] [Indexed: 11/13/2022] Open
Abstract
Treatment with dams with dexamethasone during lactation has been reported to induce oxidative stress in the testis of the offspring. Allium cepa L (Red Onion) is known to be a potent free radical scavenger. The protective role of Allium cepa against oxidative stress induced in testis following treatment with dexamehasone during lactation in Wistar rats was assessed. Twenty female rats were assigned into four groups (n = 5) during lactation and they were treated as follows: Group 1 serve as Control (distilled water), Group 2, 3, and four were admistered dexamethasone (60 μg/kg), Allium cepa (5 ml/kg) and dexamethasone + Allium cepa respectively. Testicular descent, pubertal age, sperm quality indices, and serum hormonal profile were assessed as indices of reproductive function. Testicular malondialdehyde (MDA) reduced glutathione (GSH) as well as superoxide dismutase (SOD) and catalase activities were assessed as measures of oxidative stress. Results obtained showed that dexamethasone caused significant (P < 0.05) reduction in testes weights, indices of sperm quality, serum testosterone, FSH, LH levels and testicular antioxidant enzyme activities. There was significant delay (P < 0.05) in days of testes descent, preputial separation and increase in testicular MDA. However, maternal treatment with Allium cepa Linn juice significantly (P < 0.05) improved both indices of reproductive function and testicular antioxidant enzymes. These findings suggest that Allium cepa Linn has a protective effect against testicular oxidative stress and reproductive dysfunction following treatment of dams with dexamethasone during lactation.
Collapse
Affiliation(s)
- S O Jeje
- Laboratory for Reproductive Physiology and Developmental Programming, Department of Physiology, University of Ibadan, Ibadan, Nigeria.,Department of Physiology, School of Health and Health Technology, Federal University of Technology, AKure, Nigeria
| | - L O Adegbite
- Laboratory for Reproductive Physiology and Developmental Programming, Department of Physiology, University of Ibadan, Ibadan, Nigeria
| | - O O Akindele
- Laboratory for Reproductive Physiology and Developmental Programming, Department of Physiology, University of Ibadan, Ibadan, Nigeria
| | - O T Kunle-Alabi
- Laboratory for Reproductive Physiology and Developmental Programming, Department of Physiology, University of Ibadan, Ibadan, Nigeria
| | - Y Raji
- Laboratory for Reproductive Physiology and Developmental Programming, Department of Physiology, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
19
|
Is Dietary 2-Oxoglutaric Acid Effective in Accelerating Bone Growth and Development in Experimentally-Induced Intrauterine Growth Retarded Gilts? Animals (Basel) 2020; 10:ani10040728. [PMID: 32331362 PMCID: PMC7222790 DOI: 10.3390/ani10040728] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 01/01/2023] Open
Abstract
Simple Summary Intrauterine growth restriction (IUGR) is a significant health issue that not only affects infant mortality or term body weight, but may also predispose individuals to a reduced rate of weight gain and the development of numerous diseases later in life. In livestock production, growth restricted (IUGR) animals require more time to reach slaughter weight. In this study, we examined the effects of long-term administration of 2-oxoglutaric acid (2-Ox) to experimentally-induced intrauterine growth retarded gilts. Abstract In this study, the effect of long-term 2-oxoglutaric acid (2-Ox) supplementation to experimentally-induced intrauterine growth retarded gilts was examined. Sows were treated with synthetic glucocorticoid (dexamethasone) every second day, during the last 45 days of pregnancy, at a dose of 0.03 mg/kg b.w. At birth, the gilts were randomly divided into two groups: unsupplemented and supplemented with 2-Ox for nine months (0.4 g/kg body weight/day). Oral supplementation of 2-Ox to experimentally-induced intrauterine growth retarded gilts increased body weight at weaning as well as final body weight at the age of nine months, and showed a regenerative effect on bone mineralization and morphology of trabeculae and articular cartilage. The positive effects on bone structure were attributed to the 2-Ox-induced alterations in bone metabolism, as evidenced by the changes in the expression of proteins involved in bone formation and remodeling: osteocalcin (OC), osteoprotegerin (OPG), receptor activator of nuclear factor kappa-Β ligand (RANKL), tissue inhibitor of metalloproteinases 2 (TIMP-2), bone morphogenetic protein 2 (BMP-2), cartilage oligomeric matrix protein (COMP), and vascular endothelial growth factor (VEGF).
Collapse
|
20
|
Coloma-García W, Mehaba N, Llonch P, Caja G, Such X, Salama AAK. Prenatal heat stress effects on gestation and postnatal behavior in kid goats. PLoS One 2020; 15:e0220221. [PMID: 32040479 PMCID: PMC7010273 DOI: 10.1371/journal.pone.0220221] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 01/28/2020] [Indexed: 11/24/2022] Open
Abstract
Consequences of heat stress during pregnancy can affect the normal development of the offspring. In the present experiment, 30 Murciano-Granadina dairy goats (41.8 ± 5.7 kg) were exposed to 2 thermal environments varying in temperature-humidity index (THI) from 12 days before mating to 45 days of gestation. The environmental conditions were: gestation under thermal-neutral (TN; THI = 71 ± 3); and gestation under heat stress (HS; THI = 85 ± 3) conditions. At 27 ± 4 days old, female kids exposed to in utero TN (IUTN; n = 16) or in utero HS (IUHS; n = 10) were subjected to 2 tests: arena test (AT) and novel object test (NOT), the latter was repeated at 3 months of age. Additionally, 8 months after birth, a subset of IUTH and IUHS growing goats (n = 8 each; 16.8 ± 3.4 kg BW) were exposed to 2 environmental conditions in 2 consecutive periods: a basal thermal-neutral period (THI = 72 ± 3) for 7 days, and a heat-stress period (THI = 87 ± 2) for 21 days. In both periods, feeding, resting, posture, and thermally-associated behaviors were recorded. The gestation length was shortened by 3 days in GHS goats. In the AT, IUHS kids showed a lower number of sniffs (P < 0.01) compared to IUTN. In the NOT, IUHS kids also tended to show a lower number of sniffs (P = 0.09). During heat exposure, IUTN and IUHS growing goats spent more time resting and exhibited more heat-stress related behaviors such as panting and drinking (P < 0.001); however, no differences were observed between both groups. In conclusion, heat stress during the first third of pregnancy shortened gestation length and influenced the exploratory behavior of the kids in the early life. However, behavior responses to heat stress during the adulthood were not affected by the in utero thermal treatment.
Collapse
Affiliation(s)
- Wellington Coloma-García
- Group of Research in Ruminants (G2R), Department of Animal and Food Science, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain
- Facultad de Medicina Veterinaria, Universidad Agraria del Ecuador (UAE), Guayaquil, Ecuador
| | - Nabil Mehaba
- Group of Research in Ruminants (G2R), Department of Animal and Food Science, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain
| | - Pol Llonch
- Service of Nutrition and Animal Welfare (SNiBA), Department of Animal and Food Science, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain
| | - Gerardo Caja
- Group of Research in Ruminants (G2R), Department of Animal and Food Science, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain
| | - Xavier Such
- Group of Research in Ruminants (G2R), Department of Animal and Food Science, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain
- * E-mail:
| | - Ahmed A. K. Salama
- Group of Research in Ruminants (G2R), Department of Animal and Food Science, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain
| |
Collapse
|
21
|
Effects of preterm birth induced with or without exogenous glucocorticoids on the ovine glucose-insulin axis. J Dev Orig Health Dis 2020; 12:58-70. [PMID: 31937391 DOI: 10.1017/s2040174419000916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Antenatal exogenous glucocorticoids (ANG) are standard management for women at risk of preterm birth but are reputed to impair glucose tolerance in preterm offspring. We compared lambs born preterm (137 days gestation) following labour induced with exogenous glucocorticoids (G-Prem, glucocorticoid-induced preterm group), or with a progesterone synthesis inhibitor (NG-Prem, non-glucocorticoid-induced preterm group), with term-born lambs (Term; 149 days). We assessed glucose tolerance, insulin secretion and sensitivity at 4 and 10 months n = 11-14/group) and pancreatic and hepatic gene and protein expression at 4 weeks post-term (4 weeks; n = 6/group) and 12 months (12 months; n = 12-13/group). NG-Prem had higher plasma glucose concentrations than G-Prem, but not Term, at 4 months (Mean[SEM] mM: NG-Prem = 4.1[0.1]; G-Prem = 3.4[0.1]; Term = 3.7[0.1]; p = 0.003) and 10 months (NG-Prem = 3.9[0.1]; G-Prem = 3.5[0.1]; Term = 3.7[0.1]; p = 0.01). Insulin sensitivity decreased from 4 to 10 months, in NG-Prem but not in Term (Mean[SEM] µmol·ml-1·kg-1·min-1·ng-1, 4 vs. 10 months: NG-Prem = 18.7[2.5] vs. 9.5[1.5], p < 0.01; Term: 12.1[2.8] vs. 10.4[1.5], p = 0.44). At 12 months, β-cell mass in NG-Prem was reduced by 30% vs. G-Prem (p < 0.01) and 75% vs. Term (p < 0.01) and was accompanied by an increased β-cell apoptosis: proliferation ratio at 12 months. At 12 months, pancreatic glucokinase, igf2 and insulin mRNA levels were reduced 21%-71% in NG-Prem vs. G-Prem and 42%-80% vs. Term. Hepatic glut2 mRNA levels in NG-Prem were 250% of those in G-Prem and Term. Thus, induction of preterm birth without exogenous glucocorticoids more adversely affected pancreas and liver than induction with exogenous glucocorticoids. These findings do not support that ANG lead to long-term adverse metabolic effects, but support an effect of preterm birth itself.
Collapse
|
22
|
Grace JK, Parenteau C, Angelier F. Post-natal glucocorticoid elevation affects GnRH-induced luteinizing hormone concentration in female house sparrows. Gen Comp Endocrinol 2019; 283:113238. [PMID: 31376365 DOI: 10.1016/j.ygcen.2019.113238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 07/26/2019] [Accepted: 07/30/2019] [Indexed: 10/26/2022]
Abstract
Most non-mammalian studies investigating the long-term effects of early-life stressor exposure on endocrine regulation have focused on the hypothalamic-pituitaryadrenal (HPA) axis. However, the hypothalamic-pituitary-gonadal (HPG) axis may more directly affect fitness by regulating reproduction. Changes in HPG axis regulation could allow vertebrates to adaptively mitigate negative effects of early-life stressor exposure. However, only a few studies have examined long-term effects of early-life stressor experience on the HPG axis, and these have found mixed results. Here, we evaluate long-term effects of post-natal corticosterone exposure on the HPG axis in adult female house sparrows (Passer domesticus). We elevated circulating corticosterone non-invasively in wild nestling house sparrows between 8 and 11 days post-hatching, and then brought birds into captivity at fledging. Early in their first breeding season (ages 285-353d post-hatching), females were given a gonadotropin releasing hormone (GnRH) challenge. We found that early-life corticosterone exposure interacted with current condition such that females exposed to elevated post-natal corticosterone had higher baseline and GnRH-induced luteinizing hormone (LH) concentration than control females, but only if they had a high mass. Our results suggest that female house sparrows may mitigate negative impacts of early-life corticosterone exposure by investing in early reproduction, but only when current energetic condition allows.
Collapse
Affiliation(s)
- Jacquelyn K Grace
- Dept. of Wildlife and Fisheries Sciences, Texas A&M University, College Station, TX 77843, USA.
| | - Charline Parenteau
- Centre d'Etudes Biologiques de Chizé, Centre National de la Recherche Scientifique-Université de la Rochelle, UMR 7372, F-79360 Villiers en Bois, France
| | - Frédéric Angelier
- Centre d'Etudes Biologiques de Chizé, Centre National de la Recherche Scientifique-Université de la Rochelle, UMR 7372, F-79360 Villiers en Bois, France
| |
Collapse
|
23
|
Lu A, Petrullo L, Carrera S, Feder J, Schneider-Crease I, Snyder-Mackler N. Developmental responses to early-life adversity: Evolutionary and mechanistic perspectives. Evol Anthropol 2019; 28:249-266. [PMID: 31498945 DOI: 10.1002/evan.21791] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/28/2019] [Accepted: 06/11/2019] [Indexed: 02/06/2023]
Abstract
Adverse ecological and social conditions during early life are known to influence development, with rippling effects that may explain variation in adult health and fitness. The adaptive function of such developmental plasticity, however, remains relatively untested in long-lived animals, resulting in much debate over which evolutionary models are most applicable. Furthermore, despite the promise of clinical interventions that might alleviate the health consequences of early-life adversity, research on the proximate mechanisms governing phenotypic responses to adversity have been largely limited to studies on glucocorticoids. Here, we synthesize the current state of research on developmental plasticity, discussing both ultimate and proximate mechanisms. First, we evaluate the utility of adaptive models proposed to explain developmental responses to early-life adversity, particularly for long-lived mammals such as humans. In doing so, we highlight how parent-offspring conflict complicates our understanding of whether mothers or offspring benefit from these responses. Second, we discuss the role of glucocorticoids and a second physiological system-the gut microbiome-that has emerged as an additional, clinically relevant mechanism by which early-life adversity can influence development. Finally, we suggest ways in which nonhuman primates can serve as models to study the effects of early-life adversity, both from evolutionary and clinical perspectives.
Collapse
Affiliation(s)
- Amy Lu
- Department of Anthropology, Stony Brook University, Stony Brook, New York
| | - Lauren Petrullo
- Interdepartmental Doctoral Program in Anthropological Sciences, Stony Brook University, Stony Brook, New York
| | - Sofia Carrera
- Department of Psychology, University of Michigan, Ann Arbor, Michigan
| | - Jacob Feder
- Interdepartmental Doctoral Program in Anthropological Sciences, Stony Brook University, Stony Brook, New York
| | - India Schneider-Crease
- Department of Anthropology, Stony Brook University, Stony Brook, New York.,Department of Psychology, University of Washington, Seattle, Washington
| | - Noah Snyder-Mackler
- Department of Psychology, University of Washington, Seattle, Washington.,Center for Studies in Demography and Ecology, University of Washington, Seattle, Washington
| |
Collapse
|
24
|
Sawyer KM, Zunszain PA, Dazzan P, Pariante CM. Intergenerational transmission of depression: clinical observations and molecular mechanisms. Mol Psychiatry 2019; 24:1157-1177. [PMID: 30283036 DOI: 10.1038/s41380-018-0265-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 08/16/2018] [Accepted: 08/20/2018] [Indexed: 02/06/2023]
Abstract
Maternal mental illness can have a devastating effect during the perinatal period, and has a profound impact on the care that the baby receives and on the relationships that the baby forms. This review summarises clinical evidence showing the effects of perinatal depression on offspring physical and behavioural development, and on the transmission of psychopathology between generations. We then evaluate a number of factors which influence this relationship, such as genetic factors, the use of psychotropic medications during pregnancy, the timing within the perinatal period, the sex of the foetus, and exposure to maltreatment in childhood. Finally, we examine recent findings regarding the molecular mechanisms underpinning these clinical observations, and identify relevant epigenetic and biomarker changes in the glucocorticoid, oxytocin, oestrogen and immune systems, as key biological mediators of these clinical findings. By understanding these molecular mechanisms in more detail, we will be able to improve outcomes for both mothers and their offspring for generations.
Collapse
Affiliation(s)
- Kristi M Sawyer
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Patricia A Zunszain
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Paola Dazzan
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Carmine M Pariante
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
| |
Collapse
|
25
|
Hendricks AS, Lawson MJ, Figueroa JP, Chappell MC, Diz DI, Shaltout HA. Central ANG-(1-7) infusion improves blood pressure regulation in antenatal betamethasone-exposed sheep and reveals sex-dependent effects on oxidative stress. Am J Physiol Heart Circ Physiol 2019; 316:H1458-H1467. [PMID: 30951367 PMCID: PMC6620683 DOI: 10.1152/ajpheart.00497.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 03/12/2019] [Accepted: 03/28/2019] [Indexed: 12/25/2022]
Abstract
Fetal exposure to betamethasone (BMX) as a consequence of glucocorticoid administration to women threatening premature delivery may lead to long-term deleterious effects on the cardiovascular system and dysregulation of blood pressure in exposed adults. Indeed, adult offspring of BMX sheep exhibit increased mean arterial pressure (MAP) and attenuated baroreflex sensitivity (BRS) that are associated with lower medullary and cerebrospinal fluid (CSF) angiotensin-(1-7) [(ANG-(1-7)] content. Thus we determined the effects of ANG-(1-7) supplementation in the CSF on MAP, BRS, blood pressure (BPV) and heart rate variability (HRV) in conscious animals. The peptide or artificial CSF (aCSF) was infused continuously into the lateral ventricle (intracerebroventricular) of 4-mo-old male and female BMX sheep for 2 wk. Analysis of data from males and females combined revealed that intracerebroventricular ANG-(1-7) significantly lowered MAP and heart rate and improved BRS as compared with baseline; intracerebroventricular aCSF did not change these indexes. Similar patterns were observed for altered hemodynamics and autonomic function produced by intracerebroventricular ANG-(1-7) in both sexes. Oxidative stress and MAP kinase (MAPK) activation were lower in tissues from the dorsomedial medulla (DMM) of ANG-(1-7)-treated males but were unchanged in the treated females, when assessed at the end of the treatment period. We conclude that in the face of ANG-(1-7) deficiency in CSF and medullary tissue in BMX sheep intracerebroventricular supplementation of ANG-(1-7) lowers MAP and restores the impaired autonomic function to a similar degree in both males and females; however, the attenuation of MAPK and oxidative stress within the DMM was evident only in males. NEW & NOTEWORTHY We demonstrate that intracerebroventricular angiotensin-(1-7) [(ANG-(1-7)] treatment for 2 wk in antenatal betamethasone-exposed sheep provides beneficial effects on blood pressure and autonomic function. The physiological improvements are accompanied by an attenuation of oxidative stress in males but not females. The finding that ANG-(1-7) supplementation lowers blood pressure and restores the impaired autonomic function in a model of fetal programming previously shown to exhibit a deficiency in cerebrospinal fluid and brain tissue illustrates the potential for new therapeutic strategies for reducing cardiovascular dysfunction arising from prenatal events.
Collapse
Affiliation(s)
- Alexa S Hendricks
- Department of Surgery, Hypertension, and Vascular Research and the Cardiovascular Sciences Center, Wake Forest University School of Medicine , Winston-Salem, North Carolina
| | - Matthew J Lawson
- Department of Surgery, Hypertension, and Vascular Research and the Cardiovascular Sciences Center, Wake Forest University School of Medicine , Winston-Salem, North Carolina
| | - Jorge P Figueroa
- Department of Obstetrics and Gynecology, Wake Forest School of Medicine , Winston-Salem, North Carolina
| | - Mark C Chappell
- Department of Surgery, Hypertension, and Vascular Research and the Cardiovascular Sciences Center, Wake Forest University School of Medicine , Winston-Salem, North Carolina
| | - Debra I Diz
- Department of Surgery, Hypertension, and Vascular Research and the Cardiovascular Sciences Center, Wake Forest University School of Medicine , Winston-Salem, North Carolina
| | - Hossam A Shaltout
- Department of Surgery, Hypertension, and Vascular Research and the Cardiovascular Sciences Center, Wake Forest University School of Medicine , Winston-Salem, North Carolina
- Department of Obstetrics and Gynecology, Wake Forest School of Medicine , Winston-Salem, North Carolina
- Department of Pharmacology and Toxicology, School of Pharmacy, Alexandria University , Alexandria , Egypt
| |
Collapse
|
26
|
Liu Q, Jin S, Sun X, Sheng X, Mao Z, Jiang Y, Liu H, Hu C, Xia W, Li Y, Xu S. Maternal Blood Pressure, Cord Glucocorticoids, and Child Neurodevelopment at 2 Years of Age: A Birth Cohort Study. Am J Hypertens 2019; 32:524-530. [PMID: 30772907 DOI: 10.1093/ajh/hpz024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/06/2019] [Accepted: 02/14/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Pregnancy hypertensive disorders have impaired neurodevelopment in offspring. We aimed to explore the association of normal range maternal blood pressure (BP) with child neurodevelopment, as well as the possible role of placental 11-beta-hydroxysteroid dehydrogenase type 2 (11β-HSD2) therein. METHODS Among 1,008 mother-child pairs recruited in Wuhan, China, in 2013-2015, we measured maternal third-trimester BP (systolic BP (SBP) and diastolic BP (DBP)) and cord glucocorticoids (cortisol and cortisone), a marker reflecting placental 11β-HSD2 activity. We evaluated child neurodevelopment using the Bayley Scales of Infant Development (BSID) with obtaining the Mental and Psychomotor Development Index (MDI and PDI). Multiple regression and mediation analysis were performed to estimate the effect. RESULTS Each 5 mm Hg increase in maternal third-trimester SBP was associated with 1.54 points decrease in MDI (95% confidence interval (CI) = -2.60, -0.48) and 1.23 points decrease in PDI (95% CI = -2.14, -0.31); similar association was observed between DBP and BSID (adjusted β = -1.32; 95% CI = -2.53, -0.10 for MDI and -1.37; 95% CI = -2.42, -0.33 for PDI). Also, we found significant associations between cord cortisol/cortisone ratio and PDI (adjusted β = 2.95; 95% CI = 0.91, 4.99), as well as between maternal BP and cord cortisol/cortisone ratio (adjusted β = -0.03; 95% CI = -0.06, -0.01 for both SBP and DBP). Mediation analysis revealed that cord cortisol/cortisone ratio explained 6.29% of the association between SBP and PDI, and 6.85% between DBP and PDI. CONCLUSIONS Increased maternal normal range BP may affect child neurodevelopment. Furthermore, placental 11β-HSD2 activity might be involved in the process.
Collapse
Affiliation(s)
- Qi Liu
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shuna Jin
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaojie Sun
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xia Sheng
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhenxing Mao
- Department of Epidemiology and Biostatistics, School of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Yangqian Jiang
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hongxiu Liu
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chen Hu
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
27
|
Sreetharan S, Stoa L, Cybulski ME, Jones DE, Lee AH, Kulesza AV, Tharmalingam S, Boreham DR, Tai TC, Wilson JY. Cardiovascular and growth outcomes of C57Bl/6J mice offspring exposed to maternal stress and ionizing radiation during pregnancy. Int J Radiat Biol 2019; 95:1085-1093. [PMID: 30831046 DOI: 10.1080/09553002.2019.1589025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Purpose: Developmental programming involves an adverse intrauterine environment which can result in offspring phenotype changes following birth. The developmental programming of hypertension has been reported to possibly involve oxidative stress at the cellular level. Ionizing radiation produces oxidative stress, even at low doses, and irradiation of animals is often coupled with potential sources of maternal stress such as transportation of animals or repeated handling. Materials and methods: Pregnant C57Bl/6J mice were irradiated on gestational day 15 with 5-1000 mGy 137Cs gamma radiation. Post-natal weight, blood pressure (BP) and heart rate (HR) were measured. Radiation had minimal effects at doses ≤300 mGy, but 1000 mGy caused a significant reduction in HR in male pups and growth reduction at 16 weeks of age in both genders. The sham-irradiation protocol included repeated transportation in order to acclimate animals to transport. However, it may have resulted in programming, as sham-irradiation alone resulted in elevated BP measures compared to the offspring of animals that were never transported. Results and conclusions: Overall, there were minimal effects on cardiovascular measures or offspring weight due to irradiation except at 1000 mGy. The presence of maternal stress, a known trigger of developmental programming, may have confounded any potential irradiation effects.
Collapse
Affiliation(s)
| | - Lisa Stoa
- a Department of Biology, McMaster University , Hamilton , ON , Canada
| | - Mary Ellen Cybulski
- b Department of Medical Physics and Applied Radiation Sciences, McMaster University , Hamilton , ON , Canada.,c Division of Medical Sciences, Northern Ontario School of Medicine, Laurentian University , Sudbury , ON , Canada
| | - Devon E Jones
- a Department of Biology, McMaster University , Hamilton , ON , Canada
| | - Abigail H Lee
- a Department of Biology, McMaster University , Hamilton , ON , Canada
| | - Adomas V Kulesza
- a Department of Biology, McMaster University , Hamilton , ON , Canada
| | - Sujeenthar Tharmalingam
- c Division of Medical Sciences, Northern Ontario School of Medicine, Laurentian University , Sudbury , ON , Canada
| | - Douglas R Boreham
- c Division of Medical Sciences, Northern Ontario School of Medicine, Laurentian University , Sudbury , ON , Canada
| | - T C Tai
- c Division of Medical Sciences, Northern Ontario School of Medicine, Laurentian University , Sudbury , ON , Canada
| | - Joanna Y Wilson
- a Department of Biology, McMaster University , Hamilton , ON , Canada
| |
Collapse
|
28
|
Čečmanová V, Houdek P, Šuchmanová K, Sládek M, Sumová A. Development and Entrainment of the Fetal Clock in the Suprachiasmatic Nuclei: The Role of Glucocorticoids. J Biol Rhythms 2019; 34:307-322. [PMID: 30854919 DOI: 10.1177/0748730419835360] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The adult circadian clock in the suprachiasmatic nucleus (SCN) of the hypothalamus is resilient to glucocorticoids (GCs). The fetal rodent SCN resembles that of the adult in its organization of GC-sensitive peripheral tissues. We tested the hypothesis that the fetal SCN clock is sensitive to changes in GC levels. Maternal GCs must pass through the placenta to reach the fetal SCN. We show that the maternal but not the fetal part of the placenta harbors the autonomous circadian clock, which is reset by dexamethasone (DEX) and rhythmically expresses Hsd11b2. The results suggest the presence of a mechanism for rhythmic GC passage through the placental barrier, which is adjusted according to actual GC levels. GC receptors are expressed rhythmically in the laser-dissected fetal SCN samples. We demonstrate that hypothalamic explants containing the SCN of the mPer2 Luc mouse prepared at embryonic day (E)15 spontaneously develop rhythmicity within several days of culture, with dynamics varying among fetuses from the same litter. Culturing these explants in media enriched with DEX accelerates the development. At E17, treatment of the explants with DEX induces phase advances and phase delays of the rhythms depending on the timing of treatments, and the shifts are completely blocked by the GC receptor antagonist, mifepristone. The DEX-induced phase-response curve differs from that induced by the vehicle. The fetal SCN is sensitive to GCs in vivo because DEX administration to pregnant rats acutely downregulates c-fos expression specifically in the laser-dissected fetal SCN. Our results provide evidence that the rodent fetal SCN clock may respond to changes in GC levels.
Collapse
Affiliation(s)
- Vendula Čečmanová
- Department of Neurohumoral Regulations, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Pavel Houdek
- Department of Neurohumoral Regulations, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Karolína Šuchmanová
- Department of Neurohumoral Regulations, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Sládek
- Department of Neurohumoral Regulations, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Alena Sumová
- Department of Neurohumoral Regulations, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
29
|
Petrullo L, Lu A. Natural variation in fetal cortisol exposure is associated with neonatal body mass in captive vervet monkeys (Chlorocebus aethiops). Am J Primatol 2019; 81:e22943. [PMID: 30604879 DOI: 10.1002/ajp.22943] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/26/2018] [Accepted: 11/28/2018] [Indexed: 01/01/2023]
Abstract
Poor maternal condition during gestation is commonly associated with impaired fetal growth in humans and other animals. Although elevated maternal glucocorticoids (GCs) are often implicated as the mechanism of intrauterine growth stunting, the direct contribution of maternal GCs remains unclear because enzymatic conversion of GCs at the placenta may limit the ability of maternal hormones to reach the fetus. Further, because previous studies on gestational stress have often employed synthetic GCs, which cross the placenta unobstructed, it remains unknown whether naturalistic endogenous GC elevations will have similar effects. Here, we use an unmanipulated colony of captive vervet monkeys (N = 18 mother-offspring dyads) to examine how maternal condition predicts maternal gestational hormones, and how these in turn predict neonatal body mass, especially in comparison with total prenatal hormone exposure as measured from neonatal hair. We focused on GCs and dehydroepiandrosterone-sulfate (DHEAS), an additional steroid suspected to influence growth. We found that measures of poor maternal condition (low body mass and low parity) were not associated with elevations in maternal GCs or DHEAS. Furthermore, only fetal GC exposure predicted neonatal body mass, while neither maternal GCs, nor maternal or fetal DHEAS, had any effect. Surprisingly, neonates exposed to higher gestational GCs were larger, rather than smaller at birth. Taken together, these results suggest that GC concentrations within a more naturalistic range may be positively rather than negatively associated with neonatal body mass. Further, the effect of maternal gestational GCs on neonatal mass may be modulated by placental control of GC exposure.
Collapse
Affiliation(s)
- Lauren Petrullo
- Interdepartmental Doctoral Program in Anthropological Sciences, Stony Brook University, Stony Brook, New York
| | - Amy Lu
- Department of Anthropology, Stony Brook University, Stony Brook, New York
| |
Collapse
|
30
|
Coburn SS, Luecken LJ, Rystad IA, Lin B, Crnic KA, Gonzales NA. Prenatal Maternal Depressive Symptoms Predict Early Infant Health Concerns. Matern Child Health J 2018; 22:786-793. [PMID: 29427015 DOI: 10.1007/s10995-018-2448-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Recent research suggests that health disparities among low-SES and ethnic minority populations may originate from prenatal and early life exposures. Postpartum maternal depressive symptoms have been linked to poorer infant physical health, yet prenatal depressive symptoms not been thoroughly examined in relation to infant health. METHODS In a prospective study of low-income Mexican American mothers and their infants, women (N = 322, median age 27.23, IQR = 22.01-32.54) completed surveys during pregnancy (median gestation 39.50, IQR = 38.71-40.14 weeks) and 12 weeks after birth. We investigated (1) if prenatal depressive symptoms predicted infant physical health concerns at 12 weeks of age, (2) whether these associations occurred above and beyond concurrent depressive symptoms, and (3) if birth weight, gestational age, and breastfeeding were mediators of prenatal depression predicting subsequent infant health. RESULTS Higher prenatal depressive symptoms were associated with more infant physical health concerns at 12 weeks (p < .001), after accounting for 12-week maternal depressive symptoms, breastfeeding, gestational age, and birth weight. Twelve-week maternal depressive symptoms were concurrently associated with more infant health concerns (p < .01). Birth weight, gestational age, and breastfeeding were not associated with maternal depression or infant health concerns. DISCUSSION Results establish a link between prenatal depressive symptoms and an elevated risk of poor health evident shortly after birth. These findings underscore the importance of the prenatal period as a possible sensitive period for infants' health, and the need for effective interventions for depression during pregnancy to mitigate potentially teratogenic effects on the developing fetus and reduce risks for later health concerns.
Collapse
Affiliation(s)
- S S Coburn
- Department of Psychology, Arizona State University, Tempe, AZ, USA. .,Division of Gastroenterology, Hepatology, and Nutrition, Children's National Medical Center, 111 Michigan Ave NW, Washington, DC, USA.
| | - L J Luecken
- Department of Psychology, Arizona State University, Tempe, AZ, USA
| | - I A Rystad
- Department of Psychology, Arizona State University, Tempe, AZ, USA
| | - B Lin
- Department of Psychology, Arizona State University, Tempe, AZ, USA.,Department of Psychology, University of Utah, Salt Lake City, UT, USA
| | - K A Crnic
- Department of Psychology, Arizona State University, Tempe, AZ, USA
| | - N A Gonzales
- Department of Psychology, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
31
|
Osborne S, Biaggi A, Chua TE, Du Preez A, Hazelgrove K, Nikkheslat N, Previti G, Zunszain PA, Conroy S, Pariante CM. Antenatal depression programs cortisol stress reactivity in offspring through increased maternal inflammation and cortisol in pregnancy: The Psychiatry Research and Motherhood - Depression (PRAM-D) Study. Psychoneuroendocrinology 2018; 98:211-221. [PMID: 30033161 PMCID: PMC6215770 DOI: 10.1016/j.psyneuen.2018.06.017] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 06/22/2018] [Accepted: 06/22/2018] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Antenatal depression is associated with a broad range of suboptimal outcomes in offspring, although the underlying mechanisms are not yet understood. Animal studies propose inflammation and glucocorticoids as mediators of the developmental programming effect of prenatal stress on offspring stress responses, but studies in humans are not yet at this stage. Indeed, to date no single study has examined the effects of a rigorously defined, clinically significant Major Depressive Disorder (MDD) in pregnancy on maternal antenatal inflammatory biomarkers and hypothalamic-pituitary (HPA) axis, as well as on offspring HPA axis, behavior and developmental outcomes in the first postnatal year. METHODS A prospective longitudinal design was used in 106 women (49 cases vs. 57 healthy controls) to study the effect of MDD in pregnancy and associated antenatal biology (inflammatory and cortisol biomarkers), on offspring stress response (cortisol response to immunization, at 8 weeks and 12 months), early neurobehavior (Neonatal Behavioral Assessment Scale, NBAS, at day 6), and cognitive, language and motor development (Bayley Scales of Infant and Toddler Development at 12 months). RESULTS Compared with healthy controls, women with MDD in pregnancy had raised interleukin (IL) IL-6 (effect size (δ) = 0.53, p = 0.031), IL-10 (δ = 0.53, p = 0.043), tumor necrosis factor alpha (δ = 0.90, p = 0.003) and vascular endothelial growth factor (δ = 0.56, p = 0.008), together with raised diurnal cortisol secretion (δ = 0.89, p = 0.006), raised evening cortisol (δ = 0.64, p = 0.004), and blunted cortisol awakening response (δ = 0.70, p = 0.020), and an 8-day shorter length of gestation (δ = 0.70, p = 0.005). Furthermore, they had neonates with suboptimal neurobehavioral function in four out of five NBAS clusters measured (range of δ = 0.45-1.22 and p = 0.049-<0.001) and increased cortisol response to stress at one year of age (δ = 0.87, p < 0.001). Lastly, maternal inflammatory biomarkers and cortisol levels were correlated with infant stress response, suggesting a mechanistic link. CONCLUSION This study confirms and extends the notion that depression in pregnancy is associated with altered offspring behavior and biological stress response, and demonstrates that changes in maternal antenatal stress-related biology are associated with these infant outcomes.
Collapse
Affiliation(s)
- S Osborne
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Section of Perinatal Psychiatry & Stress, Psychiatry and Immunology, The Maurice Wohl Clinical Neuroscience Institute, Cutcombe Road, London, SE5 9RX, UK.
| | - A Biaggi
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Section of Perinatal Psychiatry & Stress, Psychiatry and Immunology, The Maurice Wohl Clinical Neuroscience Institute, Cutcombe Road, London, SE5 9RX, UK; King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Section of Psychosis Studies, London, SE5 9AF, UK
| | - T E Chua
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Section of Perinatal Psychiatry & Stress, Psychiatry and Immunology, The Maurice Wohl Clinical Neuroscience Institute, Cutcombe Road, London, SE5 9RX, UK; Department of Psychological Medicine, KK Women's and Children's Hospital, 100 Bukit Timah Road, Singapore 229899, Singapore
| | - A Du Preez
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Section of Perinatal Psychiatry & Stress, Psychiatry and Immunology, The Maurice Wohl Clinical Neuroscience Institute, Cutcombe Road, London, SE5 9RX, UK; King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Cutcombe Road, London, SE5 9RX, UK
| | - K Hazelgrove
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Section of Perinatal Psychiatry & Stress, Psychiatry and Immunology, The Maurice Wohl Clinical Neuroscience Institute, Cutcombe Road, London, SE5 9RX, UK; King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Section of Psychosis Studies, London, SE5 9AF, UK
| | - N Nikkheslat
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Section of Perinatal Psychiatry & Stress, Psychiatry and Immunology, The Maurice Wohl Clinical Neuroscience Institute, Cutcombe Road, London, SE5 9RX, UK
| | - G Previti
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Section of Perinatal Psychiatry & Stress, Psychiatry and Immunology, The Maurice Wohl Clinical Neuroscience Institute, Cutcombe Road, London, SE5 9RX, UK; Department of Mental Health and Addiction, Via Risorgimento 57 42123, Reggio Emilia, Italy
| | - P A Zunszain
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Section of Perinatal Psychiatry & Stress, Psychiatry and Immunology, The Maurice Wohl Clinical Neuroscience Institute, Cutcombe Road, London, SE5 9RX, UK
| | - S Conroy
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Section of Perinatal Psychiatry & Stress, Psychiatry and Immunology, The Maurice Wohl Clinical Neuroscience Institute, Cutcombe Road, London, SE5 9RX, UK
| | - C M Pariante
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Section of Perinatal Psychiatry & Stress, Psychiatry and Immunology, The Maurice Wohl Clinical Neuroscience Institute, Cutcombe Road, London, SE5 9RX, UK
| |
Collapse
|
32
|
Senra JC, Carvalho MA, Rodrigues AS, Krebs VLJ, Gibelli MABC, Francisco RPV, Bernardes LS. An unfavorable intrauterine environment may determine renal functional capacity in adulthood: a meta-analysis. Clinics (Sao Paulo) 2018; 73:e401. [PMID: 30365822 PMCID: PMC6172979 DOI: 10.6061/clinics/2018/e401] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 04/02/2018] [Indexed: 11/18/2022] Open
Abstract
Since studies show that an unfavorable environment during intrauterine development predisposes individuals to several diseases in adulthood, our objective is to assess the relation between fetal growth restriction and chronic renal disease in adults. We searched four different electronic databases through November 2017: CENTRAL, EMBASE, LILACS and MEDLINE. We selected studies with longitudinal or transversal designs associating kidney function in adulthood with low birth weight. Two reviewers evaluated the inclusion criteria and the risk of bias and extracted data from the included papers. Thirteen studies were selected for the systematic review and meta-analysis. We observed increased risks of presenting end-stage renal disease (risk ratio 1.31, 95% confidence interval: 1.17, 1.47), a lower glomerular filtration rate (ml/min) (mean difference 7.14; 95% confidence interval: -12.12, -2.16), microalbuminuria (risk ratio 1.40; 95% confidence interval: 1.28, 1.52) and a small increase in the albumin/creatinine ratio (mean difference 0.46; 95% confidence interval: 0.03, 0.90) in the low birth weight patients, compared with control group. These findings suggest that low birth weight is associated with renal dysfunction in adults.
Collapse
Affiliation(s)
- Janaína Campos Senra
- Departamento de Obstetricia e Ginecologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Mariana Azevedo Carvalho
- Departamento de Obstetricia e Ginecologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Agatha Sacramento Rodrigues
- Departamento de Obstetricia e Ginecologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Vera Lúcia Jornada Krebs
- Unidade Neonatal, Departamento de Pediatria Faculdade de Medicina FMUSP, Universidade de Sao Paulo Sao Paulo, SP, BR
| | | | | | - Lisandra Stein Bernardes
- Departamento de Obstetricia e Ginecologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BR
- *Corresponding author. E-mail:
| |
Collapse
|
33
|
Rudin-Bitterli TS, Mitchell NJ, Evans JP. Environmental Stress Increases the Magnitude of Nonadditive Genetic Variation in Offspring Fitness in the Frog Crinia georgiana. Am Nat 2018; 192:461-478. [DOI: 10.1086/699231] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
34
|
Sex-dependent expression of brain medullary MAP and PI3 kinases in adult sheep with antenatal betamethasone exposure. Clin Sci (Lond) 2018; 132:1953-1962. [PMID: 30026259 DOI: 10.1042/cs20180417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/04/2018] [Accepted: 07/19/2018] [Indexed: 11/17/2022]
Abstract
Antenatal betamethasone (BM) therapy for women in jeopardy of premature delivery accelerates the lung development in preterm infants and reduces infant mortality rates, but may induce early programming events with chronic cardiovascular consequences. In a sheep model of fetal programming, in utero BM-exposed (BMX) offspring as adults exhibit elevated mean arterial pressure (MAP), decreased baroreflex sensitivity (BRS) for the control of heart rate and insulin resistance accompanied by dysregulation of the brain renin-angiotensin (Ang) system (RAS). However, the status of signaling mechanisms in the brain dorsomedial medulla (DMM) of the BMX sheep that comprise both the mitogen activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K) cellular pathways is unknown. Given the importance of these signaling pathways in the actions of Ang peptides as well as baroreflex function and autonomic integration, we applied both a kinase signaling array and associated individual immunoblots of the dorsomedial brain medulla from adult female and male sheep with antenatal BMX. MAPK and PI3K pathways were altered significantly in the BMX sheep in a sex-dependent manner. A protein array for kinases (PathScan® Intracellular Signaling Array Kit, Cell Signaling) and subsequent verification by immunoblot revealed that within the DMM, female BMX sheep exhibit lower expression of proteins in the PI3K pathway, while male BMX sheep show greater expression of p-MAPK pathway proteins extracellular signal regulated kinase (ERK) 1/2. We conclude that maladaptive changes in these two kinase pathways in the DMM may contribute to the chronic dysregulation of blood pressure in this model of fetal programming.
Collapse
|
35
|
Hsu CN, Lin YJ, Lu PC, Tain YL. Maternal Resveratrol Therapy Protects Male Rat Offspring against Programmed Hypertension Induced by TCDD and Dexamethasone Exposures: Is It Relevant to Aryl Hydrocarbon Receptor? Int J Mol Sci 2018; 19:ijms19082459. [PMID: 30127255 PMCID: PMC6121911 DOI: 10.3390/ijms19082459] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/08/2018] [Accepted: 08/17/2018] [Indexed: 12/21/2022] Open
Abstract
Hypertension can originate from early-life adverse environmental in utero exposure to dexamethasone (DEX) or 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Since DEX and TCDD are related to the aryl hydrocarbon receptor (AHR) signaling pathway, we examined whether resveratrol, an AHR modulator and antioxidant, could prevent programmed hypertension via regulating AHR signaling and oxidative stress. Groups of four-month-old male rat offspring were studied (n = 7⁻8 per group): control, DEX (0.1 mg/kg i.p. from a gestational age of 16 to 22 days), TCDD (200 ng/kg in four once-weekly oral doses), DEX + TCDD, and DEX + TCDD + R (resveratrol 0.05% in drinking water throughout pregnancy and lactation). Maternal TCDD exposure aggravated prenatal DEX-induced hypertension in adult male offspring, which maternal resveratrol therapy prevented. Maternal TCDD exposure aggravated DEX-induced oxidative damage in offspring kidneys, which was prevented by resveratrol therapy. Maternal resveratrol therapy decreased asymmetric and symmetric dimethylarginine (ADMA and SDMA) levels, thereby preventing combined DEX and TCDD exposure-induced programmed hypertension. Increases in renal Ahrr and Cyp1a1 expression induced by DEX + TCDD exposure were restored by resveratrol therapy. The beneficial effects of resveratrol on DEX + TCDD-induced hypertension relate to reduced renal mRNA expression of Ren, Ace, and Agtr1a expression. Thus, the beneficial effects of resveratrol on DEX + TCDD-induced hypertension include reduction of oxidative stress, restoration of nitric oxide (NO) bioavailability, blockade of the renin⁻angiotensin system (RAS), and antagonizing AHR signaling pathway.
Collapse
Affiliation(s)
- Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan.
| | - Yu-Ju Lin
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
| | - Pei-Chen Lu
- Departments of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
| | - You-Lin Tain
- Departments of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
| |
Collapse
|
36
|
Cantuaria ML, Usemann J, Proietti E, Blanes-Vidal V, Dick B, Flück CE, Rüedi S, Héritier H, Wunderli JM, Latzin P, Frey U, Röösli M, Vienneau D. Glucocorticoid metabolites in newborns: A marker for traffic noise related stress? ENVIRONMENT INTERNATIONAL 2018; 117:319-326. [PMID: 29778832 DOI: 10.1016/j.envint.2018.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 03/26/2018] [Accepted: 05/01/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Traffic noise has been associated with an increased risk for several non-auditory health effects, which may be explained by a noise-induced release of stress hormones (e.g. glucocorticoids). Although several studies in children and adults have indicated an increased secretion of glucocorticoids after exposure to noise, information regarding newborns is scarce. OBJECTIVES To investigate the association between residential exposure to road traffic noise and postnatal stress response, as assessed by the concentration of glucocorticoids at five weeks of age. METHODS Residential noise exposure was estimated for each infant based on spatially detailed modeled data. Adjusted multivariable linear regression models were used to estimate the association between noise exposure and the concentration of nine glucocorticoid metabolites measured in urine of 165 infants from a prospective birth cohort in Bern, Switzerland. Noise exposure (Lden, dB) was categorized into tertiles: low (reference), medium and high. RESULTS Indications of a positive association were found between high road traffic noise and cortisol (% change relative to the reference: 12.1% [95% confidence interval: -10.3, 40.1%]) and cortisone (22.6% [-1.8, 53.0%]), but just the latter was borderline significant. Borderline significant associations were also found between downstream metabolites and higher road traffic noise levels; associations were found to be both positive (i.e. for β-cortolone (51.5% [-0.9, 131.5%])) and negative (i.e. for α-cortolone (-18.3% [-33.6, 0.6%]) and tetrahydrocortisol (-23.7% [-42.8, 1.9%])). CONCLUSIONS Our findings suggest a potential association between exposure to higher road traffic noise levels and changes in glucocorticoid metabolism in early postnatal life. A possible physiological relevance and associations with short- and long-term adverse health effects in a larger study population need to be further investigated.
Collapse
Affiliation(s)
- Manuella Lech Cantuaria
- The Maersk Mc-Kinney Moller Institute, Faculty of Engineering, University of Southern Denmark, Odense, Denmark
| | - Jakob Usemann
- University Children's Hospital Basel (UKBB), University of Basel, Switzerland; Pediatric Respiratory Medicine, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Elena Proietti
- University Children's Hospital Basel (UKBB), University of Basel, Switzerland; Pediatric Respiratory Medicine, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Victoria Blanes-Vidal
- The Maersk Mc-Kinney Moller Institute, Faculty of Engineering, University of Southern Denmark, Odense, Denmark
| | - Bernhard Dick
- Nephrology & Hypertension, University of Bern, Bern, Switzerland
| | - Christa E Flück
- Pediatric Endocrinology, Diabetology and Metabolism, Bern University Children's Hospital, Bern, Switzerland
| | - Simone Rüedi
- University Children's Hospital Basel (UKBB), University of Basel, Switzerland
| | - Harris Héritier
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | | | - Philipp Latzin
- Pediatric Respiratory Medicine, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Urs Frey
- University Children's Hospital Basel (UKBB), University of Basel, Switzerland
| | - Martin Röösli
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Danielle Vienneau
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland.
| |
Collapse
|
37
|
Ducsay CA, Goyal R, Pearce WJ, Wilson S, Hu XQ, Zhang L. Gestational Hypoxia and Developmental Plasticity. Physiol Rev 2018; 98:1241-1334. [PMID: 29717932 PMCID: PMC6088145 DOI: 10.1152/physrev.00043.2017] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Hypoxia is one of the most common and severe challenges to the maintenance of homeostasis. Oxygen sensing is a property of all tissues, and the response to hypoxia is multidimensional involving complicated intracellular networks concerned with the transduction of hypoxia-induced responses. Of all the stresses to which the fetus and newborn infant are subjected, perhaps the most important and clinically relevant is that of hypoxia. Hypoxia during gestation impacts both the mother and fetal development through interactions with an individual's genetic traits acquired over multiple generations by natural selection and changes in gene expression patterns by altering the epigenetic code. Changes in the epigenome determine "genomic plasticity," i.e., the ability of genes to be differentially expressed according to environmental cues. The genomic plasticity defined by epigenomic mechanisms including DNA methylation, histone modifications, and noncoding RNAs during development is the mechanistic substrate for phenotypic programming that determines physiological response and risk for healthy or deleterious outcomes. This review explores the impact of gestational hypoxia on maternal health and fetal development, and epigenetic mechanisms of developmental plasticity with emphasis on the uteroplacental circulation, heart development, cerebral circulation, pulmonary development, and the hypothalamic-pituitary-adrenal axis and adipose tissue. The complex molecular and epigenetic interactions that may impact an individual's physiology and developmental programming of health and disease later in life are discussed.
Collapse
Affiliation(s)
- Charles A. Ducsay
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Ravi Goyal
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - William J. Pearce
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Sean Wilson
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Xiang-Qun Hu
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Lubo Zhang
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| |
Collapse
|
38
|
Iturra-Mena AM, Arriagada-Solimano M, Luttecke-Anders A, Dagnino-Subiabre A. Effects of prenatal stress on anxiety- and depressive-like behaviours are sex-specific in prepubertal rats. J Neuroendocrinol 2018; 30:e12609. [PMID: 29772083 DOI: 10.1111/jne.12609] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 05/03/2018] [Accepted: 05/11/2018] [Indexed: 01/04/2023]
Abstract
The foetal brain is highly susceptible to stress in late pregnancy, with lifelong effects of stress on physiology and behaviour. The present study aimed to determine the physiological and behavioural effects of prenatal stress during the prepubertal period of female and male rats. We subjected pregnant Sprague-Dawley rats to a restraint stress protocol from gestational day 14 to 21, a critical period for foetal brain susceptibility to stress effects. Male and female offspring were subsequently assessed at postnatal day 24 for anxiety- and depressive-like behaviours, as well as spontaneous social interaction. We also assessed maternal behaviours and 2 stress markers: basal vs acute-evoked stress levels of serum corticosterone and body weight gain. Prenatal stress did not affect the maternal behaviour, whereas both female and male offspring had higher body weight gain. On the other hand, lower levels of corticosterone after acute stress stimulation, as well as anxiety- and depressive-like behaviours, were only evident in stressed males compared to control males. These results suggest that prenatal stress induced sex-specific effects on hypothalamic-pituitary-adrenal (HPA) axis activity and on behaviour during prepuberty. The HPA axis of prenatally stressed male rats was less active compared to control males, and they were also more anxious and experienced depressive-like behaviours. These results are useful with respect to studying the neurobiological basis of childhood depression at a preclinical level.
Collapse
Affiliation(s)
- A M Iturra-Mena
- Laboratory of Stress Neurobiology, Institute of Physiology, Faculty of Sciences, Universidad de Valparaíso, Valparaíso, Chile
- School of Psychology, Faculty of Social Sciences, Universidad de las Américas, Viña del Mar, Chile
| | - M Arriagada-Solimano
- Laboratory of Stress Neurobiology, Institute of Physiology, Faculty of Sciences, Universidad de Valparaíso, Valparaíso, Chile
| | - A Luttecke-Anders
- Laboratory of Stress Neurobiology, Institute of Physiology, Faculty of Sciences, Universidad de Valparaíso, Valparaíso, Chile
| | - A Dagnino-Subiabre
- Laboratory of Stress Neurobiology, Institute of Physiology, Faculty of Sciences, Universidad de Valparaíso, Valparaíso, Chile
- Auditory and Cognition Center, AUCO, Santiago, Chile
| |
Collapse
|
39
|
Johnston ZC, Bellingham M, Filis P, Soffientini U, Hough D, Bhattacharya S, Simard M, Hammond GL, King P, O'Shaughnessy PJ, Fowler PA. The human fetal adrenal produces cortisol but no detectable aldosterone throughout the second trimester. BMC Med 2018; 16:23. [PMID: 29429410 PMCID: PMC5808459 DOI: 10.1186/s12916-018-1009-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 01/18/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Human fetal adrenal glands are highly active and, with the placenta, regulate circulating progesterone, estrogen and corticosteroids in the fetus. At birth the adrenals are essential for neonate salt retention through secretion of aldosterone, while adequate glucocorticoids are required to prevent adrenal insufficiency. The objective of this study was to carry out the first comprehensive analysis of adrenal steroid levels and steroidogenic enzyme expression in normal second trimester human fetuses. METHODS This was an observational study of steroids, messenger RNA transcripts and proteins in adrenals from up to 109 second trimester fetuses (11 weeks to 21 weeks) at the Universities of Aberdeen and Glasgow. The study design was balanced to show effects of maternal smoking. RESULTS Concentrations of 19 intra-adrenal steroids were quantified using liquid chromatography and mass spectrometry. Pregnenolone was the most abundant steroid while levels of 17α-hydroxyprogesterone, dehydroepiandrosterone sulphate (DHEAS) and progesterone were also high. Cortisol was present in all adrenals, but aldosterone was undetected and Δ4 androgens were low/undetected. CYP17A1, CYP21A2 and CYP11A1 were all highly expressed and the proteins localized to the adrenal fetal zone. There was low-level expression of HSD3B and CYP11B2, with HSD3B located mainly in the definitive zone. Maternal smoking altered fetal plasma adrenocorticotropic hormone (ACTH) (P = 0.052) and intra-adrenal progesterone, 17α-hydroxyprogesterone and 16α-hydroxyprogesterone, but not plasma or intra-adrenal cortisol, or intra-adrenal DHEAS. Fetal adrenal GATA6 and NR5A1 were increased by maternal smoking. CONCLUSIONS The human fetal adrenal gland produces cortisol but very low levels of Δ4 androgens and no detectable aldosterone throughout the second trimester. The presence of cortisol in fetal adrenals suggests that adrenal regulation of circulating fetal ACTH remains a factor in development of congenital adrenal hyperplasia during the second trimester, while a relative lack of aldosterone explains the salt-wasting disorders frequently seen in extreme pre-term neonates. Finally, maternal smoking may alter fetal adrenal sensitivity to ACTH, which could have knock-on effects on post-natal health.
Collapse
Affiliation(s)
- Zoe C Johnston
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Michelle Bellingham
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Panagiotis Filis
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Ugo Soffientini
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Denise Hough
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Siladitya Bhattacharya
- Institute of Applied Health Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Marc Simard
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, British Columbia, V6T 1Z3, Canada
| | - Geoffrey L Hammond
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, British Columbia, V6T 1Z3, Canada
| | - Peter King
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Peter J O'Shaughnessy
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Paul A Fowler
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK.
| |
Collapse
|
40
|
Epigenetic Programming by Early-Life Stress. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 157:133-150. [DOI: 10.1016/bs.pmbts.2018.01.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
41
|
Vasku M, Kleine-Eggebrecht N, Rath W, Mohaupt M, Escher G, Pecks U. Apparent systemic 11ß-dehydroxysteroid dehydrogenase 2 activity is increased in preeclampsia but not in intrauterine growth restriction. Pregnancy Hypertens 2018. [DOI: 10.1016/j.preghy.2017.11.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
42
|
Lin B, Crnic KA, Luecken LJ, Gonzales NA. Ontogeny of emotional and behavioral problems in a low-income, Mexican American sample. Dev Psychol 2017; 53:2245-2260. [PMID: 28933887 PMCID: PMC5873968 DOI: 10.1037/dev0000391] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Clinically meaningful behavior problems are thought to be present beginning in the early toddler years, yet few studies have investigated correlates of behavior problems assessed before age 2 years. The current study investigated the direct and interactive contributions of early infant and caregiver characteristics thought to play an important role in the ontogeny of behavior problems. Specifically, the study examined: (a) the links between infant temperamental reactivity and toddler behavioral symptoms, (b) whether maternal sensitivity moderated associations between temperamental reactivity and behavioral symptoms, (c) whether variability in temperamental reactivity was explained by exposure to maternal stressful life events (SLEs) in utero, and (d) whether child sex moderated these pathways. Data were collected from 322 low-income, Mexican American families. Mother reports of SLEs were obtained between 23 and 40 weeks gestation; temperamental negativity and surgency at 6 weeks and 12 months; and internalizing and externalizing behaviors at 18 months. Maternal sensitivity during structured mother-infant interaction tasks at a 12-month visit was assessed by objective raters. Results indicated that significant paths linked maternal prenatal SLEs with 6-week negativity, 6-week negativity with 12-month negativity, and 12-month negativity with 18-month behavioral symptoms. Sex-specific effects were also observed. Maternal SLEs were directly associated with internalizing behaviors for girls only. Surgency and maternal sensitivity moderated the associations of negativity with subsequent externalizing behaviors for girls only. Results suggest that ecological stressors associated with sociodemographic risk factors such as low-income and ethnic minority status begin to exert cascades of influence on children's developmental outcomes even before birth. (PsycINFO Database Record
Collapse
Affiliation(s)
- Betty Lin
- Department of Psychology, Arizona State University
| | | | | | | |
Collapse
|
43
|
Yu S, Lee E, Tsogbadrakh B, Son GI, Kim M. Prenatal hyperbaric normoxia treatment improves healthspan and regulates chitin metabolic genes in Drosophila melanogaster. Aging (Albany NY) 2017; 8:2538-2550. [PMID: 27777382 PMCID: PMC5115905 DOI: 10.18632/aging.101084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 10/10/2016] [Indexed: 12/30/2022]
Abstract
Aging is a universal, irreversible process accompanied by physiological declines that culminate in death. Rapid progress in gerontology research has revealed that aging can be slowed through mild stress-induced hormesis. We previously reported that hyperbaric normoxia (HN, 2 atm absolute pressure with 10% O2) induces a cytoprotective response in vitro by regulating fibronectin. In the present study, we investigated the hormetic effects of prenatal HN exposure on Drosophila healthspan related to molecular defense mechanisms. HN exposure had no disruptive effect on developmental rate or adult body weight. However, lifespan was clearly enhanced, as was resistance to oxidative and heat stress. In addition, levels of reactive oxygen species were significantly decreased and motor performance was increased. HN stress has been shown to trigger molecular changes in the heat shock response and ROS scavenging system, including hsp70, catalase, glutathione synthase, and MnSOD. Furthermore, to determine the hormetic mechanism underlying these phenotypic and molecular changes, we performed a genome-wide profiling in HN-exposed and control flies. Genes encoding chitin metabolism were highly up-regulated, which could possibly serve to scavenge free radicals. These results identify prenatal HN exposure as a potential hormetic factor that may improve longevity and healthspan by enhancing defense mechanisms in Drosophila.
Collapse
Affiliation(s)
- Suyeun Yu
- Department of Preventive Medicine, College of Medicine, Korea University, Seoul, 136-701, Republic of Korea
| | - Eunil Lee
- Department of Preventive Medicine, College of Medicine, Korea University, Seoul, 136-701, Republic of Korea
| | - Bodokhsuren Tsogbadrakh
- Department of Internal Medicine, Seoul National University Hospital, Seoul, 151-742, Republic of Korea
| | - Gwang-Ic Son
- Department of Preventive Medicine, College of Medicine, Korea University, Seoul, 136-701, Republic of Korea
| | - Mari Kim
- Department of Preventive Medicine, College of Medicine, Korea University, Seoul, 136-701, Republic of Korea
| |
Collapse
|
44
|
Agba OB, Lausser L, Huse K, Bergmeier C, Jahn N, Groth M, Bens M, Sahm A, Gall M, Witte OW, Kestler HA, Schwab M, Platzer M. Tissue-, sex-, and age-specific DNA methylation of rat glucocorticoid receptor gene promoter and insulin-like growth factor 2 imprinting control region. Physiol Genomics 2017; 49:690-702. [PMID: 28916632 DOI: 10.1152/physiolgenomics.00009.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 08/28/2017] [Accepted: 09/12/2017] [Indexed: 12/21/2022] Open
Abstract
Tissue-, sex-, and age-specific epigenetic modifications such as DNA methylation are largely unknown. Changes in DNA methylation of the glucocorticoid receptor gene (NR3C1) and imprinting control region (ICR) of IGF2 and H19 genes during the lifespan are particularly interesting since these genes are susceptible to epigenetic modifications by prenatal stress or malnutrition. They are important regulators of development and aging. Methylation changes of NR3C1 affect glucocorticoid receptor expression, which is associated with stress sensitivity and stress-related diseases predominantly occurring during aging. Methylation changes of IGF2/H19 affect growth trajectory and nutrient use with risk of metabolic syndrome. Using a locus-specific approach, we characterized DNA methylation patterns of different Nr3c1 promoters and Igf2/H19 ICR in seven tissues of rats at 3, 9, and 24 mo of age. We found a complex pattern of locus-, tissue-, sex-, and age-specific DNA methylation. Tissue-specific methylation was most prominent at the shores of the Nr3c1 CpG island (CGI). Sex-specific differences in methylation peaked at 9 mo. During aging, Nr3c1 predominantly displayed hypomethylation mainly in females and at shores, whereas hypermethylation occurred within the CGI. Igf2/H19 ICR exhibited age-related hypomethylation occurring mainly in males. Methylation patterns of Nr3c1 in the skin correlated with those in the cortex, hippocampus, and hypothalamus. Skin may serve as proxy for methylation changes in central parts of the hypothalamic-pituitary-adrenal axis and hence for vulnerability to stress- and age-associated diseases. Thus, we provide in-depth insight into the complex DNA methylation changes of rat Nr3c1 and Igf2/H19 during aging that are tissue and sex specific.
Collapse
Affiliation(s)
- Ogechukwu Brenda Agba
- Genome Analysis, Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - Ludwig Lausser
- Systems Biology of Aging, Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany.,Institute of Medical Systems Biology, Ulm University, Ulm, Germany; and
| | - Klaus Huse
- Genome Analysis, Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - Christoph Bergmeier
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Niels Jahn
- Genome Analysis, Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany.,Institute of Medical Systems Biology, Ulm University, Ulm, Germany; and.,Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Marco Groth
- Genome Analysis, Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - Martin Bens
- Genome Analysis, Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - Arne Sahm
- Genome Analysis, Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - Maria Gall
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Otto W Witte
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Hans A Kestler
- Systems Biology of Aging, Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany.,Institute of Medical Systems Biology, Ulm University, Ulm, Germany; and
| | - Matthias Schwab
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Matthias Platzer
- Genome Analysis, Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany;
| |
Collapse
|
45
|
Influence of prenatal maternal corticosteroid therapy on clinical and metabolic features and pulmonary function of preterm newborn puppies. Theriogenology 2017; 97:179-185. [DOI: 10.1016/j.theriogenology.2017.04.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/24/2017] [Accepted: 04/24/2017] [Indexed: 11/17/2022]
|
46
|
Ozmen A, Unek G, Korgun ET. Effect of glucocorticoids on mechanisms of placental angiogenesis. Placenta 2017; 52:41-48. [DOI: 10.1016/j.placenta.2017.02.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 02/08/2017] [Accepted: 02/13/2017] [Indexed: 12/12/2022]
|
47
|
Hypertensive disorders during pregnancy and health outcomes in the offspring: a systematic review. J Dev Orig Health Dis 2016; 7:391-407. [PMID: 27168118 DOI: 10.1017/s2040174416000209] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
UNLABELLED The hypertensive disorders of pregnancy complicate up to 10% of pregnancies worldwide and are a leading cause of maternal, foetal, and neonatal morbidity and mortality. The aim of this study was to present an overview of recent studies addressing offspring's medium and long-term health outcomes after intrauterine exposure to maternal hypertension. A search on PubMed/MEDLINE and Bireme databases was conducted to identify observational studies that reported any offspring outcome measured after the 6th month of life. The search was limited to studies published after May 2008. Forty-five articles were included and categorized into four groups of outcomes: cardiovascular, immune, metabolic and behavioural/neurological effects. According to our findings, hypertensive disorders of pregnancy had an overall negative impact on offspring's cardiovascular, immune and neurological health, although not all parameters analysed in each group had consistent results among studies. The most prominent and reliable associations were verified between gestational hypertension and higher offspring's blood pressure and between preeclampsia and offspring's lower cognitive functioning. In the metabolic outcomes, body composition had conflicting results among papers, while all studies that examined blood biomarkers showed no evidence that preeclampsia or gestational hypertension could be associated with an alteration of this metabolic outcomes. Most included studies were highly heterogeneous regarding the measure of outcomes and covariables used for adjustments. Future studies should consider using the same protocols and cut-off points already published so that results can be better compared and summarized. This review was registered in PROSPERO. REGISTRATION NUMBER CRD42015020838.
Collapse
|
48
|
Contrasting effects of prenatal life stress on blood pressure and body mass index in young adults. J Hypertens 2016; 33:711-9; discussion 719. [PMID: 25915875 DOI: 10.1097/hjh.0000000000000476] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Various environmental stressors in pregnancy have been reported to affect high blood pressure (BP) in adult offspring. However, few studies have examined the effect of prenatal maternal psychological stress on offspring BP and BMI in early adulthood. METHOD In 957 Raine cohort participants, regression analyses were used to examine the association between the count of maternal life stress events experienced during pregnancy and offspring BP and BMI at age 20. RESULTS Prenatal life stress associated positively with offspring BMI but inversely with SBP. After adjustment for confounders each additional prenatal life stress event reduced offspring SBP by 0.66 mmHg (P = 0.013) in those with an average BMI and lowered the odds of systolic (pre)hypertension by 17% (odds ratio = 0.83; P = 0.008). The inverse relationship between prenatal life stress and adult SBP was stronger in offspring with higher BMI. On the contrary, each unit increase in prenatal life stress score predicted a BMI increase of 0.37 kg/m (P = 0.022). Longitudinal analysis showed similar effects of prenatal life stress for offspring BMI from age 8 and SBP from age 14. CONCLUSION This study has shown that maternal stress in pregnancy significantly associated with BMI from early childhood, but contrary to our hypothesis predicted lower resting SBP and lower odds of systolic (pre)hypertension in young adult offspring. The effect of prenatal life stress on BP was accentuated by a higher BMI. Fetal programming events as a result of prenatal stress may underpin some of these relationships.
Collapse
|
49
|
Lee JH, Lee H, Lee SM, Kang PJ, Kim KC, Hong YM. Changes of blood pressure, abdominal visceral fat tissue and gene expressions in fetal programming induced rat model after amlodipine-losartan combination treatment. Clin Hypertens 2016; 22:12. [PMID: 27051525 PMCID: PMC4820991 DOI: 10.1186/s40885-016-0046-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 01/29/2016] [Indexed: 01/05/2023] Open
Abstract
Background There are a number of complications that can occur if there is under-nutrition during pregnancy followed by a period of rapid catch-up growth, including a higher chance of adult obesity, insulin resistance and hypertriglyceridemia. The purposes of this study were to investigate the effects of fetal under-nutrition during late pregnancy and lactation on blood pressure, visceral fat tissue, gene expressions and to evaluate changes after amlodipine- losartan combination treatment. Methods The rats were divided into three groups: the control (C) group, the food restriction (FR: 50 % food restricted diet) group, and the CX group, which was treated with Cozaar XQ (amlodipine- losartan combination drug) in FR rats from postnatal 4 to 20 weeks. Masson’s trichrome staining was performed in the heart tissues. The amount of abdominal visceral fat tissues was measured. Western blot analysis such as angiotensin converting enzyme (ACE), angiotensin II receptor type IA (ATIA), troponin I (Tn I) and endothelial nitric oxide synthase (eNOS) were performed. Results Body weights were significantly higher in the FR group compared with the C group at weeks 8 and 20 and lower in the CX group at week 20. Blood pressure was significantly higher in the FR group compared with the C group at week 20 and lower in the CX group at weeks 12 and 20. The amount of abdominal visceral fat was significantly higher in the FR group compared with the C group at weeks 8, 12 and 20 and significantly lower in the CX group at weeks 16 and 20. Protein expression of ATIA and eNOS were significantly reduced in the CX group at weeks 16 and 20. ACE was significantly reduced in the CX group at week 20 and Tn I was significantly reduced in the CX group at week 16. Conclusions When there is fetal under-nutrition during pregnancy, it leads to obesity, high blood pressure, hypertriglyceridemia and several gene changes in offspring. Amlodipine-losartan combination treatment was able to lower obesity, hypertension, hypertriglyceridemia and several gene changes in rats suffering from fetal under-nutrition during pregnancy.
Collapse
Affiliation(s)
- Ji Hyen Lee
- Department of Pediatrics, Ewha Womans University, 911-1, Mokdong, YangCheon-Ku, Seoul, South Korea
| | - Hyeryon Lee
- Department of Pediatrics, Ewha Womans University, 911-1, Mokdong, YangCheon-Ku, Seoul, South Korea
| | - Sang Mi Lee
- Department of Pediatrics, Ewha Womans University, 911-1, Mokdong, YangCheon-Ku, Seoul, South Korea
| | - Pil Je Kang
- Department of Thoracic and Cardiovascular Surgery, Ewha Womans University, Seoul, South Korea
| | - Kwan Chang Kim
- Department of Thoracic and Cardiovascular Surgery, Ewha Womans University, Seoul, South Korea
| | - Young Mi Hong
- Department of Pediatrics, Ewha Womans University, 911-1, Mokdong, YangCheon-Ku, Seoul, South Korea
| |
Collapse
|
50
|
Vu Hai P, Schonewille JT, Dam Van T, Everts H, Hendriks WH. Exposure to a novel feedstuff by goat dams during pregnancy and lactation versus pregnancy alone does not further improve post-weaning acceptance of this feedstuff by their kids. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:2215-2219. [PMID: 26173748 DOI: 10.1002/jsfa.7338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 05/21/2015] [Accepted: 07/07/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND Previous experiments demonstrated the existence of in utero learning in goats. However, in contrast to other animal species, in goats there is no information about the potential of flavour transmission from maternal feed to goat kids during lactation. The aim of the current study was to assess the role of post-natal exposure of Chromonaela odorata leaf meal (COLM) in relation to the preferences to this feedstuff by goat kids after weaning. It was hypothesised that exposure of COLM to the dams during both pregnancy and lactation versus pregnancy alone, additionally affects post-weaning intake of COLM by their offspring. RESULTS Consumption of COLM by the goat kids was similar during the first week post-weaning for all treatments. However, after 4 weeks the intake of COLM was at least 1.8 times greater when kids were exposed to COLM during pregnancy whereas it remained virtually unchanged when kids were exposed to COLM during lactation only. The increase in COLM consumption was in line with the observations on latency to eat and meal size. CONCLUSION Transmission of feeding behaviour from goat dams to offspring does not occur during lactation. However, the concept of in utero learning in goats was confirmed.
Collapse
Affiliation(s)
- Phan Vu Hai
- Faculty of Animal Science and Veterinary Medicine, Hue University of Agriculture and Forestry, Hue University, 102 Phung Hung St, Hue, Vietnam
| | - J Thomas Schonewille
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80.151, 3508, TD, Utrecht, the Netherlands
| | - Tien Dam Van
- Faculty of Animal Science and Veterinary Medicine, Hue University of Agriculture and Forestry, Hue University, 102 Phung Hung St, Hue, Vietnam
| | - Henk Everts
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80.151, 3508, TD, Utrecht, the Netherlands
| | - Wouter H Hendriks
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80.151, 3508, TD, Utrecht, the Netherlands
| |
Collapse
|