1
|
Guan Z. Alterations in Neuronal Nicotinic Acetylcholine Receptors in the Pathogenesis of Various Cognitive Impairments. CNS Neurosci Ther 2024; 30:e70069. [PMID: 39370620 PMCID: PMC11456617 DOI: 10.1111/cns.70069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 09/02/2024] [Accepted: 09/15/2024] [Indexed: 10/08/2024] Open
Abstract
Cognitive impairment is a typical symptom of both neurodegenerative and certain other diseases. In connection with these different pathologies, the etiology and neurological and metabolic changes associated with cognitive impairment must differ. Until these characteristics and differences are understood in greater detail, pharmacological treatment of the different forms of cognitive impairment remains suboptimal. Neurotransmitter receptors, including neuronal nicotinic acetylcholine receptors (nAChRs), dopamine receptors, and glutamine receptors, play key roles in the functions and metabolisms of the brain. Among these, the role of nAChRs in the development of cognitive impairment has attracted more and more attention. The present review summarizes what is presently known concerning the structure, distribution, metabolism, and function of nAChRs, as well as their involvement in major cognitive disorders such as Alzheimer's disease, Parkinson's disease, vascular dementia, schizophrenia, and diabetes mellitus. As will be discussed, the relevant scientific literature reveals clearly that the α4β2 and α7 nAChR subtypes and/or subunits of the receptors play major roles in maintaining cognitive function and in neuroprotection of the brain. Accordingly, focusing on these as targets of drug therapy can be expected to lead to breakthroughs in the treatment of cognitive disorders such as AD and schizophrenia.
Collapse
Affiliation(s)
- Zhi‐Zhong Guan
- Department of PathologyThe Affiliated Hospital of Guizhou Medical UniversityGuiyangP.R. China
- Key Laboratory of Endemic and Ethnic DiseasesGuizhou Medical University, Ministry of Education and Provincial Key Laboratory of Medical Molecular BiologyGuiyangP.R. China
| |
Collapse
|
2
|
Koster M, van der Pluijm M, van de Giessen E, Schrantee A, van Hooijdonk CFM, Selten JP, Booij J, de Haan L, Ziermans T, Vermeulen J. The association of tobacco smoking and metabolite levels in the anterior cingulate cortex of first-episode psychosis patients: A case-control and 6-month follow-up 1H-MRS study. Schizophr Res 2024; 271:144-152. [PMID: 39029144 DOI: 10.1016/j.schres.2024.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/07/2024] [Accepted: 07/07/2024] [Indexed: 07/21/2024]
Abstract
Tobacco smoking is highly prevalent among patients with psychosis and associated with worse clinical outcomes. Neurometabolites, such as glutamate and choline, are both implicated in psychosis and tobacco smoking. However, the specific associations between smoking and neurometabolites have yet to be investigated in patients with psychosis. The current study examines associations of chronic smoking and neurometabolite levels in the anterior cingulate cortex (ACC) in first-episode psychosis (FEP) patients and controls. Proton magnetic resonance spectroscopy (1H MRS) data of 59 FEP patients and 35 controls were analysed. Associations between smoking status (i.e., smoker yes/no) or cigarettes per day and Glx (glutamate + glutamine, as proxy for glutamate) and total choline (tCh) levels were assessed at baseline in both groups separately. For patients, six months follow-up data were acquired for multi-cross-sectional analysis using linear mixed models. No significant differences in ACC Glx levels were found between smoking (n = 28) and non-smoking (n = 31) FEP patients. Smoking patients showed lower tCh levels compared to non-smoking patients at baseline, although not surving multiple comparisons correction, and in multi-cross-sectional analysis (pFDR = 0.08 and pFDR = 0.044, respectively). Negative associations were observed between cigarettes smoked per day, and ACC Glx (pFDR = 0.02) and tCh levels (pFDR = 0.02) in controls. Differences between patients and controls regarding Glx might be explained by pre-existing disease-related glutamate deficits or alterations at nicotine acetylcholine receptor level, resulting in differences in tobacco-related associations with neurometabolites. Additionally, observed alterations in tCh levels, suggesting reduced cellular proliferation processes, might result from exposure to the neurotoxic effects of smoking.
Collapse
Affiliation(s)
- Merel Koster
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, the Netherlands.
| | - Marieke van der Pluijm
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, the Netherlands; Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Elsmarieke van de Giessen
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Anouk Schrantee
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Carmen F M van Hooijdonk
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, University of Maastricht, Maastricht, the Netherlands; Rivierduinen, Institute for Mental Health Care, Leiden, the Netherlands
| | - Jean-Paul Selten
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, University of Maastricht, Maastricht, the Netherlands; Rivierduinen, Institute for Mental Health Care, Leiden, the Netherlands
| | - Jan Booij
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Lieuwe de Haan
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Tim Ziermans
- Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands
| | - Jentien Vermeulen
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, the Netherlands
| |
Collapse
|
3
|
Weinstein JJ, Moeller SJ, Perlman G, Gil R, Van Snellenberg JX, Wengler K, Meng J, Slifstein M, Abi-Dargham A. Imaging the Vesicular Acetylcholine Transporter in Schizophrenia: A Positron Emission Tomography Study Using [ 18F]-VAT. Biol Psychiatry 2024; 96:352-364. [PMID: 38309322 DOI: 10.1016/j.biopsych.2024.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/10/2024] [Accepted: 01/23/2024] [Indexed: 02/05/2024]
Abstract
BACKGROUND Despite longstanding interest in the central cholinergic system in schizophrenia (SCZ), cholinergic imaging studies with patients have been limited to receptors. Here, we conducted a proof-of-concept positron emission tomography study using [18F]-VAT, a new radiotracer that targets the vesicular acetylcholine transporter as a proxy measure of acetylcholine transmission capacity, in patients with SCZ and explored relationships of vesicular acetylcholine transporter with clinical symptoms and cognition. METHODS A total of 18 adult patients with SCZ or schizoaffective disorder (the SCZ group) and 14 healthy control participants underwent a positron emission tomography scan with [18F]-VAT. Distribution volume (VT) for [18F]-VAT was derived for each region of interest, and group differences in VT were assessed with 2-sample t tests. Functional significance was explored through correlations between VT and scores on the Positive and Negative Syndrome Scale and a computerized neurocognitive battery (PennCNB). RESULTS No group differences in [18F]-VAT VT were observed. However, within the SCZ group, psychosis symptom severity was positively associated with VT in multiple regions of interest, with the strongest effects in the hippocampus, thalamus, midbrain, cerebellum, and cortex. In addition, in the SCZ group, working memory performance was negatively associated with VT in the substantia innominata and several cortical regions of interest including the dorsolateral prefrontal cortex. CONCLUSIONS In this initial study, the severity of 2 important features of SCZ-psychosis and working memory deficit-was strongly associated with [18F]-VAT VT in several cortical and subcortical regions. These correlations provide preliminary evidence of cholinergic activity involvement in SCZ and, if replicated in larger samples, could lead to a more complete mechanistic understanding of psychosis and cognitive deficits in SCZ and the development of therapeutic targets.
Collapse
Affiliation(s)
- Jodi J Weinstein
- Department of Psychiatry and Behavioral Health, Stony Brook University Renaissance School of Medicine, Stony Brook, New York; Department of Psychiatry, Columbia University Vagelos School of Medicine and New York State Psychiatric Institute, New York, New York.
| | - Scott J Moeller
- Department of Psychiatry and Behavioral Health, Stony Brook University Renaissance School of Medicine, Stony Brook, New York
| | - Greg Perlman
- Department of Psychiatry and Behavioral Health, Stony Brook University Renaissance School of Medicine, Stony Brook, New York
| | - Roberto Gil
- Department of Psychiatry and Behavioral Health, Stony Brook University Renaissance School of Medicine, Stony Brook, New York
| | - Jared X Van Snellenberg
- Department of Psychiatry and Behavioral Health, Stony Brook University Renaissance School of Medicine, Stony Brook, New York; Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York; Department of Psychology, Stony Brook University, Stony Brook, New York
| | - Kenneth Wengler
- Department of Psychiatry, Columbia University Vagelos School of Medicine and New York State Psychiatric Institute, New York, New York; Department of Radiology, Stony Brook University Renaissance School of Medicine, Stony Brook, New York
| | - Jiayan Meng
- Department of Psychiatry and Behavioral Health, Stony Brook University Renaissance School of Medicine, Stony Brook, New York
| | - Mark Slifstein
- Department of Psychiatry and Behavioral Health, Stony Brook University Renaissance School of Medicine, Stony Brook, New York
| | - Anissa Abi-Dargham
- Department of Psychiatry and Behavioral Health, Stony Brook University Renaissance School of Medicine, Stony Brook, New York; Department of Psychiatry, Columbia University Vagelos School of Medicine and New York State Psychiatric Institute, New York, New York
| |
Collapse
|
4
|
Vallés AS, Barrantes FJ. Nicotinic Acetylcholine Receptor Dysfunction in Addiction and in Some Neurodegenerative and Neuropsychiatric Diseases. Cells 2023; 12:2051. [PMID: 37626860 PMCID: PMC10453526 DOI: 10.3390/cells12162051] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/20/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
The cholinergic system plays an essential role in brain development, physiology, and pathophysiology. Herein, we review how specific alterations in this system, through genetic mutations or abnormal receptor function, can lead to aberrant neural circuitry that triggers disease. The review focuses on the nicotinic acetylcholine receptor (nAChR) and its role in addiction and in neurodegenerative and neuropsychiatric diseases and epilepsy. Cholinergic dysfunction is associated with inflammatory processes mainly through the involvement of α7 nAChRs expressed in brain and in peripheral immune cells. Evidence suggests that these neuroinflammatory processes trigger and aggravate pathological states. We discuss the preclinical evidence demonstrating the therapeutic potential of nAChR ligands in Alzheimer disease, Parkinson disease, schizophrenia spectrum disorders, and in autosomal dominant sleep-related hypermotor epilepsy. PubMed and Google Scholar bibliographic databases were searched with the keywords indicated below.
Collapse
Affiliation(s)
- Ana Sofía Vallés
- Bahía Blanca Institute of Biochemical Research (UNS-CONICET), Bahía Blanca 8000, Argentina;
| | - Francisco J. Barrantes
- Biomedical Research Institute (BIOMED), Faculty of Medical Sciences, Pontifical Catholic University of Argentina—National Scientific and Technical Research Council, Av. Alicia Moreau de Justo 1600, Buenos Aires C1107AFF, Argentina
| |
Collapse
|
5
|
Pross B, Münz S, Nitsche MA, Padberg F, Strube W, Papazova I, Falkai P, Hasan A. Smoking status ameliorates cholinergic impairments in cortical inhibition in patients with schizophrenia. Brain Res 2023; 1812:148380. [PMID: 37121425 DOI: 10.1016/j.brainres.2023.148380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 05/02/2023]
Abstract
Rationale Modulation of cortical excitability, in particular inhibition, is impaired in patients with schizophrenia. Chronic nicotine consumption, which is prevalent in this group, has been shown to alter cortical excitability in healthy individuals and to increase inhibitory activity. Thus, beneficial effects of smoking on impaired cortical excitability in patients with schizophrenia have been proposed, though direct experimental evidence is still lacking. OBJECTIVES We aimed to explore the effect of chronic smoking on cortical excitability by comparing smoking and non-smoking patients with schizophrenia. METHOD Twenty-six smoking and 19 non-smoking patients diagnosed with schizophrenia were included. Transcranial magnetic stimulation (TMS) applied to the primary motor cortex served as experimental paradigm for measuring corticospinal and intracortical excitability as follows: Resting motor threshold (RMT) and the input/output curve (I/O curve) were obtained to assess corticospinal excitability. Intracortical excitability was explored using paired-pulse TMS techniques (intracortical facilitation (ICF), short-latency intracortical inhibition (SICI) and short-latency afferent inhibition (SAI)). RESULTS A significantly stronger inhibition in the cholinergically driven SAI protocol was observed in smokers compared to non-smokers. All other measures did not show significant differences between groups. CONCLUSION Our results suggest an increased inhibition within cholinergic circuits due to chronic nicotine consumption in schizophrenia. This increase may compensate impaired cholinergic neurotransmission and could explain the high rate of smokers in schizophrenia.
Collapse
Affiliation(s)
- Benjamin Pross
- Department of Psychiatry, Psychotherapy, and Psychosomatic Medicine, Faculty of Medicine, University of Augsburg, Bezirkskrankenhaus Augsburg, Geschwister-Schönert-Str. 1, 86156 Augsburg, Germany.
| | - Susanne Münz
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Michael A Nitsche
- Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund, Dept. Psychology and Neurosciences, Germany
| | - Frank Padberg
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Wolfgang Strube
- Department of Psychiatry, Psychotherapy, and Psychosomatic Medicine, Faculty of Medicine, University of Augsburg, Bezirkskrankenhaus Augsburg, Geschwister-Schönert-Str. 1, 86156 Augsburg, Germany
| | - Irina Papazova
- Department of Psychiatry, Psychotherapy, and Psychosomatic Medicine, Faculty of Medicine, University of Augsburg, Bezirkskrankenhaus Augsburg, Geschwister-Schönert-Str. 1, 86156 Augsburg, Germany
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Alkomiet Hasan
- Department of Psychiatry, Psychotherapy, and Psychosomatic Medicine, Faculty of Medicine, University of Augsburg, Bezirkskrankenhaus Augsburg, Geschwister-Schönert-Str. 1, 86156 Augsburg, Germany
| |
Collapse
|
6
|
Joshi YB. Cholinergic Functioning, Cognition, and Anticholinergic Medication Burden in Schizophrenia. Curr Top Behav Neurosci 2022; 63:393-406. [PMID: 36441495 DOI: 10.1007/7854_2022_400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Acetylcholine (ACh) signaling is critical for central nervous function and is known to be abnormal in schizophrenia (SZ), a chronic neuropsychiatric disorder in which cognitive deficits persist, despite treatment. This review provides a summary of the clinical evidence linking ACh abnormalities to SZ-associated cognitive deficits, an overview of ACh-based pro-cognitive strategies attempted in SZ, and a survey of recent studies that describe the impact of anticholinergic medication burden on cognitive outcomes in SZ. Methodological challenges that currently limit more substantial investigation of ACh in SZ patients and future directions are also discussed.
Collapse
Affiliation(s)
- Yash B Joshi
- Desert Pacific Mental Illness Research Education and Clinical Center, VA San Diego Healthcare System, San Diego, CA, USA.
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
7
|
Wu XL, Yan QJ, Zhu F. Abnormal synaptic plasticity and impaired cognition in schizophrenia. World J Psychiatry 2022; 12:541-557. [PMID: 35582335 PMCID: PMC9048451 DOI: 10.5498/wjp.v12.i4.541] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/28/2021] [Accepted: 03/27/2022] [Indexed: 02/06/2023] Open
Abstract
Schizophrenia (SCZ) is a severe mental illness that affects several brain domains with relation to cognition and behaviour. SCZ symptoms are typically classified into three categories, namely, positive, negative, and cognitive. The etiology of SCZ is thought to be multifactorial and poorly understood. Accumulating evidence has indicated abnormal synaptic plasticity and cognitive impairments in SCZ. Synaptic plasticity is thought to be induced at appropriate synapses during memory formation and has a critical role in the cognitive symptoms of SCZ. Many factors, including synaptic structure changes, aberrant expression of plasticity-related genes, and abnormal synaptic transmission, may influence synaptic plasticity and play vital roles in SCZ. In this article, we briefly summarize the morphology of the synapse, the neurobiology of synaptic plasticity, and the role of synaptic plasticity, and review potential mechanisms underlying abnormal synaptic plasticity in SCZ. These abnormalities involve dendritic spines, postsynaptic density, and long-term potentiation-like plasticity. We also focus on cognitive dysfunction, which reflects impaired connectivity in SCZ. Additionally, the potential targets for the treatment of SCZ are discussed in this article. Therefore, understanding abnormal synaptic plasticity and impaired cognition in SCZ has an essential role in drug therapy.
Collapse
Affiliation(s)
- Xiu-Lin Wu
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Department of Medical Microbiology, School of Medicine, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Qiu-Jin Yan
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Department of Medical Microbiology, School of Medicine, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Fan Zhu
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Department of Medical Microbiology, School of Medicine, Wuhan University, Wuhan 430071, Hubei Province, China
| |
Collapse
|
8
|
Sullivan EDK, Locke LN, Wallin DJ, Khokhar JY, Bragg EM, Henricks AM, Doucette WT. The Impact of Adolescent Alcohol Exposure on Nicotine Behavioral Sensitization in the Adult Male Neonatal Ventral Hippocampal Lesion Rat. Front Behav Neurosci 2021; 15:760791. [PMID: 34858148 PMCID: PMC8632551 DOI: 10.3389/fnbeh.2021.760791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/12/2021] [Indexed: 11/13/2022] Open
Abstract
Nicotine and alcohol use is highly prevalent among patients with serious mental illness, including those with schizophrenia (SCZ), and this co-occurrence can lead to a worsening of medical and psychiatric morbidity. While the mechanistic drivers of co-occurring SCZ, nicotine use and alcohol use are unknown, emerging evidence suggests that the use of drugs during adolescence may increase the probability of developing psychiatric disorders. The current study used the neonatal ventral hippocampal lesion (NVHL) rat model of SCZ, which has previously been shown to have enhanced nicotine behavioral sensitization and, following adolescent alcohol, increased alcohol consumption. Given how commonly alcohol is used by adolescents that develop SCZ, we used the NVHL rat to determine how exposure to adolescent alcohol impacts the development of nicotine behavioral sensitization in adulthood. Male Sprague-Dawley rats underwent the NVHL surgery or a sham (control) surgery and subsequently, half of each group was allowed to drink alcohol during adolescence. Nicotine behavioral sensitization was assessed in adulthood with rats receiving subcutaneous injections of nicotine (0.5 mg/kg) each day for 3 weeks followed by a nicotine challenge session 2 weeks later. We demonstrate that all groups of rats became sensitized to nicotine and there were no NVHL-specific increases in nicotine behavioral sensitization. We also found that NVHL rats appeared to develop sensitization to the nicotine paired context and that adolescent alcohol exposure blocked this context sensitization. The current findings suggest that exposure to alcohol during adolescence can influence behaviors that manifest in the adult NVHL rat (i.e., context sensitization). Interestingly, nicotine behavioral sensitization levels were not altered in the NVHL groups regardless of adolescent alcohol exposure in contrast to prior reports.
Collapse
Affiliation(s)
- Emily D K Sullivan
- Department of Psychiatry, Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States.,Geisel School of Medicine, Dartmouth College, Hanover, NH, United States
| | - Liam N Locke
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, United States
| | - Diana J Wallin
- Department of Psychiatry, Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States.,Geisel School of Medicine, Dartmouth College, Hanover, NH, United States
| | - Jibran Y Khokhar
- Department of Psychiatry, Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States.,Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | - Elise M Bragg
- Department of Psychiatry, Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States
| | - Angela M Henricks
- Department of Psychiatry, Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States.,Department of Psychology, Washington State University, Pullman, WA, United States
| | - Wilder T Doucette
- Department of Psychiatry, Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States.,Geisel School of Medicine, Dartmouth College, Hanover, NH, United States
| |
Collapse
|
9
|
Smart K, Naganawa M, Baldassarri SR, Nabulsi N, Ropchan J, Najafzadeh S, Gao H, Navarro A, Barth V, Esterlis I, Cosgrove KP, Huang Y, Carson RE, Hillmer AT. PET Imaging Estimates of Regional Acetylcholine Concentration Variation in Living Human Brain. Cereb Cortex 2021; 31:2787-2798. [PMID: 33442731 PMCID: PMC8355478 DOI: 10.1093/cercor/bhaa387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/06/2020] [Accepted: 12/01/2020] [Indexed: 11/13/2022] Open
Abstract
Acetylcholine (ACh) has distinct functional roles in striatum compared with cortex, and imbalance between these systems may contribute to neuropsychiatric disease. Preclinical studies indicate markedly higher ACh concentrations in the striatum. The goal of this work was to leverage positron emission tomography (PET) imaging estimates of drug occupancy at cholinergic receptors to explore ACh variation across the human brain, because these measures can be influenced by competition with endogenous neurotransmitter. PET scans were analyzed from healthy human volunteers (n = 4) and nonhuman primates (n = 2) scanned with the M1-selective radiotracer [11C]LSN3172176 in the presence of muscarinic antagonist scopolamine, and human volunteers (n = 10) scanned with the α4β2* nicotinic ligand (-)-[18F]flubatine during nicotine challenge. In all cases, occupancy estimates within striatal regions were consistently lower (M1/scopolamine human scans, 31 ± 3.4% occupancy in striatum, 43 ± 2.9% in extrastriatal regions, p = 0.0094; nonhuman primate scans, 42 ± 26% vs. 69 ± 28%, p < 0.0001; α4β2*/nicotine scans, 67 ± 15% vs. 74 ± 16%, p = 0.0065), indicating higher striatal ACh concentration. Subject-level measures of these concentration differences were estimated, and whole-brain images of regional ACh concentration gradients were generated. These results constitute the first in vivo estimates of regional variation in ACh concentration in the living brain and offer a novel experimental method to assess potential ACh imbalances in clinical populations.
Collapse
Affiliation(s)
- Kelly Smart
- Yale PET Center, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, USA
| | - Mika Naganawa
- Yale PET Center, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, USA
| | - Stephen R Baldassarri
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Nabeel Nabulsi
- Yale PET Center, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, USA
| | - Jim Ropchan
- Yale PET Center, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, USA
| | | | - Hong Gao
- Yale PET Center, Yale School of Medicine, New Haven, CT 06510, USA
| | | | | | - Irina Esterlis
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA
| | - Kelly P Cosgrove
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA
| | - Yiyun Huang
- Yale PET Center, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, USA
| | - Richard E Carson
- Yale PET Center, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - Ansel T Hillmer
- Yale PET Center, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
10
|
Roles of the Functional Interaction between Brain Cholinergic and Dopaminergic Systems in the Pathogenesis and Treatment of Schizophrenia and Parkinson's Disease. Int J Mol Sci 2021; 22:ijms22094299. [PMID: 33919025 PMCID: PMC8122651 DOI: 10.3390/ijms22094299] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/14/2022] Open
Abstract
Most physiologic processes in the brain and related diseases involve more than one neurotransmitter system. Thus, elucidation of the interaction between different neurotransmitter systems could allow for better therapeutic approaches to the treatments of related diseases. Dopaminergic (DAergic) and cholinergic neurotransmitter system regulate various brain functions that include cognition, movement, emotion, etc. This review focuses on the interaction between the brain DAergic and cholinergic systems with respect to the pathogenesis and treatment of schizophrenia and Parkinson’s disease (PD). We first discussed the selection of motor plans at the level of basal ganglia, the major DAergic and cholinergic pathways in the brain, and the receptor subtypes involved in the interaction between the two signaling systems. Next, the roles of each signaling system were discussed in the context of the negative symptoms of schizophrenia, with a focus on the α7 nicotinic cholinergic receptor and the dopamine D1 receptor in the prefrontal cortex. In addition, the roles of the nicotinic and dopamine receptors were discussed in the context of regulation of striatal cholinergic interneurons, which play crucial roles in the degeneration of nigrostriatal DAergic neurons and the development of L-DOPA-induced dyskinesia in PD patients. Finally, we discussed the general mechanisms of nicotine-induced protection of DAergic neurons.
Collapse
|
11
|
Caton M, Ochoa ELM, Barrantes FJ. The role of nicotinic cholinergic neurotransmission in delusional thinking. NPJ SCHIZOPHRENIA 2020; 6:16. [PMID: 32532978 PMCID: PMC7293341 DOI: 10.1038/s41537-020-0105-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 05/15/2020] [Indexed: 02/07/2023]
Abstract
Delusions are a difficult-to-treat and intellectually fascinating aspect of many psychiatric illnesses. Although scientific progress on this complex topic has been challenging, some recent advances focus on dysfunction in neural circuits, specifically in those involving dopaminergic and glutamatergic neurotransmission. Here we review the role of cholinergic neurotransmission in delusions, with a focus on nicotinic receptors, which are known to play a part in some illnesses where these symptoms appear, including delirium, schizophrenia spectrum disorders, bipolar disorder, Parkinson, Huntington, and Alzheimer diseases. Beginning with what we know about the emergence of delusions in these illnesses, we advance a hypothesis of cholinergic disturbance in the dorsal striatum where nicotinic receptors are operative. Striosomes are proposed to play a central role in the formation of delusions. This hypothesis is consistent with our current knowledge about the mechanism of action of cholinergic drugs and with our abstract models of basic cognitive mechanisms at the molecular and circuit levels. We conclude by pointing out the need for further research both at the clinical and translational levels.
Collapse
Affiliation(s)
- Michael Caton
- The Permanente Medical Group, Kaiser Santa Rosa Department of Psychiatry, 2235 Mercury Way, Santa Rosa, CA, 95047, USA
- Heritage Oaks Hospital, 4250 Auburn Boulevard, Sacramento, CA, 95841, USA
| | - Enrique L M Ochoa
- Heritage Oaks Hospital, 4250 Auburn Boulevard, Sacramento, CA, 95841, USA
- Volunteer Clinical Faculty, Department of Psychiatry and Behavioral Sciences, University of California at Davis, 2230 Stockton Boulevard, Sacramento, CA, 95817, USA
| | - Francisco J Barrantes
- Laboratory of Molecular Neurobiology, Institute for Biomedical Research (BIOMED), Faculty of Medical Sciences, UCA-CONICET, Av. Alicia Moreau de Justo 1600, C1107AFF, Buenos Aires, Argentina.
| |
Collapse
|
12
|
Nikiforuk A, Litwa E, Krawczyk M, Popik P, Arias H. Desformylflustrabromine, a positive allosteric modulator of α4β2-containing nicotinic acetylcholine receptors, enhances cognition in rats. Pharmacol Rep 2020; 72:589-599. [PMID: 32207091 PMCID: PMC7329799 DOI: 10.1007/s43440-020-00092-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 11/30/2022]
Abstract
Rationale The α4β2 nicotinic acetylcholine receptors (α4β2-nAChRs) may represent useful targets for cognitive improvement. It has been recently proposed that a strategy based on positive allosteric modulation of α4β2-nAChRs reveals several advantages over the direct agonist approach. Nevertheless, the procognitive effects of α4β2-nAChR positive allosteric modulators (PAMs) have not been extensively characterized. Objectives The aim of the present study was to evaluate the procognitive efficacy of desformylflustrabromine (dFBr), a selective α4β2-nAChR PAM. Methods Cognitive effects were investigated in the novel object recognition task (NORT) and the attentional set-shifting task (ASST) in rats. Results The results demonstrate that dFBr attenuated the delay-induced impairment in NORT performance and facilitated cognitive flexibility in the ASST. The beneficial effects of dFBr were inhibited by dihydro-β-erythroidine, a relatively selective α4β2-nAChR antagonist, indicating the involvement of α4β2-nAChRs in cognitive processes. The tested α4β2-PAM was also effective against ketamine- and scopolamine-induced deficits of object recognition memory. Moreover, procognitive effects were also observed after combined treatment with inactive doses of dFBr and TC-2403, a selective α4β2-nAChR agonist. Conclusions These findings indicate that dFBr presents procognitive activity, supporting the strategy based on α4β2-nAChR potentiation as a plausible therapy for cognitive impairment. Electronic supplementary material The online version of this article (10.1007/s43440-020-00092-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Agnieszka Nikiforuk
- Department of Behavioral Neuroscience and Drug Development, Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smetna Street, 31-343, Krakow, Poland.
| | - Ewa Litwa
- Department of Behavioral Neuroscience and Drug Development, Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smetna Street, 31-343, Krakow, Poland
| | - Martyna Krawczyk
- Department of Behavioral Neuroscience and Drug Development, Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smetna Street, 31-343, Krakow, Poland
| | - Piotr Popik
- Department of Behavioral Neuroscience and Drug Development, Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smetna Street, 31-343, Krakow, Poland
| | - Hugo Arias
- Department of Pharmacology and Physiology, Oklahoma State University College of Osteopathic Medicine, Tahlequah, OK, USA
| |
Collapse
|
13
|
Quigley H, MacCabe JH. The relationship between nicotine and psychosis. Ther Adv Psychopharmacol 2019; 9:2045125319859969. [PMID: 31308936 PMCID: PMC6604123 DOI: 10.1177/2045125319859969] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 05/15/2019] [Indexed: 01/20/2023] Open
Abstract
Cigarette smoking is strongly associated with psychotic disorders such as schizophrenia. For several decades it was assumed that the relationship could be explained by reverse causation; that smoking was secondary to the illness itself, either through self-medication or a process of institutionalization, or was entirely explained by confounding by cannabis use or social factors. However, studies have exposed that such hypotheses cannot fully explain the association, and more recently a bidirectional relationship has been proposed wherein cigarette smoking may be causally related to risk of psychosis, possibly via a shared genetic liability to smoking and psychosis. We review the evidence for these candidate explanations, using findings from the latest epidemiological, neuroimaging, genetic and preclinical work.
Collapse
Affiliation(s)
- Harriet Quigley
- Department of Psychosis Studies, Institute of
Psychiatry, Psychology and Neuroscience, Kings College London, SE5 8AF,
Denmark Hill, London, UK
| | - James H. MacCabe
- Department of Psychosis Studies, Institute of
Psychiatry, Psychology and Neuroscience, Kings College London, London,
UK
| |
Collapse
|
14
|
Noda Y, Barr MS, Zomorrodi R, Cash RFH, Rajji TK, Farzan F, Chen R, George TP, Daskalakis ZJ, Blumberger DM. Reduced Short-Latency Afferent Inhibition in Prefrontal but not Motor Cortex and Its Association With Executive Function in Schizophrenia: A Combined TMS-EEG Study. Schizophr Bull 2018; 44:193-202. [PMID: 28379529 PMCID: PMC5768054 DOI: 10.1093/schbul/sbx041] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND Cholinergic dysfunction is increasingly assumed to be involved in the pathophysiology of schizophrenia. Short-latency afferent inhibition (SAI) is a transcranial magnetic stimulation (TMS) paradigm that has been shown to assay central cholinergic activity from the motor cortex (M1). Recently, we established a method to index SAI from the dorsolateral prefrontal cortex (DLPFC), an area implicated in the pathophysiology of schizophrenia. We investigated SAI in M1 and DLPFC in schizophrenia. We hypothesized that modulation of N100 on TMS-evoked potentials (TEPs) from the DLPFC would be attenuated in patients with schizophrenia compared to healthy controls. METHODS SAI was examined in 12 patients, whose age was matched to controls, using TMS combined with electroencephalography (EEG). SAI was recorded with TMS applied to left M1 (M1-SAI) and DLPFC (DLPFC-SAI). For group comparison, we used the SAI data of healthy participants in our previous study. RESULTS In patients, N100 TEP was significantly attenuated with DLPFC-SAI, whereas P180 TEP was significantly increased with M1-SAI. Between patients and controls, there were significant differences in modulation of P180 TEP by M1-SAI (t22 = -2.748, P = .012; patients > controls) and N100 TEP by DLPFC-SAI (t22 = 5.456, P < .0001; patients < controls). Further, modulation of N100 TEP by DLPFC-SAI significantly correlated with executive function (r = -.740, P = .006, N = 12). CONCLUSION Our findings suggest that DLPFC-SAI but not M1-SAI were reduced in patients with schizophrenia and this was linked to deficits in cognition. This may reflect prefrontal cholinergic deficits and represent a biomarker for cholinergic and executive dysfunction in patients with schizophrenia.
Collapse
Affiliation(s)
- Yoshihiro Noda
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Mera S Barr
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Addictions Division, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Reza Zomorrodi
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Robin F H Cash
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada
- Division of Brain, Imaging and Behaviour—Systems Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Monash Alfred Psychiatry Research Centre, Monash University Central Clinical School and The Alfred, Melbourne, Australia
| | - Tarek K Rajji
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Faranak Farzan
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Robert Chen
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada
- Division of Brain, Imaging and Behaviour—Systems Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Tony P George
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Addictions Division, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Zafiris J Daskalakis
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Daniel M Blumberger
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| |
Collapse
|
15
|
Schafer M, Kim JW, Joseph J, Xu J, Frangou S, Doucet GE. Imaging Habenula Volume in Schizophrenia and Bipolar Disorder. Front Psychiatry 2018; 9:456. [PMID: 30319463 PMCID: PMC6165901 DOI: 10.3389/fpsyt.2018.00456] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/03/2018] [Indexed: 02/01/2023] Open
Abstract
The habenula (Hb), a bilateral nucleus located next to the dorsomedial thalamus, is of particular relevance to psychiatric disorders based on preclinical evidence linking the Hb to depressive and amotivational states. However, studies in clinical samples are scant because segmentation of the Hb in neuroimaging data is challenging due to its small size and low contrast from the surrounding tissues. Negative affective states dominate the clinical course of schizophrenia and bipolar disorder and represent a major cause of disability. Diagnosis-related alterations in the volume of Hb in these disorders have therefore been hypothesized but remain largely untested. To probe this question, we used a recently developed objective and reliable semi-automated Hb segmentation method based on myelin-sensitive magnetic resonance imaging (MRI) data. We ascertained case-control differences in Hb volume from high resolution structural MRI data obtained from patients with schizophrenia (n = 95), bipolar disorder (n = 44) and demographically matched healthy individuals (n = 52). Following strict quality control of the MRI data, the final sample comprised 68 patients with schizophrenia, 32 with bipolar disorder and 40 healthy individuals. Regardless of diagnosis, age, sex, and IQ were not correlated with Hb volume. This was also the case for age of illness onset and medication (i.e., antipsychotic dose and lithium-treatment status). Case-control differences in Hb volume did not reach statistical significance; their effect size (Cohen's d) was negligible on the left (schizophrenia: 0.14; bipolar disorder: -0.03) and small on the right (schizophrenia: 0.34; bipolar disorder: 0.26). Nevertheless, variability in the volume of the right Hb was associated with suicidality in the entire patient sample (ρ = 0.29, p = 0.004) as well as in each patient group (bipolar disorder: ρ = 0.34, p = 0.04; schizophrenia: ρ = 0.25, p = 0.04). These findings warrant replication in larger samples and longitudinal designs and encourage more comprehensive characterization of Hb connectivity and function in clinical populations.
Collapse
Affiliation(s)
- Matthew Schafer
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Joo-Won Kim
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Joshmi Joseph
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Junqian Xu
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Sophia Frangou
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Gaelle E Doucet
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
16
|
Malik N, Gifford AN, Sandell J, Tuchman D, Ding YS. Synthesis and In Vitro and In Vivo Evaluation of [ 3H]LRRK2-IN-1 as a Novel Radioligand for LRRK2. Mol Imaging Biol 2017; 19:837-845. [PMID: 28289968 PMCID: PMC5597475 DOI: 10.1007/s11307-017-1070-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
PURPOSE LRRK2 (leucine-rich repeat kinase 2) has recently been proven to be a promising drug target for Parkinson's disease (PD) due to an apparent enhanced activity caused by mutations associated with familial PD. To date, there have been no reports in which a LRRK2 inhibitor has been radiolabeled and used for in in vitro or in vivo studies of LRRK2. In the present study, we radiolabeled the LRRK2 ligand, LRRK-IN-1, for the purposes of performing in vitro (IC50, K d , B max, autoradiography) and in vivo (biodistribution, and blocking experiments) evaluations in rodents and human striatum tissues. PROCEDURES [3H]LRRK2-IN-1 was prepared with high radiochemical purity (>99 %) and a specific activity of 41 Ci/mmol via tritium/hydrogen (T/H) exchange using Crabtree's catalyst. For IC50, K d , and B max determination, LRRK2-IN-1 was used as a competing drug for nonspecific binding assessment. The specific binding of the tracer was further evaluated via an in vivo blocking study in mice with a potent LRRK2 inhibitor, Pf-06447475. RESULTS In vitro binding studies demonstrated a saturable binding site for [3H]LRRK2-IN-1 in rat kidney, rat brain striatum and human brain striatum with K d of 26 ± 3 and 43 ± 8, 48 ± 2 nM, respectively. In rat, the density of LRRK2 binding sites (B max) was higher in kidney (6.4 ± 0.04 pmol/mg) than in brain (2.5 ± 0.03 pmol/mg), however, in human brain striatum, the B max was 0.73 ± 0.01 pmol/mg protein. Autoradiography imaging in striatum of rat and human brain tissues gave results consistent with binding studies. In in vivo biodistribution and blocking studies in mice, co-administration with Pf-06447475 (10 mg/kg) reduced the uptake of [3H]LRRK2-IN-1 (%ID/g) by 50-60% in the kidney or brain. CONCLUSION The high LRRK2 brain density observed in our study suggests the feasibility for positron emission tomography imaging of LRRK2 (a potential target) with radioligands of higher affinity and specificity.
Collapse
Affiliation(s)
- Noeen Malik
- Department of Radiology, New York University School of Medicine, New York, USA
| | | | | | - Daniel Tuchman
- Department of Radiology, New York University School of Medicine, New York, USA
| | - Yu-Shin Ding
- Department of Radiology, New York University School of Medicine, New York, USA.
- Department of Psychiatry, New York University School of Medicine, New York, USA.
| |
Collapse
|
17
|
Effects of varenicline on motor cortical plasticity in non-smokers with schizophrenia. Schizophr Res 2016; 178:50-55. [PMID: 27613505 DOI: 10.1016/j.schres.2016.08.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 08/29/2016] [Accepted: 08/31/2016] [Indexed: 01/13/2023]
Abstract
BACKGROUND Nicotinic acetylcholine receptors (nAChR) have been implicated in the pathophysiology of schizophrenia, and deficits in this system may contribute to high rates of cigarette smoking in this population. nAChR stimulation may modulate neuroplasticity, or long-term potentiation (LTP), which is a key mediator of cognitive performance. Varenicline is a nAChR partial agonist that may improve cognitive deficits in both smokers and non-smokers with schizophrenia; however, the mechanism by which varenicline alters cognition in schizophrenia remains unclear. Thus, the aim of this randomized, double-blind, placebo-controlled, crossover study was to determine the effects of varenicline on LTP-like plasticity indexed through transcranial magnetic stimulation (TMS) in non-smokers with schizophrenia. METHODS Varenicline (0.5mg BID × 5 doses) or placebo was administered to 9 non-smokers with schizophrenia and 10 non-smoker healthy subjects. LTP-like plasticity was induced by TMS and paired associative stimulation (PAS) at 0.1Hz to the left motor cortex and measured every 15min for two hours post-PAS. RESULTS There was a significant diagnosis × medication interaction on peak potentiation (F (3, 34)=6.04, p<0.02) and post-hoc analyses indicated that varenicline significantly increased LTP in schizophrenia and decreased LTP in healthy subjects. CONCLUSIONS These preliminary findings suggest that varenicline may produce differential effects in non-smoking schizophrenia compared to control subjects. Given the role of LTP in learning and memory, these observations may suggest the potential for varenicline in the treatment of cognitive deficits in patients with schizophrenia.
Collapse
|
18
|
Woodruff-Pak DS, Gould TJ. Neuronal Nicotinic Acetylcholine Receptors: Involvement in Alzheimer’s Disease and Schizophrenia. ACTA ACUST UNITED AC 2016; 1:5-20. [PMID: 17715584 DOI: 10.1177/1534582302001001002] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) play a role in a variety of diseases of the central nervous system including Alzheimer's disease (AD) and schizophrenia. There is great interest in evaluating disease-related nAChR changes, and pharmacological treatment of nAChR deficits is a promising therapy. In AD, 7 nAChRs remain relatively stable, contrasting to 4 2 nAChRs that are lost in substantial numbers. -amyloid, a major neuropathology in AD, blocks 4 2 and 7 nAChRs. Agonists selective to 7 nAChRs are neuroprotective against amyloid. Paradoxically, 7 nAChRs may function as receptors for -amyloid. These results indicate 7 nAChR antagonists may be appropriate therapy in AD. In schizophrenia, 7 nAChRs are significantly reduced in hippocampus and neocortex. The exceptionally high rate of smoking in schizophrenics is likely a form of self-medication. Therapy with 7 nAChR agonists relieves some schizophrenic symptoms. Despite disparities in etiology and symptomatology, AD and schizophrenia share a target for therapeutic intervention— 7 nAChRs.
Collapse
|
19
|
Parikh V, Kutlu MG, Gould TJ. nAChR dysfunction as a common substrate for schizophrenia and comorbid nicotine addiction: Current trends and perspectives. Schizophr Res 2016; 171:1-15. [PMID: 26803692 PMCID: PMC4762752 DOI: 10.1016/j.schres.2016.01.020] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 01/07/2016] [Accepted: 01/10/2016] [Indexed: 11/18/2022]
Abstract
INTRODUCTION The prevalence of tobacco use in the population with schizophrenia is enormously high. Moreover, nicotine dependence is found to be associated with symptom severity and poor outcome in patients with schizophrenia. The neurobiological mechanisms that explain schizophrenia-nicotine dependence comorbidity are not known. This study systematically reviews the evidence highlighting the contribution of nicotinic acetylcholine receptors (nAChRs) to nicotine abuse in schizophrenia. METHODS Electronic data bases (Medline, Google Scholar, and Web of Science) were searched using the selected key words that match the aims set forth for this review. A total of 276 articles were used for the qualitative synthesis of this review. RESULTS Substantial evidence from preclinical and clinical studies indicated that dysregulation of α7 and β2-subunit containing nAChRs account for the cognitive and affective symptoms of schizophrenia and nicotine use may represent a strategy to remediate these symptoms. Additionally, recent meta-analyses proposed that early tobacco use may itself increase the risk of developing schizophrenia. Genetic studies demonstrating that nAChR dysfunction that may act as a shared vulnerability factor for comorbid tobacco dependence and schizophrenia were found to support this view. The development of nAChR modulators was considered an effective therapeutic strategy to ameliorate psychiatric symptoms and to promote smoking cessation in schizophrenia patients. CONCLUSIONS The relationship between schizophrenia and smoking is complex. While the debate for the self-medication versus addiction vulnerability hypothesis continues, it is widely accepted that a dysfunction in the central nAChRs represent a common substrate for various symptoms of schizophrenia and comorbid nicotine dependence.
Collapse
Affiliation(s)
- Vinay Parikh
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19112, United States.
| | - Munir Gunes Kutlu
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19112, United States
| | - Thomas J Gould
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19112, United States
| |
Collapse
|
20
|
Núñez C, Stephan-Otto C, Cuevas-Esteban J, Maria Haro J, Huerta-Ramos E, Ochoa S, Usall J, Brébion G. Effects of caffeine intake and smoking on neurocognition in schizophrenia. Psychiatry Res 2015; 230:924-31. [PMID: 26614014 DOI: 10.1016/j.psychres.2015.11.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 10/30/2015] [Accepted: 11/15/2015] [Indexed: 02/09/2023]
Abstract
Although most studies support the beneficial effects of caffeine on neurocognition, its effects have never been assessed in psychiatric patients. In addition, results from studies in smokers are contradictory. Moreover, there are no data available about the neurocognitive effects of caffeine and tobacco together. We explored the concomitant effects of regular caffeine and tobacco intake on neurocognition in 52 schizophrenic patients and 61 healthy controls. Verbal fluency, processing speed, and working, visual and verbal memory were assessed. For each measurement, two tasks with two levels of complexity were administered. Our results showed that caffeine intake had beneficial effects on male schizophrenic patients only in complex tasks requiring deeper cognitive processing (semantic fluency, cognitive speed, working memory, and visual memory). Female patients and controls were unaffected. In contrast, smoking had a negative effect on male, but not on female, schizophrenic patients in semantic fluency. The effects of smoking in controls were inconsistent. In conclusion, our data showed, for the first time, beneficial effects of caffeine intake on neurocognition in male schizophrenic patients. These data suggest that further research of therapeutics based on caffeine is needed, as this could be beneficial for schizophrenic patients. In contrast, smoking appears to be detrimental.
Collapse
Affiliation(s)
- Christian Núñez
- Parc Sanitari Sant Joan de Déu, CIBERSAM, Universitat de Barcelona, Sant Boi de Llobregat (Barcelona), C/Doctor Antoni Pujadas, 42, 08830 Sant Boi de Llobregat, Spain.
| | - Christian Stephan-Otto
- Parc Sanitari Sant Joan de Déu, CIBERSAM, Universitat de Barcelona, Sant Boi de Llobregat (Barcelona), C/Doctor Antoni Pujadas, 42, 08830 Sant Boi de Llobregat, Spain
| | - Jorge Cuevas-Esteban
- Parc Sanitari Sant Joan de Déu, CIBERSAM, Universitat de Barcelona, Sant Boi de Llobregat (Barcelona), C/Doctor Antoni Pujadas, 42, 08830 Sant Boi de Llobregat, Spain
| | - Josep Maria Haro
- Parc Sanitari Sant Joan de Déu, CIBERSAM, Universitat de Barcelona, Sant Boi de Llobregat (Barcelona), C/Doctor Antoni Pujadas, 42, 08830 Sant Boi de Llobregat, Spain
| | - Elena Huerta-Ramos
- Parc Sanitari Sant Joan de Déu, CIBERSAM, Universitat de Barcelona, Sant Boi de Llobregat (Barcelona), C/Doctor Antoni Pujadas, 42, 08830 Sant Boi de Llobregat, Spain
| | - Susana Ochoa
- Parc Sanitari Sant Joan de Déu, CIBERSAM, Universitat de Barcelona, Sant Boi de Llobregat (Barcelona), C/Doctor Antoni Pujadas, 42, 08830 Sant Boi de Llobregat, Spain
| | - Judith Usall
- Parc Sanitari Sant Joan de Déu, CIBERSAM, Universitat de Barcelona, Sant Boi de Llobregat (Barcelona), C/Doctor Antoni Pujadas, 42, 08830 Sant Boi de Llobregat, Spain
| | - Gildas Brébion
- Parc Sanitari Sant Joan de Déu, CIBERSAM, Universitat de Barcelona, Sant Boi de Llobregat (Barcelona), C/Doctor Antoni Pujadas, 42, 08830 Sant Boi de Llobregat, Spain
| |
Collapse
|
21
|
Berg SA, Sentir AM, Bell RL, Engleman EA, Chambers RA. Nicotine effects in adolescence and adulthood on cognition and α₄β₂-nicotinic receptors in the neonatal ventral hippocampal lesion rat model of schizophrenia. Psychopharmacology (Berl) 2015; 232:1681-92. [PMID: 25388292 PMCID: PMC4412763 DOI: 10.1007/s00213-014-3800-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 10/31/2014] [Indexed: 11/26/2022]
Abstract
RATIONAL Nicotine use in schizophrenia has traditionally been explained as "self-medication" of cognitive and/or nicotinic acetylcholinergic receptor (nAChR) abnormalities. OBJECTIVES We test this hypothesis in a neurodevelopmental rat model of schizophrenia that shows increased addiction behaviors including enhanced nicotine reinforcement and drug-seeking. METHODS Nicotine transdermal patch (5 mg/kg/day vs. placebo × 10 days in adolescence or adulthood) effects on subsequent radial-arm maze learning (15 sessions) and frontal-cortical-striatal nAChR densities (α4β2; [3H]-epibatidine binding) were examined in neonatal ventral hippocampal lesion (NVHL) and SHAM-operated rats. RESULTS NVHL cognitive deficits were not differentially affected by nicotine history compared to SHAMs. Nicotine history produced minimal cognitive effects while increasing food-reward consumption on the maze, compounding with NVHL-induced overconsumption. Acute nicotine (0.5 mg/kg) delivered before the final maze sessions produced modest improvements in maze performance in rats with nicotine patch histories only, but not differentially so in NVHLs. Consistent with in vivo neuroimaging of β2 nAChR binding in schizophrenia smokers vs. non-smokers and healthy controls, adult NVHLs showed 12% reductions in nAChR binding in MPFC (p < 0.05) but not ventral striatum (<5% changes, p > .40), whereas nicotine history elevated nAChRs across both regions (>30%, p < 0.001) without interacting with NVHLs. Adolescent vs. adult nicotine exposure did not alter nAChRs differentially. CONCLUSIONS Although replicating nicotine-induced upregulation of nAChRs in human smokers and demonstrating NVHL validity in terms of schizophrenia-associated nAChR density patterns, these findings do not support hypotheses explaining increased nicotine use in schizophrenia as reflecting illness-specific effects of nicotine to therapeutically alter cognition or nAChR densities.
Collapse
Affiliation(s)
- Sarah A Berg
- Laboratory for Translational Neuroscience of Dual Diagnosis & Development, Suite 314D, 320 West 16th Street, Indianapolis, IN, 46202, USA,
| | | | | | | | | |
Collapse
|
22
|
α4β2 nicotinic receptor stimulation of the GABAergic system within the orbitofrontal cortex ameliorates the severe crossmodal object recognition impairment in ketamine-treated rats: Implications for cognitive dysfunction in schizophrenia. Neuropharmacology 2015; 90:42-52. [DOI: 10.1016/j.neuropharm.2014.11.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 10/31/2014] [Accepted: 11/10/2014] [Indexed: 11/23/2022]
|
23
|
Lim SAO, Kang UJ, McGehee DS. Striatal cholinergic interneuron regulation and circuit effects. Front Synaptic Neurosci 2014; 6:22. [PMID: 25374536 PMCID: PMC4204445 DOI: 10.3389/fnsyn.2014.00022] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 09/05/2014] [Indexed: 01/11/2023] Open
Abstract
The striatum plays a central role in motor control and motor learning. Appropriate responses to environmental stimuli, including pursuit of reward or avoidance of aversive experience all require functional striatal circuits. These pathways integrate synaptic inputs from limbic and cortical regions including sensory, motor and motivational information to ultimately connect intention to action. Although many neurotransmitters participate in striatal circuitry, one critically important player is acetylcholine (ACh). Relative to other brain areas, the striatum contains exceptionally high levels of ACh, the enzymes that catalyze its synthesis and breakdown, as well as both nicotinic and muscarinic receptor types that mediate its postsynaptic effects. The principal source of striatal ACh is the cholinergic interneuron (ChI), which comprises only about 1-2% of all striatal cells yet sends dense arbors of projections throughout the striatum. This review summarizes recent advances in our understanding of the factors affecting the excitability of these neurons through acute effects and long term changes in their synaptic inputs. In addition, we discuss the physiological effects of ACh in the striatum, and how changes in ACh levels may contribute to disease states during striatal dysfunction.
Collapse
Affiliation(s)
| | - Un Jung Kang
- Department of Neurology, Columbia University New York, NY, USA
| | - Daniel S McGehee
- Committee on Neurobiology, University of Chicago Chicago, IL, USA ; Department of Anesthesia and Critical Care, University of Chicago Chicago, IL, USA
| |
Collapse
|
24
|
Molas S, Dierssen M. The role of nicotinic receptors in shaping and functioning of the glutamatergic system: a window into cognitive pathology. Neurosci Biobehav Rev 2014; 46 Pt 2:315-25. [PMID: 24879992 DOI: 10.1016/j.neubiorev.2014.05.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 04/13/2014] [Accepted: 05/20/2014] [Indexed: 10/25/2022]
Abstract
The involvement of the cholinergic system in learning, memory and attention has long been recognized, although its neurobiological mechanisms are not fully understood. Recent evidence identifies the endogenous cholinergic signaling via nicotinic acetylcholine receptors (nAChRs) as key players in determining the morphological and functional maturation of the glutamatergic system. Here, we review the available experimental and clinical evidence of nAChRs contribution to the establishment of the glutamatergic system, and therefore to cognitive function. We provide some clues of the putative underlying molecular mechanisms and discuss recent human studies that associate genetic variability of the genes encoding nAChR subunits with cognitive disorders. Finally, we discuss the new avenues to therapeutically targeting nAChRs in persons with cognitive dysfunction for which the α7-nAChR subunit is an important etiological mechanism.
Collapse
Affiliation(s)
- Susanna Molas
- Systems Biology Program, Centre for Genomic Regulation (CRG), Barcelona E-08003, Spain; University Pompeu Fabra (UPF), Spain; CIBER de Enfermedades Raras (CIBERER), Barcelona E-08003, Spain
| | - Mara Dierssen
- Systems Biology Program, Centre for Genomic Regulation (CRG), Barcelona E-08003, Spain; University Pompeu Fabra (UPF), Spain; CIBER de Enfermedades Raras (CIBERER), Barcelona E-08003, Spain.
| |
Collapse
|
25
|
Lewis AS, Picciotto MR. High-affinity nicotinic acetylcholine receptor expression and trafficking abnormalities in psychiatric illness. Psychopharmacology (Berl) 2013; 229:477-85. [PMID: 23624811 PMCID: PMC3766461 DOI: 10.1007/s00213-013-3126-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 04/15/2013] [Indexed: 12/22/2022]
Abstract
RATIONALE Nicotinic acetylcholine receptors (nAChRs) are a critical component of the cholinergic system of neurotransmission in the brain that modulates important physiological processes such as reward, cognition, and mood. Abnormalities in this system are accordingly implicated in multiple psychiatric illnesses, including addiction, schizophrenia, and mood disorders. There is significantly increased tobacco use, and therefore nicotine intake, in patient populations, and pharmacological agents that act on various nicotinic receptor subtypes ameliorate clinical features of these disorders. Better understanding of the molecular mechanisms underlying cholinergic dysfunction in psychiatric disease will permit more targeted design of novel therapeutic agents. RESULTS The objective of this review is to describe the multiple cellular pathways through which chronic nicotine exposure regulates nAChR expression, and to juxtapose these mechanisms with evidence for altered expression of high-affinity nAChRs in human psychiatric illness. Here, we summarize multiple studies from pre-clinical animal models to human in vivo imaging and post-mortem experiments demonstrating changes in nAChR regulation and expression in psychiatric illness. CONCLUSIONS We conclude that a mechanistic explanation of nAChR abnormalities in psychiatric illness will arise from a fuller understanding of normal nAChR trafficking, along with the detailed study of human tissue, perhaps using novel biotechnological advances, such as induced pluripotent stem cells.
Collapse
Affiliation(s)
| | - Marina R. Picciotto
- Correspondence Dr. Marina R. Picciotto, Department of Psychiatry, Yale University School of Medicine, 34 Park Street, 3rd Floor Research, New Haven, CT, 06508, USA, , Phone: (203) 737-2041
| |
Collapse
|
26
|
Cather C, Dyer MA, Burrell HA, Hoeppner B, Goff DC, Evins AE. An Open Trial of Relapse Prevention Therapy for Smokers With Schizophrenia. J Dual Diagn 2013; 9:87-93. [PMID: 23750123 PMCID: PMC3671354 DOI: 10.1080/15504263.2012.749559] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
OBJECTIVE Following successful smoking cessation, smokers with schizophrenia are vulnerable to relapse shortly after treatment discontinuation. Our objective was to assess the feasibility and effectiveness of a 12-month relapse prevention intervention in recently abstinent smokers with schizophrenia. METHOD Adult outpatient smokers with schizophrenia received weekly cognitive behavioral therapy groups, bupropion slow release, transdermal nicotine patch, and nicotine gum or lozenge for three months. Subjects with seven-day point prevalence abstinence at month 3 received an additional 12 months (months 4-15) of therapy with bupropion, transdermal nicotine patch, and nicotine gum/lozenge in conjunction with relapse prevention-based cognitive behavioral therapy groups that were held weekly in month 4, biweekly in months 5-6, and monthly in months 7-15. RESULTS Seventeen of 41 participants (41.5%) attained biochemically verified self-report of seven-day point prevalence abstinence at the end of three months of treatment and entered relapse prevention treatment. There was an 81% attendance rate at relapse prevention groups. At the end of the 12-month relapse prevention phase (month 15 overall), 11 of 17 (64.7%) demonstrated biochemically verified seven-day point prevalence abstinence, and 10 of 17 (58.8%) reported four-week continuous abstinence. Almost one quarter of the sample (23.5%) demonstrated long-term prolonged abstinence through the end of the trial. There were no clinically detected cases of psychiatric symptom exacerbation. One participant, who was managed as an outpatient, self-reported psychiatric symptom exacerbation in the interim period between study visits. CONCLUSIONS Extended duration smoking cessation treatment is well-tolerated and may improve smoking outcomes for recently abstinent smokers with schizophrenia. Controlled trials are warranted.
Collapse
Affiliation(s)
- Corinne Cather
- Schizophrenia Program, Massachusetts General Hospital and Harvard Medical School ; Center for Addiction Medicine, Massachusetts General Hospital and Harvard Medical School ; Department of Psychiatry of the Massachusetts General Hospital and Harvard Medical School
| | | | | | | | | | | |
Collapse
|
27
|
Mendez IA, Damborsky JC, Winzer-Serhan UH, Bizon JL, Setlow B. Α4β2 and α7 nicotinic acetylcholine receptor binding predicts choice preference in two cost benefit decision-making tasks. Neuroscience 2012; 230:121-31. [PMID: 23159316 DOI: 10.1016/j.neuroscience.2012.10.067] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 10/29/2012] [Accepted: 10/30/2012] [Indexed: 11/27/2022]
Abstract
Nicotinic receptors have been linked to a wide range of cognitive and behavioral functions, but surprisingly little is known about their involvement in cost benefit decision making. The goal of these experiments was to determine how nicotinic acetylcholine receptor (nAChR) expression is related to two forms of cost benefit decision making. Male Long Evans rats were tested in probability- and delay-discounting tasks, which required discrete trial choices between a small reward and a large reward associated with varying probabilities of omission and varying delays to reward delivery, respectively. Following testing, radioligand binding to α4β2 and α7 nAChR subtypes in brain regions implicated in cost benefit decision making was examined. Significant linear relationships were observed between choice of the large delayed reward in the delay discounting task and α4β2 receptor binding in both the dorsal and ventral hippocampus. Additionally, trends were found suggesting that choice of the large costly reward in both discounting tasks was inversely related to α4β2 receptor binding in the medial prefrontal cortex and nucleus accumbens shell. Similar trends suggested that choice of the large delayed reward in the delay discounting task was inversely related to α4β2 receptor binding in the orbitofrontal cortex, nucleus accumbens core, and basolateral amygdala, as well as to α7 receptor binding in the basolateral amygdala. These data suggest that nAChRs (particularly α4β2) play both unique and common roles in decisions that require consideration of different types of reward costs.
Collapse
Affiliation(s)
- I A Mendez
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA.
| | | | | | | | | |
Collapse
|
28
|
D’Souza DC, Esterlis I, Carbuto M, Krasenics M, Seibyl J, Bois F, Pittman B, Ranganathan M, Cosgrove K, Staley J. Lower ß2*-nicotinic acetylcholine receptor availability in smokers with schizophrenia. Am J Psychiatry 2012; 169:326-34. [PMID: 22193533 PMCID: PMC3881431 DOI: 10.1176/appi.ajp.2011.11020189] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE There is a strong association between cigarette smoking and schizophrenia. Nicotine's actions in the brain are mediated through nicotinic acetylcholine receptors. Those containing α(4) and β(2) subunits are the most abundant ones in the brain, have the highest affinity for nicotine, and are critical in mediating nicotine's reinforcing properties. Healthy tobacco smokers have significantly higher levels of β(2)*-nicotinic acetylcholine receptors than do nonsmokers. However, in postmortem studies, smokers with schizophrenia do not show these higher levels. The purpose of this study was to measure β(2)*-nicotinic acetylcholine receptors in vivo and to relate levels to concurrent behavioral measures of smoking and schizophrenia. METHOD By using single-photon emission computed tomography with the β(2)*-nicotinic acetylcholine receptor agonist radiotracer [(123)I]5-IA-85380, the availability of receptors was measured in smokers with schizophrenia (11 men) and matched comparison smokers after 1 week of confirmed smoking abstinence. RESULTS Smokers with schizophrenia showed significantly lower (21%-26%) β(2)*-nicotinic acetylcholine receptor availability relative to comparison smokers in the frontal cortex, parietal cortex, and thalamus (in descending order). There was a specific and robust negative correlation between regional β(2)*-nicotinic acetylcholine receptor availability and negative symptoms. CONCLUSIONS These are the first in vivo findings of lower β(2)*-nicotinic acetylcholine receptor availability in smokers with schizophrenia. The relationship between β(2)*-nicotinic acetylcholine receptor availability and negative symptoms may explain the high rates of smoking in schizophrenia and the relationship between smoking and negative symptoms. Findings support the development of medications targeting the β(2)*-nicotinic acetylcholine receptor system for the treatment of negative symptoms.
Collapse
Affiliation(s)
- Deepak Cyril D’Souza
- Psychiatry Service, VA Connecticut Healthcare System, West Haven, CT, USA
,Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, CT, USA
,Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Irina Esterlis
- Psychiatry Service, VA Connecticut Healthcare System, West Haven, CT, USA
,Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Michelle Carbuto
- Psychiatry Service, VA Connecticut Healthcare System, West Haven, CT, USA
,Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, CT, USA
,Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Maegan Krasenics
- Psychiatry Service, VA Connecticut Healthcare System, West Haven, CT, USA
,Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, CT, USA
,Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - John Seibyl
- Psychiatry Service, VA Connecticut Healthcare System, West Haven, CT, USA
,Institute for Neurodegenerative Disorders, New Haven, T 06510, USA
| | - Frederic Bois
- Psychiatry Service, VA Connecticut Healthcare System, West Haven, CT, USA
,Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Brian Pittman
- Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, CT, USA
,Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Mohini Ranganathan
- Psychiatry Service, VA Connecticut Healthcare System, West Haven, CT, USA
,Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, CT, USA
,Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Kelly Cosgrove
- Psychiatry Service, VA Connecticut Healthcare System, West Haven, CT, USA
,Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Julie Staley
- Psychiatry Service, VA Connecticut Healthcare System, West Haven, CT, USA
,Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, CT, USA
,Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
29
|
Brown RW, Maple AM, Perna MK, Sheppard AB, Cope ZA, Kostrzewa RM. Schizophrenia and Substance Abuse Comorbidity: Nicotine Addiction and the Neonatal Quinpirole Model. Dev Neurosci 2012; 34:140-51. [DOI: 10.1159/000338830] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 04/12/2012] [Indexed: 01/06/2023] Open
|
30
|
Hong LE, Thaker GK, McMahon RP, Summerfelt A, Rachbeisel J, Fuller RL, Wonodi I, Buchanan RW, Myers C, Heishman SJ, Yang J, Nye A. Effects of moderate-dose treatment with varenicline on neurobiological and cognitive biomarkers in smokers and nonsmokers with schizophrenia or schizoaffective disorder. ACTA ACUST UNITED AC 2011; 68:1195-206. [PMID: 21810630 DOI: 10.1001/archgenpsychiatry.2011.83] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
CONTEXT The administration of nicotine transiently improves many neurobiological and cognitive functions in schizophrenia and schizoaffective disorder. It is not yet clear which nicotinic acetylcholine receptor (nAChR) subtype or subtypes are responsible for these seemingly pervasive nicotinic effects in schizophrenia and schizoaffective disorder. OBJECTIVE Because α4β2 is a key nAChR subtype for nicotinic actions, we investigated the effect of varenicline tartrate, a relatively specific α4β2 partial agonist and antagonist, on key biomarkers that are associated with schizophrenia and are previously shown to be responsive to nicotinic challenge in humans. DESIGN A double-blind, parallel, randomized, placebo-controlled trial of patients with schizophrenia or schizoaffective disorder to examine the effects of varenicline on biomarkers at 2 weeks (short-term treatment) and 8 weeks (long-term treatment), using a slow titration and moderate dosing strategy for retaining α4β2-specific effects while minimizing adverse effects. SETTING Outpatient clinics. PARTICIPANTS A total of 69 smoking and nonsmoking patients; 64 patients completed week 2, and 59 patients completed week 8. Intervention Varenicline. MAIN OUTCOME MEASURES Prepulse inhibition, sensory gating, antisaccade, spatial working memory, eye tracking, processing speed, and sustained attention. RESULTS A moderate dose of varenicline (1) significantly reduced the P50 sensory gating deficit in nonsmokers after long-term treatment (P = .006), (2) reduced startle reactivity (P = .02) regardless of baseline smoking status, and (3) improved executive function by reducing the antisaccadic error rate (P = .03) regardless of smoking status. A moderate dose of varenicline had no significant effect on spatial working memory, predictive and maintenance pursuit measures, processing speed, or sustained attention by Conners' Continuous Performance Test. Clinically, there was no evidence of exacerbation of psychiatric symptoms, psychosis, depression, or suicidality using a gradual titration (1-mg daily dose). CONCLUSIONS Moderate-dose treatment with varenicline has a unique treatment profile on core schizophrenia-related biomarkers. Further development is warranted for specific nAChR compounds and dosing and duration strategies to target subgroups of schizophrenic patients with specific biological deficits.
Collapse
Affiliation(s)
- L Elliot Hong
- Maryland Psychiatric Research Center, Baltimore, MD 21228, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Gelenberg AJ, de Leon J, Evins AE, Parks JJ, Rigotti NA. Smoking cessation in patients with psychiatric disorders. PRIMARY CARE COMPANION TO THE JOURNAL OF CLINICAL PSYCHIATRY 2011; 10:52-8. [PMID: 18311422 DOI: 10.4088/pcc.v10n0109] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
32
|
D'Souza MS, Markou A. Schizophrenia and tobacco smoking comorbidity: nAChR agonists in the treatment of schizophrenia-associated cognitive deficits. Neuropharmacology 2011; 62:1564-73. [PMID: 21288470 DOI: 10.1016/j.neuropharm.2011.01.044] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 01/19/2011] [Accepted: 01/24/2011] [Indexed: 12/22/2022]
Abstract
Tobacco smoking is a preventable cause of morbidity and mortality throughout the world. Very high rates of tobacco smoking are seen in patients with schizophrenia. Importantly, smokers with schizophrenia generally have higher nicotine dependence scores, experience more severe withdrawal symptoms upon smoking cessation, have lower cessation rates than healthy individuals, and suffer from significant smoking-related morbidity and premature mortality compared with the general population. Interestingly, significant disturbances in cholinergic function are reported in schizophrenia patients. The high smoking-schizophrenia comorbidity observed in schizophrenia patients may be an attempt to compensate for this cholinergic dysfunction. Cholinergic neurotransmission plays an important role in cognition and is hypothesized to play an important role in schizophrenia-associated cognitive deficits. In this review, preclinical evidence highlighting the beneficial effects of nicotine and subtype-selective nicotinic receptor agonists in schizophrenia-associated cognitive deficits, such as working memory and attention, is discussed. Furthermore, some of the challenges involved in the development of procognitive medications, particularly subtype-selective nicotinic receptor agonists, are also discussed. Amelioration of schizophrenia-associated cognitive deficits may help in the treatment of schizophrenia-smoking comorbidity by promoting smoking cessation and thus help in the better management of schizophrenia patients.
Collapse
Affiliation(s)
- Manoranjan S D'Souza
- Department of Psychiatry, M/C 0603, School of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | |
Collapse
|
33
|
André JM, Leach PT, Gould TJ. Nicotine ameliorates NMDA receptor antagonist-induced deficits in contextual fear conditioning through high-affinity nicotinic acetylcholine receptors in the hippocampus. Neuropharmacology 2010; 60:617-25. [PMID: 21167848 DOI: 10.1016/j.neuropharm.2010.12.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 12/06/2010] [Accepted: 12/08/2010] [Indexed: 01/31/2023]
Abstract
NMDA glutamate receptors (NMDARs) and nicotinic acetylcholine receptors (nAChRs) are both involved in learning and synaptic plasticity. Increasing evidence suggests processes mediated by these receptors may interact to modulate learning; however, little is known about the neural substrates involved in these interactive processes. The present studies investigated the effects of nicotine on MK-801 hydrogen maleate (MK-801) and DL-2-Amino-5-phosphonovaleric acid (APV)-induced disruption of contextual fear conditioning in male C57BL/6J mice, using direct drug infusion and selective nAChR antagonists to define the brain regions and the nAChR subtypes involved. Mice treated with MK-801 showed a deficit in contextual fear conditioning that was ameliorated by nicotine. Direct drug infusion demonstrated that the NMDAR antagonists disrupted hippocampal function and that nicotine acted in the dorsal hippocampus to ameliorate the deficit in learning. The high-affinity nAChR antagonist Dihydro-β-erythroidine hydrobromide (DhβE) blocked the effects of nicotine on MK-801-induced deficits while the α7 nAChR antagonist methyllycaconitine citrate salt hydrate (MLA) did not. These results suggest that NMDARs and nAChRs may mediate similar hippocampal processes involved in contextual fear conditioning. Furthermore, these results may have implications for developing effective therapeutics for the cognitive deficits associated with schizophrenia because a large subset of patients with schizophrenia exhibit cognitive deficits that may be related to NMDAR dysfunction and smoke at much higher rates than the healthy population, which may be an attempt to ameliorate cognitive deficits.
Collapse
Affiliation(s)
- Jessica M André
- Department of Psychology, Temple University, Philadelphia, PA 19122, USA
| | | | | |
Collapse
|
34
|
Terry AV. Role of the central cholinergic system in the therapeutics of schizophrenia. Curr Neuropharmacol 2010; 6:286-92. [PMID: 19506725 PMCID: PMC2687934 DOI: 10.2174/157015908785777247] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Revised: 05/01/2008] [Accepted: 05/09/2008] [Indexed: 01/24/2023] Open
Abstract
The therapeutic agents currently used to treat schizophrenia effectively improve psychotic symptoms; however, they are limited by adverse effects and poor efficacy when negative symptoms of the illness and cognitive dysfunction are considered. While optimal pharmacotherapy would directly target the neuropathology of schizophrenia neither the underlying neurobiological substrates of the behavioral symptoms nor the cognitive deficits have been clearly established. Abnormalities in the neurotransmitters dopamine, serotonin, glutamate, and GABA are commonly implicated in schizophrenia; however, it is not uncommon for alterations in the brain cholinergic system (e.g., choline acetyltransferase, nicotinic and muscarinic acetylcholine receptors) to also be reported. Further, there is now considerable evidence in the animal literature to suggest that both first and second generation antipsychotics (when administered chronically) can alter the levels of several cholinergic markers in the brain as well as impair memory-related task performance. Given the well-established importance of central cholinergic neurons to information processing and cognition, it is important that cholinergic function in schizophrenia be further elucidated and that the mechanisms of the chronic effects of antipsychotic drugs on this important neurotransmitter system be identified. A better understanding of these mechanisms would be expected to facilitate optimal treatment strategies for schizophrenia as well as the identification of novel therapeutic targets. In this review, the following topics are discussed: 1) the central cholinergic system in schizophrenia 2) effects of antipsychotic drugs on central cholinergic neurons 3) important neurotrophins in schizophrenia, especially those that support central cholinergic neurons; 4) novel strategies to optimize the therapeutics of schizophrenia via the use of cholinergic compounds as primary (i.e., antipsychotic) treatments as well as adjunctive, pro-cognitive agents.
Collapse
Affiliation(s)
- Alvin V Terry
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta, Georgia 30912 (AVT), USA.
| |
Collapse
|
35
|
Mouse behavioral endophenotypes for schizophrenia. Brain Res Bull 2010; 83:147-61. [PMID: 20433908 DOI: 10.1016/j.brainresbull.2010.04.008] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 12/25/2009] [Accepted: 04/19/2010] [Indexed: 01/20/2023]
Abstract
An endophenotype is a heritable trait that is generally considered to be more highly, associated with a gene-based neurological deficit than a disease phenotype itself. Such, endophenotypic deficits may therefore be observed in the non-affected relatives of disease patients. Once endophenotypes have been established for a given illness, such as schizophrenia, mechanisms of, action may then be established and treatment options developed in order to target such measures. The, current paper describes and assesses the merits and limitations of utilizing behavioral and, electrophysiological endophenotypes of schizophrenia in mice. Such endophenotypic deficits include: decreased auditory event related potential (ERP) amplitude and gating (specifically, that of the P20, N40, P80 and P120); impaired mismatch negativity (MMN); changes in theta and gamma frequency, analyses; decreased pre-pulse inhibition (PPI); impaired working and episodic memories (for instance, novel object recognition [NOR], contextual and cued fear conditioning, latent inhibition, Morris and, radial arm maze identification and nose poke); sociability; and locomotor activity. A variety of, pharmacological treatments, including ketamine, MK-801 and phencyclidine (PCP) can be used to, induce some of the deficits described above, and numerous transgenic mouse strains have been, developed to address the mechanisms responsible for such endophenotypic differences. We also, address the viability and validity of using such measures regarding their potential clinical implications, and suggest several practices that could increase the translatability of preclinical data.
Collapse
|
36
|
Huang LT, Sherwood JL, Sun YJ, Lodge D, Wang Y. Activation of presynaptic alpha7 nicotinic receptors evokes an excitatory response in hippocampal CA3 neurones in anaesthetized rats: an in vivo iontophoretic study. Br J Pharmacol 2010; 159:554-65. [PMID: 20105181 DOI: 10.1111/j.1476-5381.2009.00529.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE alpha7 Nicotinic receptors have been suggested to play an important role in hippocampal learning and memory. However, the direct action of this receptor subtype on hippocampal pyramidal neurones in vivo has not yet been fully investigated. The availability of selective agonists for alpha7 receptors [AR-R17779 and (R)-(-)-5'-phenylspiro[1-azabicyclo[2.2.2] octane-3,2'-(3'H)furo[2,3-b]pyridine (PSAB-OFP)] has now allowed this role to be investigated. EXPERIMENTAL APPROACH Single-cell extracellular recordings were made from hippocampal CA3 pyramidal neurones in anaesthetized rats. The effects of nicotine, AR-R17779 and PSAB-OFP, applied either systemically or iontophoretically, were studied on the activity of these neurones. KEY RESULTS Intravenous injection of cumulative doses of nicotine and PSAB-OFP induced dose-related, significant increases in neuronal firing in the majority of neurones tested. This excitation could be inhibited by intravenous administration of methyllycaconitine (MLA), a selective alpha7 nicotinic receptor antagonist. Furthermore, iontophoretic application of nicotine, AR-R17779 and PSAB-OFP each evoked current-dependent excitation of most CA3 pyramidal neurones studied, and this excitation was antagonized by co-iontophoretic application of MLA. In addition, the excitation induced by iontophoretic application of nicotine, AR-R17779 or PSAB-OFP was also blocked by co-iontophoretic application of either 6,7-dinitroquinoxaline-2,3-dione (DNQX) or D(2)-2-amino-5-phosphonopentanoate (D-AP5), selective N-methyl-D-aspartic acid (NMDA) and non-NMDA receptor antagonists respectively. CONCLUSIONS AND IMPLICATIONS CA3 pyramidal neurones are modulated by activation of presynaptic alpha7 nicotinic receptors, which, at least in part, enhances glutamate release onto post-synaptic (RS)-alpha-amino-3-hydroxy-5-methyl-4-isoxazole proprionic acid and NMDA receptors on these CA3 neurones. This mechanism probably contributes to the effects of nicotine on hippocampal learning and memory.
Collapse
Affiliation(s)
- Lan-Ting Huang
- Institutes of Brain Science and State Key Laboratory for Medical Neurobiology, Fudan University, Shanghai, China
| | | | | | | | | |
Collapse
|
37
|
Abstract
OBJECTIVES Galantamine is an acetylcholinesterase inhibitor and an allosteric modulator of the alpha4beta2 and alpha7 nicotinic receptors. There are several case reports describing the potential benefits of galantamine for negative symptoms associated with schizophrenia. This secondary analysis describes the effects of galantamine on psychopathology in people with schizophrenia. METHODS Subjects with clinically stable chronic schizophrenia were randomized to adjunctive galantamine (24 mg/d) or placebo in a 12-week double-blind trial. Symptomatology was assessed with the Brief Psychiatric Rating Scale (BPRS) and the Clinical Global Impression Scale. The Scale for the Assessment of Negative Symptoms (SANS) was used to measure negative symptoms. RESULTS Eighty-six patients with Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition diagnosis of schizophrenia or schizoaffective disorder taking a stable dose of antipsychotic medications were randomized to adjunctive treatment with study drug (galantamine, n = 42; placebo, n = 44); 73 subjects completed the study (galantamine, n = 35; placebo, n = 38). No significant differences were found on BPRS total score (P = 0.585) or BPRS subfactor scores. Scale for the Assessment of Negative Symptoms total scores also did not decrease significantly (P = 0.106) in either group; however, galantamine treatment was associated with a greater benefit in the SANS subfactor, alogia (P = 0.007). CONCLUSIONS The lack of robust significant effects of galantamine on negative, and other symptom domains, may be due to the relatively low baseline level of these symptoms in the tested population. Galantamine may have some benefit on certain negative symptoms, particularly alogia. Studies specifically designed to address the issue of the efficacy of galantamine for negative symptoms are needed to confirm this observation.
Collapse
|
38
|
Stober G, Ben-Shachar D, Cardon M, Falkai P, Fonteh AN, Gawlik M, Glenthoj BY, Grunblatt E, Jablensky A, Kim YK, Kornhuber J, McNeil TF, Muller N, Oranje B, Saito T, Saoud M, Schmitt A, Schwartz M, Thome J, Uzbekov M, Durany N, Riederer P. Schizophrenia: from the brain to peripheral markers. A consensus paper of the WFSBP task force on biological markers. World J Biol Psychiatry 2009; 10:127-55. [PMID: 19396704 DOI: 10.1080/15622970902898980] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Objective. The phenotypic complexity, together with the multifarious nature of the so-called "schizophrenic psychoses", limits our ability to form a simple and logical biologically based hypothesis for the disease group. Biological markers are defined as biochemical, physiological or anatomical traits that are specific to particular conditions. An important aim of biomarker discovery is the detection of disease correlates that can be used as diagnostic tools. Method. A selective review of the WFSBP Task Force on Biological Markers in schizophrenia is provided from the central nervous system to phenotypes, functional brain systems, chromosomal loci with potential genetic markers to the peripheral systems. Results. A number of biological measures have been proposed to be correlated with schizophrenia. At present, not a single biological trait in schizophrenia is available which achieves sufficient specificity, selectivity and is based on causal pathology and predictive validity to be recommended as diagnostic marker. Conclusions. With the emergence of new technologies and rigorous phenotypic subclassification the identification of genetic bases and assessment of dynamic disease related alterations will hopefully come to a new stage in the complex field of psychiatric research.
Collapse
Affiliation(s)
- Gerald Stober
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wurzburg, Wurzburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Hauser TA, Kucinski A, Jordan KG, Gatto GJ, Wersinger SR, Hesse RA, Stachowiak EK, Stachowiak MK, Papke RL, Lippiello PM, Bencherif M. TC-5619: an alpha7 neuronal nicotinic receptor-selective agonist that demonstrates efficacy in animal models of the positive and negative symptoms and cognitive dysfunction of schizophrenia. Biochem Pharmacol 2009; 78:803-12. [PMID: 19482012 DOI: 10.1016/j.bcp.2009.05.030] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 05/19/2009] [Accepted: 05/21/2009] [Indexed: 02/07/2023]
Abstract
A growing body of evidence suggests that the alpha7 neuronal nicotinic receptor (NNR) subtype is an important target for the development of novel therapies to treat schizophrenia, offering the possibility to address not only the positive but also the cognitive and negative symptoms associated with the disease. In order to probe the relationship of alpha7 function to relevant behavioral correlates we employed TC-5619, a novel selective agonist for the alpha7 NNR subtype. TC-5619 binds with very high affinity to the alpha7 subtype and is a potent full agonist. TC-5619 has little or no activity at other nicotinic receptors, including the alpha4beta2, ganglionic (alpha3beta4) and muscle subtypes. The transgenic th(tk-)/th(tk-) mouse model that reflects many of the developmental, anatomical, and multi-transmitter biochemical aspects of schizophrenia was used to assess the antipsychotic effects of TC-5619. In these mice TC-5619 acted both alone and synergistically with the antipsychotic clozapine to correct impaired pre-pulse inhibition (PPI) and social behavior which model positive and negative symptoms, respectively. Antipsychotic and cognitive effects of TC-5619 were also assessed in rats. Similar to the results in the transgenic mice, TC-5619 significantly reversed apomorphine-induced PPI deficits. In a novel object recognition paradigm in rats TC-5619 demonstrated long-lasting enhancement of memory over a wide dose range. These results suggest that alpha7-selective agonists such as TC-5619, either alone or in combination with antipsychotics, could offer a new approach to treating the constellation of symptoms associated with schizophrenia, including cognitive dysfunction.
Collapse
MESH Headings
- Animals
- Antipsychotic Agents/pharmacology
- Antipsychotic Agents/therapeutic use
- Behavior, Animal/drug effects
- Benzofurans/pharmacology
- Benzofurans/therapeutic use
- Clozapine/pharmacology
- Clozapine/therapeutic use
- Cognition Disorders/drug therapy
- Cognition Disorders/metabolism
- Cognition Disorders/psychology
- Exploratory Behavior/drug effects
- Female
- Male
- Maze Learning/drug effects
- Mice
- Mice, Transgenic
- Neurons/metabolism
- Nicotinic Agonists/pharmacology
- Nicotinic Agonists/therapeutic use
- Promoter Regions, Genetic
- Quinuclidines/pharmacology
- Quinuclidines/therapeutic use
- Rats
- Rats, Sprague-Dawley
- Receptor, Fibroblast Growth Factor, Type 1/biosynthesis
- Receptor, Fibroblast Growth Factor, Type 1/genetics
- Receptors, Nicotinic/physiology
- Reflex, Startle/drug effects
- Schizophrenia/drug therapy
- Schizophrenia/metabolism
- Schizophrenic Psychology
- Social Behavior
- Tyrosine 3-Monooxygenase/genetics
- alpha7 Nicotinic Acetylcholine Receptor
Collapse
Affiliation(s)
- T A Hauser
- Preclinical Research, Targacept, Inc, Winston-Salem, NC 27101, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Chambers RA. A Nicotine Challenge to the Self-Medication Hypothesis in a Neurodevelopmental Animal Model of Schizophrenia. J Dual Diagn 2009; 5:139-148. [PMID: 20556221 PMCID: PMC2885739 DOI: 10.1080/15504260902869808] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Nicotine addiction is the leading cause of premature illness and death in the general population. Up to half of all cigarettes are consumed by a minority of the population: persons with schizophrenia and other forms of mental illness. Ironically, despite nicotine dependence being considered a serious and deadly form of addiction in the general population, research on smoking in mental illness is predominantly guided by the idea that smoking has beneficial medication-like treatment effects. This article considers pitfalls of adherence to the self-medication hypothesis as an exclusively held dogma. New evidence from animal modeling work suggests the need to broaden hypothesis-driven research on smoking in mental illness. Adolescent smoking could predispose to mental illness and/or increased nicotine dependence in schizophrenia may represent an involuntary, general addiction vulnerability that has little to do with the 'helpful' psychoactive effects of nicotine or other drugs.
Collapse
Affiliation(s)
- R Andrew Chambers
- Laboratory for Translational Neuroscience of Dual Diagnosis & Development, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
41
|
Brasić JR, Zhou Y, Musachio JL, Hilton J, Fan H, Crabb A, Endres CJ, Reinhardt MJ, Dogan AS, Alexander M, Rousset O, Maris MA, Galecki J, Nandi A, Wong DF. Single photon emission computed tomography experience with (S)-5-[(123)I]iodo-3-(2-azetidinylmethoxy)pyridine in the living human brain of smokers and nonsmokers. Synapse 2009; 63:339-58. [PMID: 19140167 PMCID: PMC2766259 DOI: 10.1002/syn.20611] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
(S)-5-[(123)I]iodo-3-(2-azetidinylmethoxy)pyridine (5-[(123)I]IA), a novel potent radioligand for high-affinity alpha4beta2* neuronal nicotinic acetylcholine receptors (nAChRs), provides a means to evaluate the density and the distribution of nAChRs in the living human brain. We sought in healthy adult smokers and nonsmokers to (1) evaluate the safety, tolerability, and efficacy of 5-[(123)I]IA in an open nonblind trial and (2) to estimate the density and the distribution of alpha(4)beta(2)* nAChRs in the brain. Single photon emission computed tomography (SPECT) was performed for 5 h after the i.v. administration of approximately 0.001 microg/kg ( approximately 10 mCi) 5-[(123)I]IA. Blood pressure, heart rate, and neurobehavioral status were monitored before, during, and after the administration of 5-[(123)I]IA to 12 healthy adults (8 men and 4 women) (6 smokers and 6 nonsmokers) ranging in age from 19 to 46 years (mean = 28.25, standard deviation = 8.20). High plasma-nicotine level was significantly associated with low 5-[(123)I]IA binding in: (1) the caudate head, the cerebellum, the cortex, and the putamen, utilizing both the Sign and Mann-Whitney U-tests; (2) the fusiform gyrus, the hippocampus, the parahippocampus, and the pons utilizing the Mann-Whitney U-test; and (3) the thalamus utilizing the Sign test. We conclude that 5-[(123)I]IA is a safe, well-tolerated, and effective pharmacologic agent for human subjects to estimate high-affinity alpha4/beta2 nAChRs in the living human brain.
Collapse
Affiliation(s)
- James Robert Brasić
- Division of Nuclear Medicine, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Levin ED, Perkins A, Brotherton T, Qazi M, Berez C, Montalvo-Ortiz J, Davis K, Williams P, Christopher NC. Chronic underactivity of medial frontal cortical beta2-containing nicotinic receptors increases clozapine-induced working memory impairment in female rats. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33:296-302. [PMID: 19146909 PMCID: PMC2684503 DOI: 10.1016/j.pnpbp.2008.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2008] [Revised: 12/04/2008] [Accepted: 12/05/2008] [Indexed: 11/28/2022]
Abstract
Nicotinic receptor decreases in the frontal cortex and hippocampus are important mediators of cognitive impairment in both schizophrenia and Alzheimer's disease. Drug treatments for these diseases should take into account the impacts of compromised brain function on drug response. This study investigated the impact of compromised nicotinic receptor activity in the frontal cortex in rats on memory function. Since both Alzheimer's disease and schizophrenia can involve psychosis, antipsychotic drugs are often given. The impacts of antipsychotic drugs on cognitive function have been found to be quite variable. It is the hypothesis of this and previous studies that the cognitive effects of antispychotic drugs on cognitive function depend on the integrity of brain systems involved in cognition. Previously in studies of the hippocampus, we found that chronic inhibition of beta2-containing nicotinic receptors with dihydro-beta-erythrodine (DHbetaE) impaired working memory and that this effect was attenuated by the antipsychotic drug clozapine. In contrast, chronic hippocampal alpha7 nicotinic receptor blockade with methyllycaconitine (MLA) potentiated the clozapine-induced memory impairment which is seen in rats without compromised nicotinic receptor activity. The current study determined medial frontal cortical alpha7 and beta2-containing nicotinic receptor involvement in memory and the interactions with antipsychotic drug therapy with clozapine. Chronic DHbetaE and MLA infusion effects and interactions with systemic clozapine were assessed in female rats tested for memory on the radial-arm maze. Antipsychotic drug interactions with chronic systemic nicotine were investigated because nicotinic procognitive treatment has been proposed. The same local infusion DHbetaE dose that impaired memory with hippocampal infusion did not impair memory when infused in the medial frontal cortex. Frontal DHbetaE infusion potentiated clozapine-induced memory impairment, whereas previously the memory impairment caused by hippocampal DHbetaE infusion was attenuated by clozapine. Frontal cortical MLA infusions at a dose that previously was found to potentiate the clozapine-induced memory impairment with hippocampal infusion had no significant effect when infused into the medial frontal cortex. The location and subtype of nicotinic receptor underactivity are critical determinates for clozapine effects on memory. Patients with hippocampal beta2-containing nicotinic receptor loss may be well treated with clozapine therapy, while those with frontal cortical beta2-containing receptor loss may have a potentiated memory impairment caused by clozapine.
Collapse
Affiliation(s)
- Edward D Levin
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Rudnick ND, Koehler C, Picciotto MR, Siegel SJ. Role of beta2-containing nicotinic acetylcholine receptors in auditory event-related potentials. Psychopharmacology (Berl) 2009; 202:745-51. [PMID: 18931833 DOI: 10.1007/s00213-008-1358-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Accepted: 09/26/2008] [Indexed: 01/26/2023]
Abstract
RATIONALE Nicotine improves sensory processing in schizophrenic individuals, as measured by changes in auditory event-related potentials (ERPs). Nicotine administration also alters ERPs in mice by increasing the amplitude and gating of the P20 ERP component while decreasing the amplitude of the N40 ERP component. Less is known about the role of specific nicotinic acetylcholine receptor (nAChR) subtypes. OBJECTIVES In this study, we examined whether nAChRs containing the beta2 subunit contribute to nicotine's effects on auditory ERPs. MATERIALS AND METHODS We tested the effect of nicotine in wild-type mice and mice lacking the beta2 nAChR subunit. Mice underwent stereotaxic implantation of stainless steel electrodes located in the CA3 region of the hippocampus, and 50 paired click stimuli were delivered during each drug condition. RESULTS There was no significant difference in P20 or N40 amplitude or gating between genotypes during the control condition, suggesting that beta2-containing receptors are not essential for the baseline auditory ERP response. Nicotine increased P20 amplitude and enhanced gating in wild-type and beta2 knockout mice, but only decreased N40 amplitude in wild-type mice. There was no effect of nicotine on N40 gating in either genotype. CONCLUSIONS beta2-containing receptors are necessary for nicotine's effects on the N40 component of the mouse auditory ERP. These results suggest that beta2-containing nAChRs modulate sensory processing and may serve as a therapeutic target in schizophrenic individuals.
Collapse
Affiliation(s)
- Noam D Rudnick
- Stanley Center for Experimental Therapeutics, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19312, USA
| | | | | | | |
Collapse
|
44
|
Culhane MA, Schoenfeld DA, Barr RS, Cather C, Deckersbach T, Freudenreich O, Goff DC, Rigotti NA, Evins AE. Predictors of early abstinence in smokers with schizophrenia. J Clin Psychiatry 2008; 69:1743-50. [PMID: 19026259 PMCID: PMC2826693 DOI: 10.4088/jcp.v69n1109] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2007] [Accepted: 02/29/2008] [Indexed: 10/20/2022]
Abstract
BACKGROUND In patients with schizophrenia, the smoking cessation rate is low and the burden of smoking-related morbidity and mortality is high. Identification of factors associated with abstinence may allow clinicians to optimize treatment prior to a smoking cessation attempt. METHOD To identify factors associated with successful smoking cessation in patients with a DSM-IV diagnosis of schizophrenia, we analyzed baseline data from 114 stable outpatient smokers with schizophrenia who participated in 1 of 2 smoking cessation trials. The outcome of interest was 4 weeks' continuous abstinence at the end of a 12-week nicotine dependence treatment intervention. Baseline factors associated with abstinence were identified with univariate methods and entered into a manual, forward-selection multivariable regression model to identify independent predictors of abstinence. The study was conducted from March 1999 to February 2004. RESULTS Fourteen of 114 participants (12%) had biochemically verified 4 weeks' continuous abstinence at week 12. We included 10 noncorrelated variables with a univariate association with abstinence in a multivariable model, controlling for pharmacotherapy, age, and gender. Age at initiation of smoking and baseline variability in attentiveness, as measured by Continuous Performance Test-AX (CPT-AX) hit reaction time standard error, were independently associated with abstinence. For every year increase in age at initiation of smoking, the OR for abstinence was 1.36 (95% CI = 1.01 to 1.83), p = .048. For every millisecond decrease in the variability of the reaction time of CPT-AX, the OR for achieving abstinence was 1.55 (95% CI = 1.07 to 2.24), p = .021. CONCLUSION Later initiation of smoking was associated with increased and baseline attentional impairment with reduced odds of abstinence. Additional research to further our understanding of the relationship between attentional impairment and cigarette smoking in schizophrenia may lead to improved nicotine dependence treatments for this group.
Collapse
Affiliation(s)
- Melissa A. Culhane
- Schizophrenia Research Program, Boston
- Addiction Research Program, Boston
| | | | - Ruth S. Barr
- Schizophrenia Research Program, Boston
- Addiction Research Program, Boston
- Massachusetts General Hospital and Harvard Medical School, Boston
| | - Corinne Cather
- Schizophrenia Research Program, Boston
- Massachusetts General Hospital and Harvard Medical School, Boston
| | - Thilo Deckersbach
- Psychiatric Neuroscience Division, Boston
- Massachusetts General Hospital and Harvard Medical School, Boston
| | - Oliver Freudenreich
- Schizophrenia Research Program, Boston
- Massachusetts General Hospital and Harvard Medical School, Boston
| | - Donald C. Goff
- Schizophrenia Research Program, Boston
- Massachusetts General Hospital and Harvard Medical School, Boston
| | - Nancy A. Rigotti
- Tobacco Research and Treatment Center, Boston
- Massachusetts General Hospital and Harvard Medical School, Boston
| | - A. Eden Evins
- Schizophrenia Research Program, Boston
- Addiction Research Program, Boston
- Massachusetts General Hospital and Harvard Medical School, Boston
| |
Collapse
|
45
|
Idazoxan blocks the nicotine-induced reversal of the memory impairment caused by the NMDA glutamate receptor antagonist dizocilpine. Pharmacol Biochem Behav 2008; 90:372-81. [DOI: 10.1016/j.pbb.2008.03.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 02/20/2008] [Accepted: 03/10/2008] [Indexed: 11/21/2022]
|
46
|
Hong LE, Wonodi I, Lewis J, Thaker GK. Nicotine effect on prepulse inhibition and prepulse facilitation in schizophrenia patients. Neuropsychopharmacology 2008; 33:2167-74. [PMID: 17957213 PMCID: PMC4241357 DOI: 10.1038/sj.npp.1301601] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Acoustic prepulse inhibition (PPI) is considered an important biomarker in animal studies of psychosis and a number of psychiatric conditions. Nicotine has been shown to improve acoustic PPI in some animal strains and in humans. However, there is little data on effects of nicotine on acoustic PPI in schizophrenia patients using a double-blind, placebo-controlled study design. The primary aim of the current study was to test the effect of nicotine nasal spray on acoustic PPI in schizophrenia patients. The secondary aim was to test nicotine effect on prepulse facilitation (PPF). The study included 18 schizophrenia patient smokers and 12 healthy control smokers, tested in a double-blind, placebo-controlled, crossover, randomized design immediately after nicotine or saline placebo nasal sprays. PPI was tested using 120 ms prepulse-pulse interval. PPF was tested using 4500 ms prepulse-pulse interval. The results showed a significant main effect of drug on PPI in that nicotine improved PPI compared to placebo (p=0.008) with no drug by diagnosis interaction (p=0.90). Improvement in PPI in response to nicotine was significantly correlated with the baseline severity of clinical symptoms (r=0.59, p=0.02) in patients. There was no significant drug or drug by diagnosis interaction for the 4500 ms prepulse-pulse interval condition. However, nicotine improved inhibition in a subgroup of subjects exhibiting PPF (p=0.002). In conclusion, the findings confirmed that nicotine transiently improves acoustic PPI in schizophrenia patients. Additionally, schizophrenia patients with more clinical symptoms may have benefited more from nicotinic effect on PPI.
Collapse
Affiliation(s)
- L Elliot Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21228, USA.
| | - Ikwunga Wonodi
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jada Lewis
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Gunvant K Thaker
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
47
|
Jubelt LE, Barr RS, Goff DC, Logvinenko T, Weiss AP, Evins AE. Effects of transdermal nicotine on episodic memory in non-smokers with and without schizophrenia. Psychopharmacology (Berl) 2008; 199:89-98. [PMID: 18548234 PMCID: PMC4078257 DOI: 10.1007/s00213-008-1133-8] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Accepted: 02/28/2008] [Indexed: 11/25/2022]
Abstract
RATIONALE Nicotinic agonists may improve attention and memory in humans and may ameliorate some cognitive deficits associated with neuropsychiatric disorders such as schizophrenia. MATERIALS AND METHODS We investigated the effects of a single dose of nicotine on episodic memory performance in 10 adults with schizophrenia and 12 healthy controls. Participants were nonsmokers in order to avoid confounding effects of nicotine withdrawal and reinstatement on memory. At each of two study visits, participants performed a test of episodic memory before and 4 h after application of a 14-mg transdermal nicotine (or identical placebo) patch in counterbalanced order. RESULTS Compared with placebo, nicotine treatment was associated with more rapid and accurate recognition of novel items. There was a trend for a treatment by diagnosis interaction, such that the effect of nicotine to reduce false alarms was stronger in the schizophrenia than the control group. There was no effect of nicotine on accuracy or reaction time for identification of previously viewed items. CONCLUSIONS These data suggest that nicotine improves novelty detection in non-smokers, an effect that may be more pronounced in non-smokers with schizophrenia. Because memory deficits are associated with functional impairment in schizophrenia and because impaired novelty detection has been linked to the positive symptoms of schizophrenia, study of the effects of chronic nicotinic agonist treatment on novelty detection may be warranted.
Collapse
Affiliation(s)
- Lindsay E Jubelt
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Ruth S Barr
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Donald C Goff
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Tanya Logvinenko
- Biostatistics Division, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Anthony P Weiss
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - A Eden Evins
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; MGH Center for Addiction Medicine, 60 Staniford Street, Boston, MA 02114, USA
| |
Collapse
|
48
|
Dyer MA, Freudenreich O, Culhane MA, Pachas GN, Deckersbach T, Murphy E, Goff DC, Evins AE. High-dose galantamine augmentation inferior to placebo on attention, inhibitory control and working memory performance in nonsmokers with schizophrenia. Schizophr Res 2008; 102:88-95. [PMID: 18325740 PMCID: PMC2596972 DOI: 10.1016/j.schres.2007.12.491] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Revised: 12/27/2007] [Accepted: 12/28/2007] [Indexed: 11/26/2022]
Abstract
Dysfunction in the neuronal nicotinic acetylcholine receptor (nAChR) system has been implicated in the pathophysiology of schizophrenia, and it has been postulated that treatments that increase nAChR activity may improve symptoms of the disorder. We investigated the effects of the acetylcholinesterase inhibitor and allosteric nAChR modulator, galantamine, on cognitive performance and clinical symptoms when added to a stable antipsychotic medication regimen in nonsmoking outpatients with schizophrenia in a double-blind, placebo-controlled, parallel-group design. Participants were randomized to receive either galantamine (n=10) up to 32 mg/day or identical placebo (n=10) for 8 weeks and completed a cognitive battery at baseline and week 8 and clinical scales at baseline, week 4 and week 8. The primary outcome measure was attentional performance as measured by the d' measure in the Continuous Performance Test - Identical Pairs (CPT-IP) Version. Contrary to our hypothesis, galantamine treatment was associated with inferior performance on the CPT-IP, on the three-card Stroop task, and on the Letter-Number Span task without reordering. Galantamine had no effect on clinical symptoms. In summary, galantamine treatment, at a dose of 32 mg/day, was well tolerated but was not effective as an adjunctive treatment for cognitive deficits in stable nonsmokers with schizophrenia.
Collapse
Affiliation(s)
- Michael A. Dyer
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Oliver Freudenreich
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Melissa A. Culhane
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Gladys N. Pachas
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Thilo Deckersbach
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Erin Murphy
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Donald C. Goff
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - A. Eden Evins
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States,Please address all correspondence to: A. Eden Evins, M.D., M.P.H., 60 Staniford Street, Boston, MA 02114, Phone: 617-643-4679, Fax: 617-643-1998,
| |
Collapse
|
49
|
Cather C, Barr R, Evins A. Smoking and Schizophrenia: Prevalence, Mechanisms and Implications for Treatment. ACTA ACUST UNITED AC 2008. [DOI: 10.3371/csrp.2.1.5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
50
|
Berg SA, Chambers RA. Accentuated behavioral sensitization to nicotine in the neonatal ventral hippocampal lesion model of schizophrenia. Neuropharmacology 2008; 54:1201-7. [PMID: 18433806 DOI: 10.1016/j.neuropharm.2008.03.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Revised: 03/18/2008] [Accepted: 03/20/2008] [Indexed: 10/22/2022]
Abstract
The prevalence of smoking in schizophrenia patients far exceeds that in the general population. Increased vulnerability to nicotine and other drug addictions in schizophrenia may reflect the impact of developmental limbic abnormalities on cortical-striatal mediation of behavioral changes associated with drug use. Rats with neonatal ventral hippocampal lesions (NVHLs), a neurodevelopmental model of schizophrenia, have previously been shown to exhibit altered patterns of behavioral sensitization to both cocaine and ethanol. This study explored nicotine sensitization in NVHLs by testing locomotor activity of NVHL vs. SHAM-operated controls over 3 weeks in response to nicotine (0.5 mg/kg) or saline injections (s.c.) followed by a nicotine challenge delivered to all rats 2 weeks later. At the beginning of the initial injection series, post-injection locomotor activation was indistinguishable among all treatment groups. However, nicotine but not saline injections produced a progressive sensitization effect that was greater in NVHLs compared to SHAMs. In the challenge session, rats with previous nicotine history showed enhanced locomotor activation to nicotine when compared to drug naïve rats, with NVHL-nicotine rats showing the greatest degree of activity overall. These results demonstrate that NVHLs exhibit altered short- and long-term sensitization profiles to nicotine, similar to altered long-term sensitization profiles produced by cocaine and ethanol. Collectively, these findings suggest the neurodevelopmental underpinnings of schizophrenia produce enhanced behavioral sensitization to addictive drugs as an involuntary and progressive neurobehavioral process, independent of the acute psychoactive properties uniquely attributed to nicotine, cocaine, or alcohol.
Collapse
Affiliation(s)
- Sarah A Berg
- Laboratory for Translational Neuroscience of Dual Diagnosis & Development, Institute of Psychiatric Research, Department of Psychiatry, Indiana University School of Medicine, 791 Union Drive, Indianapolis, IN 46202, USA
| | | |
Collapse
|