1
|
Zhang Z, Deng T, Wu M, Zhu A, Zhu G. Botanicals as modulators of depression and mechanisms involved. Chin Med 2019; 14:24. [PMID: 31338119 PMCID: PMC6628492 DOI: 10.1186/s13020-019-0246-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 07/10/2019] [Indexed: 12/11/2022] Open
Abstract
Depression is the most disastrous mood disorder affecting the health of individuals. Conventional treatments with chemical compounds for depression have limitations, while herbal medicine has unique therapeutic effects. This paper introduces the pharmacological basis and biological mechanisms underlying the botanical antidepressants over the past 5 years. Based upon the specific therapeutic targets or mechanisms, we analyzed the pathological roles of monoamine neurotransmitters, the hypothalamic-pituitary-adrenal axis, inflammation, oxidative stress, synaptic plasticity performed in antidepressant of the botanicals. In addition, gut flora and neurogenesis were also preferentially discussed as treatment approaches. Based on the complex pathogenesis of depression, we suggested that mixed use of botanicals, namely prescription would be more suitable for treatment of depression. In addition, neural circuit affected by botanicals or active components should also attract attention as the botanicals have potential to be developed into fast-acting antidepressants. Finally, gut flora might be a new systemic target for the treatment of depression by botanicals. This review would strength botanical medicine as the antidepressant and also provides an overview of the potential mechanisms involved.
Collapse
Affiliation(s)
- Zhengrong Zhang
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Meishan Road 103, Hefei, 230038 China
| | - Taomei Deng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230038 China
| | - Manli Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230038 China
| | - Aisong Zhu
- College of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053 China
| | - Guoqi Zhu
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Meishan Road 103, Hefei, 230038 China
| |
Collapse
|
2
|
Zhang M, Lu M, Huang H, Liu X, Su H, Li H. Maturation of thalamocortical synapses in the somatosensory cortex depends on neocortical AKAP5 expression. Neurosci Lett 2019; 709:134374. [PMID: 31310785 DOI: 10.1016/j.neulet.2019.134374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 07/01/2019] [Accepted: 07/09/2019] [Indexed: 11/18/2022]
Abstract
Sensory cortex topographic maps consist of organized arrays of thalamocortical afferents (TCAs) that project into distinct areas of the cortex. Formation of topographic maps in sensory cortices is a prerequisite for functional maturation of the neocortex. Studies have shown that the formation of topographic maps and the maturation of thalamocortical synapses in the somatosensory cortex depend on the cyclic adenosine 5'-monophosphate-(cAMP)-protein kinase A (PKA) signaling pathway. AKAP5 is a scaffold protein (also called AKAP79 in humans or AKAP150 in rodents; AKAP79/150) that serves as a signaling hub that links cAMP and PKA signaling. Whether AKAP5 plays a role in topographic map formation and the maturation of thalamocortical synapses during development of the somatosensory cortex is still unknown. Here, we generated cortex-specific AKAP5-knockout mice (CxAKAP5KO) to examine its roles in somatosensory cortex development. We found that CxAKAP5KO mice displayed impaired cortical barrel maps. Electrophysiological recordings showed that the AMPA/NMDA ratio was reduced, and silent synapses were increased in thalamocortical synapses of CxAKAP5KO mice during postnatal development. Morphological analysis of layer IV cortical neurons demonstrated that dendritic refinement of these neurons was abnormal. These results indicate that AKAP5 is necessary for both topographic map formation and maturation of thalamocortical synapses as well as morphological development of cortical neurons in the somatosensory cortex.
Collapse
Affiliation(s)
- Min Zhang
- Department of Physiology, Anhui Medical College, Anhui 230601, China
| | - Meifang Lu
- Department of Histology and Embryology, School of Basic Medical Sciences, Anhui Medical University, Anhui 230032, China
| | - Hao Huang
- Department of Histology and Embryology, School of Basic Medical Sciences, Anhui Medical University, Anhui 230032, China
| | - Xiaoyan Liu
- Department of Histology and Embryology, School of Basic Medical Sciences, Anhui Medical University, Anhui 230032, China
| | - Haoran Su
- Department of Electronic Engineering, City University of Hong Kong, Hong Kong, China
| | - Hong Li
- Department of Histology and Embryology, School of Basic Medical Sciences, Anhui Medical University, Anhui 230032, China.
| |
Collapse
|
3
|
Cherkasova MV, Faridi N, Casey KF, Larcher K, O'Driscoll GA, Hechtman L, Joober R, Baker GB, Palmer J, Evans AC, Dagher A, Benkelfat C, Leyton M. Differential Associations between Cortical Thickness and Striatal Dopamine in Treatment-Naïve Adults with ADHD vs. Healthy Controls. Front Hum Neurosci 2017; 11:421. [PMID: 28878639 PMCID: PMC5572420 DOI: 10.3389/fnhum.2017.00421] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/04/2017] [Indexed: 12/29/2022] Open
Abstract
Alterations in catecholamine signaling and cortical morphology have both been implicated in the pathophysiology of attention deficit/hyperactivity disorder (ADHD). However, possible links between the two remain unstudied. Here, we report exploratory analyses of cortical thickness and its relation to striatal dopamine transmission in treatment-naïve adults with ADHD and matched healthy controls. All participants had one magnetic resonance imaging (MRI) and two [11C]raclopride positron emission tomography scans. Associations between frontal cortical thickness and the magnitude of d-amphetamine-induced [11C]raclopride binding changes were observed that were divergent in the two groups. In the healthy controls, a thicker cortex was associated with less dopamine release; in the ADHD participants the converse was seen. The same divergence was seen for baseline D2/3 receptor availability. In healthy volunteers, lower D2/3 receptor availability was associated with a thicker cortex, while in the ADHD group lower baseline D2/3 receptor availability was associated with a thinner cortex. Individual differences in cortical thickness in these regions correlated with ADHD symptom severity. Together, these findings add to the evidence of associations between dopamine transmission and cortical morphology, and suggest that these relationships are altered in treatment-naïve adults with ADHD.
Collapse
Affiliation(s)
- Mariya V Cherkasova
- Division of Neurology, Department of Medicine, University of British ColumbiaVancouver, BC, Canada
| | - Nazlie Faridi
- Department of Medicine, Stanford UniversityStanford, CA, United States
| | - Kevin F Casey
- Centre Hospitalier Universitaire Sainte-JustineMontréal, QC, Canada
| | - Kevin Larcher
- Department of Neurology and Neurosurgery, McGill UniversityMontréal, QC, Canada
| | - Gillian A O'Driscoll
- Department of Psychology, McGill UniversityMontréal, QC, Canada.,Department of Psychiatry, McGill UniversityMontréal, QC, Canada
| | - Lily Hechtman
- Department of Psychiatry, McGill UniversityMontréal, QC, Canada
| | | | - Glen B Baker
- Department of Psychiatry, University of AlbertaMontréal, QC, Canada
| | | | - Alan C Evans
- Department of Neurology and Neurosurgery, McGill UniversityMontréal, QC, Canada
| | - Alain Dagher
- Department of Neurology and Neurosurgery, McGill UniversityMontréal, QC, Canada
| | - Chawki Benkelfat
- Department of Neurology and Neurosurgery, McGill UniversityMontréal, QC, Canada.,Department of Psychiatry, McGill UniversityMontréal, QC, Canada
| | - Marco Leyton
- Department of Neurology and Neurosurgery, McGill UniversityMontréal, QC, Canada.,Department of Psychology, McGill UniversityMontréal, QC, Canada.,Department of Psychiatry, McGill UniversityMontréal, QC, Canada.,Center for Studies in Behavioral Neurobiology, Concordia UniversityMontréal, QC, Canada
| |
Collapse
|
4
|
Caravaggio F, Ku Chung J, Plitman E, Boileau I, Gerretsen P, Kim J, Iwata Y, Patel R, Chakravarty MM, Remington G, Graff-Guerrero A. The relationship between subcortical brain volume and striatal dopamine D 2/3 receptor availability in healthy humans assessed with [ 11 C]-raclopride and [ 11 C]-(+)-PHNO PET. Hum Brain Mapp 2017; 38:5519-5534. [PMID: 28752565 DOI: 10.1002/hbm.23744] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 06/21/2017] [Accepted: 07/16/2017] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Abnormalities in dopamine (DA) and brain morphology are observed in several neuropsychiatric disorders. However, it is not fully understood how these abnormalities may relate to one another. For such in vivo findings to be used as biomarkers for neuropsychiatric disease, it must be understood how variability in DA relates to brain structure under healthy conditions. We explored how the availability of striatal DA D2/3 receptors (D2/3 R) is related to the volume of subcortical brain structures in a sample of healthy humans. Differences in D2/3 R availability measured with an antagonist radiotracer ([11 C]-raclopride) versus an agonist radiotracer ([11 C]-(+)-PHNO) were examined. METHODS Data from 62 subjects scanned with [11 C]-raclopride (mean age = 38.98 ± 14.45; 23 female) and 68 subjects scanned with [11 C]-(+)-PHNO (mean age = 38.54 ± 14.59; 25 female) were used. Subcortical volumes were extracted from T1-weighted images using the Multiple Automatically Generated Templates (MAGeT-Brain) algorithm. Partial correlations were used controlling for age, gender, and total brain volume. RESULTS For [11 C]-(+)-PHNO, ventral caudate volumes were positively correlated with BPND in the dorsal caudate and globus pallidus (GP). Ventral striatum (VS) volumes were positively correlated with BPND in the VS. With [11 C]-raclopride, BPND in the VS was negatively correlated with subiculum volume of the hippocampus. Moreover, BPND in the GP was negatively correlated with the volume of the lateral posterior nucleus of the thalamus. CONCLUSION Findings are purely exploratory and presented corrected and uncorrected for multiple comparisons. We hope they will help inform the interpretation of future PET studies where concurrent changes in D2/3 R and brain morphology are observed. Hum Brain Mapp 38:5519-5534, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Fernando Caravaggio
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, M5T 1R8, Canada.,Department of Psychiatry, University of Toronto, 250 College Street, Toronto, Ontario, M5T 1R8, Canada
| | - Jun Ku Chung
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, M5T 1R8, Canada
| | - Eric Plitman
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, M5T 1R8, Canada
| | - Isabelle Boileau
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, M5T 1R8, Canada.,Department of Psychiatry, University of Toronto, 250 College Street, Toronto, Ontario, M5T 1R8, Canada
| | - Philip Gerretsen
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, M5T 1R8, Canada.,Department of Psychiatry, University of Toronto, 250 College Street, Toronto, Ontario, M5T 1R8, Canada
| | - Julia Kim
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, M5T 1R8, Canada
| | - Yusuke Iwata
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, M5T 1R8, Canada.,Department of Psychiatry, University of Toronto, 250 College Street, Toronto, Ontario, M5T 1R8, Canada
| | - Raihaan Patel
- Department of Biological & Biomedical Engineering, McGill University, Montreal, Quebec, H4H 1R3, Canada.,Cerebral Imaging Centre, Douglas Mental Health Institute, McGill University, Montreal, Quebec, H4H 1R3, Canada
| | - M Mallar Chakravarty
- Department of Biological & Biomedical Engineering, McGill University, Montreal, Quebec, H4H 1R3, Canada.,Cerebral Imaging Centre, Douglas Mental Health Institute, McGill University, Montreal, Quebec, H4H 1R3, Canada.,Department of Psychiatry, McGill University, Montreal, Quebec, H4H 1R3, Canada
| | - Gary Remington
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, M5T 1R8, Canada.,Department of Psychiatry, University of Toronto, 250 College Street, Toronto, Ontario, M5T 1R8, Canada
| | - Ariel Graff-Guerrero
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, M5T 1R8, Canada.,Department of Psychiatry, University of Toronto, 250 College Street, Toronto, Ontario, M5T 1R8, Canada
| |
Collapse
|
5
|
The recent progress in animal models of depression. Prog Neuropsychopharmacol Biol Psychiatry 2017; 77:99-109. [PMID: 28396255 PMCID: PMC5605906 DOI: 10.1016/j.pnpbp.2017.04.008] [Citation(s) in RCA: 225] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 03/28/2017] [Accepted: 04/07/2017] [Indexed: 12/11/2022]
Abstract
Major depression disorder (MDD) is a debilitating mental illness with significant morbidity and mortality. Despite the growing number of studies that have emerged, the precise underlying mechanisms of MDD remain unknown. When studying MDD, tissue samples like peripheral blood or post-mortem brain samples are used to elucidate underlying mechanisms. Unfortunately, there are many uncontrollable factors with such samples such as medication history, age, time after death before post-mortem tissue was collected, age, sex, race, and living conditions. Although these factors are critical, they introduce confounding variables that can influence the outcome profoundly. In this regard, animal models provide a crucial approach to examine neural circuitry and molecular and cellular pathways in a controlled environment. Further, manipulations with pharmacological agents and gene editing are accepted methods of studying depression in animal models, which is impossible to employ in human patient studies. Here, we have reviewed the most widely used animal models of depression and delineated the salient features of each model in terms of behavioral and neurobiological outcomes. We have also illustrated the current challenges in using these models and have suggested strategies to delineate the underlying mechanism associated with vulnerability or resilience to developing depression.
Collapse
|
6
|
Bravo K, Eugenín JL, Llona I. Perinatal Fluoxetine Exposure Impairs the CO2 Chemoreflex. Implications for Sudden Infant Death Syndrome. Am J Respir Cell Mol Biol 2017; 55:368-76. [PMID: 27018763 DOI: 10.1165/rcmb.2015-0384oc] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
High serotonin levels during pregnancy affect central nervous system development. Whether a commonly used antidepressant such as fluoxetine (a selective serotonin reuptake inhibitor) taken during pregnancy may adversely affect respiratory control in offspring has not been determined. The objective was to determine the effect of prenatal-perinatal fluoxetine exposure on the respiratory neural network in offspring, particularly on central chemoreception. Osmotic minipumps implanted into CF-1 mice on Days 5-7 of pregnancy delivered 7 milligrams per kilogram per day of fluoxetine, achieving plasma levels within the range found in patients. Ventilation was assessed in offspring at postnatal Days 0-40 using head-out body plethysmography. Neuronal activation was evaluated in the raphe nuclei and in the nucleus tractus solitarius by c-Fos immunohistochemistry during normoxic eucapnia and hypercapnia (10% CO2). Respiratory responses to acidosis were evaluated in brainstem slices. Prenatal-perinatal fluoxetine did not affect litter size, birth weight, or the postnatal growth curve. Ventilation under eucapnic normoxic conditions was similar to that of control offspring. Fluoxetine exposure reduced ventilatory responses to hypercapnia at P8-P40 (P < 0.001) but not at P0-P5. At P8, it reduced hypercapnia-induced neuronal activation in raphe nuclei (P < 0.05) and nucleus tractus solitarius (P < 0.01) and the acidosis-induced increase in the respiratory frequency in brainstem slices (P < 0.05). Fluoxetine applied acutely on control slices did not modify their respiratory response to acidosis. We concluded that prenatal-perinatal fluoxetine treatment impairs central respiratory chemoreception during postnatal life. These results are relevant in understanding the pathogenesis of respiratory failures, such as sudden infant death syndrome, associated with brainstem serotonin abnormalities and the failure of respiratory chemoreflexes.
Collapse
Affiliation(s)
- Karina Bravo
- Laboratorio de Sistemas Neurales, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Jaime L Eugenín
- Laboratorio de Sistemas Neurales, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Isabel Llona
- Laboratorio de Sistemas Neurales, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
7
|
Naoi M, Maruyama W, Shamoto-Nagai M. Type A monoamine oxidase and serotonin are coordinately involved in depressive disorders: from neurotransmitter imbalance to impaired neurogenesis. J Neural Transm (Vienna) 2017; 125:53-66. [PMID: 28293733 DOI: 10.1007/s00702-017-1709-8] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 03/12/2017] [Indexed: 12/30/2022]
Abstract
Type A monoamine oxidase (MAOA) catabolizes monoamine transmitters, serotonin, norepinephrine and dopamine, and plays a major role in the onset, progression and therapy of neuropsychiatric disorders. In depressive disorders, increase in MAOA expression and decrease in brain levels of serotonin and norepinephrine are proposed as the major pathogenic factors. The functional polymorphism of MAOA gene and genes in serotonin signal pathway are associated with depression. This review presents recent advance in studies on the role of MAOA in major depressive disorder and related emotional disorders. MAOA and serotonin regulate the prenatal development and postnatal maintenance of brain architecture and neurocircuit, as shown by MAOA-deficient humans and MAO knockout animal models. Impaired neurogenesis in the mature hippocampus has been proposed as "adult neurogenesis" hypothesis of depression. MAOA modulates the sensitivity to stress in the stages of brain development and maturation, and the interaction of gene-environmental factors in the early stage regulates the onset of depressive behaviors in adulthood. Vice versa environmental factors affect MAOA expression by epigenetic regulation. MAO inhibitors not only restore compromised neurotransmitters, but also protect neurons from cell death in depression through induction of anti-apoptotic Bcl-2 and prosurvival neurotrophic factors, especially brain-derived neurotrophic factor, the deficiency of which is detected in depression. This review discusses novel role of MAOA and serotonin in the pathogenesis and therapy of depressive disorders.
Collapse
Affiliation(s)
- Makoto Naoi
- Department of Health and Nutrition, Faculty of Psychological and Physical Science, Aichi Gakuin University, 12 Araike, Iwasaki-cho, Nisshin, Aichi, 320-0195, Japan.
| | - Wakako Maruyama
- Department of Health and Nutrition, Faculty of Psychological and Physical Science, Aichi Gakuin University, 12 Araike, Iwasaki-cho, Nisshin, Aichi, 320-0195, Japan
| | - Masayo Shamoto-Nagai
- Department of Health and Nutrition, Faculty of Psychological and Physical Science, Aichi Gakuin University, 12 Araike, Iwasaki-cho, Nisshin, Aichi, 320-0195, Japan
| |
Collapse
|
8
|
Neurodevelopmental Effects of Serotonin on the Brainstem Respiratory Network. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1015:193-216. [DOI: 10.1007/978-3-319-62817-2_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
9
|
Park S, Nevin ABC, Cardozo-Pelaez F, Lurie DI. Pb exposure prolongs the time period for postnatal transient uptake of 5-HT by murine LSO neurons. Neurotoxicology 2016; 57:258-269. [PMID: 27771255 DOI: 10.1016/j.neuro.2016.10.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 09/27/2016] [Accepted: 10/17/2016] [Indexed: 01/09/2023]
Abstract
Pb exposure is associated with cognitive deficits including Attention Deficit Hyperactivity Disorder (ADHD) in children and alters auditory temporal processing in humans and animals. Serotonin has been implicated in auditory temporal processing and previous studies from our laboratory have demonstrated that developmental Pb decreases expression of serotonin (5-HT) in the adult murine lateral superior olive (LSO). During development, certain non-serotonergic sensory neurons, including auditory LSO neurons, transiently take up 5-HT through the serotonin reuptake transporter (SERT). The uptake of 5-HT is important for development of sensory systems. This study examines the effect of Pb on the serotonergic system in the LSO of the early postnatal mouse. Mice were exposed to moderate Pb (0.01mM) or high Pb (0.1mM) throughout gestation and postnatal day 4 (P4) and P8. We found that Pb exposure prolongs the normal developmental expression of 5-HT by LSO neurons and this is correlated with expression of SERT on LSO cell bodies. The prolonged expression of 5-HT by postnatal LSO neurons is correlated with decreased synaptic immunolabeling within the LSO. This Pb-associated decrease in synaptic density within the LSO could contribute to the auditory temporal processing deficits and cognitive deficits associated with developmental Pb exposure.
Collapse
Affiliation(s)
- Sunyoung Park
- Center for Structural and Functional Neuroscience, Center for Environmental Health Sciences, Department of Biomedical & Pharmaceutical Sciences, College of Health Professions and Biomedical Sciences, The University of Montana, Missoula, MT 59812, United States; Business Planning Department, Kyowa Hakko Kirin Korea Co., Ltd., Seoul, Republic of Korea
| | - Andrew B C Nevin
- Center for Structural and Functional Neuroscience, Center for Environmental Health Sciences, Department of Biomedical & Pharmaceutical Sciences, College of Health Professions and Biomedical Sciences, The University of Montana, Missoula, MT 59812, United States
| | - Fernando Cardozo-Pelaez
- Center for Structural and Functional Neuroscience, Center for Environmental Health Sciences, Department of Biomedical & Pharmaceutical Sciences, College of Health Professions and Biomedical Sciences, The University of Montana, Missoula, MT 59812, United States
| | - Diana I Lurie
- Center for Structural and Functional Neuroscience, Center for Environmental Health Sciences, Department of Biomedical & Pharmaceutical Sciences, College of Health Professions and Biomedical Sciences, The University of Montana, Missoula, MT 59812, United States.
| |
Collapse
|
10
|
Monoamine-sensitive developmental periods impacting adult emotional and cognitive behaviors. Neuropsychopharmacology 2015; 40:88-112. [PMID: 25178408 PMCID: PMC4262911 DOI: 10.1038/npp.2014.231] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 07/30/2014] [Accepted: 08/20/2014] [Indexed: 02/07/2023]
Abstract
Development passes through sensitive periods, during which plasticity allows for genetic and environmental factors to exert indelible influence on the maturation of the organism. In the context of central nervous system development, such sensitive periods shape the formation of neurocircuits that mediate, regulate, and control behavior. This general mechanism allows for development to be guided by both the genetic blueprint as well as the environmental context. While allowing for adaptation, such sensitive periods are also vulnerability windows during which external and internal factors can confer risk to disorders by derailing otherwise resilient developmental programs. Here we review developmental periods that are sensitive to monoamine signaling and impact adult behaviors of relevance to psychiatry. Specifically, we review (1) a serotonin-sensitive period that impacts sensory system development, (2) a serotonin-sensitive period that impacts cognition, anxiety- and depression-related behaviors, and (3) a dopamine- and serotonin-sensitive period affecting aggression, impulsivity and behavioral response to psychostimulants. We discuss preclinical data to provide mechanistic insight, as well as epidemiological and clinical data to point out translational relevance. The field of translational developmental neuroscience has progressed exponentially providing solid conceptual advances and unprecedented mechanistic insight. With such knowledge at hand and important methodological innovation ongoing, the field is poised for breakthroughs elucidating the developmental origins of neuropsychiatric disorders, and thus understanding pathophysiology. Such knowledge of sensitive periods that determine the developmental trajectory of complex behaviors is a necessary step towards improving prevention and treatment approaches for neuropsychiatric disorders.
Collapse
|
11
|
Narboux-Nême N, Angenard G, Mosienko V, Klempin F, Pitychoutis PM, Deneris E, Bader M, Giros B, Alenina N, Gaspar P. Postnatal growth defects in mice with constitutive depletion of central serotonin. ACS Chem Neurosci 2013; 4:171-81. [PMID: 23336056 DOI: 10.1021/cn300165x] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Accepted: 12/14/2012] [Indexed: 12/31/2022] Open
Abstract
Although the trophic actions of serotonin (5-HT) are well established, only few developmental defects have been reported in mouse strains with constitutive hyposerotonergia. We analyzed postnatal growth and cortical development in three different mutant mouse strains with constitutive reductions in central 5-HT levels. We compared two previously published mouse strains with severe (-95%) depletions of 5-HT, the tryptophan hydroxylase (Tph) 2(-/-) mouse line and VMAT2(sert-cre) mice, with a new strain, in which VMAT2 deletion is driven by Pet1 (VMAT2(pet1-cre)) in 5-HT raphe neurons leading to partial (-75%) reduction in brain 5-HT levels. We find that normal embryonic growth and postnatal growth retardation are common features of all these mouse strains. Postnatal growth retardation varied from mild to severe according to the extent of the brain 5-HT reduction and gender. Normal growth was reinstated in VMAT2(sert-cre) mice by reconstituting central 5-HT stores. Growth abnormalities could not be linked to altered food intake or temperature control. Morphological study of the cerebral cortex over postnatal development showed a delayed maturation of the upper cortical layers in the VMAT2(sert-cre) and Tph2(-/-) mice, but not in the VMAT2(pet1-cre) mice. No changes in layer-specific gene expression or morphological alterations of barrel cortex development were found. Overall, these observations sustain the notion that central 5-HT signaling is required for the preweaning growth spurt of mouse pups. Brain development appeared to be immune to severe central 5-HT depletion for its overall growth during prenatal life, whereas reduced brain growth and delayed cortical maturation development occurred during postnatal life. Reduced developmental 5-HT signaling during postnatal development might modulate the function and fine structure of neural circuits in ways that affect adult behavior.
Collapse
Affiliation(s)
- Nicolas Narboux-Nême
- INSERM, UMR-S 839, Institut du Fer à
Moulin, 17, rue du Fer à Moulin, 75005 Paris, France
- Université Pierre et Marie Curie (UPMC), Paris 06, Paris, France
| | - Gaelle Angenard
- INSERM, UMR-S 839, Institut du Fer à
Moulin, 17, rue du Fer à Moulin, 75005 Paris, France
- Université Pierre et Marie Curie (UPMC), Paris 06, Paris, France
| | | | | | - Pothitos M. Pitychoutis
- INSERM, UMR-S 839, Institut du Fer à
Moulin, 17, rue du Fer à Moulin, 75005 Paris, France
- Université Pierre et Marie Curie (UPMC), Paris 06, Paris, France
| | - Evan Deneris
- Case Western Reserve University, Cleveland, Ohio 44101, United States
| | - Michael Bader
- Max-Delbrueck-Center for Molecular Medicine, 13125 Berlin-Buch, Germany
| | - Bruno Giros
- Université Pierre et Marie Curie (UPMC), Paris 06, Paris, France
- CNRS UMR 7224, 9 Quai St Bernard, 75005 Paris, France
- Douglas Hospital, Department of Psychiatry, McGill University, Montreal, Canada
| | - Natalia Alenina
- Max-Delbrueck-Center for Molecular Medicine, 13125 Berlin-Buch, Germany
| | - Patricia Gaspar
- INSERM, UMR-S 839, Institut du Fer à
Moulin, 17, rue du Fer à Moulin, 75005 Paris, France
- Université Pierre et Marie Curie (UPMC), Paris 06, Paris, France
| |
Collapse
|
12
|
van Kleef ESB, Gaspar P, Bonnin A. Insights into the complex influence of 5-HT signaling on thalamocortical axonal system development. Eur J Neurosci 2012; 35:1563-72. [PMID: 22607002 DOI: 10.1111/j.1460-9568.2012.8096.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The topographic organization of the thalamocortical axons (TCAs) in the barrel field (BF) in the rodent primary somatosensory cortex results from a succession of temporally and spatially precise developmental events. Prenatally, growth and guidance mechanisms enable TCAs to navigate through the forebrain and reach the cortex. Postnatally, TCAs grow into the cortex, and the refinement of their terminal arborization pattern in layer IV creates barrel-like structures. The combined results of studies performed over the past 20 years clearly show that serotonin (5-hydroxytryptamine; 5-HT) signaling modulates these pre- and early postnatal developmental processes. In this context, 5-HT signaling can purposely be described as 'modulating' rather than 'controlling' because developmental alterations of 5-HT synthesis, uptake or degradation either have a dramatic, moderate or no effect at all on TCA pathway and BF formation. In this review we summarize and compare the outcomes of diverse pharmacological and genetic manipulations of 5-HT signaling on TCA pathway and BF formation, in an attempt to understand these discrepancies.
Collapse
|
13
|
Smit-Rigter LA, Noorlander CW, von Oerthel L, Chameau P, Smidt MP, van Hooft JA. Prenatal fluoxetine exposure induces life-long serotonin 5-HT3 receptor-dependent cortical abnormalities and anxiety-like behaviour. Neuropharmacology 2012; 62:865-70. [DOI: 10.1016/j.neuropharm.2011.09.015] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 09/13/2011] [Accepted: 09/14/2011] [Indexed: 10/17/2022]
|
14
|
Narboux-Nême N, Sagné C, Doly S, Diaz SL, Martin CBP, Angenard G, Martres MP, Giros B, Hamon M, Lanfumey L, Gaspar P, Mongeau R. Severe serotonin depletion after conditional deletion of the vesicular monoamine transporter 2 gene in serotonin neurons: neural and behavioral consequences. Neuropsychopharmacology 2011; 36:2538-50. [PMID: 21814181 PMCID: PMC3194080 DOI: 10.1038/npp.2011.142] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The vesicular monoamine transporter type 2 gene (VMAT2) has a crucial role in the storage and synaptic release of all monoamines, including serotonin (5-HT). To evaluate the specific role of VMAT2 in 5-HT neurons, we produced a conditional ablation of VMAT2 under control of the serotonin transporter (slc6a4) promoter. VMAT2(sert-cre) mice showed a major (-95%) depletion of 5-HT levels in the brain with no major alterations in other monoamines. Raphe neurons contained no 5-HT immunoreactivity in VMAT2(sert-cre) mice but developed normal innervations, as assessed by both tryptophan hydroxylase 2 and 5-HT transporter labeling. Increased 5-HT(1A) autoreceptor coupling to G protein, as assessed with agonist-stimulated [(35)S]GTP-γ-S binding, was observed in the raphe area, indicating an adaptive change to reduced 5-HT transmission. Behavioral evaluation in adult VMAT2(sert-cre) mice showed an increase in escape-like reactions in response to tail suspension and anxiolytic-like response in the novelty-suppressed feeding test. In an aversive ultrasound-induced defense paradigm, VMAT2(sert-cre) mice displayed a major increase in escape-like behaviors. Wild-type-like defense phenotype could be rescued by replenishing intracellular 5-HT stores with chronic pargyline (a monoamine oxidase inhibitor) treatment. Pargyline also allowed some form of 5-HT release, although in reduced amounts, in synaptosomes from VMAT2(sert-cre) mouse brain. These findings are coherent with the notion that 5-HT has an important role in anxiety, and provide new insights into the role of endogenous 5-HT in defense behaviors.
Collapse
Affiliation(s)
- Nicolas Narboux-Nême
- INSERM, UMR-S 839, Institut du Fer à Moulin, Paris, France,Université Pierre and Marie Curie, Paris, France
| | - Corinne Sagné
- CNRS UMR8192-Université Paris Descartes, Paris, France
| | - Stephane Doly
- INSERM, UMR-S 839, Institut du Fer à Moulin, Paris, France,Université Pierre and Marie Curie, Paris, France
| | - Silvina L Diaz
- INSERM, UMR-S 839, Institut du Fer à Moulin, Paris, France,Université Pierre and Marie Curie, Paris, France
| | - Cédric B P Martin
- Université Pierre and Marie Curie, Paris, France,INSERM, U894, Paris, France
| | - Gaelle Angenard
- INSERM, UMR-S 839, Institut du Fer à Moulin, Paris, France,Université Pierre and Marie Curie, Paris, France
| | - Marie-Pascale Martres
- Université Pierre and Marie Curie, Paris, France,INSERM, U952, Paris, France,CNRS UMR7224, Paris, France
| | - Bruno Giros
- Université Pierre and Marie Curie, Paris, France,INSERM, U952, Paris, France,CNRS UMR7224, Paris, France,Department of Psychiatry, Douglas Hospital, McGill University, Montreal, Canada
| | - Michel Hamon
- Université Pierre and Marie Curie, Paris, France,INSERM, U894, Paris, France
| | - Laurence Lanfumey
- Université Pierre and Marie Curie, Paris, France,INSERM, U894, Paris, France
| | - Patricia Gaspar
- INSERM, UMR-S 839, Institut du Fer à Moulin, Paris, France,Université Pierre and Marie Curie, Paris, France,INSERM UMR-S 839, Institut du Fer à Moulin, 17 Rue du Fer à Moulin, 75005, Paris, France, Tel: +331 45 87 61 11, Fax: +331 45 87 61 30, E-mail :
| | - Raymond Mongeau
- Université Pierre and Marie Curie, Paris, France,INSERM, U894, Paris, France
| |
Collapse
|
15
|
Fernandez SP, Gaspar P. Investigating anxiety and depressive-like phenotypes in genetic mouse models of serotonin depletion. Neuropharmacology 2011; 62:144-54. [PMID: 21945798 DOI: 10.1016/j.neuropharm.2011.08.049] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 08/25/2011] [Accepted: 08/29/2011] [Indexed: 01/24/2023]
Abstract
Emotional disorders such as depression, panic attacks, generalized anxiety, phobias and post-traumatic stress have been associated to decreased serotonin (5-HT) function, based on the positive effects of treatments that enhance 5-HT neurotransmission. However, it has been difficult to establish a primary role for 5-HT deficiency in these diseases, making preclinical models particularly useful. Over the last ten years a variety of genetic mouse models of 5-HT depletion have been produced, complementing previous pharmacologically-based models. Initial models hindered the differentiation of the raphe 5-HT neurons, while more recently produced models suppressed 5-HT production or incapacitated 5-HT vesicular packaging and release in normally developed raphe neurons. Here, we provide an overview of 11 genetic mouse models with lowered 5-HT transmission and summarize the available behavioural investigations concerning their anxiety and depression phenotypes. Although these studies are still ongoing, some common anxiety-related traits and behavioural phenotypes have emerged. Most studies have reported decreased innate anxiety to novelty but heightened fear responses to conditioned aversive cues. This complex phenotype is in general agreement with the proposed dual function of 5-HT in modulating different defensive behaviours. Surprisingly, the depressive-like behaviours have been less studied and, so far, did not yield a consistent phenotype in standard tests. Future studies should be conducted using more ethological relevant models to conclude on the causal role of 5-HT depletion in depression. This review also describes the differences in level and regional distribution of 5-HT depletion among the available mouse models, which could contribute to the diverse phenotypes observed. This article is part of a Special Issue entitled 'Anxiety and Depression'.
Collapse
|
16
|
Skelton MR, Schaefer TL, Graham DL, Degrauw TJ, Clark JF, Williams MT, Vorhees CV. Creatine transporter (CrT; Slc6a8) knockout mice as a model of human CrT deficiency. PLoS One 2011; 6:e16187. [PMID: 21249153 PMCID: PMC3020968 DOI: 10.1371/journal.pone.0016187] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 12/09/2010] [Indexed: 11/18/2022] Open
Abstract
Mutations in the creatine (Cr) transporter (CrT; Slc6a8) gene lead to absence of brain Cr and intellectual disabilities, loss of speech, and behavioral abnormalities. To date, no mouse model of CrT deficiency exists in which to understand and develop treatments for this condition. The purpose of this study was to generate a mouse model of human CrT deficiency. We created mice with exons 2–4 of Slc6a8 flanked by loxP sites and crossed these to Cre:CMV mice to create a line of ubiquitous CrT knockout expressing mice. Mice were tested for learning and memory deficits and assayed for Cr and neurotransmitter levels. Male CrT−/y (affected) mice lack Cr in the brain and muscle with significant reductions of Cr in other tissues including heart and testes. CrT−/y mice showed increased path length during acquisition and reversal learning in the Morris water maze. During probe trials, CrT−/y mice showed increased average distance from the platform site. CrT−/y mice showed reduced novel object recognition and conditioned fear memory compared to CrT+/y. CrT−/y mice had increased serotonin and 5-hydroxyindole acetic acid in the hippocampus and prefrontal cortex. Ubiquitous CrT knockout mice have learning and memory deficits resembling human CrT deficiency and this model should be useful in understanding this disorder.
Collapse
Affiliation(s)
- Matthew R Skelton
- Division of Neurology, Cincinnati Children's Research Foundation, and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America.
| | | | | | | | | | | | | |
Collapse
|
17
|
Trowbridge S, Narboux-Nême N, Gaspar P. Genetic models of serotonin (5-HT) depletion: what do they tell us about the developmental role of 5-HT? Anat Rec (Hoboken) 2010; 294:1615-23. [PMID: 20818612 DOI: 10.1002/ar.21248] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 07/09/2010] [Indexed: 11/10/2022]
Abstract
A large number of hyposerotonergic genetic models have been generated over the past few years. Serotonin (5-HT) depletion has been obtained via targeting of genes involved in 5-HT synthesis (Tph1 and Tph2), specification and determination of the 5-HT phenotype during development (GATA3, Pet1, and Lmx1b), and 5-HT storage or clearance (Vmat2 and SERT). Here we review these various models from a developmental perspective, beginning with a description of the sources of 5-HT during development. We then summarize the neurological and behavioral alterations that have been observed in the genetic hyposerotonergic models. Although these models appear to have normal brain development and do not exhibit any gross morphological defects, problems in somatic growth and physiological functions have been observed. Abnormal adult behavior is also seen, although whether it results from depletion of 5-HT during development or functional 5-HT deficiencies in adult life remains unclear. Evidence from these hyposerotonergic models suggests that the developing brain may not need 5-HT for the establishment of general organization and structure. However, central 5-HT appears to be necessary for postnatal body growth, maturation of respiratory and vegetative control, and possibly for the development of normal adult behavior.
Collapse
|
18
|
Novel neuropathologic findings in the Haddad syndrome. Acta Neuropathol 2010; 119:261-9. [PMID: 19844731 DOI: 10.1007/s00401-009-0599-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 10/07/2009] [Accepted: 10/07/2009] [Indexed: 10/20/2022]
Abstract
Haddad syndrome (congenital central hypoventilation syndrome and Hirschsprung's disease) is a rare disorder for which in-depth neuropathologic analysis is lacking. We report the brain findings in a full-term male infant with Haddad syndrome who died at 27 days of life. Bilateral hypoplasia of the superior temporal lobe and gyral anomalies in the frontal cortex were present. Immunohistochemistry with an antibody to tyrosine hydroxylase (noradrenaline synthesis) demonstrated hypoplasia of the locus coeruleus (implicated in chemoreception) and A5 region. Other findings included delayed maturation of the arcuate nucleus (putative human homologue of ventral medullary neurons in animals critical for chemoreception) and aberrant fascicles in the nucleus of the solitary tract. Efforts to determine the putative gene mutation were unsuccessful. This study implicates novel brain findings in Haddad syndrome mimicking those in murine Phox2b null mutants. This case suggests that abnormalities occur in CCHS in a network of sites critical to chemoreception.
Collapse
|
19
|
Cerebral morphology and dopamine D2/D3 receptor distribution in humans: a combined [18F]fallypride and voxel-based morphometry study. Neuroimage 2009; 46:31-8. [PMID: 19457373 DOI: 10.1016/j.neuroimage.2009.01.049] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 12/05/2008] [Accepted: 01/22/2009] [Indexed: 11/20/2022] Open
Abstract
The relationship between cerebral morphology and the expression of dopamine receptors has not been extensively studied in humans. Elucidation of such relationships may have important methodological implications for clinical studies of dopamine receptor ligand binding differences between control and patient groups. The association between cerebral morphology and dopamine receptor distribution was examined in 45 healthy subjects who completed T1-weighted structural MRI and PET scanning with the D(2)/D(3) ligand [(18)F]fallypride. Optimized voxel-based morphometry was used to create grey matter volume and density images. Grey matter volume and density images were correlated with binding potential (BP(ND)) images on a voxel-by-voxel basis using the Biological Parametric Mapping toolbox. Associations between cerebral morphology and BP(ND) were also examined for selected regions-of-interest (ROIs) after spatial normalization. Voxel-wise analyses indicated that grey matter volume and density positively correlated with BP(ND) throughout the midbrain, including the substantia nigra. Positive correlations were observed in medial cortical areas, including anterior cingulate and medial prefrontal cortex, and circumscribed regions of the temporal, frontal, and parietal lobes. ROI analyses revealed significant positive correlations between BP(ND) and cerebral morphology in the caudate, thalamus, and amygdala. Few negative correlations between morphology and BP(ND) were observed. Overall, grey matter density appeared more strongly correlated with BP(ND) than grey matter volume. Cerebral morphology, particularly grey matter density, correlates with [(18)F]fallypride BP(ND) in a regionally specific manner. Clinical studies comparing dopamine receptor availability between clinical and control groups may benefit by accounting for potential differences in cerebral morphology that exist even after spatial normalization.
Collapse
|
20
|
Induction of cell migration of neural progenitor cells in vitro by alpha-1 adrenergic receptor and dopamine D1 receptor stimulation. Neuroreport 2008; 19:793-7. [PMID: 18446092 DOI: 10.1097/wnr.0b013e3282fd1270] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The radial migration is an important process in the development of the cerebral cortex. Earlier studies have reported that classical neurotransmitters such as L-dopamine and L-adrenaline regulate the proliferation of neural progenitor cells. We examined whether L-dopamine and L-adrenaline regulate cell migration, using embryonic neural progenitor cells from mouse embryonic telencephalon in vitro. In this study, we showed that dopamine D1 agonist induces cell migration of embryonic neural progenitor cells. In addition, we have demonstrated that L-adrenaline induces cell migration of embryonic neural progenitor cells, mediated through the activation of alpha-1 adrenergic receptors. Our results suggest that alpha-1 adrenergic receptor and dopamine D1 receptor stimulations in neural progenitor cells are the important process for embryonic brain development, respectively.
Collapse
|
21
|
Powell AW, Sassa T, Wu Y, Tessier-Lavigne M, Polleux F. Topography of thalamic projections requires attractive and repulsive functions of Netrin-1 in the ventral telencephalon. PLoS Biol 2008; 6:e116. [PMID: 18479186 PMCID: PMC2584572 DOI: 10.1371/journal.pbio.0060116] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Accepted: 03/21/2008] [Indexed: 01/30/2023] Open
Abstract
Recent studies have demonstrated that the topography of thalamocortical (TC) axon projections is initiated before they reach the cortex, in the ventral telencephalon (VTel). However, at this point, the molecular mechanisms patterning the topography of TC projections in the VTel remains poorly understood. Here, we show that a long-range, high-rostral to low-caudal gradient of Netrin-1 in the VTel is required in vivo for the topographic sorting of TC axons to distinct cortical domains. We demonstrate that Netrin-1 is a chemoattractant for rostral thalamic axons but functions as a chemorepulsive cue for caudal thalamic axons. In accordance with this model, DCC is expressed in a high-rostromedial to low-caudolateral gradient in the dorsal thalamus (DTh), whereas three Unc5 receptors (Unc5A–C) show graded expression in the reverse orientation. Finally, we show that DCC is required for the attraction of rostromedial thalamic axons to the Netrin-1–rich, anterior part of the VTel, whereas DCC and Unc5A/C receptors are required for the repulsion of caudolateral TC axons from the same Netrin-1–rich region of the VTel. Our results demonstrate that a long-range gradient of Netrin-1 acts as a counteracting force from ephrin-A5 to control the topography of TC projections before they enter the cortex. The functional properties of each structure in the central nervous system are critically dependent on the precision of neuronal connectivity. The cerebral cortex in particular is a highly organized structure divided into many distinct cortical areas underlying important sensory, motor, and cognitive functions in the brain. Each primary cortical area receives its synaptic inputs from the periphery via the dorsal thalamus. The main relay station for sensory information to the cortex, the thalamus, can be divided into specific nuclei projecting topographically to individual cortical areas. How is the complex topography of thalamic axon projection to individual cortical areas specified during development? Recent evidence demonstrated that thalamic axons are routed to different cortical domains before they enter the cortex, by putative axon guidance cues present in the ventral forebrain. In the present study, we provide evidence that a secreted axon guidance cue, Netrin-1, expressed in a long-range gradient in the ventral forebrain, plays a critical role in the establishment of the topography of thalamic projections by directing different subsets of axons to specific cortical domains. These results provide important insights into the molecular mechanisms responsible for shaping the topographical patterns of thalamocortical axon projections in mammals. A long-range gradient of Netrin-1 plays a critical role in the specification of the topography of thalamocortical projections in the ventral telencephalon. The function of Netrin-1 requires both its attractive and repulsive functions to guide different subsets of thalamic axons to specific cortical domains.
Collapse
Affiliation(s)
- Ashton W Powell
- Neuroscience Center, Department of Pharmacology, University of North Carolina Chapel Hill, Chapel Hill, North Carolina, United States of America
- Curriculum in Neuroscience, University of North Carolina Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Takayuki Sassa
- Neuroscience Center, Department of Pharmacology, University of North Carolina Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Yongqin Wu
- Neuroscience Center, Department of Pharmacology, University of North Carolina Chapel Hill, Chapel Hill, North Carolina, United States of America
| | | | - Franck Polleux
- Neuroscience Center, Department of Pharmacology, University of North Carolina Chapel Hill, Chapel Hill, North Carolina, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
22
|
Vataeva LA, Kudrin VS, Vershinina EA, Mosin VM, Tiul'kova EI, Otellin VA. Behavioral alteration in the adult rats prenatally exposed to para-chlorophenylalanine. Brain Res 2007; 1169:9-16. [PMID: 17698045 DOI: 10.1016/j.brainres.2007.06.056] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Revised: 06/02/2007] [Accepted: 06/22/2007] [Indexed: 11/16/2022]
Abstract
In the present work, effects of maternal administration of para-chlorophenylalanine (PCPA), a serotonin synthesis inhibitor, on behavior of adult offspring were studied. Pregnant rats were injected intraperitoneally with PCPA (200/100/100/50 mg/kg) either on the gestational days (GD) 8-11 or 14-17, or with vehicle at the same days. Behavioral parameters, in an open field, the Porsolt forced swim test and the Morris water maze test were evaluated at the age of 3-3.5 months in the male and female offspring. The prenatal PCPA increased activity in an open field in the offspring treated on either GD 8-11 or 14-17. The highest levels of the activity were revealed in the male and female offspring treated on GD 14-17. Besides, the PCPA treatment on GD 8-11 or 14-17 facilitated the intersession habituation of activity to repeated exposures to an open field in the male offspring. Both male and female offspring treated on GD 14-17 showed an increased immobility in the Porsolt forced swim test and a significant learning impairment in the Morris water maze. Thus, it has been shown that administration of PCPA to pregnant rats might cause significant changes in the adult offspring behavior. These results provide further evidence that unfavorable influence may have more adverse effects on the behavioral development of rats when exposed during the final trimester of pregnancy than during the second trimester.
Collapse
Affiliation(s)
- Ludmila A Vataeva
- Laboratory of Ontogenesis of the Nervous System, Pavlov Institute of Physiology of the Russian Academy of Sciences, Nab. Makarova, 6, St. Petersburg 199034, Russia.
| | | | | | | | | | | |
Collapse
|
23
|
Stankovski L, Alvarez C, Ouimet T, Vitalis T, El-Hachimi KH, Price D, Deneris E, Gaspar P, Cases O. Developmental cell death is enhanced in the cerebral cortex of mice lacking the brain vesicular monoamine transporter. J Neurosci 2007; 27:1315-24. [PMID: 17287506 PMCID: PMC6673577 DOI: 10.1523/jneurosci.4395-06.2007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Neurotransmitters have emerged as important players in the control of programmed cell death in the cerebral cortex. We report that genetic depletion of serotonin, dopamine, and norepinephrine in mice lacking the vesicular monoamine transporter (VMAT2 KO mice) causes an increase in cell death in the superficial layers of the cingulate and retrosplenial cortices during early postnatal life (postnatal days 0-4). Electron microscopy and terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick end labeling indicated that this represents a form of apoptosis. Caspase-3 and -9 are over activated in the VMAT2 KO cortex and Bcl-X(L) is downregulated, whereas the apoptosis-inducing factor caspase-8 and FasL/FasR pathway are not involved. Partial inhibition of serotonin or/and catecholamine synthesis by pharmacological treatments or genetic reduction of serotonin neuron number in mice lacking the transcription factor Pet-1 (pheochromocytoma 12 E26 transformation-specific) did not modify the cell death ratios in the cerebral cortex. However, when monoamine oxidase type A was invalidated in the VMAT2 KO background (VMAT2-MAOA DKO mice), increases in 5-HT levels coincided with a reduction of cell death and a normalization of Bcl-X(L) expression. trkB signaling is not implicated in the anti-apoptotic effects of MAOA inhibition because BDNF mRNA levels were unchanged in VMAT2-MAOA DKO mice and because the massive cell death in the cerebral cortex of trkB KO mice is also reverted by genetic invalidation of the MAOA gene. Finally the broad 5-HT2 receptor agonist (-)-2,5-dimethoxy-4-iodoamphetamine hydrochloride prevented the increase in cell death of VMAT2 KO mice. Altogether, these results suggest that high levels of serotonin, acting through 5-HT2 receptors, have neuroprotective action on cortical neurons by controlling Bcl-X(L) mRNA levels and that this action is independent of trkB signaling.
Collapse
Affiliation(s)
- Léa Stankovski
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 616, Institut Fédératif de Recherche Neurosciences, Hôpital de la Pitié-Salpêtrière, 75651 Paris, France
- Université Pierre et Marie Curie, 75006 Paris Cedex 06, France
| | - Chantal Alvarez
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 616, Institut Fédératif de Recherche Neurosciences, Hôpital de la Pitié-Salpêtrière, 75651 Paris, France
- Université Pierre et Marie Curie, 75006 Paris Cedex 06, France
| | - Tanja Ouimet
- INSERM, Unité 676, Hôpital Robert Debré, 75019 Paris, France
- Université Diderot, 75252 Paris Cedex 07, France
| | - Tania Vitalis
- Developmental Biology Laboratory, Biomedical Sciences, The University of Edinburgh, Hugh Robson Building, Georges Square, Edinburgh EH8 9XD, United Kingdom
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7637, Neurobiologie et Diversité Cellulaire, 75005 Paris, France
| | - Khalid H. El-Hachimi
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 616, Institut Fédératif de Recherche Neurosciences, Hôpital de la Pitié-Salpêtrière, 75651 Paris, France
- Université Pierre et Marie Curie, 75006 Paris Cedex 06, France
| | - David Price
- Developmental Biology Laboratory, Biomedical Sciences, The University of Edinburgh, Hugh Robson Building, Georges Square, Edinburgh EH8 9XD, United Kingdom
| | - Evan Deneris
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, and
| | - Patricia Gaspar
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 616, Institut Fédératif de Recherche Neurosciences, Hôpital de la Pitié-Salpêtrière, 75651 Paris, France
- Université Pierre et Marie Curie, 75006 Paris Cedex 06, France
| | - Olivier Cases
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 616, Institut Fédératif de Recherche Neurosciences, Hôpital de la Pitié-Salpêtrière, 75651 Paris, France
- Université Pierre et Marie Curie, 75006 Paris Cedex 06, France
| |
Collapse
|
24
|
Hyland K. Cerebrospinal fluid analysis in the diagnosis of treatable inherited disorders of neurotransmitter metabolism. FUTURE NEUROLOGY 2006. [DOI: 10.2217/14796708.1.5.593] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The inherited disorders affecting dopamine and serotonin (5-hydroxytryptamine) metabolism are being recognized as treatable causes of neurological problems that affect infants, children and adults. Diagnosis of these conditions in many cases requires that neurotransmitter metabolites, and the cofactors required for their synthesis, be measured in cerebrospinal fluid (CSF). This review will concentrate on the inherited disorders that affect dopamine and serotonin biosynthesis and an overview will be given of the metabolism of these two neurotransmitters. The metabolite pattern found in each known defect is also given. Emphasis is put on the need to collect and handle CSF in the appropriate manner if meaningful results from neurotransmitter metabolite measurements are to be obtained. The clinical phenotypes that might be associated with neurotransmitter deficiency are described, and finally, speculation will be provided as to the metabolite patterns that might occur in the CSF in disorders that are yet to be discovered.
Collapse
Affiliation(s)
- Keith Hyland
- Horizon Molecular Medicine, One Dunwoody Park, Suite 250, Atlanta, GA 30338, USA
| |
Collapse
|
25
|
Ferrere A, Vitalis T, Gingras H, Gaspar P, Cases O. Expression of Cux-1 and Cux-2 in the developing somatosensory cortex of normal and barrel-defective mice. ACTA ACUST UNITED AC 2006; 288:158-65. [PMID: 16419078 DOI: 10.1002/ar.a.20284] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Recently, two orthologues of the Drosophila homeobox Cut gene, Cux-1 and Cux-2, have been identified as restricted molecular markers of upper layer (II-IV) neurons in the murine cerebral cortex. We show that during early postnatal life, from P0 to P10, Cux-1 and Cux-2 mRNA are coexpressed in all primary sensory cortices. Antisera to Cux-1 and Cux-2 immunoreactivities preferentially label neurons in the barrel walls of the primary somatosensory cortex (S1). Subsequently, Cux-1 remains enriched in sensory cortices, whereas Cux-2 expression enlarges to comprise the frontal and insular areas. The laminar distribution of Cux-1 and Cux-2 differs: Cux-1 follows a layer IV to layer II decreasing gradient of expression, whereas Cux-2 expression is homogeneous across layers IV-II. No colocalization was found with GABA and birth dating experiments showed that Cux-1-positive neurons in layer IV are born during a restricted period, E13.5-E14.5, suggesting that Cux-1 is a useful molecular marker of the glutamatergic neurons of layer IV. We examined Cux-1 and Cux-2 in barrel-defective mouse strains, the VMAT2 KO, the MAOA KO, and the Adcyl 1(brl) strain. A normal expression level of Cux-1 and Cux-2 was found in layer IV, despite the lack of segregation of the neurons as barrels. Conversely, in Reeler mice, Cux-1 and Cux-2 had a distinct laminar distribution: the Cux-1-positive neurons had an inverted deep localization, whereas the Cux-2-positive neurons were distributed throughout the cortical thickness, suggesting that Cux-2 expression is more widely expressed in the inverted cortex of reeler mutants. Our results indicate that Cux-1 is a useful marker of the layer IV neurons in S1, and that Cux-1 and Cux-2 are differently regulated in the upper layers of the cerebral cortex.
Collapse
Affiliation(s)
- Arnaud Ferrere
- INSERM U616, Hôpital de la Pitié Salpêtrière, Paris, France
| | | | | | | | | |
Collapse
|
26
|
Cabral P. Attention deficit disorders: are we barking up the wrong tree? Eur J Paediatr Neurol 2006; 10:66-77. [PMID: 16617029 DOI: 10.1016/j.ejpn.2006.02.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Revised: 01/16/2006] [Accepted: 02/19/2006] [Indexed: 11/21/2022]
Abstract
Attention deficit disorder (AAD) and attention deficit/hyperactivity disorder (ADHD) are very frequent and protean developmental disorders without a definite biologic marker. This review proposes a framework to understand the enlarged spectrum of its manifestations based on current knowledge of the mechanisms underlying arousal and attention variations during sleep/wake cycle. The neuro-modulation's pivotal role in this process as well as in the fine tuning of synaptic architecture during development must be taken into account when trying to understand the marked fuzziness of the symptoms and the very high prevalence of reported co-morbidities. The series of related interactions includes a cyclic deactivation of the dorso-lateral portion of the prefrontal cortex (DLPFC) during sleep, suspending executive functions, co-occurring with rhythmic periods of decreased noradrenergic tonus. A protracted unbalance in modulation, with catecholaminergic relative deficiency, could explain less-than-optimum waking DLPFC activation and the most important manifestations of ADD. Beside the well documented dopaminergic effects of stimulant medication used in ADD and ADHD, a more important role must be assigned to noradrenaline (NA). At this light hyperactivity and impulsivity are less important dimensions. Rather, an attention deficit spectrum disorder should probably be regarded as a complication of a core defect in prefrontal cortex dependent inhibitory control, underlying inattention.
Collapse
Affiliation(s)
- Pedro Cabral
- Pediatric Neurology Unit, CHLO, Estr. do Forte Alto do Duque, 1400 Lisboa, Portugal.
| |
Collapse
|
27
|
Lebrand C, Gaspar P, Nicolas D, Hornung JP. Transitory uptake of serotonin in the developing sensory pathways of the common marmoset. J Comp Neurol 2006; 499:677-89. [PMID: 17029254 DOI: 10.1002/cne.21137] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Serotonin (5-HT) affects brain development during sensitive developmental periods. In rodents, transient sites of high affinity capture of 5-HT were demonstrated in the primary sensory neurons and in the sensory thalamocortical afferents. This uptake is required to adjust 5-HT receptor stimulation during the formation of sensory maps. To determine whether similar mechanisms exist in primates, we analyzed staged embryos and postnatal pups in the common marmoset (total gestation time, 142 days). Immunocytochemical analyses were performed using antisera to 5-HT, to the serotonin transporter (SERT), and to the vesicular monoamine transporter (VMAT2). 5-HT, SERT, and VMAT2 labeled the raphe neurons and their terminal network from embryonic day (E)70 to adulthood. In addition, from E70-130 VMAT2 and SERT were observed in all the sensory cranial nerves, the olfactory nerve, the gustatory, the trigeminal, the auditory fibers, in the retinal ganglion cells, and the optic tract up to the lateral geniculate nucleus and the superior colliculus. All the spinal sensory ganglia and their peripheral sensory branches were labeled. Accumulation of 5-HT was observed in all the sensory neurons expressing SERT and the corresponding axon tracts. Since these neurons were missing tryptophan hydroxylase (TPH), the synthesizing enzyme for 5-HT, they most likely accumulated 5-HT through the action of the amine transporters, as has been shown in rodents. No transient expression of 5-HT markers was detectable in the sensory thalamocortical axons at any of the ages examined. Thus, the existence of 5-HT uptake in nonserotoninergic neurons appears to be a conserved feature in primates, although the topographic extent of this transient expression is more restricted than that previously demonstrated in rodents.
Collapse
Affiliation(s)
- C Lebrand
- DBCM, Université de Lausanne, Lausanne, Switzerland, INSERM U616, Hôpital de la Salpêtrière, Paris, France
| | | | | | | |
Collapse
|
28
|
Powrozek TA, Zhou FC. Effects of prenatal alcohol exposure on the development of the vibrissal somatosensory cortical barrel network. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2005; 155:135-46. [PMID: 15804402 DOI: 10.1016/j.devbrainres.2005.01.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2004] [Revised: 01/12/2005] [Accepted: 01/14/2005] [Indexed: 10/25/2022]
Abstract
We have previously shown that the serotonin (5-HT) and its thalamocortical afferents are compromised by prenatal alcohol exposure (PAE). The development of the sensory cortical barrels is regulated by 5-HT-rich thalamocortical afferents. Therefore, it is hypothesized that PAE will deleteriously affect the postnatal development of the cortical barrel formations. On embryonic day (E)7, C57BL/6 mice were grouped into: Alcohol (Alc), Pair-fed (PF), or Chow, and maintained on diet until E18. On postnatal day 7, cortices were stained with 5-HT for thalamocortical fibers, and a NeuN for identification of mature neurons. The area of the posterior medial barrel subfield (PMBSF), was measured as well as the number of NeuN+ neurons within the barrel patches. Though brain weight and brain volume were similar among the three groups, a significant reduction was seen in total area of the PMBSF, and in the average individual barrel area in the Alc group as compared to Chow. Furthermore, the volumes of the B, but not C row barrels were significantly reduced. Barrels were found missing in layer IV, specifically in the posterior aspects of the A, B, and straddler row in the Alc group. Cell counts demonstrated a nearly 50% reduction in NeuN+ neuron number in both rows. This reduction in size of the PMBSF and fewer neurons within these sensory barreloids may underlie a change in the development of the discriminatory sensitivity of the whiskers and serves as an excellent model for the study of a compromised sensory modality following PAE.
Collapse
Affiliation(s)
- Teresa A Powrozek
- Department of Psychology at Indiana University Purdue University, Indianapolis, IN 46202, USA
| | | |
Collapse
|
29
|
Metz GA, Schwab ME. Behavioral characterization in a comprehensive mouse test battery reveals motor and sensory impairments in growth-associated protein-43 null mutant mice. Neuroscience 2005; 129:563-74. [PMID: 15541878 DOI: 10.1016/j.neuroscience.2004.07.053] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2004] [Indexed: 11/18/2022]
Abstract
The growth-associated protein (GAP)-43 is a major neuronal protein associated with axonal growth, neuronal plasticity and learning. The observation that only 5-10% of mice with a full GAP-43 gene deletion survive weaning suggests that basic neural functions are disturbed. Here we used a comprehensive test battery to characterise and quantify the motor and sensory function of surviving adult homozygous GAP-43 (-/-) mice as compared with GAP-43 (+/-) and wild-type animals. The test battery was comprised of motor, sensory, and reflex tests producing 25 measures of locomotion, as well as epicritic, auditory, olfactory and visual function. The analysis revealed significant impairments in muscle strength, limb coordination and balance in GAP-43 (-/-) mice. Furthermore, GAP-43 (-/-) animals were hyperactive and showed reduced anxiety as measured by open field and light dark tests. In sensory tests, GAP-43 (-/-) mice were tested for impaired tactile and labyrinthine function. Abnormal reflexes were found in the contact and vibrissa placing responses, and in the crossed extensor reflex. GAP-43 (+/-) animals showed only moderate abnormalities as compared with wild-type animals. We conclude that GAP-43 is necessary for the development and function of a variety of neuronal systems. The results also show that the comprehensive test battery used in the present study represents a sensitive approach to assess the functional integrity of ascending and descending pathways in genetically manipulated mice.
Collapse
Affiliation(s)
- G A Metz
- Canadian Center for Behavioural Neuroscience, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta, T1K 3M4 Canada.
| | | |
Collapse
|
30
|
Gordon JA, Hen R. The serotonergic system and anxiety. Neuromolecular Med 2004; 5:27-40. [PMID: 15001810 DOI: 10.1385/nmm:5:1:027] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2003] [Accepted: 08/06/2003] [Indexed: 11/11/2022]
Abstract
The wide use of serotonin reuptake inhibitors and serotonin receptor agonists in anxiety disorders has suggested a key role for the modulatory neurotransmitter in anxiety. However, serotonin's specific role is still uncertain. This article reviews the literature concerning how and where serotonergic agents modulate anxiety. Varying and sometimes conflicting data from human and animal studies argue for both anxiolytic and anxiogenic roles for serotonin, depending on the specific disorder, structure, or behavioral task studied. However, recent data from molecular genetic studies in the mouse point toward two important roles for the serotonin 1A receptor. In development, serotonin acts through this receptor to promote development of the circuitry necessary for normal anxiety-like behaviors. In adulthood, serotonin reuptake inhibitors act through the same receptor to stimulate neurogenesis and reduce anxiety-like behaviors. These studies highlight that the complex serotonin system likely plays various roles in the regulation of anxiety both during development and in adulthood.
Collapse
Affiliation(s)
- Joshua A Gordon
- Department of Psychiatry, Center for Neurobiology and Behavior, Columbia University, and the New York State Psychiatric Institute, NY, USA
| | | |
Collapse
|
31
|
Murphy DL, Uhl GR, Holmes A, Ren-Patterson R, Hall FS, Sora I, Detera-Wadleigh S, Lesch KP. Experimental gene interaction studies with SERT mutant mice as models for human polygenic and epistatic traits and disorders. GENES BRAIN AND BEHAVIOR 2004; 2:350-64. [PMID: 14653307 DOI: 10.1046/j.1601-1848.2003.00049.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Current evidence indicates that virtually all neuropsychiatric disorders, like many other common medical disorders, are genetically complex, with combined influences from multiple interacting genes, as well as from the environment. However, additive or epistatic gene interactions have proved quite difficult to detect and evaluate in human studies. Mouse phenotypes, including behaviors and drug responses, can provide relevant models for human disorders. Studies of gene-gene interactions in mice could thus help efforts to understand the molecular genetic bases of complex human disorders. The serotonin transporter (SERT, 5-HTT, SLC6A4) provides a relevant model for studying such interactions for several reasons: human variants in SERT have been associated with several neuropsychiatric and other medical disorders and quantitative traits; SERT blockers are effective treatments for a number of neuropsychiatric disorders; there is a good initial understanding of the phenotypic features of heterozygous and homozygous SERT knockout mice; and there is an expanding understanding of the interactions between variations in SERT expression and variations in the expression of a number of other genes of interest for neuropsychiatry and neuropharmacology. This paper provides examples of experimentally-obtained interactions between quantitative variations in SERT gene expression and variations in the expression of five other mouse genes: DAT, NET, MAOA, 5-HT(1B) and BDNF. In humans, all six of these genes possess polymorphisms that have been independently investigated as candidates for neuropsychiatric and other disorders in a total of > 500 reports. In the experimental studies in mice reviewed here, gene-gene interactions resulted in either synergistic, antagonistic (including 'rescue' or 'complementation') or more complex, quantitative alterations. These were identified in comparisons of the behavioral, physiological and neurochemical phenotypes of wildtype mice vs. mice with single allele or single gene targeted disruptions and mice with partial or complete disruptions of multiple genes. Several of the descriptive phenotypes could be best understood on the basis of intermediate, quantitative alterations such as brain serotonin differences. We discuss the ways in which these interactions could provide models for studies of gene-gene interactions in complex human neuropsychiatric and other disorders to which SERT may contribute, including developmental disorders, obesity, polysubstance abuse and others.
Collapse
Affiliation(s)
- D L Murphy
- Laboratory of Clinical Science, Building 10, Room 3D41, 10 Center Drive, NIMH, NIH/ DHHS, Bethesda, MD 20892-1264, USA.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Gaspar P, Cases O, Maroteaux L. The developmental role of serotonin: news from mouse molecular genetics. Nat Rev Neurosci 2004; 4:1002-12. [PMID: 14618156 DOI: 10.1038/nrn1256] [Citation(s) in RCA: 939] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
New genetic models that target the serotonin system show that transient alterations in serotonin homeostasis cause permanent changes to adult behaviour and modify the fine wiring of brain connections. These findings have revived a long-standing interest in the developmental role of serotonin. Molecular genetic approaches are now showing us that different serotonin receptors, acting at different developmental stages, modulate different developmental processes such as neurogenesis, apoptosis, axon branching and dendritogenesis. Our understanding of the specification of the serotonergic phenotype is improving. In addition, studies have revealed that serotonergic traits are dissociable, as there are populations of neurons that contain serotonin but do not synthesize it.
Collapse
Affiliation(s)
- Patricia Gaspar
- INSERM U 106, Hôpital Salpêtrière, 47, Boulevard de l'Hôpital, 75651, Paris cedex 13, France.
| | | | | |
Collapse
|
33
|
Viggiano D, Ruocco LA, Sadile AG. Dopamine phenotype and behaviour in animal models: in relation to attention deficit hyperactivity disorder. Neurosci Biobehav Rev 2003; 27:623-37. [PMID: 14624807 DOI: 10.1016/j.neubiorev.2003.08.006] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The phenotypic expression of behaviour is the outcome of interacting neuronal networks and is modulated by different subcortical systems. In the present paper the role of a major subcortical neurochemical system, dopamine (DA), is reviewed. In particular, knockout (KO) technology has given an overwhelming insight into the effects of specific component of the dopaminergic system. Therefore, the behavioural profile of dopamine transporter (DAT), tyrosine hydroxylase (TH), DA and cAMP-regulated phosphoprotein (DARPP 32), and D1, D2, D3, D4 and D5 dopamine receptors knockouts (and their combination) is reviewed.TH, D1, D2, D4 KO mice exhibit decreased locomotor activity, perhaps due to decreased motivational level. D3 KO and DAT KO mice show an increase in basal and novelty-induced activity respectively. It is possible that the increased dopamine levels in DAT KO mice enhance motivation. These observations support the hyperDA hypothesis in hyperactive phenotypes. Moreover, they suggest that the inhibitory effect of psychostimulant drugs, such as methylphenidate and amphetamines, in Attention Deficit Hyperactivity Disorder may be the outcome of an altered balance between auto- and hetero-receptors. However, since KO technology is hampered by blockade of the target at early stages of development, some alternatives have been proposed, such as inducible mutagenesis and inhibitory small RNAs conveyed to target by viral vectors in adulthood.
Collapse
Affiliation(s)
- Davide Viggiano
- Department of Experimental Medicine, Second University of Naples, Naples, Italy
| | | | | |
Collapse
|
34
|
Affiliation(s)
- W Gordon Frankle
- Department of Psychiatry, Columbia College of Physicians and Surgeons, New York, NY 10032, USA.
| | | | | |
Collapse
|
35
|
Brown CE, Seif I, De Maeyer E, Dyck RH. Altered zincergic innervation of the developing primary somatosensory cortex in monoamine oxidase-A knockout mice. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2003; 142:19-29. [PMID: 12694941 DOI: 10.1016/s0165-3806(03)00008-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Genetic inactivation of monoamine oxidase-A (MAO-A) significantly elevates levels of serotonin (5-HT) during early development and causes a disruption in the compartmented organization of thalamocortical axon terminals in layer 4 of the somatosensory cortex. In order to determine whether corticocortical innervation of the primary somatosensory cortex is also affected by this mutation, we examined the distribution of zinc-containing axon terminals (terminals known to originate from within the cortex) in the developing somatosensory cortex of MAO-A knockout mice, at postnatal days (PD) 3, 5, 6, 8, 10, 12, 15, 28, and 60. In layer 4 of wild-type mice, histochemical staining for zinc respected barrel-specific compartments at all ages beyond PD 5. By contrast, zinc staining in MAO-A knockout mice did not exhibit signs of barrel compartmentation at any age. Across cortical layers, substantial developmental changes in the distribution of zinc-containing terminals were observed in wild-type mice up until PD 12, at which time the mature lamina-specific pattern of zinc staining was achieved. Similar changes were observed in the somatosensory cortex of MAO-A knockout mice, except that its developmental time course was significantly compressed, with zincergic innervation achieving a mature appearance by PD 8. These results provide evidence that an excess of monoamines, most likely 5-HT, dramatically perturbs the columnar organization of intracortical zincergic afferents in layer 4 and significantly accelerates the appearance of a mature laminar pattern of zinc-containing corticocortical terminals.
Collapse
Affiliation(s)
- Craig E Brown
- Department of Psychology, University of Calgary, 2500 University Drive, NW, Calgary, Alberta T2N 1N4, Canada
| | | | | | | |
Collapse
|
36
|
Luo X, Persico AM, Lauder JM. Serotonergic regulation of somatosensory cortical development: lessons from genetic mouse models. Dev Neurosci 2003; 25:173-83. [PMID: 12966215 DOI: 10.1159/000072266] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2003] [Accepted: 04/04/2003] [Indexed: 11/19/2022] Open
Abstract
Monoaminergic neurotransmitter systems appear early during embryogenesis, suggesting that they could play important roles in brain development. Accumulated evidence indicates that serotonin (5-hydroxytryptamine, 5-HT) regulates neural as well as nonneural development, including early aspects of embryonic development, differentiation of neuronal progenitors, and morphogenesis of the craniofacial region, heart and limb. Recent studies using monoamine oxidase-A (MAO-A), 5-HT transporter, vesicular monoamine transporter-2 (VMAT2) and 5-HT1B receptor single, double and triple knockout mice have provided evidence that the serotonergic system plays important roles in barrel field formation in the developing somatosensory cortex. Here we review evidence from these genetic mouse models and, based on the accumulated evidence, propose a testable model for future studies of mechanisms underlying serotonergic regulation of cortical development.
Collapse
Affiliation(s)
- Xiaoyan Luo
- Department of Cell and Developmental Biology, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7090, USA
| | | | | |
Collapse
|