1
|
Hall S, Parr BA, Hussey S, Anoopkumar-Dukie S, Arora D, Grant GD. The neurodegenerative hypothesis of depression and the influence of antidepressant medications. Eur J Pharmacol 2024; 983:176967. [PMID: 39222740 DOI: 10.1016/j.ejphar.2024.176967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Depression is a complex neurological disease that holds many theories on its aetiology and pathophysiology. The monoamine strategy of treating depression with medications to increase levels of monoamines in the (extra)synapse, primarily through the inhibition of monoamine transporters, does not always work, as seen in patients that lack a response to multiple anti-depressant exposures, as well as a lack of depressive symptoms in healthy volunteers exposed to monoamine reduction. Depression is increasingly being understood not as a single condition, but as a complex interplay of adaptations in various systems, including inflammatory responses and neurotransmission pathways in the brain. This understanding has led to the development of the neurodegenerative hypothesis of depression. This hypothesis, which is gaining widespread acceptance posits that both oxidative stress and inflammation play significant roles in the pathophysiology of depression. This article is a review of the literature focused on neuroinflammation in depression, as well as summarised studies of anti-inflammatory and antioxidant effects of antidepressants.
Collapse
Affiliation(s)
- Susan Hall
- School of Pharmacy and Medical Sciences, Griffith University Gold Coast Campus, Southport, 4222, Australia.
| | - Brie-Anne Parr
- School of Pharmacy and Medical Sciences, Griffith University Gold Coast Campus, Southport, 4222, Australia
| | - Sarah Hussey
- School of Pharmacy and Medical Sciences, Griffith University Gold Coast Campus, Southport, 4222, Australia
| | | | - Devinder Arora
- School of Pharmacy and Medical Sciences, Griffith University Gold Coast Campus, Southport, 4222, Australia
| | - Gary D Grant
- School of Pharmacy and Medical Sciences, Griffith University Gold Coast Campus, Southport, 4222, Australia
| |
Collapse
|
2
|
Jasionowska J, Gałecki P, Kalinka E, Skiba A, Szemraj J, Turska E, Talarowska M. Level of selected exponents of the kynurenine pathway in patients diagnosed with depression and selected cancers. J Psychiatr Res 2024; 179:175-181. [PMID: 39303569 DOI: 10.1016/j.jpsychires.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/01/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024]
Abstract
Altered immune system activity is one of the common pathomechanisms of depressive disorders and cancer. The aim of this study is to evaluate level of selected elements of the kynurenine pathway in groups of depressed and oncological patients. The study included 156 individuals, aged 19-65 years (M = 43.46, SD = 13.99), divided into three groups, namely depressive disorders (DD), oncology patients (OG), and a comparison group of healthy subjects (CG). A sociodemographic questionnaire and the Hamilton Depression Rating Scale (HDRS) were used in the study to assess the intensity of depressive symptoms. Level of TDO2, L-KYN, HK, AA and QA was significantly higher in patients from OG and DD groups than in the comparison group. TDO2 level in the OG group was positively correlated with the severity of depressive symptoms. When the OG and DD groups were analyzed together, level of TDO2, 3-HKYN, AA, QA correlated positively with the severity of depressive symptoms. Thus, kynurenine pathway might play an integral role in the pathogenesis of depression.
Collapse
Affiliation(s)
| | - Piotr Gałecki
- Department of Adult Psychiatry, Medical University of Lodz, Lodz, Poland
| | - Ewa Kalinka
- Department of Oncology, Polish Mother's Memorial Hospital-Research Institute, Lodz, Poland
| | - Aleksandra Skiba
- Department of Adult Psychiatry, Medical University of Lodz, Lodz, Poland
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Elżbieta Turska
- Department of Oncology, Polish Mother's Memorial Hospital-Research Institute, Lodz, Poland
| | - Monika Talarowska
- Institute of Psychology, Faculty of Educational Sciences, University of Lodz, Lodz, Poland
| |
Collapse
|
3
|
Jiang H, Zhang J, Li Q, Zhou Y. Integrating network pharmacology and bioinformatics to explore the mechanism of Xiaojian Zhongtang in treating major depressive disorder: An observational study. Medicine (Baltimore) 2024; 103:e39726. [PMID: 39312335 PMCID: PMC11419523 DOI: 10.1097/md.0000000000039726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/26/2024] [Indexed: 09/25/2024] Open
Abstract
Major depressive disorder (MDD) is a common mental illness. The traditional Chinese medicine compound Xiaojian Zhongtang (XJZT) has a good therapeutic effect on MDD, but the specific mechanism is not clear. The aim of this study is to explore the molecular mechanism of XJZT in the treatment of MDD through network pharmacology and bioinformatics. The traditional Chinese medicine system pharmacology database was used to screen the chemical components and targets of XJZT, while the online Mendelian inheritance in man, DisGeNET, Genecards, and therapeutic target database databases were used to collect MDD targets and identify the intersection targets of XJZT and MDD. A "drugs-components-targets" network was constructed using the Cytoscape platform, and the STRING was used for protein-protein interaction analysis of intersecting targets. Gene Ontology and Kyoto encyclopedia of genes and genomes analysis of intersecting targets was performed using the DAVID database. Obtain serum and brain transcriptome datasets of MDD from the gene expression omnibus database, and perform differentially expressed genes, weighted gene co-expression network analysis, gene set enrichment analysis, and receiver operating characteristic analysis. A total of 127 chemical components and 767 targets were obtained from XJZT, among which quercetin, kaempferol, and maltose are the core chemical components, and 1728 MDD targets were screened out, with 77 intersecting targets between XJZT and MDD. These targets mainly involve AGE-RAGE signaling pathway in diabetic complexes, epidermal growth factor receptor tyrosine kinase inhibitor resistance, and HIF-1 signaling pathway, and these core targets have strong binding activity with core components. In addition, 1166 differentially expressed genes were identified in the MDD serum transcriptome dataset, and weighted gene co-expression network analysis identified the most relevant gene modules (1269 genes), among which RAC-alpha serine/threonine-protein kinase (AKT1), D(4) dopamine receptor (DRD4), and kynurenine 3-monooxygenase (KMO) were target genes for the treatment of MDD with XJZT, these 3 genes are mainly related to the ubiquitin-mediated proteolysis, arachidonic acid (AA) metabolism, and Huntington disease pathways, and the expression of AKT1, DRD4, and KMO was also found in the MDD brain transcriptome dataset, which is significantly correlated with the occurrence of MDD. We have identified 3 key targets for XJZT treatment of MDD, including AKT1, KMO, and DRD4, and they can be regulated by the key components of XJZT, including quercetin, maltose, and kaempferol. This provides valuable insights for the early clinical diagnosis and development of therapeutic drugs for MDD.
Collapse
Affiliation(s)
- Huaning Jiang
- School of Basic Medicine, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Jian Zhang
- School of Basic Medicine, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Quan Li
- School of Basic Medicine, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Yanyan Zhou
- School of Basic Medicine, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| |
Collapse
|
4
|
Yang S, Han J, Ye Z, Zhou H, Yan Y, Han D, Chen S, Wang L, Feng Q, Zhao X, Kang C. The correlation of inflammation, tryptophan-kynurenine pathway, and suicide risk in adolescent depression. Eur Child Adolesc Psychiatry 2024:10.1007/s00787-024-02579-4. [PMID: 39287643 DOI: 10.1007/s00787-024-02579-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 09/02/2024] [Indexed: 09/19/2024]
Abstract
Accumulating evidence suggests a role for the tryptophan-kynurenine pathway (TKP) in the psychopathology of major depressive disorder (MDD). Abnormal inflammatory profile and production of TKP neurotoxic metabolites appear more pronounced in MDD with suicidality. Progress in understanding the neurobiology of MDD in adolescents lags significantly behind that in adults due to limited empirical evidence. Aims of this study was to investigate the association between inflammation, TKP, and suicidality in adolescent depression. Seventy-three adolescents with MDD were assessed for serum levels of interleukin (IL)-1β, IL-6, IL-18, IL-10, tumor necrosis factor-α (TNF-α), tryptophan (TRP), kynurenine (KYN), 3-hydroxykynurenine (3-HK), and kynurenine acid (KA). Correlations between cytokines and TKP measures were examined. Patients were divided into high- (n = 42) and non-high-suicide-risk groups (n = 31), and serum levels of cytokines and TKP metabolites were compared. Significant negative correlations were found between TRP and IL-8 (r = - 0.27, P < 0.05) and IL-10 (r = - 0.23, P < 0.05), while a significant positive correlation was observed between 3-HK and IL-8 (r = 0.39, P < 0.01) in depressed adolescents. The KYN/TPR (index of indoleamine 2,3-dioxygenase, IDO) was positively correlated with IL-1β (r = 0.34), IL-6 (r = 0.32), IL-10 (r = 0.38) and TNF-α (r = 0.35) levels (P < 0.01); and 3-HK/KYN (index of kynurenine3-monooxidase, KMO) was positively correlated with IL-8 level (r = 0.31, P < 0.01). Depressed adolescents at high suicide risk exhibited significantly higher levels of IL-1β (Z = 2.726, P < 0.05), IL-10 (Z = 2.444, P < 0.05), and TNF-α (Z = 2.167, P < 0.05) and lower levels of 3-HK (Z = 2.126, P < 0.05) compared to their non-high suicide risk counterparts. Our findings indicated that serum inflammatory cytokines were robustly associated with IDO and KMO activity, along with significantly decreased serum level of TRP, increased level of 3-HK, and higher suicide risk in adolescent depression.
Collapse
Affiliation(s)
- Shuran Yang
- Department of Psychosomatic Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Jingjing Han
- Department of Psychosomatic Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Zhihan Ye
- Department of Clinical Laboratory, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Huizhi Zhou
- 920th Hospital of Joint Logistics Support Force, PLA, Yunnan, 650000, Kunming, China
| | - Yangye Yan
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Dong Han
- Department of Psychosomatic Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Shi Chen
- Department of Psychosomatic Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Lu Wang
- Department of Psychosomatic Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Qiang Feng
- Department of Psychosomatic Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Xudong Zhao
- Department of Psychosomatic Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
- Clinical Research Center for Mental Disorders, School of Medicine, Chinese-German Institute of Mental Health, Shanghai Pudong New Area Mental Health Center, Tongji University, Shanghai, 200124, China
| | - Chuanyuan Kang
- Department of Psychosomatic Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China.
| |
Collapse
|
5
|
Maury AA, Holton KF. Biomarkers Associated with Depression Improvement in Veterans with Gulf War Illness Using the Low-Glutamate Diet. Nutrients 2024; 16:2255. [PMID: 39064698 PMCID: PMC11280460 DOI: 10.3390/nu16142255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Gulf War Illness (GWI) is a chronic multi-symptom neurological disorder affecting veterans of the Gulf War that is commonly comorbid with depression. A secondary data analysis was conducted to examine serum homocysteine and inflammatory cytokines (IFN-γ, IL-6, IL-1β, TNF-α) as potential biomarkers of depression improvement among veterans with GWI after a one-month dietary intervention aimed at reducing excitotoxicity and increasing micronutrients. Analyses, including multiple linear and logistic regression, were conducted in R studio. Dietary adherence was estimated using a specialized excitotoxin food frequency questionnaire (FFQ), and depression was measured using the Center for Epidemiologic Studies Depression (CES-D) scale. After one month on the diet, 52% of participants reported a significant decrease in depression (p < 0.01). Greater dietary adherence (FFQ) was associated with increased likelihood of depression improvement; OR (95% CI) = 1.06 (1.01, 1.11), (p = 0.02). Reduced homocysteine was associated with depression improvement after adjusting for FFQ change (β = 2.58, p = 0.04), and serum folate and vitamin B12 were not mediators of this association. Reduction in IFN-γ was marginally associated with likelihood of depression improvement (OR (95% CI) = 1.11 (0.00, 1.42), (p = 0.06)), after adjustment for potential confounders. Findings suggest that homocysteine, and possibly IFN-γ, may serve as biomarkers for depression improvement in GWI. Larger trials are needed to replicate this work.
Collapse
Affiliation(s)
- Amy A. Maury
- Department of Neuroscience, American University, Washington, DC 20016, USA;
| | - Kathleen F. Holton
- Department of Health Studies, American University, Washington, DC 20016, USA
- Center for Neuroscience and Behavior, American University, Washington, DC 20016, USA
| |
Collapse
|
6
|
Averina OV, Poluektova EU, Zorkina YA, Kovtun AS, Danilenko VN. Human Gut Microbiota for Diagnosis and Treatment of Depression. Int J Mol Sci 2024; 25:5782. [PMID: 38891970 PMCID: PMC11171505 DOI: 10.3390/ijms25115782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Nowadays, depressive disorder is spreading rapidly all over the world. Therefore, attention to the studies of the pathogenesis of the disease in order to find novel ways of early diagnosis and treatment is increasing among the scientific and medical communities. Special attention is drawn to a biomarker and therapeutic strategy through the microbiota-gut-brain axis. It is known that the symbiotic interactions between the gut microbes and the host can affect mental health. The review analyzes the mechanisms and ways of action of the gut microbiota on the pathophysiology of depression. The possibility of using knowledge about the taxonomic composition and metabolic profile of the microbiota of patients with depression to select gene compositions (metagenomic signature) as biomarkers of the disease is evaluated. The use of in silico technologies (machine learning) for the diagnosis of depression based on the biomarkers of the gut microbiota is given. Alternative approaches to the treatment of depression are being considered by balancing the microbial composition through dietary modifications and the use of additives, namely probiotics, postbiotics (including vesicles) and prebiotics as psychobiotics, and fecal transplantation. The bacterium Faecalibacterium prausnitzii is under consideration as a promising new-generation probiotic and auxiliary diagnostic biomarker of depression. The analysis conducted in this review may be useful for clinical practice and pharmacology.
Collapse
Affiliation(s)
- Olga V. Averina
- Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), 119333 Moscow, Russia; (E.U.P.); (Y.A.Z.); (A.S.K.); (V.N.D.)
| | - Elena U. Poluektova
- Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), 119333 Moscow, Russia; (E.U.P.); (Y.A.Z.); (A.S.K.); (V.N.D.)
| | - Yana A. Zorkina
- Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), 119333 Moscow, Russia; (E.U.P.); (Y.A.Z.); (A.S.K.); (V.N.D.)
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
| | - Alexey S. Kovtun
- Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), 119333 Moscow, Russia; (E.U.P.); (Y.A.Z.); (A.S.K.); (V.N.D.)
| | - Valery N. Danilenko
- Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), 119333 Moscow, Russia; (E.U.P.); (Y.A.Z.); (A.S.K.); (V.N.D.)
| |
Collapse
|
7
|
Pierson SR, Kolling LJ, James TD, Pushpavathi SG, Marcinkiewcz CA. Serotonergic dysfunction may mediate the relationship between alcohol consumption and Alzheimer's disease. Pharmacol Res 2024; 203:107171. [PMID: 38599469 PMCID: PMC11088857 DOI: 10.1016/j.phrs.2024.107171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/14/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
The impact of Alzheimer's disease (AD) and its related dementias is rapidly expanding, and its mitigation remains an urgent social and technical challenge. To date there are no effective treatments or interventions for AD, but recent studies suggest that alcohol consumption is correlated with the risk of developing dementia. In this review, we synthesize data from preclinical, clinical, and epidemiological models to evaluate the combined role of alcohol consumption and serotonergic dysfunction in AD, underscoring the need for further research on this topic. We first discuss the limitations inherent to current data-collection methods, and how neuropsychiatric symptoms common among AD, alcohol use disorder, and serotonergic dysfunction may mask their co-occurrence. We additionally describe how excess alcohol consumption may accelerate the development of AD via direct effects on serotonergic function, and we explore the roles of neuroinflammation and proteostasis in mediating the relationship between serotonin, alcohol consumption, and AD. Lastly, we argue for a shift in current research to disentangle the pathogenic effects of alcohol on early-affected brainstem structures in AD.
Collapse
Affiliation(s)
- Samantha R Pierson
- Department of Neuroscience and Pharmacology, University of Iowa, United States
| | - Louis J Kolling
- Department of Neuroscience and Pharmacology, University of Iowa, United States
| | - Thomas D James
- Department of Neuroscience and Pharmacology, University of Iowa, United States
| | | | | |
Collapse
|
8
|
Wang Y, Li S, Chen M, Zeng M, Zhou L, Yao R, Pang B, Xu Y, Cao S, Guo S, Cui X. Shenyu ningshen tablet reduced neuronal damage in the hippocampus of chronic restraint stress model rat by inhibiting A1-reactive astrocytes. Heliyon 2024; 10:e28916. [PMID: 38655362 PMCID: PMC11035944 DOI: 10.1016/j.heliyon.2024.e28916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/26/2024] Open
Abstract
Context Shenyu Ningshen (SYNS) tablet is the first pure Chinese medicinal small compound preparation approved for clinical trials for the treatment of depression in China. Clinical experiments confirmed that the formulation had a significant Improvement effect against depression due to the deficiency of both qi and yin. It has been shown to exhibit noticeable anti-inflammatory effect in an animal model of depression. Our previous study showed that SYNS could effectively inhibit the inflammatory response in a depression model. Aim of the study The purpose of this study was to investigate the protective effects of SYNS on neurons and explore whether the underlying mechanism was associated with A1s. Materials and methods The depression model of solitary raising-chronic restraint stress (CRS) rats was established; body weight examination, sugar water preference test, open field test, and histological analysis were performed to preliminarily verify the efficacy of the formulation. Subsequently, neuronal nucleus (NeuN) and synaptic-associated proteins (MAP2 and PSD95) were labeled, and the protective effect of SYNS on hippocampal neurons was observed based on the fluorescence intensity of the above indicators. Western blotting, histological examination, and immunofluorescence were used to evaluate the inhibitory effects of SYNS on neuroinflammation and activation of A1s in CRS depression model. Results SYNS improved behavioral indicators such as weight loss, pleasure loss, and reduced exercise volume in CRS rat model. SYNS restored the CRS-induced histopathological changes in the hippocampus. SYNS showed a certain degree of protective effect on synapses. Further, SYNS inhibited the activation of A1s by inhibiting neuroinflammatory factors in the hippocampus. Conclusion Our results showed that SYNS had a certain degree of neuroprotective effect, which might be related to its inhibition of the inflammatory response and A1s.
Collapse
Affiliation(s)
- Yaxin Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shuran Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mengping Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Meihua Zeng
- Guangdong Si Ji Pharmaceutical Co., LTD, China
| | - Lirun Zhou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Rongmei Yao
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Bo Pang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yingli Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shan Cao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shanshan Guo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaolan Cui
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
9
|
Zhao T, Liu T, Wang L, Xie K, Tang H, Tang M. Dysfunction of neurotransmitter metabolism is associated with the severity of depression in first-diagnosed, drug-naïve depressed patients. J Affect Disord 2024; 349:332-341. [PMID: 38199403 DOI: 10.1016/j.jad.2024.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/26/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
BACKGROUND & AIMS Biochemical changes of neurotransmitters underlying major depressive disorder (MDD) are unknown. This study preliminarily explored the association between neurotransmitters with MDD and the possibility of objective laboratory prediction of neurotransmitter involvement in MDD. METHODS A total of 87 first-diagnosed, drug-naïve patients with depression and 50 healthy controls (HCs) were included in the cross-sectional study. The levels and turnovers of neurotransmitters (glutamine (GLN), glutamic acid (GLU), γ-2Aminobutiric acid (GABA), kainate (KA), vanillylmandelic acid (VMA), 3-methoxy 4-hydroxyphenyl ethylene glycol (MHPG), noradrenaline (NE), homovanillic acid (HVA), dihydroxy-phenyl acetic acid (DOPAC), dopamine (DA), tryptophane (TRP), kynurenine (KYN), serotonin (5-HT), 5-hydroxyindoleacetic acid (5-HIAA)) were determined and the confounding factors were adjusted. Then a correlation and a predictive analysis towards neurotransmitters for MDD were performed. RESULTS After adjusting confounding factors, GLU (OR = 1.159), (GLU+ GABA)/GLN (OR = 1.217), DOPAC (OR = 1.106), DOPAC/DA (OR = 1.089) and (DOPAC+ HVA)/DA (OR = 1.026) enacted as risk factors of MDD, while KYN (OR = 0.992) was a protective factor. GABAergic and TRPergic pathways were associated with severity of depressive and anxiety symptoms in patients with depression. The predictive model for MDD (AUC = 0.775, 95%CI 0.683-0.860) consisted of KYN (OR = 0.990) and (GLU + GABA)/GLN (OR = 4.101). CONCLUSIONS First-diagnosed, drug-naïve depression patients showed abnormal neurotransmitter composition. GLU, (GLU + GABA)/GLN, DOPAC, DOPAC/DA and (DOPAC + HVA)/DA were risk factors of MDD, while KYN was a protective factor. GABAergic and TRPergic pathways were correlated with MDD clinical characteristics. KYN and (GLU + GABA)/GLN may have a predictive value for MDD.
Collapse
Affiliation(s)
- Tingyu Zhao
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Ting Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Lu Wang
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders and Beijing Institute for Brain Disorders Center of Schizophrenia, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Kaiqiang Xie
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Hui Tang
- National Clinical Research Center for Mental Disorders, China National Technology Institute on Mental Disorders and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Mimi Tang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| |
Collapse
|
10
|
Gumusoglu SB. The role of the placenta-brain axis in psychoneuroimmune programming. Brain Behav Immun Health 2024; 36:100735. [PMID: 38420039 PMCID: PMC10900837 DOI: 10.1016/j.bbih.2024.100735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/06/2024] [Accepted: 02/04/2024] [Indexed: 03/02/2024] Open
Abstract
Gestational exposures have enduring impacts on brain and neuroimmune development and function. Perturbations of pregnancy leading to placental structure/function deficits, cell stress, immune activation, and endocrine changes (metabolic, growth factors, etc.) all increase neuropsychiatric risk in offspring. The existing literature links obstetric diseases with placental involvement to offspring neuroimmune outcomes and neurodevelopmental risk. Psychoneuroimmune outcomes in offspring brain include changes to microglia, cytokine/chemokine production, cell stress, and long-term immunoreactivity. These outcomes are altered by structural, anti-angiogenic/hypoxic, inflammatory, and metabolic diseases of the placenta. This fetal programming occurs via direct placental passage or production of factors which can act directly on fetal brain substrates, or indirectly via action of circulating factors on intermediates in the placenta. Placental neuroendocrine, vascular/angiogenic, immune, and extracellular vesicular mechanisms are detailed. These mechanisms interact within various placental and pregnancy conditions. An increased understanding of the placental origins of psychoneuroimmunology will yield dividends for human health. Identifying maternal and placental biomarkers for fetal neuroimmune health may also revolutionize early diagnosis and precision psychiatry, empowering patients to make the best healthcare decisions for their families. Targeting placental mechanisms may be a valuable approach for the prevention and mitigation of intergenerational, lifelong neuropathology.
Collapse
Affiliation(s)
- Serena B. Gumusoglu
- Department of Obstetrics and Gynecology, University of Iowa Carver College of Medicine, 200 Hawkins Dr. Iowa City, IA, 52327, USA
- Department of Psychiatry, University of Iowa Carver College of Medicine, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
11
|
Vyas A, Doshi G. A cross talk on the role of contemporary biomarkers in depression. Biomarkers 2024; 29:18-29. [PMID: 38261718 DOI: 10.1080/1354750x.2024.2308834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/14/2024] [Indexed: 01/25/2024]
Abstract
Introduction: Biomarkers can be used to identify determinants of response to various treatments of mental disorders. Evidence to date demonstrates that markers of inflammatory, neurotransmitter, neurotrophic, neuroendocrine, and metabolic function can predict the psychological and physical consequences of depression in individuals, allowing for the development of new therapeutic targets with fewer side effects. Extensive research has included hundreds of potential biomarkers of depression, but their roles in depression, abnormal patients, and how bioinformatics can be used to improve diagnosis, treatment, and prognosis have not been determined or defined. To determine which biomarkers can and cannot be used to predict treatment response, classify patients for specific treatments, and develop targets for new interventions, proprietary strategies, and current research projects need to be tailored.Material and Methods: This review article focuses on - biomarker systems that would help in the further development and expansion of newer targets - which holds great promise for reducing the burden of depression.Results and Discussion: Further, this review point to the inflammatory response, metabolic marker, and microribonucleic acids, long non-coding RNAs, HPA axis which are - related to depression and can serve as future targets.
Collapse
Affiliation(s)
- Aditi Vyas
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Gaurav Doshi
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| |
Collapse
|
12
|
Pethő B, Kovács MÁ, Simon D, Tóth T, Hajnal AS, Csulak T, Hebling D, Albert N, Varga E, Herold M, Osváth P, Vörös V, Tényi T, Herold R. Investigation of peripheral inflammatory biomarkers in association with suicide risk in major depressive disorder. Front Psychiatry 2024; 15:1321354. [PMID: 38347880 PMCID: PMC10859515 DOI: 10.3389/fpsyt.2024.1321354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/10/2024] [Indexed: 02/15/2024] Open
Abstract
Suicide is the most severe complication of major depressive disorder (MDD). Novel research assumes the role of immunological dysregulation in the background - several studies have reported alterations in the number of inflammatory cells related to both MDD and suicidality. There are currently no objective, routinely measured parameters to indicate suicidal vulnerability. However, altered inflammatory cell numbers and ratios have been proposed as potential biomarkers of suicide risk (SR). The present research aims to examine changes of these values related to increased SR in MDD as an assumed inflammatory state. We investigated laboratory parameters of psychiatric in-patients diagnosed with MDD (n = 101) retrospectively. Individuals with recent suicide attempt (SA) (n = 22) and with past SA (n = 19) represented the high SR group. MDD patients with no history of SA (n = 60) composed the intermediate SR group. We compared the number of neutrophil granulocytes, monocytes, lymphocytes, platelets, white blood cell count (WBC), neutrophil-to-lymphocyte (NLR), monocyte-to-lymphocyte (MLR), platelet-to-lymphocyte ratio (PLR), mean platelet volume (MPV), red blood cell distribution width (RDW) and erythrocyte sedimentation rate (ESR). Furthermore, we evaluated alterations of these parameters related to antidepressant (AD) and antipsychotic (AP) treatment, which have been proved to have anti-inflammatory effects. We found a significant increase in neutrophil granulocyte count, NLR, monocyte count, MLR, WBC and ESR in patients with recent SA compared to patients with no history of SA. Moreover, there was a significant elevation in monocyte count, MLR, ESR and RDW in patients with high SR compared to patients with intermediate SR. AD treatment resulted in a significant decrease in neutrophil granulocyte count and NLR, however, it did not affect monocyte count and MLR. Assuming immunological mechanisms in the background of MDD and suicidality, our findings support the role of NLR as a biomarker of acute SR, though its alterations may be masked by possible anti-inflammatory effects of AD treatment in the long term. However, MLR, a marker exhibiting changes which are not attenuated by pharmacotherapy, may be a possible indicator of both acute and long-term suicidal vulnerability.
Collapse
Affiliation(s)
- Borbála Pethő
- Department of Psychiatry and Psychotherapy, Clinical Center, Medical School, University of Pécs, Pécs, Hungary
| | - Márton Áron Kovács
- Department of Psychiatry and Psychotherapy, Clinical Center, Medical School, University of Pécs, Pécs, Hungary
| | - Diána Simon
- Department of Immunology and Biotechnology, Clinical Center, Medical School, University of Pécs, Pécs, Hungary
| | - Tünde Tóth
- Department of Anatomy, Clinical Center, Medical School, University of Pécs, Pécs, Hungary
| | - András Sándor Hajnal
- Department of Psychiatry and Psychotherapy, Clinical Center, Medical School, University of Pécs, Pécs, Hungary
| | - Tímea Csulak
- Department of Psychiatry and Psychotherapy, Clinical Center, Medical School, University of Pécs, Pécs, Hungary
| | - Dóra Hebling
- Department of Psychiatry and Psychotherapy, Clinical Center, Medical School, University of Pécs, Pécs, Hungary
| | - Noémi Albert
- Department of Psychiatry and Psychotherapy, Clinical Center, Medical School, University of Pécs, Pécs, Hungary
| | - Eszter Varga
- Department of Pediatrics, Clinical Center, Medical School, University of Pécs, Pécs, Hungary
| | - Márton Herold
- Department of Psychiatry and Psychotherapy, Clinical Center, Medical School, University of Pécs, Pécs, Hungary
| | - Péter Osváth
- Department of Psychiatry and Psychotherapy, Clinical Center, Medical School, University of Pécs, Pécs, Hungary
| | - Viktor Vörös
- Department of Psychiatry and Psychotherapy, Clinical Center, Medical School, University of Pécs, Pécs, Hungary
| | - Tamás Tényi
- Department of Psychiatry and Psychotherapy, Clinical Center, Medical School, University of Pécs, Pécs, Hungary
| | - Róbert Herold
- Department of Psychiatry and Psychotherapy, Clinical Center, Medical School, University of Pécs, Pécs, Hungary
| |
Collapse
|
13
|
Zhang Y, Yang Y, Li H, Feng Q, Ge W, Xu X. Investigating the Potential Mechanisms and Therapeutic Targets of Inflammatory Cytokines in Post-stroke Depression. Mol Neurobiol 2024; 61:132-147. [PMID: 37592185 DOI: 10.1007/s12035-023-03563-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/07/2023] [Indexed: 08/19/2023]
Abstract
Post-stroke depression (PSD) affects approximately one-third of stroke survivors, severely impacting general recovery and quality of life. Despite extensive studies, the exact mechanisms underlying PSD remain elusive. However, emerging evidence implicates proinflammatory cytokines, including interleukin-1β, interleukin-6, tumor necrosis factor-alpha, and interleukin-18, play critical roles in PSD development. These cytokines contribute to PSD through various mechanisms, including hypothalamic-pituitary-adrenal (HPA) axis dysfunction, neurotransmitter alterations, neurotrophic factor changes, gut microbiota imbalances, and genetic predispositions. This review is aimed at exploring the role of cytokines in stroke and PSD while identifying their potential as specific therapeutic targets for managing PSD. A more profound understanding of the mechanisms regulating inflammatory cytokine expression and anti-inflammatory cytokines like interleukin-10 in PSD may facilitate the development of innovative interventions to improve outcomes for stroke survivors experiencing depression.
Collapse
Affiliation(s)
- Yutong Zhang
- Department of Neurology, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Yuehua Yang
- Department of Neurology, Suzhou Yongding Hospital, Suzhou, 215028, China
| | - Hao Li
- Department of Neurology, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Qian Feng
- Department of Neurology, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Wei Ge
- Department of Neurology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221600, China.
| | - Xingshun Xu
- Department of Neurology, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China.
- Institute of Neuroscience, Soochow University, Suzhou, 215123, China.
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
14
|
Wang L, Liu T, Guo J, Zhao T, Tang H, Dong F, Wang C, Chen J, Tang M. Sex differences in erythrocyte fatty acid composition of first-diagnosed, drug-naïve patients with major depressive disorders. Front Pharmacol 2023; 14:1314151. [PMID: 38164472 PMCID: PMC10757913 DOI: 10.3389/fphar.2023.1314151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024] Open
Abstract
Background: Since depression, sex hormones, and fatty acid status are interrelated, it is important to understand their relationships. In this study, we aimed to investigate sex differences in erythrocyte membrane fatty acid composition among first-diagnosed, drug-naïve patients with major depressive disorders. Methods: The study included 139 individuals with first-diagnosed, drug-naïve depression (male/female = 48/91) and 55 healthy controls (male/female = 24/31). The levels of erythrocyte membrane fatty acids were analyzed to compare the difference between males and females in both patients with depression and healthy controls, as well as to study their correlation with depressive symptoms. Results: In first-diagnosed, drug-naïve patients with major depressive disorders, sex disparities were observed in the levels of erythrocyte saturated fatty acids (SFAs) and n-6 PUFAs (such as C18:0, C20:4n6 and C22:4n6), where higher levels evident in females compared to in males. We found a noteworthy correlation between fatty acid levels and depressive symptoms, in which there is a significant association between female patients and depression but a weaker association between male patients and depression. Conclusion: Our findings demonstrate higher levels of n-6 PUFAs and SFAs in female patients with depression. The relationship between fatty acid composition and depressive symptoms was more prominent in females than males. These findings highlight the significance of considering sex as a crucial and interconnected factor in future investigations and potential adjunctive treatment for mood disorders by targeting fatty acid metabolism.
Collapse
Affiliation(s)
- Lu Wang
- The National Clinical Research Center for Mental Disorders, Beijing Key Laboratory of Mental Disorders, Beijing Institute for Brain Disorders Center of Schizophrenia, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ting Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jimin Guo
- College of Materials Sciences and Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Tingyu Zhao
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hui Tang
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Fang Dong
- The National Clinical Research Center for Mental Disorders, Beijing Key Laboratory of Mental Disorders, Beijing Institute for Brain Disorders Center of Schizophrenia, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Chuanyue Wang
- The National Clinical Research Center for Mental Disorders, Beijing Key Laboratory of Mental Disorders, Beijing Institute for Brain Disorders Center of Schizophrenia, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Jindong Chen
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Mimi Tang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
15
|
Sheibani M, Shayan M, Khalilzadeh M, Soltani ZE, Jafari-Sabet M, Ghasemi M, Dehpour AR. Kynurenine pathway and its role in neurologic, psychiatric, and inflammatory bowel diseases. Mol Biol Rep 2023; 50:10409-10425. [PMID: 37848760 DOI: 10.1007/s11033-023-08859-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 09/27/2023] [Indexed: 10/19/2023]
Abstract
Tryptophan metabolism along the kynurenine pathway is of central importance for the immune function. It prevents hyperinflammation and induces long-term immune tolerance. Accumulating evidence also demonstrates cytoprotective and immunomodulatory properties of kynurenine pathway in conditions affecting either central or peripheral nervous system as well as other conditions such as inflammatory bowel disease (IBD). Although multilevel association exists between the inflammatory bowel disease (IBD) and various neurologic (e.g., neurodegenerative) disorders, it is believed that the kynurenine pathway plays a pivotal role in the development of both IBD and neurodegenerative disorders. In this setting, there is strong evidence linking the gut-brain axis with intestinal dysfunctions including IBD which is consistent with the fact that the risk of neurodegenerative diseases is higher in IBD patients. This review aims to highlight the role of kynurenine metabolic pathway in various neurologic and psychiatric diseases as well as relationship between IBD and neurodegenerative disorders in the light of the kynurenine metabolic pathway.
Collapse
Affiliation(s)
- Mohammad Sheibani
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Razi Drug Research Centre, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Shayan
- Experimental Medicine Research Centre, Tehran University of Medical Sciences, Tehran, MS, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Khalilzadeh
- Experimental Medicine Research Centre, Tehran University of Medical Sciences, Tehran, MS, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Ebrahim Soltani
- Experimental Medicine Research Centre, Tehran University of Medical Sciences, Tehran, MS, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Jafari-Sabet
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Razi Drug Research Centre, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Ghasemi
- Department of Neurology, Lahey Hospital and Medical Center, 41 Mall Road, Burlington, MA, 01803, USA.
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Centre, Tehran University of Medical Sciences, Tehran, MS, Iran.
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Xu YQ, Gou Y, Yuan JJ, Zhu YX, Ma XM, Chen C, Huang XX, Yang ZX, Zhou YM. Peripheral Blood Inflammatory Cytokine Factors Expressions are Associated with Response to Acupuncture Therapy in Postpartum Depression Patients. J Inflamm Res 2023; 16:5189-5203. [PMID: 38026248 PMCID: PMC10655746 DOI: 10.2147/jir.s436907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
Background Increasing evidences demonstrate that immune dysregulation can result in depression, and it is reported that persistent inflammatory response is related to the unresponsiveness of antidepressant treatment. Purpose This study aimed to explore the reason why some responded but some not responded to acupuncture in treating postpartum depression (PPD), and whether it related to the levels of inflammatory cytokines. Patients and Methods Women diagnosed with PPD were recruited in to accept 8-week acupuncture. All subjects were assessed the 17-item Hamilton Depression Rating Scale (HDRS17) at baseline, week 1, week 2, week 4 and week 8 during the treatment. A panel of 9 cytokines was measured at baseline and 8 weeks. Results Of the 121 participants, 96 completed the 8-week assessment and 46 completed the blood sample collection. HDRS17 scores of 96 subjects showed significant statistical reduction since the first week (P = 0.002) and reached to 5.31 (P < 0.000) at the end of therapy. And we divided the 46 subjects into responders and non-responders according to the response rate of HDRS17 scores. Responders and non-responders did not differ significantly between-group in changes in the 9 cytokines. In responders, IL-6, IL-10 and IFN-γ levels were statistically lower (P = 0.006; P = 0.033; P = 0.024), while TGF-β1 was statistically higher after 8 weeks treatment (P < 0.000). In non-responders, the levels of IL-5, TNF-α and TGF-β1 were statistically higher (P = 0.018; P < 0.000; P < 0.000), while IFN-γ was statistically lower (P = 0.005). Conclusion Acupuncture could alleviate depressive symptoms of patients with PPD and might through adjusting peripheral inflammatory response by up-regulating anti-inflammatory cytokines and down-regulating pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Yu-Qin Xu
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong Province, People’s Republic of China
| | - YanHua Gou
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong Province, People’s Republic of China
| | - Jin-Jun Yuan
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong Province, People’s Republic of China
| | - Yan-Xian Zhu
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong Province, People’s Republic of China
| | - Xiao-Ming Ma
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong Province, People’s Republic of China
| | - Chen Chen
- Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, Guangdong Province, People’s Republic of China
| | - Xing-Xian Huang
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong Province, People’s Republic of China
| | - Zhuo-Xin Yang
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong Province, People’s Republic of China
| | - Yu-Mei Zhou
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong Province, People’s Republic of China
| |
Collapse
|
17
|
Tian L, Yu T. An integrated deep learning framework for the interpretation of untargeted metabolomics data. Brief Bioinform 2023; 24:bbad244. [PMID: 37369636 DOI: 10.1093/bib/bbad244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/02/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Untargeted metabolomics is gaining widespread applications. The key aspects of the data analysis include modeling complex activities of the metabolic network, selecting metabolites associated with clinical outcome and finding critical metabolic pathways to reveal biological mechanisms. One of the key roadblocks in data analysis is not well-addressed, which is the problem of matching uncertainty between data features and known metabolites. Given the limitations of the experimental technology, the identities of data features cannot be directly revealed in the data. The predominant approach for mapping features to metabolites is to match the mass-to-charge ratio (m/z) of data features to those derived from theoretical values of known metabolites. The relationship between features and metabolites is not one-to-one since some metabolites share molecular composition, and various adduct ions can be derived from the same metabolite. This matching uncertainty causes unreliable metabolite selection and functional analysis results. Here we introduce an integrated deep learning framework for metabolomics data that take matching uncertainty into consideration. The model is devised with a gradual sparsification neural network based on the known metabolic network and the annotation relationship between features and metabolites. This architecture characterizes metabolomics data and reflects the modular structure of biological system. Three goals can be achieved simultaneously without requiring much complex inference and additional assumptions: (1) evaluate metabolite importance, (2) infer feature-metabolite matching likelihood and (3) select disease sub-networks. When applied to a COVID metabolomics dataset and an aging mouse brain dataset, our method found metabolic sub-networks that were easily interpretable.
Collapse
Affiliation(s)
- Leqi Tian
- School of Data Science, The Chinese University of Hong Kong - Shenzhen, Guangdong, China
- Shenzhen Research Institute of Big Data, Guangdong, China
| | - Tianwei Yu
- School of Data Science, The Chinese University of Hong Kong - Shenzhen, Guangdong, China
- Shenzhen Research Institute of Big Data, Guangdong, China
- Guangdong Provincial Key Laboratory of Big Data Computing, Guangdong, China
| |
Collapse
|
18
|
Alnsasra H, Khalil F, Kanneganti Perue R, Azab AN. Depression among Patients with an Implanted Left Ventricular Assist Device: Uncovering Pathophysiological Mechanisms and Implications for Patient Care. Int J Mol Sci 2023; 24:11270. [PMID: 37511030 PMCID: PMC10379142 DOI: 10.3390/ijms241411270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/29/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Depression is a common and devastating mental illness associated with increased morbidity and mortality, partially due to elevated rates of suicidal attempts and death. Select patients with end-stage heart failure on a waiting-list for a donor heart undergo left ventricular assist device (LVAD) implantation. The LVAD provides a circulatory flow of oxygenated blood to the body, mimicking heart functionality by operating on a mechanical technique. LVAD improves functional capacity and survivability among patients with end-stage heart failure. However, accumulating data suggests that LVAD recipients suffer from an increased incidence of depression and suicide attempts. There is scarce knowledge regarding the pathological mechanism and appropriate treatment approach for depressed LVAD patients. This article summarizes the current evidence on the association between LVAD implantation and occurrence of depression, suggesting possible pathological mechanisms underlying the device-associated depression and reviewing the current treatment strategies. The summarized data underscores the need for a rigorous pre-(LVAD)-implantation psychiatric evaluation, continued post-implantation mental health assessment, and administration of antidepressant treatment as necessary.
Collapse
Affiliation(s)
- Hilmi Alnsasra
- Cardiology Division, Soroka University Medical Center, Beer-Sheva 8410501, Israel
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Fouad Khalil
- Department of Internal Medicine, University of South Dakota, Sioux Falls, SD 57105, USA
| | - Radha Kanneganti Perue
- Department of Cardiovascular Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Abed N Azab
- Cardiology Division, Soroka University Medical Center, Beer-Sheva 8410501, Israel
- Department of Nursing, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| |
Collapse
|
19
|
Heylen A, Vermeiren Y, Kema IP, van Faassen M, van der Ley C, Van Dam D, De Deyn PP. Brain Kynurenine Pathway Metabolite Levels May Reflect Extent of Neuroinflammation in ALS, FTD and Early Onset AD. Pharmaceuticals (Basel) 2023; 16:ph16040615. [PMID: 37111372 PMCID: PMC10143579 DOI: 10.3390/ph16040615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/04/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
OBJECTIVES Despite distinct clinical profiles, amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) patients share a remarkable portion of pathological features, with a substantial percentage of patients displaying a mixed disease phenotype. Kynurenine metabolism seems to play a role in dementia-associated neuroinflammation and has been linked to both diseases. We aimed to explore dissimilarities in kynurenine pathway metabolites in these early onset neurodegenerative disorders in a brain-region-specific manner. METHODS Using liquid chromatography mass spectrometry (LC-MS/MS), kynurenine metabolite levels were determined in the brain samples of 98 healthy control subjects (n = 20) and patients with early onset Alzheimer's disease (EOAD) (n = 23), ALS (n = 20), FTD (n = 24) or a mixed FTD-ALS (n = 11) disease profile. RESULTS Overall, the kynurenine pathway metabolite levels were significantly lower in patients with ALS compared to FTD, EOAD and control subjects in the frontal cortex, substantia nigra, hippocampus and neostriatum. Anthranilic acid levels and kynurenine-to-tryptophan ratios were consistently lower in all investigated brain regions in ALS compared to the other diagnostic groups. CONCLUSIONS These results suggest that the contribution of kynurenine metabolism in neuroinflammation is lower in ALS than in FTD or EOAD and may also be traced back to differences in the age of onset between these disorders. Further research is necessary to confirm the potential of the kynurenine system as a therapeutic target in these early onset neurodegenerative disorders.
Collapse
Affiliation(s)
- Annelies Heylen
- Laboratory of Neurochemistry and Behavior, Experimental Neurobiology Unit, University of Antwerp, 2610 Antwerp, Belgium
| | - Yannick Vermeiren
- Division of Human Nutrition and Health, Chair Group of Nutritional Biology, Wageningen University and Research, 6708 Wageningen, The Netherlands
- Faculty of Medicine & Health Sciences, Translational Neurosciences, University of Antwerp, 2000 Antwerp, Belgium
| | - Ido P Kema
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, 9713 Groningen, The Netherlands
| | - Martijn van Faassen
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, 9713 Groningen, The Netherlands
| | - Claude van der Ley
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, 9713 Groningen, The Netherlands
| | - Debby Van Dam
- Laboratory of Neurochemistry and Behavior, Experimental Neurobiology Unit, University of Antwerp, 2610 Antwerp, Belgium
- Department of Neurology and Alzheimer Center Groningen, University of Groningen, University Medical Center Groningen, 9713 Groningen, The Netherlands
| | - Peter P De Deyn
- Laboratory of Neurochemistry and Behavior, Experimental Neurobiology Unit, University of Antwerp, 2610 Antwerp, Belgium
- Department of Neurology and Alzheimer Center Groningen, University of Groningen, University Medical Center Groningen, 9713 Groningen, The Netherlands
| |
Collapse
|
20
|
Aarsland TIM, Haavik J, Ulvik A, Ueland PM, Dols A, Kessler U. The effect of electroconvulsive therapy (ECT) on serum kynurenine pathway metabolites in late-life depression. JOURNAL OF AFFECTIVE DISORDERS REPORTS 2023. [DOI: 10.1016/j.jadr.2023.100578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
|
21
|
Tryptophan and Substance Abuse: Mechanisms and Impact. Int J Mol Sci 2023; 24:ijms24032737. [PMID: 36769059 PMCID: PMC9917371 DOI: 10.3390/ijms24032737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/22/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
Addiction, the continuous misuse of addictive material, causes long-term dysfunction in the neurological system. It substantially affects the control strength of reward, memory, and motivation. Addictive substances (alcohol, marijuana, caffeine, heroin, methamphetamine (METH), and nicotine) are highly active central nervous stimulants. Addiction leads to severe health issues, including cardiovascular diseases, serious infections, and pulmonary/dental diseases. Drug dependence may result in unfavorable cognitive impairments that can continue during abstinence and negatively influence recovery performance. Although addiction is a critical global health challenge with numerous consequences and complications, currently, there are no efficient options for treating drug addiction, particularly METH. Currently, novel treatment approaches such as psychological contingency management, cognitive behavioral therapy, and motivational enhancement strategies are of great interest. Herein, we evaluate the devastating impacts of different addictive substances/drugs on users' mental health and the role of tryptophan in alleviating unfavorable side effects. The tryptophan metabolites in the mammalian brain and their potential to treat compulsive abuse of addictive substances are investigated by assessing the functional effects of addictive substances on tryptophan. Future perspectives on developing promising modalities to treat addiction and the role of tryptophan and its metabolites to alleviate drug dependency are discussed.
Collapse
|
22
|
Indoleamine 2,3 dioxygenase 1 immobilization on magnetic nanoparticles for screening inhibitors from coffee. Food Chem X 2023; 17:100591. [PMID: 36845477 PMCID: PMC9945408 DOI: 10.1016/j.fochx.2023.100591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 01/08/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
In this study, a ligand fishing method was developed to screen potential indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors from coffee extracts by immobilization of IDO1 enzyme on amino-modified magnetic nanoparticles combined with UHPLC-Q-TOF-MS/MS analysis. Parameters including enzyme concentration, immobilization time, the pH of glutaraldehyde and the amount of magnetic nanoparticles were optimized. The results indicated that immobilized IDO1 could be reused 5 times and was stable during storage for 7 days. Several IDO1 ligands were captured by incubating immobilized IDO1 with coffee extract, of which 10 showed an obvious difference comparing to non-conjugated bare nanoparticles. In vitro inhibitory activity was further performed by CE analysis, in which ferulic acid and chlorogenic acid had better IDO1 inhibitory activity, with IC50 value of 113.7 μM and 307.5 μM. These results demonstrate that this method provides an effective platform for identifying and screening IDO1 inhibitors from natural products.
Collapse
|
23
|
Varma M, Kaur A, Bhandari R, Kumar A, Kuhad A. Major depressive disorder (mdd): emerging immune targets at preclinical level. Expert Opin Ther Targets 2023; 27:479-501. [PMID: 37334668 DOI: 10.1080/14728222.2023.2225216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 06/11/2023] [Indexed: 06/20/2023]
Abstract
BACKGROUND Major depressive disorder is a mental health disorder that is characterized by a persistently low mood and loss of interest. MDD is affecting over 3.8% of the global population as a major health problem. Its etiology is complex, and involves the interaction between a number of factors, including genetic predisposition and the presence of environmental stresses. AREAS COVERED The role of the immune and inflammatory systems in depression has been gaining interest, with evidence suggesting the potential involvement of pro-inflammatory molecules like TNF, interleukins, prostaglandins, and other cytokines, among others, has been put forth. Along with this, the potential of agents, from NSAIDs to antibiotics, are being evaluated in therapy for depression. The current review will discuss emerging immune targets at the preclinical level. EXPERT OPINION With increasing evidence to show that immune and inflammatory mediators are implicated in MDD, increasing research toward their potential as drug targets is encouraged. At the same time, agents acting on these mediators and possessing anti-inflammatory potential are also being evaluated as future therapeutic options for MDD, and increasing focus toward non-conventional drugs which can act through these mechanisms is important as regards the future prospects of the use of anti-inflammatory agents in depression.
Collapse
Affiliation(s)
- Manasi Varma
- UGC-Centre of Advanced Study, University Institute of Pharmaceutical Sciences, Chandigarh, India
| | - Arshpreet Kaur
- UGC-Centre of Advanced Study, University Institute of Pharmaceutical Sciences, Chandigarh, India
| | - Ranjana Bhandari
- UGC-Centre of Advanced Study, University Institute of Pharmaceutical Sciences, Chandigarh, India
| | - Ashwani Kumar
- UGC-Centre of Advanced Study, University Institute of Pharmaceutical Sciences, Chandigarh, India
| | - Anurag Kuhad
- UGC-Centre of Advanced Study, University Institute of Pharmaceutical Sciences, Chandigarh, India
| |
Collapse
|
24
|
Chen H, Huang X, Zeng C, Sun D, Liu F, Zhang J, Liao Q, Luo S, Xu W, Xiao Y, Zeng D, Song M, Tian F. The role of indoleamine 2,3-dioxygenase 1 in early-onset post-stroke depression. Front Immunol 2023; 14:1125634. [PMID: 36911716 PMCID: PMC9998486 DOI: 10.3389/fimmu.2023.1125634] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/13/2023] [Indexed: 03/14/2023] Open
Abstract
Background The immune-inflammatory response has been widely considered to be involved in the pathogenesis of post-stroke depression (PSD), but there is ambiguity about the mechanism underlying such association. Methods According to Diagnostic and Statistical Manual of Mental Disorders (5th edition), depressive symptoms were assessed at 2 weeks after stroke onset. 15 single nucleotide polymorphisms (SNPs) in genes of indoleamine 2,3-dioxygenase (IDO, including IDO1 and IDO2) and its inducers (including pro-inflammatory cytokines interferon [IFN]-γ, tumor necrosis factor [TNF]-α, interleukin [IL]-1β, IL-2 and IL-6) were genotyped using SNPscan™ technology, and serum IDO1 levels were detected by double-antibody sandwich enzyme-linked immune-sorbent assay. Results Fifty-nine patients (31.72%) were diagnosed with depression at 2 weeks after stroke onset (early-onset PSD). The IDO1 rs9657182 T/T genotype was independently associated with early-onset PSD (adjusted odds ratio [OR] = 3.008, 95% confidence interval [CI] 1.157-7.822, p = 0.024) and the frequency of rs9657182 T allele was significantly higher in patients with PSD than that in patients with non-PSD (χ2 = 4.355, p = 0.037), but these results did not reach the Bonferroni significance threshold (p > 0.003). Serum IDO1 levels were also independently linked to early-onset PSD (adjusted OR = 1.071, 95% CI 1.002-1.145, p = 0.044) and patients with PSD had higher serum IDO1 levels than patients with non-PSD in the presence of the rs9657182 T allele but not homozygous C allele (t = -2.046, p = 0.043). Stroke patients with the TNF-α rs361525 G/G genotype had higher serum IDO1 levels compared to those with the G/A genotype (Z = -2.451, p = 0.014). Conclusions Our findings provided evidence that IDO1 gene polymorphisms and protein levels were involved in the development of early-onset PSD and TNF-α polymorphism was associated with IDO1 levels, supporting that IDO1 which underlie strongly regulation by cytokines may be a specific pathway for the involvement of immune-inflammatory mechanism in the pathophysiology of PSD.
Collapse
Affiliation(s)
- Hengshu Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xia Huang
- Department of Critical Care Medicine, The First People's Hospital of Huaihua, Huaihua, China
| | - Chang Zeng
- Health Management Center, Xiangya Hospital, Central South University, Changsha, China
| | - Dongren Sun
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Fan Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Jingyuan Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Qiao Liao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Shihang Luo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Weiye Xu
- Department of Human Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Yeqing Xiao
- Department of Neurology, Hengyang Central Hospital, Hengyang, China
| | - Danfeng Zeng
- Department of Neurology, Xiangtan Central Hospital, Xiangtan, China
| | - Mingyu Song
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - Fafa Tian
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
25
|
CANNABINOIDS AND NEUROINFLAMMATION: THERAPEUTIC IMPLICATIONS. JOURNAL OF AFFECTIVE DISORDERS REPORTS 2023. [DOI: 10.1016/j.jadr.2023.100463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
26
|
Severe Panic Disorder After Vaccination With the Pfizer-BioNTech Vaccine: A Case Report. J Clin Psychopharmacol 2023; 43:74-76. [PMID: 36584256 DOI: 10.1097/jcp.0000000000001623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
27
|
Simon MS, Weidinger E, Leitner B, Kisla Y, Niedeggen J, Thaler P, Zaudig M, Vorderholzer U, Schwarz M, Müller N. Tryptophan metabolites predict response after cognitive behavioral therapy for depression: a single-arm trial. JOURNAL OF AFFECTIVE DISORDERS REPORTS 2023. [DOI: 10.1016/j.jadr.2023.100464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
28
|
Savitz J, Ford BN, Kuplicki R, Khalsa S, Teague TK, Paulus MP. Acute administration of ibuprofen increases serum concentration of the neuroprotective kynurenine pathway metabolite, kynurenic acid: a pilot randomized, placebo-controlled, crossover study. Psychopharmacology (Berl) 2022; 239:3919-3927. [PMID: 36271950 PMCID: PMC10040216 DOI: 10.1007/s00213-022-06263-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 10/10/2022] [Indexed: 11/25/2022]
Abstract
RATIONALE At least six different types of antidepressant treatments have been shown to either increase the neuroprotective kynurenine pathway (KP) metabolite, kynurenic acid (KynA), or decrease the neurotoxic KP metabolite, quinolinic acid (QA). Nonsteroidal anti-inflammatory drugs (NSAIDs) including ibuprofen have shown some efficacy in the treatment of depression but their effects on the KP have not been studied in humans. OBJECTIVES To evaluate the effect of ibuprofen on circulating KP metabolites. METHODS In a randomized, placebo-controlled, crossover study, 20 healthy adults (10 women) received a single oral dose of 200-mg ibuprofen, 600-mg ibuprofen, or placebo in a counterbalanced order (NCT02507219). Serum samples were drawn in the mid-afternoon, 5 h after ibuprofen/placebo administration. KP metabolites were measured blind to visit by tandem mass spectrometry. Data were analyzed with linear mixed effect models. The primary outcome was KynA/QA and the secondary outcome was KynA. RESULTS After Bonferroni correction, there was a significant effect of treatment on KynA/QA. The effect was driven by an increase in KynA concentration after the 600-mg dose but not the 200-mg dose relative to placebo (Cohen's d = 1.71). In contrast, both the 200-mg (d = 1.03) and 600-mg (d = 2.05) doses of ibuprofen decreased tryptophan concentrations relative to placebo. CONCLUSIONS Given its KynA-elevating effects, ibuprofen could have neuroprotective effects in the context of depression as well as other neuroinflammatory disorders that are characterized by a reduction in KynA.
Collapse
Affiliation(s)
- Jonathan Savitz
- Laureate Institute for Brain Research, Tulsa, OK, USA.
- Oxley College of Health Sciences, The University of Tulsa, Tulsa, OK, USA.
| | - Bart N Ford
- Department of Pharmacology & Physiology, Oklahoma State University Center for Health Sciences, Tulsa, OK, USA
| | | | - Sahib Khalsa
- Laureate Institute for Brain Research, Tulsa, OK, USA
- Oxley College of Health Sciences, The University of Tulsa, Tulsa, OK, USA
| | - T Kent Teague
- Department of Surgery, University of Oklahoma School of Community Medicine, Tulsa, OK, USA
- Department of Psychiatry, University of Oklahoma School of Community Medicine, Tulsa, OK, USA
- Department of Pharmaceutical Sciences, University of Oklahoma College of Pharmacy, Tulsa, OK, USA
| | - Martin P Paulus
- Laureate Institute for Brain Research, Tulsa, OK, USA
- Oxley College of Health Sciences, The University of Tulsa, Tulsa, OK, USA
| |
Collapse
|
29
|
Aronica R, Enrico P, Squarcina L, Brambilla P, Delvecchio G. Association between Diffusion Tensor Imaging, inflammation and immunological alterations in unipolar and bipolar depression: A review. Neurosci Biobehav Rev 2022; 143:104922. [PMID: 36272579 DOI: 10.1016/j.neubiorev.2022.104922] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 09/23/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
Abstract
Major Depressive Disorder (MDD) and Bipolar Disorder Depression (BDD) are common psychiatric illnesses characterized by structural and functional brain alterations and signs of neuroinflammation. In line with the neuroinflammatory pathogenesis of depressive syndromes, recent studies have demonstrated how white matter (WM) microstructural impairments detected by Diffusion Tensor Imaging, are correlated to peripheral immunomarkers in depressed patients. In this context, we performed a comprehensive systematic search on PubMed, Medline and Scopus of the original studies published till June 2022, exploring the association between immunomarkers and WM alteration patterns in patients affected by MDD or BDD. Overall, the studies included in this review showed a consistent association between blood proinflammatory and counter-regulatory immunomarkers, including regulatory T cells and natural killer cells markers, as well as measures of demyelination and dysmyelination in both MDD and BDD patients. These pathogenetic insights could outline an integrated clinical perspective to affective disorders, helping psychiatrists to develop novel biotype-to-phenotype models of depression and opening the way to tailored approaches in treatments.
Collapse
Affiliation(s)
- Rosario Aronica
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy; Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Department of Neurosciences and Mental Health, 20122 Milan, Italy
| | - Paolo Enrico
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy; Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Department of Neurosciences and Mental Health, 20122 Milan, Italy
| | - Letizia Squarcina
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| | - Paolo Brambilla
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy; Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Department of Neurosciences and Mental Health, 20122 Milan, Italy
| | - Giuseppe Delvecchio
- Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Department of Neurosciences and Mental Health, 20122 Milan, Italy.
| |
Collapse
|
30
|
Is depression the missing link between inflammatory mediators and cancer? Pharmacol Ther 2022; 240:108293. [PMID: 36216210 DOI: 10.1016/j.pharmthera.2022.108293] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/14/2022] [Accepted: 09/26/2022] [Indexed: 11/05/2022]
Abstract
Patients with cancer are at greater risk of developing depression in comparison to the general population and this is associated with serious adverse effects, such as poorer quality of life, worse prognosis and higher mortality. Although the relationship between depression and cancer is now well established, a common underlying pathophysiological mechanism between the two conditions is yet to be elucidated. Existing theories of depression, based on monoamine neurotransmitter system dysfunction, are insufficient as explanations of the disorder. Recent advances have implicated neuroinflammatory mechanisms in the etiology of depression and it has been demonstrated that inflammation at a peripheral level may be mirrored centrally in astrocytes and microglia serving to promote chronic levels of inflammation in the brain. Three major routes to depression in cancer in which proinflammatory mediators are implicated, seem likely. Activation of the kynurenine pathway involving cytokines, increases tryptophan catabolism, resulting in diminished levels of serotonin which is widely acknowledged as being the hallmark of depression. It also results in neurotoxic effects on brain regions thought to be involved in the evolution of major depression. Proinflammatory mediators also play a crucial role in impairing regulatory glucocorticoid mediated feedback of the hypothalamic-pituitary-adrenal axis, which is activated by stress and considered to be involved in both depression and cancer. The third route is via the glutamatergic pathway, whereby glutamate excitotoxicity may lead to depression associated with cancer. A better understanding of the mechanisms underlying these dysregulated and other newly emerging pathways may provide a rationale for therapeutic targeting, serving to improve the care of cancer patients.
Collapse
|
31
|
Asadi Anar M, Foroughi E, Sohrabi E, Peiravi S, Tavakoli Y, Kameli Khouzani M, Behshood P, Shamshiri M, Faridzadeh A, Keylani K, Langari SF, Ansari A, Khalaji A, Garousi S, Mottahedi M, Honari S, Deravi N. Selective serotonin reuptake inhibitors: New hope in the fight against COVID-19. Front Pharmacol 2022; 13:1036093. [PMID: 36532776 PMCID: PMC9748354 DOI: 10.3389/fphar.2022.1036093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/17/2022] [Indexed: 12/05/2022] Open
Abstract
The emerging COVID-19 pandemic led to a dramatic increase in global mortality and morbidity rates. As in most infections, fatal complications of coronavirus affliction are triggered by an untrammeled host inflammatory response. Cytokine storms created by high levels of interleukin and other cytokines elucidate the pathology of severe COVID-19. In this respect, repurposing drugs that are already available and might exhibit anti-inflammatory effects have received significant attention. With the in vitro and clinical investigation of several studies on the effect of antidepressants on COVID-19 prognosis, previous data suggest that selective serotonin reuptake inhibitors (SSRIs) might be the new hope for the early treatment of severely afflicted patients. SSRIs' low cost and availability make them potentially eligible for COVID-19 repurposing. This review summarizes current achievements and literature about the connection between SSRIs administration and COVID-19 prognosis.
Collapse
Affiliation(s)
- Mahsa Asadi Anar
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elaheh Foroughi
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elika Sohrabi
- Department of Medicine, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Samira Peiravi
- Department of Emergency Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yasaman Tavakoli
- Department of Medicine, Mazandaran University of Medical Sciences, Sari, Mazandaran, Iran
| | | | - Parisa Behshood
- Department of Microbiology, Young Researchers and Elite Club, Islamic Azad University, Shahrekord, Iran
| | - Melika Shamshiri
- School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Arezoo Faridzadeh
- Department of Immunology and Allergy, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kimia Keylani
- School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyedeh Faride Langari
- Department of Ophthalmology, Labbafinejad Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Akram Ansari
- Shantou University Medical College, Shantou, Guangdong, China
| | | | - Setareh Garousi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehran Mottahedi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sara Honari
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Niloofar Deravi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
32
|
Aarsland TIM, Instanes JT, Posserud MBR, Ulvik A, Kessler U, Haavik J. Changes in Tryptophan-Kynurenine Metabolism in Patients with Depression Undergoing ECT-A Systematic Review. Pharmaceuticals (Basel) 2022; 15:1439. [PMID: 36422569 PMCID: PMC9694349 DOI: 10.3390/ph15111439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/03/2022] [Accepted: 11/11/2022] [Indexed: 10/29/2023] Open
Abstract
The kynurenine pathway of tryptophan (Trp) metabolism generates multiple biologically active metabolites (kynurenines) that have been implicated in neuropsychiatric disorders. It has been suggested that modulation of kynurenine metabolism could be involved in the therapeutic effect of electroconvulsive therapy (ECT). We performed a systematic review with aims of summarizing changes in Trp and/or kynurenines after ECT and assessing methodological issues. The inclusion criterium was measures of Trp and/or kynurenines before and after ECT. Animal studies and studies using Trp administration or Trp depletion were excluded. Embase, MEDLINE, PsycInfo and PubMed were searched, most recently in July 2022. Outcomes were levels of Trp, kynurenines and ratios before and after ECT. Data on factors affecting Trp metabolism and ECT were collected for interpretation and discussion of the reported changes. We included 17 studies with repeated measures for a total of 386 patients and 27 controls. Synthesis using vote counting based on the direction of effect found no evidence of effect of ECT on any outcome variable. There were considerable variations in design, patient characteristics and reported items. We suggest that future studies should include larger samples, assess important covariates and determine between- and within-subject variability. PROSPERO (CRD42020187003).
Collapse
Affiliation(s)
| | | | - Maj-Britt Rocio Posserud
- Department of Clinical Medicine, University of Bergen, 5020 Bergen, Norway
- Division of Psychiatry, Haukeland University Hospital, 5021 Bergen, Norway
| | - Arve Ulvik
- Bevital A/S, Laboratoriebygget, 5020 Bergen, Norway
| | - Ute Kessler
- Department of Clinical Medicine, University of Bergen, 5020 Bergen, Norway
- Division of Psychiatry, Haukeland University Hospital, 5021 Bergen, Norway
| | - Jan Haavik
- Department of Biomedicine, University of Bergen, 5020 Bergen, Norway
| |
Collapse
|
33
|
Ssegonja R, Alaie I, Holmgren A, Bohman H, Päären A, von Knorring L, von Knorring AL, Jonsson U. Association of adolescent depression with subsequent prescriptions of anti-infectives and anti-inflammatories in adulthood: A longitudinal cohort study. Psychiatry Res 2022; 317:114813. [PMID: 36058038 DOI: 10.1016/j.psychres.2022.114813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 10/31/2022]
Abstract
New insights into how depression is linked to physical health throughout the lifespan could potentially inform clinical decision making. The aim of this study was to explore the association of adolescent depression with subsequent prescriptions of anti-infectives and anti-inflammatories in adulthood. The study was based on the Uppsala Longitudinal Adolescent Depression Study (ULADS), a Swedish prospective cohort study initiated in 1991. Depressed (n = 321) and non-depressed (n = 218) adolescents were followed prospectively using patient registries. The associations of adolescent depression (age 16-17 years) with subsequent prescription of anti-infectives and anti-inflammatories (age 30-40 years), were analysed using generalized linear models. Sub-analyses explored the impact of diagnostic characteristics in adolescence and reception of anti-depressants prescriptions in adulthood. The results suggest that females with persistent depressive disorder in adolescence have a higher rate of future prescriptions than non-depressed peers, with adjusted incidence rate ratio of 1.42 (1.06 to 1.92) for anti-infectives and 1.72 (1.10 to 2.70) for anti-inflammatories. These associations were mainly driven by those who were also prescribed antidepressants during the same period. Associations were less robust for females with episodic or subsyndromal depression in adolescence and for males. These findings emphasize the importance of integrated mental health services at the primary healthcare level.
Collapse
Affiliation(s)
- Richard Ssegonja
- Department of Public Health and Caring Science, Uppsala University, Uppsala, Sweden; Department of Medical Sciences, Respiratory, Allergy- and Sleep Medicine Research Unit, Uppsala University, Uppsala, Sweden.
| | - Iman Alaie
- Division of Insurance Medicine, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Medical Sciences, Child and Adolescent Psychiatry, Uppsala University, Uppsala, Sweden
| | - Amanda Holmgren
- Department of Medical Sciences, Child and Adolescent Psychiatry, Uppsala University, Uppsala, Sweden
| | - Hannes Bohman
- Department of Medical Sciences, Child and Adolescent Psychiatry, Uppsala University, Uppsala, Sweden
| | - Aivar Päären
- Department of Medical Sciences, Child and Adolescent Psychiatry, Uppsala University, Uppsala, Sweden
| | - Lars von Knorring
- Department of Medical Sciences, Psychiatry, Uppsala University, Uppsala, Sweden
| | - Anne-Liis von Knorring
- Department of Medical Sciences, Child and Adolescent Psychiatry, Uppsala University, Uppsala, Sweden
| | - Ulf Jonsson
- Department of Medical Sciences, Child and Adolescent Psychiatry, Uppsala University, Uppsala, Sweden; Centre of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden; Child and Adolescent Psychiatry, Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| |
Collapse
|
34
|
Gong X, Chang R, Zou J, Tan S, Huang Z. The role and mechanism of tryptophan - kynurenine metabolic pathway in depression. Rev Neurosci 2022; 34:313-324. [PMID: 36054612 DOI: 10.1515/revneuro-2022-0047] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/13/2022] [Indexed: 12/22/2022]
Abstract
Major depressive disorder (MDD) is a common mental illness characterized by persistent low mood and anhedonia, normally accompanied with cognitive impairment. Due to its rising incidence and high rate of recurrence and disability, MDD poses a substantial threat to patients' physical and mental health, as well as a significant economic cost to society. However, the etiology and pathogenesis of MDD are still unclear. Chronic inflammation may cause indoleamine-2,3-dioxygenase (IDO) to become overactive throughout the body and brain, resulting in excess quinolinic acid (QUIN) and less kynuric acid (KYNA) in the brain. QUIN's neurotoxicity damages glial cells and neurons, accelerates neuronal apoptosis, hinders neuroplasticity, and causes depression due to inflammation. Therefore, abnormal TRP-KYN metabolic pathway and its metabolites have been closely related to MDD, suggesting changes in the TRP-KYN metabolic pathway might contribute to MDD. In addition, targeting TRP-KYN with traditional Chinese medicine showed promising treatment effects for MDD. This review summarizes the recent studies on the TRP-KYN metabolic pathway and its metabolites in depression, which would provide a theoretical basis for exploring the etiology and pathogenesis of depression.
Collapse
Affiliation(s)
- Xiaoli Gong
- Department of Clinical Laboratory, Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510900, China
| | - Rui Chang
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical School, University of South China, 28 W. Chang Sheng Road, Hengyang 421001, Hunan, China
| | - Ju Zou
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical School, University of South China, 28 W. Chang Sheng Road, Hengyang 421001, Hunan, China
| | - Sijie Tan
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical School, University of South China, 28 W. Chang Sheng Road, Hengyang 421001, Hunan, China
| | - Zeyi Huang
- Department of Clinical Laboratory, Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510900, China.,Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical School, University of South China, 28 W. Chang Sheng Road, Hengyang 421001, Hunan, China
| |
Collapse
|
35
|
ROLE OF GUT MICROBIOTA IN DEPRESSION: UNDERSTANDING MOLECULAR PATHWAYS, RECENT RESEARCH, AND FUTURE DIRECTION. Behav Brain Res 2022; 436:114081. [PMID: 36037843 DOI: 10.1016/j.bbr.2022.114081] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/20/2022] [Accepted: 08/24/2022] [Indexed: 11/21/2022]
Abstract
Gut microbiota, also known as the "second brain" in humans because of the regulatory role it has on the central nervous system via neuronal, chemical and immune pathways. It has been proven that there exists a bidirectional communication between the gut and the brain. Increasing evidence supports that this crosstalk is linked to the etiology and treatment of depression. Reports suggest that the gut microbiota control the host epigenetic machinery in depression and gut dysbiosis causes negative epigenetic modifications via mechanisms like histone acetylation, DNA methylation and non-coding RNA mediated gene inhibition. The gut microbiome can be a promising approach for the management of depression. The diet and dietary metabolites like kynurenine, tryptophan, and propionic acid also greatly influence the microbiome composition and thereby, the physiological activities. This review gives a bird-eye view on the pathological updates and currently used treatment approaches targeting the gut microbiota in depression.
Collapse
|
36
|
Rani T, Behl T, Sharma N, Makeen HA, Albratty M, Alhazmi HA, Meraya AM, Bhatia S, Bungau SG. Exploring the role of biologics in depression. Cell Signal 2022; 98:110409. [PMID: 35843573 DOI: 10.1016/j.cellsig.2022.110409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 11/03/2022]
Abstract
Depression is a chronic and prevalent neuropsychiatric disorder; clinical symptoms include excessive sad mood, anhedonia, increased anxiety, disturbed sleep, and cognitive deficits. The exact etiopathogenesis of depression is not well understood. Studies have suggested that tumor necrosis factor-alpha (TNF-α) and interleukins (ILs) perform vital roles in the pathogenesis and treatment of depression. Increasing evidence suggests the upregulation of TNF-α and ILs expression in patients with depression. Therefore, biologics like TNF inhibitors (etanercept, infliximab, adalimumab) and IL inhibitors (ustekinumab) have become key compounds in the treatment of depression. Interestingly, treatment with an antidepressant has been found to decrease the TNF-α level and improve depression-like behaviors in several preclinical and clinical studies. In the current article, we have reviewed the recent findings linking TNF-α and the pathogenesis of depression proving TNF-α inhibitors as potential new therapeutic agents. Animal models and clinical studies further support that TNF-α inhibitors are effective in ameliorating depression-like behaviors. Moreover, studies showed that peripheral injection of TNF-α exhibits depressive symptoms. These symptoms have been improved by treatment with TNF-α inhibitors. Hence suggesting TNF-α inhibitors as potential new antidepressants for the management of depressive disorder.
Collapse
Affiliation(s)
- Tarapati Rani
- Chitkara College of Pharmacy, Chitkara University, Punjab, India; Government Pharmacy College, Seraj, Mandi, Himachal Pradesh, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Hafiz A Makeen
- Pharmacy Practice Research Unit, Clinical Pharmacy Department, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Hassan A Alhazmi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia; Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
| | - Abdulkarim M Meraya
- Pharmacy Parctice Research Unit, Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman; School of Health Science, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Simona Gabriela Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania; Doctoral School of Biomedical Sciences, University of Oradea, Oradea, Romania
| |
Collapse
|
37
|
Karimi Z, Chenari M, Rezaie F, Karimi S, Parhizgari N, Mokhtari-Azad T. Proposed Pathway Linking Respiratory Infections with Depression. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2022; 20:199-210. [PMID: 35466092 PMCID: PMC9048006 DOI: 10.9758/cpn.2022.20.2.199] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/30/2021] [Accepted: 07/15/2021] [Indexed: 12/28/2022]
Abstract
Depression is one of the most important causes of disability and loss of useful life of people around the world. Acute respiratory infection caused a large number of severe illnesses and deaths of the world and most of these due to viral infections, which is estimated more than 80% of respiratory infections. Detection of viruses by immune pathogen recognition receptors activates the intracellular signaling cascade and eventually cause produces interferons. Inflammatory process begins with secretion of interferons and the expression of interferon-stimulated genes. One of the most important of these genes is indoleamine-pyrrole 2,3-dioxygenase (IDO), which plays a major role in tryptophan catabolism. IDO is an intracellular monomeric enzyme that is also responsible for breaking down and consuming tryptophan in the Kynurenine pathway. Increased inflammation has been linked to decrease tryptophan concentrations and increase kynurenine levels. We tried to explain the role of inflammation by viral respiratory infections in causing depression.
Collapse
Affiliation(s)
- Zeinab Karimi
- Department of Virology, School of Public Health, Tehran University of Medical Science, Tehran, Iran
| | - Maryam Chenari
- Department of Virology, School of Public Health, Tehran University of Medical Science, Tehran, Iran
| | - Farhad Rezaie
- Department of Virology, School of Public Health, Tehran University of Medical Science, Tehran, Iran
| | - Shima Karimi
- Faculty of Health, Ilam University of Medical Sciences, Ilam, Iran
| | - Najmeh Parhizgari
- Department of Virology, School of Public Health, Tehran University of Medical Science, Tehran, Iran
| | - Talat Mokhtari-Azad
- Department of Virology, School of Public Health, Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
38
|
Li Y, Yang M, Zhang L, Mao Z, Lin Y, Xu S, Fang Z, Che L, Feng B, Li J, Zhuo Y, Wu D. Dietary Fiber Supplementation in Gestating Sow Diet Improved Fetal Growth and Placental Development and Function Through Serotonin Signaling Pathway. Front Vet Sci 2022; 9:831703. [PMID: 35647096 PMCID: PMC9133666 DOI: 10.3389/fvets.2022.831703] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
The experiment was conducted to investigate the effects of dietary fiber (DF) supplementation in gestation diet on fetal growth and placental development and function and explore the possible mechanism of DF improving sow reproductive performance. A total of 16 Large White × Landrace crossbred gilts were randomly allotted to two groups and fed a semi-purified basal diet [non-fiber (NF) group, 0.1% total DF] or a basal diet supplemented with 8.33 g/kg inulin and 200 g/kg cellulose [Fiber (F) group] during the gestation period. On day 106 of gestation, five sows per group were chosen and slaughtered for sample collection. Results showed that DF supplementation during gestation increased the total fetal weight and placental weight on day 106 of gestation; elevated serum serotonin concentration; increased concentrations of serotonin and short-chain fatty acids (acetate, propionate, and butyrate), as well as tryptophan hydroxylase 1 expression, in colon; elevated serotonin and progesterone concentrations and up-regulated the serotonin transporter, cytochrome P450 11A1, and insulin-like growth factor 2 expressions in the placenta. Besides, the sows in the F group had microbial community structures distinct from those in the NF group. Supplementation of DF in gestation diet increased the Coprococcus 3 abundance that was positively correlated with colonic serotonin concentration, while significantly decreasing the Family XIII AD3011 group abundance which was negatively correlated with colonic serotonin concentration. Above all, DF supplementation in the gestation diet could increase placental serotonin levels by promoting maternal serotonin synthesis in the colon and the transport from the mother to the placenta in sows, and then improve placental development and function, finally promoting fetal growth. Our findings provided insight into the mechanisms of DF improving sow reproductive performance.
Collapse
Affiliation(s)
- Yang Li
- Key Laboratory for Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science, Shandong Agricultural University, Taian, China
| | - Min Yang
- Key Laboratory for Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Pet Nutrition and Health Research Center, Chengdu Agricultural College, Chengdu, China
| | - Lijia Zhang
- Key Laboratory for Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Zhengyu Mao
- Key Laboratory for Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Yan Lin
- Key Laboratory for Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Shengyu Xu
- Key Laboratory for Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Zhengfeng Fang
- Key Laboratory for Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Lianqiang Che
- Key Laboratory for Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Bin Feng
- Key Laboratory for Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Jian Li
- Key Laboratory for Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Yong Zhuo
- Key Laboratory for Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Yong Zhuo
| | - De Wu
- Key Laboratory for Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- De Wu
| |
Collapse
|
39
|
Pundir M, Papagerakis S, De Rosa MC, Chronis N, Kurabayashi K, Abdulmawjood S, Prince MEP, Lobanova L, Chen X, Papagerakis P. Emerging biotechnologies for evaluating disruption of stress, sleep, and circadian rhythm mechanism using aptamer-based detection of salivary biomarkers. Biotechnol Adv 2022; 59:107961. [PMID: 35427723 DOI: 10.1016/j.biotechadv.2022.107961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/30/2022] [Accepted: 04/09/2022] [Indexed: 12/26/2022]
|
40
|
Drevets WC, Wittenberg GM, Bullmore ET, Manji HK. Immune targets for therapeutic development in depression: towards precision medicine. Nat Rev Drug Discov 2022; 21:224-244. [PMID: 35039676 PMCID: PMC8763135 DOI: 10.1038/s41573-021-00368-1] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2021] [Indexed: 02/08/2023]
Abstract
Over the past two decades, compelling evidence has emerged indicating that immune mechanisms can contribute to the pathogenesis of major depressive disorder (MDD) and that drugs with primary immune targets can improve depressive symptoms. Patients with MDD are heterogeneous with respect to symptoms, treatment responses and biological correlates. Defining a narrower patient group based on biology could increase the treatment response rates in certain subgroups: a major advance in clinical psychiatry. For example, patients with MDD and elevated pro-inflammatory biomarkers are less likely to respond to conventional antidepressant drugs, but novel immune-based therapeutics could potentially address their unmet clinical needs. This article outlines a framework for developing drugs targeting a novel patient subtype within MDD and reviews the current state of neuroimmune drug development for mood disorders. We discuss evidence for a causal role of immune mechanisms in the pathogenesis of depression, together with targets under investigation in randomized controlled trials, biomarker evidence elucidating the link to neural mechanisms, biological and phenotypic patient selection strategies, and the unmet clinical need among patients with MDD.
Collapse
Affiliation(s)
- Wayne C Drevets
- Neuroscience, Janssen Research & Development, LLC, San Diego, CA, USA
| | | | - Edward T Bullmore
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Cambridgeshire & Peterborough NHS Foundation Trust, Cambridge, UK
| | | |
Collapse
|
41
|
Paul ER, Schwieler L, Erhardt S, Boda S, Trepci A, Kämpe R, Asratian A, Holm L, Yngve A, Dantzer R, Heilig M, Hamilton JP, Samuelsson M. Peripheral and central kynurenine pathway abnormalities in major depression. Brain Behav Immun 2022; 101:136-145. [PMID: 34999196 PMCID: PMC9045681 DOI: 10.1016/j.bbi.2022.01.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/22/2021] [Accepted: 01/03/2022] [Indexed: 12/14/2022] Open
Abstract
Considerable data relate major depressive disorder (MDD) with aberrant immune system functioning. Pro-inflammatory cytokines facilitate metabolism of tryptophan along the kynurenine pathway (KP) putatively resulting in reduced neuroprotective and increased neurotoxic KP metabolites in MDD, in addition to modulating metabolic and immune function. This central nervous system hypothesis has, however, only been tested in the periphery. Here, we measured KP-metabolite levels in both plasma and cerebrospinal fluid (CSF) of depressed patients (n = 63/36 respectively) and healthy controls (n = 48/33). Further, we assessed the relation between KP abnormalities and brain-structure volumes, as well as body mass index (BMI), an index of metabolic disturbance associated with atypical depression. Plasma levels of picolinic acid (PIC), the kynurenic/quinolinic acid ratio (KYNA/QUIN), and PIC/QUIN were lower in MDD, but QUIN levels were increased. In the CSF, we found lower PIC in MDD. Confirming previous work, MDD patients had lower hippocampal, and amygdalar volumes. Hippocampal and amygdalar volumes were correlated positively with plasma KYNA/QUIN ratio in MDD patients. BMI was increased in the MDD group relative to the control group. Moreover, BMI was inversely correlated with plasma and CSF PIC and PIC/QUIN, and positively correlated with plasma QUIN levels in MDD. Our results partially confirm previous peripheral KP findings and extend them to the CSF in MDD. We present the novel finding that abnormalities in KP metabolites are related to metabolic disturbances in depression, but the relation between KP metabolites and depression-associated brain atrophy might not be as direct as previously hypothesized.
Collapse
Affiliation(s)
- Elisabeth R Paul
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden; Center for Medical Imaging and Visualization, Linköping University, Linköping, Sweden
| | - Lilly Schwieler
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Sophie Erhardt
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Sandra Boda
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden; Center for Medical Imaging and Visualization, Linköping University, Linköping, Sweden; Department of Psychiatry, Region Östergötland, Linköping, Sweden
| | - Ada Trepci
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Robin Kämpe
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden; Center for Medical Imaging and Visualization, Linköping University, Linköping, Sweden
| | - Anna Asratian
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Lovisa Holm
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Adam Yngve
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden; Center for Medical Imaging and Visualization, Linköping University, Linköping, Sweden
| | - Robert Dantzer
- Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Markus Heilig
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden; Department of Psychiatry, Region Östergötland, Linköping, Sweden
| | - J Paul Hamilton
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden; Center for Medical Imaging and Visualization, Linköping University, Linköping, Sweden.
| | - Martin Samuelsson
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden; Department of Psychiatry, Region Östergötland, Linköping, Sweden
| |
Collapse
|
42
|
Strekalova T, Pavlov D, Trofimov A, Anthony DC, Svistunov A, Proshin A, Umriukhin A, Lyundup A, Lesch KP, Cespuglio R. Hippocampal Over-Expression of Cyclooxygenase-2 (COX-2) Is Associated with Susceptibility to Stress-Induced Anhedonia in Mice. Int J Mol Sci 2022; 23:2061. [PMID: 35216176 PMCID: PMC8879061 DOI: 10.3390/ijms23042061] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
The phenomenon of individual variability in susceptibility/resilience to stress and depression, in which the hippocampus plays a pivotal role, is attracting increasing attention. We investigated the potential role of hippocampal cyclooxygenase-2 (COX-2), which regulates plasticity, neuroimmune function, and stress responses that are all linked to this risk dichotomy. We used a four-week-long chronic mild stress (CMS) paradigm, in which mice could be stratified according to their susceptibility/resilience to anhedonia, a key feature of depression, to investigate hippocampal expression of COX-2, a marker of microglial activation Iba-1, and the proliferation marker Ki67. Rat exposure, social defeat, restraints, and tail suspension were used as stressors. We compared the effects of treatment with either the selective COX-2 inhibitor celecoxib (30 mg/kg/day) or citalopram (15 mg/kg/day). For the celecoxib and vehicle-treated mice, the Porsolt test was used. Anhedonic (susceptible) but not non-anhedonic (resilient) animals exhibited elevated COX-2 mRNA levels, increased numbers of COX-2 and Iba-1-positive cells in the dentate gyrus and the CA1 area, and decreased numbers of Ki67-positive cells in the subgranular zone of the hippocampus. Drug treatment decreased the percentage of anhedonic mice, normalized swimming activity, reduced behavioral despair, and improved conditioned fear memory. Hippocampal over-expression of COX-2 is associated with susceptibility to stress-induced anhedonia, and its pharmacological inhibition with celecoxib has antidepressant effects that are similar in size to those of citalopram.
Collapse
Affiliation(s)
- Tatyana Strekalova
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, 6229 ER Maastricht, The Netherlands; (A.T.); (K.-P.L.)
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (D.P.); (D.C.A.); (A.S.); (A.U.); (R.C.)
| | - Dmitrii Pavlov
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (D.P.); (D.C.A.); (A.S.); (A.U.); (R.C.)
- Hotchkiss Brain Institute, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Alexander Trofimov
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, 6229 ER Maastricht, The Netherlands; (A.T.); (K.-P.L.)
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (D.P.); (D.C.A.); (A.S.); (A.U.); (R.C.)
| | - Daniel C. Anthony
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (D.P.); (D.C.A.); (A.S.); (A.U.); (R.C.)
| | - Andrei Svistunov
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (D.P.); (D.C.A.); (A.S.); (A.U.); (R.C.)
| | - Andrey Proshin
- P.K. Anokhin Research Institute of Normal Physiology, 125315 Moscow, Russia;
| | - Aleksei Umriukhin
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (D.P.); (D.C.A.); (A.S.); (A.U.); (R.C.)
| | - Alexei Lyundup
- Research and Educational Resource Center for Cellular Technologies, Peoples’ Friendship University of Russia, 117198 Moscow, Russia;
| | - Klaus-Peter Lesch
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, 6229 ER Maastricht, The Netherlands; (A.T.); (K.-P.L.)
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (D.P.); (D.C.A.); (A.S.); (A.U.); (R.C.)
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, 97080 Wuerzburg, Germany
| | - Raymond Cespuglio
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (D.P.); (D.C.A.); (A.S.); (A.U.); (R.C.)
- Centre de Recherche en Neurosciences de Lyon (CRNL), 69500 Bron, France
| |
Collapse
|
43
|
The Kynurenine Pathway and Kynurenine 3-Monooxygenase Inhibitors. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27010273. [PMID: 35011505 PMCID: PMC8747024 DOI: 10.3390/molecules27010273] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 12/20/2022]
Abstract
Under normal physiological conditions, the kynurenine pathway (KP) plays a critical role in generating cellular energy and catabolizing tryptophan. Under inflammatory conditions, however, there is an upregulation of the KP enzymes, particularly kynurenine 3-monooxygenase (KMO). KMO has garnered much attention due to its production of toxic metabolites that have been implicated in many diseases and disorders. With many of these illnesses having an inadequate or modest treatment, there exists a need to develop KMO inhibitors that reduce the production of these toxic metabolites. Though prior efforts to find an appropriate KMO inhibitor were unpromising, the development of a KMO crystal structure has provided the opportunity for a rational structure-based design in the development of inhibitors. Therefore, the purpose of this review is to describe the kynurenine pathway, the kynurenine 3-monooxygenase enzyme, and KMO inhibitors and their potential candidacy for clinical use.
Collapse
|
44
|
Butler MI, Long-Smith C, Moloney GM, Morkl S, O'Mahony SM, Cryan JF, Clarke G, Dinan TG. The immune-kynurenine pathway in social anxiety disorder. Brain Behav Immun 2022; 99:317-326. [PMID: 34758380 DOI: 10.1016/j.bbi.2021.10.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/18/2021] [Accepted: 10/31/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The tryptophan-kynurenine pathway is of major interest in psychiatry and is altered in patients with depression, schizophrenia and panic disorder. Stress and immune alterations can impact this system, through cortisol- and cytokine-induced activation. In addition, there is emerging evidence that the kynurenine pathway is associated with suicidality. There have been no studies to date exploring the immune-kynurenine system in social anxiety disorder (SAD), and indeed very limited human studies on the kynurenine pathway in any clinical anxiety disorder. METHODS We investigated plasma levels of several kynurenine pathway markers, including kynurenine (KYN), tryptophan (TRYP) and kynurenic acid (KYNA), along with the KYN/TRYP and KYNA/KYN ratios, in a cohort of 32 patients with SAD and 36 healthy controls. We also investigated a broad array of both basal and lipopolysaccharide (LPS)-stimulated blood cytokine levels including IFN-γ, interleukin (IL)-10, IL-1β, IL-2, IL-4, IL-6, IL-8 and tumor necrosis factor (TNF)-α. RESULTS SAD patients had elevated plasma KYNA levels and an increased KYNA/KYN ratio compared to healthy controls. No differences in KYN, TRYP or the KYN/TRYP ratio were seen between the two groups. SAD patients with a history of past suicide attempt showed elevated plasma KYN levels and a higher KYN/TRYP ratio compared to patients without a history of suicide attempt. No differences were seen in basal or LPS-stimulated pro-inflammatory cytokine levels between the patients and controls. However, unstimulated IL-10, an anti-inflammatory cytokine, was significantly lower in the SAD group. A significant sex influence was evident with SAD males having lower levels of IL-10 compared to healthy males but no difference seen between SAD females and healthy females. CONCLUSIONS The peripheral kynurenine pathway is altered in SAD and preferentially directed towards KYNA synthesis. Additionally, kynurenine pathway activation, as evidenced by elevated KYN and KYN/TRYP ratio, is evident in SAD patients with a history of past suicide attempt. While no differences in pro-inflammatory cytokines is apparent in SAD patients, lower anti-inflammatory IL-10 levels are seen in SAD males. Further investigation of the role of the immune-kynurenine pathway in SAD and other clinical anxiety disorders is warranted.
Collapse
Affiliation(s)
- Mary I Butler
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland.
| | | | - Gerard M Moloney
- APC Microbiome Ireland, University College Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - Sabrina Morkl
- APC Microbiome Ireland, University College Cork, Ireland; Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Austria
| | - Siobhain M O'Mahony
- APC Microbiome Ireland, University College Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland
| | - Timothy G Dinan
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland
| |
Collapse
|
45
|
Myint AM, Halaris A. Imbalances in Kynurenines as Potential Biomarkers in the Diagnosis and Treatment of Psychiatric Disorders. Front Psychiatry 2022; 13:913303. [PMID: 35836656 PMCID: PMC9275364 DOI: 10.3389/fpsyt.2022.913303] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Aye-Mu Myint
- Department of Psychiatry, Loyola University School of Medicine and Loyola University Medical Center, Maywood, IL, United States
| | - Angelos Halaris
- Department of Psychiatry, Loyola University School of Medicine and Loyola University Medical Center, Maywood, IL, United States
| |
Collapse
|
46
|
Kim HJ, Kim H, Choi Y, Lee JH, Kim D, Lee SK, Park KS. Cinnamomum verum-derived O-methoxycinnamaldehyde prevents lipopolysaccharide-induced depressive-like behavior in mice via NFAT mRNA stability in T lymphocytes. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 91:153703. [PMID: 34425473 DOI: 10.1016/j.phymed.2021.153703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/30/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Depressive-like behaviors are related to inflammatory immune activation. Cinnamomum verum (CV) has anti-inflammatory effects, but the molecular mechanisms underlying the antidepressant effects after immunological activation still remain elusive. PURPOSE The aim of the present study was to investigate the effect of CV in improving depressive-like behavior and explore its underlying mechanism in T lymphocytes. METHODS Mice were randomly divided into Control, LPS, LPS plus fluoxetine, LPS plus CV, and LPS plus MCA groups. Behavior was evaluated using forced swimming test (FST) and tail suspension test (TST). The experimental group mice were exposed to LPS to induce depressive-like behavior. Cell viability was measured upon treating splenic T lymphocytes and Jurkat T cells with CV. Cytokine activity was measured using ELISA and RT-qPCR. The components of CV were analyzed by HPLC. NFAT expression was evaluated by western blotting, immunofluorescence, and luciferase assay. To verify the half-life of NFAT mRNA, Jurkat cells were treated with actinomycin D for 1.5, 3, and 4.5 h. RESULTS CV effectively prevents inflammation-induced depressive-like behaviors. CV dose-dependently decreased protein and mRNA levels of TNFα and IL-2. Inhibition of TNFα and IL-2 production involves an MCA-mediated decrease in NFAT mRNA level, rather than inhibition of nuclear translocation. This mechanism was independent of NFAT transcription inducer p38 MAPK; it can be attributed to the promotion of NFAT mRNA decay. CONCLUSION Overall, MCA might be an alternative or adjuvant to existing NFAT-targeting immunosuppressants for clinical prophylaxis or therapy in the context of inflammation-induced depressive disorder or other T-cell-associated inflammatory disorders.
Collapse
Affiliation(s)
- Hye Jin Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea; College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyungjun Kim
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Yujin Choi
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Jun-Hwan Lee
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea; Korean Medicine Life Science, University of Science & Technology (UST), Campus of Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Donghwan Kim
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Sang Kook Lee
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea.
| | - Ki-Sun Park
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea.
| |
Collapse
|
47
|
Myint K, Jacobs K, Myint AM, Lam SK, Lim YAL, Boey CCM, Hoe SZ, Guillemin GJ. Psychological Stresses in Children Trigger Cytokine- and Kynurenine Metabolite-Mediated Abdominal Pain and Proinflammatory Changes. Front Immunol 2021; 12:702301. [PMID: 34539633 PMCID: PMC8442661 DOI: 10.3389/fimmu.2021.702301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/09/2021] [Indexed: 11/13/2022] Open
Abstract
Recurrent abdominal pain (RAP) is a common medically unexplained symptom among children worldwide. However, the biological mechanisms behind the development of functional and behavioral symptoms and changes in blood markers have not been well explored. This study aimed to assess changes in the concentrations of inflammatory markers, including cytokines and tryptophan catabolites, in the serum of children with RAP compared to those with subclinical infections. Children with RAP but without organic diseases were included, and those with asymptomatic intestinal parasitic infections were used as a subclinical infection cohort. Blood samples were collected and used to measure the cytokine profile using Multiplex Immunoassay and tryptophan catabolites using high performance liquid chromatography. Children with RAP showed significantly higher concentrations of serum tumor necrotic factor-α, p<0.05, but lower concentrations of IL-10, p<0.001, IL-6, p<0.001 and brain-derived neurotrophic factors (BDNF) p<0.01. In addition, a significant increase in the metabolite of the kynurenine pathway, 3-hydroxyanthranilic acid (3-HAA) p<0.01, a significant decrease in the concentrations of anthranilic acid (AA) p<0.001, together with an increased ratio of serum 3-HAA to AA (3-HAA/AA) p<0.001, was found in this cohort. These findings indicate the significant activation of the immune system and presence of inflammation in children with RAP than those with subclinical parasitic infections. Moreover, children with RAP tested with the Strengths and Difficulties Questionnaire (SDQ), displayed high psychological problems though these SDQ scores were not statistically associated with measured cytokines and kynurenine metabolites. We however could hypothesize that the pro-inflammatory state together with concomitant low concentrations of BDNF in those children with RAP could play a role in psychological stress and experiencing medically unexplained symptoms.
Collapse
Affiliation(s)
- Kyaimon Myint
- Department of Physiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kelly Jacobs
- Neuroinflammation Group, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Aye-Mu Myint
- Psychoneuroimmunology Research Group, European Collaborative Project, Munich, Germany
| | - Sau Kuen Lam
- Department of Pre-Clinical Sciences, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Bandar Sungai Long, Malaysia
| | - Yvonne Ai-Lian Lim
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | | | - See Ziau Hoe
- Department of Physiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Gilles J Guillemin
- Neuroinflammation Group, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
48
|
Rahimian R, Wakid M, O'Leary LA, Mechawar N. The emerging tale of microglia in psychiatric disorders. Neurosci Biobehav Rev 2021; 131:1-29. [PMID: 34536460 DOI: 10.1016/j.neubiorev.2021.09.023] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/18/2021] [Accepted: 09/08/2021] [Indexed: 12/24/2022]
Abstract
As the professional phagocytes of the brain, microglia orchestrate the immunological response and play an increasingly important role in maintaining homeostatic brain functions. Microglia are activated by pathological events or slight alterations in brain homeostasis. This activation is dependent on the context and type of stressor or pathology. Through secretion of cytokines, chemokines and growth factors, microglia can strongly influence the response to a stressor and can, therefore, determine the pathological outcome. Psychopathologies have repeatedly been associated with long-lasting priming and sensitization of cerebral microglia. This review focuses on the diversity of microglial phenotype and function in health and psychiatric disease. We first discuss the diverse homeostatic functions performed by microglia and then elaborate on context-specific spatial and temporal microglial heterogeneity. Subsequently, we summarize microglia involvement in psychopathologies, namely major depressive disorder, schizophrenia and bipolar disorder, with a particular focus on post-mortem studies. Finally, we postulate microglia as a promising novel therapeutic target in psychiatry through antidepressant and antipsychotic treatment.
Collapse
Affiliation(s)
- Reza Rahimian
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada
| | - Marina Wakid
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Liam Anuj O'Leary
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Naguib Mechawar
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada; Department of Psychiatry, McGill University, Montreal, QC, Canada.
| |
Collapse
|
49
|
Haq S, Grondin JA, Khan WI. Tryptophan-derived serotonin-kynurenine balance in immune activation and intestinal inflammation. FASEB J 2021; 35:e21888. [PMID: 34473368 PMCID: PMC9292703 DOI: 10.1096/fj.202100702r] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 07/29/2021] [Accepted: 08/16/2021] [Indexed: 02/06/2023]
Abstract
Endogenous tryptophan metabolism pathways lead to the production of serotonin (5‐hydroxytryptamine; 5‐HT), kynurenine, and several downstream metabolites which are involved in a multitude of immunological functions in both health and disease states. Ingested tryptophan is largely shunted to the kynurenine pathway (95%) while only minor portions (1%–2%) are sequestered for 5‐HT production. Though often associated with the functioning of the central nervous system, significant production of 5‐HT, kynurenine and their downstream metabolites takes place within the gut. Accumulating evidence suggests that these metabolites have essential roles in regulating immune cell function, intestinal inflammation, as well as in altering the production and suppression of inflammatory cytokines. In addition, both 5‐HT and kynurenine have a considerable influence on gut microbiota suggesting that these metabolites impact host physiology both directly and indirectly via compositional changes. It is also now evident that complex interactions exist between the two pathways to maintain gut homeostasis. Alterations in 5‐HT and kynurenine are implicated in the pathogenesis of many gastrointestinal dysfunctions, including inflammatory bowel disease. Thus, these pathways present numerous potential therapeutic targets, manipulation of which may aid those suffering from gastrointestinal disorders. This review aims to update both the role of 5‐HT and kynurenine in immune regulation and intestinal inflammation, and analyze the current knowledge of the relationship and interactions between 5‐HT and kynurenine pathways.
Collapse
Affiliation(s)
- Sabah Haq
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Jensine A Grondin
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Waliul I Khan
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada.,Laboratory Medicine, Hamilton Health Sciences, Hamilton, Ontario, Canada
| |
Collapse
|
50
|
Fifita JA, Chan Moi Fat S, McCann EP, Williams KL, Twine NA, Bauer DC, Rowe DB, Pamphlett R, Kiernan MC, Tan VX, Blair IP, Guillemin GJ. Genetic Analysis of Tryptophan Metabolism Genes in Sporadic Amyotrophic Lateral Sclerosis. Front Immunol 2021; 12:701550. [PMID: 34194442 PMCID: PMC8236844 DOI: 10.3389/fimmu.2021.701550] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 05/31/2021] [Indexed: 01/17/2023] Open
Abstract
The essential amino acid tryptophan (TRP) is the initiating metabolite of the kynurenine pathway (KP), which can be upregulated by inflammatory conditions in cells. Neuroinflammation-triggered activation of the KP and excessive production of the KP metabolite quinolinic acid are common features of multiple neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). In addition to its role in the KP, genes involved in TRP metabolism, including its incorporation into proteins, and synthesis of the neurotransmitter serotonin, have also been genetically and functionally linked to these diseases. ALS is a late onset neurodegenerative disease that is classified as familial or sporadic, depending on the presence or absence of a family history of the disease. Heritability estimates support a genetic basis for all ALS, including the sporadic form of the disease. However, the genetic basis of sporadic ALS (SALS) is complex, with the presence of multiple gene variants acting to increase disease susceptibility and is further complicated by interaction with potential environmental factors. We aimed to determine the genetic contribution of 18 genes involved in TRP metabolism, including protein synthesis, serotonin synthesis and the KP, by interrogating whole-genome sequencing data from 614 Australian sporadic ALS cases. Five genes in the KP (AFMID, CCBL1, GOT2, KYNU, HAAO) were found to have either novel protein-altering variants, and/or a burden of rare protein-altering variants in SALS cases compared to controls. Four genes involved in TRP metabolism for protein synthesis (WARS) and serotonin synthesis (TPH1, TPH2, MAOA) were also found to carry novel variants and/or gene burden. These variants may represent ALS risk factors that act to alter the KP and lead to neuroinflammation. These findings provide further evidence for the role of TRP metabolism, the KP and neuroinflammation in ALS disease pathobiology.
Collapse
Affiliation(s)
- Jennifer A. Fifita
- Macquarie University Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Sandrine Chan Moi Fat
- Macquarie University Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Emily P. McCann
- Macquarie University Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Kelly L. Williams
- Macquarie University Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Natalie A. Twine
- Macquarie University Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
- Australian e-Health Research Centre, Commonwealth Scientific and Industrial Research Organization, Health & Biosecurity Flagship, Sydney, NSW, Australia
| | - Denis C. Bauer
- Australian e-Health Research Centre, Commonwealth Scientific and Industrial Research Organization, Health & Biosecurity Flagship, Sydney, NSW, Australia
- Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
- Applied BioSciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, Australia
| | - Dominic B. Rowe
- Macquarie University Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Roger Pamphlett
- Discipline of Pathology, School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
- Department of Neuropathology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia
| | - Matthew C. Kiernan
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia
- Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Vanessa X. Tan
- Macquarie University Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Ian P. Blair
- Macquarie University Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Gilles J. Guillemin
- Macquarie University Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|