1
|
Yun L, Fan Q, Wang J, Wu A, Liu Z, Sun F, Zhou X, Wang Q, Du X, Luo N, Zhou J, Long Y, Xie B, Wu J, Zou W, Chen Q. A thermosensitive chitosan hydrogel loaded with Thonningianin A nanoparticles promotes diabetic wound healing by modulating oxidative stress and angiogenesis. Int J Biol Macromol 2025:143136. [PMID: 40233907 DOI: 10.1016/j.ijbiomac.2025.143136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 03/26/2025] [Accepted: 04/12/2025] [Indexed: 04/17/2025]
Abstract
Diabetic wounds are difficult to heal because of persistent oxidative stress and limited angiogenesis. However, traditional wound dressings cannot address these issues simultaneously. In this study, a thermosensitive chitosan (CS) hydrogel loaded with Thonningianin A (TA) nanoparticles (TA-NPs) was constructed. First, TA-NPs were developed via the nanoprecipitation technique. CS was subsequently combined with β‑sodium glycerophosphate (β-GP) to prepare a thermosensitive hydrogel matrix (CS/β-GP). Finally, composite hydrogels (TA-NPs@Gel) with antioxidant and angiogenesis-promoting properties were synthesized by incorporating TA-NPs into a CS/β-GP hydrogel matrix. Characterization revealed that the TA-NPs were uniformly spherical, with a particle size of 186.30 ± 1.15 nm and a zeta potential of -35.07 ± 0.61 mV. Scanning electron microscopy and Fourier transform infrared spectroscopy confirmed the successful integration of TA-NPs into the hydrogel matrix. Both in vitro and in vivo studies demonstrated that TA-NPs@Gel exhibited potent antioxidant and angiogenic effects, significantly accelerating wound healing in a diabetic mouse model. Network pharmacology predictions indicated that TA-NPs@Gel promoted diabetic wound healing through the HIF-1 signaling pathway. Overall, the integration of TA-NPs into a hydrogel system has broad therapeutic potential for the treatment of diabetic wounds.
Collapse
Affiliation(s)
- Long Yun
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qingze Fan
- Department of Pharmacy, The Affiliated Hospital, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Jie Wang
- Wound Healing Basic Research and Clinical Application Key Laboratory of Luzhou, School of Nursing, Southwest Medical University, Luzhou 646000, China
| | - Anguo Wu
- Department of Pharmacy, The Affiliated Hospital, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Zhixuan Liu
- Department of Pharmacy, The Affiliated Hospital, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Fuhua Sun
- Rehabilitation Medicine Department, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Xiaogang Zhou
- Department of Pharmacy, The Affiliated Hospital, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Qiaozhi Wang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Xi Du
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Nannan Luo
- Wound Healing Basic Research and Clinical Application Key Laboratory of Luzhou, School of Nursing, Southwest Medical University, Luzhou 646000, China
| | - Jiahan Zhou
- Department of Pharmacy, The Affiliated Hospital, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Yang Long
- Department of Endocrinology and Metabolism, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Bingqing Xie
- Department of Pharmacy, The Affiliated Hospital, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Jianming Wu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, Sichuan, China.
| | - Wenjun Zou
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Qi Chen
- Department of Endocrinology and Metabolism, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China; Wound Healing Basic Research and Clinical Application Key Laboratory of Luzhou, School of Nursing, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
2
|
Ahad A, Raish M, Bin Jardan YA, Al-Mohizea AM, Al-Jenoobi FI. Development of eugenol-fortified fisetin-loaded nano-invasomes gel. Xenobiotica 2025:1-10. [PMID: 40078049 DOI: 10.1080/00498254.2025.2478928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/06/2025] [Accepted: 03/08/2025] [Indexed: 03/14/2025]
Abstract
The goal of current investigation was to develop eugenol-fortified fisetin nano-invasomes. Fisetin-loaded invasomes were prepared using thin film hydration procedure and evaluated for various parameters. Additionally, the optimised fisetin invasomes formulation (F5) was converted to fisetin invasomes gel using Carbopol® as gelling agent and evaluated for pH, spreadability, homogeneity, drug content, in vitro fisetin release, antioxidant activity and stability study.Prepared optimised fisetin invasomes formulation (F5) demonstrated vesicles size, PDI, zeta potential and entrapment efficiency of 153.85 ± 14.32 nm, 0.208 ± 0.042, -12.67 ± 1.08 mV and 72.10 ± 6.36%. The TEM image indicated that the prepared invasomes vesicles are intact, spherical and found in the range of nanosized scale. Prepared fisetin invasomes gel showed better spreadability and in vitro fisetin released in contrast to fisetin control gel. Substantial improvement in the DPPH radical scavenging activity of fisetin invasomes gel 44.70% (3.1 µM) and 83.94% (50 µM), was noted as compared to the control gel at 39.47% (3.1 µM) and 79.10% at (50 µM). The prepared fisetin invasomes gel formulation was found stable at 4 °C.Based on the results, prepared invasomes gel formulation was found as a viable method for better delivery of bioactive compound(s) including fisetin.
Collapse
Affiliation(s)
- Abdul Ahad
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Raish
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Yousef A Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah M Al-Mohizea
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Fahad I Al-Jenoobi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Galvão GF, Petrilli R, Arfelli VC, Carvalho AN, Martins YA, Rosales RRC, Archangelo LF, daSilva LLP, Lopez RFV. Iontophoresis-driven alterations in nanoparticle uptake pathway and intracellular trafficking in carcinoma skin cancer cells. Colloids Surf B Biointerfaces 2025; 248:114459. [PMID: 39709939 DOI: 10.1016/j.colsurfb.2024.114459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/13/2024] [Accepted: 12/15/2024] [Indexed: 12/24/2024]
Abstract
Effective treatment of squamous cell carcinoma (SCC) poses challenges due to intrinsic drug resistance and limited drug penetration into tumor cells. Nanoparticle-based drug delivery systems have emerged as a promising approach to enhance therapeutic efficacy; however, they often face hurdles such as inadequate cellular uptake and rapid lysosomal degradation. This study explores the potential of iontophoresis to augment the efficacy of liposome and immunoliposome-based drug delivery systems for SCC treatment. The study assessed iontophoresis effects on SCC cell line (A431) viability, nanoparticle uptake dynamics, and intracellular distribution patterns. Specific inhibitors were employed to delineate cellular internalization pathways, while fluorescence microscopy and immunohistochemistry examined changes in EGFR expression and lysosomal activity. Results demonstrated that iontophoresis significantly increased cellular uptake of liposomes and immunoliposomes, achieving approximately 50 % uptake compared to 10 % with passive treatment. This enhancement correlated with modifications in endocytic pathways, favoring macropinocytosis and caveolin-mediated endocytosis for liposomes, and macropinocytosis and clathrin-mediated pathways for immunoliposomes. Moreover, iontophoresis induced alterations in EGFR distribution and triggered syncytium-like cellular clustering. It also attenuated lysosomal activity, thereby reducing nanoparticle degradation and prolonging intracellular retention of therapeutic agents. These findings underscore the role of iontophoresis in modulating nanoparticle internalization pathways, offering insights that could advance targeted drug delivery strategies and mitigate therapeutic resistance in SCC and other malignancies.
Collapse
Affiliation(s)
- Gabriela Fávero Galvão
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14020-630, Brazil
| | - Raquel Petrilli
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14020-630, Brazil; Institute of Health Sciences, University for International Integration of the Afro-Brazilian Lusophony, Redenção, CE, Brazil; Federal University of Ceara, Faculty of Pharmacy, Dentistry and Nursing, Department of Pharmacy, Fortaleza, Ceará, Brazil
| | - Vanessa Cristina Arfelli
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Andréia Nogueira Carvalho
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Yugo Araújo Martins
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14020-630, Brazil
| | - Roberta Ribeiro Costa Rosales
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Leticia Fröhlich Archangelo
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Luis Lamberti Pinto daSilva
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Renata Fonseca Vianna Lopez
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14020-630, Brazil.
| |
Collapse
|
4
|
Jaradat E, Meziane A, Lamprou DA. Paclitaxel-loaded elastic liposomes synthesised by microfluidics technique for enhance transdermal delivery. Drug Deliv Transl Res 2025; 15:1265-1283. [PMID: 39020246 PMCID: PMC11870984 DOI: 10.1007/s13346-024-01672-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2024] [Indexed: 07/19/2024]
Abstract
The inherent flexibility of elastic liposomes (EL) allows them to penetrate the small skin pores and reach the dermal region, making them an optimum candidate for topical drug delivery. Loading chemotherapy in ELs could improve chemotherapy's topical delivery and localise its effect on skin carcinogenic tissues. Chemotherapy-loaded EL can overcome the limitations of conventional administration of chemotherapies and control the distribution to specific areas of the skin. In the current studies, Paclitaxel was utilised to develop Paclitaxel-loaded EL. As an alternative to the conventional manufacturing methods of EL, this study is one of the novel investigations utilising microfluidic systems to examine the potential to enhance and optimise the quality of Els by the microfluidics method. The primary aim was to achieve EL with a size of < 200 nm, high homogeneity, high encapsulation efficiency, and good stability. A phospholipid (DOPC) combined with neutral and anionic edge activators (Tween 80 and sodium taurocholate hydrate) at various lipid-to-edge activator ratios, was used for the manufacturing of the ELs. A preliminary study was performed to study the size, polydispersity (PDI), and stability to determine the optimum microfluidic parameters and lipid-to-edge activator for paclitaxel encapsulation. Furthermore, physiochemical characterisation was performed on the optimised Paclitaxel-loaded EL using a variety of methods, including Dynamic Light Scattering, Fourier Transform Infrared Spectroscopy, Atomic force microscopy, elasticity, encapsulation efficiency, and In vitro release. The results reveal the microfluidics' significant impact in enhancing the EL characteristics of EL, especially small and controllable size, Low PDI, and high encapsulation efficiency. Moreover, the edge activator type and concentration highly affect the EL characteristics. The Tween 80 formulations with optimised concentration provide the most suitable size and higher encapsulation efficiency. The release profile of the formulations showed more immediate release from the EL with higher edge activator concentration and a higher % of the released dug from the Tween 80 formulations.
Collapse
Affiliation(s)
- Eman Jaradat
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | | | - Dimitrios A Lamprou
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK.
| |
Collapse
|
5
|
Erdoğan Ü, Uğur ŞS. Chitosan-enriched milk thistle extract-loaded liposomes anchored on nonwoven cotton fabric with antioxidant, anti-aging and UV protective effects. Int J Biol Macromol 2025; 304:140963. [PMID: 39952514 DOI: 10.1016/j.ijbiomac.2025.140963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/10/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
This work focused on grafting milk thistle extract (MTE)-loaded liposomes with antioxidant and UV protection properties onto nonwoven cotton fabric by layer-by-layer (LbL) self-assembly. Liposome vesicles were manufactured using the double solvent displacement (DSD) method and characterized based on particle size, polydispersity, and zeta potential measurements. In the coating process, chitosan served as a biocompatible and biodegradable polymer to provide the positive charge required for electrostatic LbL self-assembly. The findings showed that the liposomal population was ∼223 nm in average particle size, with a low polydispersity index of 0.398, indicating high particle homogeneity. Additionally, the zeta potentials of liposomes and chitosan were determined to be -28 and + 68.23, respectively. SEM-EDX findings revealed that the elements of the liposomes on the fabric changed with the increase of the assembled layers, while ATR-FTIR provided evidence that the liposomes were successfully loaded on the nonwoven cotton fabric. The findings showed significant levels of tyrosinase inhibitory activity and antioxidant ability in fabrics coated with chitosan-enriched MTE phenolics. Moreover, when compared with untreated and pretreated fabrics, the fabric with coated MTE exhibited very good sun protection ability with a UPF value of 30.55.
Collapse
Affiliation(s)
- Ümit Erdoğan
- Department of Rose and Aromatic Plants Application and Research Center Isparta University of Applied Sciences, Isparta, Türkiye.
| | - Şule Sultan Uğur
- Department of Textile Engineering, Faculty of Engineering and Natural Sciences, Suleyman Demirel University, Isparta, Türkiye.
| |
Collapse
|
6
|
Kapoor DU, Garg R, Maheshwari R, Gaur M, Sharma D, Prajapati BG. Advancing psoriasis drug delivery through topical liposomes. Z NATURFORSCH C 2025; 80:41-60. [PMID: 39037729 DOI: 10.1515/znc-2024-0118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/08/2024] [Indexed: 07/23/2024]
Abstract
Psoriasis, recognized as a chronic inflammatory skin disorder, disrupts immune system functionality. Global estimates by the World Psoriasis Day consortium indicate its impact on approximately 130 million people, constituting 4 to 5 percent of the worldwide population. Conventional drug delivery systems, mainly designed to alleviate psoriasis symptoms, fall short in achieving targeted action and optimal bioavailability due to inherent challenges such as the drug's brief half-life, instability, and a deficiency in ensuring both safety and efficacy. Liposomes, employed in drug delivery systems, emerge as highly promising carriers for augmenting the therapeutic efficacy of topically applied drugs. These small unilamellar vesicles demonstrate enhanced penetration capabilities, facilitating drug delivery through the stratum corneum layer of skin. This comprehensive review article illuminates diverse facets of liposomes as a promising drug delivery system to treat psoriasis. Addressing various aspects such as formulation strategies, encapsulation techniques, and targeted delivery, the review underscores the potential of liposomes in enhancing the efficacy and specificity of psoriasis treatments.
Collapse
Affiliation(s)
- Devesh U Kapoor
- Dr. Dayaram Patel Pharmacy College, Bardoli 394601, Gujarat, India
| | - Rahul Garg
- Asian College of Pharmacy, Rajasthan University of Health Sciences, Udaipur, Rajasthan 313001, India
| | - Rahul Maheshwari
- School of Pharmacy and Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-University, Green Industrial Park, TSIIC, 509301, Jadcherla, Hyderabad, India
| | - Mansi Gaur
- Rajasthan Pharmacy College, Rajasthan University of Health Sciences, Jaipur 302026, India
| | - Deepak Sharma
- Institute of Pharmacy, Assam Don Bosco University, Tapesia, Assam 782402, India
| | - Bhupendra G Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva 384012, India
- Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| |
Collapse
|
7
|
Ahmed S, Farag MM, Sadek MA, Aziz DE. Transdermal application of diacerin loaded-terpene enriched invasomes: an approach to augment anti-edema and nociception inhibition activity. J Liposome Res 2025; 35:1-14. [PMID: 39074044 DOI: 10.1080/08982104.2024.2382974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/29/2024] [Accepted: 07/16/2024] [Indexed: 07/31/2024]
Abstract
This study aimed to formulate diacerein loaded terpene-enriched invasomes (DCN-TINV) to fulfill a fruitful management of osteoarthritis. A 23 factorial design was adopted, including A: cholesterol concentration (%w/v), B: ethanol volume (mL) and C: phosphatidylcholine: drug ratio as the studied factors. Invasomes were constructed using the thin film hydration technique. Herein, percent entrapment efficiency (EE%), particle size (PS), poly-dispersity index (PDI) and zeta potential (ZP) were statistically analyzed using Design-Expert® software to select the optimum formula. The selected criteria for detecting the optimum formula were restricting PS (<350 nm), dismissing PDI, magnifying ZP (as absolute value) and EE%. The selected formula was further scrutinized through multiple in-vitro studies, including Fourier-transform infrared spectroscopy, differential scanning calorimetry, pH measurement, stability study, release profile and transmission electron microscopy. Furthermore, the ex-vivo performance was evaluated through ex-vivo skin permeation and deposition. Finally, it was subjected to an array of in-vivo tests, namely Draize test, histopathology, In-vivo skin penetration, edema size, and nociception inhibition measurements. The optimum formula with desirability (0.913) demonstrated EE% (89.21% ± 2.12%), PS (319.75 ± 10.11 nm), ZP (-55 ± 3.96 mV) and a prolonged release profile. Intriguingly, revamped skin permeation (1143 ± 32.11 µg/cm2), nociception inhibition (77%) and In-vivo skin penetration (144 µm) compared to DCN suspension (285 ± 21.25 µg/cm2, 26% and 48 µm, respectively) were displayed. The optimum DCN-TINV exhibited plausible safety and stability profiles consolidated with auspicious efficacy for better management of osteoarthritis.
Collapse
Affiliation(s)
- Sadek Ahmed
- Faculty of Pharmacy, Department of Pharmaceutics and Industrial Pharmacy, Cairo University, Cairo, Egypt
| | - Michael M Farag
- Faculty of Pharmacy, Department of Pharmaceutics and Industrial Pharmacy, Cairo University, Cairo, Egypt
| | - Mohamed A Sadek
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Cairo University, Cairo, Egypt
| | - Diana E Aziz
- Faculty of Pharmacy, Department of Pharmaceutics and Industrial Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
8
|
Chauhan M, Chandra J, Gupta G, Ramaiah R, Hani U, Kesharwani P. Harnessing phytoconstituents in ethosomes: A new frontier in skin disorder management. Int J Pharm 2025; 671:125273. [PMID: 39870257 DOI: 10.1016/j.ijpharm.2025.125273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/15/2025] [Accepted: 01/23/2025] [Indexed: 01/29/2025]
Abstract
The rising incidence of skin disorders has necessitated the exploration of innovative therapeutic modalities that harness the beneficial properties of natural compounds. Phytoconstituents, renowned for their diverse pharmacological attributes, present considerable promise in the management of various dermatological conditions. This review delineates the integration of phytoconstituents into ethosomal formulations, which are advanced lipid-based carriers specifically designed to enhance transdermal delivery. We discuss the advantages conferred by ethosomes, including their capacity to improve the stability and bioavailability of phytochemicals, facilitate deeper skin penetration, and provide controlled release profiles. Recent advancements in the formulation of ethosomes encapsulating a variety of phytoconstituents are highlighted, with a focus on their physicochemical properties, therapeutic efficacy, and safety profiles. Furthermore, the review examines the mechanisms by which ethosomes enhance the delivery of bioactive compounds to targeted skin layers, particularly in the context of treating conditions such as acne, eczema, and psoriasis. Challenges associated with formulation stability and scalability are also addressed, along with potential future research directions in this domain. By synthesizing current knowledge and identifying existing gaps, this article aims to provide a comprehensive overview of phytoconstituent-based ethosomes as a promising strategy for the development of effective and safe topical therapies for skin disorders. Ultimately, this review underscores the potential of these innovative formulations to improve patient outcomes and contribute significantly to the advancement of dermatological treatment options.
Collapse
Affiliation(s)
- Meghna Chauhan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Jyoti Chandra
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Garima Gupta
- Graphic Era Hill University, Dehradun 248002, India; School of Allied Medical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Ramasubbamma Ramaiah
- Department of Medical and Surgical Nursing, College of Nursing, Khamish Mushait, Female Wing, Mahala Road, King Khalid University, Saudi Arabia
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy King Khalid University, Abha, Saudi Arabia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
9
|
Lens M. Niosomes as Vesicular Nanocarriers in Cosmetics: Characterisation, Development and Efficacy. Pharmaceutics 2025; 17:287. [PMID: 40142950 PMCID: PMC11946087 DOI: 10.3390/pharmaceutics17030287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/16/2025] [Accepted: 02/18/2025] [Indexed: 03/28/2025] Open
Abstract
In an era of significant developments in cosmetic chemistry and growing demand for efficacious skincare products, the efficient delivery of active molecules has been a challenge in formulations of cosmetics. In order to improve the performance of active compounds, the use of different nanotechnology-based systems have been explored in cosmetic chemistry. Niosomes, self-assembled vesicular nanocarriers, have been used in the cosmetic industry since the 1970s. The aim of this review is to provide a comprehensive overview of recent advancements in the encapsulation of active cosmetic compounds using niosomes as potential carriers for their sustained and targeted delivery. The review discusses the physicochemical, pharmacokinetic and pharmacodynamic properties of niosomes, including preparation methods, advantages and limitations. Various applications of niosomes in the cosmetic industry are presented together with the permeation and efficacy data from conducted in vitro and in vivo studies. Future perspectives of these nanocarriers for cosmetic applications are highlighted.
Collapse
Affiliation(s)
- Marko Lens
- Leeds Institute of Medical Research, University of Leeds, Leeds LS9 7TF, UK
| |
Collapse
|
10
|
Ai X, Guo T, Yang J, Zhang C, Zhang Y, Zhao W, Zhu S, Feng N. Dissolving microneedle synergistic rocaglamide-loaded liposome to regulate abnormal neutrophils for anti-psoriasis. Int J Pharm 2025; 670:125180. [PMID: 39761709 DOI: 10.1016/j.ijpharm.2025.125180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/01/2025] [Accepted: 01/03/2025] [Indexed: 01/11/2025]
Abstract
Psoriasis seriously affects the physical and mental health of patients. Rocaglamide (RocA), derived from Aglaia odorata, exhibits potent pharmacological activities. Although its efficacy in psoriasis is unclear, RocA could be a promising therapeutic drug. In this work, RocA showed a good therapeutic effect in psoriasis mice induced by imiquimod, and subsequent TMT-based proteomics analysis verified that the effect of RocA was related to IL-1 family cytokines. Furthermore, a RocA-loaded liposome (RocA@Lipo) was developed and encapsulated in the tip-layer of microneedles (MNs) to construct a MN-based nano drug delivery system (RocA@Lipo-MNs). In vitro HaCaT cell assays demonstrated that RocA@Lipo enhanced the cytotoxicity and cell uptake of RocA. In vivo, RocA@Lipo-MNs outperformed other RocA formulations in inhibiting psoriasis epidermal thickening and spleen enlargement. Immunohistochemical, ELISA, western blot, and PCR experiments further proved that RocA@Lipo-MNs could inhibit neutrophil infiltration in the skin, revealing that the anti-psoriasis mechanism of RocA was deemed to inhibit the binding of IL-1α and IL-1R1 to regulate the activation of MAPK and NF-κB pathways. Thus, the production of inflammatory factors and neutrophil chemokines was reduced, which was associated with apoptosis inhibition. Importantly, RocA@Lipo-MNs significantly improved the transdermal properties of RocA and exhibited good skin and blood safety. This work provides new ideas for the clinical application of RocA and the treatment options for psoriasis.
Collapse
Affiliation(s)
- Xinyi Ai
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203 China
| | - Teng Guo
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203 China
| | - Jiayi Yang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203 China
| | - Chenming Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203 China
| | - Yangyang Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203 China
| | - Weimin Zhao
- Natural Product Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203 China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049 China.
| | - Shiguo Zhu
- Department of Immunology and Pathogenic Biology, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203 China; Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203 China.
| | - Nianping Feng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203 China.
| |
Collapse
|
11
|
Puspadewi R, Milanda T, Muhaimin M, Chaerunisaa AY. Nanoparticle-Encapsulated Plant Polyphenols and Flavonoids as an Enhanced Delivery System for Anti-Acne Therapy. Pharmaceuticals (Basel) 2025; 18:209. [PMID: 40006023 PMCID: PMC11858878 DOI: 10.3390/ph18020209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/29/2025] [Accepted: 01/29/2025] [Indexed: 02/27/2025] Open
Abstract
This study conducted a literature review by searching for articles related to the treatment of skin infections/wrinkles using nano-delivery systems containing natural compounds. The search was conducted in various databases for articles published in the last 10 years, with strict inclusion and exclusion criteria. Of the 490 articles found, 40 were considered relevant. Acne vulgaris is a common dermatological disorder characterised by inflammation of the sebaceous glands, often resulting in the development of pimples, cysts, and scarring. Conventional treatments, including antibiotics and topical retinoids, frequently demonstrate limitations such as side effects, resistance, and insufficient skin absorption. Recent advancements in nanotechnology have enabled the creation of innovative drug-delivery systems that enhance the effectiveness and reduce the adverse effects of anti-acne medications. Polyphenols and flavonoids, natural bioactive compounds with notable anti-inflammatory, antioxidant, and antibacterial properties, are recognised for their therapeutic effectiveness in acne treatment. However, their practical application is hindered by insufficient solubility, stability, and bioavailability. The incorporation of these compounds into nanoparticle-based delivery systems has shown promise in resolving these challenges. Various nanoparticle platforms, including lipid-based nanoparticles, polymeric nanoparticles, and solid lipid nanoparticles, are evaluated for their ability to improve the stability, controlled release, and targeted delivery of polyphenols and flavonoids to the skin. The advent of polyphenol and flavonoid-loaded nanoparticles marks a new acne therapy era.
Collapse
Affiliation(s)
- Ririn Puspadewi
- Doctoral Program of Pharmacy, Faculty of Pharmacy, Padjadjaran University, Sumedang 45363, Indonesia;
- Faculty of Pharmacy, Jenderal Achmad Yani University, Cimahi 40531, Indonesia
| | - Tiana Milanda
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Padjadjaran University, Sumedang 45363, Indonesia
| | - Muhaimin Muhaimin
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Padjadjaran University, Sumedang 45363, Indonesia
- Center of Herbal Studies, Padjadjaran University, Sumedang 45363, Indonesia
| | - Anis Yohana Chaerunisaa
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Padjadjaran University, Sumedang 45363, Indonesia
| |
Collapse
|
12
|
Kusumawati I, Kurniawan KO, Rohmania R, Pratama BA, Pratama YA, Rullyansyah S, Warsito MF, Widyowati R, Hestianah EP, Matsunami K. Comparative Study of Liposomal and Ethosomal Formulations of Curcuma heyneana Rhizome Extract in a Transdermal Delivery System. Pharm Nanotechnol 2025; 13:303-312. [PMID: 37937575 DOI: 10.2174/0122117385252518231018161755] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 08/21/2023] [Accepted: 09/01/2023] [Indexed: 11/09/2023]
Abstract
AIMS This study aimed to develop an anti-aging nanoformulation with Curcuma heyneana extract as bioactive substance. BACKGROUND Curcuma heyneana Valeton & Zipj extract has been proven in previous research to have antioxidant, anti-ageing, anti-inflammatory, and wound healing properties, which makes it a potential bioactive material for anti-ageing and sunscreen cosmetic products. Phytoantioxidants need to penetrate into deeper skin layers to ensure effectivity. Thus, a transdermal delivery system is needed to deliver the extract to a deeper skin layer. OBJECTIVES The objective of the study was to compare the permeability and anti-ageing activity of liposomal and ethosomal formulations of C. heynena rhizome ethanolic extract. METHODS In this study, C. heyneana extract was loaded into a phospholipid vesicular system in the form of liposome and ethosome formulations using the ethanolic injection method. The anti-ageing activity was assessed by analyzing the epidermal thickness, number of sunburn cells, distance between collagen fibers, and number of fibroblasts. While the histologic specimen scoring was carried out for the in vivo penetration study. RESULTS The ethosomal formulation had been found to have better penetration ability since it was able to reach the lower dermis area compared to the liposomes, which only reached the upper dermis. The ethosomal formulation of C. heyneana extract exhibited a better anti-ageing activity based on the parameters of epidermal thickness, sunburn cell count, fibroblast count, and the distance between collagen fibres in rat skin histology. CONCLUSION Ethosomes have been found to be a more proficient carrier system for transdermal delivery of C. heyneana extract compared to liposomes. Meanwhile, their penetration correlated with the effectivity of the formulation, suggesting that the vesicular system enhanced the penetration ability of the extract.
Collapse
Affiliation(s)
- Idha Kusumawati
- Department of Pharmaceutical Science, Faculty of Pharmacy, Universitas Airlangga, Nanizar Zaman Joenoes Building, Surabaya, 60155, Indonesia
- Natural Product Drug Discovery and Development Research Group, Faculty of Pharmacy, Universitas Airlangga, Nanizar Zaman Joenoes Building, Surabaya, 60155, Indonesia
| | - Kresma Oky Kurniawan
- Department of Pharmaceutical Science, Faculty of Pharmacy, Universitas Airlangga, Nanizar Zaman Joenoes Building, Surabaya, 60155, Indonesia
| | - Rohmania Rohmania
- Department of Pharmaceutical Science, Faculty of Pharmacy, Universitas Airlangga, Nanizar Zaman Joenoes Building, Surabaya, 60155, Indonesia
| | - Bernasdito Ade Pratama
- Department of Pharmaceutical Science, Faculty of Pharmacy, Universitas Airlangga, Nanizar Zaman Joenoes Building, Surabaya, 60155, Indonesia
| | - Yusuf Alif Pratama
- Department of Pharmaceutical Science, Faculty of Pharmacy, Universitas Airlangga, Nanizar Zaman Joenoes Building, Surabaya, 60155, Indonesia
| | - Subhan Rullyansyah
- Department of Pharmaceutical Science, Faculty of Pharmacy, Universitas Airlangga, Nanizar Zaman Joenoes Building, Surabaya, 60155, Indonesia
| | - Mega Ferdina Warsito
- Research Centre for Applied Microbiology, National Research and Innovation Agency (BRIN), Jl. Raya Jakarta-Bogor Km 46, Cibinong, 16911, Bogor, Indonesia
| | - Retno Widyowati
- Department of Pharmaceutical Science, Faculty of Pharmacy, Universitas Airlangga, Nanizar Zaman Joenoes Building, Surabaya, 60155, Indonesia
| | - Eka Pramyrtha Hestianah
- Veterinary Anatomy Department, Faculty of Veterinary, Universitas Airlangga, Jl. Mulyorejo, Surabaya, 60155, Indonesia
| | - Katsuyoshi Matsunami
- Department of Pharmacognosy, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, Japan
| |
Collapse
|
13
|
Martínez-Navarrete M, Guillot AJ, Lobita MC, Recio MC, Giner R, Aparicio-Blanco J, Montesinos MC, Santos HA, Melero A. Cyclosporin A-loaded dissolving microneedles for dermatitis therapy: Development, characterisation and efficacy in a delayed-type hypersensitivity in vivo model. Drug Deliv Transl Res 2024; 14:3404-3421. [PMID: 38472726 PMCID: PMC11499354 DOI: 10.1007/s13346-024-01542-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2024] [Indexed: 03/14/2024]
Abstract
Several drugs can be used for treating inflammatory skin pathologies like dermatitis and psoriasis. However, for the management of chronic and long-term cases, topical administration is preferred over oral delivery since it prevents certain issues due to systemic side effects from occurring. Cyclosporin A (CsA) has been used for this purpose; however, its high molecular weight (1202 Da) restricts the diffusion through the skin structure. Here, we developed a nano-in-micro device combining lipid vesicles (LVs) and dissolving microneedle array patches (DMAPs) for targeted skin delivery. CsA-LVs allowed the effective incorporation of CsA in the hydrophilic DMAP matrix despite the hydrophobicity of the drug. Polymeric matrix composed of poly (vinyl alcohol) (5% w/v), poly (vinyl pyrrolidine) (15% w/v) and CsA-LV dispersion (10% v/v) led to the formation of CsA-LVs@DMAPs with adequate mechanical properties to penetrate the stratum corneum barrier. The safety and biocompatibility were ensured in an in vitro viability test using HaCaT keratinocytes and L929 fibroblast cell lines. Ex vivo permeability studies in a Franz-diffusion cell setup showed effective drug retention in the skin structure. Finally, CsA-LVs@DMAPs were challenged in an in vivo murine model of delayed-type hypersensitivity to corroborate their potential to ameliorate skin inflammatory conditions. Different findings like photon emission reduction in bioluminescence study, normalisation of histological damage and decrease of inflammatory cytokines point out the effectivity of CsA-LVs@DMAPs to treat these conditions. Overall, our study demonstrates that CsA-LVs@DMAPs can downregulate the skin inflammatory environment which paves the way for their clinical translation and their use as an alternative to corticosteroid-based therapies.
Collapse
Affiliation(s)
- Miquel Martínez-Navarrete
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Ave. Vicent Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain
| | - Antonio José Guillot
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Ave. Vicent Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain.
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, 9713 AV, Groningen, The Netherlands.
| | - Maria C Lobita
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - María Carmen Recio
- Department of Pharmacology, University of Valencia, Ave. Vicent Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain
| | - Rosa Giner
- Department of Pharmacology, University of Valencia, Ave. Vicent Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain
| | - Juan Aparicio-Blanco
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040, Madrid, Spain
| | - María Carmen Montesinos
- Department of Pharmacology, University of Valencia, Ave. Vicent Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain
- Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM), University of Valencia, Polytechnic University of Valencia, Valencia, Spain
| | - Hélder A Santos
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Ana Melero
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Ave. Vicent Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain
| |
Collapse
|
14
|
Motawea A, Maria SN, Maria DN, Jablonski MM, Ibrahim MM. Genistein transfersome-embedded topical delivery system for skin melanoma treatment: in vitro and ex vivo evaluations. Drug Deliv 2024; 31:2372277. [PMID: 38952058 PMCID: PMC11221477 DOI: 10.1080/10717544.2024.2372277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/11/2024] [Indexed: 07/03/2024] Open
Abstract
Skin melanoma is considered the most dangerous form of skin cancer due to its association with high risk of metastasis, high mortality rate and high resistance to different treatment options. Genistein is a natural isoflavonoid with known chemotherapeutic activity. Unfortunately, it has low bioavailability due to its poor aqueous solubility and excessive metabolism. In the current study, genistein was incorporated into transferosomal hydrogel to improve its bioavailability. The prepared transferosomal formulations were characterized regarding: particle size; polydispersity index; zeta potential; encapsulation efficiency; TEM; FTIR; DSC; XRD; in vitro drug release; viscosity; pH; ex vivo anti-tumor activity on 3D skin melanoma spheroids and 1-year stability study at different storage temperatures. The optimized formulation has high encapsulation efficiency with an excellent particle size that will facilitate its penetration through the skin. The transfersomes have a spherical shape with sustained drug release profile. The anti-tumor activity evaluation of genistein transfersome revealed that genistein is a potent chemotherapeutic agent with enhanced penetration ability through the melanoma spheroids when incorporated into transfersomes. Stability study results demonstrate the high physical and chemical stability of our formulations. All these outcomes provide evidence that our genistein transferosomal hydrogel is a promising treatment option for skin melanoma.
Collapse
Affiliation(s)
- Amira Motawea
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Sara N. Maria
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Doaa N. Maria
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Monica M. Jablonski
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Mohamed Moustafa Ibrahim
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
15
|
Thepphankulngarm N, Manmuan S, Hirun N, Kraisit P. Nanotechnology-Driven Delivery of Caffeine Using Ultradeformable Liposomes-Coated Hollow Mesoporous Silica Nanoparticles for Enhanced Follicular Delivery and Treatment of Androgenetic Alopecia. Int J Mol Sci 2024; 25:12170. [PMID: 39596238 PMCID: PMC11595114 DOI: 10.3390/ijms252212170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Androgenetic alopecia (AGA) is caused by the impact of dihydrotestosterone (DHT) on hair follicles, leading to progressive hair loss in men and women. In this study, we developed caffeine-loaded hollow mesoporous silica nanoparticles coated with ultradeformable liposomes (ULp-Caf@HMSNs) to enhance caffeine delivery to hair follicles. Caffeine, known to inhibit DHT formation, faces challenges in skin penetration due to its hydrophilic nature. We investigated caffeine encapsulated in liposomes, hollow mesoporous silica nanoparticles (HMSNs), and ultradeformable liposome-coated HMSNs to optimize drug delivery and release. For ultradeformable liposomes (ULs), the amount of polysorbate 20 and polysorbate 80 was varied. TEM images confirmed the mesoporous shell and hollow core structure of HMSNs, with a shell thickness of 25-35 nm and a hollow space of 80-100 nm. SEM and TEM analysis showed particle sizes ranging from 140-160 nm. Thermal stability tests showed that HMSNs coated with ULs exhibited a Td10 value of 325 °C and 70% residue ash, indicating good thermal stability. Caffeine release experiments indicated that the highest release occurred in caffeine-loaded HMSNs without a liposome coating. In contrast, systems incorporating ULp-Caf@HMSNs exhibited slower release rates, attributable to the dual encapsulation mechanism. Confocal laser scanning microscopy revealed that ULs-coated particles penetrated deeper into the skin than non-liposome particles. MTT assays confirmed the non-cytotoxicity of all HMSN concentrations to human follicle dermal papilla cells (HFDPCs). ULp-Caf@HMSNs promoted better cell viability than pure caffeine or caffeine-loaded HMSNs, highlighting enhanced biocompatibility without increased toxicity. Additionally, ULp-Caf@HMSNs effectively reduced ROS levels in DHT-damaged HFDPCs, suggesting they are promising alternatives to minoxidil for promoting hair follicle growth and reducing hair loss without increasing oxidative stress. This system shows promise for treating AGA.
Collapse
Affiliation(s)
- Nattanida Thepphankulngarm
- Thammasat University Research Unit in Smart Materials and Innovative Technology for Pharmaceutical Applications (SMIT-Pharm), Faculty of Pharmacy, Thammasat University, Pathumthani 12120, Thailand; (N.T.); (N.H.)
| | - Suwisit Manmuan
- Division of Pharmacology and Biopharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Burapha University, Chonburi 20131, Thailand;
| | - Namon Hirun
- Thammasat University Research Unit in Smart Materials and Innovative Technology for Pharmaceutical Applications (SMIT-Pharm), Faculty of Pharmacy, Thammasat University, Pathumthani 12120, Thailand; (N.T.); (N.H.)
| | - Pakorn Kraisit
- Thammasat University Research Unit in Smart Materials and Innovative Technology for Pharmaceutical Applications (SMIT-Pharm), Faculty of Pharmacy, Thammasat University, Pathumthani 12120, Thailand; (N.T.); (N.H.)
| |
Collapse
|
16
|
Zajda J, Wadych E, Ogórek K, Drozd M, Matczuk M. Novel Applications of CE-ICP-MS/MS: Monitoring of Antiaging GHK-Cu Cosmetic Component Encapsulation in Liposomes. Electrophoresis 2024; 45:1946-1954. [PMID: 39451062 DOI: 10.1002/elps.202400047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 10/04/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024]
Abstract
The hyphenation of the separation technique with the high-sensitive mass spectrometry detection is one of the driving forces of modern analysis enabling measurements in complex matrices. In particular, capillary electrophoresis coupled to inductively coupled plasma tandem mass spectrometry allows for speciation analysis of selected analytes with a superior resolution. The mild, physiological-friendly conditions of this separation technique offer the unique advantage of analyzing chemical entities in their intact form, which has been successfully exploited in various areas. Herein, we report the pioneering application of such a hyphenated technique in the cosmetic field to investigate the encapsulation of copper tripeptide complex (GHK-Cu) in liposomes. By monitoring copper and phosphorus signals, the formation of liposomes via a simple ethanol injection method was confirmed, and the concentration of GHK-Cu in the liposomes was assessed. The application of coupling of capillary electrophoresis with inductively coupled plasma tandem mass spectrometry (CE-ICP-MS/MS) in cosmetic studies could lead to the development of diverse liposomal formulations with preferential properties and expand their accessibility.
Collapse
Affiliation(s)
- Joanna Zajda
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| | - Emilia Wadych
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| | - Karolina Ogórek
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| | - Marcin Drozd
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Warsaw, Poland
| | - Magdalena Matczuk
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| |
Collapse
|
17
|
Ongoren B, Kara A, Casettari L, Tiboni M, Lalatsa A, Sanz-Perez A, Gonzalez-Burgos E, Romero A, Juberías A, Torrado JJ, Serrano DR. Leveraging 3D-printed microfluidic micromixers for the continuous manufacture of melatonin loaded SNEDDS with enhanced antioxidant activity and skin permeability. Int J Pharm 2024; 663:124536. [PMID: 39074648 DOI: 10.1016/j.ijpharm.2024.124536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 07/31/2024]
Abstract
Vesicants are chemical warfare agents (CWAs) capable of causing severe skin damage and systemic toxicity. Melatonin, known for its anti-inflammatory and antioxidant properties, can mitigate the effects of these agents. Self-nano-emulsifying drug delivery systems (SNEDDS) containing a high melatonin concentration (5 %, 50 mg/g) were optimized using a quality-by-design approach from biocompatible, non-irritant excipients with a particle size of about 100 nm. The melatonin-loaded SNEDDS showed a 43-fold greater permeability than a conventional melatonin cream. Chemical stability at ambient temperature (25 °C) was maintained for one year. The preparation of optimised melatonin-loaded SNEDDS using a simple mixing method was compared to microfluidic micromixers. Mixing was successfully achieved using a 3D-printed (fused deposition modeling or stereolithography) T-shaped toroidal microfluidic chip (with a channel geometry optimized by computational fluid dynamics), resulting in a scalable, continuous process for the first time with a substantial reduction in preparation time compared to other conventional mixing approaches. No statistically significant differences were observed in the key quality attributes, such as particle size and melatonin loading, between mixing method till kinetic equilibrium solubility is reached and mixing using the 3D-printed micromixers. This scalable, continuous, cost-effective approach improves the overall efficiency of SNEDDS production, reduces the cost of quality control for multiple batches, and demonstrates the potential of continuous microfluidic manufacture with readily customizable 3D-printed micromixers at points of care, such as military bases.
Collapse
Affiliation(s)
- Baris Ongoren
- Department of Pharmaceutics and Food Technology, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Aytug Kara
- Department of Pharmaceutics and Food Technology, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Luca Casettari
- Department of Biomolecular Sciences, School of Pharmacy, University of Urbino Carlo Bo, Piazza del Rinascimento 6, 61029 Urbino, Italy
| | - Mattia Tiboni
- Department of Biomolecular Sciences, School of Pharmacy, University of Urbino Carlo Bo, Piazza del Rinascimento 6, 61029 Urbino, Italy
| | - Aikaterini Lalatsa
- Cancer Research UK Formulation Unit, School of Pharmacy and Biomedical Sciences, Robertson Wing, University of Strathclyde, 161, Cathedral Street, Glasgow G4 0RE, Scotland, UK
| | - Amadeo Sanz-Perez
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Elena Gonzalez-Burgos
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Alejandro Romero
- Department of Pharmacology and Toxicology, School of Veterinary, Complutense University of Madrid, 28040 Madrid, Spain
| | - Antonio Juberías
- Dirección de Sanidad del Ejército del Aire, Princesa 87, 28008 Madrid, Spain
| | - Juan J Torrado
- Department of Pharmaceutics and Food Technology, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; Institute of Industrial Pharmacy Complutense University of Madrid, 28040 Madrid, Spain.
| | - Dolores R Serrano
- Department of Pharmaceutics and Food Technology, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; Institute of Industrial Pharmacy Complutense University of Madrid, 28040 Madrid, Spain.
| |
Collapse
|
18
|
Abo Aasy NK, Ragab D, Sallam MA, Elkhodairy KA. Follicular mediated etodolac phosalosomal gel for contact dermatitis alleviation, insights from optimization to in-vivo appraisal. Sci Rep 2024; 14:21744. [PMID: 39289408 PMCID: PMC11408589 DOI: 10.1038/s41598-024-71456-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024] Open
Abstract
Despite its long history as a preferential cyclooxygenase-2 inhibitor, the topical application of etodolac in inflammatory disorders does not achieve the desired clinical efficiency because of its poor water solubility and poor skin permeation. In the ongoing study, phosalosomes were designed to mitigate the etodolac drawbacks and to enhance its skin localization. Hyaluronic acid was utilized to prepare a dermal gel for the alleviation of skin inflammation. Etodolac loaded hyaluronic acid phosalosomal gel had a sustainable release profile and 10.59-fold enhanced skin retention compared to free etodolac, with boosted skin tolerability on histopathological examination after acute and chronic applications. Confocal laser microscopy imaging indicated that the etodolac amounts accumulated in the liver and kidney following dermal application were 29 and 5.7-fold lower than those following the systemic dose, respectively. For in vivo studies, etodolac loaded hyaluronic acid phosalosomal gel presented superior anti-oedemic and significant anti-nociception potential. The promising homogenous localization highlighted its potential for the delivery of lipophilic drugs for the targeted treatment of other localized skin disorders.
Collapse
Affiliation(s)
- Noha Khalifa Abo Aasy
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, 1 Khartoum Square, Azarita, Post Office, P.O. Box 21521, Alexandria, Egypt.
| | - Doaa Ragab
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, 1 Khartoum Square, Azarita, Post Office, P.O. Box 21521, Alexandria, Egypt
| | - Marwa Ahmed Sallam
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, 1 Khartoum Square, Azarita, Post Office, P.O. Box 21521, Alexandria, Egypt
| | - Kadria A Elkhodairy
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, 1 Khartoum Square, Azarita, Post Office, P.O. Box 21521, Alexandria, Egypt
| |
Collapse
|
19
|
Karagöz Girişgen D, Zeynep Atay N, Yalçin ÖC, Öztürk EM. Ceramide 3 Effect on the Physical Properties of Ambora Extract and Chromabright-Loaded Transethosomes. ACS OMEGA 2024; 9:38044-38053. [PMID: 39281937 PMCID: PMC11391439 DOI: 10.1021/acsomega.4c04992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/18/2024]
Abstract
Spontaneous self-assembly of phospholipids into lipid vesicles in aqueous media is called liposomes, and these structures are widely used as nanocarriers in the cosmeceutical industry. Transethosomes are ethanol and edge activator-containing liposomes that are proven to be very effective in topical applications for penetrating the skin barrier. Many cosmeceutical products contain formulations with ceramides to restore the skin barrier and treat eczema. However, due to the low solubility and penetration ability of the ceramides, the effectiveness of these products is limited. In this study, a transethosome formulation containing ceramide 3 (Cer 3) was achieved by introducing varying concentrations of cholesterol and an edge activator (Tween 80) to improve the effect of the skin products used to treat eczema. The obtained transethosomes were examined in terms of size, homogeneity, zeta potential, morphology, and one-month stability. Loading capability experiments were carried out with lipophilic Chromabright and hydrophilic Ambora extract. The effect of Cer 3 on the loading of the selected payloads was evaluated. Data were analyzed statistically with linear regression analysis and two-way analysis of variance. The results showed that the inclusion of Cer 3 had almost no effect on the physical properties of the loaded or empty transethosomes. Independently of the presence of Cer 3, loading of the lipophilic compound was more efficient than that of the hydrophilic one.
Collapse
Affiliation(s)
- Derya Karagöz Girişgen
- Department of Chemistry, Institute for Graduate Science and Engineering, Boğaziçi University, Istanbul 34342, Turkey
| | - Naz Zeynep Atay
- Department of Chemistry, Faculty of Arts and Sciences, Boğaziçi University, Istanbul 34342, Turkey
| | - Özge Ceren Yalçin
- Department of Chemistry, Faculty of Arts and Sciences, Boğaziçi University, Istanbul 34342, Turkey
| | - Elif Mey Öztürk
- Department of Chemistry, Faculty of Arts and Sciences, Boğaziçi University, Istanbul 34342, Turkey
| |
Collapse
|
20
|
Guo Y, Zhong W, Peng C, Guo L. Topical Delivery of Dual Loaded Nano-Transfersomes Mediated Chemo-Photodynamic Therapy against Melanoma via Inducing Cell Cycle Arrest and Apoptosis. Int J Mol Sci 2024; 25:9611. [PMID: 39273560 PMCID: PMC11394987 DOI: 10.3390/ijms25179611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
Melanoma is a malignant skin cancer associated with high mortality rates and drug resistance, posing a significant threat to human health. The combination of chemotherapy and photodynamic therapy (PDT) represents a promising strategy to enhance antitumor efficacy through synergistic anti-cancer effects. Topical delivery of chemotherapeutic drugs and photosensitizers (PS) offers a non-invasive and safe way to treat melanoma. However, the effectiveness of these treatments is often hindered by challenges such as limited skin permeability and instability of the PS. In this study, transfersomes (TFS) were designed to facilitate transdermal delivery of the chemotherapeutic drug 5-Fluorouracil (5-FU) and the PS Imperatorin (IMP) for combined chemo-photodynamic therapy for melanoma. The cytotoxic and phototoxic effects of TFS-mediated PDT (TFS-UVA) were investigated in A375 cells and nude mice. The study also demonstrated that TFS-UVA generated intracellular ROS, induced G2/ M phase cell cycle arrest, and promoted cell apoptosis. In conclusion, this study indicated that 5-FU/ IMP-TFS serves as an effective transdermal therapeutic strategy for chemo-PDT in treating melanoma.
Collapse
Affiliation(s)
- Yiping Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wenxiao Zhong
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Li Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
21
|
Uronnachi E, Nakpheng T, Gugu T, Srichana T. Formulation and Antimycotic Evaluation of Colloidal Itraconazole-Loaded Metered Dose Sprays for Treating Superficial Mycoses. AAPS PharmSciTech 2024; 25:156. [PMID: 38981986 DOI: 10.1208/s12249-024-02879-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/21/2024] [Indexed: 07/11/2024] Open
Abstract
Commercial topical formulations containing itraconazole (poorly water soluble), for mycotic infections, have poor penetration to infection sites beneath the nails and skin thereby necessitating oral administration. To improve penetration, colloidal solutions of itraconazole (G1-G4) containing Poloxamer 188, tween 80, ethanol, and propylene glycol were prepared and incorporated into HFA-134-containing sprays. Formulations were characterized using particle size, drug content, and Fourier-transform infrared spectroscopy (FTIR). In vitro permeation studies were performed using Franz diffusion cells for 8 h. Antimycotic activity on Candida albicans and Trichophyton rubrum was performed using broth micro-dilution and flow cytometry, while cytotoxicity was tested on HaCaT cell lines. Particle size ranged from 39.35-116.80 nm. FTIR and drug content revealed that G1 was the most stable formulation (optimized formulation). In vitro release over 2 h was 45% for G1 and 34% for the cream. There was a twofold increase in skin permeation, fivefold intradermal retention, and a sevenfold increase in nail penetration of G1 over the cream. Minimum fungicidal concentrations (MFC) against C. albicans were 0.156 and 0.313 µg/mL for G1 and cream, respectively. The formulations showed optimum killing kinetics after 48 h. MFC values against T. rubrum were 0.312 and 0.625 µg/mL for the G1 and cream, respectively. Transmission electron microscopy revealed organelle destruction and cell leakage for G1 in both organisms and penetration of keratin layers to destroy T. rubrum. Cytotoxicity evaluation of G1 showed relative safety for skin cells. The G1 formulation showed superior skin permeation, nail penetration, and fungicidal activity compared with the cream formulation.
Collapse
Affiliation(s)
- Emmanuel Uronnachi
- Drug Delivery Systems Excellence Center and Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, 90112, Songkhla, Thailand
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Agulu, Anambra State, Nigeria
| | - Titpawan Nakpheng
- Drug Delivery Systems Excellence Center and Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, 90112, Songkhla, Thailand
| | - Thaddeus Gugu
- Drug Delivery Systems Excellence Center and Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, 90112, Songkhla, Thailand
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Teerapol Srichana
- Drug Delivery Systems Excellence Center and Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, 90112, Songkhla, Thailand.
| |
Collapse
|
22
|
Xing H, Pan X, Hu Y, Yang Y, Zhao Z, Peng H, Wang J, Li S, Hu Y, Li G, Ma D. High molecular weight hyaluronic acid-liposome delivery system for efficient transdermal treatment of acute and chronic skin photodamage. Acta Biomater 2024; 182:171-187. [PMID: 38759743 DOI: 10.1016/j.actbio.2024.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/21/2024] [Accepted: 05/12/2024] [Indexed: 05/19/2024]
Abstract
Photodamage is one of the most common causes of skin injury. High molecular weight hyaluronic acid (HHA) has shown immense potential in the treatment of skin photodamage by virtue of its anti-inflammatory, reparative, and antioxidative properties. However, due to its large molecular structure of HHA, HHA solution could only form a protective film on the skin surface in conventional application, failing to effectively penetrate the skin, which necessitates the development of new delivery strategies. Liposomes, with a structure similar to biological membranes, have garnered extensive attention as transdermal drug delivery carriers because of their advantages in permeability, dermal compatibility, and biosafety. Herein, we have developed a HHA-liposome transdermal system (HHL) by embedding HHA into the liposome structure using reverse evaporation, high-speed homogenization, and micro-jet techniques. The effective penetration and long-term residence of HHA in skin tissue were multidimensionally verified, and the kinetics of HHA in the skin were extensively studied. Moreover, it was demonstrated that HHL significantly strengthened the activity of human keratinocytes and effectively inhibits photo-induced cellular aging in vitro. Furthermore, a murine model of acute skin injury induced by laser ablation was established, where the transdermal system showed significant anti-inflammatory and immunosuppressive properties, promoting skin proliferation and scar repair, thereby demonstrating immense potential in accelerating skin wound healing. Meanwhile, HHL significantly ameliorated skin barrier dysfunction caused by simulated sunlight exposure, inhibited skin erythema, inflammatory responses, and oxidative stress, and promoted collagen expression in a chronic photodamage skin model. Therefore, this transdermal delivery system with biocompatibility represents a promising new strategy for the non-invasive application of HHA in skin photodamage, revealing the significant potential for clinical translation and broad application prospects. STATEMENT OF SIGNIFICANCE: The transdermal system utilizing hyaluronic acid-based liposomes enhances skin permeability and retains high molecular weight hyaluronic acid (HHL). In vitro experiments with human keratinocytes demonstrate significant skin repair effects of HHL and its effective inhibition of cellular aging. In an acute photodamage model, HHL exhibits stronger anti-inflammatory and immunosuppressive properties, promoting skin proliferation and scar repair. In a chronic photodamage model, HHL significantly improves skin barrier dysfunction, reduces oxidative stress induced by simulated sunlight, and enhances collagen expression.
Collapse
Affiliation(s)
- Hui Xing
- The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510630, China; Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Xiangjun Pan
- The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510630, China
| | - Yihan Hu
- The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510630, China; Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Yuhui Yang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Ziyi Zhao
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Huanqi Peng
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Jianjin Wang
- Honest Medical China Co., Ltd, Zhuhai, 519000, China
| | - Shanying Li
- Honest Medical China Co., Ltd, Zhuhai, 519000, China
| | - Yunfeng Hu
- The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510630, China.
| | - Guowei Li
- The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510630, China; Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510630, China.
| | - Dong Ma
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
23
|
Ren C, Ma Y, Wang Y, Luo D, Hong Y, Zhang X, Mei H, Liu W. Palmitoylethanolamide-Incorporated Elastic Nano-Liposomes for Enhanced Transdermal Delivery and Anti-Inflammation. Pharmaceutics 2024; 16:876. [PMID: 39065574 PMCID: PMC11280357 DOI: 10.3390/pharmaceutics16070876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Palmitoylethanolamide (PEA) exhibits multiple skincare functions such as anti-nociceptive and anti-inflammatory effects. However, its topical application is limited due to its difficulty in bypassing the stratum corneum barrier, relatively low bioavailability, and low stability. Herein, elastic nano-liposomes (ENLs) with excellent deformability and elasticity were utilized as a novel drug delivery system to encapsulate PEA to overcome the abovementioned issues and enhance the biological effects on the skin. ENL was prepared with phosphatidylcholine, cholesterol, and cetyl-PG hydroxyethyl palmitamide with a molar ratio mimicking skin epidermal lipids, and PEA was loaded. The PEA-loaded ENL (PEA-ENL) demonstrated efficient transdermal delivery and enhanced skin retention, with negligible cytotoxicity toward HaCaT cells and no allergic reaction in the human skin patch test. Notably, PEA-ENL treatment increased cell migration and induced significant regulation in the expression of genes associated with anti-nociceptive, anti-inflammatory, and skin barrier repair. The mechanism of the anti-nociceptive and anti-inflammatory effects of PEA was further investigated and explained by molecular docking site analysis. This novel PEA-ENL, with efficient transdermal delivery efficiency and multiple skincare functionalities, is promising for topical application.
Collapse
Affiliation(s)
- Chuanpeng Ren
- The Institute of Biocelline Precision Dermatology, Shanghai 200031, China; (Y.W.); (H.M.)
| | - Yanyun Ma
- Human Phenome Institute, Fudan University, Shanghai 201210, China;
- Institute for Six-Sector Economy, Fudan University, Shanghai 201203, China
| | - Yizhen Wang
- The Institute of Biocelline Precision Dermatology, Shanghai 200031, China; (Y.W.); (H.M.)
| | - Dan Luo
- Wuhan Bestcarrier Biotechnology Co., Ltd., Wuhan 430075, China; (D.L.); (Y.H.)
| | - Yanhan Hong
- Wuhan Bestcarrier Biotechnology Co., Ltd., Wuhan 430075, China; (D.L.); (Y.H.)
| | - Xinyuan Zhang
- Shanghai Skinshield Clinical Testing and Technological Research Ltd., Shanghai 201210, China;
| | - Hexiang Mei
- The Institute of Biocelline Precision Dermatology, Shanghai 200031, China; (Y.W.); (H.M.)
| | - Wei Liu
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
24
|
Hansen ME, Ibrahim Y, Desai TA, Koval M. Nanostructure-Mediated Transport of Therapeutics through Epithelial Barriers. Int J Mol Sci 2024; 25:7098. [PMID: 39000205 PMCID: PMC11241453 DOI: 10.3390/ijms25137098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
The ability to precisely treat human disease is facilitated by the sophisticated design of pharmacologic agents. Nanotechnology has emerged as a valuable approach to creating vehicles that can specifically target organ systems, effectively traverse epithelial barriers, and protect agents from premature degradation. In this review, we discuss the molecular basis for epithelial barrier function, focusing on tight junctions, and describe different pathways that drugs can use to cross barrier-forming tissue, including the paracellular route and transcytosis. Unique features of drug delivery applied to different organ systems are addressed: transdermal, ocular, pulmonary, and oral delivery. We also discuss how design elements of different nanoscale systems, such as composition and nanostructured architecture, can be used to specifically enhance transepithelial delivery. The ability to tailor nanoscale drug delivery vehicles to leverage epithelial barrier biology is an emerging theme in the pursuit of facilitating the efficacious delivery of pharmacologic agents.
Collapse
Affiliation(s)
- M. Eva Hansen
- University of California Berkeley-University of California San Francisco Graduate Program in Bioengineering, San Francisco, CA 94143, USA;
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94143, USA
| | - Yasmin Ibrahim
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA;
- Graduate Program in Biochemistry, Cell and Developmental Biology, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA 30322, USA
| | - Tejal A. Desai
- University of California Berkeley-University of California San Francisco Graduate Program in Bioengineering, San Francisco, CA 94143, USA;
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94143, USA
- School of Engineering, Brown University, Providence, RI 02912, USA
| | - Michael Koval
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA;
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
25
|
Petronio Petronio G, Di Naro M, Venditti N, Guarnieri A, Cutuli MA, Magnifico I, Medoro A, Foderà E, Passarella D, Nicolosi D, Di Marco R. Targeting S. aureus Extracellular Vesicles: A New Putative Strategy to Counteract Their Pathogenic Potential. Pharmaceutics 2024; 16:789. [PMID: 38931910 PMCID: PMC11207539 DOI: 10.3390/pharmaceutics16060789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/27/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Long-term inflammatory skin disease atopic dermatitis is characterized by dry skin, itching, and eczematous lesions. During inflammation skin barrier protein impairment promotes S. aureus colonisation in the inflamed skin, worsening AD patient's clinical condition. Proteomic analysis revealed the presence of several immune evasion proteins and virulence factors in S. aureus extracellular vesicles (EVs), suggesting a possible role for these proteins in the pathophysiology of atopic dermatitis. The objective of this study is to assess the efficacy of a wall fragment obtained from a patented strain of C. acnes DSM28251 (c40) and its combination with a mucopolysaccharide carrier (HAc40) in counteract the pathogenic potential of EVs produced by S. aureus ATCC 14458. Results obtained from in vitro studies on HaCaT keratinocyte cells showed that HAc40 and c40 treatment significantly altered the size and pathogenicity of S. aureus EVs. Specifically, EVs grew larger, potentially reducing their ability to interact with the target cells and decreasing cytotoxicity. Additionally, the overexpression of the tight junctions mRNA zona occludens 1 (ZO1) and claudin 1 (CLDN1) following EVs exposure was decreased by HAc40 and c40 treatment, indicating a protective effect on the epidermal barrier's function. These findings demonstrate how Hac40 and c40 may mitigate the harmful effects of S. aureus EVs. Further investigation is needed to elucidate the exact mechanisms underlying this interaction and explore the potential clinical utility of c40 and its mucopolysaccharide carrier conjugate HAc40 in managing atopic dermatitis.
Collapse
Affiliation(s)
- Giulio Petronio Petronio
- Department of Medicina e Scienze della Salute “V. Tiberio”, Università degli Studi del Molise, 86100 Campobasso, Italy (R.D.M.)
| | - Maria Di Naro
- Department of Drug and Health Sciences, Università degli Studi di Catania, 95125 Catania, Italy
| | - Noemi Venditti
- Department of Medicina e Scienze della Salute “V. Tiberio”, Università degli Studi del Molise, 86100 Campobasso, Italy (R.D.M.)
- UO Laboratorio Analisi, Responsible Research Hospital, 86100 Campobasso, Italy
| | - Antonio Guarnieri
- Department of Medicina e Scienze della Salute “V. Tiberio”, Università degli Studi del Molise, 86100 Campobasso, Italy (R.D.M.)
| | | | | | - Alessandro Medoro
- Department of Medicina e Scienze della Salute “V. Tiberio”, Università degli Studi del Molise, 86100 Campobasso, Italy (R.D.M.)
| | - Emanuele Foderà
- Department of Medicina e Scienze della Salute “V. Tiberio”, Università degli Studi del Molise, 86100 Campobasso, Italy (R.D.M.)
| | - Daniela Passarella
- Department of Medicina e Scienze della Salute “V. Tiberio”, Università degli Studi del Molise, 86100 Campobasso, Italy (R.D.M.)
| | - Daria Nicolosi
- Department of Drug and Health Sciences, Università degli Studi di Catania, 95125 Catania, Italy
| | - Roberto Di Marco
- Department of Medicina e Scienze della Salute “V. Tiberio”, Università degli Studi del Molise, 86100 Campobasso, Italy (R.D.M.)
| |
Collapse
|
26
|
Paramshetti S, Angolkar M, Talath S, Osmani RAM, Spandana A, Al Fatease A, Hani U, Ramesh KVRNS, Singh E. Unravelling the in vivo dynamics of liposomes: Insights into biodistribution and cellular membrane interactions. Life Sci 2024; 346:122616. [PMID: 38599316 DOI: 10.1016/j.lfs.2024.122616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/21/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
Liposomes, as a colloidal drug delivery system dating back to the 1960s, remain a focal point of extensive research and stand as a highly efficient drug delivery method. The amalgamation of technological and biological advancements has propelled their evolution, elevating them to their current status. The key attributes of biodegradability and biocompatibility have been instrumental in driving substantial progress in liposome development. Demonstrating a remarkable ability to surmount barriers in drug absorption, enhance stability, and achieve targeted distribution within the body, liposomes have become pivotal in pharmaceutical research. In this comprehensive review, we delve into the intricate details of liposomal drug delivery systems, focusing specifically on their pharmacokinetics and cell membrane interactions via fusion, lipid exchange, endocytosis etc. Emphasizing the nuanced impact of various liposomal characteristics, we explore factors such as lipid composition, particle size, surface modifications, charge, dosage, and administration routes. By dissecting the multifaceted interactions between liposomes and biological barriers, including the reticuloendothelial system (RES), opsonization, enhanced permeability and retention (EPR) effect, ATP-binding cassette (ABC) phenomenon, and Complement Activation-Related Pseudoallergy (CARPA) effect, we provide a deeper understanding of liposomal behaviour in vivo. Furthermore, this review addresses the intricate challenges associated with translating liposomal technology into practical applications, offering insights into overcoming these hurdles. Additionally, we provide a comprehensive analysis of the clinical adoption and patent landscape of liposomes across diverse biomedical domains, shedding light on their potential implications for future research and therapeutic developments.
Collapse
Affiliation(s)
- Sharanya Paramshetti
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, Karnataka, India.
| | - Mohit Angolkar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, Karnataka, India.
| | - Sirajunisa Talath
- Department of Pharmaceutical Chemistry, RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates.
| | - Riyaz Ali M Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, Karnataka, India.
| | - Asha Spandana
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, Karnataka, India.
| | - Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia.
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia.
| | - K V R N S Ramesh
- Department of Pharmaceutics, RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates.
| | - Ekta Singh
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States.
| |
Collapse
|
27
|
Victoria Schulte-Werning L, Singh B, Johannessen M, Einar Engstad R, Mari Holsæter A. Antimicrobial liposomes-in-nanofiber wound dressings prepared by a green and sustainable wire-electrospinning set-up. Int J Pharm 2024; 657:124136. [PMID: 38642621 DOI: 10.1016/j.ijpharm.2024.124136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/10/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024]
Abstract
Increasing prevalence of infected and chronic wounds demands improved therapy options. In this work an electrospun nanofiber dressing with liposomes is suggested, focusing on the dressing's ability to support tissue regeneration and infection control. Chloramphenicol (CAM) was the chosen antibiotic, added to the nanofibers after first embedded in liposomes to maintain a sustained drug release. Nanofibers spun from five different polymer blends were tested, where pectin and polyethylene oxide (PEO) was identified as the most promising polymer blend, showing superior fiber formation and tensile strength. The wire-electrospinning setup (WES) was selected for its pilot-scale features, and water was applied as the only solvent for green electrospinning and to allow direct liposome incorporation. CAM-liposomes were added to Pectin-PEO nanofibers in the next step. Confocal imaging of rhodamine-labelled liposomes indicated intact liposomes in the fibers after electrospinning. This was supported by the observed in vitroCAM-release, showing that Pectin-PEO-nanofibers with CAM-liposomes had a delayed drug release compared to controls. Biological testing confirmed the antimicrobial efficacy of CAM and good biocompatibility of all CAM-nanofibers. The successful fiber formation and green production process with WES gives a promising outlook for industrial upscaling.
Collapse
Affiliation(s)
- Laura Victoria Schulte-Werning
- Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | - Bhupender Singh
- Research Group for Host-Microbe Interaction, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | - Mona Johannessen
- Research Group for Host-Microbe Interaction, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | | | - Ann Mari Holsæter
- Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway.
| |
Collapse
|
28
|
Yadav RB, Pathak DP, Varshney R, Arora R. Elucidation of the Role of TRPV1, VEGF-A, TXA2, Redox Homeostasis, and Inflammatory Cascades in Protection against Cold Injuries by Herbosomal-Loaded PEG-Poloxamer Topical Formulation. ACS APPLIED BIO MATERIALS 2024; 7:2836-2850. [PMID: 38717017 DOI: 10.1021/acsabm.3c01197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
High-altitude regions, cold deserts, permafrost regions, and the polar region have some of the severest cold conditions on earth and pose immense perils of cold injuries to exposed individuals. Accidental and unintended exposures to severe cold, either unintentionally or due to occupational risks, can greatly increase the risk of serious conditions including hypothermia, trench foot, and cold injuries like frostbite. Cold-induced vasoconstriction and intracellular/intravascular ice crystal formation lead to hypoxic conditions at the cellular level. The condition is exacerbated in individuals having inadequate and proper covering and layering, particularly when large area of the body are exposed to extremely cold environments. There is a paucity of preventive and therapeutic pharmacological modalities that have been explored for managing and treating cold injuries. Given this, an efficient modality that can potentiate the healing of frostbite was investigated by studying various complex pathophysiological changes that occur during severe cold injuries. In the current research, we report the effectiveness and healing properties of a standardized formulation, i.e., a herbosomal-loaded PEG-poloxamer topical formulation (n-HPTF), on frostbite. The intricate mechanistic pathways modulated by the novel formulation have been elucidated by studying the pathophysiological sequelae that occur following severe cold exposures leading to frostbite. The results indicate that n-HPTF ameliorates the outcome of frostbite, as it activates positive sensory nerves widely distributed in the epidermis transient receptor potential vanilloid 1 (TRPV1), significantly (p < 0.05) upregulates cytokeratin-14, promotes angiogenesis (VEGF-A), prominently represses the expression of thromboxane formation (TXA2), and significantly (p < 0.05) restores levels of enzymatic (glutathione reductase, superoxide dismutase, and catalase) and nonenzymatic antioxidants (glutathione). Additionally, n-HPTF attenuates oxidative stress and the expression of inflammatory proteins PGF-2α, NFκB-p65, TNF-α, IL-6, IL-1β, malondialdehyde (MDA), advanced oxidative protein products (AOPP), and protein carbonylation (PCO). Masson's Trichrome staining showed that n-HPTF stimulates cellular proliferation, and increases collagen fiber deposition, which significantly (p < 0.05) promotes the healing of frostbitten tissue, as compared to control. We conclude that protection against severe cold injuries by n-HPTF is mediated via modulation of pathways involving TRPV1, VEGF-A, TXA2, redox homeostasis, and inflammatory cascades. The study is likely to have widespread implications for the prophylaxis and management of moderate-to-severe frostbite conditions.
Collapse
Affiliation(s)
- Renu Bala Yadav
- Disruptive and Deterrence Technologies Division, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, New Delhi 110054, India
- Delhi Pharmaceutical Science and Research University, Pushp Vihar, New Delhi 110017, India
| | - Dharam Pal Pathak
- Delhi Pharmaceutical Science and Research University, Pushp Vihar, New Delhi 110017, India
| | - Rajeev Varshney
- Disruptive and Deterrence Technologies Division, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, New Delhi 110054, India
| | - Rajesh Arora
- Disruptive and Deterrence Technologies Division, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, New Delhi 110054, India
| |
Collapse
|
29
|
Balmanno A, Falconer JR, Ravuri HG, Mills PC. Strategies to Improve the Transdermal Delivery of Poorly Water-Soluble Non-Steroidal Anti-Inflammatory Drugs. Pharmaceutics 2024; 16:675. [PMID: 38794337 PMCID: PMC11124993 DOI: 10.3390/pharmaceutics16050675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/07/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
The transdermal delivery of non-steroidal anti-inflammatory drugs (NSAIDs) has the potential to overcome some of the major disadvantages relating to oral NSAID usage, such as gastrointestinal adverse events and compliance. However, the poor solubility of many of the newer NSAIDs creates challenges in incorporating the drugs into formulations suitable for application to skin and may limit transdermal permeation, particularly if the goal is therapeutic systemic drug concentrations. This review is an overview of the various strategies used to increase the solubility of poorly soluble NSAIDs and enhance their permeation through skin, such as the modification of the vehicle, the modification of or bypassing the barrier function of the skin, and using advanced nano-sized formulations. Furthermore, the simple yet highly versatile microemulsion system has been found to be a cost-effective and highly successful technology to deliver poorly water-soluble NSAIDs.
Collapse
Affiliation(s)
- Alexandra Balmanno
- School of Veterinary Science, The University of Queensland, Gatton Campus, Gatton, QLD 4343, Australia;
| | - James R. Falconer
- School of Pharmacy, The University of Queensland, Dutton Park Campus, Woolloongabba, QLD 4102, Australia;
| | - Halley G. Ravuri
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD 4072, Australia;
| | - Paul C. Mills
- School of Veterinary Science, The University of Queensland, Gatton Campus, Gatton, QLD 4343, Australia;
| |
Collapse
|
30
|
Golestani P. Lipid-based nanoparticles as a promising treatment for the skin cancer. Heliyon 2024; 10:e29898. [PMID: 38698969 PMCID: PMC11064151 DOI: 10.1016/j.heliyon.2024.e29898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 03/29/2024] [Accepted: 04/17/2024] [Indexed: 05/05/2024] Open
Abstract
The prevalence of skin disorders, especially cancer, is increasing worldwide. Several factors are involved in causing skin cancer, but ultraviolet (UV) light, including sunlight and tanning beds, are considered the leading cause. Different methods such as chemotherapy, radiotherapy, cryotherapy, and photodynamic therapy are mostly used for the skin cancer treatment. However, drug resistance and toxicity against cancer cells are related to these treatments. Lipid-nanoparticles have attracted significant interest as delivery systems due to non-invasive and targeted delivery based on the type of active drug. However, the stratum corneum, the outer layer of the skin, is inherently impervious to drugs. Due to their ability to penetrate the deep layers of the skin, skin delivery systems are capable of delivering drugs to target cells in a protected manner. The aim of this review was to examine the properties and applications of nanoliposomes used in the treatment and prevention of numerous types of skin cancer.
Collapse
Affiliation(s)
- Parisa Golestani
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| |
Collapse
|
31
|
Miranda JA, da Cruz YF, Girão ÍC, de Souza FJJ, de Oliveira WN, Alencar ÉDN, Amaral-Machado L, do Egito EST. Beyond Traditional Sunscreens: A Review of Liposomal-Based Systems for Photoprotection. Pharmaceutics 2024; 16:661. [PMID: 38794323 PMCID: PMC11125201 DOI: 10.3390/pharmaceutics16050661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Sunscreen products are essential for shielding the skin from ultraviolet (UV) radiation, a leading cause of skin cancer. While existing products serve this purpose, there is a growing need to enhance their efficacy while minimizing potential systemic absorption of UV filters and associated toxicological risks. Liposomal-based formulations have emerged as a promising approach to address these challenges and develop advanced photoprotective products. These vesicular systems offer versatility in carrying both hydrophilic and lipophilic UV filters, enabling the creation of broad-spectrum sunscreens. Moreover, their composition based on phospholipids, resembling that of the stratum corneum, facilitates adherence to the skin's surface layers, thereby improving photoprotective efficacy. The research discussed in this review underscores the significant advantages of liposomes in photoprotection, including their ability to limit the systemic absorption of UV filters, enhance formulation stability, and augment photoprotective effects. However, despite these benefits, there remains a notable gap between the potential of liposomal systems and their utilization in sunscreen development. Consequently, this review emphasizes the importance of leveraging liposomes and related vesicular systems as innovative tools for crafting novel and more efficient photoprotective formulations.
Collapse
Affiliation(s)
- Júlio Abreu Miranda
- Graduate Program in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal 59012-570, Brazil; (J.A.M.); (F.J.J.d.S.); (W.N.d.O.); (E.S.T.d.E.)
| | - Yasmin Ferreira da Cruz
- Pharmacy Department, Federal University of Rio Grande do Norte (UFRN), Natal 59012-570, Brazil; (Y.F.d.C.); (Í.C.G.)
| | - Ícaro Chaves Girão
- Pharmacy Department, Federal University of Rio Grande do Norte (UFRN), Natal 59012-570, Brazil; (Y.F.d.C.); (Í.C.G.)
| | - Fabia Julliana Jorge de Souza
- Graduate Program in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal 59012-570, Brazil; (J.A.M.); (F.J.J.d.S.); (W.N.d.O.); (E.S.T.d.E.)
| | - Wógenes Nunes de Oliveira
- Graduate Program in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal 59012-570, Brazil; (J.A.M.); (F.J.J.d.S.); (W.N.d.O.); (E.S.T.d.E.)
| | - Éverton do Nascimento Alencar
- Laboratory of Micro and Nanostructured Systems (LaSMiNano), College of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, Brazil;
| | - Lucas Amaral-Machado
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil
| | - Eryvaldo Sócrates Tabosa do Egito
- Graduate Program in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal 59012-570, Brazil; (J.A.M.); (F.J.J.d.S.); (W.N.d.O.); (E.S.T.d.E.)
- Pharmacy Department, Federal University of Rio Grande do Norte (UFRN), Natal 59012-570, Brazil; (Y.F.d.C.); (Í.C.G.)
| |
Collapse
|
32
|
Tang Y, Zhou A, Zhou S, Ruan J, Qian C, Wu C, Ye L. Preparation of VC nanoliposomes by high pressure homogenization: Process optimization and evaluation of efficacy, transdermal absorption, and stability. Heliyon 2024; 10:e29516. [PMID: 38707316 PMCID: PMC11066132 DOI: 10.1016/j.heliyon.2024.e29516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/25/2024] [Accepted: 04/09/2024] [Indexed: 05/07/2024] Open
Abstract
Vitamin C (VC) possesses antioxidant and whitening effects. However, its effectiveness is hindered by challenges such as instability, impaired solubility, and limited bioavailability hinder. In this study, VC was encapsulated in nanoliposomes by primary emulsification and high-pressure homogenization. The VC nanoliposomes were comprehensively characterized for their microscopic morphology, particle size, polydispersity index (PDI), and encapsulation efficiency (EE). Orthogonal experiments were designed to optimize the optimal preparation process, and the antioxidant activity, whitening efficacy, transdermal absorption, and stability of VC nanoliposomes were evaluated based on this optimized process. The findings demonstrated the high reproducibility of the optimal process, with particle size, PDI, and EE values of 113.502 ± 4.360 nm, 0.104 ± 0.010, and 56.09 ± 1.01 %, respectively. Differential scanning calorimetry analysis showed effective encapsulation of VC nanoliposomes with better thermal stability than aqueous VC solution. Besides, the VC nanoliposomes demonstrated excellent antioxidant and whitening effects in efficacy experiments, stronger skin permeability in transdermal experiments and fluorescence tracking. Furthermore, storage stability tests indicated that the VC in nanoliposomes remained relatively stable after 60 days of storage. These findings highlighted the potential use of VC nanoliposomes in a wide range of applications for the cosmetic market, especially in the development of ingredients for skin care products.
Collapse
Affiliation(s)
- Yunqi Tang
- College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, Hangzhou, Zhejiang Province, 310027, PR China
- Institute of Zhejiang University-Quzhou, #99 Zheda Road, Quzhou, Zhejiang Province, 324000, PR China
| | - Ankun Zhou
- Hangzhou Yayan Cosmetics Co. Ltd., #9 Shunle Road, Hangzhou, Zhejiang Province, 311123, PR China
| | - Shaodong Zhou
- College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, Hangzhou, Zhejiang Province, 310027, PR China
- Institute of Zhejiang University-Quzhou, #99 Zheda Road, Quzhou, Zhejiang Province, 324000, PR China
| | - Jiancheng Ruan
- College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, Hangzhou, Zhejiang Province, 310027, PR China
- Institute of Zhejiang University-Quzhou, #99 Zheda Road, Quzhou, Zhejiang Province, 324000, PR China
| | - Chao Qian
- College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, Hangzhou, Zhejiang Province, 310027, PR China
- Institute of Zhejiang University-Quzhou, #99 Zheda Road, Quzhou, Zhejiang Province, 324000, PR China
| | - Chen Wu
- College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, Hangzhou, Zhejiang Province, 310027, PR China
- Institute of Zhejiang University-Quzhou, #99 Zheda Road, Quzhou, Zhejiang Province, 324000, PR China
| | - Linlin Ye
- Hangzhou Yayan Cosmetics Co. Ltd., #9 Shunle Road, Hangzhou, Zhejiang Province, 311123, PR China
| |
Collapse
|
33
|
Guri-Lamce I, AlRokh Y, Kim Y, Maeshima R, Graham C, Hart SL, McGrath JA, Jacków-Malinowska J. Topical gene editing therapeutics using lipid nanoparticles: 'gene creams' for genetic skin diseases? Br J Dermatol 2024; 190:617-627. [PMID: 38149939 DOI: 10.1093/bjd/ljad528] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/12/2023] [Accepted: 12/17/2023] [Indexed: 12/28/2023]
Abstract
Patients living with inherited skin diseases have benefited from recent advances in DNA sequencing technologies that provide new or improved diagnostics. However, developing and delivering new treatments for the 'genodermatoses' remains challenging. The goal of creating topical preparations that can recover the inherent gene pathology remains largely aspirational. However, recent progress in two fields - the chemistry of topical delivery formulations (lipid nanoparticles) and the molecular biology of gene repair (CRISPR-Cas9, base and prime editing) - presents new opportunities to address this unmet need. In this review, we discuss how lipid nanoparticle delivery vehicles could be used to deliver gene-editing tools to formulate topical 'gene creams' suitable for the treatment of genodermatoses. We summarize the historical landscape of topical therapeutics and advances in gene editing that may herald an era of new therapies for patients with inherited skin disorders.
Collapse
Affiliation(s)
- Ina Guri-Lamce
- St John's Institute of Dermatology, King's College London, London, UK
| | - Yara AlRokh
- St John's Institute of Dermatology, King's College London, London, UK
| | - Youngah Kim
- St John's Institute of Dermatology, King's College London, London, UK
| | - Ruhina Maeshima
- Genetics and Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, UCL, London, UK
| | - Carina Graham
- Genetics and Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, UCL, London, UK
| | - Stephen L Hart
- Genetics and Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, UCL, London, UK
| | - John A McGrath
- St John's Institute of Dermatology, King's College London, London, UK
| | | |
Collapse
|
34
|
Abruzzo A, Pucci R, Abruzzo PM, Canaider S, Parolin C, Vitali B, Valle F, Brucale M, Cerchiara T, Luppi B, Bigucci F. Azithromycin-loaded liposomes and niosomes for the treatment of skin infections: Influence of excipients and preparative methods on the functional properties. Eur J Pharm Biopharm 2024; 197:114233. [PMID: 38387849 DOI: 10.1016/j.ejpb.2024.114233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
The aim of this study was to develop azithromycin (AZT)-loaded liposomes (LP) and niosomes (NS) useful for the treatment of bacterial skin infections and acne. LP based on phosphatidylcholine from egg yolk (EPC) or from soybean lecithin (SPC), and NS composed of sorbitan monopalmitate (Span 40) or sorbitan monostearate (Span 60) were prepared through the thin film hydration (TFH) and the ethanol injection (EI) methods. The formulations were subsequently characterized for their physico-chemical and functional properties. Vesicles prepared through TFH showed higher average sizes than the corresponding formulations obtained by EI. All the vesicles presented adequate encapsulation efficiency and a negative ζ potential, which assured good stability during the storage period (except for LP-SPC). Formulations prepared with TFH showed a more prolonged AZT release than those prepared through EI, due to their lower surface area and multilamellar structure, as confirmed by atomic force microscopy nanomechanical characterization. Finally, among all the formulations, NS-Span 40-TFH and LP-EPC-TFH allowed the highest drug accumulation in the skin, retained the antimicrobial activity and did not alter fibroblast metabolism and viability. Overall, they could ensure to minimize the dosing and the administration frequency, thus representing promising candidates for the treatment of bacterial skin infections and acne.
Collapse
Affiliation(s)
- A Abruzzo
- Department of Pharmacy and Biotechnology, Via San Donato 19/2, University of Bologna, 40127 Bologna, Italy.
| | - R Pucci
- Department of Pharmacy and Biotechnology, Via San Donato 19/2, University of Bologna, 40127 Bologna, Italy.
| | - P M Abruzzo
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy.
| | - S Canaider
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy.
| | - C Parolin
- Department of Pharmacy and Biotechnology, Via San Donato 19/2, University of Bologna, 40127 Bologna, Italy.
| | - B Vitali
- Department of Pharmacy and Biotechnology, Via San Donato 19/2, University of Bologna, 40127 Bologna, Italy.
| | - F Valle
- Consiglio Nazionale delle Ricerche (CNR), Istituto per lo Studio dei Materiali Nanostrutturati (ISMN), via Gobetti 101, 40129 Bologna, Italy.
| | - M Brucale
- Consiglio Nazionale delle Ricerche (CNR), Istituto per lo Studio dei Materiali Nanostrutturati (ISMN), via Gobetti 101, 40129 Bologna, Italy.
| | - T Cerchiara
- Department of Pharmacy and Biotechnology, Via San Donato 19/2, University of Bologna, 40127 Bologna, Italy.
| | - B Luppi
- Department of Pharmacy and Biotechnology, Via San Donato 19/2, University of Bologna, 40127 Bologna, Italy.
| | - F Bigucci
- Department of Pharmacy and Biotechnology, Via San Donato 19/2, University of Bologna, 40127 Bologna, Italy.
| |
Collapse
|
35
|
Taghizadeh B, Moradi R, Sobhani B, Mohammadpanah H, Behboodifar S, Golmohammadzadeh S, Chamani J, Maleki M, Alizadeh E, Zarghami N, Jaafari MR. Development of nano-liposomal human growth hormone as a topical formulation for preventing uvb-induced skin damage. Int J Biol Macromol 2024; 265:130641. [PMID: 38460623 DOI: 10.1016/j.ijbiomac.2024.130641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 01/29/2024] [Accepted: 03/03/2024] [Indexed: 03/11/2024]
Abstract
Due to its involvement in skin maintenance and repair, topical administration of recombinant human growth hormone (rhGH) is an interesting strategy for therapeutic purposes. We have formulated and characterized a topical rhGH-loaded liposomal formulation (rhGH-Lip) and evaluated its safety, biological activity, and preventive role against UVB-induced skin damage. The rhGH-Lip had an average size and zeta potential of 63 nm and -33 mV, respectively, with 70 % encapsulation efficiency. The formulation was stable at 4 °C for at least one year. The SDS-PAGE and circular dichroism results showed no structural alterations in rhGH upon encapsulation. In vitro, studies in HaCaT, HFFF-2, and Ba/F3-rhGHR cell lines confirmed the safety and biological activity of rhGH-Lip. Franz diffusion cell study showed increased rhGH skin permeation compared to free rhGH. Animal studies in nude mice showed that liposomal rhGH prevented UVB-induced epidermal hyperplasia, angiogenesis, wrinkle formation, and collagen loss, as well as improving skin moisture. The results of this study show that rhGH-Lip is a stable, safe, and effective skin delivery system and has potential as an anti-wrinkle formulation for topical application. This study also provides a new method for the topical delivery of proteins and merits further investigation.
Collapse
Affiliation(s)
- Bita Taghizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Moradi
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bashir Sobhani
- Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hamid Mohammadpanah
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeed Behboodifar
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Chemistry, Faculty of Sciences, University of Birjand, Birjand, Iran
| | - Shiva Golmohammadzadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jamshidkhan Chamani
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Masoud Maleki
- Cutaneous Leishmaniosis Research Center, Mashhad University of Medical Sciences, Mashhad. Iran
| | - Effat Alizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nosratollah Zarghami
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Biochemistry, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey.
| | - Mahmoud Reza Jaafari
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
36
|
Bahloul B, Ben Bnina E, Hamdi A, Castillo Henríquez L, Baccar D, Kalboussi N, Abbassi A, Mignet N, Flamini G, Vega-Baudrit JR. Investigating the Wound-Healing Potential of a Nanoemulsion-Gel Formulation of Pituranthos tortuosus Essential Oil. Gels 2024; 10:155. [PMID: 38534573 DOI: 10.3390/gels10030155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 03/28/2024] Open
Abstract
This study explores a nanoemulsion (NE)-based gel incorporating Tunisian Pituranthos tortuosus essential oil, with a focus on its wound-healing potential. The essential oil, extracted via hydrodistillation, underwent GC-MS analysis for compositional verification. The physicochemical characterization included dynamic light scattering (DLS), transmission electron microscopy (TEM), zeta potential measurement, pH, and viscosity. The gelification of the NE facilitated topical application. The results revealed an average extraction yield of 0.45% and identified 38 compounds in the essential oil. The NE exhibited a particle size of 27 ± 0.4 nm, a polydispersity index (PDI) of 0.3, and a zeta potential of -22.8 ± 1.4 mV. The stability of the gelified preparation was confirmed through thermodynamic stability studies, TEM observations, and zeta and size results. In vivo experiments confirmed significant wound-healing effects, highlighting the promising role of the NE-based gel in healthcare advancements. This research underscores the potential of novel phyto-based delivery systems in wound care.
Collapse
Affiliation(s)
- Badr Bahloul
- Drug Development Laboratory LR12ES09, Faculty of Pharmacy, University of Monastir, Monastir 5000, Tunisia
| | - Enis Ben Bnina
- LR21AGR03-Production and Protection for a Sustainable Horticulture (2PHD), Regional Research Centre on Horticulture and Organic Agriculture, IRESA, University of Sousse, Chott Mariem 4042, Tunisia
| | - Assia Hamdi
- Drug Development Laboratory LR12ES09, Faculty of Pharmacy, University of Monastir, Monastir 5000, Tunisia
| | - Luis Castillo Henríquez
- Chemical and Biological Technologies for Health Group (UTCBS), Université Paris Cité, 75006 Paris, France
| | - Dhaou Baccar
- Drug Development Laboratory LR12ES09, Faculty of Pharmacy, University of Monastir, Monastir 5000, Tunisia
| | - Nesrine Kalboussi
- Drug Development Laboratory LR12ES09, Faculty of Pharmacy, University of Monastir, Monastir 5000, Tunisia
| | - Aïmen Abbassi
- Research Unit "Natural Bioactive Substances and Biotechnology" UR17ES49, Pharmacognosy Laboratory, College of Pharmacy of Monastir, University of Monastir, Monastir 5000, Tunisia
| | - Nathalie Mignet
- Chemical and Biological Technologies for Health Group (UTCBS), Université Paris Cité, 75006 Paris, France
| | - Guido Flamini
- Dipartimento di Farmacia, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - José Roberto Vega-Baudrit
- National Nanotechnology Laboratory (LANOTEC), National Center for High Technology (CeNAT), San José 1174-1200, Costa Rica
| |
Collapse
|
37
|
Bonechi C, Mahdizadeh FF, Talarico L, Pepi S, Tamasi G, Leone G, Consumi M, Donati A, Magnani A. Liposomal Encapsulation of Citicoline for Ocular Drug Delivery. Int J Mol Sci 2023; 24:16864. [PMID: 38069187 PMCID: PMC10706088 DOI: 10.3390/ijms242316864] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Glaucoma represents a group of neurodegenerative diseases characterized by optic nerve damage and the slowly progressive death of retinal ganglion cells. Glaucoma is considered the second leading cause of irreversible blindness worldwide. Pharmaceutical treatment of glaucoma is critical because of the properties of the ocular barrier that limit the penetration of drugs, resulting in lower systemic bioavailability. This behavior causes the need of frequent drug administration, which leads to deposition of concentrated solutions on the eye, causing toxic effects and cellular damage to the eye. To overcome these drawbacks, novel drug-delivery systems, such as liposomes, can play an important role in improving the therapeutic efficacy of antiglaucomatous drugs. In this work, liposomes were synthesized to improve various aspects, such as ocular barrier penetration, bioavailability, sustained release of the drug, targeting of the tissue, and reduction in intraocular pressure. Citicoline (CDP-choline; cytidine 5'-diphosphocholine) is an important intermediate in the biosynthesis of cell membrane phospholipids, with neuroprotective and neuroenhancement properties, and it was used in the treatment on retinal function and neural conduction in the visual pathways of glaucoma patients. In this study, citicoline was loaded into the 1,2-dioleoyl-sn-glycerol-3-phosphocholine and cholesterol liposomal carrier to enhance its therapeutic effect. The citicoline encapsulation efficiency, drug release, and size analysis of the different liposome systems were investigated using dynamic light scattering, nuclear magnetic resonance, infrared spectroscopy, and ToF-SIMS experiments.
Collapse
Affiliation(s)
- Claudia Bonechi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (C.B.); (F.F.M.); (L.T.); (S.P.); (G.T.); (G.L.); (M.C.)
- Centre for Colloid and Surface Science (CSGI), University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Fariba Fahmideh Mahdizadeh
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (C.B.); (F.F.M.); (L.T.); (S.P.); (G.T.); (G.L.); (M.C.)
| | - Luigi Talarico
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (C.B.); (F.F.M.); (L.T.); (S.P.); (G.T.); (G.L.); (M.C.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Via G. Giusti 9, 50121 Firenze, Italy
| | - Simone Pepi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (C.B.); (F.F.M.); (L.T.); (S.P.); (G.T.); (G.L.); (M.C.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Via G. Giusti 9, 50121 Firenze, Italy
| | - Gabriella Tamasi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (C.B.); (F.F.M.); (L.T.); (S.P.); (G.T.); (G.L.); (M.C.)
- Centre for Colloid and Surface Science (CSGI), University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Gemma Leone
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (C.B.); (F.F.M.); (L.T.); (S.P.); (G.T.); (G.L.); (M.C.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Via G. Giusti 9, 50121 Firenze, Italy
| | - Marco Consumi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (C.B.); (F.F.M.); (L.T.); (S.P.); (G.T.); (G.L.); (M.C.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Via G. Giusti 9, 50121 Firenze, Italy
| | - Alessandro Donati
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (C.B.); (F.F.M.); (L.T.); (S.P.); (G.T.); (G.L.); (M.C.)
- Centre for Colloid and Surface Science (CSGI), University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Agnese Magnani
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (C.B.); (F.F.M.); (L.T.); (S.P.); (G.T.); (G.L.); (M.C.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Via G. Giusti 9, 50121 Firenze, Italy
| |
Collapse
|
38
|
Das B, Nayak AK, Mallick S. Thyme Oil-Containing Fluconazole-Loaded Transferosomal Bigel for Transdermal Delivery. AAPS PharmSciTech 2023; 24:240. [PMID: 37989918 DOI: 10.1208/s12249-023-02698-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/06/2023] [Indexed: 11/23/2023] Open
Abstract
The objective of the present research was to develop fluconazole-loaded transferosomal bigels for transdermal delivery by employing statistical optimization (23 factorial design-based). Thin-film hydration was employed to prepare fluconazole-loaded transferomal suspensions, which were then incorporated into bigel system. A 23 factorial design was employed where ratios of lipids to edge activators, lipids (soya lecithin to cholesterol), and edge activators (sodium deoxycholate to Tween 80) were factors. Ex vivo permeation flux (Jss) of transferosomal bigels across porcine skin was analyzed as response. The optimal setting for optimized formulation (FO) was A= 4.96, B= 3.82, and C= 2.16. The optimized transferosomes showed 52.38 ± 1.76% DEE, 76.37 nm vesicle size, 0.233 PDI, - 20.3 mV zeta potential, and desirable deformability. TEM of optimized transferosomes exhibited a multilamelar structure. FO bigel's FE-SEM revealed a globule-shaped vesicular structure. Further, the optimized transferosomal suspension was incorporated into thyme oil (0.1% w/w)-containing bigel (TO-FO). Ex vivo transdermal fluconazole permeation from different transferosomal bigels was sustained over 24 h. The highest permeation flux (4.101 μg/cm2/h) was estimated for TO-FO bigel. TO-FO bigel presented 1.67-fold more increments of antifungal activity against Candida albicans than FO bigel. The prepared thyme oil (0.1% w/w)-containing transfersomal bigel formulations can be used as topical delivery system to treat candida related fungal infections.
Collapse
Affiliation(s)
- Biswarup Das
- Department of Pharmaceutics, Seemanta Institute of Pharmaceutical Sciences, Mayurbhanj, Jharpokharia, Odisha, 757086, India
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003, India
| | - Amit Kumar Nayak
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003, India.
| | - Subrata Mallick
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003, India.
| |
Collapse
|
39
|
AbouSamra MM, Farouk F, Abdelhamed FM, Emam KAF, Abdeltawab NF, Salama AH. Synergistic approach for acne vulgaris treatment using glycerosomes loaded with lincomycin and lauric acid: Formulation, in silico, in vitro, LC-MS/MS skin deposition assay and in vivo evaluation. Int J Pharm 2023; 646:123487. [PMID: 37805147 DOI: 10.1016/j.ijpharm.2023.123487] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/23/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
This study aims to develop a pharmaceutical formulation that combines the potent antibacterial effect of lincomycin and lauric acid against Cutibacterium acnes (C. acnes), a bacterium implicated in acne. The selection of lauric acid was based on an in silico study, which suggested that its interaction with specific protein targets of C. acnes may contribute to its synergistic antibacterial and anti-inflammatory effects. To achieve our aim, glycerosomes were fabricated with the incorporation of lauric acid as a main constituent of glycerosomes vesicular membrane along with cholesterol and phospholipon 90H, while lincomycin was entrapped within the aqueous cavities. Glycerol is expected to enhance the cutaneous absorption of the active moieties via hydrating the skin. Optimization of lincomycin-loaded glycerosomes (LM-GSs) was conducted using a mixed factorial experimental design. The optimized formulation; LM-GS4 composed of equal ratios of cholesterol:phospholipon90H:Lauric acid, demonstrated a size of 490 ± 17.5 nm, entrapment efficiency-values of 90 ± 1.4 % for lincomycin, and97 ± 0.2 % for lauric acid, and a surface charge of -30.2 ± 0.5mV. To facilitate its application on the skin, the optimized formulation was incorporated into a carbopol hydrogel. The formed hydrogel exhibited a pH value of 5.95 ± 0.03 characteristic of pH-balanced skincare and a shear-thinning non-Newtonian pseudoplastic flow. Skin deposition of lincomycin was assessed using an in-house developed and validated LC-MS/MS method employing gradient elution and electrospray ionization detection. Results revealed that LM-GS4 hydrogel exhibited a two-fold increase in skin deposition of lincomycin compared to lincomycin hydrogel, indicating improved skin penetration and sustained release. The synergistic healing effect of LM-GS4 was evidenced by a reduction in inflammation, bacterial load, and improved histopathological changes in an acne mouse model. In conclusion, the proposed formulation demonstrated promising potential as a topical treatment for acne. It effectively enhanced the cutaneous absorption of lincomycin, exhibited favorable physical properties, and synergistic antibacterial and healing effects. This study provides valuable insights for the development of an effective therapeutic approach for acne management.
Collapse
Affiliation(s)
- Mona M AbouSamra
- Pharmaceutical Technology Department, National Research Centre, Dokki, Cairo 12622, Egypt.
| | - Faten Farouk
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ahram Canadian University, 6(th) of October City, Cairo, Egypt
| | - Farah M Abdelhamed
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Khloud A F Emam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Nourtan F Abdeltawab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Alaa H Salama
- Pharmaceutical Technology Department, National Research Centre, Dokki, Cairo 12622, Egypt; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ahram Canadian University, 6(th) of October City, Cairo, Egypt.
| |
Collapse
|
40
|
Dymek M, Olechowska K, Hąc-Wydro K, Sikora E. Liposomes as Carriers of GHK-Cu Tripeptide for Cosmetic Application. Pharmaceutics 2023; 15:2485. [PMID: 37896245 PMCID: PMC10610410 DOI: 10.3390/pharmaceutics15102485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Liposomes are self-assembled spherical systems composed of amphiphilic phospholipids. They can be used as carriers of both hydrophobic and hydrophilic substances, such as the anti-aging and wound-healing copper-binding peptide, GHK-Cu (glycyl-L-histidyl-L-lysine). Anionic (AL) and cationic (CL) hydrogenated lecithin-based liposomes were obtained as GHK-Cu skin delivery systems using the thin-film hydration method combined with freeze-thaw cycles and the extrusion process. The influence of total lipid content, lipid composition and GHK-Cu concentration on the physicochemical properties of liposomes was studied. The lipid bilayer fluidity and the peptide encapsulation efficiency (EE) were also determined. Moreover, in vitro assays of tyrosinase and elastase inhibition were performed. Stable GHK-Cu-loaded liposome systems of small sizes (approx. 100 nm) were obtained. The bilayer fluidity was higher in the case of cationic liposomes. As the best carriers, 25 mg/cm3 CL and AL hydrated with 0.5 mg/cm3 GHK-Cu were selected with EE of 31.7 ± 0.9% and 20.0 ± 2.8%, respectively. The obtained results confirmed that the liposomes can be used as carriers for biomimetic peptides such as copper-binding peptide and that the GHK-Cu did not significantly affect the tyrosinase activity but led to 48.90 ± 2.50% elastase inhibition, thus reducing the rate of elastin degeneration and supporting the structural integrity of the skin.
Collapse
Affiliation(s)
- Michał Dymek
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland;
| | - Karolina Olechowska
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland; (K.O.); (K.H.-W.)
| | - Katarzyna Hąc-Wydro
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland; (K.O.); (K.H.-W.)
| | - Elżbieta Sikora
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland;
| |
Collapse
|
41
|
Tafish AM, El-Sherbiny M, Al‐Karmalawy AA, Soliman OAEA, Saleh NM. Carvacrol-Loaded Phytosomes for Enhanced Wound Healing: Molecular Docking, Formulation, DoE-Aided Optimization, and in vitro/in vivo Evaluation. Int J Nanomedicine 2023; 18:5749-5780. [PMID: 37849641 PMCID: PMC10578319 DOI: 10.2147/ijn.s421617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/01/2023] [Indexed: 10/19/2023] Open
Abstract
Background Despite recent advances in wound healing products, phytochemicals have been considered promising and attractive alternatives. Carvacrol (CAR), a natural phenolic compound, has been reported to be effective in wound healing. Purpose This work endeavored to develop novel CAR-loaded phytosomes for the enhancement of the wound healing process. Methods Molecular docking was performed to compare the affinities of the different types of phospholipids to CAR. Phytosomes were prepared by three methods (thin-film hydration, cosolvency, and salting out) using Lipoid S100 and Phospholipon 90H with three levels of saturation percent (0%, 50%, and 100%), and three levels of phospholipid molar percent (66.67%, 75%, and 80%). The optimization was performed using Design Expert where particle size, polydispersity index, and zeta potential were chosen as dependent variables. The optimized formula (F1) was further investigated regarding entrapment efficiency, TEM, 1H-NMR, FT-IR, DSC, X-RD, in vitro release, ex vivo permeation, and stability. Furthermore, it was incorporated into a hydrogel formulation, and an in vivo study was conducted to investigate the wound-healing properties of F1. Results F1 was chosen as the optimized formula prepared via the thin-film hydration method with a saturation percent and a phospholipid molar percent of zero and 66.67, respectively. TEM revealed the spherical shape of phytosomal vesicles with uniform size, while the results of 1H-NMR, FT-IR, DSC, and X-RD confirmed the formation of the phytosomal complex. F1 demonstrated a higher in vitro release and a slower permeation than free CAR. The wound area of F1-treated animals showed a marked reduction associated with a high degree of collagen fiber deposition and enhanced cellular proliferation. Conclusion F1 can be considered as a promising remedy for the enhancement of wound healing and hence it would be hoped to undergo further investigation.
Collapse
Affiliation(s)
- Ahmed Mowafy Tafish
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Horus University, New Damietta, 34518, Egypt
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
- Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Ahmed A Al‐Karmalawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University, New Damietta, 34518, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza, 12566, Egypt
| | | | - Noha Mohamed Saleh
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
42
|
Fratini C, Weaver E, Moroni S, Irwin R, Dallal Bashi YH, Uddin S, Casettari L, Wylie MP, Lamprou DA. Combining microfluidics and coaxial 3D-bioprinting for the manufacturing of diabetic wound healing dressings. BIOMATERIALS ADVANCES 2023; 153:213557. [PMID: 37441958 DOI: 10.1016/j.bioadv.2023.213557] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/21/2023] [Accepted: 07/07/2023] [Indexed: 07/15/2023]
Abstract
Diabetic foot ulcers (DFUs) are a crucial complication of diabetes, as in a diabetic wound, each step of the physiological healing process is affected. This entails a more easily infectable wound, and delayed tissue regeneration due to the inflammation that occurs, leading to a drastic decrease in the overall patient's quality of life. As a strategy to manage DFUs, skin alternatives and wound dressings are currently receiving a lot of attention as they keep the wound environment "under control", while providing bioactive compounds that help to manage infection and inflammation and promote tissue repair. This has been made possible thanks to the advent of emerging technologies such as 3D Bioprinting to produce skin resembling constructs or microfluidics (MFs) that allows the manufacture of nanoparticles (NPs) that act as drug carriers, in a prompt and less expensive way. In the present proof-of-concept study, the possibility of combining two novel and appealing techniques in the manufacturing of wound dressings has been demonstrated for first time. The novelty of this work consists in the combination of liposomes (LPs) encapsulating the active pharmaceutical ingredient (API) into a hydrogel that is further printed into a three-dimensional scaffold for wound dressing; to the knowledge of the authors this has never been done before. A grid-shaped scaffold has been produced through the coaxial 3D bioprinting technique which has allowed to combine, in one single filament, two different bioinks. The inner core of the filament is a nanocomposite hydrogel consisting of hydroxyethyl cellulose (HEC) and PEGylated LPs encapsulated with thyme oil (TO) manufactured via MFs for the first time. The outer shell of the filament, instead, is represented by a hybrid hydrogel composed of sodium alginate/cellulose nanocrystals (SA/CNC) and enriched with free TO. This provides a combination of two different release ratios of the API, a bulk release for the first 24 h thanks to the free TO in the shell of the filament and a sustained release for up to 10 days provided from the API inside the LPs. Confocal Microscopy verified the actual presence of the LPs inside the scaffold after printing and evaluation using the zone of inhibition test proved the antibacterial activity of the manufactured scaffolds against both Gram-positive and Gram-negative bacteria.
Collapse
Affiliation(s)
- Costanza Fratini
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom; Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Edward Weaver
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Sofia Moroni
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom; Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Robyn Irwin
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Yahya H Dallal Bashi
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Shahid Uddin
- Immunocore Ltd., 92 Park Dr, Milton Park, Abingdon OX14 4RY, United Kingdom
| | - Luca Casettari
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Matthew P Wylie
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Dimitrios A Lamprou
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom.
| |
Collapse
|
43
|
Raj A, Dua K, Nair RS, Sarath Chandran C, Alex AT. Transethosome: An ultra-deformable ethanolic vesicle for enhanced transdermal drug delivery. Chem Phys Lipids 2023; 255:105315. [PMID: 37356610 DOI: 10.1016/j.chemphyslip.2023.105315] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/06/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023]
Abstract
Drug delivery through the skin improves solubility, bioavailability, and unwanted systemic side effects of the drug. The selection of a suitable carrier is a challenging process. The conventional lipid vesicles have some limitations. They deliver the drug in the stratum corneum and have poor colloidal stability. Here comes the need for ultra-deformable lipid vesicles to provide the drug beyond the stratum corneum. Transethosomes are novel ultra-deformable vesicles that can deliver drugs into deeper tissues. The composition of transethosomes includes phospholipid, ethanol and surfactants. Each ingredient has a pivotal role in the properties of the carrier. This review covers the design, preparation method, characterisation, and characteristics of the novel vesicle. Also, we cover the impact of surfactants on vesicular properties and the skin permeation behaviour of novel vesicles.
Collapse
Affiliation(s)
- Alan Raj
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Rajesh Sreedharan Nair
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - C Sarath Chandran
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Government Medical College Kannur, Pariyaram, Kerala, India
| | - Angel Treasa Alex
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
44
|
Wang W, Xu X, Song Y, Lan L, Wang J, Xu X, Du Y. Nano transdermal system combining mitochondria-targeting cerium oxide nanoparticles with all-trans retinoic acid for psoriasis. Asian J Pharm Sci 2023; 18:100846. [PMID: 37881797 PMCID: PMC10594570 DOI: 10.1016/j.ajps.2023.100846] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/16/2023] [Accepted: 09/01/2023] [Indexed: 10/27/2023] Open
Abstract
Psoriasis is an inflammatory skin disease that is intricately linked to oxidative stress. Antioxidation and inhibition of abnormal proliferation of keratinocytes are pivotal strategies for psoriasis. Delivering drugs with these effects to the site of skin lesions is a challenge that needs to be solved. Herein, we reported a nanotransdermal delivery system composed of all-trans retinoic acid (TRA), triphenylphosphine (TPP)-modified cerium oxide (CeO2) nanoparticles, flexible nanoliposomes and gels (TCeO2-TRA-FNL-Gel). The results revealed that TCeO2 synthesized by the anti-micelle method, with a size of approximately 5 nm, possessed excellent mitochondrial targeting ability and valence conversion capability related to scavenging reactive oxygen species (ROS). TCeO2-TRA-FNL prepared by the film dispersion method, with a size of approximately 70 nm, showed high drug encapsulation efficiency (>96%). TCeO2-TRA-FNL-Gel further showed sustained drug release behaviors, great transdermal permeation ability, and greater skin retention than the free TRA. The results of in vitro EGF-induced and H2O2-induced models suggested that TCeO2-TRA-FNL effectively reduced the level of inflammation and alleviated oxidative stress in HaCat cells. The results of in vivo imiquimod (IMQ)-induced model indicated that TCeO2-TRA-FNL-Gel could greatly alleviate the psoriasis symptoms. In summary, the transdermal drug delivery system designed in this study has shown excellent therapeutic effects on psoriasis and is prospective for the safe and accurate therapy of psoriasis.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pharmacy, Hangzhou Third People' s Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Xinyi Xu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yanling Song
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lan Lan
- Department of Dermatology, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Jun Wang
- Department of Pharmacy, Hangzhou Third People' s Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Xinchang Xu
- Department of Pharmacy, Hangzhou Third People' s Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yongzhong Du
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Center of Translational Pharmacy, Jinhua Institute of Zhejiang University, Jinhua 321299, China
| |
Collapse
|
45
|
Akanda M, Getti G, Douroumis D. In vivo evaluation of nanostructured lipid carrier systems (NLCs) in mice bearing prostate cancer tumours. Drug Deliv Transl Res 2023; 13:2083-2095. [PMID: 34845679 PMCID: PMC10315352 DOI: 10.1007/s13346-021-01095-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2021] [Indexed: 10/19/2022]
Abstract
Nanostructure lipid carriers (NLCs) were developed for the delivery of curmumin (CRN), a potent anticancer agent with low bioavailability, for the treatment of prostate cancer. NLCs prepared using high pressure homogenization (HPH) with around 150 nm particle size, - 40 V ζ-potential and excellent long-term stability. Cellular uptake of CRN-SLN showed nanoparticle localization in the cytoplasm around the nucleus. CRN-NLCs were assessed using flow cytometry and found to cause early and late apoptotic events at 100 μg/ml CRN concentrations. CRN-NLC nanoparticles were administrated to nude mice with LNCaP prostate cancer xenografts and demonstrated substantial tumour volume suppression (40%) with no weight loss compared to pure CRN (ethanolic solution). Overall, NLCs were proved a suitable carrier for passive drug delivery and cancer treatment.
Collapse
Affiliation(s)
- Mushfiq Akanda
- Medway School of Science, Faculty of Engineering and Science, University of Greenwich, Kent, ME4 4TB, UK
- Centre for Innovation & Process Engineering Research, Chatam Maritime, Kent, ME4 4TB, UK
| | - Giulia Getti
- Medway School of Science, Faculty of Engineering and Science, University of Greenwich, Kent, ME4 4TB, UK
| | - Dennis Douroumis
- Medway School of Science, Faculty of Engineering and Science, University of Greenwich, Kent, ME4 4TB, UK.
- Centre for Innovation & Process Engineering Research, Chatam Maritime, Kent, ME4 4TB, UK.
| |
Collapse
|
46
|
Karaaslan A. Nano- and Micro-Encapsulation of Long-Chain-Fatty-Acid-Rich Melon Seed Oil and Its Release Attributes under In Vitro Digestion Model. Foods 2023; 12:2371. [PMID: 37372581 DOI: 10.3390/foods12122371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/08/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023] Open
Abstract
Melon seed oil (MSO) possesses plenty of long-chain fatty acids (LFCAs, oleic-linoleic acid 90%), remarkable antioxidant activity (DPPH (0.37 ± 0.40 µmol TE/g), ABTS (4.98 ± 0.18 µmol TE/g), FRAP (0.99 ± 0.02 µmol TE/g), and CUPRAC (4.94 ± 0.11 µmol TE/g)), and phenolic content (70.14 ± 0.53 mg GAE/100 g). Encapsulation is a sound technology to provide thermal stability and controlled release attributes to functional compounds such as plant seed oil. Nano-sized and micro-sized capsules harboring MSO were generated by utilizing thin film dispersion, spray drying, and lyophilization strategies. Fourier infrared transform analysis (FTIR), scanning electron microscopy (SEM), and particle size analyses were used for the authentication and morphological characterization of the samples. Spray drying and lyophilization effectuated the formation of microscale capsules (2660 ± 14 nm, 3140 ± 12 nm, respectively), while liposomal encapsulation brought about the development of nano-capsules (282.30 ± 2.35 nm). Nano-liposomal systems displayed significant thermal stability compared to microcapsules. According to in vitro release studies, microcapsules started to release MSO in simulated salivary fluid (SSF) and this continued in gastric (SGF) and intestinal (SIF) environments. There was no oil release for nano-liposomes in SSF, while limited release was observed in SGF and the highest release was observed in SIF. The results showed that nano-liposomal systems featured MSO thermal stability and controlled the release attributes in the gastrointestinal system (GIS) tract.
Collapse
Affiliation(s)
- Asliye Karaaslan
- Vocational School of Organized Industrial Zone, Food Processing Programme, Harran University, 63300 Sanliurfa, Turkey
| |
Collapse
|
47
|
Çetin EA, Babayiğit EH, Özdemir AY, Erfen Ş, Onur MA. Investigation of UV-treated mesenchymal stem cells in an in vitro wound model. In Vitro Cell Dev Biol Anim 2023:10.1007/s11626-023-00772-4. [PMID: 37296290 DOI: 10.1007/s11626-023-00772-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/09/2023] [Indexed: 06/12/2023]
Abstract
This study examines the effects of ultraviolet-induced adipose tissue-derived mesenchymal stem cells and their supernatants on wound healing regarding cell viability, percentage of wound healing, released cytokine, and growth factors. It has been reported in previous studies that mesenchymal stem cells are resistant to ultraviolet light and have a protective effect on skin cells against ultraviolet-induced damage. At the same time, there are many studies in the literature about the positive effects of cytokines and growth factors secreted by mesenchymal stem cells. Based on this information, the effects of ultraviolet-induced adipose-derived stem cells and supernatants containing their secreted cytokines and growth factors on an in vitro two-dimensional wound model created with two different cell lines were investigated in this study. It was determined from the results that the highest cell viability and the least apoptotic staining were 100 mJ in mesenchymal stem cells (**p < 0.01). Furthermore, analysis of cytokines and growth factors collected from supernatants also supported 100 mJ as the optimal ultraviolet dose. It was observed that cells treated with ultraviolet and their supernatants significantly increased cell viability and wound-healing rate over time compared to other groups. In conclusion, with this study, it has been shown that adipose-derived stem cells exposed to ultraviolet light can have an important use in wound healing, both with their potential and with the more cytokines and growth factors they secrete. However, further analysis and animal experiments should be performed before clinical use.
Collapse
Affiliation(s)
- Esin Akbay Çetin
- Department of Biology, Faculty of Science, Hacettepe University, 06800, Ankara, Turkey.
| | - Elif Hatice Babayiğit
- Department of Biology, Faculty of Science, Hacettepe University, 06800, Ankara, Turkey
| | - Alp Yiğit Özdemir
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Şebnem Erfen
- Department of Biology, Faculty of Science, Hacettepe University, 06800, Ankara, Turkey
| | - Mehmet Ali Onur
- Department of Biology, Faculty of Science, Hacettepe University, 06800, Ankara, Turkey
| |
Collapse
|
48
|
Alotaibi G, Alharthi S, Basu B, Ash D, Dutta S, Singh S, Prajapati BG, Bhattacharya S, Chidrawar VR, Chitme H. Nano-Gels: Recent Advancement in Fabrication Methods for Mitigation of Skin Cancer. Gels 2023; 9:gels9040331. [PMID: 37102943 PMCID: PMC10137892 DOI: 10.3390/gels9040331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/08/2023] [Accepted: 04/10/2023] [Indexed: 04/28/2023] Open
Abstract
In the 21st century, melanoma and non-melanoma skin cancers have become an epidemic outbreak worldwide. Therefore, the exploration of all potential preventative and therapeutic measures based on either physical or bio-chemical mechanisms is essential via understanding precise pathophysiological pathways (Mitogen-activated protein kinase, Phosphatidylinositol 3-kinase Pathway, and Notch signaling pathway) and other aspects of such skin malignancies. Nano-gel, a three-dimensional polymeric cross-linked porous hydrogel having a diameter of 20-200 nm, possesses dual properties of both hydrogel and nanoparticle. The capacity of high drug entrapment efficiency with greater thermodynamic stability, remarkable solubilization potential, and swelling behavior of nano-gel becomes a promising candidate as a targeted drug delivery system in the treatment of skin cancer. Nano-gel can be either synthetically or architectonically modified for responding to either internal or external stimuli, including radiation, ultrasound, enzyme, magnetic, pH, temperature, and oxidation-reduction to achieve controlled release of pharmaceuticals and several bio-active molecules such as proteins, peptides, genes via amplifying drug aggregation in the active targeted tissue and reducing adverse pharmacological effects. Several drugs, such as anti-neoplastic biomolecules having short biological half-lives and prompt enzyme degradability capacity, must be appropriate for administration employing either chemically bridged or physically constructed nano-gel frameworks. The comprehensive review summarizes the advancement in the preparation and characterization methods of targeted nano-gel with enhanced pharmacological potential and preserved intracellular safety limits for the mitigation of skin malignancies with a special emphasize on skin cancer inducing pathophysiological pathways and prospective research opportunities for skin malignancy targeted nano-gels.
Collapse
Affiliation(s)
- Ghallab Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Al-Dawadmi Campus, Al-Dawadmi 11961, Saudi Arabia
| | - Sitah Alharthi
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Al-Dawadmi Campus, Al-Dawadmi 11961, Saudi Arabia
| | - Biswajit Basu
- Department of Pharmaceutical Technology, Global College of Pharmaceutical Technology, Krishnagar 741102, West Bengal, India
| | - Dipanjana Ash
- Department of Pharmaceutics, BCDA College of Pharmacy & Technology, Kolkata 700127, West Bengal, India
| | - Swarnali Dutta
- Department of Pharmacology, Birla Institute of Technology, Ranchi 835215, Jharkhand, India
| | - Sudarshan Singh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Bhupendra G Prajapati
- S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Mehsana 384012, Gujarat, India
| | - Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy and Technology Management, SVKM's NMIMS Deemed-to-Be University, Shirpur 425405, Maharashtra, India
| | - Vijay R Chidrawar
- Department of Pharmacology, Raghavendra Institute of Pharmaceutical Education and Research, Ananthapuramu 515721, Andhra Pradesh, India
| | - Havagiray Chitme
- Faculty of Pharmacy, DIT University, Dehradun 248009, Uttarakhand, India
| |
Collapse
|
49
|
Vieira J, Castelo J, Martins M, Saraiva N, Rosado C, Pereira-Leite C. Mixed Edge Activators in Ibuprofen-Loaded Transfersomes: An Innovative Optimization Strategy Using Box-Behnken Factorial Design. Pharmaceutics 2023; 15:pharmaceutics15041209. [PMID: 37111694 PMCID: PMC10143365 DOI: 10.3390/pharmaceutics15041209] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Transfersomes have been highlighted as an interesting nanotechnology-based approach to facilitate the skin delivery of bioactive compounds. Nevertheless, the properties of these nanosystems still need to be improved to enable knowledge transfer to the pharmaceutical industry and the development of more efficacious topical medicines. Quality-by-design strategies, such as Box-Behnken factorial design (BBD), are in line with the current need to use sustainable processes to develop new formulations. Thus, this work aimed at optimizing the physicochemical properties of transfersomes for cutaneous applications, by applying a BBD strategy to incorporate mixed edge activators with opposing hydrophilic-lipophilic balance (HLB). Tween® 80 and Span® 80 were used as edge activators and ibuprofen sodium salt (IBU) was selected as the model drug. After the initial screening of the IBU solubility in aqueous media, a BBD protocol was implemented, and the optimized formulation displayed appropriate physicochemical properties for skin delivery. By comparing the optimized transfersomes to equivalent liposomes, the incorporation of mixed edge activators was found to be beneficial to upgrade the storage stability of the nanosystems. Furthermore, their cytocompatibility was shown by cell viability studies using 3D HaCaT cultures. Altogether, the data herein bode well for future advances in the use of mixed edge activators in transfersomes for the management of skin conditions.
Collapse
Affiliation(s)
- João Vieira
- CBIOS-Universidade Lusófona's Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal
- Department of Biomedical Sciences, University of Alcalá, Ctra. Madrid-Barcelona Km. 33.600, Alcalá de Henares, 28871 Madrid, Spain
| | - Jéssica Castelo
- School of Health Sciences and Technologies, Universidade Lusófona, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Marta Martins
- CBIOS-Universidade Lusófona's Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal
- Department of Biomedical Sciences, University of Alcalá, Ctra. Madrid-Barcelona Km. 33.600, Alcalá de Henares, 28871 Madrid, Spain
| | - Nuno Saraiva
- CBIOS-Universidade Lusófona's Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Catarina Rosado
- CBIOS-Universidade Lusófona's Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Catarina Pereira-Leite
- CBIOS-Universidade Lusófona's Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
50
|
Shtykalova S, Deviatkin D, Freund S, Egorova A, Kiselev A. Non-Viral Carriers for Nucleic Acids Delivery: Fundamentals and Current Applications. Life (Basel) 2023; 13:903. [PMID: 37109432 PMCID: PMC10142071 DOI: 10.3390/life13040903] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023] Open
Abstract
Over the past decades, non-viral DNA and RNA delivery systems have been intensively studied as an alternative to viral vectors. Despite the most significant advantage over viruses, such as the lack of immunogenicity and cytotoxicity, the widespread use of non-viral carriers in clinical practice is still limited due to the insufficient efficacy associated with the difficulties of overcoming extracellular and intracellular barriers. Overcoming barriers by non-viral carriers is facilitated by their chemical structure, surface charge, as well as developed modifications. Currently, there are many different forms of non-viral carriers for various applications. This review aimed to summarize recent developments based on the essential requirements for non-viral carriers for gene therapy.
Collapse
Affiliation(s)
- Sofia Shtykalova
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia
- Faculty of Biology, Saint-Petersburg State University, Universitetskaya Embankment 7-9, 199034 Saint-Petersburg, Russia
| | - Dmitriy Deviatkin
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia
- Faculty of Biology, Saint-Petersburg State University, Universitetskaya Embankment 7-9, 199034 Saint-Petersburg, Russia
| | - Svetlana Freund
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia
- Faculty of Biology, Saint-Petersburg State University, Universitetskaya Embankment 7-9, 199034 Saint-Petersburg, Russia
| | - Anna Egorova
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia
| | - Anton Kiselev
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia
| |
Collapse
|