1
|
Wagner BA, Buettner GR. Stability of aqueous solutions of ascorbate for basic research and for intravenous administration. ADVANCES IN REDOX RESEARCH : AN OFFICIAL JOURNAL OF THE SOCIETY FOR REDOX BIOLOGY AND MEDICINE AND THE SOCIETY FOR FREE RADICAL RESEARCH-EUROPE 2023; 9:100077. [PMID: 37808406 PMCID: PMC10552410 DOI: 10.1016/j.arres.2023.100077] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Ascorbate (vitamin C) can rapidly oxidize in many near-neutral pH, aqueous solutions. We report on the stability of ascorbate solutions prepared for infusion into patients using standard pharmacy protocols, for example, 75 g of ascorbate/L in water for infusion. The concentration of ascorbate was monitored for changes over time using direct UV-Vis spectroscopy. The pH of the solution was about 5.7 with no significant change over 24 h. There was only an approximate loss of 1% per day over the first 3 days of storage. This information allows decisions on how far ahead of need such preparations can be made. We also provide laboratory approaches to minimize or control the rate of oxidation of ascorbate solutions for use in chemical and biochemical studies as well as preclinical animal studies. The goal is to have the amount of ascorbate intended to be used in experiments be the actual amount available.
Collapse
Affiliation(s)
- Brett A. Wagner
- Free Radical and Radiation Biology Program, ESR Facility, The University of Iowa, Iowa City, IA 52242, USA
| | - Garry R. Buettner
- Free Radical and Radiation Biology Program, ESR Facility, The University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
2
|
Skorup P, Fransson A, Gustavsson J, Sjöholm J, Rundgren H, Özenci V, Wong AYW, Karlsson T, Svensén C, Günther M. Evaluation of an extracorporeal ozone-based bactericide system for the treatment of Escherichia coli sepsis. Intensive Care Med Exp 2022; 10:14. [PMID: 35467176 PMCID: PMC9038973 DOI: 10.1186/s40635-022-00443-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sepsis is associated with substantial mortality rates. Antibiotic treatment is crucial, but global antibiotic resistance is now classified as one of the top ten global public health risks facing humanity. Ozone (O3) is an inorganic molecule with no evident function in the body. We investigated the bactericide properties of ozone, using a novel system of extracorporeal ozone blood treatment. We hypothesized that ozone would decrease the concentration of viable Escherichia coli (E. coli) in human whole blood and that the system would be technically feasible and physiologically tolerable in a clinically relevant model of E. coli sepsis in swine. METHODS The E. coli strain B09-11822, a clinical isolate from a patient with septic shock was used. The in vitro study treated E. coli infected human whole blood (n = 6) with ozone. The in vivo 3.5-h sepsis model randomized swine to E. coli infusion and ozone treatment (n = 5) or E. coli infusion and no ozone treatment (n = 5). Live E. coli, 5 × 107 colony-forming units (CFU/mL) was infused in a peripheral vein. Ozone treatment was initiated with a duration of 30 min after 1.5 h. RESULTS The single pass in vitro treatment decreased E. coli by 27%, mean 1941 to 1422 CFU/mL, mean of differences - 519.0 (95% CI - 955.0 to - 82.98, P = 0.0281). pO2 increased (95% CI 31.35 to 48.80, P = 0.0007), pCO2 decreased (95% CI - 3.203 to - 1.134, P = 0.0069), oxyhemoglobin increased (95% CI 1.010 to 3.669, P = 0.0113). Methemoglobin was not affected. In the sepsis model, 9/10 swine survived. One swine randomized to ozone treatment died from septic shock before initiation of the treatment. Circulatory, respiratory, and metabolic parameters were not affected by the ozone treatment. E. coli in arterial blood, in organs and in aerobic and anaerobic blood cultures did not differ. Hemoglobin, leucocytes, and methemoglobin were not affected by the treatment. CONCLUSIONS Ozone decreased the concentration of viable E. coli in human whole blood. The system was technically feasible and physiologically tolerable in porcine sepsis/septic shock and should be considered for further studies towards clinical applications.
Collapse
Affiliation(s)
- Paul Skorup
- Section of Infectious Diseases, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Anette Fransson
- Section for Experimental Traumatology, Department of Neuroscience, Karolinska Institutet, Biomedicum - 8B, 171 77, Stockholm, Sweden
| | - Jenny Gustavsson
- Section for Experimental Traumatology, Department of Neuroscience, Karolinska Institutet, Biomedicum - 8B, 171 77, Stockholm, Sweden
| | | | | | - Volkan Özenci
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden.,Department of Clinical Microbiology, Karolinska University Hospital, Huddinge, Sweden
| | - Alicia Y W Wong
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Tomas Karlsson
- Department of Clinical Science at Education Södersjukhuset, Unit of Anesthesiology and Intensive Care, Karolinska Institutet, Stockholm, Sweden
| | - Christer Svensén
- Department of Clinical Science at Education Södersjukhuset, Unit of Anesthesiology and Intensive Care, Karolinska Institutet, Stockholm, Sweden
| | - Mattias Günther
- Section for Experimental Traumatology, Department of Neuroscience, Karolinska Institutet, Biomedicum - 8B, 171 77, Stockholm, Sweden. .,Department of Clinical Science at Education Södersjukhuset, Unit of Anesthesiology and Intensive Care, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
3
|
Trapani S, Rubino C, Indolfi G, Lionetti P. A Narrative Review on Pediatric Scurvy: The Last Twenty Years. Nutrients 2022; 14:nu14030684. [PMID: 35277043 PMCID: PMC8840722 DOI: 10.3390/nu14030684] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 02/04/2023] Open
Abstract
Scurvy is a well-known clinical condition caused by vitamin C deficiency. Although considered a rare disease in high-income countries, it has been recently increasingly reported in children, especially in those with abnormal dietary habits, mental or physical disabilities. We performed an extensive review of the literature analyzing studies published in the last 20 years focusing on clinical features, differential diagnosis and diagnostic delay. Fifteen articles were selected, collectively reporting a total of 166 children. Because of the wide clinical spectrum (musculoskeletal complaints and/or mucocutaneous lesions or systemic symptoms), scurvy can mimic several conditions, including autoimmune diseases, infections, and neoplasia. In addition, frequent findings such as normal nutritional status, anemia or elevated inflammatory markers may guide clinicians towards the abovementioned misdiagnoses. Scurvy should be considered in patients presenting with musculoskeletal complaints, not only in those with risk factors but also in healthy children. A focused dietary history and a careful physical examination, assessing other signs of vitamin C deficiency, are mandatory in these patients. When suspected, the dosage of serum vitamin C is the diagnostic gold standard; furthermore, imaging studies, performed by an expert radiologist, can reveal the typical features of scurvy. Only early diagnosis can avoid unnecessary investigations and potentially fatal complications of the disease.
Collapse
Affiliation(s)
- Sandra Trapani
- Pediatric Unit, Department of Health Sciences, Meyer Children’s University Hospital, University of Florence, Viale Pieraccini 24, 50137 Florence, Italy
- Correspondence: ; Tel.: +39-055-5662480
| | - Chiara Rubino
- Pediatric Unit, Meyer Children’s University Hospital, Viale Pieraccini 24, 50137 Florence, Italy;
| | - Giuseppe Indolfi
- Pediatric Unit, Department of NEUROFARBA, Meyer Children’s University Hospital, University of Florence, Viale Pieraccini 24, 50137 Florence, Italy;
| | - Paolo Lionetti
- Gastroenterology Unit, Department of NEUROFARBA, Meyer Children’s University Hospital, University of Florence, Viale Pieraccini 24, 50137 Florence, Italy;
| |
Collapse
|
4
|
Eigenschink M, Savran D, Zitterer CP, Granitzer S, Fritz M, Baron DM, Müllner EW, Salzer U. Redox Properties of Human Erythrocytes Are Adapted for Vitamin C Recycling. Front Physiol 2021; 12:767439. [PMID: 34938201 PMCID: PMC8685503 DOI: 10.3389/fphys.2021.767439] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/16/2021] [Indexed: 01/22/2023] Open
Abstract
Ascorbic acid (AA; or vitamin C) is an important physiological antioxidant and radical scavenger. Some mammalian species, including homo sapiens, have lost the ability to synthetize AA and depend on its nutritional uptake. Erythrocytes from AA-auxotroph mammals express high amounts of the glucose transporter GLUT1. This isoform enables rapid uptake of glucose as well as dehydroascorbate (DHA), the fully oxidized form of AA. Here, we explored the effects of DHA uptake on the redox metabolism of human erythrocytes. DHA uptake enhanced plasma membrane electron transport (PMET) activity. This process is mediated by DCytb, a membrane bound cytochrome catalyzing extracellular reduction of Fe3+ and ascorbate free radical (AFR), the first oxidized form of AA. DHA uptake also decreased cellular radical oxygen species (ROS) levels. Both effects were massively enhanced in the presence of physiological glucose concentrations. Reduction of DHA to AA largely depleted intracellular glutathione (GSH) and induced the efflux of its oxidized form, GSSG. GSSG efflux could be inhibited by MK-571 (IC50 = 5 μM), indicating involvement of multidrug resistance associated protein (MRP1/4). DHA-dependent GSH depletion and GSSG efflux were completely rescued in the presence of 5 mM glucose and, partially, by 2-deoxy-glucose (2-DG), respectively. These findings indicate that human erythrocytes are physiologically adapted to recycle AA both intracellularly via GLUT1-mediated DHA uptake and reduction and extracellularly via DCytb-mediated AFR reduction. We discuss the possibility that this improved erythrocyte-mediated AA recycling was a prerequisite for the emergence of AA auxotrophy which independently occurred at least twice during mammalian evolution.
Collapse
Affiliation(s)
- Michael Eigenschink
- Center for Medical Biochemistry, Max Perutz Labs Vienna, Medical University of Vienna, Vienna, Austria
| | - Danylo Savran
- Center for Medical Biochemistry, Max Perutz Labs Vienna, Medical University of Vienna, Vienna, Austria
| | - Christoph P Zitterer
- Center for Medical Biochemistry, Max Perutz Labs Vienna, Medical University of Vienna, Vienna, Austria
| | - Sebastian Granitzer
- Center for Medical Biochemistry, Max Perutz Labs Vienna, Medical University of Vienna, Vienna, Austria.,Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Magdalena Fritz
- Center for Medical Biochemistry, Max Perutz Labs Vienna, Medical University of Vienna, Vienna, Austria
| | - David M Baron
- Department of Anaesthesia, Intensive Care Medicine and Pain Medicine, Medical University of Vienna, Vienna, Austria
| | - Ernst W Müllner
- Center for Medical Biochemistry, Max Perutz Labs Vienna, Medical University of Vienna, Vienna, Austria
| | - Ulrich Salzer
- Center for Medical Biochemistry, Max Perutz Labs Vienna, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
5
|
Tveden-Nyborg P. Vitamin C Deficiency in the Young Brain-Findings from Experimental Animal Models. Nutrients 2021; 13:1685. [PMID: 34063417 PMCID: PMC8156420 DOI: 10.3390/nu13051685] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 12/17/2022] Open
Abstract
Severe and long-term vitamin C deficiency can lead to fatal scurvy, which is fortunately considered rare today. However, a moderate state of vitamin C (vitC) deficiency (hypovitaminosis C)-defined as a plasma concentration below 23 μM-is estimated to affect up to 10% of the population in the Western world, albeit clinical hallmarks in addition to scurvy have not been linked to vitC deficiency. The brain maintains a high vitC content and uniquely high levels during deficiency, supporting vitC's importance in the brain. Actions include both antioxidant and co-factor functions, rendering vitamin C deficiency likely to affect several targets in the brain, and it could be particularly significant during development where a high cellular metabolism and an immature antioxidant system might increase sensitivity. However, investigations of a non-scorbutic state of vitC deficiency and effects on the developing young brain are scarce. This narrative review provides a comprehensive overview of the complex mechanisms that regulate vitC homeostasis in vivo and in the brain in particular. Functions of vitC in the brain and the potential consequences of deficiency during brain development are highlighted, based primarily on findings from experimental animal models. Perspectives for future investigations of vitC are outlined.
Collapse
Affiliation(s)
- Pernille Tveden-Nyborg
- Section of Experimental Animal Models, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Copenhagen, Denmark
| |
Collapse
|
6
|
Pearson AG, Pullar JM, Cook J, Spencer ES, Vissers MC, Carr AC, Hampton MB. Peroxiredoxin 2 oxidation reveals hydrogen peroxide generation within erythrocytes during high-dose vitamin C administration. Redox Biol 2021; 43:101980. [PMID: 33905956 PMCID: PMC8099772 DOI: 10.1016/j.redox.2021.101980] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/23/2021] [Accepted: 04/13/2021] [Indexed: 12/14/2022] Open
Abstract
Intravenous infusion of high dose (>10 g) vitamin C (IVC) is a common alternative cancer therapy. IVC results in millimolar levels of circulating ascorbate, which is proposed to generate cytotoxic quantities of H2O2 in the presence of transition metal ions. In this study we report on the in vitro and in vivo effects of millimolar ascorbate on erythrocytes. Addition of ascorbate to whole blood increased erythrocyte intracellular ascorbate approximately 35-fold. Within 10 min of ascorbate addition, we detected increased oxidation of erythrocyte peroxiredoxin 2 (Prx2), a major thiol antioxidant protein and a sensitive marker of H2O2 production. Up to 50% of Prx2 was present in the oxidised form after 60 min. The presence of extracellular catalase, removal of plasma or the addition of a metal chelator did not prevent ascorbate-induced Prx2 oxidation, suggesting that the H2O2 responsible for Prx2 oxidation was generated within the erythrocyte. Ascorbate is known to increase the rate of haemoglobin autoxidation and H2O2 production. Through spectral monitoring of oxidised haemoglobin we estimated a generation rate of 15 μM H2O2/min inside erythrocytes. We also investigated changes in erythrocyte ascorbate concentration and Prx2 oxidation following IVC infusion in a cohort of patients with cancer. Plasma ascorbate levels ranged from 7.8 to 35 mM immediately post infusion, while erythrocyte ascorbate levels reached 1.5–3.4 mM 4 h after beginning infusion. Transient oxidation of erythrocyte Prx2 was observed. We conclude that erythrocytes accumulate ascorbate during IVC infusion, providing a significant reservoir of ascorbate, and this ascorbate increases H2O2 generation within the cells. The consequence of increased erythrocyte Prx2 oxidation warrants further investigation.
Collapse
Affiliation(s)
- Andree G Pearson
- Centre for Free Radical Research, Department of Pathology & Biomedical Science, University of Otago, Christchurch, New Zealand.
| | - Juliet M Pullar
- Centre for Free Radical Research, Department of Pathology & Biomedical Science, University of Otago, Christchurch, New Zealand
| | - John Cook
- New Brighton Health Care, Christchurch, New Zealand
| | - Emma S Spencer
- Nutrition in Medicine Research Group, Department of Pathology & Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Margreet Cm Vissers
- Centre for Free Radical Research, Department of Pathology & Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Anitra C Carr
- Nutrition in Medicine Research Group, Department of Pathology & Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Mark B Hampton
- Centre for Free Radical Research, Department of Pathology & Biomedical Science, University of Otago, Christchurch, New Zealand.
| |
Collapse
|
7
|
Tsakanova G, Ayvazyan V, Arakelova E, Ayvazyan A, Tatikyan S, Djavadovna L, Babayan N, Grigoryan R, Sargsyan N, Arakelyan A. Helix pomatia albumen gland water soluble protein extract as powerful antiaging agent. Exp Gerontol 2021; 146:111244. [PMID: 33454353 DOI: 10.1016/j.exger.2021.111244] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 12/01/2022]
Abstract
Accounting for increasingly developed population aging and dramatic elevation of aging-related severe disorders worldwide, search of the efficient antiaging agents is becoming one of the urgent problems of contemporary biomedical science. The aim of current study was to reveal the potential protective effects of water-soluble proteins extracted from albumen gland of snails against aging processes. We evaluated the antioxidant effect of the extract in 20 older adult rats in vivo and on 60 human blood samples ex vivo at the cellular level under physiological and oxidative stress conditions using the methods of spectrophotometric analysis, two-photon imaging and cell viability assay. The in vivo animal experiments showed significant increase in the levels of catalase and superoxide dismutase in treated older adult rats, compared to non-treated group. The ex vivo studies involving three human groups (young, middle aged and older adult), demonstrated that the extract has no effect on the cell viability, moreover significantly increases the number of erythrocytes, decreases age-related oxidative stress and the percentage of hemolysis of erythrocytes by aging. Thus, the snails albumen gland protein extract can be considered as effective natural antioxidative antiaging agent in prevention of aging-related pathological processes associated with oxidative stress.
Collapse
Affiliation(s)
- Gohar Tsakanova
- Institute of Molecular Biology NAS, RA, Yerevan, Armenia; CANDLE Synchrotron Research Institute, Yerevan, Armenia.
| | | | | | - Anna Ayvazyan
- CANDLE Synchrotron Research Institute, Yerevan, Armenia
| | | | | | - Nelly Babayan
- Institute of Molecular Biology NAS, RA, Yerevan, Armenia; Yerevan State University, Yerevan, Armenia
| | | | | | | |
Collapse
|
8
|
Erythrocyte Ascorbate Is a Potential Indicator of Steady-State Plasma Ascorbate Concentrations in Healthy Non-Fasting Individuals. Nutrients 2020; 12:nu12020418. [PMID: 32041092 PMCID: PMC7071312 DOI: 10.3390/nu12020418] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 01/30/2020] [Accepted: 02/03/2020] [Indexed: 11/17/2022] Open
Abstract
Plasma vitamin C concentrations fluctuate in response to recent dietary intake; therefore levels are typically determined in the fasting state. Erythrocyte ascorbate concentrations have been shown to be similar to plasma levels, but little is known about the kinetics of ascorbate accumulation in these cells. In this study, we investigated ascorbate uptake into erythrocytes after dietary supplementation with vitamin C and compared it to changes in plasma ascorbate concentrations. Seven individuals with baseline fasting plasma vitamin C concentrations ≥ 50 µmol/L were depleted of vitamin C-containing foods and drinks for one week, and then supplemented with 250 mg vitamin C/day in addition to resuming their normal diet. Fasting or steady-state plasma ascorbate concentrations declined to almost half of their baseline concentration over the week of vitamin C depletion, and then returned to saturation within two days of beginning supplementation. Erythrocyte ascorbate concentrations exhibited a very similar profile to plasma levels, with values ~76% of plasma, and a strong linear correlation (r = 0.89, p < 0.0001). Using a pharmacokinetic study design in six individuals with baseline fasting plasma vitamin C concentrations ≥50 µmol/L, we also showed that, unlike plasma, which peaked between 2 and 4 h following ingestion of 200 mg of vitamin C, erythrocyte ascorbate concentrations did not change in the six hours after supplementation. The data from these two intervention studies indicate that erythrocyte ascorbate concentration provides a stable measure of steady-state plasma ascorbate status and could be used to monitor ascorbate status in healthy non-fasting individuals.
Collapse
|
9
|
Hornung TC, Biesalski HK. Glut-1 explains the evolutionary advantage of the loss of endogenous vitamin C-synthesis: The electron transfer hypothesis. EVOLUTION MEDICINE AND PUBLIC HEALTH 2019; 2019:221-231. [PMID: 31857900 PMCID: PMC6915226 DOI: 10.1093/emph/eoz024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 07/30/2019] [Indexed: 12/27/2022]
Abstract
Introduction During evolution, some species including humans, monkeys and fruit bats lost the ability for ascorbic acid (AA) biosynthesis due to inactivation of the enzyme l-gulono-lactone oxidase (GLO) and subsequently became dependent on dietary vitamin C. There are four current hypotheses in relation to the benefit of vitamin C dependence in the context of adaptation and reproduction. Here we advance and test a new ‘electron transfer hypothesis’, which focusses on the role of the expression of glucose transporter 1 (Glut-1) in red blood cells (RBCs) in recycling vitamin C, thereby increasing the efficiency of micronutrient uptake. Methods To evaluate the benefit of Glut-1 expression, we determined vitamin C uptake into RBCs and potential release from two different species, humans with l-Gulono-lactone-oxidase (GLO-loss) and pigs with functional GLO. Results The oxidized form of vitamin C (dehydroascorbate, DHA) was transported into human RBCs via Glut-1. There was no transport of either the reduced (AA) or the oxidized vitamin in pig erythrocytes. Conclusion We propose that the transport of vitamin C increases an intracellular electron pool, which transfers electrons from intracellular ascorbate to extracellular substances like ascorbyl free radical or DHA, resulting in 100-fold smaller daily requirement of this essential redox sensitive micronutrient. This would be an advantage during seasonal changes of the availability from food and may be the key for the survival of individuals without vitamin C biosynthesis. Lay Summary 40 million years ago some individuals lost the ability to synthesize vitamin C. Why did they survive such as humans until now? Individuals with a specific glucose transporter Glut-1 on their erythrocytes which transports vitamin C need less and are protected from scarcity due to seasons and food competitors.
Collapse
Affiliation(s)
- Tabea C Hornung
- Department of Nutrition, University of Hohenheim, Garbenstrasse 30, Stuttgart 70593, Germany
| | - Hans-Konrad Biesalski
- Department of Nutrition, University of Hohenheim, Garbenstrasse 30, Stuttgart 70593, Germany
| |
Collapse
|
10
|
The Pharmacokinetics of Vitamin C. Nutrients 2019; 11:nu11102412. [PMID: 31601028 PMCID: PMC6835439 DOI: 10.3390/nu11102412] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/08/2019] [Accepted: 10/08/2019] [Indexed: 02/07/2023] Open
Abstract
The pharmacokinetics of vitamin C (vitC) is indeed complex. Regulated primarily by a family of saturable sodium dependent vitC transporters (SVCTs), the absorption and elimination are highly dose-dependent. Moreover, the tissue specific expression levels and subtypes of these SVCTs result in a compartmentalized distribution pattern with a diverse range of organ concentrations of vitC at homeostasis ranging from about 0.2 mM in the muscle and heart, and up to 10 mM in the brain and adrenal gland. The homeostasis of vitC is influenced by several factors, including genetic polymorphisms and environmental and lifestyle factors such as smoking and diet, as well as diseases. Going from physiological to pharmacological doses, vitC pharmacokinetics change from zero to first order, rendering the precise calculation of dosing regimens in, for example, cancer and sepsis treatment possible. Unfortunately, the complex pharmacokinetics of vitC has often been overlooked in the design of intervention studies, giving rise to misinterpretations and erroneous conclusions. The present review outlines the diverse aspects of vitC pharmacokinetics and examines how they affect vitC homeostasis under a variety of conditions.
Collapse
|
11
|
Petronek MS, Wagner BA, Hollenbeck NJ, Caster JM, Spitz DR, Cullen JJ, Buettner GR, Allen BG. Assessment of the Stability of Supraphysiological Ascorbate in Human Blood: Appropriate Handling of Samples from Clinical Trials for Measurements of Pharmacological Ascorbate. Radiat Res 2019; 191:491-496. [PMID: 31039080 DOI: 10.1667/rr15328.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Based on encouraging results from several early-phase clinical trials, there is renewed interest in the use of pharmacological ascorbate (i.e., intravenous administration resulting in >≈10 mM plasma ascorbate concentrations) in combination with standard-of-care cancer treatments including radiation and/or chemotherapy. Under normal, healthy physiological conditions, humans maintain plasma ascorbate concentrations in the range of 40-80 lM. However, in vivo antitumor activity requires supraphysiological plasma concentrations on the order of ≈20 mM. The stability of ascorbate in whole blood has been well studied. The goal of this work was to determine the appropriate handling methods of blood samples, after treatment with pharmacological ascorbate, which allow for the optimal measurement of ascorbate in plasma for dosing verification. Our findings indicate that ascorbate concentrations (mM) are relatively stable in whole blood collected in sodium heparin tubes and stored on ice (or at 4°C) for up to 24 h. After 24 h, ascorbate levels in plasma are relatively stable at 4°C for up to 72 h. At -20°C, plasma concentrations are relatively stable for 2-3 weeks, while at -80°C, ascorbate concentrations in plasma are stable for at least one month. In contrast, patient samples showed better stability when stored as whole blood compared to plasma at 4°C but increasing hemolysis over time may significantly skew ascorbate measurements. Additionally, patient samples can be reliably stored as plasma at -20°C for up to three weeks in either a frost-containing or frost-free environment. This information can guide the collection, processing and storage of clinical samples after pharmacological ascorbate infusions amenable to multi-center clinical trials.
Collapse
Affiliation(s)
- Michael S Petronek
- a Free Radical and Radiation Biology Program, Department of Radiation Oncology
| | - Brett A Wagner
- a Free Radical and Radiation Biology Program, Department of Radiation Oncology
| | - Nancy J Hollenbeck
- a Free Radical and Radiation Biology Program, Department of Radiation Oncology
| | - Joseph M Caster
- a Free Radical and Radiation Biology Program, Department of Radiation Oncology.,b Holden Comprehensive Cancer Center and Department of Surgery
| | - Douglas R Spitz
- a Free Radical and Radiation Biology Program, Department of Radiation Oncology.,b Holden Comprehensive Cancer Center and Department of Surgery
| | - Joseph J Cullen
- a Free Radical and Radiation Biology Program, Department of Radiation Oncology.,b Holden Comprehensive Cancer Center and Department of Surgery.,c University of Iowa Carver College of Medicine, Iowa City, Iowa.,d Veterans Affairs Medical Center, Iowa City, Iowa
| | - Garry R Buettner
- a Free Radical and Radiation Biology Program, Department of Radiation Oncology.,b Holden Comprehensive Cancer Center and Department of Surgery
| | - Bryan G Allen
- a Free Radical and Radiation Biology Program, Department of Radiation Oncology.,b Holden Comprehensive Cancer Center and Department of Surgery
| |
Collapse
|
12
|
Cooper CE, Silkstone GGA, Simons M, Rajagopal B, Syrett N, Shaik T, Gretton S, Welbourn E, Bülow L, Eriksson NL, Ronda L, Mozzarelli A, Eke A, Mathe D, Reeder BJ. Engineering tyrosine residues into hemoglobin enhances heme reduction, decreases oxidative stress and increases vascular retention of a hemoglobin based blood substitute. Free Radic Biol Med 2019; 134:106-118. [PMID: 30594736 PMCID: PMC6597946 DOI: 10.1016/j.freeradbiomed.2018.12.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 11/22/2018] [Accepted: 12/24/2018] [Indexed: 01/29/2023]
Abstract
Hemoglobin (Hb)-based oxygen carriers (HBOC) are modified extracellular proteins, designed to replace or augment the oxygen-carrying capacity of erythrocytes. However, clinical results have generally been disappointing due to adverse side effects, in part linked to the intrinsic oxidative toxicity of Hb. Previously a redox-active tyrosine residue was engineered into the Hb β subunit (βF41Y) to facilitate electron transfer between endogenous antioxidants such as ascorbate and the oxidative ferryl heme species, converting the highly oxidizing ferryl species into the less reactive ferric (met) form. We inserted different single tyrosine mutations into the α and β subunits of Hb to determine if this effect of βF41Y was unique. Every mutation that was inserted within electron transfer range of the protein surface and the heme increased the rate of ferryl reduction. However, surprisingly, three of the mutations (βT84Y, αL91Y and βF85Y) also increased the rate of ascorbate reduction of ferric(met) Hb to ferrous(oxy) Hb. The rate enhancement was most evident at ascorbate concentrations equivalent to that found in plasma (< 100 μM), suggesting that it might be of benefit in decreasing oxidative stress in vivo. The most promising mutant (βT84Y) was stable with no increase in autoxidation or heme loss. A decrease in membrane damage following Hb addition to HEK cells correlated with the ability of βT84Y to maintain the protein in its oxygenated form. When PEGylated and injected into mice, βT84Y was shown to have an increased vascular half time compared to wild type PEGylated Hb. βT84Y represents a new class of mutations with the ability to enhance reduction of both ferryl and ferric Hb, and thus has potential to decrease adverse side effects as one component of a final HBOC product.
Collapse
Affiliation(s)
- Chris E Cooper
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, United Kingdom.
| | - Gary G A Silkstone
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, United Kingdom
| | - Michelle Simons
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, United Kingdom
| | - Badri Rajagopal
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, United Kingdom
| | - Natalie Syrett
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, United Kingdom
| | - Thoufieq Shaik
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, United Kingdom
| | - Svetlana Gretton
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, United Kingdom
| | - Elizabeth Welbourn
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, United Kingdom
| | - Leif Bülow
- Pure and Applied Biochemistry, Department of Chemistry, Lund University, Box 124, 221 00 Lund, Sweden
| | - Nélida Leiva Eriksson
- Pure and Applied Biochemistry, Department of Chemistry, Lund University, Box 124, 221 00 Lund, Sweden
| | - Luca Ronda
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Andrea Mozzarelli
- Department of Food and Drug, University of Parma, Parma, Italy; Institute of Biophysics, National Research Council (CNR), Pisa, Italy
| | - Andras Eke
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Domokos Mathe
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Brandon J Reeder
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, United Kingdom.
| |
Collapse
|
13
|
Tsakanova G, Arakelova E, Ayvazyan V, Ayvazyan A, Tatikyan S, Aroutiounian R, Dalyan Y, Haroutiunian S, Tsakanov V, Arakelyan A. Two-photon microscopy imaging of oxidative stress in human living erythrocytes. BIOMEDICAL OPTICS EXPRESS 2017; 8:5834-5846. [PMID: 29296508 PMCID: PMC5745123 DOI: 10.1364/boe.8.005834] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/05/2017] [Accepted: 11/20/2017] [Indexed: 06/07/2023]
Abstract
Red blood cells (RBCs) are known to be the most suitable cells to study oxidative stress, which is implicated in the etiopathology of many human diseases. The goal of the current study was to develop a new effective approach for assessing oxidative stress in human living RBCs using two-photon microscopy. To mimic oxidative stress in human living RBCs, an in vitro model was generated followed by two-photon microscopy imaging. The results revealed that oxidative stress is clearly visible on the two-photon microscopy images of RBCs under oxidative stress compared to no fluorescence in controls (P<0.0001). This novel approach for oxidative stress investigation in human living RBCs could efficiently be applied in clinical research and antioxidant compounds testing.
Collapse
Affiliation(s)
- Gohar Tsakanova
- Institute of Molecular Biology of National Academy of Sciences of Republic of Armenia, 7 Hasratyan str., 0014, Yerevan, Armenia
- CANDLE Synchrotron Research Institute, 31 Acharyan str., 0040, Yerevan, Armenia
| | - Elina Arakelova
- Institute of Molecular Biology of National Academy of Sciences of Republic of Armenia, 7 Hasratyan str., 0014, Yerevan, Armenia
| | - Violetta Ayvazyan
- Institute of Molecular Biology of National Academy of Sciences of Republic of Armenia, 7 Hasratyan str., 0014, Yerevan, Armenia
| | - Anna Ayvazyan
- CANDLE Synchrotron Research Institute, 31 Acharyan str., 0040, Yerevan, Armenia
| | - Stepan Tatikyan
- CANDLE Synchrotron Research Institute, 31 Acharyan str., 0040, Yerevan, Armenia
| | - Rouben Aroutiounian
- Institute of Molecular Biology of National Academy of Sciences of Republic of Armenia, 7 Hasratyan str., 0014, Yerevan, Armenia
- Yerevan State University, 1 Alex Manoogian str., 0025, Yerevan, Armenia
| | - Yeva Dalyan
- Yerevan State University, 1 Alex Manoogian str., 0025, Yerevan, Armenia
| | | | - Vasili Tsakanov
- CANDLE Synchrotron Research Institute, 31 Acharyan str., 0040, Yerevan, Armenia
| | - Arsen Arakelyan
- Institute of Molecular Biology of National Academy of Sciences of Republic of Armenia, 7 Hasratyan str., 0014, Yerevan, Armenia
| |
Collapse
|
14
|
Gonçalves D, Ferreira P, Baldwin E, Cesar T. Health Benefits of Orange Juice and Citrus Flavonoids. PHYTOCHEMICALS IN CITRUS 2017. [DOI: 10.1201/9781315369068-10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Chemical Transport Knockout for Oxidized Vitamin C, Dehydroascorbic Acid, Reveals Its Functions in vivo. EBioMedicine 2017; 23:125-135. [PMID: 28851583 PMCID: PMC5605377 DOI: 10.1016/j.ebiom.2017.08.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 08/15/2017] [Accepted: 08/17/2017] [Indexed: 12/24/2022] Open
Abstract
Despite its transport by glucose transporters (GLUTs) in vitro, it is unknown whether dehydroascorbic acid (oxidized vitamin C, DHA) has any in vivo function. To investigate, we created a chemical transport knockout model using the vitamin C analog 6-bromo-ascorbate. This analog is transported on sodium-dependent vitamin C transporters but its oxidized form, 6-bromo-dehydroascorbic acid, is not transported by GLUTs. Mice (gulo−/−) unable to synthesize ascorbate (vitamin C) were raised on 6-bromo-ascorbate. Despite normal survival, centrifugation of blood produced hemolysis secondary to near absence of red blood cell (RBC) ascorbate/6-bromo-ascorbate. Key findings with clinical implications were that RBCs in vitro transported dehydroascorbic acid but not bromo-dehydroascorbic acid; RBC ascorbate in vivo was obtained only via DHA transport; ascorbate via DHA transport in vivo was necessary for RBC structural integrity; and internal RBC ascorbate was essential to maintain ascorbate plasma concentrations in vitro/in vivo. Red cells in vivo obtain vitamin C (ascorbate) by dehydroascorbic acid transport. Red blood cell ascorbate is necessary to maintain red blood cell structural integrity. Red blood cell ascorbate maintains external plasma ascorbate concentrations in vivo by transmembrane electron transfer.
In animals and humans, it is unknown whether the oxidized form of vitamin C, termed dehydroascorbic acid, has a physiologic purpose. Using a mouse model and a custom-synthesized vitamin C analog, we show that red blood cells obtain their vitamin C by transport of dehydroascorbic acid, instead of vitamin C itself. The transported material is reduced inside and has at least two physiologic functions. One is to maintain structural integrity of red blood cells, and the other is to maintain vitamin C in the liquid part of blood, plasma.
Collapse
|
16
|
Attenuation of Red Blood Cell Storage Lesions with Vitamin C. Antioxidants (Basel) 2017; 6:antiox6030055. [PMID: 28704937 PMCID: PMC5618083 DOI: 10.3390/antiox6030055] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 07/06/2017] [Accepted: 07/08/2017] [Indexed: 12/19/2022] Open
Abstract
Stored red blood cells (RBCs) undergo oxidative stress that induces deleterious metabolic, structural, biochemical, and molecular changes collectively referred to as “storage lesions”. We hypothesized that vitamin C (VitC, reduced or oxidized) would reduce red cell storage lesions, thus prolonging their storage duration. Whole-blood-derived, leuko-reduced, SAGM (saline-adenine-glucose-mannitol)-preserved RBC concentrates were equally divided into four pediatric storage bags and the following additions made: (1) saline (saline); (2) 0.3 mmol/L reduced VitC (Lo VitC); (3) 3 mmol/L reduced VitC (Hi VitC); or (4) 0.3 mmol/L oxidized VitC (dehydroascorbic acid, DHA) as final concentrations. Biochemical and rheological parameters were serially assessed at baseline (prior to supplementation) and Days 7, 21, 42, and 56 for RBC VitC concentration, pH, osmotic fragility by mechanical fragility index, and percent hemolysis, LDH release, glutathione depletion, RBC membrane integrity by scanning electron microscopy, and Western blot for β-spectrin. VitC exposure (reduced and oxidized) significantly increased RBC antioxidant status with varying dynamics and produced trends in reduction in osmotic fragility and increases in membrane integrity. Conclusion: VitC partially protects RBC from oxidative changes during storage. Combining VitC with other antioxidants has the potential to improve long-term storage of RBC.
Collapse
|
17
|
Gonçalves D, Lima C, Ferreira P, Costa P, Costa A, Figueiredo W, Cesar T. Orange juice as dietary source of antioxidants for patients with hepatitis C under antiviral therapy. Food Nutr Res 2017; 61:1296675. [PMID: 28469541 PMCID: PMC5404424 DOI: 10.1080/16546628.2017.1296675] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 01/30/2017] [Indexed: 02/08/2023] Open
Abstract
Background: HCV causes alterations in liver metabolism, resulting in biochemical and nutritional disorders. Supplementation with antioxidants has been suggested to minimize the diseases effects. Objective: This study assessed whether orange juice, a source of citrus flavonoids and vitamin C, may contribute to the treatment of patients with chronic hepatitis C. Design: Anthropometric, hemodynamic, dietary, and biochemical parameters, CRP and liver enzymes were measured in 43 adult patients of both genders who were diagnosed with chronic hepatitis C and were under antiviral therapy. Twenty-three patients were supplemented with orange juice for eight consecutive weeks, while 20 were enrolled as control group. Results: Following regular use of orange juice, no alterations were found in body mass, fat, and waist circumference. The serum levels of total cholesterol, LDL-cholesterol, CRP and parameters of oxidative stress decreased in the orange juice group. Furthermore, the levels of the liver enzyme AST decreased in those who had high levels before the intervention. Conclusion: The orange juice was a convenient food in the diet of patients due to the increase in antioxidant capacity and decreased inflammation and cholesterol in blood serum, in addition to maintaining body mass, which protect against the harmful effects caused by the chronic hepatitis C virus.
Collapse
Affiliation(s)
- Danielle Gonçalves
- Food and Nutrition Department, School of Pharmaceutical Sciences, Universidade Estadual Paulista (UNESP), Araraquara, Brazil
| | - Claudia Lima
- Food and Nutrition Department, School of Pharmaceutical Sciences, Universidade Estadual Paulista (UNESP), Araraquara, Brazil
| | - Paula Ferreira
- Food and Nutrition Department, School of Pharmaceutical Sciences, Universidade Estadual Paulista (UNESP), Araraquara, Brazil
| | - Paulo Costa
- Clinical Analysis Department, School of Pharmaceutical Sciences, Universidade Estadual Paulista (UNESP), Araraquara, Brazil
| | - Angela Costa
- Special Health Service of Araraquara (SESA), Faculty of Public Health, Universidade de Sao Paulo (USP), Araraquara, Brazil
| | - Walter Figueiredo
- Special Health Service of Araraquara (SESA), Faculty of Public Health, Universidade de Sao Paulo (USP), Araraquara, Brazil
| | - Thais Cesar
- Food and Nutrition Department, School of Pharmaceutical Sciences, Universidade Estadual Paulista (UNESP), Araraquara, Brazil
| |
Collapse
|
18
|
Czubak K, Antosik A, Cichon N, Zbikowska HM. Vitamin C and Trolox decrease oxidative stress and hemolysis in cold-stored human red blood cells. Redox Rep 2017; 22:445-450. [PMID: 28277068 DOI: 10.1080/13510002.2017.1289314] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVES To investigate the effects of sodium ascorbate (SA) (5-3125 μM) and a combination of SA and Trolox (25 and 125 μM) on oxidative changes generated in red blood cells (RBCs) followed by up to 20 days refrigerated storage. METHODS RBCs were isolated from CPD-preserved human blood. Percentage of hemolysis and extracellular activity of lactate dehydrogenase (LDH) were measured to assess the RBC membrane integrity. Lipid peroxidation (LPO), glutathione (GSH) and total antioxidant capacity (TAC) were quantified by thiobarbituric acid-reactive substances, Ellman's reagent and 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonate) [Formula: see text]-based assay, respectively. RESULTS SA failed to reduce the storage-induced hemolysis and RBC membrane permeability. Addition of SA resulted in a concentration-independent LPO inhibition and increased TAC. A combination of SA/Trolox supplemented to the RBC medium significantly inhibited hemolysis, LDH leakage, LPO, GSH depletion and enhanced TAC. DISCUSSION The effects of vitamin C action are closely concentration-dependent and may be modulated by a variety of compounds (e.g. Hb degradation products) released from RBCs during the prolonged storage, changing its properties from anti- to pro-oxidative. The two different class antioxidants (SA/Trolox) could possibly cooperate to be good potential RBC storage additives ensuring both antiradical and membrane stabilizing protection.
Collapse
Affiliation(s)
- Kamila Czubak
- a Department of General Biochemistry, Faculty of Biology and Environmental Protection , University of Lodz , Lodz , Poland
| | - Adam Antosik
- a Department of General Biochemistry, Faculty of Biology and Environmental Protection , University of Lodz , Lodz , Poland
| | - Natalia Cichon
- a Department of General Biochemistry, Faculty of Biology and Environmental Protection , University of Lodz , Lodz , Poland
| | - Halina Malgorzata Zbikowska
- a Department of General Biochemistry, Faculty of Biology and Environmental Protection , University of Lodz , Lodz , Poland
| |
Collapse
|
19
|
Bouayed J, Bohn T. Exogenous antioxidants--Double-edged swords in cellular redox state: Health beneficial effects at physiologic doses versus deleterious effects at high doses. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 3:228-37. [PMID: 20972369 PMCID: PMC2952083 DOI: 10.4161/oxim.3.4.12858] [Citation(s) in RCA: 628] [Impact Index Per Article: 69.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The balance between oxidation and antioxidation is believed to be critical in maintaining healthy biological systems. Under physiological conditions, the human antioxidative defense system including e.g., superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione (GSH) and others, allows the elimination of excess reactive oxygen species (ROS) including, among others superoxide anions (O2.-), hydroxyl radicals (OH.), alkoxyl radicals (RO.) and peroxyradicals (ROO.). However, our endogenous antioxidant defense systems are incomplete without exogenous originating reducing compounds such as vitamin C, vitamin E, carotenoids and polyphenols, playing an essential role in many antioxidant mechanisms in living organisms. Therefore, there is continuous demand for exogenous antioxidants in order to prevent oxidative stress, representing a disequilibrium redox state in favor of oxidation. However, high doses of isolated compounds may be toxic, owing to prooxidative effects at high concentrations or their potential to react with beneficial concentrations of ROS normally present at physiological conditions that are required for optimal cellular functioning. This review aims to examine the double-edged effects of dietary originating antioxidants with a focus on the most abundant compounds, especially polyphenols, vitamin C, vitamin E and carotenoids. Different approaches to enrich our body with exogenous antioxidants such as via synthetic antioxidants, diets rich in fruits and vegetables and taking supplements will be reviewed and experimental and epidemiological evidences discussed, highlighting that antioxidants at physiological doses are generally safe, exhibiting interesting health beneficial effects.
Collapse
Affiliation(s)
- Jaouad Bouayed
- Centre de Recherche Public-Gabriel Lippmann; Environment and Agro-Biotechnolgies Department; Nutrition and Toxicology Unit; Belvaux, Luxembourg.
| | - Torsten Bohn
- Centre de Recherche Public-Gabriel Lippmann; Environment and Agro-Biotechnolgies Department; Nutrition and Toxicology Unit; Belvaux, Luxembourg
| |
Collapse
|
20
|
Sen G, Ghosal J, Naskar K, Biswas T. Altered calcium homeostasis and membrane destabilization in erythrocytes of hamsters infected withLeishmania donovani. ANNALS OF TROPICAL MEDICINE AND PARASITOLOGY 2016. [DOI: 10.1080/00034983.2000.11813512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
21
|
Is GERD a Factor in Osteonecrosis of the Jaw? Evidence of Pathology Linked to G6PD Deficiency and Sulfomucins. DISEASE MARKERS 2016; 2016:8376979. [PMID: 27773962 PMCID: PMC5059643 DOI: 10.1155/2016/8376979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 05/18/2016] [Accepted: 07/20/2016] [Indexed: 11/30/2022]
Abstract
Osteonecrosis of the jaw (ONJ), a rare side effect of bisphosphonate therapy, is a debilitating disorder with a poorly understood etiology. FDA's Adverse Event Reporting System (FAERS) provides the opportunity to investigate this disease. Our goals were to analyze FAERS data to discover possible relationships between ONJ and specific conditions and drugs and then to consult the scientific literature to deduce biological explanations. Our methodology revealed a very strong association between gastroesophageal reflux and bisphosphonate-induced ONJ, suggesting acidosis as a key factor. Overgrowth of acidophilic species, particularly Streptococcus mutans, in the oral microbiome in the context of insufficient acid buffering due to impaired salivary glands maintains the low pH that sustains damage to the mucosa. Significant associations between ONJ and adrenal insufficiency, vitamin C deficiency, and Sjögren's syndrome were found. Glucose 6 phosphate dehydrogenase (G6PD) deficiency can explain much of the pathology. An inability to maintain vitamin C and other antioxidants in the reduced form leads to vascular oxidative damage and impaired adrenal function. Thus, pathogen-induced acidosis, hypoxia, and insufficient antioxidant defenses together induce ONJ. G6PD deficiency and adrenal insufficiency are underlying factors. Impaired supply of adrenal-derived sulfated sterols such as DHEA sulfate may drive the disease process.
Collapse
|
22
|
Zhang ZZ, Lee EE, Sudderth J, Yue Y, Zia A, Glass D, Deberardinis RJ, Wang RC. Glutathione Depletion, Pentose Phosphate Pathway Activation, and Hemolysis in Erythrocytes Protecting Cancer Cells from Vitamin C-induced Oxidative Stress. J Biol Chem 2016; 291:22861-22867. [PMID: 27660392 DOI: 10.1074/jbc.c116.748848] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Indexed: 01/02/2023] Open
Abstract
The discovery that oxidized vitamin C, dehydroascorbate (DHA), can induce oxidative stress and cell death in cancer cells has rekindled interest in the use of high dose vitamin C (VC) as a cancer therapy. However, high dose VC has shown limited efficacy in clinical trials, possibly due to the decreased bioavailability of oral VC. Because human erythrocytes express high levels of Glut1, take up DHA, and reduce it to VC, we tested how erythrocytes might impact high dose VC therapies. Cancer cells are protected from VC-mediated cell death when co-cultured with physiologically relevant numbers of erythrocytes. Pharmacological doses of VC induce oxidative stress, GSH depletion, and increased glucose flux through the oxidative pentose phosphate pathway (PPP) in erythrocytes. Incubation of erythrocytes with VC induced hemolysis, which was exacerbated in erythrocytes from glucose-6-phosphate dehydrogenase (G6PD) patients and rescued by antioxidants. Thus, erythrocytes protect cancer cells from VC-induced oxidative stress and undergo hemolysis in vitro, despite activation of the PPP. These results have implications on the use of high dose VC in ongoing clinical trials and highlight the importance of the PPP in the response to oxidative stress.
Collapse
Affiliation(s)
| | | | - Jessica Sudderth
- the Children's Medical Center Research Institute, the University of Texas Southwestern Medical Center, Dallas, Texas 75390, and
| | | | - Ayesha Zia
- Pediatrics, the University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Donald Glass
- From the Departments of Dermatology and.,the Eugene McDermott Center for Human Growth and Development, the University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Ralph J Deberardinis
- the Children's Medical Center Research Institute, the University of Texas Southwestern Medical Center, Dallas, Texas 75390, and.,Pediatrics, the University of Texas Southwestern Medical Center, Dallas, Texas 75390.,the Eugene McDermott Center for Human Growth and Development, the University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | | |
Collapse
|
23
|
Padayatty SJ, Levine M. Vitamin C: the known and the unknown and Goldilocks. Oral Dis 2016; 22:463-93. [PMID: 26808119 PMCID: PMC4959991 DOI: 10.1111/odi.12446] [Citation(s) in RCA: 415] [Impact Index Per Article: 46.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 01/08/2016] [Indexed: 12/11/2022]
Abstract
Vitamin C (Ascorbic Acid), the antiscorbutic vitamin, cannot be synthesized by humans and other primates, and has to be obtained from diet. Ascorbic acid is an electron donor and acts as a cofactor for fifteen mammalian enzymes. Two sodium-dependent transporters are specific for ascorbic acid, and its oxidation product dehydroascorbic acid is transported by glucose transporters. Ascorbic acid is differentially accumulated by most tissues and body fluids. Plasma and tissue vitamin C concentrations are dependent on amount consumed, bioavailability, renal excretion, and utilization. To be biologically meaningful or to be clinically relevant, in vitro and in vivo studies of vitamin C actions have to take into account physiologic concentrations of the vitamin. In this paper, we review vitamin C physiology; the many phenomena involving vitamin C where new knowledge has accrued or where understanding remains limited; raise questions about the vitamin that remain to be answered; and explore lines of investigations that are likely to be fruitful.
Collapse
Affiliation(s)
- S J Padayatty
- Molecular and Clinical Nutrition Section, Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - M Levine
- Molecular and Clinical Nutrition Section, Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
24
|
Setup and validation of a convenient sampling procedure to promptly and effectively stabilize vitamin C in blood and plasma specimens stored at routine temperatures. Anal Bioanal Chem 2016; 408:4723-31. [PMID: 27113458 DOI: 10.1007/s00216-016-9560-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 04/08/2016] [Indexed: 10/21/2022]
Abstract
Vitamin C (ascorbic acid, AA) is very labile in nature and decays quickly after blood withdrawal. To ensure AA stability, the current procedure prescribes immediate plasma acidification followed by sample storage at ultra-low temperature. The aim of this study was to set up a pre-analytical procedure to promptly stabilize AA at routine temperatures while minimizing both specimen manipulation and instrumental requirement. Blood from healthy subjects was collected in lithium-heparin gel separator tubes containing or not different reducing agents (dithioerythritol, tris(2-carboxyethyl)phosphine, n-acetylcysteine and sodium thiosulfate). Plasma AA stability during blood and plasma storage at routine temperatures was evaluated. Plasma AA concentration was assayed by RP-HPLC-UV under ion suppression conditions. Each of the reductants tested was able to slow down the ex vivo degradation of plasma AA; dithioerythritol was the most effective. Five to 10 mmol/L dithioerythritol did not interfere with blood separation and allowed plasma AA to be stabilized up to 6 h, 24 h and 60 days at room temperature, +4 °C and -25 °C, respectively. The method worked well even in case of delayed blood separation and/or incomplete vacutainer filling. The procedure is feasible and reliable. Of special usefulness in clinical and epidemiological studies, prompt plasma manipulation after blood withdrawal or special storage equipments are not required. Graphical Abstract Collecting blood in tubes containing a reducing agent is a feasible method to promptly and effectively stabilize plasma vitamin C at routine temperature.
Collapse
|
25
|
Shaghaghi MA, Kloss O, Eck P. Genetic Variation in Human Vitamin C Transporter Genes in Common Complex Diseases. Adv Nutr 2016; 7:287-98. [PMID: 26980812 PMCID: PMC4785466 DOI: 10.3945/an.115.009225] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Adequate plasma, cellular, and tissue vitamin C concentrations are required for maintaining optimal health through suppression of oxidative stress and optimizing functions of certain enzymes that require vitamin C as a cofactor. Polymorphisms in the vitamin C transporter genes, compromising genes encoding sodium-dependent ascorbate transport proteins, and also genes encoding facilitative transporters of dehydroascorbic acid, are associated with plasma and tissue cellular ascorbate status and hence cellular redox balance. This review summarizes our current knowledge of the links between variations in vitamin C transporter genes and common chronic diseases. We conclude that emerging genetic knowledge has a good likelihood of defining future personalized dietary recommendations and interventions; however, further validations through biological studies as well as controlled dietary trials are required to identify predictive and actionable genetic biomarkers. We further advocate the need to consider genetic variation of vitamin C transporters in future clinical and epidemiologic studies on common complex diseases.
Collapse
Affiliation(s)
| | | | - Peter Eck
- Human Nutritional Sciences, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
26
|
Tu H, Li H, Wang Y, Niyyati M, Wang Y, Leshin J, Levine M. Low Red Blood Cell Vitamin C Concentrations Induce Red Blood Cell Fragility: A Link to Diabetes Via Glucose, Glucose Transporters, and Dehydroascorbic Acid. EBioMedicine 2015; 2:1735-50. [PMID: 26870799 PMCID: PMC4740302 DOI: 10.1016/j.ebiom.2015.09.049] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 09/25/2015] [Accepted: 09/28/2015] [Indexed: 12/11/2022] Open
Abstract
Strategies to prevent diabetic microvascular angiopathy focus on the vascular endothelium. Because red blood cells (RBCs) are less deformable in diabetes, we explored an original concept linking decreased RBC deformability to RBC ascorbate and hyperglycemia. We characterized ascorbate concentrations from human and mouse RBCs and plasma, and showed an inverse relationship between RBC ascorbate concentrations and deformability, measured by osmotic fragility. RBCs from ascorbate deficient mice were osmotically sensitive, appeared as spherocytes, and had decreased β-spectrin. These aberrancies reversed with ascorbate repletion in vivo. Under physiologic conditions, only ascorbate's oxidation product dehydroascorbic acid (DHA), a substrate for facilitated glucose transporters, was transported into mouse and human RBCs, with immediate intracellular reduction to ascorbate. In vitro, glucose inhibited entry of physiologic concentrations of dehydroascorbic acid into mouse and human RBCs. In vivo, plasma glucose concentrations in normal and diabetic mice and humans were inversely related to respective RBC ascorbate concentrations, as was osmotic fragility. Human RBC β-spectrin declined as diabetes worsened. Taken together, hyperglycemia in diabetes produced lower RBC ascorbate with increased RBC rigidity, a candidate to drive microvascular angiopathy. Because glucose transporter expression, DHA transport, and its inhibition by glucose differed for mouse versus human RBCs, human experimentation is indicated.
Collapse
Key Words
- 3-O-MG, 3-O-methylglucose
- AA, ascorbic acid
- Ascorbic Acid
- DHA, dehydroascorbic acid
- Dehydroascorbic Acid
- Diabetes
- GLUT, facilitated glucose transporter
- Glucose Transport
- Gulo-/-, gulonolactone oxidase knockout mouse unable to synthesize ascorbate
- PBS, phosphate buffered saline
- RBCs, red blood cells
- RIPA, Western blot cell lysis buffer
- Red Blood Cells
- SVCT, sodium-dependent vitamin C transporter
- TCEP, Tris(2-carboxyethyl)phosphine
- WT, wildtype mouse
- β-Spectrin
Collapse
Affiliation(s)
- Hongbin Tu
- Molecular and Clinical Nutrition Section, Digestive Diseases Branch, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIDDK, NIH)
| | - Hongyan Li
- Molecular and Clinical Nutrition Section, Digestive Diseases Branch, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIDDK, NIH)
| | - Yu Wang
- Molecular and Clinical Nutrition Section, Digestive Diseases Branch, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIDDK, NIH)
| | - Mahtab Niyyati
- Molecular and Clinical Nutrition Section, Digestive Diseases Branch, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIDDK, NIH)
| | - Yaohui Wang
- Molecular and Clinical Nutrition Section, Digestive Diseases Branch, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIDDK, NIH)
| | - Jonathan Leshin
- Molecular and Clinical Nutrition Section, Digestive Diseases Branch, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIDDK, NIH)
| | - Mark Levine
- Molecular and Clinical Nutrition Section, Digestive Diseases Branch, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIDDK, NIH)
| |
Collapse
|
27
|
Estep TN. Pharmacokinetics and mechanisms of plasma removal of hemoglobin-based oxygen carriers. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2015; 43:203-15. [PMID: 26024447 DOI: 10.3109/21691401.2015.1047501] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The circulatory persistence, distribution, and metabolism of hemoglobin-based oxygen carriers (HBOCs) is a major determinant of their safety and efficacy. In this communication, published data on the pharmacokinetics and routes of plasma elimination of HBOCs are summarized and evaluated. The circulating half-life of HBOCs is dose-dependent in both animals and humans. Half-life also increases with molecular weight in animals, at least up to the MDa range. The functional half-life of HBOCs is diminished by as much as 40% due to oxidation of the heme group relative to the overall rate of removal of hemoglobin (Hb) from plasma. Kidney excretion of HBOCs is greatly diminished compared to that of unmodified Hb, but the liver remains a primary site of catabolism. Both hepatocytes and Kupffer cells have been implicated in receptor-mediated HBOC uptake. Removal also occurs in the spleen and/or bone marrow and probably at dispersed sites in the endothelium as well. HBOCs extravasate into the lymph at a rate inversely proportional to their molecular weight and are taken up by monocyte/macrophage CD163 receptors, both as free Hb and in complexes with haptoglobin (Hp). The interactions with both Hp and the CD163 receptor are altered by Hb modification. However, monocyte/macrophage uptake may not be a quantitatively important route for the removal of clinically relevant doses of HBOCs. The relative contributions of different removal pathways have yet to be comprehensively determined, particularly in humans.
Collapse
|
28
|
Bocci V, Valacchi G. Nrf2 activation as target to implement therapeutic treatments. Front Chem 2015; 3:4. [PMID: 25699252 PMCID: PMC4313773 DOI: 10.3389/fchem.2015.00004] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 01/12/2015] [Indexed: 12/30/2022] Open
Abstract
A chronic increase of oxidative stress is typical of serious pathologies such as myocardial infarction, stroke, chronic limb ischemia, chronic obstructive pulmonary disease (COPD), type II-diabetes, age-related macular degeneration leads to an epic increase of morbidity and mortality in all countries of the world. The initial inflammation followed by an excessive release of reactive oxygen species (ROS) implies a diffused cellular injury that needs to be corrected by an inducible expression of the innate detoxifying and antioxidant system. The transcription factor Nrf2, when properly activated, is able to restore a redox homeostasis and possibly improve human health.
Collapse
Affiliation(s)
- Velio Bocci
- Department of Biotechnologies, Chemistry and Pharmacy, University of Siena Siena, Italy
| | - Giuseppe Valacchi
- Department of Life Sciences and Biotechnology, University of Ferrara Ferrara, Italy
| |
Collapse
|
29
|
Lane DJR, Richardson DR. The active role of vitamin C in mammalian iron metabolism: much more than just enhanced iron absorption! Free Radic Biol Med 2014; 75:69-83. [PMID: 25048971 DOI: 10.1016/j.freeradbiomed.2014.07.007] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 07/04/2014] [Accepted: 07/08/2014] [Indexed: 01/18/2023]
Abstract
Ascorbate is a cofactor in numerous metabolic reactions. Humans cannot synthesize ascorbate owing to inactivation of the gene encoding the enzyme l-gulono-γ-lactone oxidase, which is essential for ascorbate synthesis. Accumulating evidence strongly suggests that in addition to the known ability of dietary ascorbate to enhance nonheme iron absorption in the gut, ascorbate within mammalian systems can regulate cellular iron uptake and metabolism. Ascorbate modulates iron metabolism by stimulating ferritin synthesis, inhibiting lysosomal ferritin degradation, and decreasing cellular iron efflux. Furthermore, ascorbate cycling across the plasma membrane is responsible for ascorbate-stimulated iron uptake from low-molecular-weight iron-citrate complexes, which are prominent in the plasma of individuals with iron-overload disorders. Importantly, this iron-uptake pathway is of particular relevance to astrocyte brain iron metabolism and tissue iron loading in disorders such as hereditary hemochromatosis and β-thalassemia. Recent evidence also indicates that ascorbate is a novel modulator of the classical transferrin-iron uptake pathway, which provides almost all iron for cellular demands and erythropoiesis under physiological conditions. Ascorbate acts to stimulate transferrin-dependent iron uptake by an intracellular reductive mechanism, strongly suggesting that it may act to stimulate iron mobilization from the endosome. The ability of ascorbate to regulate transferrin iron uptake could help explain the metabolic defect that contributes to ascorbate-deficiency-induced anemia.
Collapse
Affiliation(s)
- Darius J R Lane
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, NSW 2006, Australia.
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
30
|
Parisotto EB, Garlet TR, Cavalli VLDLO, Zamoner A, da Rosa JS, Bastos J, Micke GA, Fröde TS, Pedrosa RC, Wilhelm Filho D. Antioxidant intervention attenuates oxidative stress in children and teenagers with Down syndrome. RESEARCH IN DEVELOPMENTAL DISABILITIES 2014; 35:1228-1236. [PMID: 24685938 DOI: 10.1016/j.ridd.2014.03.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 03/07/2014] [Accepted: 03/07/2014] [Indexed: 06/03/2023]
Abstract
We previously demonstrated that systemic oxidative stress is present in Down syndrome (DS) patients. In the present study we investigated the antioxidant status in the peripheral blood of DS children and teenagers comparing such status before and after an antioxidant supplementation. Oxidative stress biomarkers were evaluated in the blood of DS patients (n=21) before and after a daily antioxidant intervention (vitamin E 400mg, C 500 mg) during 6 months. Healthy children (n=18) without DS were recruited as control group. The activity of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), glutathione S-transferase (GST), gamma-glutamyltransferase (GGT), glucose-6-phosphate dehydrogenase (G6PD) and myeloperoxidase (MPO), as well as the contents of reduced glutathione (GSH), uric acid, vitamin E, thiobarbituric acid reactive substances (TBARS), and protein carbonyls (PC) were measured. Before the antioxidant therapy, DS patients presented decreased GST activity and GSH depletion; elevated SOD, CAT, GR, GGT and MPO activities; increased uric acid levels; while GPx and G6PD activities as well as vitamin E and TBARS levels were unaltered. After the antioxidant supplementation, SOD, CAT, GPx, GR, GGT and MPO activities were downregulated, while TBARS contents were strongly decreased in DS. Also, the antioxidant therapy did not change G6PD and GST activities as well as uric acid and PC levels, while it significantly increased GSH and vitamin E levels in DS patients. Our results clearly demonstrate that the antioxidant intervention with vitamins E and C attenuated the systemic oxidative damage present in DS patients.
Collapse
Affiliation(s)
| | - Thais Regina Garlet
- Department of Ecology and Zoology, Federal University of Santa Catarina, Florianópolis, Brazil
| | | | - Ariane Zamoner
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Julia Salvan da Rosa
- Department of Clinical Analysis, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Juliana Bastos
- Department of Chemistry, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Gustavo Amadeu Micke
- Department of Chemistry, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Tania Silvia Fröde
- Department of Clinical Analysis, Federal University of Santa Catarina, Florianópolis, Brazil
| | | | - Danilo Wilhelm Filho
- Department of Ecology and Zoology, Federal University of Santa Catarina, Florianópolis, Brazil.
| |
Collapse
|
31
|
Sage JM, Carruthers A. Human erythrocytes transport dehydroascorbic acid and sugars using the same transporter complex. Am J Physiol Cell Physiol 2014; 306:C910-7. [PMID: 24598365 DOI: 10.1152/ajpcell.00044.2014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
GLUT1, the primary glucose transport protein in human erythrocytes [red blood cells (RBCs)], also transports oxidized vitamin C [dehydroascorbic acid (DHA)]. A recent study suggests that RBC GLUT1 transports DHA as its primary substrate and that only a subpopulation of GLUT1 transports sugars. This conclusion is based on measurements of cellular glucose and DHA equilibrium spaces, rather than steady-state transport rates. We have characterized RBC transport of DHA and 3-O-methylglucose (3-OMG), a transported, nonmetabolizable sugar. Steady-state 3-OMG and DHA uptake in the absence of intracellular substrate are characterized by similar Vmax (0.16 ± 0.01 and 0.13 ± 0.02 mmol·l(-1)·min(-1), respectively) and apparent Km (1.4 ± 0.2 and 1.6 ± 0.7 mM, respectively). 3-OMG and DHA compete for uptake, with Ki(app) of 0.7 ± 0.4 and 1.1 ± 0.1 mM, respectively. Uptake measurements using RBC inside-out-membrane vesicles demonstrate that 3-OMG and DHA compete at the cytoplasmic surface of the membrane, with Ki(app) of 0.7 ± 0.1 and 0.6 ± 0.1 mM, respectively. Intracellular 3-OMG stimulates unidirectional uptake of 3-OMG and DHA. These findings indicate that DHA and 3-OMG bind at mutually exclusive sites at exo- and endofacial surfaces of GLUT1 and are transported via the same GLUT1 complex.
Collapse
Affiliation(s)
- Jay M Sage
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Anthony Carruthers
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts
| |
Collapse
|
32
|
Cura AJ, Carruthers A. Role of monosaccharide transport proteins in carbohydrate assimilation, distribution, metabolism, and homeostasis. Compr Physiol 2013; 2:863-914. [PMID: 22943001 DOI: 10.1002/cphy.c110024] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The facilitated diffusion of glucose, galactose, fructose, urate, myoinositol, and dehydroascorbicacid in mammals is catalyzed by a family of 14 monosaccharide transport proteins called GLUTs. These transporters may be divided into three classes according to sequence similarity and function/substrate specificity. GLUT1 appears to be highly expressed in glycolytically active cells and has been coopted in vitamin C auxotrophs to maintain the redox state of the blood through transport of dehydroascorbate. Several GLUTs are definitive glucose/galactose transporters, GLUT2 and GLUT5 are physiologically important fructose transporters, GLUT9 appears to be a urate transporter while GLUT13 is a proton/myoinositol cotransporter. The physiologic substrates of some GLUTs remain to be established. The GLUTs are expressed in a tissue specific manner where affinity, specificity, and capacity for substrate transport are paramount for tissue function. Although great strides have been made in characterizing GLUT-catalyzed monosaccharide transport and mapping GLUT membrane topography and determinants of substrate specificity, a unifying model for GLUT structure and function remains elusive. The GLUTs play a major role in carbohydrate homeostasis and the redistribution of sugar-derived carbons among the various organ systems. This is accomplished through a multiplicity of GLUT-dependent glucose sensing and effector mechanisms that regulate monosaccharide ingestion, absorption,distribution, cellular transport and metabolism, and recovery/retention. Glucose transport and metabolism have coevolved in mammals to support cerebral glucose utilization.
Collapse
Affiliation(s)
- Anthony J Cura
- Department of Biochemistry & Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | |
Collapse
|
33
|
Lindblad M, Tveden-Nyborg P, Lykkesfeldt J. Regulation of vitamin C homeostasis during deficiency. Nutrients 2013; 5:2860-79. [PMID: 23892714 PMCID: PMC3775232 DOI: 10.3390/nu5082860] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 07/15/2013] [Accepted: 07/18/2013] [Indexed: 12/31/2022] Open
Abstract
Large cross-sectional population studies confirm that vitamin C deficiency is common in humans, affecting 5%–10% of adults in the industrialized world. Moreover, significant associations between poor vitamin C status and increased morbidity and mortality have consistently been observed. However, the absorption, distribution and elimination kinetics of vitamin C in vivo are highly complex, due to dose-dependent non-linearity, and the specific regulatory mechanisms are not fully understood. Particularly, little is known about how adaptive mechanisms during states of deficiency affect the overall regulation of vitamin C transport in the body. This review discusses mechanisms of vitamin C transport and potential means of regulation with special emphasis on capacity and functional properties, such as differences in the Km of vitamin C transporters in different target tissues, in some instances demonstrating a tissue-specific distribution.
Collapse
Affiliation(s)
- Maiken Lindblad
- Section of Experimental Animal Models, Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, Frederiksberg C 1870, Denmark.
| | | | | |
Collapse
|
34
|
Kamal R, Yadav S, Mathur M, Katariya P. Antiradical efficiency of 20 selected medicinal plants. Nat Prod Res 2012; 26:1054-62. [DOI: 10.1080/14786419.2011.553720] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
35
|
Abstract
It is proposed to discuss how ozonetherapy acts on patients affected by vascular and degenerative diseases. Ozone is a strong oxidant but, if used in small dosages on human blood ex vivo, acts as an acceptable stressor. By instantly reacting with PUFA bound to albumin, ozone is entirely consumed but generates two messengers acting in an early and in a late phase: the former is due to hydrogen peroxide, which triggers biochemical pathways on blood cells and the latter is due to alkenals which are infused into the donor patient. After undergoing a partial catabolism, alkenals enter into a great number of body's cells, where they react with Nrf2-Keap1 protein: the transfer of activated Nrf2 into the nucleus and its binding to antioxidant response element (ARE) is the crucial event able to upregulate the synthesis of antioxidant proteins, phase II enzymes and HO-1. With the progress of ozonetherapy, these protective enzymes are able to reverse the oxidative stress induced by chronic inflammation. Consequently, the repetition of graduated stresses induces a multiform adaptive response able to block the progress of the disease and to improve the quality of life.
Collapse
Affiliation(s)
- Velio Bocci
- Department of Physiology, University of Siena, Italy.
| |
Collapse
|
36
|
Li H, Tu H, Wang Y, Levine M. Vitamin C in mouse and human red blood cells: an HPLC assay. Anal Biochem 2012; 426:109-17. [PMID: 22522059 DOI: 10.1016/j.ab.2012.04.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 03/22/2012] [Accepted: 04/06/2012] [Indexed: 11/27/2022]
Abstract
Although vitamin C (ascorbate) is present in whole blood, measurements in red blood cells (RBCs) are problematic because of interference, instability, limited sensitivity, and sample volume requirements. We describe a new technique using HPLC with coulometric electrochemical detection for ascorbate measurement in RBCs of humans, wild-type mice, and mice unable to synthesize ascorbate. Exogenously added ascorbate was fully recovered even when endogenous RBC ascorbate was below the detection threshold (25 nM). Twenty microliters of whole blood or 10 μl of packed RBCs was sufficient for assay. RBC ascorbate was stable for 24h from whole-blood samples at 4°C. Processed, stored samples were stable for >1 month at -80°C. Unlike other tissues, ascorbate concentrations in human and mouse RBCs were linear in relation to plasma concentrations (R=0.8 and 0.9, respectively). In healthy humans, RBC ascorbate concentrations were 9-57 μM, corresponding to ascorbate plasma concentrations of 15-90 μM. Mouse data were similar. In human blood stored as if for transfusion, initial RBC ascorbate concentrations varied approximately sevenfold and decreased 50% after 6 weeks of storage under clinical conditions. With this assay, it becomes possible for the first time to characterize ascorbate function in relation to endogenous concentrations in RBCs.
Collapse
Affiliation(s)
- Hongyan Li
- Molecular and Clinical Nutrition Section, Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1372, USA
| | | | | | | |
Collapse
|
37
|
Pandey KB, Rizvi SI. Upregulation of erythrocyte ascorbate free radical reductase by tea catechins: Correlation with their antioxidant properties. Food Res Int 2012. [DOI: 10.1016/j.foodres.2011.11.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
38
|
Sagai M, Bocci V. Mechanisms of Action Involved in Ozone Therapy: Is healing induced via a mild oxidative stress? Med Gas Res 2011; 1:29. [PMID: 22185664 PMCID: PMC3298518 DOI: 10.1186/2045-9912-1-29] [Citation(s) in RCA: 193] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 12/20/2011] [Indexed: 01/06/2023] Open
Abstract
The potential mechanisms of action of ozone therapy are reviewed in this paper. The therapeutic efficacy of ozone therapy may be partly due the controlled and moderate oxidative stress produced by the reactions of ozone with several biological components. The line between effectiveness and toxicity of ozone may be dependent on the strength of the oxidative stress. As with exercise, it is well known that moderate exercise is good for health, whereas excessive exercise is not.Severe oxidative stress activates nuclear transcriptional factor kappa B (NFκB), resulting in an inflammatory response and tissue injury via the production of COX2, PGE2, and cytokines. However, moderate oxidative stress activates another nuclear transcriptional factor, nuclear factor-erythroid 2-related factor 2 (Nrf2). Nrf2 then induces the transcription of antioxidant response elements (ARE). Transcription of ARE results in the production of numerous antioxidant enzymes, such as SOD, GPx, glutathione-s-transferase(GSTr), catalase (CAT), heme-oxygenase-1 (HO-1), NADPH-quinone-oxidoreductase (NQO-1), phase II enzymes of drug metabolism and heat shock proteins (HSP). Both free antioxidants and anti-oxidative enzymes not only protect cells from oxidation and inflammation but they may be able to reverse the chronic oxidative stress. Based on these observations, ozone therapy may also activate Nrf2 via moderate oxidative stress, and suppress NFκB and inflammatory responses. Furthermore, activation of Nrf2 results in protection against neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases. Mild immune responses are induced via other nuclear transcriptional factors, such as nuclear factor of activated T-cells (NFAT) and activated protein-1 (AP-1).Additionally, the effectiveness of ozone therapy in vascular diseases may also be explained by the activation of another nuclear transcriptional factor, hypoxia inducible factor-1α (HIF-1a), which is also induced via moderate oxidative stress. Recently these concepts have become widely accepted. The versatility of ozone in treating vascular and degenerative diseases as well as skin lesions, hernial disc and primary root carious lesions in children is emphasized. Further researches able to elucidate whether the mechanisms of action of ozone therapy involve nuclear transcription factors, such as Nrf2, NFAT, AP-1, and HIF-1α are warranted.
Collapse
Affiliation(s)
- Masaru Sagai
- Department of Physiology, Viale A, Moro 2, 53100, University of Siena, Italy.
| | | |
Collapse
|
39
|
Mitozo PA, de Souza LF, Loch-Neckel G, Flesch S, Maris AF, Figueiredo CP, Dos Santos ARS, Farina M, Dafre AL. A study of the relative importance of the peroxiredoxin-, catalase-, and glutathione-dependent systems in neural peroxide metabolism. Free Radic Biol Med 2011; 51:69-77. [PMID: 21440059 DOI: 10.1016/j.freeradbiomed.2011.03.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 03/09/2011] [Accepted: 03/11/2011] [Indexed: 01/01/2023]
Abstract
Cells are endowed with several overlapping peroxide-degrading systems whose relative importance is a matter of debate. In this study, three different sources of neural cells (rat hippocampal slices, rat C6 glioma cells, and mouse N2a neuroblastoma cells) were used as models to understand the relative contributions of individual peroxide-degrading systems. After a pretreatment (30 min) with specific inhibitors, each system was challenged with either H₂O₂ or cumene hydroperoxide (CuOOH), both at 100 μM. Hippocampal slices, C6 cells, and N2a cells showed a decrease in the H₂O₂ decomposition rate (23-28%) by a pretreatment with the catalase inhibitor aminotriazole. The inhibition of glutathione reductase (GR) by BCNU (1,3-bis(2-chloroethyl)-1-nitrosourea) significantly decreased H₂O₂ and CuOOH decomposition rates (31-77%). Inhibition of catalase was not as effective as BCNU at decreasing cell viability (MTT assay) and cell permeability or at increasing DNA damage (comet test). Impairing the thioredoxin (Trx)-dependent peroxiredoxin (Prx) recycling by thioredoxin reductase (TrxR) inhibition with auranofin neither potentiated peroxide toxicity nor decreased the peroxide-decomposition rate. The results indicate that neural peroxidatic systems depending on Trx/TrxR for recycling are not as important as those depending on GSH/GR. Dimer formation, which leads to Prx2 inactivation, was observed in hippocampal slices and N2a cells treated with H₂O₂, but not in C6 cells. However, Prx-SO₃ formation, another form of Prx inactivation, was observed in all neural cell types tested, indicating that redox-mediated signaling pathways can be modulated in neural cells. These differences in Prx2 dimerization suggest specific redox regulation mechanisms in glia-derived (C6) compared to neuron-derived (N2a) cells and hippocampal slices.
Collapse
Affiliation(s)
- Péricles Arruda Mitozo
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Sato Y, Ikeda M, Ito T, Tomita T, Yokotani K, Murata M, Umegaki K. Ascorbic Acid Levels and Neutrophil Superoxide Production in Blood of Pre-, Early and Late Hypertensive Stroke-Prone Spontaneously Hypertensive Rats. Clin Exp Hypertens 2011; 33:397-403. [DOI: 10.3109/10641963.2010.549268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
41
|
Bocci VA, Zanardi I, Travagli V. Ozone acting on human blood yields a hormetic dose-response relationship. J Transl Med 2011; 9:66. [PMID: 21575276 PMCID: PMC3125221 DOI: 10.1186/1479-5876-9-66] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 05/17/2011] [Indexed: 12/24/2022] Open
Abstract
The aim of this paper is to analyze why ozone can be medically useful when it dissolves in blood or in other biological fluids. In reviewing a number of clinical studies performed in Peripheral Arterial Diseases (PAD) during the last decades, it has been possible to confirm the long-held view that the inverted U-shaped curve, typical of the hormesis concept, is suitable to represent the therapeutic activity exerted by the so-called ozonated autohemotherapy. The quantitative and qualitative aspects of human blood ozonation have been also critically reviewed in regard to the biological, therapeutic and safety of ozone. It is hoped that this gas, although toxic for the pulmonary system during prolonged inhalation, will be soon recognized as a useful agent in oxidative-stress related diseases, joining other medical gases recently thought to be of therapeutic importance. Finally, the elucidation of the mechanisms of action of ozone as well as the obtained results in PAD may encourage clinical scientists to evaluate ozone therapy in vascular diseases in comparison to the current therapies.
Collapse
Affiliation(s)
- Velio A Bocci
- Dipartimento di Fisiologia, Università degli Studi di Siena, Viale Aldo Moro, 2, 53100, Siena, Italy.
| | | | | |
Collapse
|
42
|
Bocci V, Zanardi I, Travagli V. Oxygen/ozone as a medical gas mixture. A critical evaluation of the various methods clarifies positive and negative aspects. Med Gas Res 2011; 1:6. [PMID: 22146387 PMCID: PMC3231820 DOI: 10.1186/2045-9912-1-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 04/28/2011] [Indexed: 01/05/2023] Open
Abstract
Besides oxygen, several other gases such as NO, CO, H2, H2S, Xe and O3 have come to age over the past few years. With regards to O3, its mechanisms of action in medicine have been clarified during the last two decades so that now a comprehensive framework for understanding and recommending ozone therapy in various pathologies is available. O3 used within the determined therapeutic window is absolutely safe and more effective than golden standard medications in numerous pathologies, like vascular diseases. However, ozone therapy is mostly in practitioners' hands and some recent developments for increasing cost effectiveness and speed of treatment are neither standardized, nor evaluated toxicologically. Hence, the aim of this article is to emphasize the need to objectively assess the pros and cons of oxygen/ozone as a medical gas mixture in the hope that ozone therapy will be accepted by orthodox medicine in the near future.
Collapse
Affiliation(s)
- Velio Bocci
- Dipartimento di Fisiologia, Università degli Studi di Siena, Viale Aldo Moro, 2 - 53100 Siena, Italy.
| | | | | |
Collapse
|
43
|
Abstract
Vitamin C functions in enzyme activation, oxidative stress reduction, and immune function. There is considerable evidence that vitamin C protects against respiratory tract infections and reduces risk for cardiovascular disease and some cancers. Current trials are examining the efficacy of intravenous vitamin C as cancer therapy. Many experts believe that the recommended intakes for vitamin C (45 to 90 mg daily) are several orders of magnitude too low to support optimal vitamin C functionality. Also, there is a misperception that vitamin C deficiency disease (scurvy) is largely historical and rarely observed in developed nations. Physical symptoms of scurvy include swelling of the lower extremities, bleeding gums, fatigue, and hemorrhaging, as well as psychological problems, including depression, hysteria, and social introversion. The long-term safety of vitamin C supplementation seems evident as large investigations have noted reduced risk of mortality in vitamin C supplementing populations and in those with elevated plasma vitamin C concentrations.
Collapse
|
44
|
|
45
|
Babaev VR, Li L, Shah S, Fazio S, Linton MF, May JM. Combined vitamin C and vitamin E deficiency worsens early atherosclerosis in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 2010; 30:1751-7. [PMID: 20558818 PMCID: PMC2924448 DOI: 10.1161/atvbaha.110.209502] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE To assess the role of combined deficiencies of vitamins C and E on the earliest stages of atherosclerosis (an inflammatory condition associated with oxidative stress), 4 combinations of vitamin supplementation (low C/low E, low C/high E, high C/low E, and high C/high E) were studied in atherosclerosis-prone apolipoprotein E-deficient mice also unable to synthesize their own vitamin C (gulonolactone oxidase(-/-)); and to evaluate the effect of a more severe depletion of vitamin C alone in a second experiment using gulonolactone oxidase(-/-) mice carrying the hemizygous deletion of SVCT2 (the vitamin C transporter). METHODS AND RESULTS After 8 weeks of a high-fat diet (16% lard and 0.2% cholesterol), atherosclerosis developed in the aortic sinus areas of mice in all diet groups. Each vitamin-deficient diet significantly decreased liver and brain contents of the corresponding vitamin. Combined deficiency of both vitamins increased lipid peroxidation, doubled plaque size, and increased plaque macrophage content by 2- to 3-fold in male mice, although only plaque macrophage content was increased in female mice. A more severe deficiency of vitamin C in gulonolactone oxidase(-/-) mice with defective cellular uptake of vitamin C increased both oxidative stress and atherosclerosis in apolipoprotein E(-/-) mice compared with littermates receiving a diet replete in vitamin C, again most clearly in males. CONCLUSIONS Combined deficiencies of vitamins E and C are required to worsen early atherosclerosis in an apolipoprotein E-deficient mouse model. However, a more severe cellular deficiency of vitamin C alone promotes atherosclerosis when vitamin E is replete.
Collapse
Affiliation(s)
- Vladimir R Babaev
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232-0475, USA
| | | | | | | | | | | |
Collapse
|
46
|
Alonso V, Linares V, Bellés M, Albina ML, Pujol A, Domingo JL, Sánchez DJ. Effects of BDE-99 on hormone homeostasis and biochemical parameters in adult male rats. Food Chem Toxicol 2010; 48:2206-11. [DOI: 10.1016/j.fct.2010.05.048] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 05/11/2010] [Accepted: 05/13/2010] [Indexed: 11/28/2022]
|
47
|
May JM, Li L, Qu ZC. Oxidized LDL up-regulates the ascorbic acid transporter SVCT2 in endothelial cells. Mol Cell Biochem 2010; 343:217-22. [PMID: 20549544 DOI: 10.1007/s11010-010-0516-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Accepted: 06/05/2010] [Indexed: 11/25/2022]
Abstract
Endothelial dysfunction is an early manifestation of atherosclerosis caused in part by oxidized LDL (oxLDL). Since vitamin C, or ascorbic acid, prevents several aspects of endothelial dysfunction, the effects of oxLDL on oxidative stress and regulation of the ascorbate transporter, SVCT2, were studied in cultured EA.hy926 endothelial cells. Cells cultured for 18 h with 0.2 mg/ml oxLDL showed increased lipid peroxidation that was prevented by a single addition of 0.25 mM ascorbate at the beginning of the incubation. This protection caused a decrease in intracellular ascorbate, but no change in the cell content of GSH. In the absence of ascorbate, oxLDL increased SVCT2 protein and function during 18 h in culture. Although culture of the cells with ascorbate did not affect SVCT2 protein expression, the oxLDL-induced increase in SVCT2 protein expression was prevented by ascorbate. These results suggest that up-regulation of endothelial cell SVCT2 expression and function may help to maintain intracellular ascorbate during oxLDL-induced oxidative stress, and that ascorbate in turn can prevent this effect.
Collapse
Affiliation(s)
- James M May
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232-0475, USA.
| | | | | |
Collapse
|
48
|
Wang W, Xiong W, Zhu Y, Xu H, Yang X. Protective effect of PEGylation against poly(amidoamine) dendrimer-induced hemolysis of human red blood cells. J Biomed Mater Res B Appl Biomater 2010; 93:59-64. [PMID: 20186802 DOI: 10.1002/jbm.b.31558] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Poly(amidoamine) (PAMAM) dendrimers are widely used in medical applications. However, dendrimers bearing positively charged surface groups are prone to destabilize cell membrane and cause cell lysis. The lytic effect of dendrimers on red blood cells (RBCs) namely hemolysis is extremely dangerous when administered in vivo. To diminish the hematologic toxicity, we modified PAMAM dendrimers with poly(ethylene glycol) (PEG) of three molecular weights (2k, 5k, and 20k). The protective effect of PEGylation against PAMAM dendrimer-induced hemolysis was studied. RBCs morphology and surface structure were analyzed by optical microscopy (OM) and atomic force microscopy (AFM). The results indicated that PAMAM and PEG-2k modified dendrimers induced hemolysis at 0.1 and 0.5 mg/mL respectively, whereas PEG-5k and PEG-20k modified dendrimers showed no significant difference in hemolysis compared with control even at 5 mg/mL. OM and AFM investigation indicated PAMAM and PEG-2k modified dendrimers caused RBCs aggregation and lysis. However, no changes were observed in the overall shape of RBCs treated with PEG-5k and PEG-20k modified dendrimers. The surface roughness of RBCs treated with PEGylated dendrimers were far lower than that of RBCs treated with PAMAM dendrimers. This study demonstrated that hemocompatibility of PAMAM dendrimers could be greatly enhanced by PEGylation.
Collapse
Affiliation(s)
- Wei Wang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | | | | | | | | |
Collapse
|
49
|
Corti A, Casini AF, Pompella A. Cellular pathways for transport and efflux of ascorbate and dehydroascorbate. Arch Biochem Biophys 2010; 500:107-15. [PMID: 20494648 DOI: 10.1016/j.abb.2010.05.014] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 05/13/2010] [Accepted: 05/14/2010] [Indexed: 11/17/2022]
Abstract
The mechanisms allowing the cellular transport of ascorbic acid represent a primary aspect for the understanding of the roles played by this vitamin in pathophysiology. Considerable research effort has been spent in the field, on several animal models and different cell types. Several mechanisms have been described to date, mediating the movements of different redox forms of ascorbic acid across cell membranes. Vitamin C can enter cells both in its reduced and oxidized form, ascorbic acid (AA) and dehydroascorbate (DHA), utilizing respectively sodium-dependent transporters (SVCT) or glucose transporters (GLUT). Modulation of SVCT expression and function has been described by cytokines, steroids and post-translational protein modification. Cellular uptake of DHA is followed by its intracellular reduction to AA by several enzymatic and non-enzymatic systems. Efflux of vitamin C has been also described in a number of cell types and different pathophysiological functions were proposed for this phenomenon, in dependence of the cell model studied. Cellular efflux of AA is mediated through volume-sensitive (VSOAC) and Ca(2+)-dependent anion channels, gap-junction hemichannels, exocytosis of secretory vesicles and possibly through homo- and hetero-exchange systems at the plasma membrane level. Altogether, available data suggest that cellular efflux of ascorbic acid - besides its uptake - should be taken into account when evaluating the cellular homeostasis and functions of this important vitamin.
Collapse
Affiliation(s)
- Alessandro Corti
- Dipartimento di Patologia Sperimentale, Università di Pisa, Italy.
| | | | | |
Collapse
|
50
|
Bocci V, Valacchi G, Rossi R, Giustarini D, Paccagnini E, Pucci AM, Simplicio PD. Studies on the biological effects of ozone: 9. Effects of ozone on human platelets. Platelets 2010. [DOI: 10.1080/09537109909169172] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|