1
|
Soto NN, Gaspar P, Bacci A. Not Just a Mood Disorder─Is Depression a Neurodevelopmental, Cognitive Disorder? Focus on Prefronto-Thalamic Circuits. ACS Chem Neurosci 2024; 15:1611-1618. [PMID: 38580316 PMCID: PMC11027097 DOI: 10.1021/acschemneuro.3c00828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 04/07/2024] Open
Abstract
Depression is one of the most burdensome psychiatric disorders, affecting hundreds of millions of people worldwide. The disease is characterized not only by severe emotional and affective impairments, but also by disturbed vegetative and cognitive functions. Although many candidate mechanisms have been proposed to cause the disease, the pathophysiology of cognitive impairments in depression remains unclear. In this article, we aim to assess the link between cognitive alterations in depression and possible developmental changes in neuronal circuit wiring during critical periods of susceptibility. We review the existing literature and propose a role of serotonin signaling during development in shaping the functional states of prefrontal neuronal circuits and prefronto-thalamic loops. We discuss how early life insults affecting the serotonergic system could be important in the alterations of these local and long-range circuits, thus favoring the emergence of neurodevelopmental disorders, such as depression.
Collapse
Affiliation(s)
- Nina Nitzan Soto
- ICM−Paris
Brain Institute, CNRS, INSERM, Sorbonne
Université, 47 Boulevard de l’Hopital, 75013 Paris, France
| | - Patricia Gaspar
- ICM−Paris
Brain Institute, CNRS, INSERM, Sorbonne
Université, 47 Boulevard de l’Hopital, 75013 Paris, France
| | - Alberto Bacci
- ICM−Paris
Brain Institute, CNRS, INSERM, Sorbonne
Université, 47 Boulevard de l’Hopital, 75013 Paris, France
| |
Collapse
|
2
|
Nakagawa N, Iwasato T. Golgi polarity shift instructs dendritic refinement in the neonatal cortex by mediating NMDA receptor signaling. Cell Rep 2023; 42:112843. [PMID: 37516101 DOI: 10.1016/j.celrep.2023.112843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/15/2023] [Accepted: 07/05/2023] [Indexed: 07/31/2023] Open
Abstract
Dendritic refinement is a critical component of activity-dependent neuronal circuit maturation, through which individual neurons establish specific connectivity with their target axons. Here, we demonstrate that the developmental shift of Golgi polarity is a key process in dendritic refinement. During neonatal development, the Golgi apparatus in layer 4 spiny stellate (SS) neurons in the mouse barrel cortex lose their original apical positioning and acquire laterally polarized distributions. This lateral Golgi polarity, which is oriented toward the barrel center, peaks on postnatal days 5-7 (P5-P7) and disappears by P15, which aligns with the developmental time course of SS neuron dendritic refinement. Genetic ablation of N-methyl-D-aspartate (NMDA) receptors, key players in dendritic refinement, disturbs the lateral Golgi polarity. Golgi polarity manipulation disrupts the asymmetric dendritic projection pattern and the primary-whisker-specific response of SS neurons. Our results elucidate activity-dependent Golgi dynamics and their critical role in developmental neuronal circuit refinement.
Collapse
Affiliation(s)
- Naoki Nakagawa
- Laboratory of Mammalian Neural Circuits, National Institute of Genetics (NIG), Mishima, Shizuoka 411-8540, Japan; Graduate Institute for Advanced Studies, SOKENDAI, Mishima, Shizuoka 411-8540, Japan.
| | - Takuji Iwasato
- Laboratory of Mammalian Neural Circuits, National Institute of Genetics (NIG), Mishima, Shizuoka 411-8540, Japan; Graduate Institute for Advanced Studies, SOKENDAI, Mishima, Shizuoka 411-8540, Japan.
| |
Collapse
|
3
|
Wang CF, Yang JW, Zhuang ZH, Hsing HW, Luhmann HJ, Chou SJ. Activity-dependent feedback regulation of thalamocortical axon development by Lhx2 in cortical layer 4 neurons. Cereb Cortex 2023; 33:1693-1707. [PMID: 35512682 DOI: 10.1093/cercor/bhac166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
Establishing neuronal circuits requires interactions between pre- and postsynaptic neurons. While presynaptic neurons were shown to play instructive roles for the postsynaptic neurons, how postsynaptic neurons provide feedback to regulate the presynaptic neuronal development remains elusive. To elucidate the mechanisms for circuit formation, we study the development of barrel cortex (the primary sensory cortex, S1), whose development is instructed by presynaptic thalamocortical axons (TCAs). In the first postnatal weeks, TCA terminals arborize in layer (L) 4 to fill in the barrel center, but it is unclear how TCA development is regulated. Here, we reported that the deletion of Lhx2 specifically in the cortical neurons in the conditional knockout (cKO) leads to TCA arborization defects, which is accompanied with deficits in sensory-evoked and spontaneous cortical activities and impaired lesion-induced plasticity following early whisker follicle ablation. Reintroducing Lhx2 back in L4 neurons in cKO ameliorated TCA arborization and plasticity defects. By manipulating L4 neuronal activity, we further demonstrated that Lhx2 induces TCA arborization via an activity-dependent mechanism. Additionally, we identified the extracellular signaling protein Sema7a as an activity-dependent downstream target of Lhx2 in regulating TCA branching. Thus, we discovered a bottom-up feedback mechanism for the L4 neurons to regulate TCA development.
Collapse
Affiliation(s)
- Chia-Fang Wang
- Neuroscience Program of Academia Sinica (NPAS), Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Jenq-Wei Yang
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Zi-Hui Zhuang
- Neuroscience Program of Academia Sinica (NPAS), Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Hsiang-Wei Hsing
- Neuroscience Program of Academia Sinica (NPAS), Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Heiko J Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Shen-Ju Chou
- Neuroscience Program of Academia Sinica (NPAS), Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
4
|
5-HT-dependent synaptic plasticity of the prefrontal cortex in postnatal development. Sci Rep 2022; 12:21015. [PMID: 36470912 PMCID: PMC9723183 DOI: 10.1038/s41598-022-23767-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 11/04/2022] [Indexed: 12/12/2022] Open
Abstract
Important functions of the prefrontal cortex (PFC) are established during early life, when neurons exhibit enhanced synaptic plasticity and synaptogenesis. This developmental stage drives the organization of cortical connectivity, responsible for establishing behavioral patterns. Serotonin (5-HT) emerges among the most significant factors that modulate brain activity during postnatal development. In the PFC, activated 5-HT receptors modify neuronal excitability and interact with intracellular signaling involved in synaptic modifications, thus suggesting that 5-HT might participate in early postnatal plasticity. To test this hypothesis, we employed intracellular electrophysiological recordings of PFC layer 5 neurons to study the modulatory effects of 5-HT on plasticity induced by theta-burst stimulation (TBS) in two postnatal periods of rats. Our results indicate that 5-HT is essential for TBS to result in synaptic changes during the third postnatal week, but not later. TBS coupled with 5-HT2A or 5-HT1A and 5-HT7 receptors stimulation leads to long-term depression (LTD). On the other hand, TBS and synergic activation of 5-HT1A, 5-HT2A, and 5-HT7 receptors lead to long-term potentiation (LTP). Finally, we also show that 5-HT dependent synaptic plasticity of the PFC is impaired in animals that are exposed to early-life chronic stress.
Collapse
|
5
|
Wong FK, Selten M, Rosés-Novella C, Sreenivasan V, Pallas-Bazarra N, Serafeimidou-Pouliou E, Hanusz-Godoy A, Oozeer F, Edwards R, Marín O. Serotonergic regulation of bipolar cell survival in the developing cerebral cortex. Cell Rep 2022; 40:111037. [PMID: 35793629 DOI: 10.1016/j.celrep.2022.111037] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 03/09/2022] [Accepted: 06/11/2022] [Indexed: 11/16/2022] Open
Abstract
One key factor underlying the functional balance of cortical networks is the ratio of excitatory and inhibitory neurons. The mechanisms controlling the ultimate number of interneurons are beginning to be elucidated, but to what extent similar principles govern the survival of the large diversity of cortical inhibitory cells remains to be investigated. Here, we investigate the mechanisms regulating developmental cell death in neurogliaform cells, bipolar cells, and basket cells, the three main populations of interneurons originating from the caudal ganglionic eminence and the preoptic region. We found that all three subclasses of interneurons undergo activity-dependent programmed cell death. However, while neurogliaform cells and basket cells require glutamatergic transmission to survive, the final number of bipolar cells is instead modulated by serotonergic signaling. Together, our results demonstrate that input-specific modulation of neuronal activity controls the survival of cortical interneurons during the critical period of programmed cell death.
Collapse
Affiliation(s)
- Fong Kuan Wong
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK
| | - Martijn Selten
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK
| | - Claudia Rosés-Novella
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK
| | - Varun Sreenivasan
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK
| | - Noemí Pallas-Bazarra
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK
| | - Eleni Serafeimidou-Pouliou
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK
| | - Alicia Hanusz-Godoy
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK
| | - Fazal Oozeer
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK
| | - Robert Edwards
- Department of Physiology and Department of Neurology, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Oscar Marín
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK.
| |
Collapse
|
6
|
Sarko DK, Reep RL. Parcellation in the dorsal column nuclei of Florida manatees (
Trichechus manatus latirostris
) and rock hyraxes (
Procavia capensis
) indicates the presence of body barrelettes. J Comp Neurol 2022; 530:2113-2131. [DOI: 10.1002/cne.25323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 03/10/2022] [Accepted: 03/15/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Diana K. Sarko
- Department of Anatomy Southern Illinois University School of Medicine Carbondale Illinois USA
| | - Roger L. Reep
- Department of Physiological Sciences University of Florida Gainesville Florida USA
| |
Collapse
|
7
|
van Rhijn JR, Shi Y, Bormann M, Mossink B, Frega M, Recaioglu H, Hakobjan M, Klein Gunnewiek T, Schoenmaker C, Palmer E, Faivre L, Kittel-Schneider S, Schubert D, Brunner H, Franke B, Nadif Kasri N. Brunner syndrome associated MAOA mutations result in NMDAR hyperfunction and increased network activity in human dopaminergic neurons. Neurobiol Dis 2021; 163:105587. [PMID: 34923109 DOI: 10.1016/j.nbd.2021.105587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/01/2021] [Accepted: 12/15/2021] [Indexed: 01/15/2023] Open
Abstract
Monoamine neurotransmitter abundance affects motor control, emotion, and cognitive function and is regulated by monoamine oxidases. Among these, Monoamine oxidase A (MAOA) catalyzes the degradation of dopamine, norepinephrine, and serotonin into their inactive metabolites. Loss-of-function mutations in the X-linked MAOA gene have been associated with Brunner syndrome, which is characterized by various forms of impulsivity, maladaptive externalizing behavior, and mild intellectual disability. Impaired MAOA activity in individuals with Brunner syndrome results in bioamine aberration, but it is currently unknown how this affects neuronal function, specifically in dopaminergic (DA) neurons. Here we generated human induced pluripotent stem cell (hiPSC)-derived DA neurons from three individuals with Brunner syndrome carrying different mutations and characterized neuronal properties at the single cell and neuronal network level in vitro. DA neurons of Brunner syndrome patients showed reduced synaptic density but exhibited hyperactive network activity. Intrinsic functional properties and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-mediated synaptic transmission were not affected in DA neurons of individuals with Brunner syndrome. Instead, we show that the neuronal network hyperactivity is mediated by upregulation of the GRIN2A and GRIN2B subunits of the N-methyl-d-aspartate receptor (NMDAR), resulting in increased NMDAR-mediated currents. By correcting a MAOA missense mutation with CRISPR/Cas9 genome editing we normalized GRIN2A and GRIN2B expression, NMDAR function and neuronal population activity to control levels. Our data suggest that MAOA mutations in Brunner syndrome increase the activity of dopaminergic neurons through upregulation of NMDAR function, which may contribute to the etiology of Brunner syndrome associated phenotypes.
Collapse
Affiliation(s)
- Jon-Ruben van Rhijn
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Yan Shi
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Maren Bormann
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Britt Mossink
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Monica Frega
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Clinical neurophysiology, University of Twente, 7522 NB Enschede, Netherlands
| | - Hatice Recaioglu
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Marina Hakobjan
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Teun Klein Gunnewiek
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Anatomy, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Chantal Schoenmaker
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Elizabeth Palmer
- Genetics of Learning Disability Service, Hunter Genetics, Waratah, NSW, Australia; School of Women's and Children's Health, University of New South Wales, Randwick, NSW, Australia
| | - Laurence Faivre
- Centre de Référence Anomalies du développement et Syndromes malformatifs and FHU TRANSLAD, Hôpital d'Enfants, Dijon, France; INSERM UMR1231 GAD, Faculté de Médecine, Université de Bourgogne, Dijon, France
| | - Sarah Kittel-Schneider
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe-University, Frankfurt, Germany; Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Würzburg, Würzburg, Germany
| | - Dirk Schubert
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Han Brunner
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Clinical Genetics, MUMC+, GROW School of Oncology and Developmental Biology, and MHeNS School of Neuroscience and Maastricht University, Maastricht, the Netherlands
| | - Barbara Franke
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Psychiatry, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Nael Nadif Kasri
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
8
|
Cortical responses to touch reflect subcortical integration of LTMR signals. Nature 2021; 600:680-685. [PMID: 34789880 PMCID: PMC9289451 DOI: 10.1038/s41586-021-04094-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 10/04/2021] [Indexed: 12/03/2022]
Abstract
Current models to explain how signals emanating from cutaneous mechanoreceptors generate representations of touch are based on comparisons of the tactile responses of mechanoreceptor subtypes and neurons in somatosensory cortex1-8. Here we used mouse genetic manipulations to investigate the contributions of peripheral mechanoreceptor subtypes to cortical responses to touch. Cortical neurons exhibited remarkably homogeneous and transient responses to skin indentation that resembled rapidly adapting (RA) low-threshold mechanoreceptor (LTMR) responses. Concurrent disruption of signals from both Aβ RA-LTMRs and Aβ slowly adapting (SA)-LTMRs eliminated cortical responses to light indentation forces. However, disruption of either LTMR subtype alone caused opposite shifts in cortical sensitivity but otherwise largely unaltered tactile responses, indicating that both subtypes contribute to normal cortical responses. Selective optogenetic activation of single action potentials in Aβ RA-LTMRs or Aβ SA-LTMRs drove low-latency responses in most mechanically sensitive cortical neurons. Similarly, most somatosensory thalamic neurons were also driven by activation of Aβ RA-LTMRs or Aβ SA-LTMRs. These findings support a model in which signals from physiologically distinct mechanoreceptor subtypes are extensively integrated and transformed within the subcortical somatosensory system to generate cortical representations of touch.
Collapse
|
9
|
Pan W, Pan J, Zhao Y, Zhang H, Tang J. Serotonin Transporter Defect Disturbs Structure and Function of the Auditory Cortex in Mice. Front Neurosci 2021; 15:749923. [PMID: 34690685 PMCID: PMC8527018 DOI: 10.3389/fnins.2021.749923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/07/2021] [Indexed: 11/23/2022] Open
Abstract
Serotonin transporter (SERT) modulates the level of 5-HT and significantly affects the activity of serotonergic neurons in the central nervous system. The manipulation of SERT has lasting neurobiological and behavioral consequences, including developmental dysfunction, depression, and anxiety. Auditory disorders have been widely reported as the adverse events of these mental diseases. It is unclear how SERT impacts neuronal connections/interactions and what mechanism(s) may elicit the disruption of normal neural network functions in auditory cortex. In the present study, we report on the neuronal morphology and function of auditory cortex in SERT knockout (KO) mice. We show that the dendritic length of the fourth layer (L-IV) pyramidal neurons and the second-to-third layer (L-II/III) interneurons were reduced in the auditory cortex of the SERT KO mice. The number and density of dendritic spines of these neurons were significantly less than those of wild-type neurons. Also, the frequency-tonotopic organization of primary auditory cortex was disrupted in SERT KO mice. The auditory neurons of SERT KO mice exhibited border frequency tuning with high-intensity thresholds. These findings indicate that SERT plays a key role in development and functional maintenance of auditory cortical neurons. Auditory function should be examined when SERT is selected as a target in the treatment for psychiatric disorders.
Collapse
Affiliation(s)
- Wenlu Pan
- Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Functional Nucleic Acid Basic and Clinical Research Center, Department of Physiology, School of Basic Medical Sciences, Changsha Medical College, Changsha, China
| | - Jing Pan
- Department of Otolaryngology Head and Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Hearing Research Center, Southern Medical University, Guangzhou, China
| | - Yan Zhao
- Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Hongzheng Zhang
- Department of Otolaryngology Head and Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Hearing Research Center, Southern Medical University, Guangzhou, China
| | - Jie Tang
- Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Department of Otolaryngology Head and Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Hearing Research Center, Southern Medical University, Guangzhou, China.,Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China
| |
Collapse
|
10
|
Sahu MP, Pazos-Boubeta Y, Steinzeig A, Kaurinkoski K, Palmisano M, Borowecki O, Piepponen TP, Castrén E. Depletion of TrkB Receptors From Adult Serotonergic Neurons Increases Brain Serotonin Levels, Enhances Energy Metabolism and Impairs Learning and Memory. Front Mol Neurosci 2021; 14:616178. [PMID: 33935645 PMCID: PMC8082189 DOI: 10.3389/fnmol.2021.616178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 03/23/2021] [Indexed: 11/20/2022] Open
Abstract
Neurotrophin brain-derived neurotrophic factor (BDNF) and neurotransmitter serotonin (5-HT) regulate each other and have been implicated in several neuronal mechanisms, including neuroplasticity. We have investigated the effects of BDNF on serotonergic neurons by deleting BDNF receptor TrkB from serotonergic neurons in the adult brain. The transgenic mice show increased 5-HT and Tph2 levels with abnormal behavioral phenotype. In spite of increased food intake, the transgenic mice are significantly leaner than their wildtype littermates, which may be due to increased metabolic activity. Consistent with increased 5-HT, the proliferation of hippocampal progenitors is significantly increased, however, long-term survival of newborn cells is unchanged. Our data indicates that BDNF-TrkB signaling regulates the functional phenotype of 5-HT neurons with long-term behavioral consequences.
Collapse
Affiliation(s)
- Madhusmita P Sahu
- Neuroscience Center, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Yago Pazos-Boubeta
- Neuroscience Center, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Anna Steinzeig
- Neuroscience Center, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Katja Kaurinkoski
- Neuroscience Center, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Michela Palmisano
- Neuroscience Center, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Olgierd Borowecki
- Neuroscience Center, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland.,Faculty of Philosopy and Social Sciences, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | | | - Eero Castrén
- Neuroscience Center, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| |
Collapse
|
11
|
Lorsung E, Karthikeyan R, Cao R. Biological Timing and Neurodevelopmental Disorders: A Role for Circadian Dysfunction in Autism Spectrum Disorders. Front Neurosci 2021; 15:642745. [PMID: 33776640 PMCID: PMC7994532 DOI: 10.3389/fnins.2021.642745] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/03/2021] [Indexed: 01/07/2023] Open
Abstract
Autism spectrum disorders (ASDs) are a spectrum of neurodevelopmental disorders characterized by impaired social interaction and communication, as well as stereotyped and repetitive behaviors. ASDs affect nearly 2% of the United States child population and the worldwide prevalence has dramatically increased in recent years. The etiology is not clear but ASD is thought to be caused by a combination of intrinsic and extrinsic factors. Circadian rhythms are the ∼24 h rhythms driven by the endogenous biological clock, and they are found in a variety of physiological processes. Growing evidence from basic and clinical studies suggest that the dysfunction of the circadian timing system may be associated with ASD and its pathogenesis. Here we review the findings that link circadian dysfunctions to ASD in both experimental and clinical studies. We first introduce the organization of the circadian system and ASD. Next, we review physiological indicators of circadian rhythms that are found disrupted in ASD individuals, including sleep-wake cycles, melatonin, cortisol, and serotonin. Finally, we review evidence in epidemiology, human genetics, and biochemistry that indicates underlying associations between circadian regulation and the pathogenesis of ASD. In conclusion, we propose that understanding the functional importance of the circadian clock in normal and aberrant neurodevelopmental processes may provide a novel perspective to tackle ASD, and clinical treatments for ASD individuals should comprise an integrative approach considering the dynamics of daily rhythms in physical, mental, and social processes.
Collapse
Affiliation(s)
- Ethan Lorsung
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, United States
| | - Ramanujam Karthikeyan
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, United States
| | - Ruifeng Cao
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, United States
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, United States
| |
Collapse
|
12
|
NMDA Receptor Enhances Correlation of Spontaneous Activity in Neonatal Barrel Cortex. J Neurosci 2021; 41:1207-1217. [PMID: 33372060 DOI: 10.1523/jneurosci.0527-20.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 01/07/2023] Open
Abstract
Correlated spontaneous activity plays critical role in the organization of neocortical circuits during development. However, cortical mechanisms regulating activity correlation are still elusive. In this study, using two-photon calcium imaging of the barrel cortex layer 4 (L4) in living neonatal mice, we found that NMDA receptors (NMDARs) in L4 neurons are important for enhancement of spontaneous activity correlation. Disruption of GluN1 (Grin1), an obligatory NMDAR subunit, in a sparse population of L4 neurons reduced activity correlation between GluN1 knock-out (GluN1KO) neuron pairs within a barrel. This reduction in activity correlation was even detected in L4 neuron pairs in neighboring barrels and most evident when either or both of neurons are located on the barrel edge. Our results provide evidence for the involvement of L4 neuron NMDARs in spatial organization of the spontaneous firing activity of L4 neurons in the neonatal barrel cortex.SIGNIFICANCE STATEMENT Precise wiring of the thalamocortical circuits is necessary for proper sensory information processing, and thalamus-derived correlated spontaneous activity is important for thalamocortical circuit formation. The molecular mechanisms involved in the correlated activity transfer from the thalamus to the neocortex are largely unknown. In vivo two-photon calcium imaging of the neonatal barrel cortex revealed that correlated spontaneous activity between layer four neurons is reduced by mosaic knock-out (KO) of the NMDA receptor (NMDAR) obligatory subunit GluN1. Our results suggest that the function of NMDARs in layer four neurons is necessary for the communication between presynaptic and postsynaptic partners during thalamocortical circuit formation.
Collapse
|
13
|
Abstract
The adult brain is the result of a multistages complex neurodevelopmental process involving genetic, molecular and microenvironmental factors as well as diverse patterns of electrical activity. In the postnatal life, immature neuronal circuits undergo an experience-dependent maturation during critical periods of plasticity, but the brain still retains plasticity during adult life. In all these stages, the neurotransmitter GABA plays a pivotal role. In this chapter, we will describe the interaction of 5-HT with GABA in regulating neurodevelopment and plasticity.
Collapse
|
14
|
Siemann JK, Grueter BA, McMahon DG. Rhythms, Reward, and Blues: Consequences of Circadian Photoperiod on Affective and Reward Circuit Function. Neuroscience 2020; 457:220-234. [PMID: 33385488 DOI: 10.1016/j.neuroscience.2020.12.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 02/01/2023]
Abstract
Circadian disruptions, along with altered affective and reward states, are commonly associated with psychiatric disorders. In addition to genetics, the enduring influence of environmental factors in programming neural networks is of increased interest in assessing the underpinnings of mental health. The duration of daylight or photoperiod is known to impact both the serotonin and dopamine systems, which are implicated in mood and reward-based disorders. This review first examines the effects of circadian disruption and photoperiod in the serotonin system in both human and preclinical studies. We next highlight how brain regions crucial for the serotoninergic system (i.e., dorsal raphe nucleus; DRN), and dopaminergic (i.e., nucleus accumbens; NAc and ventral tegmental area; VTA) system are intertwined in overlapping circuitry, and play influential roles in the pathology of mood and reward-based disorders. We then focus on human and animal studies that demonstrate the impact of circadian factors on the dopaminergic system. Lastly, we discuss how environmental factors such as circadian photoperiod can impact the neural circuits that are responsible for regulating affective and reward states, offering novel insights into the biological mechanisms underlying the pathophysiology, systems, and therapeutic treatments necessary for mood and reward-based disorders.
Collapse
Affiliation(s)
- Justin K Siemann
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37235, USA
| | - Brad A Grueter
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37235, USA; Department of Anesthesiology, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37235, USA; Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37235, USA
| | - Douglas G McMahon
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN 37235, USA; Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37235, USA.
| |
Collapse
|
15
|
Rao MS, Mizuno H. Elucidating mechanisms of neuronal circuit formation in layer 4 of the somatosensory cortex via intravital imaging. Neurosci Res 2020; 167:47-53. [PMID: 33309867 DOI: 10.1016/j.neures.2020.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 09/27/2020] [Accepted: 10/01/2020] [Indexed: 12/13/2022]
Abstract
The cerebral cortex has complex yet perfectly wired neuronal circuits that are important for high-level brain functions such as perception and cognition. The rodent's somatosensory system is widely used for understanding the mechanisms of circuit formation during early developmental periods. In this review, we summarize the developmental processes of circuit formation in layer 4 of the somatosensory cortex, and we describe the molecules involved in layer 4 circuit formation and neuronal activity-dependent mechanisms of circuit formation. We also introduce the dynamic mechanisms of circuit formation in layer 4 revealed by intravital two-photon imaging technologies, which include time-lapse imaging of neuronal morphology and calcium imaging of neuronal activity in newborn mice.
Collapse
Affiliation(s)
- Madhura S Rao
- Laboratory of Multi-dimensional Imaging, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, 860-0811, Japan; Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-0811, Japan
| | - Hidenobu Mizuno
- Laboratory of Multi-dimensional Imaging, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, 860-0811, Japan; Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-0811, Japan.
| |
Collapse
|
16
|
Helmreich DL. Profiles of women in science: Patricia Gaspar, Emeritus Researcher at Inserm in the Institut du Fer a Moulin. Eur J Neurosci 2020; 53:701-705. [PMID: 33253461 DOI: 10.1111/ejn.15068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/01/2022]
Affiliation(s)
- Dana L Helmreich
- Department of Neuroscience, Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| |
Collapse
|
17
|
Iwasato T. In vivo imaging of neural circuit formation in the neonatal mouse barrel cortex. Dev Growth Differ 2020; 62:476-486. [DOI: 10.1111/dgd.12693] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/13/2020] [Accepted: 09/27/2020] [Indexed: 01/21/2023]
Affiliation(s)
- Takuji Iwasato
- Laboratory of Mammalian Neural Circuits National Institute of Genetics Mishima Japan
- Department of Genetics SOKENDAI Mishima Japan
| |
Collapse
|
18
|
Siemann JK, Williams P, Malik TN, Jackson CR, Green NH, Emeson RB, Levitt P, McMahon DG. Photoperiodic effects on monoamine signaling and gene expression throughout development in the serotonin and dopamine systems. Sci Rep 2020; 10:15437. [PMID: 32963273 PMCID: PMC7508939 DOI: 10.1038/s41598-020-72263-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 08/06/2020] [Indexed: 01/17/2023] Open
Abstract
Photoperiod or the duration of daylight has been implicated as a risk factor in the development of mood disorders. The dopamine and serotonin systems are impacted by photoperiod and are consistently associated with affective disorders. Hence, we evaluated, at multiple stages of postnatal development, the expression of key dopaminergic (TH) and serotonergic (Tph2, SERT, and Pet-1) genes, and midbrain monoamine content in mice raised under control Equinox (LD 12:12), Short winter-like (LD 8:16), or Long summer-like (LD 16:8) photoperiods. Focusing in early adulthood, we evaluated the midbrain levels of these serotonergic genes, and also assayed these gene levels in the dorsal raphe nucleus (DRN) with RNAScope. Mice that developed under Short photoperiods demonstrated elevated midbrain TH expression levels, specifically during perinatal development compared to mice raised under Long photoperiods, and significantly decreased serotonin and dopamine content throughout the course of development. In adulthood, Long photoperiod mice demonstrated decreased midbrain Tph2 and SERT expression levels and reduced Tph2 levels in the DRN compared Short photoperiod mice. Thus, evaluating gene × environment interactions in the dopaminergic and serotonergic systems during multiple stages of development may lead to novel insights into the underlying mechanisms in the development of affective disorders.
Collapse
Affiliation(s)
- Justin K Siemann
- Biological Sciences, Vanderbilt University, 8270 MRB III BioSci Bldg, 465 21st Ave South, Nashville, TN, 37232, USA
| | - Piper Williams
- Children's Hospital of Los Angeles, Los Angeles, CA, 90027, USA
| | - Turnee N Malik
- Neuroscience Program, Vanderbilt University, Nashville, TN, USA
| | - Chad R Jackson
- Biological Sciences, Vanderbilt University, 8270 MRB III BioSci Bldg, 465 21st Ave South, Nashville, TN, 37232, USA
| | - Noah H Green
- Biological Sciences, Vanderbilt University, 8270 MRB III BioSci Bldg, 465 21st Ave South, Nashville, TN, 37232, USA
| | - Ronald B Emeson
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Pat Levitt
- Children's Hospital of Los Angeles, Los Angeles, CA, 90027, USA
| | - Douglas G McMahon
- Biological Sciences, Vanderbilt University, 8270 MRB III BioSci Bldg, 465 21st Ave South, Nashville, TN, 37232, USA.
| |
Collapse
|
19
|
Siemann JK, Veenstra-VanderWeele J, Wallace MT. Approaches to Understanding Multisensory Dysfunction in Autism Spectrum Disorder. Autism Res 2020; 13:1430-1449. [PMID: 32869933 PMCID: PMC7721996 DOI: 10.1002/aur.2375] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/20/2020] [Accepted: 07/28/2020] [Indexed: 12/14/2022]
Abstract
Abnormal sensory responses are a DSM-5 symptom of autism spectrum disorder (ASD), and research findings demonstrate altered sensory processing in ASD. Beyond difficulties with processing information within single sensory domains, including both hypersensitivity and hyposensitivity, difficulties in multisensory processing are becoming a core issue of focus in ASD. These difficulties may be targeted by treatment approaches such as "sensory integration," which is frequently applied in autism treatment but not yet based on clear evidence. Recently, psychophysical data have emerged to demonstrate multisensory deficits in some children with ASD. Unlike deficits in social communication, which are best understood in humans, sensory and multisensory changes offer a tractable marker of circuit dysfunction that is more easily translated into animal model systems to probe the underlying neurobiological mechanisms. Paralleling experimental paradigms that were previously applied in humans and larger mammals, we and others have demonstrated that multisensory function can also be examined behaviorally in rodents. Here, we review the sensory and multisensory difficulties commonly found in ASD, examining laboratory findings that relate these findings across species. Next, we discuss the known neurobiology of multisensory integration, drawing largely on experimental work in larger mammals, and extensions of these paradigms into rodents. Finally, we describe emerging investigations into multisensory processing in genetic mouse models related to autism risk. By detailing findings from humans to mice, we highlight the advantage of multisensory paradigms that can be easily translated across species, as well as the potential for rodent experimental systems to reveal opportunities for novel treatments. LAY SUMMARY: Sensory and multisensory deficits are commonly found in ASD and may result in cascading effects that impact social communication. By using similar experiments to those in humans, we discuss how studies in animal models may allow an understanding of the brain mechanisms that underlie difficulties in multisensory integration, with the ultimate goal of developing new treatments. Autism Res 2020, 13: 1430-1449. © 2020 International Society for Autism Research, Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Justin K Siemann
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Jeremy Veenstra-VanderWeele
- Department of Psychiatry, Columbia University, Center for Autism and the Developing Brain, New York Presbyterian Hospital, and New York State Psychiatric Institute, New York, New York, USA
| | - Mark T Wallace
- Department of Psychiatry, Vanderbilt University, Nashville, Tennessee, USA
- Department of Psychology, Vanderbilt University, Nashville, Tennessee, USA
- Department of Hearing and Speech Sciences, Vanderbilt University, Nashville, Tennessee, USA
- Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
20
|
Erzurumlu RS, Gaspar P. How the Barrel Cortex Became a Working Model for Developmental Plasticity: A Historical Perspective. J Neurosci 2020; 40:6460-6473. [PMID: 32817388 PMCID: PMC7486654 DOI: 10.1523/jneurosci.0582-20.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 01/08/2023] Open
Abstract
For half a century now, the barrel cortex of common laboratory rodents has been an exceptionally useful model for studying the formation of topographically organized maps, neural patterning, and plasticity, both in development and in maturity. We present a historical perspective on how barrels were discovered, and how thereafter, they became a workhorse for developmental neuroscientists and for studies on brain plasticity and activity-dependent modeling of brain circuits. What is particularly remarkable about this sensory system is a cellular patterning that is induced by signals derived from the sensory receptors surrounding the snout whiskers and transmitted centrally to the brainstem (barrelettes), the thalamus (barreloids), and the neocortex (barrels). Injury to the sensory receptors shortly after birth leads to predictable pattern alterations at all levels of the system. Mouse genetics have increased our understanding of how barrels are constructed and revealed the interplay of the molecular programs that direct axon growth and cell specification, with activity-dependent mechanisms. There is an ever-rising interest in this sensory system as a neurobiological model to study development of somatotopy, patterning, and plasticity at both the morphologic and physiological levels. This article is part of a group of articles commemorating the 50th anniversary of the Society for Neuroscience.
Collapse
Affiliation(s)
- Reha S Erzurumlu
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Patricia Gaspar
- Institut National de la Santé et de la Recherche Médicale, Paris Brain Institute, Sorbonne Universités, Paris, France 75013
| |
Collapse
|
21
|
Hernández-Carballo G, Ruíz-Luna EA, López-López G, Manjarrez E, Flores-Hernández J. Changes in Serotonin Modulation of Glutamate Currents in Pyramidal Offspring Cells of Rats Treated With 5-MT during Gestation. Brain Sci 2020; 10:E221. [PMID: 32276365 PMCID: PMC7225987 DOI: 10.3390/brainsci10040221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 11/16/2022] Open
Abstract
Changes in stimuli and feeding in pregnant mothers alter the behavior of offspring. Since behavior is mediated by brain activity, it is expected that postnatal changes occur at the level of currents, receptors or soma and dendrites structure and modulation. In this work, we explore at the mechanism level the effects on Sprague-Dawley rat offspring following the administration of serotonin (5-HT) agonist 5-methoxytryptamine (5-MT). We analyzed whether 5-HT affects the glutamate-activated (IGlut) and N-methyl-D-aspartate (NMDA)-activated currents (IGlut, INMDA) in dissociated pyramidal neurons from the prefrontal cortex (PFC). For this purpose, we performed voltage-clamp experiments on pyramidal neurons from layers V-VI of the PFC of 40-day-old offspring born from 5-MT-treated mothers at the gestational days (GD) 11 to 21. We found that the pyramidal-neurons from the PFC of offspring of mothers treated with 5-MT exhibit a significant increased reduction in both the IGlut and INMDA when 5-HT was administered. Our results suggest that the concentration increase of a neuromodulator during the gestation induces changes in its modulatory action over the offspring ionic currents during the adulthood thus contributing to possible psychiatric disorders.
Collapse
Affiliation(s)
- Gustavo Hernández-Carballo
- Instituto de Fisiología Benemérita Universidad Autónoma de Puebla, Puebla C.P.72570, Mexico; (G.H.-C.); (E.A.R.-L.); (E.M.)
| | - Evelyn A. Ruíz-Luna
- Instituto de Fisiología Benemérita Universidad Autónoma de Puebla, Puebla C.P.72570, Mexico; (G.H.-C.); (E.A.R.-L.); (E.M.)
| | - Gustavo López-López
- Facultad de Ciencias Químicas Benemérita Universidad Autónoma de Puebla, Puebla C.P.72570, Mexico;
| | - Elias Manjarrez
- Instituto de Fisiología Benemérita Universidad Autónoma de Puebla, Puebla C.P.72570, Mexico; (G.H.-C.); (E.A.R.-L.); (E.M.)
| | - Jorge Flores-Hernández
- Instituto de Fisiología Benemérita Universidad Autónoma de Puebla, Puebla C.P.72570, Mexico; (G.H.-C.); (E.A.R.-L.); (E.M.)
| |
Collapse
|
22
|
Role of the Serotonin Receptor 7 in Brain Plasticity: From Development to Disease. Int J Mol Sci 2020; 21:ijms21020505. [PMID: 31941109 PMCID: PMC7013427 DOI: 10.3390/ijms21020505] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 12/18/2022] Open
Abstract
Our knowledge on the plastic functions of the serotonin (5-HT) receptor subtype 7 (5-HT7R) in the brain physiology and pathology have advanced considerably in recent years. A wealth of data show that 5-HT7R is a key player in the establishment and remodeling of neuronal cytoarchitecture during development and in the mature brain, and its dysfunction is linked to neuropsychiatric and neurodevelopmental diseases. The involvement of this receptor in synaptic plasticity is further demonstrated by data showing that its activation allows the rescue of long-term potentiation (LTP) and long-term depression (LTD) deficits in various animal models of neurodevelopmental diseases. In addition, it is becoming clear that the 5-HT7R is involved in inflammatory intestinal diseases, modulates the function of immune cells, and is likely to play a role in the gut-brain axis. In this review, we will mainly focus on recent findings on this receptor’s role in the structural and synaptic plasticity of the mammalian brain, although we will also illustrate novel aspects highlighted in gastrointestinal (GI) tract and immune system.
Collapse
|
23
|
Kapra O, Rotem R, Gross R. The Association Between Prenatal Exposure to Antidepressants and Autism: Some Research and Public Health Aspects. Front Psychiatry 2020; 11:555740. [PMID: 33329095 PMCID: PMC7719777 DOI: 10.3389/fpsyt.2020.555740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 10/08/2020] [Indexed: 01/22/2023] Open
Abstract
Use of antidepressants (ADs) in general, and in pregnant notwithstanding, has been increasing globally in recent decades. Associations with a wide range of adverse perinatal and childhood outcomes following prenatal ADs exposure have been observed in registry-based studies, with Autism Spectrum Disorders (ASD) frequently reported. Studies using animal models, sibling analyses, and negative control approaches, have linked dysfunctional serotonin metabolism with ASD, but did not convincingly tease apart the role of maternal mental health from that of ADs. As work to decipher the nature of the AD-ASD association continues, this review raises some public health concerns pertinent to a hypothetical conclusion that this association is causal, including the need to identify specific gestation periods with higher risk, the importance of precise assessment of the ASD potential prevention that might be attributed to AD discontinuation, and the estimation of risks associated with prenatal exposure to untreated depression.
Collapse
Affiliation(s)
- Ori Kapra
- Department of Epidemiology and Preventive Medicine, Sackler Faculty of Medicine, School of Public Health, Tel Aviv University, Tel-Aviv, Israel
| | - Ran Rotem
- School of Public Health, Harvard University, Boston, MA, United States.,Morris Kahn Maccabi Health Data Science Institute, Tel-Aviv, Israel
| | - Raz Gross
- Department of Epidemiology and Preventive Medicine, Sackler Faculty of Medicine, School of Public Health, Tel Aviv University, Tel-Aviv, Israel.,Sheba Medical Center, Ramat Gan, Israel.,Department of Psychiatry, Sackler Faculty of Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
24
|
Vitalis T, Dauphinot L, Gressens P, Potier MC, Mariani J, Gaspar P. RORα Coordinates Thalamic and Cortical Maturation to Instruct Barrel Cortex Development. Cereb Cortex 2019; 28:3994-4007. [PMID: 29040410 DOI: 10.1093/cercor/bhx262] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The retinoic acid-related orphan receptor alpha (RORα) is well-known for its role in cerebellar development and maturation as revealed in staggerer mice. However, its potential involvement in the development of other brain regions has hardly been assessed. Here, we describe a new role of RORα in the development of primary somatosensory maps. Staggerer mice showed a complete disruption of barrels in the somatosensory cortex and of barreloids in the thalamus. This phenotype results from a severe reduction of thalamocortical axon (TCA) branching and a defective maturation of layer IV cortical neurons during postnatal development. Conditional deletion of RORα was conducted in the thalamus or the cortex to determine the specific contribution of RORα in each of these structures to these phenotypes. This showed that RORα is cell-autonomously required in the thalamus for the organization of TCAs into periphery-related clusters and in the somatosensory cortex for the dendritic maturation of layer IV neurons. Microarray analyses revealed that Sema7a, Neph, and Adcy8 are RORα regulated genes that could be implicated in TCA and cortical maturation. Overall, our study outlines a new role of RORα for the coordinated maturation of the somatosensory thalamus and cortex during the assembly of columnar barrel structures.
Collapse
Affiliation(s)
- Tania Vitalis
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie, Sorbonne Université, Paris, France
| | - Luce Dauphinot
- Université Pierre et Marie Curie, Sorbonne Université, Paris, France
- CNRS UMR 7225, INSERM U1127, Institut du Cerveau et de la Moelle, Paris, France
| | - Pierre Gressens
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Marie-Claude Potier
- Université Pierre et Marie Curie, Sorbonne Université, Paris, France
- CNRS UMR 7225, INSERM U1127, Institut du Cerveau et de la Moelle, Paris, France
| | - Jean Mariani
- Université Pierre et Marie Curie, Sorbonne Université, Paris, France
- CNRS, UMR 8256, Institut de Biologie de Paris Seine (IBPS), Biological adaptation and ageing (B2A), Team Brain Development, Repair and Ageing, Paris, France
- APHP, DHU FAST, Institut de la Longévité, Ivry-Sur-Seine, France
| | - Patricia Gaspar
- Université Pierre et Marie Curie, Sorbonne Université, Paris, France
- INSERM, UMR-S839, Institut du Fer à Moulin, Paris, France
| |
Collapse
|
25
|
Velasquez JC, Zhao Q, Chan Y, Galindo LC, Simasotchi C, Wu D, Hou Z, Herod SM, Oberlander TF, Gil S, Fournier T, Burd I, Andrews AM, Bonnin A. In Utero Exposure to Citalopram Mitigates Maternal Stress Effects on Fetal Brain Development. ACS Chem Neurosci 2019; 10:3307-3317. [PMID: 31184110 DOI: 10.1021/acschemneuro.9b00180] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Human epidemiological and animal-model studies suggest that separate exposure to stress or serotonin-selective reuptake inhibitor (SSRI) antidepressants during pregnancy increases risks for neurodevelopmental disorders in offspring. Yet, little is known about the combined effects of maternal stress and SSRIs with regard to brain development in utero. We found that the placenta is highly permeable to the commonly prescribed SSRI (±)-citalopram (CIT) in humans and mice, allowing rapid exposure of the fetal brain to this drug. We investigated the effects of maternal chronic unpredictable stress in mice with or without maternal oral administration of CIT from embryonic day (E)8 to E17. We assessed fetal brain development using magnetic resonance imaging and quantified changes in serotonergic, thalamocortical, and cortical development. In utero exposure to maternal stress did not affect overall fetal brain growth. However, serotonin tissue content in the fetal forebrain was increased in association with maternal stress; this increase was reversed by maternal CIT. In utero exposure to stress increased the numbers of deep-layer neurons in specific cortical regions, whereas CIT increased overall cell numbers without changing the proportions of layer-specific neurons to offset the effects of stress on deep-layer cortical development. These findings suggest that stress and SSRI exposure in utero differentially impact serotonin-dependent fetal neurodevelopment such that CIT reverses key effects of maternal gestational stress on offspring brain development.
Collapse
Affiliation(s)
- Juan C. Velasquez
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, United States
| | - Qiuying Zhao
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, United States
| | - Yen Chan
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, United States
| | - Ligia C.M. Galindo
- Department of Anatomy, Federal University of Pernambuco, Recife 50670, Brazil
| | | | - Dan Wu
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University, Baltimore, Maryland 21287, United States
| | - Zhipeng Hou
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University, Baltimore, Maryland 21287, United States
| | - Skyla M. Herod
- Department of Biology and Chemistry, Azusa Pacific University, Azusa, California 91702, United States
| | - Tim F. Oberlander
- Department of Pediatrics, University of British Columbia, Vancouver, BC V6H 3 V4, Canada
| | - Sophie Gil
- UMR-S 1139 INSERM/University of Paris Descartes, 75006 Paris, France
- PremUp Foundation, 75014 Paris, France
| | - Thierry Fournier
- UMR-S 1139 INSERM/University of Paris Descartes, 75006 Paris, France
- PremUp Foundation, 75014 Paris, France
| | - Irina Burd
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University, Baltimore, Maryland 21287, United States
| | - Anne M. Andrews
- Terry and Jane Semel Institute for Neuroscience & Human Behavior, Shirley and Stefan Hatos Center for Neuropharmacology, and Departments of Psychiatry and Biobehavioral Sciences and Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Alexandre Bonnin
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
26
|
Stereological Investigation of the Rat Ventral Thalamic Nuclei Following Developmental Hyperserotonemia. Neuroscience 2019; 411:202-210. [DOI: 10.1016/j.neuroscience.2019.05.054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 05/19/2019] [Accepted: 05/26/2019] [Indexed: 12/24/2022]
|
27
|
Pratelli M, Pasqualetti M. Serotonergic neurotransmission manipulation for the understanding of brain development and function: Learning from Tph2 genetic models. Biochimie 2019; 161:3-14. [DOI: 10.1016/j.biochi.2018.11.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 11/24/2018] [Indexed: 01/04/2023]
|
28
|
Perrin FE, Noristani HN. Serotonergic mechanisms in spinal cord injury. Exp Neurol 2019; 318:174-191. [PMID: 31085200 DOI: 10.1016/j.expneurol.2019.05.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 12/12/2022]
Abstract
Spinal cord injury (SCI) is a tragic event causing irreversible losses of sensory, motor, and autonomic functions, that may also be associated with chronic neuropathic pain. Serotonin (5-HT) neurotransmission in the spinal cord is critical for modulating sensory, motor, and autonomic functions. Following SCI, 5-HT axons caudal to the lesion site degenerate, and the degree of axonal degeneration positively correlates with lesion severity. Rostral to the lesion, 5-HT axons sprout, irrespective of the severity of the injury. Unlike callosal fibers and cholinergic projections, 5-HT axons are more resistant to an inhibitory milieu and undergo active sprouting and regeneration after central nervous system (CNS) traumatism. Numerous studies suggest that a chronic increase in serotonergic neurotransmission promotes 5-HT axon sprouting in the intact CNS. Moreover, recent studies in invertebrates suggest that 5-HT has a pro-regenerative role in injured axons. Here we present a brief description of 5-HT discovery, 5-HT innervation of the CNS, and physiological functions of 5-HT in the spinal cord, including its role in controlling bladder function. We then present a comprehensive overview of changes in serotonergic axons after CNS damage, and discuss their plasticity upon altered 5-HT neurotransmitter levels. Subsequently, we provide an in-depth review of therapeutic approaches targeting 5-HT neurotransmission, as well as other pre-clinical strategies to promote an increase in re-growth of 5-HT axons, and their functional consequences in SCI animal models. Finally, we highlight recent findings signifying the direct role of 5-HT in axon regeneration and suggest strategies to further promote robust long-distance re-growth of 5-HT axons across the lesion site and eventually achieve functional recovery following SCI.
Collapse
Affiliation(s)
- Florence Evelyne Perrin
- University of Montpellier, Montpellier, F-34095 France; INSERM, U1198, Montpellier, F-34095 France; EPHE, Paris, F-75014 France
| | - Harun Najib Noristani
- Shriners Hospitals Pediatric Research Center, Center for Neural Repair, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
29
|
Siemann JK, Green NH, Reddy N, McMahon DG. Sequential Photoperiodic Programing of Serotonin Neurons, Signaling and Behaviors During Prenatal and Postnatal Development. Front Neurosci 2019; 13:459. [PMID: 31133791 PMCID: PMC6517556 DOI: 10.3389/fnins.2019.00459] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 04/24/2019] [Indexed: 01/14/2023] Open
Abstract
Early life stimuli during critical developmental time frames have been linked to increased risk for neurodevelopmental disorders later in life. The serotonergic system of the brain is implicated in mood disorders and is impacted by the duration of daylight, or photoperiod. Here we sought to investigate sensitive periods of prenatal and postnatal development for photoperiodic programming of DRN serotonin neurons, midbrain serotonin and metabolite levels along with affective behaviors in adolescence (P30) or adulthood (P50). To address these questions we restricted the interval of exposure to prenatal development (E0-P0) for Long summer-like photoperiods (LD 16:8), or Short winter-like photoperiods (LD 8:16) with postnatal development and maturation then occurring under the opposing photoperiod. Prenatal exposure alone to Long photoperiods was sufficient to fully program increased excitability of DRN serotonin neurons into adolescence and adulthood, similar to maintained exposure to Long photoperiods throughout development. Interestingly, Long photoperiod exposure can elevate serotonin and its’ corresponding metabolite levels along with reducing affective behavior, which appear to have both pre and postnatal origins. Thus, exposure to Long photoperiods prenatally programs increased DRN serotonin neuronal excitability, but this step is insufficient to program serotonin signaling and affective behavior. Continuing influence of Long photoperiods during postnatal development then modulates serotonergic content and has protective effects for depressive-like behavior. Photoperiodic programing of serotonin function in mice appears to be a sequential process with programing of neuronal excitability as a first step occurring prenatally, while programing of circuit level serotonin signaling and behavior extends into the postnatal period.
Collapse
Affiliation(s)
- Justin K Siemann
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States.,Silvio O. Conte Center for Neuroscience Research, Vanderbilt University, Nashville, TN, United States
| | - Noah H Green
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States.,Silvio O. Conte Center for Neuroscience Research, Vanderbilt University, Nashville, TN, United States
| | - Nikhil Reddy
- Vanderbilt Undergraduate Neuroscience Program, Vanderbilt University, Nashville, TN, United States
| | - Douglas G McMahon
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States.,Silvio O. Conte Center for Neuroscience Research, Vanderbilt University, Nashville, TN, United States.,Department of Pharmacology, Vanderbilt University, Nashville, TN, United States.,Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
30
|
Takumi T, Tamada K, Hatanaka F, Nakai N, Bolton PF. Behavioral neuroscience of autism. Neurosci Biobehav Rev 2019; 110:60-76. [PMID: 31059731 DOI: 10.1016/j.neubiorev.2019.04.012] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 04/03/2019] [Accepted: 04/22/2019] [Indexed: 12/29/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder. Several genetic causes of ASD have been identified and this has enabled researchers to construct mouse models. Mouse behavioral tests reveal impaired social interaction and communication, as well as increased repetitive behavior and behavioral inflexibility in these mice, which correspond to core behavioral deficits observed in individuals with ASD. However, the connection between these behavioral abnormalities and the underlying dysregulation in neuronal circuits and synaptic function is poorly understood. Moreover, different components of the ASD phenotype may be linked to dysfunction in different brain regions, making it even more challenging to chart the pathophysiological mechanisms involved in ASD. Here we summarize the research on mouse models of ASD and their contribution to understanding pathophysiological mechanisms. Specifically, we emphasize abnormal serotonin production and regulation, as well as the disruption in circadian rhythms and sleep that are observed in a subset of ASD, and propose that spatiotemporal disturbances in brainstem development may be a primary cause of ASD that propagates towards the cerebral cortex.
Collapse
Affiliation(s)
- Toru Takumi
- RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan.
| | - Kota Tamada
- RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | | | - Nobuhiro Nakai
- RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Patrick F Bolton
- Institute of Psychiatry, King's College London, London, SE5 8AF, UK
| |
Collapse
|
31
|
The development of synaptic transmission is time-locked to early social behaviors in rats. Nat Commun 2019; 10:1195. [PMID: 30867422 PMCID: PMC6416358 DOI: 10.1038/s41467-019-09156-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 02/24/2019] [Indexed: 11/19/2022] Open
Abstract
The development of functional synapses is a sequential process preserved across many brain areas. Here, we show that glutamatergic postsynaptic currents anticipated GABAergic currents in Layer II/III of the rat neocortex, in contrast to the pattern described for other brain areas. The frequencies of both glutamatergic and GABAergic currents increased abruptly at the beginning of the second postnatal week, supported by a serotonin upsurge. Integrative behaviors arose on postnatal day (P)9, while most motor and sensory behaviors, which are fundamental for pup survival, were already in place at approximately P7. A reduction in serotonin reuptake accelerated the development of functional synapses and integrative huddling behavior, while sparing motor and sensory function development. A decrease in synaptic transmission in Layer II/III induced by a chemogenetic approach only inhibited huddling. Thus, precise developmental sequences mediate early, socially directed behaviors for which neurotransmission and its modulation in supragranular cortical layers play key roles. The development of functional synapses is a key milestone in neurodevelopment. Here, the authors show how serotonin signalling coordinates development of glutamatergic and GABAergic currents and triggers the emergence of integrative behavior (huddling) in rat pups.
Collapse
|
32
|
Montgomery AK, Shuffrey LC, Guter SJ, Anderson GM, Jacob S, Mosconi MW, Sweeney JA, Turner JB, Sutcliffe JS, Cook EH, Veenstra-VanderWeele J. Maternal Serotonin Levels Are Associated With Cognitive Ability and Core Symptoms in Autism Spectrum Disorder. J Am Acad Child Adolesc Psychiatry 2018; 57:867-875. [PMID: 30392628 PMCID: PMC6531860 DOI: 10.1016/j.jaac.2018.06.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 05/28/2018] [Accepted: 06/20/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The serotonin (5-hydroxytryptamine [HT]) system has long been implicated in autism spectrum disorder (ASD). Whole-blood 5-HT level (WB5-HT) is a stable, heritable biomarker that is elevated in more than 25% of children with ASD. Recent findings indicate that the maternal 5-HT system may influence embryonic neurodevelopment, but maternal WB5-HT has not been examined in relation to ASD phenotypes. METHOD WB5-HT levels were obtained from 181 individuals (3-27 years of age) diagnosed with ASD, 99 of their fathers, and 119 of their mothers. Standardized assessments were used to evaluate cognitive, behavioral, and language phenotypes. RESULTS Exploratory regression analyses found relationships between maternal WB5-HT and nonverbal IQ (NVIQ), Autism Diagnostic Interview-Revised (ADI-R) Nonverbal Communication Algorithm scores, and overall adaptive function on the Vineland Adaptive Behavior Scales-II. Latent class analysis identified a three-class structure in the assessment data, describing children with low, intermediate, and high severity across measures of behavior, cognition, and adaptive function. Mean maternal WB5-HT differed across classes, with the lowest maternal WB5-HT levels seen in the highest-severity group (Welch F2,46.048 = 17.394, p < .001). Paternal and proband WB5-HT did not differ between classes. CONCLUSION Maternal WB5-HT is associated with neurodevelopmental outcomes in offspring with ASD. Prospective, longitudinal studies will be needed to better understand the relationship between the function of the maternal serotonin system during pregnancy and brain development. Further studies in animal models may be able to reveal the mechanisms underlying these findings.
Collapse
Affiliation(s)
- Alicia K. Montgomery
- Columbia University Medical Center, New York, NY, and the New York State Psychiatric Institute, New York, NY; Center for Autism and the Developing Brain, New York-Presbyterian Hospital, White Plains, NY
| | - Lauren C. Shuffrey
- New York State Psychiatric Institute, New York, NY, and the Center for Autism and the Developing Brain, New York-Presbyterian Hospital, White Plains, NY. They are also with the Sackler Institute for Developmental Psychobiology; Columbia University Medical Center, New York, NY
| | - Stephen J. Guter
- Institute for Juvenile Research at the University of Illinois at Chicago, IL
| | | | | | - Matthew W. Mosconi
- Kansas Center for Autism Research and Training, Overland Park. He is also with the Clinical Child Psychology Program and Schiefelbusch Institute for Life Span Studies at the University of Kansas, Lawrence
| | | | - J. Blake Turner
- Columbia University Medical Center, New York, NY, and the New York State Psychiatric Institute, New York, NY
| | | | - Edwin H. Cook
- Institute for Juvenile Research at the University of Illinois at Chicago, IL
| | - Jeremy Veenstra-VanderWeele
- New York State Psychiatric Institute, New York, NY, and the Center for Autism and the Developing Brain, New York-Presbyterian Hospital, White Plains, NY. They are also with the Sackler Institute for Developmental Psychobiology; Columbia University Medical Center, New York, NY.
| |
Collapse
|
33
|
Nyarko JNK, Quartey MO, Heistad RM, Pennington PR, Poon LJ, Knudsen KJ, Allonby O, El Zawily AM, Freywald A, Rauw G, Baker GB, Mousseau DD. Glycosylation States of Pre- and Post-synaptic Markers of 5-HT Neurons Differ With Sex and 5-HTTLPR Genotype in Cortical Autopsy Samples. Front Neurosci 2018; 12:545. [PMID: 30147642 PMCID: PMC6096231 DOI: 10.3389/fnins.2018.00545] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 07/19/2018] [Indexed: 11/13/2022] Open
Abstract
The serotonin (5-hydroxytryptamine, 5-HT) transporter (5-HTT) gene-linked polymorphic region (5-HTTLPR) is thought to alter 5-HT signaling and contribute to behavioral and cognitive phenotypes in depression as well as Alzheimer disease (AD). We explored how well the short (S) and long (L) alleles of the 5-HTTLPR align with serotoninergic indices in 60 autopsied cortical samples from early-onset AD/EOAD and late-onset AD/LOAD donors, and age- and sex-matched controls. Stratifying data by either diagnosis-by-genotype or by sex-by-genotype revealed that the donor's 5-HTTLPR genotype, i.e., L/L, S/L, or S/S, did not affect 5-HTT mRNA or protein expression. However, the glycosylation of 5-HTT was significantly higher in control female (vs. male) samples and tended to decrease in female EOAD/LOAD samples, but remained unaltered in male LOAD samples. Glycosylated forms of the vesicular monoamine transporter (VMAT2) were lower in both male and female AD samples, while a sex-by-genotype stratification revealed a loss of VMAT2 glycosylation specifically in females with an L/L genotype. VMAT2 and 5-HTT glycosylation were correlated in male samples and inversely correlated in female samples in both stratification models. The S/S genotype aligned with lower levels of 5-HT turnover in females (but not males) and with an increased glycosylation of the post-synaptic 5-HT2C receptor. Interestingly, the changes in presynaptic glycosylation were evident primarily in female carriers of the APOE ε4 risk factor for AD. Our data do not support an association between 5-HTTLPR genotype and 5-HTT expression, but they do reveal a non-canonical association of 5-HTTLPR genotype with sex-dependent glycosylation changes in pre- and post-synaptic markers of serotoninergic neurons. These patterns of change suggest adaptive responses in 5-HT signaling and could certainly be contributing to the female prevalence in risk for either depression or AD.
Collapse
Affiliation(s)
- Jennifer N K Nyarko
- Cell Signalling Laboratory, Department of Psychiatry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Maa O Quartey
- Cell Signalling Laboratory, Department of Psychiatry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Ryan M Heistad
- Cell Signalling Laboratory, Department of Psychiatry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Paul R Pennington
- Cell Signalling Laboratory, Department of Psychiatry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Lisa J Poon
- Cell Signalling Laboratory, Department of Psychiatry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Kaeli J Knudsen
- Cell Signalling Laboratory, Department of Psychiatry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Odette Allonby
- Cell Signalling Laboratory, Department of Psychiatry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Amr M El Zawily
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Andrew Freywald
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Gail Rauw
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Glen B Baker
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Darrell D Mousseau
- Cell Signalling Laboratory, Department of Psychiatry, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
34
|
Pascucci T, Rossi L, Colamartino M, Gabucci C, Carducci C, Valzania A, Sasso V, Bigini N, Pierigè F, Viscomi MT, Ventura R, Cabib S, Magnani M, Puglisi-Allegra S, Leuzzi V. A new therapy prevents intellectual disability in mouse with phenylketonuria. Mol Genet Metab 2018; 124:39-49. [PMID: 29661557 DOI: 10.1016/j.ymgme.2018.03.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/20/2018] [Accepted: 03/20/2018] [Indexed: 01/20/2023]
Abstract
Untreated phenylketonuria (PKU) results in severe neurodevelopmental disorders, which can be partially prevented by an early and rigorous limitation of phenylalanine (Phe) intake. Enzyme substitution therapy with recombinant Anabaena variabilis Phe Ammonia Lyase (rAvPAL) proved to be effective in reducing blood Phe levels in preclinical and clinical studies of adults with PKU. Aims of present study were: a) to gather proofs of clinical efficacy of rAvPAL treatment in preventing neurological impairment in an early treated murine model of PKU; b) to test the advantages of an alternative delivering system for rAvPAL such as autologous erythrocytes. BTBR-Pahenu2-/- mice were treated from 15 to 64 post-natal days with weekly infusions of erythrocytes loaded with rAvPAL. Behavioral, neurochemical, and brain histological markers denoting untreated PKU were examined in early treated adult mice in comparison with untreated and wild type animals. rAvPAL therapy normalized blood and brain Phe; prevented cognitive developmental failure, brain depletion of serotonin, dendritic spine abnormalities, and myelin basic protein reduction. No adverse events or inactivating immune reaction were observed. In conclusion present study testifies the clinical efficacy of rAvPAL treatment in a preclinical model of PKU and the advantages of erythrocytes as carrier of the enzyme in term of frequency of the administrations and prevention of immunological reactions.
Collapse
Affiliation(s)
- Tiziana Pascucci
- Department of Psychology and Centro "Daniel Bovet", Sapienza University, via dei Marsi 78, 00185 Rome, Italy; Fondazione Santa Lucia, IRCCS, via Ardeatina 306, 00142 Rome, Italy
| | - Luigia Rossi
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", via Saffi 2, 61029 Urbino (PU), Italy; EryDel SpA, via Sasso 36, 61029 Urbino (PU), Italy
| | - Marco Colamartino
- Department of Psychology and Centro "Daniel Bovet", Sapienza University, via dei Marsi 78, 00185 Rome, Italy; Fondazione Santa Lucia, IRCCS, via Ardeatina 306, 00142 Rome, Italy
| | - Claudia Gabucci
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", via Saffi 2, 61029 Urbino (PU), Italy
| | - Claudia Carducci
- Department of Experimental Medicine, Sapienza University, viale del Policlinico 155, 00161 Rome, Italy
| | - Alessandro Valzania
- Department of Psychology and Centro "Daniel Bovet", Sapienza University, via dei Marsi 78, 00185 Rome, Italy; Fondazione Santa Lucia, IRCCS, via Ardeatina 306, 00142 Rome, Italy
| | - Valeria Sasso
- Fondazione Santa Lucia, IRCCS, via Ardeatina 306, 00142 Rome, Italy
| | - Noemi Bigini
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", via Saffi 2, 61029 Urbino (PU), Italy
| | - Francesca Pierigè
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", via Saffi 2, 61029 Urbino (PU), Italy
| | | | - Rossella Ventura
- Department of Psychology and Centro "Daniel Bovet", Sapienza University, via dei Marsi 78, 00185 Rome, Italy; Fondazione Santa Lucia, IRCCS, via Ardeatina 306, 00142 Rome, Italy
| | - Simona Cabib
- Department of Psychology and Centro "Daniel Bovet", Sapienza University, via dei Marsi 78, 00185 Rome, Italy; Fondazione Santa Lucia, IRCCS, via Ardeatina 306, 00142 Rome, Italy
| | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", via Saffi 2, 61029 Urbino (PU), Italy; EryDel SpA, via Sasso 36, 61029 Urbino (PU), Italy
| | - Stefano Puglisi-Allegra
- Department of Psychology and Centro "Daniel Bovet", Sapienza University, via dei Marsi 78, 00185 Rome, Italy; Fondazione Santa Lucia, IRCCS, via Ardeatina 306, 00142 Rome, Italy
| | - Vincenzo Leuzzi
- Department of Human Neuroscience, Sapienza University of Rome, via dei Sabelli 108, 00185 Rome, Italy.
| |
Collapse
|
35
|
Khazipov R, Milh M. Early patterns of activity in the developing cortex: Focus on the sensorimotor system. Semin Cell Dev Biol 2018; 76:120-129. [DOI: 10.1016/j.semcdb.2017.09.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 09/07/2017] [Accepted: 09/08/2017] [Indexed: 02/08/2023]
|
36
|
Oreland L, Lagravinese G, Toffoletto S, Nilsson KW, Harro J, Robert Cloninger C, Comasco E. Personality as an intermediate phenotype for genetic dissection of alcohol use disorder. J Neural Transm (Vienna) 2018; 125:107-130. [PMID: 28054193 PMCID: PMC5754455 DOI: 10.1007/s00702-016-1672-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 12/23/2016] [Indexed: 01/16/2023]
Abstract
Genetic and environmental interactive influences on predisposition to develop alcohol use disorder (AUD) account for the high heterogeneity among AUD patients and make research on the risk and resiliency factors complicated. Several attempts have been made to identify the genetic basis of AUD; however, only few genetic polymorphisms have consistently been associated with AUD. Intermediate phenotypes are expected to be in-between proxies of basic neuronal biological processes and nosological symptoms of AUD. Personality is likely to be a top candidate intermediate phenotype for the dissection of the genetic underpinnings of different subtypes of AUD. To date, 38 studies have investigated personality traits, commonly assessed by the Cloninger's Tridimensional Personality Questionnaire (TPQ) or Temperament and Character Inventory (TCI), in relation to polymorphisms of candidate genes of neurotransmitter systems in alcohol-dependent patients. Particular attention has been given to the functional polymorphism of the serotonin transporter gene (5-HTTLPR), however, leading to contradictory results, whereas results with polymorphisms in other candidate monoaminergic genes (e.g., tryptophan hydroxylase, serotonin receptors, monoamine oxidases, dopamine receptors and transporter) are sparse. Only one genome-wide association study has been performed so far and identified the ABLIM1 gene of relevance for novelty seeking, harm avoidance and reward dependence in alcohol-dependent patients. Studies investigating genetic factors together with personality could help to define more homogenous subgroups of AUD patients and facilitate treatment strategies. This review also urges the scientific community to combine genetic data with psychobiological and environmental data to further dissect the link between personality and AUD.
Collapse
Affiliation(s)
- Lars Oreland
- Department of Neuroscience, Uppsala University, BMC, Box 593, 751 24, Uppsala, Sweden
| | - Gianvito Lagravinese
- Department of Neuroscience, Uppsala University, BMC, Box 593, 751 24, Uppsala, Sweden
| | - Simone Toffoletto
- Department of Neuroscience, Uppsala University, BMC, Box 593, 751 24, Uppsala, Sweden
| | - Kent W Nilsson
- Centre for Clinical Research, Uppsala University, Västmanland County Counci, Västerås, Sweden
| | - Jaanus Harro
- Division of Neuropsychopharmacology, Department of Psychology, University of Tartu, Tartu, Estonia
- Psychiatry Clinic, North Estonia Medical Centre, Tallinn, Estonia
| | - C Robert Cloninger
- Department of Psychiatry, School of Medicine, Washington University, St. Louis, MO, USA
| | - Erika Comasco
- Department of Neuroscience, Uppsala University, BMC, Box 593, 751 24, Uppsala, Sweden.
| |
Collapse
|
37
|
Rodrigues Junior WDS, Oliveira-Silva P, Faria-Melibeu ADC, Campello-Costa P, Serfaty CA. Serotonin transporter immunoreactivity is modulated during development and after fluoxetine treatment in the rodent visual system. Neurosci Lett 2017; 657:38-44. [PMID: 28756191 DOI: 10.1016/j.neulet.2017.07.047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 07/18/2017] [Accepted: 07/25/2017] [Indexed: 01/03/2023]
Abstract
The serotonin transporter (5-HTT) regulates serotonin homeostasis and has been used as a target for different drugs in depression treatment. Although the serotonergic system has received a lot of attention, little is known about the effects of these drugs over serotonin transporters. In this work, we investigated the expression pattern of 5-HTT during development of the visual system and the influence of fluoxetine on different signaling pathways. Our data showed that the expression of 5-HTT has a gradual increase from postnatal day 0 until 42 and decrease afterwards. Moreover, chronic fluoxetine treatment both in childhood and adolescence induces down regulation of 5-HTT expression and phosphorylation of ERK and AKT signaling pathways. Together these data suggest that the levels of 5-HTT protein could be important for the development of the central nervous system and suggest that the ERK and AKT are involved in the molecular pathways of antidepressants drugs, acting in concert to improve serotonergic signaling.
Collapse
Affiliation(s)
- Wandilson Dos Santos Rodrigues Junior
- Programa de Pós-Graduação em Neurociências, Departamento de Neurobiologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Priscilla Oliveira-Silva
- Programa de Pós-Graduação em Neurociências, Departamento de Neurobiologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Adriana da Cunha Faria-Melibeu
- Programa de Pós-Graduação em Neurociências, Departamento de Neurobiologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Paula Campello-Costa
- Programa de Pós-Graduação em Neurociências, Departamento de Neurobiologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Claudio Alberto Serfaty
- Programa de Pós-Graduação em Neurociências, Departamento de Neurobiologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil.
| |
Collapse
|
38
|
Fiori E, Oddi D, Ventura R, Colamartino M, Valzania A, D’Amato FR, Bruinenberg V, van der Zee E, Puglisi-Allegra S, Pascucci T. Early-onset behavioral and neurochemical deficits in the genetic mouse model of phenylketonuria. PLoS One 2017; 12:e0183430. [PMID: 28850618 PMCID: PMC5574541 DOI: 10.1371/journal.pone.0183430] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 08/01/2017] [Indexed: 11/19/2022] Open
Abstract
Phenylketonuria (PKU) is one of the most common human inborn errors of metabolism, caused by phenylalanine hydroxylase deficiency, leading to high phenylalanine and low tyrosine levels in blood and brain causing profound cognitive disability, if untreated. Since 1960, population is screened for hyperphenylalaninemia shortly after birth and submitted to early treatment in order to prevent the major manifestations of the disease. However, the dietetic regimen (phenylalanine free diet) is difficult to maintain, and despite the recommendation to a strict and lifelong compliance, up to 60% of adolescents partially or totally abandons the treatment. The development and the study of new treatments continue to be sought, taking advantage of preclinical models, the most used of which is the PAHenu2 (BTBR ENU2), the genetic murine model of PKU. To date, adult behavioral and neurochemical alterations have been mainly investigated in ENU2 mice, whereas there are no clear indications about the onset of these deficiencies. Here we investigated and report, for the first time, a comprehensive behavioral and neurochemical assay of the developing ENU2 mice. Overall, our findings demonstrate that ENU2 mice are significantly smaller than WT until pnd 24, present a significant delay in the acquisition of tested developmental reflexes, impaired communicative, motor and social skills, and have early reduced biogenic amine levels in several brain areas. Our results extend the understanding of behavioral and cerebral abnormalities in PKU mice, providing instruments to an early preclinical evaluation of the effects of new treatments.
Collapse
Affiliation(s)
- Elena Fiori
- Department of Psychology and Centro “Daniel Bovet”, Sapienza University, Rome, Italy
- Cell Biology and Neurobiology Institute, National Research Council, Rome, Italy
- European Brain Research Institute EBRI, Rome, Italy
- Fondazione Santa Lucia, IRCCS, Rome, Italy
| | - Diego Oddi
- Cell Biology and Neurobiology Institute, National Research Council, Rome, Italy
- Fondazione Santa Lucia, IRCCS, Rome, Italy
| | - Rossella Ventura
- Department of Psychology and Centro “Daniel Bovet”, Sapienza University, Rome, Italy
- Fondazione Santa Lucia, IRCCS, Rome, Italy
| | - Marco Colamartino
- Department of Psychology and Centro “Daniel Bovet”, Sapienza University, Rome, Italy
- Fondazione Santa Lucia, IRCCS, Rome, Italy
| | - Alessandro Valzania
- Department of Psychology and Centro “Daniel Bovet”, Sapienza University, Rome, Italy
- Fondazione Santa Lucia, IRCCS, Rome, Italy
| | - Francesca Romana D’Amato
- Cell Biology and Neurobiology Institute, National Research Council, Rome, Italy
- Fondazione Santa Lucia, IRCCS, Rome, Italy
| | - Vibeke Bruinenberg
- Molecular Neurobiology, GELIFES, University of Groningen, Groningen, The Netherlands
| | - Eddy van der Zee
- Molecular Neurobiology, GELIFES, University of Groningen, Groningen, The Netherlands
| | - Stefano Puglisi-Allegra
- Department of Psychology and Centro “Daniel Bovet”, Sapienza University, Rome, Italy
- Fondazione Santa Lucia, IRCCS, Rome, Italy
| | - Tiziana Pascucci
- Department of Psychology and Centro “Daniel Bovet”, Sapienza University, Rome, Italy
- Fondazione Santa Lucia, IRCCS, Rome, Italy
- * E-mail:
| |
Collapse
|
39
|
Williams M, Zhang Z, Nance E, Drewes JL, Lesniak WG, Singh S, Chugani DC, Rangaramanujam K, Graham DR, Kannan S. Maternal Inflammation Results in Altered Tryptophan Metabolism in Rabbit Placenta and Fetal Brain. Dev Neurosci 2017; 39:399-412. [PMID: 28490020 DOI: 10.1159/000471509] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 03/08/2017] [Indexed: 12/13/2022] Open
Abstract
Maternal inflammation has been linked to neurodevelopmental and neuropsychiatric disorders such as cerebral palsy, schizophrenia, and autism. We had previously shown that intrauterine inflammation resulted in a decrease in serotonin, one of the tryptophan metabolites, and a decrease in serotonin fibers in the sensory cortex of newborns in a rabbit model of cerebral palsy. In this study, we hypothesized that maternal inflammation results in alterations in tryptophan pathway enzymes and metabolites in the placenta and fetal brain. We found that intrauterine endotoxin administration at gestational day 28 (G28) resulted in a significant upregulation of indoleamine 2,3-dioxygenase (IDO) in both the placenta and fetal brain at G29 (24 h after treatment). This endotoxin-mediated IDO induction was also associated with intense microglial activation, an increase in interferon gamma expression, and increases in kynurenine and the kynurenine pathway metabolites kynurenine acid and quinolinic acid, as well as a significant decrease in 5-hydroxyindole acetic acid (a precursor of serotonin) levels in the periventricular region of the fetal brain. These results indicate that maternal inflammation shunts tryptophan metabolism away from the serotonin to the kynurenine pathway, which may lead to excitotoxic injury along with impaired development of serotonin-mediated thalamocortical fibers in the newborn brain. These findings provide new targets for prevention and treatment of maternal inflammation-induced fetal and neonatal brain injury leading to neurodevelopmental disorders such as cerebral palsy and autism.
Collapse
Affiliation(s)
- Monica Williams
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University SOM, Baltimore, MD, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Martini FJ, Moreno-Juan V, Filipchuk A, Valdeolmillos M, López-Bendito G. Impact of thalamocortical input on barrel cortex development. Neuroscience 2017; 368:246-255. [PMID: 28412498 DOI: 10.1016/j.neuroscience.2017.04.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 03/31/2017] [Accepted: 04/03/2017] [Indexed: 01/22/2023]
Abstract
The development of cortical maps requires the balanced interaction between genetically determined programs and input/activity-dependent signals generated spontaneously or triggered from the environment. The somatosensory pathway of mice provides an excellent scenario to study cortical map development because of its highly organized cytoarchitecture, known as the barrel field. This precise organization makes evident even small alterations in the cortical map layout. In this review, we will specially focus on the thalamic factors that control barrel field development. We will summarize the role of thalamic input integration and identity, neurotransmission and spontaneous activity in cortical map formation and early cross-modal plasticity.
Collapse
Affiliation(s)
- Francisco J Martini
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Spain.
| | - Verónica Moreno-Juan
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Spain
| | - Anton Filipchuk
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Spain
| | - Miguel Valdeolmillos
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Spain
| | - Guillermina López-Bendito
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Spain.
| |
Collapse
|
41
|
Perturbation of Serotonin Homeostasis during Adulthood Affects Serotonergic Neuronal Circuitry. eNeuro 2017; 4:eN-NWR-0376-16. [PMID: 28413824 PMCID: PMC5388670 DOI: 10.1523/eneuro.0376-16.2017] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/14/2017] [Accepted: 02/17/2017] [Indexed: 02/01/2023] Open
Abstract
Growing evidence shows that the neurotransmitter serotonin (5-HT) modulates the fine-tuning of neuron development and the establishment of wiring patterns in the brain. However, whether serotonin is involved in the maintenance of neuronal circuitry in the adult brain remains elusive. Here, we use a Tph2fl°x conditional knockout (cKO) mouse line to assess the impact of serotonin depletion during adulthood on serotonergic system organization. Data show that the density of serotonergic fibers is increased in the hippocampus and decreased in the thalamic paraventricular nucleus (PVN) as a consequence of brain serotonin depletion. Strikingly, these defects are rescued following reestablishment of brain 5-HT signaling via administration of the serotonin precursor 5-hydroxytryptophan (5-HTP). Finally, 3D reconstruction of serotonergic fibers reveals that changes in serotonin homeostasis affect axonal branching complexity. These data demonstrate that maintaining proper serotonin homeostasis in the adult brain is crucial to preserve the correct serotonergic axonal wiring.
Collapse
|
42
|
Siemann JK, Muller CL, Forsberg CG, Blakely RD, Veenstra-VanderWeele J, Wallace MT. An autism-associated serotonin transporter variant disrupts multisensory processing. Transl Psychiatry 2017; 7:e1067. [PMID: 28323282 PMCID: PMC5416665 DOI: 10.1038/tp.2017.17] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 12/29/2016] [Accepted: 01/09/2017] [Indexed: 01/29/2023] Open
Abstract
Altered sensory processing is observed in many children with autism spectrum disorder (ASD), with growing evidence that these impairments extend to the integration of information across the different senses (that is, multisensory function). The serotonin system has an important role in sensory development and function, and alterations of serotonergic signaling have been suggested to have a role in ASD. A gain-of-function coding variant in the serotonin transporter (SERT) associates with sensory aversion in humans, and when expressed in mice produces traits associated with ASD, including disruptions in social and communicative function and repetitive behaviors. The current study set out to test whether these mice also exhibit changes in multisensory function when compared with wild-type (WT) animals on the same genetic background. Mice were trained to respond to auditory and visual stimuli independently before being tested under visual, auditory and paired audiovisual (multisensory) conditions. WT mice exhibited significant gains in response accuracy under audiovisual conditions. In contrast, although the SERT mutant animals learned the auditory and visual tasks comparably to WT littermates, they failed to show behavioral gains under multisensory conditions. We believe these results provide the first behavioral evidence of multisensory deficits in a genetic mouse model related to ASD and implicate the serotonin system in multisensory processing and in the multisensory changes seen in ASD.
Collapse
Affiliation(s)
- J K Siemann
- Neuroscience Program, Vanderbilt University, Nashville, TN, USA
| | - C L Muller
- Neuroscience Program, Vanderbilt University, Nashville, TN, USA
| | - C G Forsberg
- Department of Psychiatry, Vanderbilt University, Nashville, TN, USA
| | - R D Blakely
- Department of Psychiatry, Vanderbilt University, Nashville, TN, USA
- Silvio O. Conte Center for Neuroscience Research, Vanderbilt University, Nashville, TN, USA
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Jupiter, FL, USA
- Florida Atlantic University Brain Institute, Florida Atlantic University, Jupiter, FL, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - J Veenstra-VanderWeele
- Silvio O. Conte Center for Neuroscience Research, Vanderbilt University, Nashville, TN, USA
- Department of Psychiatry, Sackler Institute for Developmental Psychobiology, Columbia University, New York, NY, USA
- Center for Autism and The Developing Brain, New York Presbyterian Hospital, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - M T Wallace
- Department of Psychiatry, Vanderbilt University, Nashville, TN, USA
- Silvio O. Conte Center for Neuroscience Research, Vanderbilt University, Nashville, TN, USA
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
- Department of Hearing and Speech Sciences, Vanderbilt University, Nashville, TN, USA
- Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
43
|
Naoi M, Maruyama W, Shamoto-Nagai M. Type A monoamine oxidase and serotonin are coordinately involved in depressive disorders: from neurotransmitter imbalance to impaired neurogenesis. J Neural Transm (Vienna) 2017; 125:53-66. [PMID: 28293733 DOI: 10.1007/s00702-017-1709-8] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 03/12/2017] [Indexed: 12/30/2022]
Abstract
Type A monoamine oxidase (MAOA) catabolizes monoamine transmitters, serotonin, norepinephrine and dopamine, and plays a major role in the onset, progression and therapy of neuropsychiatric disorders. In depressive disorders, increase in MAOA expression and decrease in brain levels of serotonin and norepinephrine are proposed as the major pathogenic factors. The functional polymorphism of MAOA gene and genes in serotonin signal pathway are associated with depression. This review presents recent advance in studies on the role of MAOA in major depressive disorder and related emotional disorders. MAOA and serotonin regulate the prenatal development and postnatal maintenance of brain architecture and neurocircuit, as shown by MAOA-deficient humans and MAO knockout animal models. Impaired neurogenesis in the mature hippocampus has been proposed as "adult neurogenesis" hypothesis of depression. MAOA modulates the sensitivity to stress in the stages of brain development and maturation, and the interaction of gene-environmental factors in the early stage regulates the onset of depressive behaviors in adulthood. Vice versa environmental factors affect MAOA expression by epigenetic regulation. MAO inhibitors not only restore compromised neurotransmitters, but also protect neurons from cell death in depression through induction of anti-apoptotic Bcl-2 and prosurvival neurotrophic factors, especially brain-derived neurotrophic factor, the deficiency of which is detected in depression. This review discusses novel role of MAOA and serotonin in the pathogenesis and therapy of depressive disorders.
Collapse
Affiliation(s)
- Makoto Naoi
- Department of Health and Nutrition, Faculty of Psychological and Physical Science, Aichi Gakuin University, 12 Araike, Iwasaki-cho, Nisshin, Aichi, 320-0195, Japan.
| | - Wakako Maruyama
- Department of Health and Nutrition, Faculty of Psychological and Physical Science, Aichi Gakuin University, 12 Araike, Iwasaki-cho, Nisshin, Aichi, 320-0195, Japan
| | - Masayo Shamoto-Nagai
- Department of Health and Nutrition, Faculty of Psychological and Physical Science, Aichi Gakuin University, 12 Araike, Iwasaki-cho, Nisshin, Aichi, 320-0195, Japan
| |
Collapse
|
44
|
Miceli S, Nadif Kasri N, Joosten J, Huang C, Kepser L, Proville R, Selten MM, van Eijs F, Azarfar A, Homberg JR, Celikel T, Schubert D. Reduced Inhibition within Layer IV of Sert Knockout Rat Barrel Cortex is Associated with Faster Sensory Integration. Cereb Cortex 2017; 27:933-949. [PMID: 28158484 PMCID: PMC5390402 DOI: 10.1093/cercor/bhx016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 12/07/2016] [Accepted: 01/11/2017] [Indexed: 12/19/2022] Open
Abstract
Neural activity is essential for the maturation of sensory systems. In the rodent primary somatosensory cortex (S1), high extracellular serotonin (5-HT) levels during development impair neural transmission between the thalamus and cortical input layer IV (LIV). Rodent models of impaired 5-HT transporter (SERT) function show disruption in their topological organization of S1 and in the expression of activity-regulated genes essential for inhibitory cortical network formation. It remains unclear how such alterations affect the sensory information processing within cortical LIV. Using serotonin transporter knockout (Sert-/-) rats, we demonstrate that high extracellular serotonin levels are associated with impaired feedforward inhibition (FFI), fewer perisomatic inhibitory synapses, a depolarized GABA reversal potential and reduced expression of KCC2 transporters in juvenile animals. At the neural population level, reduced FFI increases the excitatory drive originating from LIV, facilitating evoked representations in the supragranular layers II/III. The behavioral consequence of these changes in network excitability is faster integration of the sensory information during whisker-based tactile navigation, as Sert-/- rats require fewer whisker contacts with tactile targets and perform object localization with faster reaction times. These results highlight the association of serotonergic homeostasis with formation and excitability of sensory cortical networks, and consequently with sensory perception.
Collapse
Affiliation(s)
- Stéphanie Miceli
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
- Department of Neural Networks, Center of Advanced European Studies and Research (caesar), Max Planck Society, Germany
| | - Nael Nadif Kasri
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Joep Joosten
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Chao Huang
- Department of Neurophysiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Lara Kepser
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Rémi Proville
- Department of Neurophysiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Martijn M. Selten
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Fenneke van Eijs
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Alireza Azarfar
- Department of Neurophysiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Judith R. Homberg
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Tansu Celikel
- Department of Neurophysiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Dirk Schubert
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
- Department of Neurophysiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
45
|
Muller CL, Anacker AMJ, Rogers TD, Goeden N, Keller EH, Forsberg CG, Kerr TM, Wender CLA, Anderson GM, Stanwood GD, Blakely RD, Bonnin A, Veenstra-VanderWeele J. Impact of Maternal Serotonin Transporter Genotype on Placental Serotonin, Fetal Forebrain Serotonin, and Neurodevelopment. Neuropsychopharmacology 2017; 42:427-436. [PMID: 27550733 PMCID: PMC5399236 DOI: 10.1038/npp.2016.166] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 07/16/2016] [Accepted: 08/04/2016] [Indexed: 12/29/2022]
Abstract
Biomarker, neuroimaging, and genetic findings implicate the serotonin transporter (SERT) in autism spectrum disorder (ASD). Previously, we found that adult male mice expressing the autism-associated SERT Ala56 variant have altered central serotonin (5-HT) system function, as well as elevated peripheral blood 5-HT levels. Early in gestation, before midbrain 5-HT projections have reached the cortex, peripheral sources supply 5-HT to the forebrain, suggesting that altered maternal or placenta 5-HT system function could impact the developing embryo. We therefore used different combinations of maternal and embryo SERT Ala56 genotypes to examine effects on blood, placenta and embryo serotonin levels and neurodevelopment at embryonic day E14.5, when peripheral sources of 5-HT predominate, and E18.5, when midbrain 5-HT projections have reached the forebrain. Maternal SERT Ala56 genotype was associated with decreased placenta and embryonic forebrain 5-HT levels at E14.5. Low 5-HT in the placenta persisted, but forebrain levels normalized by E18.5. Maternal SERT Ala56 genotype effects on forebrain 5-HT levels were accompanied by a broadening of 5-HT-sensitive thalamocortical axon projections. In contrast, no effect of embryo genotype was seen in concepti from heterozygous dams. Blood 5-HT levels were dynamic across pregnancy and were increased in SERT Ala56 dams at E14.5. Placenta RNA sequencing data at E14.5 indicated substantial impact of maternal SERT Ala56 genotype, with alterations in immune and metabolic-related pathways. Collectively, these findings indicate that maternal SERT function impacts offspring placental 5-HT levels, forebrain 5-HT levels, and neurodevelopment.
Collapse
Affiliation(s)
| | - Allison MJ Anacker
- Department of Psychiatry, Columbia University Medical School, New York, NY, USA
| | - Tiffany D Rogers
- Department of Psychiatry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Nick Goeden
- Department of Cell and Neurobiology and Zilkha Neurogenetic Institute, University of Southern California School of Medicine, Los Angeles, CA, USA
| | - Elizabeth H Keller
- Department of Psychiatry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - C Gunnar Forsberg
- Department of Psychiatry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Travis M Kerr
- Department of Psychiatry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Carly LA Wender
- Department of Psychiatry, Columbia University Medical School, New York, NY, USA
| | - George M Anderson
- Child Study Center, Yale University School of Medicine, New Haven, CT, USA
| | - Gregg D Stanwood
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL, USA
| | - Randy D Blakely
- Department of Psychiatry, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Alexandre Bonnin
- Department of Cell and Neurobiology and Zilkha Neurogenetic Institute, University of Southern California School of Medicine, Los Angeles, CA, USA
| | - Jeremy Veenstra-VanderWeele
- Department of Psychiatry, Columbia University Medical School, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
- Center for Autism and the Developing Brain, New York Presbyterian Hospital, New York, NY, USA
- Sackler Institute for Developmental Psychobiology, Columbia University, New York, NY, USA
| |
Collapse
|
46
|
Gezelius H, López-Bendito G. Thalamic neuronal specification and early circuit formation. Dev Neurobiol 2016; 77:830-843. [PMID: 27739248 DOI: 10.1002/dneu.22460] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/16/2016] [Accepted: 10/10/2016] [Indexed: 12/12/2022]
Abstract
The thalamus is a central structure of the brain, primarily recognized for the relay of incoming sensory and motor information to the cerebral cortex but also key in high order intracortical communication. It consists of glutamatergic projection neurons organized in several distinct nuclei, each having a stereotype connectivity pattern and functional roles. In the adult, these nuclei can be appreciated by architectural boundaries, although their developmental origin and specification is only recently beginning to be revealed. Here, we summarize the current knowledge on the specification of the distinct thalamic neurons and nuclei, starting from early embryonic patterning until the postnatal days when active sensory experience is initiated and the overall system connectivity is already established. We also include an overview of the guidance processes important for establishing thalamocortical connections, with emphasis on the early topographical specification. The extensively studied thalamocortical axon branching in the cortex is briefly mentioned; however, the maturation and plasticity of this connection are beyond the scope of this review. In separate chapters, additional mechanisms and/or features that influence the specification and development of thalamic neurons and their circuits are also discussed. Finally, an outlook of future directions is given. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 830-843, 2017.
Collapse
Affiliation(s)
- Henrik Gezelius
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Avenida Ramón y Cajal, s/n, Sant Joan d'Alacant, Spain
| | - Guillermina López-Bendito
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Avenida Ramón y Cajal, s/n, Sant Joan d'Alacant, Spain
| |
Collapse
|
47
|
Carlson KS, Whitney MS, Gadziola MA, Deneris ES, Wesson DW. Preservation of Essential Odor-Guided Behaviors and Odor-Based Reversal Learning after Targeting Adult Brain Serotonin Synthesis. eNeuro 2016; 3:ENEURO.0257-16.2016. [PMID: 27896310 PMCID: PMC5112565 DOI: 10.1523/eneuro.0257-16.2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 10/18/2016] [Accepted: 10/24/2016] [Indexed: 01/02/2023] Open
Abstract
The neurotransmitter serotonin (5-HT) is considered a powerful modulator of sensory system organization and function in a wide range of animals. The olfactory system is innervated by midbrain 5-HT neurons into both its primary and secondary odor-processing stages. Facilitated by this circuitry, 5-HT and its receptors modulate olfactory system function, including odor information input to the olfactory bulb. It is unknown, however, whether the olfactory system requires 5-HT for even its most basic behavioral functions. To address this question, we established a conditional genetic approach to specifically target adult brain tryptophan hydroxylase 2 (Tph2), encoding the rate-limiting enzyme in brain 5-HT synthesis, and nearly eliminate 5-HT from the mouse forebrain. Using this novel model, we investigated the behavior of 5-HT-depleted mice during performance in an olfactory go/no-go task. Surprisingly, the near elimination of 5-HT from the forebrain, including the olfactory bulbs, had no detectable effect on the ability of mice to perform the odor-based task. Tph2-targeted mice not only were able to learn the task, but also had levels of odor acuity similar to those of control mice when performing coarse odor discrimination. Both groups of mice spent similar amounts of time sampling odors during decision-making. Furthermore, odor reversal learning was identical between 5-HT-depleted and control mice. These results suggest that 5-HT neurotransmission is not necessary for the most essential aspects of olfaction, including odor learning, discrimination, and certain forms of cognitive flexibility.
Collapse
Affiliation(s)
| | | | - Marie A. Gadziola
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, 44106
| | | | | |
Collapse
|
48
|
Making Sense Out of the Controversy: Use of SSRIs in Pregnancy. CURRENT OBSTETRICS AND GYNECOLOGY REPORTS 2016. [DOI: 10.1007/s13669-016-0173-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
49
|
Abstract
One approach to examining how higher sensory, motor, and cognitive faculties emerge in the neocortex is to elucidate the underlying wiring principles of the brain during development. The mammalian neocortex is a layered structure generated from a sheet of proliferating ventricular cells that progressively divide to form specific functional areas, such as the primary somatosensory (S1) and motor (M1) cortices. The basic wiring pattern in each of these functional areas is based on a similar framework, but is distinct in detail. Functional specialization in each area derives from a combination of molecular cues within the cortex and neuronal activity-dependent cues provided by innervating axons from the thalamus. One salient feature of neocortical development is the establishment of topographic maps in which neighboring neurons receive input relayed from neighboring sensory afferents. Barrels, which are prominent sensory units in the somatosensory cortex of rodents, have been examined in detail, and data suggest that the initial, gross formation of the barrel map relies on molecular cues, but the refinement of this topography depends on neuronal activity. Several excellent reviews have been published on the patterning and plasticity of the barrel cortex and the precise targeting of ventrobasal thalamic axons. In this review, the authors will focus on the formation and functional maturation of synapses between thalamocortical axons and cortical neurons, an event that coincides with the formation of the barrel map. They will briefly review cortical patterning and the initial targeting of thalamic axons, with an emphasis on recent findings. The rest of the review will be devoted to summarizing their understanding of the cellular and molecular mechanisms underlying thalamocortical synapse maturation and its role in barrel map formation.
Collapse
Affiliation(s)
- Melis Inan
- Program in Developmental Biology, Baylor College of Medicine, Houston TX, USA
| | | |
Collapse
|
50
|
Gustafsson L. Comment on “Disruption in the Inhibitory Architecture of the Cell Minicolumn: Implications for Autism”. Neuroscientist 2016; 10:189-91. [PMID: 15155057 DOI: 10.1177/1073858404263493] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Narrow neural columns have been suggested to be a neuroanatomical abnormality in autism. A previous hypothetical explanation, an unbalance between excitatory and inhibitory lateral feedback in the neocortex, has been found to be difficult to reconcile with the relatively high comorbidity of autism with epilepsy. Two alternative explanations are discussed, an early low capacity for producing serotonin, documented in autism, and insufficient production of nitric oxide. An early low level of serotonin has in animal experiments caused narrow neural columns. Insufficient nitric oxide is known from neural network theory to cause narrow neural columns.
Collapse
Affiliation(s)
- Lennart Gustafsson
- Department of Computer Science and Electrical Engineering, Luleå University of Technology, Sweden.
| |
Collapse
|