1
|
Raju S, Adams LJ, Diamond MS. The many ways in which alphaviruses bind to cells. Trends Immunol 2024; 45:85-93. [PMID: 38135598 PMCID: PMC10997154 DOI: 10.1016/j.it.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/25/2023] [Accepted: 11/26/2023] [Indexed: 12/24/2023]
Abstract
Only a subset of viruses can productively infect many different host species. Some arthropod-transmitted viruses, such as alphaviruses, can infect invertebrate and vertebrate species including insects, reptiles, birds, and mammals. This broad tropism may be explained by their ability to engage receptors that are conserved across vertebrate and invertebrate classes. Through several genome-wide loss-of-function screens, new alphavirus receptors have been identified, some of which bind to multiple related viruses in different antigenic complexes. Structural analysis has revealed that distinct sites on the alphavirus glycoprotein can mediate receptor binding, which opposes the idea that a single receptor-binding site mediates viral entry. Here, we discuss how different paradigms of receptor engagement on cells might explain the promiscuity of alphaviruses for multiple hosts.
Collapse
Affiliation(s)
- Saravanan Raju
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lucas J Adams
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael S Diamond
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| |
Collapse
|
2
|
Zhao Y, Liu W, Zhao X, Yu Z, Guo H, Yang Y, Moussian B, Zhu KY, Zhang J. Lipophorin receptor is required for the accumulations of cuticular hydrocarbons and ovarian neutral lipids in Locusta migratoria. Int J Biol Macromol 2023; 236:123746. [PMID: 36806776 DOI: 10.1016/j.ijbiomac.2023.123746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023]
Abstract
Lipophorin is the most abundant lipoprotein particle in insect hemolymph. Lipophorin receptor (LPR) is a glycoprotein that binds to the lipophorin and mediates cellular uptake and metabolism of lipids by endocytosis. However, the roles of LPR in uptake of lipids in the integument and ovary remain unknown in the migratory locust (Locusta migratoria). In present study, we characterized the molecular properties and biological roles of LmLPR in L. migratoria. The LmLPR transcript level was high in the first 2 days of the adults after eclosion, then gradually declined. LmLPR was predominately expressed in fat body, ovary and integument. Using immuno-detection methods, we revealed that LmLPR was mainly localized in the membrane of oenocytes, epidermal cells, fat body cells and follicular cells. RNAi-mediated silencing of LmLPR led to a slight decrease of the cuticle hydrocarbon contents but with little effect on the cuticular permeability. However, the neutral lipid content was significantly decreased in the ovary after RNAi against LmLPR, which led to a retarded ovarian development. Taken together, our results indicated that LmLPR is involved in the uptake and accumulation of lipids in the ovary and plays a crucial role in ovarian development in L. migratoria. Therefore, LmLPR could be a promising RNAi target for insect pest management by disrupting insect ovarian development.
Collapse
Affiliation(s)
- Yiyan Zhao
- Research Institute of Applied Biology, Shanxi Key Laboratory of Nucleic Acid Biopesticides, The Key Laboratory of Chemical Biology and Molecular, Engineering of Ministry of Education, Shanxi University, Taiyuan, Shanxi 030006, China; College of Life Science, Shanxi University, Taiyuan, China
| | - Weimin Liu
- Research Institute of Applied Biology, Shanxi Key Laboratory of Nucleic Acid Biopesticides, The Key Laboratory of Chemical Biology and Molecular, Engineering of Ministry of Education, Shanxi University, Taiyuan, Shanxi 030006, China.
| | - Xiaoming Zhao
- Research Institute of Applied Biology, Shanxi Key Laboratory of Nucleic Acid Biopesticides, The Key Laboratory of Chemical Biology and Molecular, Engineering of Ministry of Education, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Zhitao Yu
- Research Institute of Applied Biology, Shanxi Key Laboratory of Nucleic Acid Biopesticides, The Key Laboratory of Chemical Biology and Molecular, Engineering of Ministry of Education, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Hongfang Guo
- Research Institute of Applied Biology, Shanxi Key Laboratory of Nucleic Acid Biopesticides, The Key Laboratory of Chemical Biology and Molecular, Engineering of Ministry of Education, Shanxi University, Taiyuan, Shanxi 030006, China; College of Life Science, Shanxi University, Taiyuan, China
| | - Yang Yang
- Research Institute of Applied Biology, Shanxi Key Laboratory of Nucleic Acid Biopesticides, The Key Laboratory of Chemical Biology and Molecular, Engineering of Ministry of Education, Shanxi University, Taiyuan, Shanxi 030006, China; College of Life Science, Shanxi University, Taiyuan, China
| | - Bernard Moussian
- Interfaculty Institute of Cell Biology, University of Tübingen, 72076 Tübingen, Germany; Université Côte d'Azur, INRAE, CNRS, Institut Sophia Agrobiotech, 06903 Sophia Antipolis CEDEX, France
| | - Kun Yan Zhu
- Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, KS 66506, USA
| | - Jianzhen Zhang
- Research Institute of Applied Biology, Shanxi Key Laboratory of Nucleic Acid Biopesticides, The Key Laboratory of Chemical Biology and Molecular, Engineering of Ministry of Education, Shanxi University, Taiyuan, Shanxi 030006, China.
| |
Collapse
|
3
|
Kaczmarek A, Boguś M. The metabolism and role of free fatty acids in key physiological processes in insects of medical, veterinary and forensic importance. PeerJ 2021; 9:e12563. [PMID: 35036124 PMCID: PMC8710053 DOI: 10.7717/peerj.12563] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 11/07/2021] [Indexed: 12/16/2022] Open
Abstract
Insects are the most widespread group of organisms and more than one million species have been described. These animals have significant ecological functions, for example they are pollinators of many types of plants. However, they also have direct influence on human life in different manners. They have high medical and veterinary significance, stemming from their role as vectors of disease and infection of wounds and necrotic tissue; they are also plant pests, parasitoids and predators whose activities can influence agriculture. In addition, their use in medical treatments, such as maggot therapy of gangrene and wounds, has grown considerably. They also have many uses in forensic science to determine the minimum post-mortem interval and provide valuable information about the movement of the body, cause of the death, drug use, or poisoning. It has also been proposed that they may be used as model organisms to replace mammal systems in research. The present review describes the role of free fatty acids (FFAs) in key physiological processes in insects. By focusing on insects of medical, veterinary significance, we have limited our description of the physiological processes to those most important from the point of view of insect control; the study examines their effects on insect reproduction and resistance to the adverse effects of abiotic (low temperature) and biotic (pathogens) factors.
Collapse
Affiliation(s)
- Agata Kaczmarek
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
| | - Mieczysława Boguś
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
- Biomibo, Warsaw, Poland
| |
Collapse
|
4
|
Khan MT, Dalvin S, Nilsen F, Male R. Two apolipoproteins in salmon louse ( Lepeophtheirus salmonis), apolipoprotein 1 knock down reduces reproductive capacity. Biochem Biophys Rep 2021; 28:101156. [PMID: 34729423 PMCID: PMC8545670 DOI: 10.1016/j.bbrep.2021.101156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/07/2021] [Accepted: 10/17/2021] [Indexed: 11/19/2022] Open
Abstract
The salmon louse, Lepeophtheirus salmonis is an ectoparasite of salmonid fish in the Northern Hemisphere, causing large economical losses in the aquaculture industry and represent a threat to wild populations of salmonids. Like other oviparous animals, it is likely that female lice use lipoproteins for lipid transport to maturing oocytes and other organs of the body. As an important component of lipoproteins, apolipoproteins play a vital role in the transport of lipids through biosynthesis of lipoproteins. Apolipoproteins have been studied in detail in different organisms, but no studies have been done in salmon lice. Two apolipoprotein encoding genes (LsLp1 and LsLp2) were identified in the salmon lice genome. Transcriptional analysis revealed both genes to be expressed at all stages from larvae to adult with some variation, LsLp1 generally higher than LsLp2 and both at their highest levels in adult stages of the louse. In adult female louse, the LsLp1 and LsLp2 transcripts were found in the sub-epidermal tissue and the intestine. RNA interference-mediated knockdown of LsLp1 and LsLp2 in female lice resulted in reduced expression of both transcripts. LsLp1 knockdown female lice produced significantly less offspring than control lice, while knockdown of LsLp2 in female lice caused no reduction in the number of offspring. These results suggest that LsLp1 has an important role in reproduction in female salmon lice. Salmon lice are ectoparasites and a major threat to aquaculture industry and wild salmon. Two apolipoproteins in salmon louse (Lepeophtheirus salmonis). Expressed at all stages from larvae to adult, sub-epidermal tissue and the intestine . RNA interference-mediated knockdown of LsLp1 and LsLp2. LsLp1 knockdown female lice produced significantly less offspring than control lice.
Collapse
Key Words
- Apolipoproteins
- CP, clotting protein
- Crustacea
- DIG, Digoxigenin
- Ectoparasite
- Gene expression
- LDL, low density lipoprotein
- LLTP, large lipid transfer protein
- Lp, lipophorin
- Ls, Lepeophtheirus salmonis
- MTP, microsomal triglyceride transfer protein
- RNAi
- RNAi, RNA interference
- Reproduction
- Vit, vitellogenins
- apo B-100, apolipoprotein B-100
- apoCr, apolipocrustaceins
- apoLp-II/I, apolipophorin-II/I
- dLPs, large discoidal lipoproteins
- ef1α, elongation factor 1 alpha
Collapse
Affiliation(s)
- Muhammad Tanveer Khan
- Sea Lice Research Centre, Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Sussie Dalvin
- Sea Lice Research Centre, Institute of Marine Research, Bergen, Norway
| | - Frank Nilsen
- Sea Lice Research Centre, Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Rune Male
- Sea Lice Research Centre, Department of Biological Sciences, University of Bergen, Bergen, Norway
- Corresponding author. Department of Biological Sciences, University of Bergen, P.O. Box 7803, N-5020, Bergen, Norway.
| |
Collapse
|
5
|
Ramos FO, Leyria J, Nouzova M, Fruttero LL, Noriega FG, Canavoso LE. Juvenile hormone mediates lipid storage in the oocytes of Dipetalogaster maxima. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 133:103499. [PMID: 33212190 DOI: 10.1016/j.ibmb.2020.103499] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/20/2020] [Accepted: 11/06/2020] [Indexed: 06/11/2023]
Abstract
Triatomines are vectors of Chagas disease and important model organisms in insect physiology. "Kissing bugs" are obligatory hematophagous insects. A blood meal is required to successfully complete oogenesis, a process primarily controlled by juvenile hormone (JH). We used Dipetalogaster maxima as an experimental model to further understand the roles of JH in the regulation of vitellogenesis and oogenesis. A particular focus was set on the role of JH controlling lipid and protein recruitment by the oocytes. The hemolymph titer of JH III skipped bisepoxide increased after a blood meal. Following a blood meal there were increased levels of mRNAs in the fat body for the yolk protein precursors, vitellogenin (Vg) and lipophorin (Lp), as well as of their protein products in the hemolymph; mRNAs of the Vg and Lp receptors (VgR and LpR) were concomitantly up-regulated in the ovaries. Topical administration of JH induced the expression of Lp/LpR and Vg/VgR genes, and prompted the uptake of Lp and Vg in pre-vitellogenic females. Knockdown of the expression of LpR by RNA interference in fed females did not impair the Lp-mediated lipid transfer to oocytes, suggesting that the bulk of lipid acquisition by oocytes occurred by other pathways rather than by the endocytic Lp/LpR pathway. In conclusion, our results strongly suggest that JH signaling is critical for lipid storage in oocytes, by regulating Vg and Lp gene expression in the fat body as well as by modulating the expression of LpR and VgR genes in ovaries.
Collapse
Affiliation(s)
- Fabian O Ramos
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina; Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina.
| | - Jimena Leyria
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina; Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina.
| | - Marcela Nouzova
- Department of Biological Sciences and Biomolecular Science Institute, Florida International University, Miami, FL, USA; Institute of Parasitology, Biology Centre CAS, Ceske Budejovice, Czech Republic.
| | - Leonardo L Fruttero
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina; Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina.
| | - Fernando G Noriega
- Department of Biological Sciences and Biomolecular Science Institute, Florida International University, Miami, FL, USA.
| | - Lilian E Canavoso
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina; Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina.
| |
Collapse
|
6
|
Toprak U, Hegedus D, Doğan C, Güney G. A journey into the world of insect lipid metabolism. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 104:e21682. [PMID: 32335968 DOI: 10.1002/arch.21682] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/08/2020] [Accepted: 04/08/2020] [Indexed: 06/11/2023]
Abstract
Lipid metabolism is fundamental to life. In insects, it is critical, during reproduction, flight, starvation, and diapause. The coordination center for insect lipid metabolism is the fat body, which is analogous to the vertebrate adipose tissue and liver. Fat body contains various different cell types; however, adipocytes and oenocytes are the primary cells related to lipid metabolism. Lipid metabolism starts with the hydrolysis of dietary lipids, absorption of lipid monomers, followed by lipid transport from midgut to the fat body, lipogenesis or lipolysis in the fat body, and lipid transport from fat body to other sites demanding energy. Lipid metabolism is under the control of hormones, transcription factors, secondary messengers and posttranscriptional modifications. Primarily, lipogenesis is under the control of insulin-like peptides that activate lipogenic transcription factors, such as sterol regulatory element-binding proteins, whereas lipolysis is coordinated by the adipokinetic hormone that activates lipolytic transcription factors, such as forkhead box class O and cAMP-response element-binding protein. Calcium is the primary-secondary messenger affecting lipid metabolism and has different outcomes depending on the site of lipogenesis or lipolysis. Phosphorylation is central to lipid metabolism and multiple phosphorylases are involved in lipid accumulation or hydrolysis. Although most of the knowledge of insect lipid metabolism comes from the studies on the model Drosophila; other insects, in particular those with obligatory or facultative diapause, also have great potential to study lipid metabolism. The use of these models would significantly improve our knowledge of insect lipid metabolism.
Collapse
Affiliation(s)
- Umut Toprak
- Molecular Entomology Laboratory, Department of Plant Protection, Faculty of Agriculture, Ankara University, Ankara, Turkey
| | - Dwayne Hegedus
- Agriculture and Agri-Food Canada, Saskatoon Research Centre, Saskatoon, Saskatchewan, Canada
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Cansu Doğan
- Molecular Entomology Laboratory, Department of Plant Protection, Faculty of Agriculture, Ankara University, Ankara, Turkey
| | - Gözde Güney
- Molecular Entomology Laboratory, Department of Plant Protection, Faculty of Agriculture, Ankara University, Ankara, Turkey
| |
Collapse
|
7
|
Gondim KC, Atella GC, Pontes EG, Majerowicz D. Lipid metabolism in insect disease vectors. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 101:108-123. [PMID: 30171905 DOI: 10.1016/j.ibmb.2018.08.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 08/17/2018] [Accepted: 08/26/2018] [Indexed: 06/08/2023]
Abstract
More than a third of the world population is at constant risk of contracting some insect-transmitted disease, such as Dengue fever, Zika virus disease, malaria, Chagas' disease, African trypanosomiasis, and others. Independent of the life cycle of the pathogen causing the disease, the insect vector hematophagous habit is a common and crucial trait for the transmission of all these diseases. This lifestyle is unique, as hematophagous insects feed on blood, a diet that is rich in protein but relatively poor in lipids and carbohydrates, in huge amounts and low frequency. Another unique feature of these insects is that blood meal triggers essential metabolic processes, as molting and oogenesis and, in this way, regulates the expression of various genes that are involved in these events. In this paper, we review current knowledge of the physiology and biochemistry of lipid metabolism in insect disease vectors, comparing with classical models whenever possible. We address lipid digestion and absorption, hemolymphatic transport, and lipid storage by the fat body and ovary. In this context, both de novo fatty acid and triacylglycerol synthesis are discussed, including the related fatty acid activation process and the intracellular lipid binding proteins. As lipids are stored in order to be mobilized later on, e.g. for flight activity or survivorship, lipolysis and β-oxidation are also considered. All these events need to be finely regulated, and the role of hormones in this control is summarized. Finally, we also review information about infection, when vector insect physiology is affected, and there is a crosstalk between its immune system and lipid metabolism. There is not abundant information about lipid metabolism in vector insects, and significant current gaps in the field are indicated, as well as questions to be answered in the future.
Collapse
Affiliation(s)
- Katia C Gondim
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - Georgia C Atella
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Emerson G Pontes
- Departamento de Bioquímica, Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brazil
| | - David Majerowicz
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
8
|
Chaverra-Rodriguez D, Macias VM, Hughes GL, Pujhari S, Suzuki Y, Peterson DR, Kim D, McKeand S, Rasgon JL. Targeted delivery of CRISPR-Cas9 ribonucleoprotein into arthropod ovaries for heritable germline gene editing. Nat Commun 2018; 9:3008. [PMID: 30068905 PMCID: PMC6070532 DOI: 10.1038/s41467-018-05425-9] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 07/06/2018] [Indexed: 11/09/2022] Open
Abstract
Cas9-mediated gene editing is a powerful tool for addressing research questions in arthropods. Current approaches rely upon delivering Cas9 ribonucleoprotein (RNP) complex by embryonic microinjection, which is challenging, is limited to a small number of species, and is inefficient even in optimized taxa. Here we develop a technology termed Receptor-Mediated Ovary Transduction of Cargo (ReMOT Control) to deliver Cas9 RNP to the arthropod germline by injection into adult female mosquitoes. We identify a peptide (P2C) that mediates transduction of Cas9 RNP from the female hemolymph to the developing mosquito oocytes, resulting in heritable gene editing of the offspring with efficiency as high as 0.3 mutants per injected mosquito. We demonstrate that P2C functions in six mosquito species. Identification of taxa-specific ovary-specific ligand-receptor pairs may further extend the use of ReMOT Control for gene editing in novel species.
Collapse
Affiliation(s)
- Duverney Chaverra-Rodriguez
- Department of Entomology, The Huck Institutes of the Life Sciences, and the Center for infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Vanessa M Macias
- Department of Entomology, The Huck Institutes of the Life Sciences, and the Center for infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Grant L Hughes
- Department of Entomology, The Huck Institutes of the Life Sciences, and the Center for infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, 16802, USA.,Department of Pathology, Institute for Human Infections and Immunity, Center for Tropical Diseases, Center for Biodefense and Emerging Infectious Disease, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Sujit Pujhari
- Department of Entomology, The Huck Institutes of the Life Sciences, and the Center for infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Yasutsugu Suzuki
- Department of Entomology, The Huck Institutes of the Life Sciences, and the Center for infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, 16802, USA.,Institut Pasteur, Viruses and RNA Interference Unit, CNRS Unité Mixte de Recherche, 3569, Paris, France
| | - David R Peterson
- Department of Entomology, The Huck Institutes of the Life Sciences, and the Center for infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Donghun Kim
- Department of Entomology, The Huck Institutes of the Life Sciences, and the Center for infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Sage McKeand
- Department of Entomology, The Huck Institutes of the Life Sciences, and the Center for infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Jason L Rasgon
- Department of Entomology, The Huck Institutes of the Life Sciences, and the Center for infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
9
|
Khan MT, Dalvin S, Waheed Q, Nilsen F, Male R. Molecular characterization of the lipophorin receptor in the crustacean ectoparasite Lepeophtheirus salmonis. PLoS One 2018; 13:e0195783. [PMID: 29649335 PMCID: PMC5897026 DOI: 10.1371/journal.pone.0195783] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 03/29/2018] [Indexed: 12/11/2022] Open
Abstract
The Salmon louse (Lepeophtheirus salmonis) is a marine ectoparasite of salmonid fish in the Northern Hemisphere and considered as a major challenge in aquaculture and a threat to wild populations of salmonids. Adult female lice produce a large number of lipid-rich eggs, however, the mechanism of maternal lipid transport into developing eggs during salmon louse reproduction has not been described. In the present study, a full-length L. salmonis lipophorin receptor (LsLpR) consisting of 16 exons was obtained by RACE and RT-PCR. The predicted ORF was 952 amino acids and structural analysis showed five functional domains that are similar to LpR of insects and decapods. Phylogenetic analysis placed the LsLpR together with LpRs from decapods and insects. Expression analysis revealed that the relative abundance of LsLpR transcripts was highest in the larvae and adult female lice. In adult females, the LsLpR transcripts and protein were found in the ovary and vitellogenic oocytes whereas, in larvae, the LsLpR transcripts were found in the neuronal somata of the brain and the intestine. Oil Red O stain results revealed that storage of neutral lipids was found in vitellogenic oocytes and ovaries of adult females, and in the yolk of larvae. Moreover, RNA interference (RNAi) was conducted to demonstrate the function of LsLpR in reproduction and lipid metabolism in L. salmonis. In larvae, the transcription of LsLpR was decreased by 44–54% while in an experiment LsLpR knockdown female lice produced 72% less offspring than control lice.
Collapse
Affiliation(s)
- Muhammad Tanveer Khan
- Sea Lice Research Centre, Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Sussie Dalvin
- Sea Lice Research Centre, Institute of Marine Research, Bergen, Norway
| | - Qaiser Waheed
- Computational Biology Unit, Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Frank Nilsen
- Sea Lice Research Centre, Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Rune Male
- Computational Biology Unit, Department of Biological Sciences, University of Bergen, Bergen, Norway
- * E-mail:
| |
Collapse
|
10
|
Fruttero LL, Leyria J, Canavoso LE. Lipids in Insect Oocytes: From the Storage Pathways to Their Multiple Functions. Results Probl Cell Differ 2017; 63:403-434. [PMID: 28779328 DOI: 10.1007/978-3-319-60855-6_18] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In insect physiology, the mechanisms involved in the buildup and regulation of yolk proteins in developing oocytes have been thoroughly researched during the last three decades. Comparatively, the study of lipid metabolism in oocytes had received less attention. The importance of this issue lies in the fact that lipids make up to 40% of the dry weight of an insect egg, being the most important supply of energy for the developing embryo. Since the oocyte has a very limited capacity to synthesize lipids de novo, most of the lipids in the mature eggs arise from the circulation. The main lipid carriers in the insect circulatory system are the lipoproteins lipophorin and vitellogenin. In some species, the endocytosis of lipophorin and vitellogenin may account for about 10% of the lipids present in mature eggs. Thus, most of the lipids are transferred by a lipophorin-mediated pathway, in which the lipoprotein unloads its lipid cargo at the surface of oocytes without internalization. This chapter recapitulates the current status on lipid storage and its utilization in insect oocytes and discusses the participation of key factors including lipoproteins, transfer proteins, lipolytic enzymes, and dynamic organelles such as lipid droplets. The new findings in the field of lipophorin receptors are presented in the context of lipid accumulation during egg maturation, and the roles of lipids beyond energy source are summarized from the perspective of oogenesis and embryogenesis. Finally, prospective and fruitful areas of future research are suggested.
Collapse
Affiliation(s)
- Leonardo L Fruttero
- Instituto do Cerebro (InsCer). Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Jimena Leyria
- Departamento de Bioquímica Clínica, Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, CP 5000, Argentina
| | - Lilián E Canavoso
- Departamento de Bioquímica Clínica, Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, CP 5000, Argentina.
| |
Collapse
|
11
|
Kanost MR, Arrese EL, Cao X, Chen YR, Chellapilla S, Goldsmith MR, Grosse-Wilde E, Heckel DG, Herndon N, Jiang H, Papanicolaou A, Qu J, Soulages JL, Vogel H, Walters J, Waterhouse RM, Ahn SJ, Almeida FC, An C, Aqrawi P, Bretschneider A, Bryant WB, Bucks S, Chao H, Chevignon G, Christen JM, Clarke DF, Dittmer NT, Ferguson LCF, Garavelou S, Gordon KHJ, Gunaratna RT, Han Y, Hauser F, He Y, Heidel-Fischer H, Hirsh A, Hu Y, Jiang H, Kalra D, Klinner C, König C, Kovar C, Kroll AR, Kuwar SS, Lee SL, Lehman R, Li K, Li Z, Liang H, Lovelace S, Lu Z, Mansfield JH, McCulloch KJ, Mathew T, Morton B, Muzny DM, Neunemann D, Ongeri F, Pauchet Y, Pu LL, Pyrousis I, Rao XJ, Redding A, Roesel C, Sanchez-Gracia A, Schaack S, Shukla A, Tetreau G, Wang Y, Xiong GH, Traut W, Walsh TK, Worley KC, Wu D, Wu W, Wu YQ, Zhang X, Zou Z, Zucker H, Briscoe AD, Burmester T, Clem RJ, Feyereisen R, Grimmelikhuijzen CJP, Hamodrakas SJ, Hansson BS, Huguet E, Jermiin LS, Lan Q, Lehman HK, Lorenzen M, Merzendorfer H, Michalopoulos I, Morton DB, Muthukrishnan S, Oakeshott JG, Palmer W, Park Y, Passarelli AL, Rozas J, Schwartz LM, Smith W, Southgate A, Vilcinskas A, Vogt R, Wang P, Werren J, Yu XQ, Zhou JJ, Brown SJ, Scherer SE, Richards S, Blissard GW. Multifaceted biological insights from a draft genome sequence of the tobacco hornworm moth, Manduca sexta. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 76:118-147. [PMID: 27522922 PMCID: PMC5010457 DOI: 10.1016/j.ibmb.2016.07.005] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/27/2016] [Accepted: 07/14/2016] [Indexed: 05/19/2023]
Abstract
Manduca sexta, known as the tobacco hornworm or Carolina sphinx moth, is a lepidopteran insect that is used extensively as a model system for research in insect biochemistry, physiology, neurobiology, development, and immunity. One important benefit of this species as an experimental model is its extremely large size, reaching more than 10 g in the larval stage. M. sexta larvae feed on solanaceous plants and thus must tolerate a substantial challenge from plant allelochemicals, including nicotine. We report the sequence and annotation of the M. sexta genome, and a survey of gene expression in various tissues and developmental stages. The Msex_1.0 genome assembly resulted in a total genome size of 419.4 Mbp. Repetitive sequences accounted for 25.8% of the assembled genome. The official gene set is comprised of 15,451 protein-coding genes, of which 2498 were manually curated. Extensive RNA-seq data from many tissues and developmental stages were used to improve gene models and for insights into gene expression patterns. Genome wide synteny analysis indicated a high level of macrosynteny in the Lepidoptera. Annotation and analyses were carried out for gene families involved in a wide spectrum of biological processes, including apoptosis, vacuole sorting, growth and development, structures of exoskeleton, egg shells, and muscle, vision, chemosensation, ion channels, signal transduction, neuropeptide signaling, neurotransmitter synthesis and transport, nicotine tolerance, lipid metabolism, and immunity. This genome sequence, annotation, and analysis provide an important new resource from a well-studied model insect species and will facilitate further biochemical and mechanistic experimental studies of many biological systems in insects.
Collapse
Affiliation(s)
- Michael R Kanost
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA.
| | - Estela L Arrese
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Xiaolong Cao
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Yun-Ru Chen
- Boyce Thompson Institute at Cornell University, Tower Road, Ithaca, NY, 14853, USA
| | - Sanjay Chellapilla
- KSU Bioinformatics Center, Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Marian R Goldsmith
- Biological Sciences Department, University of Rhode Island, Kingston, RI, 02881, USA
| | - Ewald Grosse-Wilde
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knoell-Strasse, 8, D-07745, Jena, Germany
| | - David G Heckel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745, Jena, Germany
| | - Nicolae Herndon
- KSU Bioinformatics Center, Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Alexie Papanicolaou
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| | - Jiaxin Qu
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Jose L Soulages
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Heiko Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745, Jena, Germany
| | - James Walters
- Department of Ecology and Evolutionary Biology, Univ. Kansas, Lawrence, KS, 66045, USA
| | - Robert M Waterhouse
- Department of Genetic Medicine and Development, University of Geneva Medical School, rue Michel-Servet 1, 1211, Geneva, Switzerland; Swiss Institute of Bioinformatics, rue Michel-Servet 1, 1211, Geneva, Switzerland; Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 32 Vassar Street, Cambridge, MA, 02139, USA; The Broad Institute of MIT and Harvard, Cambridge, 415 Main Street, MA, 02142, USA
| | - Seung-Joon Ahn
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745, Jena, Germany
| | - Francisca C Almeida
- Departament de Genètica and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Chunju An
- Department of Entomology, China Agricultural University, Beijing, China
| | - Peshtewani Aqrawi
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Anne Bretschneider
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745, Jena, Germany
| | - William B Bryant
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Sascha Bucks
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knoell-Strasse, 8, D-07745, Jena, Germany
| | - Hsu Chao
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Germain Chevignon
- Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS 7261, UFR Sciences et Techniques, Université François-Rabelais, Tours, France
| | - Jayne M Christen
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | - David F Clarke
- CSIRO Land and Water, Clunies Ross St, Acton, ACT, 2601, Australia
| | - Neal T Dittmer
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | | | - Spyridoula Garavelou
- Centre of Systems Biology, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Karl H J Gordon
- CSIRO Health and Biosecurity, Clunies Ross St, Acton, ACT, 2601, Australia
| | - Ramesh T Gunaratna
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Yi Han
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Frank Hauser
- Center for Functional and Comparative Insect Genomics, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-21oo, Copenhagen, Denmark
| | - Yan He
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Hanna Heidel-Fischer
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745, Jena, Germany
| | - Ariana Hirsh
- Department of Biology, Barnard College, Columbia University, 3009 Broadway, New York, NY, 10027, USA
| | - Yingxia Hu
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Hongbo Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400715, China
| | - Divya Kalra
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Christian Klinner
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knoell-Strasse, 8, D-07745, Jena, Germany
| | - Christopher König
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knoell-Strasse, 8, D-07745, Jena, Germany
| | - Christie Kovar
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Ashley R Kroll
- Department of Biology, Reed College, Portland, OR, 97202, USA
| | - Suyog S Kuwar
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745, Jena, Germany
| | - Sandy L Lee
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Rüdiger Lehman
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Bioresources Project Group, Winchesterstrasse 2, 35394, Gießen, Germany
| | - Kai Li
- College of Chemistry, Chemical Engineering, and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Zhaofei Li
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hanquan Liang
- McDermott Center for Human Growth and Development, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Shanna Lovelace
- Department of Biological Sciences, University of Southern Maine, Portland, ME, 04104, USA
| | - Zhiqiang Lu
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jennifer H Mansfield
- Department of Biology, Barnard College, Columbia University, 3009 Broadway, New York, NY, 10027, USA
| | - Kyle J McCulloch
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, 92697, USA
| | - Tittu Mathew
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Brian Morton
- Department of Biology, Barnard College, Columbia University, 3009 Broadway, New York, NY, 10027, USA
| | - Donna M Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - David Neunemann
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745, Jena, Germany
| | - Fiona Ongeri
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Yannick Pauchet
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745, Jena, Germany
| | - Ling-Ling Pu
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Ioannis Pyrousis
- Centre of Systems Biology, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Xiang-Jun Rao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China
| | - Amanda Redding
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Charles Roesel
- Department of Marine and Environmental Sciences, Northeastern University, Boston, MA, 02115, USA
| | - Alejandro Sanchez-Gracia
- Departament de Genètica and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Sarah Schaack
- Department of Biology, Reed College, Portland, OR, 97202, USA
| | - Aditi Shukla
- Department of Biology, Barnard College, Columbia University, 3009 Broadway, New York, NY, 10027, USA
| | - Guillaume Tetreau
- Department of Entomology, Cornell University, New York State Agricultural Experiment Station, Geneva, NY, 14456, USA
| | - Yang Wang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Guang-Hua Xiong
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Walther Traut
- Institut fuer Biologie, Universitaet Luebeck, D-23538, Luebeck, Germany
| | - Tom K Walsh
- CSIRO Land and Water, Clunies Ross St, Acton, ACT, 2601, Australia
| | - Kim C Worley
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Di Wu
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | - Wenbi Wu
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Yuan-Qing Wu
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Xiufeng Zhang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hannah Zucker
- Neuroscience Program, Hamilton College, Clinton, NY, 13323, USA
| | - Adriana D Briscoe
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, 92697, USA
| | | | - Rollie J Clem
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - René Feyereisen
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Cornelis J P Grimmelikhuijzen
- Center for Functional and Comparative Insect Genomics, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-21oo, Copenhagen, Denmark
| | - Stavros J Hamodrakas
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Athens, Greece
| | - Bill S Hansson
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knoell-Strasse, 8, D-07745, Jena, Germany
| | - Elisabeth Huguet
- Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS 7261, UFR Sciences et Techniques, Université François-Rabelais, Tours, France
| | - Lars S Jermiin
- CSIRO Land and Water, Clunies Ross St, Acton, ACT, 2601, Australia
| | - Que Lan
- Department of Entomology, University of Wisconsin, Madison, USA
| | - Herman K Lehman
- Biology Department and Neuroscience Program, Hamilton College, Clinton, NY, 13323, USA
| | - Marce Lorenzen
- Dept. Entomology, North Carolina State Univ., Raleigh, NC, 27695, USA
| | - Hans Merzendorfer
- University of Siegen, School of Natural Sciences and Engineering, Institute of Biology - Molecular Biology, Adolf-Reichwein-Strasse. 2, AR-C3010, 57076 Siegen, Germany
| | - Ioannis Michalopoulos
- Centre of Systems Biology, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - David B Morton
- Department of Integrative Biosciences, School of Dentistry, BRB421, L595, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, 97239, USA
| | - Subbaratnam Muthukrishnan
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | - John G Oakeshott
- CSIRO Land and Water, Clunies Ross St, Acton, ACT, 2601, Australia
| | - Will Palmer
- Department of Genetics, University of Cambridge, Downing St, Cambridge, CB2 3EH, UK
| | - Yoonseong Park
- Department of Entomology, Kansas State University, Manhattan, KS, 66506, USA
| | | | - Julio Rozas
- Departament de Genètica and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | | | - Wendy Smith
- Department of Biology, Northeastern University, Boston, MA, 02115, USA
| | - Agnes Southgate
- Department of Biology, College of Charleston, Charleston, SC, 29424, USA
| | - Andreas Vilcinskas
- Institute for Insect Biotechnology, Justus-Liebig-University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Richard Vogt
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29205, USA
| | - Ping Wang
- Department of Entomology, Cornell University, New York State Agricultural Experiment Station, Geneva, NY, 14456, USA
| | - John Werren
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Xiao-Qiang Yu
- University of Missouri-Kansas City, 5007 Rockhill Road, Kansas City, MO, 64110, USA
| | - Jing-Jiang Zhou
- Department of Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden, Herts, AL5 2JQ, UK
| | - Susan J Brown
- KSU Bioinformatics Center, Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Steven E Scherer
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Stephen Richards
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Gary W Blissard
- Boyce Thompson Institute at Cornell University, Tower Road, Ithaca, NY, 14853, USA
| |
Collapse
|
12
|
Shaw WR, Attardo GM, Aksoy S, Catteruccia F. A comparative analysis of reproductive biology of insect vectors of human disease. CURRENT OPINION IN INSECT SCIENCE 2015; 10:142-148. [PMID: 26140265 PMCID: PMC4484812 DOI: 10.1016/j.cois.2015.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Studying the reproductive strategies of insect species that transmit diseases to humans can identify new exploitable targets for the development of vector control methods. Here we describe shared characteristics and individual features of the reproductive biology of three major disease vectors: Anopheles gambiae, Aedes aegypti and Glossina morsitans. Current studies are identifying i) species-specific molecular cascades that determine female monandrous behavior, ii) core aspects of egg development that could be disrupted for controlling natural populations, and iii) the increasingly apparent role of resident microbiota in shaping reproductive success and disease transmission potential. The recent completion of multiple genome sequencing projects is allowing comparative genomics studies that not only increase our knowledge of reproductive processes but also facilitate the identification of novel targets for vector control.
Collapse
Affiliation(s)
- W Robert Shaw
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Huntington Avenue, Boston MA 02115, United States of America
| | - Geoffrey M Attardo
- Division of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven CT 06520 United States of America
| | - Serap Aksoy
- Division of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven CT 06520 United States of America
| | - Flaminia Catteruccia
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Huntington Avenue, Boston MA 02115, United States of America ; Dipartimento di Medicina Sperimentale, Università degli Studi di Perugia, Perugia 06100, Italy
| |
Collapse
|
13
|
Van der Horst DJ, Rodenburg KW. Lipoprotein assembly and function in an evolutionary perspective. Biomol Concepts 2015; 1:165-83. [PMID: 25961995 DOI: 10.1515/bmc.2010.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Circulatory fat transport in animals relies on members of the large lipid transfer protein (LLTP) superfamily, including mammalian apolipoprotein B (apoB) and insect apolipophorin II/I (apoLp-II/I). ApoB and apoLp-II/I, constituting the structural (non-exchangeable) basis for the assembly of various lipoproteins, acquire lipids through microsomal triglyceride-transfer protein, another LLTP family member, and bind them by means of amphipathic α-helical and β-sheet structural motifs. Comparative research reveals that LLTPs evolved from the earliest animals and highlights the structural adaptations in these lipid-binding proteins. Thus, in contrast to apoB, apoLp-II/I is cleaved post-translationally by a furin, resulting in the appearance of two non-exchangeable apolipoproteins in the single circulatory lipoprotein in insects, high-density lipophorin (HDLp). The remarkable structural similarities between mammalian and insect lipoproteins notwithstanding important functional differences relate to the mechanism of lipid delivery. Whereas in mammals, partial delipidation of apoB-containing lipoproteins eventually results in endocytic uptake of their remnants, mediated by members of the low-density lipoprotein receptor (LDLR) family, and degradation in lysosomes, insect HDLp functions as a reusable lipid shuttle capable of alternate unloading and reloading of lipid. Also, during muscular efforts (flight activity), an HDLp-based lipoprotein shuttle provides for the transport of lipid for energy generation. Although a lipophorin receptor - a homolog of LDLR - was identified that mediates endocytic uptake of HDLp during specific developmental periods, the endocytosed lipoprotein appears to be recycled in a transferrin-like manner. These data highlight that the functional adaptations in the lipoprotein lipid carriers in mammals and insects also emerge with regard to the functioning of their cognate receptors.
Collapse
|
14
|
Analogs of LDL Receptor Ligand Motifs in Dengue Envelope and Capsid Proteins as Potential Codes for Cell Entry. ACTA ACUST UNITED AC 2015; 2015. [PMID: 27123468 DOI: 10.1155/2015/646303] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
It is established that cell entry of low density lipoprotein particles (LLPs) containing Apo B100 and Apo E is mediated by receptors and GAGs. Receptor ligand motifs, XBBBXXBX, XBBXBX, and ΨBΨXB, and mono- and bipartite NLS sequences are abundant in Apo E and Apo B100 as well as in envelope and capsid proteins of Dengue viruses 1-4 (DENV1-4). Synthetic, fluorescence-labeled peptides of sequences in DENV2 envelope protein, and DENV3 capsid that include these motifs were used to conduct a qualitative assessment of cell binding and entry capacity using HeLa cells. DENV2 envelope peptide, Dsp2EP, 0564Gly-Gly0595, was shown to bind and remain at the cell surface. In contrast, DENV3 capsid protein peptide, Dsp3CP, 0002Asn-Gln0028, readily enters HeLa cells and accumulates at discrete loci in the nucleus. FITC-labeled dengue synthetic peptides colocalize with Low Density Lipoprotein-CM-DiI and Apo E-CM-DiI to a degree that suggests that Dengue viruses may utilize cell entry pathways used by LLPs.
Collapse
|
15
|
Gopalapillai R, Vasantkumar VK, Bala R, Modala V, Rao G, Kumar V. Yeast two-hybrid screen reveals novel protein interactions of the cytoplasmic tail of lipophorin receptor in silkworm brain. J Mol Recognit 2014; 27:190-6. [DOI: 10.1002/jmr.2350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 12/02/2013] [Accepted: 12/12/2013] [Indexed: 11/07/2022]
Affiliation(s)
- Ravikumar Gopalapillai
- Division of Functional Genomics; Seri-biotech Research Laboratory, Central Silk Board; Kodathi, Carmelaram Bangalore 560 035 India
| | - Vardhana K. Vasantkumar
- Division of Functional Genomics; Seri-biotech Research Laboratory, Central Silk Board; Kodathi, Carmelaram Bangalore 560 035 India
| | - Rajni Bala
- Division of Functional Genomics; Seri-biotech Research Laboratory, Central Silk Board; Kodathi, Carmelaram Bangalore 560 035 India
| | - Venkateswarlu Modala
- Division of Functional Genomics; Seri-biotech Research Laboratory, Central Silk Board; Kodathi, Carmelaram Bangalore 560 035 India
| | - Guruprasad Rao
- Division of Functional Genomics; Seri-biotech Research Laboratory, Central Silk Board; Kodathi, Carmelaram Bangalore 560 035 India
| | - Vikas Kumar
- Division of Functional Genomics; Seri-biotech Research Laboratory, Central Silk Board; Kodathi, Carmelaram Bangalore 560 035 India
| |
Collapse
|
16
|
Lee JH, Kim BK, Seo YI, Choi JH, Kang SW, Kang CK, Park WG, Kim HW. Four cDNAs encoding lipoprotein receptors from shrimp (Pandalopsis japonica): structural characterization and expression analysis during maturation. Comp Biochem Physiol B Biochem Mol Biol 2013; 169:51-62. [PMID: 24389120 DOI: 10.1016/j.cbpb.2013.12.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 12/18/2013] [Accepted: 12/19/2013] [Indexed: 10/25/2022]
Abstract
As in all other oviparous animals, lipoprotein receptors play a critical role in lipid metabolism and reproduction in decapod crustaceans. Four full-length cDNAs encoding lipoprotein receptors (Paj-VgR, Paj-LpR1, Paj-LpR2A, and Paj-LpR2B) were identified from Pandalopsis japonica through a combination of EST screening and PCR-based cloning. Paj-LpR1 appears to be the first crustacean ortholog of insect lipophorin receptors, and its two paralogs, Paj-LpR2A and Paj-LpR2B, exhibited similar structural characteristics. Several transcriptional isoforms were also identified for all three Paj-LpRs. Each expression pattern was unique, suggesting different physiological roles for these proteins. Paj-VgR is an ortholog of vitellogenin (Vg) receptors from other decapod crustaceans. A phylogenetic analysis of lipoproteins and their receptors suggested that the nomenclature of Vgs from decapod crustaceans may need to be changed. A PCR-based transcriptional analysis showed that Paj-VgR and Paj-LpR2B are expressed almost exclusively in the ovary, whereas Paj-LpR1 and Paj-LpR2A are expressed in multiple tissues. The various transcriptional isoforms of the three Paj-LpRs exhibited unique tissue distribution profiles. A transcriptional analysis of each receptor using tissues with different GSI values showed that the change in transcription of Paj-VgRs, Paj-LpR2A and Paj-LpR1 was not as significant as that of Vgs during maturation. However, the transcriptional levels of Paj-LpR2B decreased in ovary at maturation, suggesting that their transcriptional regulation is involved in reproduction.
Collapse
Affiliation(s)
- Ji-Hyun Lee
- Interdisciplinary program of Biomedical Engineering, Pukyong National University, Busan, 608-737, South Korea
| | - Bo Kwang Kim
- Interdisciplinary program of Biomedical Engineering, Pukyong National University, Busan, 608-737, South Korea
| | - Young-Il Seo
- Fisheries Resources Research Division, National Fisheries Research and Development Institute, Busan, 619-902, South Korea
| | - Jung Hwa Choi
- Fisheries Resources Research Division, National Fisheries Research and Development Institute, Busan, 619-902, South Korea
| | - Seung-Wan Kang
- Gyeongsangnam-do Fisheries Resources Research Institute, South Korea
| | - Chang-Keun Kang
- POSTECH Ocean Science and Technology Institute, Pohang University of Science and Technology (POSTECH), Pohang 790-784, South Korea
| | - Won-gyu Park
- Department of Marine Biology, Pukyong National University, Busan 608-737, South Korea
| | - Hyun-Woo Kim
- Department of Marine Biology, Pukyong National University, Busan 608-737, South Korea; Interdisciplinary program of Biomedical Engineering, Pukyong National University, Busan, 608-737, South Korea.
| |
Collapse
|
17
|
Entringer PF, Grillo LAM, Pontes EG, Machado EA, Gondim KC. Interaction of lipophorin with Rhodnius prolixus oocytes: biochemical properties and the importance of blood feeding. Mem Inst Oswaldo Cruz 2013; 108:836-44. [PMID: 24037104 PMCID: PMC3970653 DOI: 10.1590/0074-0276130129] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Indexed: 11/11/2023] Open
Abstract
Lipophorin (Lp) is the main haemolymphatic lipoprotein in insects and transports lipids between different organs. In adult females, lipophorin delivers lipids to growing oocytes. In this study, the interaction of this lipoprotein with the ovaries of Rhodnius prolixus was characterised using an oocyte membrane preparation and purified radiolabelled Lp (125I-Lp). Lp-specific binding to the oocyte membrane reached equilibrium after 40-60 min and when 125I-Lp was incubated with increasing amounts of membrane protein, corresponding increases in Lp binding were observed. The specific binding of Lp to the membrane preparation was a saturable process, with a K(d) of 7.1 ± 0.9 x 10-8M and a maximal binding capacity of 430 ± 40 ng 125I-Lp/µg of membrane protein. The binding was calcium independent and pH sensitive, reaching its maximum at pH 5.2-5.7. Suramin inhibited the binding interaction between Lp and the oocyte membranes, which was completely abolished at 0.5 mM suramin. The oocyte membrane preparation from R. prolixus also showed binding to Lp from Manduca sexta. When Lp was fluorescently labelled and injected into vitellogenic females, the level of Lp-oocyte binding was much higher in females that were fed whole blood than in those fed blood plasma.
Collapse
Affiliation(s)
- Petter Franco Entringer
- Instituto de Bioquímica Médica
- Laboratório de Imunoparasitologia, Centro de Pesquisas Gonçalo Moniz-Fiocruz, Salvador, BA, Brasil
| | | | - Emerson Guedes Pontes
- Instituto de Bioquímica Médica
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brasil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular
| | - Ednildo Alcântara Machado
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular
| | - Katia Calp Gondim
- Instituto de Bioquímica Médica
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular
| |
Collapse
|
18
|
Baldini F, Gabrieli P, South A, Valim C, Mancini F, Catteruccia F. The interaction between a sexually transferred steroid hormone and a female protein regulates oogenesis in the malaria mosquito Anopheles gambiae. PLoS Biol 2013; 11:e1001695. [PMID: 24204210 PMCID: PMC3812110 DOI: 10.1371/journal.pbio.1001695] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 09/05/2013] [Indexed: 11/18/2022] Open
Abstract
Molecular interactions between male and female factors during mating profoundly affect the reproductive behavior and physiology of female insects. In natural populations of the malaria mosquito Anopheles gambiae, blood-fed females direct nutritional resources towards oogenesis only when inseminated. Here we show that the mating-dependent pathway of egg development in these mosquitoes is regulated by the interaction between the steroid hormone 20-hydroxy-ecdysone (20E) transferred by males during copulation and a female Mating-Induced Stimulator of Oogenesis (MISO) protein. RNAi silencing of MISO abolishes the increase in oogenesis caused by mating in blood-fed females, causes a delay in oocyte development, and impairs the function of male-transferred 20E. Co-immunoprecipitation experiments show that MISO and 20E interact in the female reproductive tract. Moreover MISO expression after mating is induced by 20E via the Ecdysone Receptor, demonstrating a close cooperation between the two factors. Male-transferred 20E therefore acts as a mating signal that females translate into an increased investment in egg development via a MISO-dependent pathway. The identification of this male-female reproductive interaction offers novel opportunities for the control of mosquito populations that transmit malaria.
Collapse
Affiliation(s)
- Francesco Baldini
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
- Dipartimento di Medicina Sperimentale e Scienze Biochimiche, Università degli Studi di Perugia, Terni, Italy
| | - Paolo Gabrieli
- Dipartimento di Medicina Sperimentale e Scienze Biochimiche, Università degli Studi di Perugia, Terni, Italy
| | - Adam South
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Clarissa Valim
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Francesca Mancini
- Dipartimento di Medicina Sperimentale e Scienze Biochimiche, Università degli Studi di Perugia, Terni, Italy
| | - Flaminia Catteruccia
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
- Dipartimento di Medicina Sperimentale e Scienze Biochimiche, Università degli Studi di Perugia, Terni, Italy
| |
Collapse
|
19
|
Roth Z, Weil S, Aflalo ED, Manor R, Sagi A, Khalaila I. Identification of receptor-interacting regions of vitellogenin within evolutionarily conserved β-sheet structures by using a peptide array. Chembiochem 2013; 14:1116-22. [PMID: 23733483 DOI: 10.1002/cbic.201300152] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Indexed: 11/11/2022]
Abstract
Vitellogenesis, a key process in oviparous animals, is characterized by enhanced synthesis of the lipoprotein vitellogenin, which serves as the major yolk-protein precursor. In most oviparous animals, and specifically in crustaceans, vitellogenin is mainly synthesized in the hepatopancreas, secreted to the hemolymph, and taken up into the ovary by receptor-mediated endocytosis. In the present study, localization of the vitellogenin receptor and its interaction with vitellogenin were investigated in the freshwater prawn Macrobrachium rosenbergii. The receptor was immuno-histochemically localized to the cell periphery and around yolk vesicles. A receptor blot assay revealed that the vitellogenin receptor interacts with most known vitellogenin subunits, the most prominent being the 79 kDa subunit. The receptor was, moreover, able to interact with trypsin-digested vitellogenin peptides. By combining a novel peptide-array approach with tandem mass spectrometry, eleven vitellogenin-derived peptides that interacted with the receptor were identified. A 3D model of vitellogenin indicated that four of the identified peptides are N-terminally localized. One of the peptides is homologous to the receptor-recognized site of vertebrate vitellogenin, and assumes a conserved β-sheet structure. These findings suggest that this specific β-sheet region in the vitellogenin N-terminal lipoprotein domain is the receptor-interacting site, with the rest of the protein serving to enhance affinity for the receptor. The conservation of the receptor recognition site in invertebrate and vertebrate vitellogenin might have vast implications for oviparous species reproduction, development, immunity, and pest management.
Collapse
Affiliation(s)
- Ziv Roth
- Avram and Stella Goldstein-Goren Department of Biotechnology, Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | | | | | | | | | | |
Collapse
|
20
|
Almenara DP, de Moura JP, Scarabotto CP, Zingali RB, Winter CE. The molecular and structural characterization of two vitellogenins from the free-living nematode Oscheius tipulae. PLoS One 2013; 8:e53460. [PMID: 23308227 PMCID: PMC3538542 DOI: 10.1371/journal.pone.0053460] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 11/30/2012] [Indexed: 12/03/2022] Open
Abstract
This paper describes the purification of yolk proteins, which are important for the reproduction of egg-laying animals, and the structural characterization of two vitellogenins, VT1 and OTI-VIT-6, of the nematode Oscheius tipulae. O. tipulae is an alternative model organism to its relative, the widely used Caenorhabditis elegans, and is a good model to understand reproduction in insect parasitic nematodes of the genus Heterorhabditis. The native purified O. tipulae vitellogenin is composed of three polypeptides (VT1, VT2 and VT3), whereas in C. elegans, vitellogenin is composed of four polypeptides. The gene (Oti-vit-1) encoding yolk polypeptide VT1 has been recently identified in the genome of O. tipulae. Immunoblotting and N-terminal sequencing confirmed that VT1 is indeed coded by Oti-vit-1. Utilizing the same experimental approaches, we showed that the polypeptides VT2 and VT3 are derived from the proteolytic processing of the C- and N-terminal portions of the precursor OTI-VIT-6, respectively. We also showed that the recombinant polypeptide (P40), corresponding to the N-terminal sequence of OTI-VIT-6, preferentially interacts with a 100-kDa polypeptide found in adult worm extracts, as we have previously shown for the native vitellins of O. tipulae. Using the putative nematode vitellogenin amino acid sequences available in the UniProtKB database, we constructed a phylogenetic tree and showed that the O. tipulae vitellogenins characterized in this study are orthologous to those of the Caenorhabditis spp. Together, these results represent the first structural and functional comparative study of nematode yolk proteins outside the Caenorhabditis genus and provide insight into the evolution of these lipoproteins within the Nematode Phylum.
Collapse
Affiliation(s)
- Daniela P. Almenara
- Department of Parasitology, Institute of Biomedical Sciences – University of São Paulo, São Paulo, Brazil
| | - Joselene P. de Moura
- Department of Parasitology, Institute of Biomedical Sciences – University of São Paulo, São Paulo, Brazil
| | - Cristiane P. Scarabotto
- Department of Parasitology, Institute of Biomedical Sciences – University of São Paulo, São Paulo, Brazil
| | - Russolina B. Zingali
- Laboratory of Proteomics and Protein and Peptide Microsequencing, Institute of Medical Biochemistry - UFRJ/CCS/Bloco H, Cid. Universitária – Ilha do Fundão, Rio de Janeiro, Brazil
| | - Carlos E. Winter
- Department of Parasitology, Institute of Biomedical Sciences – University of São Paulo, São Paulo, Brazil
| |
Collapse
|
21
|
Clifton ME, Noriega FG. The fate of follicles after a blood meal is dependent on previtellogenic nutrition and juvenile hormone in Aedes aegypti. JOURNAL OF INSECT PHYSIOLOGY 2012; 58:1007-19. [PMID: 22626792 PMCID: PMC3389259 DOI: 10.1016/j.jinsphys.2012.05.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 04/30/2012] [Accepted: 05/03/2012] [Indexed: 05/10/2023]
Abstract
Juvenile hormone (JH) mediates the relationship between fecundity and nutrition during the gonotrophic cycle of the mosquito in three ways: (1) by regulating initial previtellogenic development, (2) by mediating previtellogenic resorption of follicles and (3) by altering intrinsic previtellogenic follicle "quality", physiology, and competitiveness thereby predetermining the fate of follicles after a blood meal. To support a role for JH in mediating the response of ovarian follicles after a blood meal, we explored three main questions: (1) Do changes in nutrition during the previtellogenic resting stage lead to relevant biochemical and molecular changes in the previtellogenic ovary? (2) Do hormonal manipulations during the previtellogenic resting stage lead to the same biochemical and molecular changes? (3) Does nutrition and hormones during the previtellogenic resting stage affect vitellogenic resorption and reproductive output? We examined the accumulation of neutral lipids in the previtellogenic ovary as well as the previtellogenic expression of genes integral to endocytosis and oocyte development such as the: vitellogenin receptor (AaVgR), lipophorin receptor (AaLpRov), heavy-chain clathrin (AaCHC), and ribosomal protein L32 (rpL32) under various previtellogenic nutritional and hormonal conditions. mRNA abundance and neutral lipid content increased within the previtellogenic ovary as previtellogenic mosquitoes were offered increasing sucrose concentrations. Methoprene application mimicked the effect of offering the highest sucrose concentrations on mRNA abundance and lipid accumulation in the previtellogenic ovary. These same nutritional and hormonal manipulations altered the extent of vitellogenic resorption. Mosquitoes offered 20% sucrose during the previtellogenic resting stage had nearly 3 times less vitellogenic resorption than mosquitoes offered 3% sucrose despite taking smaller blood meals and developed ∼10% more eggs during the first gonotrophic cycle. Mosquitoes treated with JH III during the previtellogenic resting stage and then offered a blood meal had a ∼40% reduction in the amount of vitellogenic resorption and developed ∼12% more eggs. Taken together, these results suggest that previtellogenic nutrition alters the extent and pattern of resorption after a blood meal through the effect of JH on mRNA abundance and lipid accumulation in previtellogenic follicles.
Collapse
Affiliation(s)
- Mark E Clifton
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA
| | | |
Collapse
|
22
|
Fruttero LL, Frede S, Rubiolo ER, Canavoso LE. The storage of nutritional resources during vitellogenesis of Panstrongylus megistus (Hemiptera: Reduviidae): the pathways of lipophorin in lipid delivery to developing oocytes. JOURNAL OF INSECT PHYSIOLOGY 2011; 57:475-486. [PMID: 21277855 DOI: 10.1016/j.jinsphys.2011.01.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2010] [Revised: 01/18/2011] [Accepted: 01/19/2011] [Indexed: 05/30/2023]
Abstract
In this work, we have analyzed the pathways by which lipophorin (Lp) delivers its lipid cargo to developing oocytes of Panstrongylus megistus, a hematophagous vector of Chagas' disease. Lp, vitellin, total lipids and proteins were measured in ovarian tissues at different stages of the reproductive cycle. Localization of Lp in developing oocytes, mainly at their cortical area, was demonstrated by immunofluorescence assays using an anti-Lp antibody labeled with FITC. In vivo approaches injecting fluorescently labeled Lp to follow the course of the entire particle (Lp-DiI or Lp-Oregon Green) or its lipid cargo (Lp-Bodipy-FA) were monitored by laser scanning confocal microscopy. Significant increases in the amounts of lipids, proteins and vitellin were observed in ovarian tissue with the progress of vitellogenesis. Unexpectedly, an increase in the amount of Lp was also observed. The experiments in vivo demonstrated that the uptake of fluorescent Lp labeled on its protein or lipid moiety by developing oocytes occurred very fast, being impaired at low temperatures. The co-injection of fluorescent Lp and vitellogenin (Vg) showed that both particles co-localized inside yolk bodies, confirming the endocytic pathway for Lp. When the fate of lipids transferred to oocytes was evaluated in vitellogenic females by co-injecting Lp-Bodipy-FA and Lp-DiI, the signal for Bodipy-FA was found in both lipid droplets and yolk bodies. In contrast, in injected females kept at 4°C the fluorescence was reduced, being observed exclusively in lipid droplets, implying that lipid transfer to the oocyte was diminished but not abolished. Taken together, the results demonstrate that in the hematophagous P. megistus, the storage of lipid resources by developing oocytes occurs by the convergence of different pathways by which Lp maximizes the delivery of its lipid cargo. In addition, it was also shown that, to some extent, lipids stored in the oocyte lipid droplets can also originate from endocytosed Vg. The relevance of these events in the context of the physiology of reproduction in P. megistus is discussed.
Collapse
Affiliation(s)
- Leonardo L Fruttero
- Departamento de Bioquímica Clínica, Centro de Investigaciones en Bioquímica Clínica e Inmunología, Facultad de Ciencias Químicas-Universidad Nacional de Córdoba, Córdoba, CP 5000, Argentina
| | | | | | | |
Collapse
|
23
|
Parra-Peralbo E, Culi J. Drosophila lipophorin receptors mediate the uptake of neutral lipids in oocytes and imaginal disc cells by an endocytosis-independent mechanism. PLoS Genet 2011; 7:e1001297. [PMID: 21347279 PMCID: PMC3037410 DOI: 10.1371/journal.pgen.1001297] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Accepted: 01/07/2011] [Indexed: 11/18/2022] Open
Abstract
Lipids are constantly shuttled through the body to redistribute energy and metabolites between sites of absorption, storage, and catabolism in a complex homeostatic equilibrium. In Drosophila, lipids are transported through the hemolymph in the form of lipoprotein particles, known as lipophorins. The mechanisms by which cells interact with circulating lipophorins and acquire their lipidic cargo are poorly understood. We have found that lipophorin receptor 1 and 2 (lpr1 and lpr2), two partially redundant genes belonging to the Low Density Lipoprotein Receptor (LDLR) family, are essential for the efficient uptake and accumulation of neutral lipids by oocytes and cells of the imaginal discs. Females lacking the lpr2 gene lay eggs with low lipid content and have reduced fertility, revealing a central role for lpr2 in mediating Drosophila vitellogenesis. lpr1 and lpr2 are transcribed into multiple isoforms. Interestingly, only a subset of these isoforms containing a particular LDLR type A module mediate neutral lipid uptake. Expression of these isoforms induces the extracellular stabilization of lipophorins. Furthermore, our data indicate that endocytosis of the lipophorin receptors is not required to mediate the uptake of neutral lipids. These findings suggest a model where lipophorin receptors promote the extracellular lipolysis of lipophorins. This model is reminiscent of the lipolytic processing of triglyceride-rich lipoproteins that occurs at the mammalian capillary endothelium, suggesting an ancient role for LDLR–like proteins in this process. Understanding the complex mechanisms that regulate the storage of caloric surpluses in the form of fat is critical in view of the public health problems caused by the continuous rise of obesity and diabetes. Important advances in the field have been obtained from studies using simple animal models like worms or flies. Here we focus on the molecular mechanisms involved in how cells capture neutral lipids from the extracellular milieu, using the fruit fly Drosophila melanogaster as a model organism. Lipids are transported through the blood or the insect hemolymph as small particles known as lipoproteins. We show that two Drosophila proteins related to the mammalian Low Density Lipoprotein Receptor, Lipophorin Receptor 1 and 2, are essential for the cellular acquisition of neutral lipids from extracellular lipoproteins. We have found that the endocytic uptake of the lipoprotein particles was not required for this process. Instead, we propose that lipophorin receptors favor the extracellular hydrolysis of lipids contained in lipoproteins, followed by uptake of the released free fatty acids. This process is similar to the extracellular processing of lipoproteins that takes place in the capillaries of mammals, suggesting an ancient role for LDLR–related proteins in the extracellular processing of lipoproteins.
Collapse
Affiliation(s)
- Esmeralda Parra-Peralbo
- Centro Andaluz de Biología del Desarrollo (CSIC-UPO), Universidad Pablo de Olavide, Sevilla, Spain
| | - Joaquim Culi
- Centro Andaluz de Biología del Desarrollo (CSIC-UPO), Universidad Pablo de Olavide, Sevilla, Spain
- * E-mail:
| |
Collapse
|
24
|
Ravikumar G, Vardhana KV, Basavaraja HK. Characterization of lipophorin receptor (LpR) mediating the binding of high density lipophorin (HDLp) in the silkworm, Bombyx mori. JOURNAL OF INSECT SCIENCE (ONLINE) 2011; 11:150. [PMID: 22236107 PMCID: PMC3391906 DOI: 10.1673/031.011.15001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
In an earlier report, we described the gene encoding a lipophorin receptor (LpR) of the silkworm, Bombyx mori L. (Lepidoptera: Bombycidae), and recombinant expression of the protein. The present study was performed to characterize the corresponding native BmLpR and its binding characteristics. Polyclonal anti-LpR antibody prepared against the cloned receptor fragment from the cytoplasmic domain specifically detected the receptor. Through immunoblotting, ovary and brain membrane protein samples of BmLpR have shown an apparent molecular mass of 105 kDa and 120 kDa under nonreducing and reducing conditions, respectively. Ligand binding of LpR supported the immunoblot results. It bound to high density lipophorin (HDLp) and has shown requirement of Ca(2+) in binding. Further, a dose-dependent inhibition by EDTA was observed in receptor ligand binding. The characteristics of the BmLpR protein confirm the properties of a ligand-receptor interaction similar to that of vertebrate low density lipoprotein receptor (LDLR).
Collapse
Affiliation(s)
- G Ravikumar
- Seri-biotech Research Laboratory, Central Silk Board, Carmelaram Post, Kodathi, Bangalore 560035, India.
| | | | | |
Collapse
|
25
|
Schenk S, Hoeger U. Lipid accumulation and metabolism in polychaete spermatogenesis: Role of the large discoidal lipoprotein. Mol Reprod Dev 2010; 77:710-9. [PMID: 20544837 DOI: 10.1002/mrd.21208] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In most oviparous animals, lipoprotein-mediated lipid transport plays an important role in the nutrient supply for the oocyte. In male gametes, lipids are used as energy substrates in spermatozoa but nothing is yet known about their origin and metabolism throughout spermatogenesis. The lipid profiles analyzed from different stages of male germ cell development in the marine annelid Nereis virens were found to undergo a dramatic change from primary triacylglycerides at the beginning of germ cell development to cholesterol and phospholipids at the end of development as demonstrated by HPLC with evaporative light scattering detection and mass spectrometry. The uptake of a large discoidal lipoprotein into the developing germ cells could be demonstrated by fluorescence labeling and electron microscopic techniques as well as by the presence of a lipoprotein receptor in the germ cells, thus establishing its role in lipid supply. The incorporated lipoprotein discs were found to be stored as intact complexes indicating that they are not readily degraded upon endocytotic uptake. The change in lipid composition during germ cell development reflects their metabolic activity, especially in spermatogonia. The high concentration of lipids maintained by spermatogonia during the early phase of gametogenesis seems to be required for the later rapid processes of meiosis and spermatocyte differentiation. At times when peak demand of lipids arises for membrane synthesis and increased metabolism, this may be met more efficiently by a rapid on-site mobilization of lipids instead of an external supply.
Collapse
Affiliation(s)
- Sven Schenk
- Institut für Zoologie, Johannes Gutenberg-Universität, Mainz, Germany.
| | | |
Collapse
|
26
|
Kumar BA, Paily KP. Up-regulation of lipophorin (Lp) and lipophorin receptor (LpR) gene in the mosquito, Culex quinquefasciatus (Diptera: Culicidae), infected with the filarial parasite, Wuchereria bancrofti (Spirurida: Onchocercidae). Parasitol Res 2010; 108:377-81. [PMID: 20922426 DOI: 10.1007/s00436-010-2075-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Accepted: 09/16/2010] [Indexed: 01/22/2023]
Abstract
In mosquitoes, including Culex quinquefasciatus, immune molecules are known to be upregulated or produced de novo upon exposure to parasites or pathogens. These molecules are regulatory in nature acting against parasite or pathogen infection and development. Similarly, there are molecules that are upregulated to facilitate parasite development in the vector mosquitoes. Lipophorin, a major lipid transporting lipoprotein in the hemolymph of insects, is implicated as a helper molecule in the clotting mechanism and facilitator of parasite and pathogen development in mosquitoes. In the present study, upregulation of a 240 kDa protein was detected in C. quinquefasciatus infected with the human lymphatic filarial parasite, Wuchereria bancrofti. It was identified as a lipophorin through nano-Lc-MS/MS analysis. Transcription of the lipophorin receptor gene also was identified through RACE-PCR. C. quinquefasciatus is the vector of W. bancrofti, and it allows successful development of the parasite. The role of upregulated lipophorin and transcription of its receptor gene in this mosquito could be implicated as a facilitator for the parasite development.
Collapse
Affiliation(s)
- B A Kumar
- Vector Control Research Centre (Indian Council of Medical Research), Indira Nagar, Pondicherry, 605006, India
| | | |
Collapse
|
27
|
Abstract
The fat body plays major roles in the life of insects. It is a dynamic tissue involved in multiple metabolic functions. One of these functions is to store and release energy in response to the energy demands of the insect. Insects store energy reserves in the form of glycogen and triglycerides in the adipocytes, the main fat body cell. Insect adipocytes can store a great amount of lipid reserves as cytoplasmic lipid droplets. Lipid metabolism is essential for growth and reproduction and provides energy needed during extended nonfeeding periods. This review focuses on energy storage and release and summarizes current understanding of the mechanisms underlying these processes in insects.
Collapse
|
28
|
Lipoprotein mediated lipid uptake in oocytes of polychaetes (Annelida). Cell Tissue Res 2009; 337:341-8. [PMID: 19533173 DOI: 10.1007/s00441-009-0817-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Accepted: 05/04/2009] [Indexed: 11/27/2022]
Abstract
The uptake of the 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI)-labeled sex-unspecific Nereis lipoprotein was investigated in oocytes of the nereidid polychaetes Nereis virens and Platynereis dumerilii. The fluorescence label was first observed in endocytic vesicles (<1 microm diameter), which later fused to larger vesicles (2-3 microm); these were finally incorporated into existing unlabeled yolk granules (5-6 microm). In Platynereis oocytes, the fusion of endocytic vesicles was delayed in oocytes at their final stage of development compared with those at an early stage of development. Lipoprotein double-labeled with fluorescein isothiocyanate (FITC) and DiI revealed that both the protein and the lipid moiety remained co-localized during incorporation into the yolk granules of the oocyte. No labeling of the cytoplasmic lipid droplets was observed. In N. virens, unlabeled Nereis lipoprotein was effective as a competitive inhibitor of DiI-labeled Nereis lipoprotein. Ligand blot experiments demonstrated the presence of a lipoprotein receptor with an apparent molecular mass of 120 kDa, which is different from that of the known yolk protein receptor. This indicates the presence, in the polychaete oocyte, of two distinct receptors mediating yolk protein and lipoprotein uptake, respectively. Thus, the sex-unspecific lipoprotein contributes to the lipid supply of the growing oocyte in addition to the known uptake of the yolk-protein-associated lipids. The absence of label in the cytoplasmic lipid droplets, even after prolonged incubation with labeled lipoprotein, suggests that these lipids arise either by the breakdown and resynthesis of lipoprotein-derived lipids and/or by de novo synthesis within the oocyte.
Collapse
|
29
|
Tufail M, Elmogy M, Ali Fouda MM, Elgendy AM, Bembenek J, Trang LTD, Shao QM, Takeda M. Molecular cloning, characterization, expression pattern and cellular distribution of an ovarian lipophorin receptor in the cockroach, Leucophaea maderae. INSECT MOLECULAR BIOLOGY 2009; 18:281-294. [PMID: 19523061 DOI: 10.1111/j.1365-2583.2009.00865.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A cDNA that encodes a lipophorin receptor (LpR) with a predicted structure similar to that of the low density lipoprotein receptor (LDLR) gene superfamily was cloned from ovaries of the cockroach, Leucophaea maderae (Lem) and characterized. This is the first LpR sequenced from the order Dictyoptera. The cDNA has a length of 3362 bp coding for an 888-residue mature protein with a predicted molecular mass of ~99.14 kDa and a pI value of 4.68. The deduced amino acid sequence showed that the LemLpR harbours eight ligand-binding repeats (LBRs) at the N-terminus similar to the other insect LpRs, and thus resembles vertebrate VLDLRs. In addition to eight tandemly arranged LBRs, the five-domain receptor contains an O-linked sugar region and the classic LDLR internalization signal, FDNPVY. Northern blot analysis revealed the presence of ~4.0 kb ovarian mRNA that was transcribed throughout oogenesis with its peak especially during late previtellogenic and vitellogenic periods (from days 3 to 11). LpR transcript(s) or homologues of LDLRs were also detected in the head, midgut, Malpighian tubules, muscles and in the fat body. RNA in situ hybridization and immunocytochemistry localized the LpR mRNA and protein to germ line-derived cells, the oocytes, and revealed that LpR gene transcription and translation starts very early during oocyte differentiation in the germarium. LpR protein was evenly distributed throughout the cytoplasm during previtellogenic periods of oogenesis. However, during vitellogenic stages, the receptor was accumulated mainly in the cortex of the oocyte. Immunoblot analysis probed an ovarian LpR protein of ~115 and 97 kDa under reducing and nonreducing conditions, respectively. The protein signal appeared on day 2, increased every day and was high during vitellogenic periods from day 4 to day 7. Southern blot analysis suggested the presence of a single copy of the LpR gene in the genome of Le. maderae.
Collapse
|
30
|
Fruttero LL, Rubiolo ER, Canavoso LE. Biochemical and cellular characterization of lipophorin-midgut interaction in the hematophagous Panstrongylus megistus (Hemiptera: Reduviidae). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2009; 39:322-331. [PMID: 19507302 DOI: 10.1016/j.ibmb.2009.01.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In order to better understand the metabolism of dietary lipids in hematophagous insects, we have performed a biochemical and cellular characterization of lipophorin (Lp)-midgut interaction in Panstrongylus megistus, a vector of Chagas' disease. The study was accomplished by solid-phase binding assays or with iodinated Lp ((125)I-Lp), using midgut membranes from fifth instar nymphs after ecdysis and after insects received a blood meal. Results obtained from both physiological conditions indicated that Lp interacted specifically with the midgut, implying the participation of receptors. Binding capacity of lipophorin to membranes was dependent on the amount of membranes added in the system, reaching saturation at 0.1 microg/ml. However, membranes obtained after a blood meal exhibited higher binding activity. Saturation kinetics results using (125)I-Lp suggested a single binding site with high affinity for Lp in the midgut membranes (K(d) = 5.1 +/- 3.6 x 10(-8) M). The unrelated lipoprotein, human LDL, did not compete with Lp for its binding site in the midgut. The binding was dependent on pH and the treatment of membranes with trypsin or heat causes a significant inhibition of the binding. Midgut-Lp interaction was affected by changes in ionic strength and by suramin, but showed no requirement of calcium. Ligand blotting assays revealed two membrane proteins that specifically bound Lp (61 and 45 kDa). At cellular level, Lp binding sites were located mainly at the basal plasma membrane of isolated enterocytes. Labeled Lp with fluorescent probes directed to its proteins or its phospholipids fraction co-localized mainly at the basement membrane of the midgut. In addition, no intracellular Lp was observed at any condition. The lack of an endocytic pathway for Lp in the midgut of P. megistus is analyzed in the context of insect physiology.
Collapse
Affiliation(s)
- Leonardo L Fruttero
- Departamento de Bioquímica Clínica, Centro de Investigaciones en Bioquímica Clínica e Inmunología, Universidad Nacional de Córdoba, Argentina
| | | | | |
Collapse
|
31
|
Tufail M, Takeda M. Insect vitellogenin/lipophorin receptors: molecular structures, role in oogenesis, and regulatory mechanisms. JOURNAL OF INSECT PHYSIOLOGY 2009; 55:87-103. [PMID: 19071131 DOI: 10.1016/j.jinsphys.2008.11.007] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Revised: 11/10/2008] [Accepted: 11/13/2008] [Indexed: 05/27/2023]
Abstract
Insect vitellogenin and lipophorin receptors (VgRs/LpRs) belong to the low-density lipoprotein receptor (LDLR) gene superfamily and play a critical role in oocyte development by mediating endocytosis of the major yolk protein precursors Vg and Lp, respectively. Precursor Vg and Lp are synthesized, in the majority of insects, extraovarially in the fat body and are internalized by competent oocytes through membrane-bound receptors (i.e., VgRs and LpRs, respectively). Structural analysis reveals that insect VgRs/LpRs and all other LDLR family receptors share a group of five structural domains: clusters of cysteine-rich repeats constituting the ligand-binding domain (LBD), epidermal growth factor (EGF)-precursor homology domain that mediates the acid-dependent dissociation of ligands, an O-linked sugar domain of unknown function, a transmembrane domain anchoring the receptor in the plasma membrane, and a cytoplasmic domain that mediates the clustering of the receptor into the coated pits. The sequence analysis indicates that insect VgRs harbor two LBDs with five repeats in the first and eight repeats in the second domain as compared to LpRs which have a single 8-repeat LBD. Moreover, the cytoplasmic domain of all insect VgRs contains a LI internalization signal instead of the NPXY motif found in LpRs and in the majority of other LDLR family receptors. The exception is that of Solenopsis invicta VgR, which also contains an NPXY motif in addition to LI signal. Cockroach VgRs still harbor another motif, NPTF, which is also believed to be a functional internalization signal. The expression studies clearly demonstrate that insect VgRs are ovary-bound receptors of the LDLR family as compared to LpRs, which are transcribed in a wide range of tissues including ovary, fat body, midgut, brain, testis, Malpighian tubules, and muscles. VgR/LpR mRNA and the protein were detected in the germarium, suggesting that the genes involved in receptor-endocytotic machinery are specifically expressed long before they are functionally required.
Collapse
Affiliation(s)
- Muhammad Tufail
- Graduate School of Science and Technology, Kobe University, Nada, Kobe 657-8501, Japan.
| | | |
Collapse
|
32
|
Van der Horst DJ, Roosendaal SD, Rodenburg KW. Circulatory lipid transport: lipoprotein assembly and function from an evolutionary perspective. Mol Cell Biochem 2009; 326:105-19. [PMID: 19130182 DOI: 10.1007/s11010-008-0011-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Accepted: 06/05/2008] [Indexed: 02/07/2023]
Abstract
Circulatory transport of neutral lipids (fat) in animals relies on members of the large lipid transfer protein (LLTP) superfamily, including mammalian apolipoprotein B (apoB) and insect apolipophorin II/I (apoLp-II/I). Latter proteins, which constitute the structural basis for the assembly of various lipoproteins, acquire lipids through microsomal triglyceride transfer protein (MTP)--another LLTP family member--and bind them by means of amphipathic structures. Comparative research reveals that LLTPs have evolved from the earliest animals and additionally highlights the structural and functional adaptations in these lipid carriers. For instance, in contrast to mammalian apoB, the insect apoB homologue, apoLp-II/I, is post-translationally cleaved by a furin, resulting in their appearance of two non-exchangeable apolipoproteins in the insect low-density lipoprotein (LDL) homologue, high-density lipophorin (HDLp). An important difference between mammalian and insect lipoproteins relates to the mechanism of lipid delivery. Whereas in mammals, endocytic uptake of lipoprotein particles, mediated via members of the LDL receptor (LDLR) family, results in their degradation in lysosomes, the insect HDLp was shown to act as a reusable lipid shuttle which is capable of reloading lipid. Although the recent identification of a lipophorin receptor (LpR), a homologue of LDLR, reveals that endocytic uptake of HDLp may constitute an additional mechanism of lipid delivery, the endocytosed lipoprotein appears to be recycled in a transferrin-like manner. Binding studies indicate that the HDLp-LpR complex, in contrast to the LDL-LDLR complex, is resistant to dissociation at endosomal pH as well as by treatment with EDTA mimicking the drop in Ca(2+) concentration in the endosome. This remarkable stability of the ligand-receptor complex may provide a crucial key to the recycling mechanism. Based on the binding and dissociation capacities of mutant and hybrid receptors, the specific binding interaction of the ligand-binding domain of the receptor with HDLp was characterized. These structural similarities and functional adaptations of the lipid transport systems operative in mammals and insects are discussed from an evolutionary perspective.
Collapse
Affiliation(s)
- Dick J Van der Horst
- Division of Endocrinology and Metabolism, Department of Biology and Institute of Biomembranes, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| | | | | |
Collapse
|
33
|
Babin PJ, Gibbons GF. The evolution of plasma cholesterol: direct utility or a "spandrel" of hepatic lipid metabolism? Prog Lipid Res 2008; 48:73-91. [PMID: 19049814 DOI: 10.1016/j.plipres.2008.11.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Revised: 11/06/2008] [Accepted: 11/07/2008] [Indexed: 02/07/2023]
Abstract
Fats provide a concentrated source of energy for multicellular organisms. The efficient transport of fats through aqueous biological environments raises issues concerning effective delivery to target tissues. Furthermore, the utilization of fatty acids presents a high risk of cytotoxicity. Improving the efficiency of fat transport while simultaneously minimizing the cytotoxic risk confers distinct selective advantages. In humans, most of the plasma cholesterol is associated with low-density lipoprotein (LDL), a metabolic by-product of very-low-density lipoprotein (VLDL), which originates in the liver. However, the functions of VLDL are not clear. This paper reviews the evidence that LDL arose as a by-product during the natural selection of VLDL. The latter, in turn, evolved as a means of improving the efficiency of diet-derived fatty acid storage and utilization, as well as neutralizing the potential cytotoxicity of fatty acids while conserving their advantages as a concentrated energy source. The evolutionary biology of lipid transport processes has provided a fascinating insight into how and why these VLDL functions emerged during animal evolution. As causes of historical origin must be separated from current utilities, our spandrel-LDL theory proposes that LDL is a spandrel of VLDL selection, which appeared non-adaptively and may later have become crucial for vertebrate fitness.
Collapse
Affiliation(s)
- Patrick J Babin
- Université Bordeaux 1, Génomique et Physiologie des Poissons, UMR NuAGe, 33405 Talence, France
| | | |
Collapse
|
34
|
Mishra SK, Jha A, Steinhauser AL, Kokoza VA, Washabaugh CH, Raikhel AS, Foster WA, Traub LM. Internalization of LDL-receptor superfamily yolk-protein receptors during mosquito oogenesis involves transcriptional regulation of PTB-domain adaptors. J Cell Sci 2008; 121:1264-74. [DOI: 10.1242/jcs.025833] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
In the anautogenous disease vector mosquitoes Anopheles gambiae and Aedes aegypti, egg development is nutritionally controlled. A blood meal permits further maturation of developmentally repressed previtellogenic egg chambers. This entails massive storage of extraovarian yolk precursors by the oocyte, which occurs through a burst of clathrin-mediated endocytosis. Yolk precursors are concentrated at clathrin-coated structures on the oolemma by two endocytic receptors, the vitellogenin and lipophorin receptors. Both these mosquito receptors are members of the low-density-lipoprotein-receptor superfamily that contain FxNPxY-type internalization signals. In mammals, this tyrosine-based signal is not decoded by the endocytic AP-2 adaptor complex directly. Instead, two functionally redundant phosphotyrosine-binding domain adaptors, Disabled 2 and the autosomal recessive hypercholesterolemia protein (ARH) manage the internalization of the FxNPxY sorting signal. Here, we report that a mosquito ARH-like protein, which we designate trephin, possess similar functional properties to the orthologous vertebrate proteins despite engaging AP-2 in an atypical manner, and that mRNA expression in the egg chamber is strongly upregulated shortly following a blood meal. Temporally regulated trephin transcription and translation suggests a mechanism for controlling yolk uptake when vitellogenin and lipophorin receptors are expressed and clathrin coats operate in previtellogenic ovaries.
Collapse
Affiliation(s)
- Sanjay K. Mishra
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Anupma Jha
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Amie L. Steinhauser
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Vladimir A. Kokoza
- Department of Entomology, University of California, Riverside, CA 92521, USA
| | - Charles H. Washabaugh
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | | - Linton M. Traub
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| |
Collapse
|
35
|
Roosendaal SD, Kerver J, Schipper M, Rodenburg KW, Van der Horst DJ. The complex of the insect LDL receptor homolog, lipophorin receptor, LpR, and its lipoprotein ligand does not dissociate under endosomal conditions. FEBS J 2008; 275:1751-66. [DOI: 10.1111/j.1742-4658.2008.06334.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
36
|
Ximenes A, Oliveira G, Bittencourt-Cunha P, Tomokyo M, Leite D, Folly E, Golodne D, Atella G. Purification, partial characterization and role in lipid transport to developing oocytes of a novel lipophorin from the cowpea weevil, Callosobruchus maculatus. Braz J Med Biol Res 2007; 41:18-25. [DOI: 10.1590/s0100-879x2006005000191] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Accepted: 09/24/2007] [Indexed: 11/22/2022] Open
Affiliation(s)
- A.A Ximenes
- Universidade Federal do Rio de Janeiro, Brasil
| | | | | | - M Tomokyo
- Universidade Federal do Rio de Janeiro, Brasil
| | - D.B Leite
- Universidade Federal do Rio de Janeiro, Brasil
| | - E Folly
- Universidade Federal do Rio de Janeiro, Brasil
| | - D.M Golodne
- Universidade Federal do Rio de Janeiro, Brasil
| | - G.C Atella
- Universidade Federal do Rio de Janeiro, Brasil
| |
Collapse
|
37
|
Structural and RNAi characterization of the German cockroach lipophorin receptor, and the evolutionary relationships of lipoprotein receptors. BMC Mol Biol 2007; 8:53. [PMID: 17587448 PMCID: PMC1933434 DOI: 10.1186/1471-2199-8-53] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Accepted: 06/22/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lipophorin receptors (LpRs) have been described in a number of insects, but functional studies have been reported only in locusts and mosquitoes. The aim of the present work was to characterize the LpR of the cockroach Blattella germanica, not only molecularly but also functionally using RNAi techniques, and to place LpRs in a phylogenetical context among lipoprotein receptors. RESULTS We cloned a putative LpR from B. germanica (BgLpR) using RT-PCR methods. Two isoforms of BgLpR that differ from each other by an insertion/deletion of 24 amino acids were obtained from the fat body and the ovary. A phylogenetical analysis of lipoprotein receptors showed that BgLpR grouped with other sequences annotated as LpR in a cluster placed as a sister group of vertebrate low density lipoprotein receptors (LDLR) + lipoprotein receptor-related proteins 8 (LPR8) + vitellogenin receptors (VgR) + very low density lipoprotein receptors (VLDLR). The two BgLpR isoforms are expressed in different adult female tissues (fat body, ovary, brain, midgut, muscle) and in embryos. In ovaries and fat body, the two isoforms are similarly expressed during the first gonadotrophic cycle. mRNA levels in the fat body increase in parallel to vitellogenesis, whereas they decrease in the ovaries. BgLpR protein levels increase in parallel to vitellogenesis in both organs. Treatment with juvenile hormone increases BgLpR protein. RNAi experiments show that females with lower BgLpR expression have less lipophorin in the growing oocytes with respect to controls. CONCLUSION The two isoforms of BgLpR are structurally similar to other LpRs. Phylogenetical analyses show that LpRs and the group formed by vertebrate LDLR + LPR8 + VgR + VLDLR, diverged from a common ancestor and diversified in parallel. The different expression patterns in the fat body and the ovary, comparing mRNA and protein, indicate that the corresponding mechanisms regulating BgLpR expression are different. Experiments with JH III suggest that such a hormone regulates the expression of BgLpR posttranscriptionally. RNAi experiments indicate that BgLpR is a functional lipophorin receptor.
Collapse
|
38
|
Avarre JC, Lubzens E, Babin PJ. Apolipocrustacein, formerly vitellogenin, is the major egg yolk precursor protein in decapod crustaceans and is homologous to insect apolipophorin II/I and vertebrate apolipoprotein B. BMC Evol Biol 2007; 7:3. [PMID: 17241455 PMCID: PMC1783640 DOI: 10.1186/1471-2148-7-3] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2006] [Accepted: 01/22/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In animals, the biogenesis of some lipoprotein classes requires members of the ancient large lipid transfer protein (LLTP) superfamily, including the cytosolic large subunit of microsomal triglyceride transfer protein (MTP), vertebrate apolipoprotein B (apoB), vitellogenin (Vtg), and insect apolipophorin II/I precursor (apoLp-II/I). In most oviparous species, Vtg, a large glycolipoprotein, is the main egg yolk precursor protein. RESULTS This report clarifies the phylogenetic relationships of LLTP superfamily members and classifies them into three families and their related subfamilies. This means that the generic term Vtg is no longer a functional term, but is rather based on phylogenetic/structural criteria. In addition, we determined that the main egg yolk precursor protein of decapod crustaceans show an overall greater sequence similarity with apoLp-II/I than other LLTP, including Vtgs. This close association is supported by the phylogenetic analysis, i.e. neighbor-joining, maximum likelihood and Bayesian inference methods, of conserved sequence motifs and the presence of three common conserved domains: an N-terminal large lipid transfer module marker for LLTP, a DUF1081 domain of unknown function in their central region exclusively shared with apoLp-II/I and apoB, and a von Willebrand-factor type D domain at their C-terminal end. Additionally, they share a conserved functional subtilisin-like endoprotease cleavage site with apoLp-II/I, in a similar location. CONCLUSION The structural and phylogenetic data presented indicate that the major egg yolk precursor protein of decapod crustaceans is surprisingly closely related to insect apoLp-II/I and vertebrate apoB and should be known as apolipocrustacein (apoCr) rather than Vtg. These LLTP may arise from an ancient duplication event leading to paralogs of Vtg sequences. The presence of LLTP homologs in one genome may facilitate redundancy, e.g. involvement in lipid metabolism and as egg yolk precursor protein, and neofunctionalization and subfunctionalization, e.g. involvement in clotting cascade and immune response, of extracellular LLTP members. These protein-coding nuclear genes may be used to resolve phylogenetic relationships among the major arthropod groups, especially the Pancrustacea-major splits.
Collapse
Affiliation(s)
- Jean-Christophe Avarre
- Israel Oceanographic and Limnological Research, P.O. Box 8030, Haifa 31080, Israel
- Genewave XTEC, Ecole Polytechnique, 91128 Palaiseau, France
| | - Esther Lubzens
- Israel Oceanographic and Limnological Research, P.O. Box 8030, Haifa 31080, Israel
| | - Patrick J Babin
- Génomique et Physiologie des Poissons, Université Bordeaux 1, UMR NuAGe, 33405 Talence cedex, France
| |
Collapse
|
39
|
Atella GC, Silva-Neto MAC, Golodne DM, Arefin S, Shahabuddin M. Anopheles gambiae lipophorin: characterization and role in lipid transport to developing oocyte. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2006; 36:375-86. [PMID: 16651184 DOI: 10.1016/j.ibmb.2006.01.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Revised: 01/26/2006] [Accepted: 01/27/2006] [Indexed: 05/08/2023]
Abstract
Lipid transport in arthropods is achieved by highly specialized lipoproteins, which resemble those described in vertebrate blood. Here, we describe purification and characterization of the lipid-apolipoprotein complex, lipophorin (Lp), in the malaria vector mosquito Anopheles gambiae. We also describe the Lp-mediated lipid transfer to developing eggs and the distribution of the imported lipid in developing embryos. The density of the Lp complex was 1.135 g/ml with an apparent molecular weight of 630 kDa. It is composed of two major polypeptides, apoLp I (260 kDa) and apoLp II (74 kDa) and composed of 50% protein, 48% lipid and 2% carbohydrate (w/w). Hydrocarbon, cholesterol, phosphatidyl choline, phosphatidyl ethanolamine, cholesteryl ester and diacylglyceride were the major Lp-associated lipids. Using fluorescently tagged lipids, we observed patterns that suggest that in live developing oocytes, the Lp was taken up by a receptor-mediated endocytic process. Such process was blocked at low temperature and in the presence of excess unlabeled Lp, but not by bovine serum albumin. Imported Lp was segregated in the spherical yolk bodies (mean size 1.8 microm) and distributed evenly in the cortex of the oocyte. In embryonic larvae, before hatching, a portion of the fatty acid in vesicles was found evenly distributed along the body, whereas portion of phospholipids was accumulated in the intestine.
Collapse
Affiliation(s)
- Georgia C Atella
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 4 Center Drive MSC 0425, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
40
|
Gopalapillai R, Kadono-Okuda K, Tsuchida K, Yamamoto K, Nohata J, Ajimura M, Mita K. Lipophorin receptor of Bombyx mori: cDNA cloning, genomic structure, alternative splicing, and isolation of a new isoform. J Lipid Res 2006; 47:1005-13. [PMID: 16474173 DOI: 10.1194/jlr.m500462-jlr200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cDNA and genomic structure of a putative lipophorin receptor from the silkworm, Bombyx mori (BmLpR), indicated the presence of four isoforms, designated LpR1, LpR2, LpR3, and LpR4. The deduced amino acid sequence of each isoform showed five functional domains that are homologous to vertebrate very low density lipoprotein receptor (VLDLR). All four isoforms seem to have originated from a single gene by alternative splicing and were differentially expressed in a tissue- and stage-specific manner. BmLpR1 harbored an additional 27 amino acids in the O-linked sugar domain, resulting in an extra exon. The silkworm BmLpR gene consisted of 16 exons separated by 15 introns spanning >122 kb and was at least three times larger than the human VLDLR gene. Surprisingly, one of the isoforms, LpR4, was expressed specifically in the brain and central nervous system. Additionally, it had a unique cytoplasmic tail, leading to the proposition that it represents a new candidate LpR for possible brain-related function(s). This is the first report on the genomic characterization of an arthropod lipoprotein receptor gene and the identification of a brain-specific receptor variant from a core member of the low density lipoprotein receptor family in invertebrates.
Collapse
|
41
|
Cheon HM, Shin SW, Bian G, Park JH, Raikhel AS. Regulation of lipid metabolism genes, lipid carrier protein lipophorin, and its receptor during immune challenge in the mosquito Aedes aegypti. J Biol Chem 2006; 281:8426-35. [PMID: 16449228 DOI: 10.1074/jbc.m510957200] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In the mosquito Aedes aegypti, the expression of two fat body genes involved in lipid metabolism, a lipid carrier protein lipophorin (Lp) and its lipophorin receptor (LpRfb), was significantly increased after infections with Gram (+) bacteria and fungi, but not with Gram (-) bacteria. The expression of these genes was enhanced after the infection with Plasmodium gallinaceum. RNA interference (RNAi) knockdown of Lp strongly restricted the development of Plasmodium oocysts, reducing their number by 90%. In Vg-DeltaREL1-A transgenic mosquitoes, with gain-of-function phenotype of Toll/REL1 immune pathway activated after blood feeding, both the Lp and LpRfb genes were overexpressed independently of septic injury. The same phenotype was observed in the mosquitoes with RNAi knockdown of Cactus, an IkappaB inhibitor in the Toll/REL1 pathway. These results showed that, in the mosquito fat body, both Lp and LpRfb gene expression were regulated by the Toll/REL1 pathway during immune induction by pathogen and parasite infections. Indeed, the proximal region of the LpRfb promoter contained closely linked binding motifs for GATA and NF-kappaB transcription factors. Transfection and in vivo RNAi knockdown experiments showed that the bindings of both GATA and NF-kappaB transcription factors to the corresponding motif were required for the induction of the LpRfb gene. These findings suggest that lipid metabolism is involved in the mosquito systemic immune responses to pathogens and parasites.
Collapse
Affiliation(s)
- Hyang-Mi Cheon
- Center for Disease-Vector Research, Department of Entomology and the Institute for Integrative Genome Biology, University of California, Riverside, California 92521, USA
| | | | | | | | | |
Collapse
|
42
|
Atella GC, Gondim KC, Machado EA, Medeiros MN, Silva-Neto MAC, Masuda H. Oogenesis and egg development in triatomines: a biochemical approach. AN ACAD BRAS CIENC 2005; 77:405-30. [PMID: 16127549 DOI: 10.1590/s0001-37652005000300005] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In triatomines, as well as in other insects, accumulation of yolk is a process in which an extra-ovarian tissue, the fat body, produces yolk proteins that are packed in the egg. The main protein, synthesized by the fat body, which is accumulated inside the oocyte, is vitellogenin. This process is also known as vitellogenesis. There are growing evidences in triatomines that besides fat body the ovary also produces yolk proteins. The way these yolk proteins enter the oocyte will be discussed. Yolk is a complex material composed of proteins, lipids, carbohydrates and other minor components which are packed inside the oocyte in an organized manner. Fertilization triggers embryogenesis, a process where an embryo will develop. During embryogenesis the yolk will be used for the construction of a new individual, the first instar nymph. The challenge for the next decade is to understand how and where these egg proteins are used up together with their non-protein components, in pace with the genetic program of the embryo, which enables cell differentiation (early phase of embryogenesis) and embryo differentiation (late phase) inside the egg.
Collapse
Affiliation(s)
- Georgia C Atella
- Bloco H, Centro de Ciências da Saúde, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil
| | | | | | | | | | | |
Collapse
|
43
|
Sieglaff DH, Duncan KA, Brown MR. Expression of genes encoding proteins involved in ecdysteroidogenesis in the female mosquito, Aedes aegypti. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2005; 35:471-490. [PMID: 15804580 DOI: 10.1016/j.ibmb.2005.01.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2004] [Revised: 01/20/2005] [Accepted: 01/26/2005] [Indexed: 05/24/2023]
Abstract
A blood meal induces the ovaries of female Aedes aegypti mosquitoes to produce ecdysteroid hormones that regulate many processes required for egg maturation. Various proteins involved in the intracellular transport and biosynthesis of ecdysteroid precursors have been identified by analysis of Drosophila melanogaster mutants and by biochemical and molecular techniques in other insects. To begin examining these processes in mosquito ovaries, complete cDNAs were cloned for putative orthologs of diazepam-binding inhibitor (DBI), StAR-related lipid transfer domain containing protein (Start1), aldo/keto reductase (A/KR), adrenodoxin reductase (AR), and the cytochrome P450 enzymes, CYP302a1 (22-hydroxylase), CYP315a1 (2-hydroxylase) and CYP314a1 (20-hydroxylase). As shown by RT-PCR, transcripts for all seven genes were present in ovaries and other tissues both before and following a blood meal. Expression of these genes likely supports the low level of ecdysteroids produced in vitro (7-10 pg /tissue/6 h) by tissues other than ovaries. Ovaries from females not blood fed and up to 6 h post blood meal (PBM) also produced low amounts of ecdysteroids in vitro, but by 18 and 30 h PBM, ecdysteroid production was greatly increased (75-106 pg/ovary pair/6h) and thereafter (48 and 72 h PBM) returned to low levels. As determined by real-time PCR analysis, gene transcript abundance for AedaeCYP302 and AedaeCYP315a1 was significantly greater (9 and 12 fold, respectively) in ovaries during peak ecdysteroid production relative to that in ovaries from females not blood fed or 2 h PBM. AedaeStart1, AedaeA/KR and AedaeAR also had high transcript levels in ovaries during peak ecdysteroid production, and AedaeDBI transcripts had the greatest increase at 48 h PBM. In contrast, gene transcript abundance of AedaeCYP314a1 decreased PBM. This study shows for the first time that transcription of a few key genes for proteins involved in ecdysteroid biosynthesis is positively correlated with the rise in ecdysteroid production by ovaries of a female insect.
Collapse
|
44
|
Zhou Y, Zhang J, King ML. Polarized distribution of mRNAs encoding a putative LDL receptor adaptor protein, xARH (autosomal recessive hypercholesterolemia) in Xenopus oocytes. Mech Dev 2005; 121:1249-58. [PMID: 15327785 DOI: 10.1016/j.mod.2004.05.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2004] [Revised: 04/30/2004] [Accepted: 05/14/2004] [Indexed: 10/26/2022]
Abstract
The Xenopus homologue of hARH (human autosomal recessive hypercholesterolemia) was identified in a screen for vegetally localized RNAs. xARH contains a N-terminal phosphotyrosine binding (PTB) domain that is 91% identical to that of the human gene, a domain previously shown to bind the LDL receptor family members. Maternal xARH, unlike hARH, is present as two transcripts that differ in their 3' UTRs. The large transcript, xARH-alpha, primarily localizes to the oocyte vegetal cortex. The small transcript, xARH-beta, is not localized. During embryogenesis, xARH RNA is found redistributed in a perinuclear pattern. Similar to hARH, xARH is found in the adult liver, but at low levels compared to oocytes. Downstream of the PTB domain is a conserved clathrin box and a C terminal region 50% identical to that of hARH. Previous in vitro studies from this lab have shown xARH can bind the LDLR as well as the vitellogenin (VTG) receptor. We find that injection of the C terminal region missing the PTB domain significantly reduces the internalization of VTG in early stage oocytes, an event that requires the VTG receptor. The data strongly suggest that xARH encodes an adaptor protein that functions in the essential receptor-mediated endocytosis of nutrients during oogenesis. Because xARH protein is found uniformly distributed along the animal/vegetal axis in oocytes, we propose that the localization of xARH-alpha to the vegetal cortex while xARH-beta remains unlocalized, facilitates the uniform distribution of the protein in this extraordinarily large cell.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Cell Biology and Anatomy, University of Miami School of Medicine, 1011 NW 15th St., Miami, FL 33136, USA
| | | | | |
Collapse
|
45
|
Van Hoof D, Rodenburg KW, Van der Horst DJ. Intracellular fate of LDL receptor family members depends on the cooperation between their ligand-binding and EGF domains. J Cell Sci 2005; 118:1309-20. [PMID: 15741231 DOI: 10.1242/jcs.01725] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The insect low-density lipoprotein (LDL) receptor (LDLR) homologue LpR mediates endocytosis of an insect lipoprotein (lipophorin) that is structurally related to LDL. Despite these similarities, lipophorin and LDL follow distinct intracellular routes upon endocytosis by their receptors. Whereas LDL is degraded in lysosomes, lipophorin is recycled in a transferrin-like manner. We constructed several hybrid receptors composed of Locusta migratoria LpR and human LDLR regions to identify the domains implicated in LpR-mediated ligand recycling. Additionally, the triadic His562 residue of LDLR, which is putatively involved in ligand uncoupling, was mutated to Asn, corresponding to Asn643 in LpR, to analyse the role of the His triad in receptor functioning. The familial hypercholesterolaemia (FH) class 5 mutants LDLRH562Y and LDLRH190Y were also analysed in vitro. Fluorescence microscopic investigation and quantification suggest that LpR-mediated ligand recycling involves cooperation between the ligand-binding domain and epidermal growth factor (EGF) domain of LpR, whereas its cytosolic tail does not harbour motifs that affect this process. LDLR residue His562 appears to be essential for LDLR recycling after ligand endocytosis but not for constitutive receptor recycling. Like LDLRH562N, LDLRH562Y did not recycle bound ligand; moreover, the intracellular distribution of both mutant receptors after ligand incubation coincides with that of a lysosomal marker. The LDLR mutant characterization in vitro suggests that LDLR FH class 5 mutations might be divided into two subclasses.
Collapse
MESH Headings
- Animals
- Asparagine/chemistry
- Blotting, Western
- CHO Cells
- Cell Membrane/metabolism
- Cricetinae
- DNA, Complementary/metabolism
- Endocytosis
- ErbB Receptors/metabolism
- Histidine/chemistry
- Hydrogen-Ion Concentration
- Ligands
- Lipoproteins/chemistry
- Locusta migratoria
- Microscopy, Fluorescence
- Models, Chemical
- Models, Molecular
- Mutation
- Phenotype
- Protein Structure, Tertiary
- Receptors, LDL/chemistry
- Receptors, LDL/genetics
- Receptors, LDL/metabolism
- Receptors, Lipoprotein/chemistry
- Time Factors
- Transfection
- Transferrin/chemistry
Collapse
Affiliation(s)
- Dennis Van Hoof
- Department of Biochemical Physiology and Institute of Biomembranes, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | | |
Collapse
|
46
|
Van Hoof D, Rodenburg KW, Van der Horst DJ. Receptor-mediated endocytosis and intracellular trafficking of lipoproteins and transferrin in insect cells. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2005; 35:117-128. [PMID: 15681222 DOI: 10.1016/j.ibmb.2004.09.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2004] [Accepted: 09/28/2004] [Indexed: 05/24/2023]
Abstract
While the intracellular pathways of ligands after receptor-mediated endocytosis have been studied extensively in mammalian cells, in insect cells these pathways are largely unknown. We transfected Drosophila Schneider line 2 (S2) cells with the human low-density lipoprotein (LDL) receptor (LDLR) and transferrin (Tf) receptor (TfR), and used endocytosis of LDL and Tf as markers. After endocytosis in mammalian cells, LDL is degraded in lysosomes, whereas Tf is recycled. Fluorescence microscopy analysis revealed that LDL and Tf are internalized by S2 cells transfected with LDLR or TfR, respectively. In transfectants simultaneously expressing LDLR and TfR, both ligands colocalize in endosomes immediately after endocytic uptake, and their location remained unchanged after a chase. Similar results were obtained with Spodoptera frugiperda Sf9 cells that were transfected with TfR, suggesting that Tf is retained intracellularly by both cell lines. The insect lipoprotein, lipophorin, is recycled upon lipophorin receptor (LpR)-mediated endocytosis by mammalian cells, however, not after endocytosis by LpR-expressing S2 transfectants, suggesting that this recycling mechanism is cell-type specific. LpR is endogenously expressed by fat body tissue of Locusta migratoria for a limited period after an ecdysis. A chase following endocytosis of labeled lipophorin by isolated fat body tissue at this developmental stage resulted in a significant decrease of lipophorin-containing vesicles, indicative of recycling of the ligand.
Collapse
Affiliation(s)
- Dennis Van Hoof
- Department of Biochemical Physiology and Institute of Biomembranes, Utrecht University, Padualaan 8, Room W-209, Utrecht 3584 CH, The Netherlands
| | | | | |
Collapse
|
47
|
Tabunoki H, Higurashi S, Ninagi O, Fujii H, Banno Y, Nozaki M, Kitajima M, Miura N, Atsumi S, Tsuchida K, Maekawa H, Sato R. A carotenoid-binding protein (CBP) plays a crucial role in cocoon pigmentation of silkworm (Bombyx mori) larvae. FEBS Lett 2004; 567:175-8. [PMID: 15178318 DOI: 10.1016/j.febslet.2004.04.067] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2004] [Revised: 03/31/2004] [Accepted: 04/07/2004] [Indexed: 10/26/2022]
Abstract
We examined the role of carotenoid-binding protein (CBP) in yellow cocoon pigmentation. First, using yellow or white cocoon races, we investigated the linkage between the yellow pigmentation and CBP expression. CBP was expressed only in the silk gland of the yellow cocoon races, which utilize carotenoids for cocoon pigmentation. Furthermore, CBP expression in the silk glands of day 1-7 fifth instar larvae matched the period of carotenoid uptake into the silk gland. Finally, we gave double-stranded CBP RNA to Bombyx mori (B. mori) larvae to induce RNA interference. The significantly reduced expression of CBP in the silk gland of fifth instar larva was confirmed on day 4 and a decrease in yellow pigmentation was observed in the cocoon. We showed that CBP plays a key role in the yellow cocoon pigmentation caused by carotenoids.
Collapse
Affiliation(s)
- Hiroko Tabunoki
- Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Chen ME, Lewis DK, Keeley LL, Pietrantonio PV. cDNA cloning and transcriptional regulation of the vitellogenin receptor from the imported fire ant, Solenopsis invicta Buren (Hymenoptera: Formicidae). INSECT MOLECULAR BIOLOGY 2004; 13:195-204. [PMID: 15056367 DOI: 10.1111/j.0962-1075.2004.00477.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We describe the cloning of the first hymenopteran vitellogenin receptor (VgR) cDNA from the imported fire ant, Solenopsis invicta, an invasive pest. Using reverse transcription polymerase chain reaction and rapid amplification of cDNA ends, fragments encompassing the entire coding region of a putative VgR were cloned and sequenced. The complete 5764 bp cDNA encodes a 1782 residue protein with a predicted molecular mass of 201.3 kDa (=SiVgR). Northern blot analysis demonstrated that the 7.4 kb SiVgR transcript was present only in ovaries of reproductive females (virgin alates and queens). The temporal profile of transcriptional expression showed that SiVgR mRNA increased with age in virgin alate females and that this was up-regulated by methoprene, a juvenile hormone (JH) analogue. This suggests that the SiVgR gene is JH regulated.
Collapse
Affiliation(s)
- M-E Chen
- Department of Entomology, Texas Agricultural Experiment Station, Texas A&M University, College Station, TX 77843, USA
| | | | | | | |
Collapse
|
49
|
Zhou Y, Zhang J, King ML. Xenopus autosomal recessive hypercholesterolemia protein couples lipoprotein receptors with the AP-2 complex in oocytes and embryos and is required for vitellogenesis. J Biol Chem 2003; 278:44584-92. [PMID: 12944396 DOI: 10.1074/jbc.m308870200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ARH is required for normal endocytosis of the low density lipoprotein (LDL) receptor in liver and mutations within this gene cause autosomal recessive hypercholesterolemia in humans. xARH is a localized maternal RNA in Xenopus with an unknown function in oogenesis and embryogenesis. Like ARH, xARH contains a highly conserved phosphotyrosine binding domain and a clathrin box. To address the function of xARH, we examined its expression pattern in development and used pull-down experiments to assess interactions between xARH, lipoprotein receptors and proteins in embryo extracts. xARH was detected concentrated at the cell periphery as well as in the perinuclear region of oocytes and embryos. In pull-down experiments, the xARH phosphotyrosine binding domain interacted with the LDL and vitellogenin receptors found in Xenopus oocytes and embryos. Mutations within the receptor internalization signal specifically abolished this interaction. The xARH C-terminal region pulled-down several proteins from embryo extracts including alpha- and beta-adaptins, subunits of the AP-2 endocytic complex. Mutations within either of the two Dvarphi(F/W) motifs found in xARH abolished binding to alpha- and beta-adaptins. Expression of a dominant negative mutant of xARH missing the clathrin box and one functional Dvarphi(F/W) motif severely inhibited endocytosis of vitellogenin in cultured oocytes. The data indicate that xARH acts as an adaptor protein linking LDL and vitellogenin receptors directly with the AP-2 complex. In oocytes, we propose that xARH mediates the uptake of lipoproteins from the blood for storage in endosomes and later use in the embryo. Our findings point to an evolutionarily conserved function for ARH in lipoprotein uptake.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Cell Biology and Anatomy, University of Miami School of Medicine, Miami, Florida 33136, USA
| | | | | |
Collapse
|
50
|
Seo SJ, Cheon HM, Sun J, Sappington TW, Raikhel AS. Tissue- and stage-specific expression of two lipophorin receptor variants with seven and eight ligand-binding repeats in the adult mosquito. J Biol Chem 2003; 278:41954-62. [PMID: 12917414 DOI: 10.1074/jbc.m308200200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We identified two splice variants of lipophorin receptor (LpR) gene products specific to the mosquito fat body (AaLpRfb) and ovary (AaLpRov) with respective molecular masses of 99.3 and 128.9 kDa. Each LpR variant encodes a member of the low density lipoprotein receptor family with five characteristic domains: 1) ligand recognition, 2) epidermal growth factor precursor, 3) putative O-linked sugar, 4) single membrane-spanning domains, and 5) the cytoplasmic tail with a highly conserved internalization signal FDNPVY. Proposed phylogenetic relationships among low density lipoprotein receptor superfamily members suggest that the LpRs of insects are more closely related to vertebrate low density lipoprotein receptors and very low density lipoprotein receptor/vitellogenin receptor than to insect vitellogenin receptor/yolk protein receptors. Two mosquito LpR isoforms differ in their amino termini, the ligand-binding domains, and O-linked sugar domains, which are generated by differential splicing. Polymerase chain reaction and Southern blot hybridization analyses show that these two transcripts originated from a single gene. Significantly, the putative ligand-binding domain consists of seven and eight complement-type, cysteine-rich repeats in AaLpRfb and AaLRov, respectively. Seven cysteine-rich repeats in AaLpRfb are identical to the second through eighth repeats of AaLpRov. Previous analyses (1) have indicated that the AaLpRov transcript is present exclusively in ovarian germ-line cells, nurse cells, and oocytes throughout the previtellogenic and vitellogenic stages, with the peak at 24-30 h after blood meal, coincident with the peak of yolk protein uptake. In contrast, the fat body-specific AaLpRfb transcript expression is restricted to the postvitellogenic period, during which yolk protein production is terminated and the fat body is transformed to a storage depot of lipid, carbohydrate, and protein.
Collapse
Affiliation(s)
- Sook-Jae Seo
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju 660-701, Gyeongnam, Korea
| | | | | | | | | |
Collapse
|