1
|
Yukawa K. [Elucidating the Pathophysiology of Various Diseases by Investigating the Role of Molecules in Brain Wiring]. YAKUGAKU ZASSHI 2025; 145:133-143. [PMID: 39894482 DOI: 10.1248/yakushi.24-00192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Semaphorins and their receptors plexins are axon guidance molecules that navigate axons to their final destinations during neural development. Semaphorins and plexins exert distinct roles in regulating biological functions such as the immune system and bone homeostasis. They also participate in the development and progression of various diseases such as osteoporosis and allergic diseases. This review describes the varied phenotypes revealed by the analysis of semaphorin or plexin knockout mice and discusses the association with pathogenesis and therapy of atherosclerosis, agenesis of the corpus callosum, and neuropsychiatric diseases. The deletion of semaphorin 4D in atherosclerosis-prone Apolipoprotein E-deficient mice mitigated atherosclerotic lesions, indicating its crucial involvement in the progression of atherosclerosis. Semaphorin 4D is also implicated in apoptosis induced by the estrogen-dependent generation of soluble semaphorin 4D and the active form of plexin-B1 in the postnatal vaginal opening in mice. Plexin-A1 knockout BALB/cA mice exhibited the agenesis of corpus callosum. This study indicates the crucial role of plexin-A1 in the midline crossing of callosal pioneer axons projecting from the cerebral cortex during the early phase of callosal formation. Adult plexin-A1-deficient mice exhibit reduced prepulse inhibition deficit, an endophenotype of schizophrenia, in addition to excessive self-grooming. Parvalbumin-expressing interneurons in the medial prefrontal cortex are significantly decreased in plexin-A1 knockout mice. In the parvalbumin neurons, oxidative stress is significantly increased in plexin-A1 knockout mice. Accordingly, plexin-A1 deficiency may augment oxidative stress in parvalbumin neurons, thereby impairing the parvalbumin neuron network and leading to behavioral abnormalities relevant to neuropsychiatric diseases.
Collapse
Affiliation(s)
- Kazunori Yukawa
- Faculty of Pharmacy, Meijo University
- Graduate School of Pharmacy, Meijo University
| |
Collapse
|
2
|
Lin L, Zou J, Pei S, Huang W, Zhang Y, Zhao Z, Ding Y, Xiao C. Germinal center B-cell subgroups in the tumor microenvironment cannot be overlooked: Their involvement in prognosis, immunotherapy response, and treatment resistance in head and neck squamous carcinoma. Heliyon 2024; 10:e37726. [PMID: 39391510 PMCID: PMC11466559 DOI: 10.1016/j.heliyon.2024.e37726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 09/09/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Background More than 60 % of patients with head and neck squamous carcinoma (HNSCC) are diagnosed at advanced stages and miss radical treatment. This has prompted the need to find new biomarkers to achieve early diagnosis and predict early recurrence and metastasis of tumors. Methods Single-cell RNA sequencing (scRNA-seq) data from HNSCC tissues and peripheral blood samples were obtained through the Gene Expression Omnibus (GEO) database (GSE164690) to characterize the B-cell subgroups, differentiation trajectories, and intercellular communication networks in HNSCC and to construct a prognostic model of the associated risks. In addition, this study analyzed the differences in clinical features, immune cell infiltration, functional enrichment, tumor mutational burden (TMB), and drug sensitivity between the high- and low-risk groups. Results Using scRNA-seq of HNSCC, we classified B and plasma cells into a total of four subgroups: naive B cells (NBs), germinal center B cells (GCBs), memory B cells (MBs), and plasma cells (PCs). Pseudotemporal trajectory analysis revealed that NBs and GCBs were at the early stage of B cell differentiation, while MBs and PCs were at the end. Cellular communication revealed that GCBs acted on tumor cells through the CD99 and SEMA4 signaling pathways. The independent prognostic value, immune cell infiltration, TMB and drug sensitivity assays were validated for the MEF2B+ GCB score groups. Conclusions We identified GCBs as B cell-specific prognostic biomarkers for the first time. The MEF2B+ GCB score fills the research gap in the genetic prognostic prediction model of HNSCC and is expected to provide a theoretical basis for finding new therapeutic targets for HNSCC.
Collapse
Affiliation(s)
- Li Lin
- Department of Stomatology, the First Affiliated Hospital of Soochow University, 188 Shi Zi Rd, Suzhou, 215006, China
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, School of Medicine, Shanghai Jiao Tong University, 639 Zhi Zao Ju Rd, Shanghai, 200011, China
| | - Jiani Zou
- China Eastern Airlines, Comprehensive Management Department, Aviation Health Department, China
| | - Shengbin Pei
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenyi Huang
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, School of Medicine, Shanghai Jiao Tong University, 639 Zhi Zao Ju Rd, Shanghai, 200011, China
| | - Yichi Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, School of Medicine, Shanghai Jiao Tong University, 639 Zhi Zao Ju Rd, Shanghai, 200011, China
| | - Zhijie Zhao
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, School of Medicine, Shanghai Jiao Tong University, 639 Zhi Zao Ju Rd, Shanghai, 200011, China
| | - Yantao Ding
- Institute of Dermatology and Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui, 230032, China
- China bKey Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, 230032, China
| | - Can Xiao
- Department of Stomatology, the First Affiliated Hospital of Soochow University, 188 Shi Zi Rd, Suzhou, 215006, China
| |
Collapse
|
3
|
Chen T, Li S, Wang L. Semaphorins in tumor microenvironment: Biological mechanisms and therapeutic progress. Int Immunopharmacol 2024; 132:112035. [PMID: 38603857 DOI: 10.1016/j.intimp.2024.112035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/15/2024] [Accepted: 04/05/2024] [Indexed: 04/13/2024]
Abstract
Hallmark features of the tumor microenvironment include immune cells, stromal cells, blood vessels, and extracellular matrix (ECM), providing a conducive environment for the growth and survival of tumors. Recent advances in the understanding of cancer biology have highlighted the functional role of semaphorins (SEMAs). SEMAs are a large and diverse family of widely expressed secreted and membrane-binding proteins, which were initially implicated in axon guidance and neural development. However, it is now clear that they are widely expressed beyond the nervous system and participate in regulating immune responses and cancer progression. In fact, accumulating evidence disclosed that different SEMAs can either stimulate or restrict tumor progression, some of which act as important regulators of tumor angiogenesis. Conversely, limited information is known about the functional relevance of SEMA signals in TME. In this setting, we systematically elaborate the role SEMAs and their major receptors played in characterized components of TME. Furthermore, we provide a convergent view of current SEMAs pharmacological progress in clinical treatment and also put forward their potential application value and clinical prospects in the future.
Collapse
Affiliation(s)
- Tianyi Chen
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, PR China
| | - Shazhou Li
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, PR China
| | - Lufang Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, PR China.
| |
Collapse
|
4
|
Donovan LJ, Bridges CM, Nippert AR, Wang M, Wu S, Forman TE, Haight ES, Huck NA, Bond SF, Jordan CE, Gardner AM, Nair RV, Tawfik VL. Repopulated spinal cord microglia exhibit a unique transcriptome and contribute to pain resolution. Cell Rep 2024; 43:113683. [PMID: 38261512 PMCID: PMC10947777 DOI: 10.1016/j.celrep.2024.113683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/15/2023] [Accepted: 01/02/2024] [Indexed: 01/25/2024] Open
Abstract
Microglia are implicated as primarily detrimental in pain models; however, they exist across a continuum of states that contribute to homeostasis or pathology depending on timing and context. To clarify the specific contribution of microglia to pain progression, we take advantage of a temporally controlled transgenic approach to transiently deplete microglia. Unexpectedly, we observe complete resolution of pain coinciding with microglial repopulation rather than depletion. We find that repopulated mouse spinal cord microglia are morphologically distinct from control microglia and exhibit a unique transcriptome. Repopulated microglia from males and females express overlapping networks of genes related to phagocytosis and response to stress. We intersect the identified mouse genes with a single-nuclei microglial dataset from human spinal cord to identify human-relevant genes that may ultimately promote pain resolution after injury. This work presents a comprehensive approach to gene discovery in pain and provides datasets for the development of future microglial-targeted therapeutics.
Collapse
Affiliation(s)
- Lauren J Donovan
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA
| | - Caldwell M Bridges
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA
| | - Amy R Nippert
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA
| | - Meng Wang
- Stanford Center for Genomics and Personalized Medicine, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Shaogen Wu
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA
| | - Thomas E Forman
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA
| | - Elena S Haight
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA
| | - Nolan A Huck
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA
| | - Sabrina F Bond
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA
| | - Claire E Jordan
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA
| | - Aysha M Gardner
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA
| | - Ramesh V Nair
- Stanford Center for Genomics and Personalized Medicine, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Vivianne L Tawfik
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
5
|
Abu Jhaisha S, Hohlstein P, Yagmur E, Köller V, Pollmanns MR, Adams JK, Wirtz TH, Brozat JF, Bündgens L, Hamesch K, Weiskirchen R, Tacke F, Trautwein C, Koch A. Soluble Semaphorin 4D Serum Concentrations Are Elevated in Critically Ill Patients with Liver Cirrhosis and Correlate with Aminotransferases. Diagnostics (Basel) 2024; 14:370. [PMID: 38396409 PMCID: PMC10887520 DOI: 10.3390/diagnostics14040370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/29/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Semaphorin 4D (Sema4D), also known as CD100, is a multifunctional transmembrane protein with immunoregulatory functions. Upon the activation of immune cells, soluble Semaphorin 4D (sSema4D) is proteolytically cleaved from the membrane by metalloproteinases. sSema4D levels are elevated in various (auto-)inflammatory diseases. Our aim was to investigate sSema4D levels in association with sepsis and critical illnesses and to evaluate sSema4D's potential as a prognostic biomarker. We measured sSema4D levels in 192 patients upon admission to our medical intensive care unit. We found similar levels of sSema4D in 125 patients with sepsis compared to 67 non-septic patients. sSema4D levels correlated with leukocytes but not with other markers of systemic inflammation such as C-reactive protein or procalcitonin. Most interestingly, in a subgroup of patients suffering from pre-existing liver cirrhosis, we observed significantly higher levels of sSema4D. Consistently, sSema4D was also positively correlated with markers of hepatic and cholestatic injury. Our study suggests that sSema4D is not regulated in sepsis compared to other causes of critical illness. However, sSema4D seems to be associated with hepatic injury and inflammation.
Collapse
Affiliation(s)
- Samira Abu Jhaisha
- Department of Medicine III, RWTH-University Hospital Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany (K.H.)
| | - Philipp Hohlstein
- Department of Medicine III, RWTH-University Hospital Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany (K.H.)
| | - Eray Yagmur
- Institute of Laboratory Medicine, Western Palatinate Hospital, 67655 Kaiserslautern, Germany;
| | - Vera Köller
- Department of Medicine III, RWTH-University Hospital Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany (K.H.)
| | - Maike R. Pollmanns
- Department of Medicine III, RWTH-University Hospital Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany (K.H.)
| | - Jule K. Adams
- Department of Medicine III, RWTH-University Hospital Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany (K.H.)
| | - Theresa H. Wirtz
- Department of Medicine III, RWTH-University Hospital Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany (K.H.)
| | - Jonathan F. Brozat
- Department of Medicine III, RWTH-University Hospital Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany (K.H.)
- Department of Hepatology and Gastroenterology, Charité—Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Augustenburger Platz 1, 13353 Berlin, Germany;
| | - Lukas Bündgens
- Department of Medicine III, RWTH-University Hospital Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany (K.H.)
| | - Karim Hamesch
- Department of Medicine III, RWTH-University Hospital Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany (K.H.)
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH-University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany;
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité—Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Augustenburger Platz 1, 13353 Berlin, Germany;
| | - Christian Trautwein
- Department of Medicine III, RWTH-University Hospital Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany (K.H.)
| | - Alexander Koch
- Department of Medicine III, RWTH-University Hospital Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany (K.H.)
| |
Collapse
|
6
|
Liu H, Zhang Y, Cao J, Li J, Liu H, Dai B, Jin L, Liao R, Fu L. Sema4D as a biomarker for Predicting rheumatoid arthritis disease activity. Clin Rheumatol 2024; 43:645-655. [PMID: 38097864 DOI: 10.1007/s10067-023-06840-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 10/02/2023] [Accepted: 11/10/2023] [Indexed: 02/02/2024]
Abstract
OBJECTIVE The semaphorins are membrane or secreted proteins first identified in neural development. Semaphorin 4D (Sema4D) is the first family member found to have immune properties. We evaluated the potential of Sema4D as a marker for rheumatoid arthritis (RA) disease activity, singly and in combination with other known biomarkers including rheumatoid factor (RF) and C-reactive protein (CRP). METHODS Three hundred and eleven RA patients were enrolled. The patients were divided into three groups based on their disease activity in 28 joints (DAS28): mild, moderate, and severe. The healthy group included 40 healthy individuals. SerumSema4D was measured by quantitative ELISA and the specificity and sensitivity of biomarkers were evaluated by generating a receiver operating characteristic (ROC) curve to analyze their diagnostic accuracy. RESULTS Serum Sema4D levels in the moderate and severe RA groups were elevated significantly above those of the controls (P < 0.01), while levels in the mild RA and control groups did not differ significantly (P > 0.05). The Sema4D cutoff threshold was 15.7 ng/ml when the DAS28 was applied as a reference. Compared to the erythrocyte sedimentation rate (ESR and CRP, Sema4D had the highest specificity (96.8%) and area under the curve (0.80) for diagnosing RA activity. The highest specificity (100%) for the biomarker combinations was obtained when Sema4D was combined with CRP and anti-CCP, the combination of the Sema4D combined with ESR and anti-CCP had the highest sensitivity (99.35%). According to this result, a new model for jointly calculating RA activity of Sema4D,anti-CCP and CRP was constructed. Meanwhile another model is established by using the method of multivariate analysis.Model comparison results showed the the multiple regression algorithm method fitted the patients' disease activity better. CONCLUSION The serum Sema 4D level effectively reflects moderate to severe RA activity. Sema4D levels can be used together with conventional RA biomarkers to increase the diagnostic power of RA activity. The multiple regression algorithm method is promising in disease activity calculation.
Collapse
Affiliation(s)
- Huiyuan Liu
- Department of Clinical Epidemiology and Evidence-Based Medicine, the First Affiliated Hospital, China Medical University, Shenyang, China
| | - Yuelin Zhang
- Department of Clinical Epidemiology and Evidence-Based Medicine, the First Affiliated Hospital, China Medical University, Shenyang, China
| | - Jiaming Cao
- Department of Clinical Epidemiology and Evidence-Based Medicine, the First Affiliated Hospital, China Medical University, Shenyang, China
| | - Jiahui Li
- Department of Clinical Epidemiology and Evidence-Based Medicine, the First Affiliated Hospital, China Medical University, Shenyang, China
| | - Haina Liu
- Department of Rheumatology, the First Affiliated Hospital, China Medical University, Shenyang, China
| | - Bingbing Dai
- Department of Rheumatology, Dalian Municipal Central Hospital Affiliated of Dalian Medical University, Dalian, China
| | - Lei Jin
- Department of Rheumatology, ShengJing Hospital Affiliated of China Medical University, Shenyang, China
| | - Ruobing Liao
- Department of Clinical Epidemiology and Evidence-Based Medicine, the First Affiliated Hospital, China Medical University, Shenyang, China
| | - Lingyu Fu
- Department of Clinical Epidemiology and Evidence-Based Medicine, the First Affiliated Hospital, China Medical University, Shenyang, China.
- Department of Medical Record Management Center, the First Affiliated Hospital, China Medical University, Shenyang, China.
| |
Collapse
|
7
|
Naito M, Kumanogoh A. The role of semaphorins in allergic diseases. Allergol Int 2024; 73:31-39. [PMID: 37635021 DOI: 10.1016/j.alit.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 08/29/2023] Open
Abstract
Semaphorins were originally identified as guidance molecules in neural development. However, accumulating evidence indicates that 'immune semaphorins' are critically involved in regulating immune cell activation, differentiation, mobility and migration. Semaphorins are also intimately associated with the pathogenesis of allergic diseases including asthma, allergic rhinitis, atopic dermatitis, allergic conjunctivitis, and eosinophilic chronic rhinosinusitis. Interestingly, reflecting their function in positive or negative regulation of immune cells, levels of some semaphorins are increased while others are decreased in patients with allergic diseases. This review presents the pathogenic functions of immune semaphorins in allergic inflammation and discusses the potential use of these molecules as therapeutic targets for allergic diseases.
Collapse
Affiliation(s)
- Maiko Naito
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan; Department of Immunopathology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Osaka, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan; Department of Immunopathology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Osaka, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, Japan; Center for Infectious Diseases for Education and Research (CiDER), Osaka University, Osaka, Japan; Japan Agency for Medical Research and Development - Core Research for Evolutional Science and Technology (AMED-CREST), Osaka University, Osaka, Japan; Center for Advanced Modalities and DDS (CAMaD), Osaka University, Osaka, Japan.
| |
Collapse
|
8
|
Jacob TV, Doshi GM. New Promising Routes in Peptic Ulcers: Toll-like Receptors and Semaphorins. Endocr Metab Immune Disord Drug Targets 2024; 24:865-878. [PMID: 37605412 DOI: 10.2174/1871530323666230821102718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 07/09/2023] [Accepted: 07/12/2023] [Indexed: 08/23/2023]
Abstract
Peptic ulcers (PU) are one of the commonest yet problematic diseases found to be existing in the majority of the population. Today, drugs from a wide range of therapeutic classes are available for the management of the disease. Still, the complications of the condition are difficult to tackle and the side effect profile is quite a concern. The literature indicates that Toll-like receptors (TLRs) and Semaphorins (SEMAs) have been under study for their various pharmacological actions over the past few decades. Both these signalling pathways are found to regulate immunological and inflammatory responses. Moreover, receptors and signalling molecules from the family of TLRs and SEMAs are found to have bacterial recognition and antibacterial properties which are essential in eradicating Helicobacter pylori (H. pylori), one of the major causative agents of PU. Our understanding of SEMAs, a class of proteins involved in cell signalling, is relatively less developed compared to TLRs, another class of proteins involved in the immune response. SEMAs and TLRs play different roles in biological processes, with SEMAs primarily involved in guiding cell migration and axon guidance during development, while TLRs are responsible for recognizing pathogens and initiating an immune response. Here, in this review, we will discuss in detail the signalling cascade of TLRs and SEMAs and thereby understand its association with PU for future therapeutic targeting. The review also aims at providing an overview of the study that has been into exploring the role of these signalling pathways in the management of PU.
Collapse
Affiliation(s)
- Teresa V Jacob
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V.M. Road, Vile Parle (W), Mumbai, 400056, India
| | - Gaurav M Doshi
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V.M. Road, Vile Parle (W), Mumbai, 400056, India
| |
Collapse
|
9
|
Wright M, Smed MK, Nelson JL, Olsen J, Hetland ML, Jewell NP, Zoffmann V, Jawaheer D. Pre-pregnancy gene expression signatures are associated with subsequent improvement/worsening of rheumatoid arthritis during pregnancy. Arthritis Res Ther 2023; 25:191. [PMID: 37794420 PMCID: PMC10548620 DOI: 10.1186/s13075-023-03169-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/12/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND While many women with rheumatoid arthritis (RA) improve during pregnancy and others worsen, there are no biomarkers to predict this improvement or worsening. In our unique RA pregnancy cohort that includes a pre-pregnancy baseline, we have examined pre-pregnancy gene co-expression networks to identify differences between women with RA who subsequently improve during pregnancy and those who worsen. METHODS Blood samples were collected before pregnancy (T0) from 19 women with RA and 13 healthy women enrolled in our prospective pregnancy cohort. RA improvement/worsening between T0 and 3rd trimester was assessed by changes in the Clinical Disease Activity Index (CDAI). Pre-pregnancy expression profiles were examined by RNA sequencing and differential gene expression analysis. Weighted gene co-expression network analysis (WGCNA) was used to identify co-expression modules correlated with the improvement/worsening of RA during pregnancy and to assess their functional relevance. RESULTS Of the 19 women with RA, 14 improved during pregnancy (RAimproved) while 5 worsened (RAworsened). At the T0 baseline, however, the mean CDAI was similar between the two groups. WGCNA identified one co-expression module related to B cell function that was significantly correlated with the worsening of RA during pregnancy and was significantly enriched in genes differentially expressed between the RAimproved and RAworsened groups. A neutrophil-related expression signature was also identified in the RAimproved group at the T0 baseline. CONCLUSION The pre-pregnancy gene expression signatures identified represent potential biomarkers to predict the subsequent improvement/worsening of RA during pregnancy, which has important implications for the personalized treatment of RA during pregnancy.
Collapse
Affiliation(s)
- Matthew Wright
- Children's Hospital Oakland Research Institute, Oakland, CA, USA
- Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | | | - J Lee Nelson
- Fred Hutchinson Cancer Center, Seattle, WA, USA
- University of Washington, Seattle, WA, USA
| | - Jørn Olsen
- University of California Los Angeles, Los Angeles, CA, USA
- Aarhus University Hospital, Aarhus, Denmark
| | - Merete Lund Hetland
- DANBIO Registry and Copenhagen Centre for Arthritis Research, Centre for Rheumatology and Spine Diseases, Rigshospitalet, Glostrup, Denmark
- University of Copenhagen, Copenhagen, Denmark
| | | | - Vibeke Zoffmann
- Juliane Marie Centeret, Rigshospitalet, Copenhagen, Denmark
- University of Copenhagen, Copenhagen, Denmark
| | - Damini Jawaheer
- Children's Hospital Oakland Research Institute, Oakland, CA, USA.
- Division of Rheumatology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
10
|
Amin A, Badenes M, Tüshaus J, de Carvalho É, Burbridge E, Faísca P, Trávníčková K, Barros A, Carobbio S, Domingos PM, Vidal-Puig A, Moita LF, Maguire S, Stříšovský K, Ortega FJ, Fernández-Real JM, Lichtenthaler SF, Adrain C. Semaphorin 4B is an ADAM17-cleaved adipokine that inhibits adipocyte differentiation and thermogenesis. Mol Metab 2023; 73:101731. [PMID: 37121509 PMCID: PMC10197113 DOI: 10.1016/j.molmet.2023.101731] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/02/2023] Open
Abstract
OBJECTIVE The metalloprotease ADAM17 (also called TACE) plays fundamental roles in homeostasis by shedding key signaling molecules from the cell surface. Although its importance for the immune system and epithelial tissues is well-documented, little is known about the role of ADAM17 in metabolic homeostasis. The purpose of this study was to determine the impact of ADAM17 expression, specifically in adipose tissues, on metabolic homeostasis. METHODS We used histopathology, molecular, proteomic, transcriptomic, in vivo integrative physiological and ex vivo biochemical approaches to determine the impact of adipose tissue-specific deletion of ADAM17 upon adipocyte and whole organism metabolic physiology. RESULTS ADAM17adipoq-creΔ/Δ mice exhibited a hypermetabolic phenotype characterized by elevated energy consumption and increased levels of adipocyte thermogenic gene expression. On a high fat diet, these mice were more thermogenic, while exhibiting elevated expression levels of genes associated with lipid oxidation and lipolysis. This hypermetabolic phenotype protected mutant mice from obesogenic challenge, limiting weight gain, hepatosteatosis and insulin resistance. Activation of beta-adrenoceptors by the neurotransmitter norepinephrine, a key regulator of adipocyte physiology, triggered the shedding of ADAM17 substrates, and regulated ADAM17 expression at the mRNA and protein levels, hence identifying a functional connection between thermogenic licensing and the regulation of ADAM17. Proteomic studies identified Semaphorin 4B (SEMA4B), as a novel ADAM17-shed adipokine, whose expression is regulated by physiological thermogenic cues, that acts to inhibit adipocyte differentiation and dampen thermogenic responses in adipocytes. Transcriptomic data showed that cleaved SEMA4B acts in an autocrine manner in brown adipocytes to repress the expression of genes involved in adipogenesis, thermogenesis, and lipid uptake, storage and catabolism. CONCLUSIONS Our findings identify a novel ADAM17-dependent axis, regulated by beta-adrenoceptors and mediated by the ADAM17-cleaved form of SEMA4B, that modulates energy balance in adipocytes by inhibiting adipocyte differentiation, thermogenesis and lipid catabolism.
Collapse
Affiliation(s)
- Abdulbasit Amin
- Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal; Department of Physiology, Faculty of Basic Medical Sciences, University of Ilorin, Nigeria
| | - Marina Badenes
- Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal; Faculty of Veterinary Medicine, Lusofona University, Lisbon, Portugal; Faculty of Veterinary Nursing, Polytechnic Institute of Lusofonia, Lisbon, Portugal
| | - Johanna Tüshaus
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Érika de Carvalho
- Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal; Instituto de Tecnologia Química da Universidade Nova de Lisboa (ITQB-Nova), Oeiras, Portugal
| | - Emma Burbridge
- Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal; Patrick G Johnston Centre for Cancer Research, Queen's University, Belfast, N. Ireland
| | - Pedro Faísca
- Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal
| | - Květa Trávníčková
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - André Barros
- Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal
| | - Stefania Carobbio
- Centro de Investigacíon Principe Felipe (CIPF), Valencia, Spain; Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, UK
| | - Pedro M Domingos
- Instituto de Tecnologia Química da Universidade Nova de Lisboa (ITQB-Nova), Oeiras, Portugal
| | - Antonio Vidal-Puig
- Centro de Investigacíon Principe Felipe (CIPF), Valencia, Spain; Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, UK
| | - Luís F Moita
- Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal
| | - Sarah Maguire
- Patrick G Johnston Centre for Cancer Research, Queen's University, Belfast, N. Ireland
| | - Kvido Stříšovský
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Francisco J Ortega
- Girona Biomedical Research Institute (IDIBGI), Girona, Spain; Department of Medical Sciences, University of Girona, Girona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), and Institute of Salud Carlos III (ISCIII), Madrid, Spain
| | - José Manuel Fernández-Real
- Girona Biomedical Research Institute (IDIBGI), Girona, Spain; Department of Medical Sciences, University of Girona, Girona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), and Institute of Salud Carlos III (ISCIII), Madrid, Spain
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Colin Adrain
- Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal; Patrick G Johnston Centre for Cancer Research, Queen's University, Belfast, N. Ireland.
| |
Collapse
|
11
|
Mizuno Y, Nakanishi Y, Kumanogoh A. Pathophysiological functions of semaphorins in the sympathetic nervous system. Inflamm Regen 2023; 43:30. [PMID: 37291626 DOI: 10.1186/s41232-023-00281-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/30/2023] [Indexed: 06/10/2023] Open
Abstract
Upon exposure to external stressors, the body senses them and activates the sympathetic nervous system (SNS) to maintain the homeostasis, which is known as the "fight-or-flight" response. Recent studies have revealed that the SNS also plays pivotal roles in regulating immune responses, such as hematopoiesis, leukocyte mobilization, and inflammation. Indeed, overactivation of the SNS causes many inflammatory diseases, including cardiovascular diseases, metabolic disorders, and autoimmune diseases. However, the molecular basis essential for SNS-mediated immune regulation is not completely understood. In this review, we focus on axon guidance cues, semaphorins, which play multifaceted roles in neural and immune systems. We summarize the functions of semaphorins in the crosstalk between the SNS and the immune system, exploring its pathophysiological roles.
Collapse
Affiliation(s)
- Yumiko Mizuno
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Department of Immunopathology, World Premier International Research Center Initiative Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Osaka, Japan
| | - Yoshimitsu Nakanishi
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Department of Immunopathology, World Premier International Research Center Initiative Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Osaka, Japan
- Department of Advanced Clinical and Translational Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
- Department of Immunopathology, World Premier International Research Center Initiative Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Osaka, Japan.
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan.
- Center for Infectious Diseases for Education and Research (CiDER), Osaka University, Suita, Osaka, Japan.
- Japan Agency for Medical Research and Development - Core Research for Evolutional Science and Technology (AMED-CREST), Osaka University, Suita, Osaka, Japan.
- Center for Advanced Modalities and DDS (CAMaD), Osaka University, Suita, Osaka, Japan.
| |
Collapse
|
12
|
Thomas R, Yang X. Semaphorins in immune cell function, inflammatory and infectious diseases. CURRENT RESEARCH IN IMMUNOLOGY 2023; 4:100060. [PMID: 37645659 PMCID: PMC10461194 DOI: 10.1016/j.crimmu.2023.100060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 05/08/2023] [Accepted: 05/14/2023] [Indexed: 08/31/2023] Open
Abstract
The Semaphorin family is a group of proteins studied broadly for their functions in nervous systems. They consist of eight subfamilies ubiquitously expressed in vertebrates, invertebrates, and viruses and exist in membrane-bound or secreted forms. Emerging evidence indicates the relevance of semaphorins outside the nervous system, including angiogenesis, cardiogenesis, osteoclastogenesis, tumour progression, and, more recently, the immune system. This review provides a broad overview of current knowledge on the role of semaphorins in the immune system, particularly its involvement in inflammatory and infectious diseases, including chlamydial infections.
Collapse
Affiliation(s)
- Rony Thomas
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Xi Yang
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
13
|
Eiza N, Sabag AD, Kessler O, Neufeld G, Vadasz Z. CD72-semaphorin3A axis: A new regulatory pathway in systemic lupus erythematosus. J Autoimmun 2023; 134:102960. [PMID: 36470209 DOI: 10.1016/j.jaut.2022.102960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022]
Abstract
CD72 is a regulatory co-receptor on B cells, with a role in the pathogenesis of systemic lupus erythematosus (SLE) in both human and animal models. Semaphorin3A (sema3A) is a secreted member of the semaphorin family that can reconstruct B cells' regulatory functions by upregulating IL-10 expression and inhibiting the pro-inflammatory activity of B and T cells in autoimmune diseases. The aim of our present study was to identify a new ligand for CD72, namely sema3A, and exploring the signal transduction pathways following its ligation in B cells. We established that CD72 functions as sema3A binding and signal-transducing receptor. These functions of CD72 are independent of neuropilin-1 (NRP-1) (the known sema3A receptor). We discovered that sema3A induces the phosphorylation of CD72 on tyrosine residues and the association of CD72 with SHP-1 and SHP-2. In addition, the binding of sema3A to CD72 on B cells inhibits the phosphorylation of STAT-4 and HDAC-1 and induces the phosphorylation of p38-MAPK and PKC-theta in B-cells derived B-lymphoblastoid (BLCL) cells, and in primary B-cells isolated from either healthy donors or SLE patients. We concluded that sema3A is a functional regulatory ligand for CD72 on B cells. The sema3A-CD72 axis is a crucial regulatory pathway in the pathogenesis of autoimmune and inflammatory diseases namely SLE, and modulation of this pathway may have a potential therapeutic value for autoimmune diseases.
Collapse
Affiliation(s)
- Nasren Eiza
- The Proteomic Unit, Bnai Zion Medical Center; Haifa, 3339419, Israel; Cancer Research Center, The Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, 3525422, Israel
| | - Adi D Sabag
- The Proteomic Unit, Bnai Zion Medical Center; Haifa, 3339419, Israel
| | - Ofra Kessler
- Cancer Research Center, The Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, 3525422, Israel
| | - Gera Neufeld
- Cancer Research Center, The Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, 3525422, Israel
| | - Zahava Vadasz
- The Proteomic Unit, Bnai Zion Medical Center; Haifa, 3339419, Israel; Cancer Research Center, The Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, 3525422, Israel.
| |
Collapse
|
14
|
Murakami T, Takahata Y, Hata K, Ebina K, Hirose K, Ruengsinpinya L, Nakaminami Y, Etani Y, Kobayashi S, Maruyama T, Nakano H, Kaneko T, Toyosawa S, Asahara H, Nishimura R. Semaphorin 4D induces articular cartilage destruction and inflammation in joints by transcriptionally reprogramming chondrocytes. Sci Signal 2022; 15:eabl5304. [PMID: 36318619 DOI: 10.1126/scisignal.abl5304] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Proinflammatory cytokines play critical roles in the pathogenesis of joint diseases. Using a mass spectrometry-based cloning approach, we identified Semaphorin 4D (Sema4D) as an inflammatory cytokine that directly promoted cartilage destruction. Sema4d-deficient mice showed less cartilage destruction than wild-type mice in a model of rheumatoid arthritis. Sema4D induced a proinflammatory response in mouse articular chondrocytes characterized by the induction of proteolytic enzymes that degrade cartilage, such as matrix metalloproteinases (MMPs) and aggrecanases. The activation of Mmp13 and Mmp3 expression in articular chondrocytes by Sema4D did not depend on RhoA, a GTPase that mediates Sema4D-induced cytoskeletal rearrangements. Instead, it required NF-κB signaling and Ras-MEK-Erk1/2 signaling downstream of the receptors Plexin-B2 and c-Met and depended on the transcription factors IκBζ and C/EBPδ. Genetic and pharmacological blockade of these Sema4D signaling pathways inhibited MMP induction in chondrocytes and cartilage destruction in femoral head organ culture. Our results reveal a mechanism by which Sema4D signaling promotes cartilage destruction.
Collapse
Affiliation(s)
- Tomohiko Murakami
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, Osaka 565-0871, Japan
| | - Yoshifumi Takahata
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, Osaka 565-0871, Japan
| | - Kenji Hata
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, Osaka 565-0871, Japan
| | - Kosuke Ebina
- Department of Musculoskeletal Regenerative Medicine, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Katsutoshi Hirose
- Department of Oral Pathology, Osaka University Graduate School of Dentistry, Osaka 565-0871, Japan
| | - Lerdluck Ruengsinpinya
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, Osaka 565-0871, Japan
- Department of Oral Surgery and Oral Medicine, Faculty of Dentistry, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Yuri Nakaminami
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, Osaka 565-0871, Japan
| | - Yuki Etani
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Sachi Kobayashi
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, Osaka 565-0871, Japan
| | - Takashi Maruyama
- Mucosal Immunology Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20895, USA
| | - Hiroyasu Nakano
- Department of Biochemistry, Toho University School of Medicine, Tokyo 143-8540, Japan
| | - Takehito Kaneko
- Department of Chemistry and Biological Sciences, Faculty of Science and Engineering, Iwate University, Iwate 020-8551, Japan
| | - Satoru Toyosawa
- Department of Oral Pathology, Osaka University Graduate School of Dentistry, Osaka 565-0871, Japan
| | - Hiroshi Asahara
- Department of Systems BioMedicine, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA
| | - Riko Nishimura
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, Osaka 565-0871, Japan
| |
Collapse
|
15
|
Yin Z, Zhang J, Xu S, Liu J, Xu Y, Yu J, Zhao M, Pan W, Wang M, Wan J. The role of semaphorins in cardiovascular diseases: Potential therapeutic targets and novel biomarkers. FASEB J 2022; 36:e22509. [PMID: 36063107 DOI: 10.1096/fj.202200844r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/24/2022] [Accepted: 08/09/2022] [Indexed: 12/17/2022]
Abstract
Semaphorins (Semas), which belongs to the axonal guidance molecules, include 8 classes and could affect axon growth in the nervous system. Recently, semaphorins were found to regulate other pathophysiological processes, such as immune response, oncogenesis, tumor angiogenesis, and bone homeostasis, through binding with their plexin and neuropilin receptors. In this review, we summarized the detailed role of semaphorins and their receptors in the pathological progression of various cardiovascular diseases (CVDs), highlighting that semaphorins may be potential therapeutic targets and novel biomarkers for CVDs.
Collapse
Affiliation(s)
- Zheng Yin
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jishou Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Shuwan Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jianfang Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yao Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Junping Yu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Mengmeng Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Wei Pan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
16
|
Nojima S. Class IV semaphorins in disease pathogenesis. Pathol Int 2022; 72:471-487. [PMID: 36066011 DOI: 10.1111/pin.13270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/16/2022] [Indexed: 12/01/2022]
Abstract
Semaphorins are a large family of secreted and/or transmembrane proteins, originally identified as proteins that function in axon guidance during neuronal development. However, semaphorins play crucial roles in other physiological and pathological processes, including immune responses, angiogenesis, maintenance of tissue homeostasis, and cancer progression. Class IV semaphorins may be present as transmembrane and soluble forms and are implicated in the pathogenesis of various diseases. This review discusses recent progress on the roles of class IV semaphorins determined by clinical and experimental pathology studies.
Collapse
Affiliation(s)
- Satoshi Nojima
- Department of Pathology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.,Department of Immunopathology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan
| |
Collapse
|
17
|
Xu R, Höß C, Swiercz JM, Brandt DT, Lutz V, Petersen N, Li R, Zhao D, Oleksy A, Creigh-Pulatmen T, Trokter M, Fedorova M, Atzberger A, Strandby RB, Olsen AA, Achiam MP, Matthews D, Huber M, Gröne HJ, Offermanns S, Worzfeld T. A semaphorin-plexin-Rasal1 signaling pathway inhibits gastrin expression and protects against peptic ulcers. Sci Transl Med 2022; 14:eabf1922. [PMID: 35857828 DOI: 10.1126/scitranslmed.abf1922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Peptic ulcer disease is a frequent clinical problem with potentially serious complications such as bleeding or perforation. A decisive factor in the pathogenesis of peptic ulcers is gastric acid, the secretion of which is controlled by the hormone gastrin released from gastric G cells. However, the molecular mechanisms regulating gastrin plasma concentrations are poorly understood. Here, we identified a semaphorin-plexin signaling pathway that operates in gastric G cells to inhibit gastrin expression on a transcriptional level, thereby limiting food-stimulated gastrin release and gastric acid secretion. Using a systematic siRNA screening approach combined with biochemical, cell biology, and in vivo mouse experiments, we found that the RasGAP protein Rasal1 is a central mediator of plexin signal transduction, which suppresses gastrin expression through inactivation of the small GTPase R-Ras. Moreover, we show that Rasal1 is pathophysiologically relevant for the pathogenesis of peptic ulcers induced by nonsteroidal anti-inflammatory drugs (NSAIDs), a main risk factor of peptic ulcers in humans. Last, we show that application of recombinant semaphorin 4D alleviates peptic ulcer disease in mice in vivo, demonstrating that this signaling pathway can be harnessed pharmacologically. This study unravels a mode of G cell regulation that is functionally important in gastric homeostasis and disease.
Collapse
Affiliation(s)
- Rui Xu
- Institute of Pharmacology, University of Marburg, Marburg 35043, Germany.,Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - Carsten Höß
- Institute of Pharmacology, University of Marburg, Marburg 35043, Germany
| | - Jakub M Swiercz
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - Dominique T Brandt
- Institute of Pharmacology, University of Marburg, Marburg 35043, Germany
| | - Veronika Lutz
- Institute for Medical Microbiology and Hospital Hygiene, University of Marburg, Marburg 35043, Germany
| | - Natalia Petersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Rui Li
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - Dandan Zhao
- Institute of Pharmacology, University of Marburg, Marburg 35043, Germany
| | | | | | | | | | - Ann Atzberger
- Flow Cytometry Facility, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - Rune B Strandby
- Department of Surgical Gastroenterology, Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark
| | - August A Olsen
- Department of Surgical Gastroenterology, Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark
| | - Michael P Achiam
- Department of Surgical Gastroenterology, Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark
| | | | - Magdalena Huber
- Institute for Medical Microbiology and Hospital Hygiene, University of Marburg, Marburg 35043, Germany
| | - Hermann-Josef Gröne
- Institute of Pharmacology, University of Marburg, Marburg 35043, Germany.,Medical Faculty, University of Heidelberg, Heidelberg 69120, Germany
| | - Stefan Offermanns
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany.,Medical Faculty, University of Frankfurt, Frankfurt 60590, Germany
| | - Thomas Worzfeld
- Institute of Pharmacology, University of Marburg, Marburg 35043, Germany.,Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| |
Collapse
|
18
|
Vogler M, Oleksy A, Schulze S, Fedorova M, Kojonazarov B, Nijjar S, Patel S, Jossi S, Sawmynaden K, Henry M, Brown R, Matthews D, Offermanns S, Worzfeld T. An antagonistic monoclonal anti-Plexin-B1 antibody exerts therapeutic effects in mouse models of postmenopausal osteoporosis and multiple sclerosis. J Biol Chem 2022; 298:102265. [PMID: 35850304 PMCID: PMC9396414 DOI: 10.1016/j.jbc.2022.102265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/29/2022] Open
Abstract
Osteoporosis and multiple sclerosis are highly prevalent diseases with limited treatment options. In light of these unmet medical needs, novel therapeutic approaches are urgently sought. Previously, the activation of the transmembrane receptor Plexin-B1 by its ligand semaphorin 4D (Sema4D) has been shown to suppress bone formation and promote neuroinflammation in mice. However, it is unclear whether inhibition of this receptor–ligand interaction by an anti–Plexin-B1 antibody could represent a viable strategy against diseases related to these processes. Here, we raised and systematically characterized a monoclonal antibody directed against the extracellular domain of human Plexin-B1, which specifically blocks the binding of Sema4D to Plexin-B1. In vitro, we show that this antibody inhibits the suppressive effects of Sema4D on human osteoblast differentiation and mineralization. To test the therapeutic potential of the antibody in vivo, we generated a humanized mouse line, which expresses transgenic human Plexin-B1 instead of endogenous murine Plexin-B1. Employing these mice, we demonstrate that the anti–Plexin-B1 antibody exhibits beneficial effects in mouse models of postmenopausal osteoporosis and multiple sclerosis in vivo. In summary, our data identify an anti–Plexin-B1 antibody as a potential therapeutic agent for the treatment of osteoporosis and multiple sclerosis.
Collapse
Affiliation(s)
- Melanie Vogler
- Max-Planck-Institute for Heart and Lung Research, Department of Pharmacology, Bad Nauheim 61231, Germany; LOEWE Center for Translational Medicine and Pharmacology, Frankfurt 60596, Germany
| | - Arkadiusz Oleksy
- LifeArc, Accelerator Building, Open Innovation Campus, Stevenage, SG1 2FX, UK
| | - Sabrina Schulze
- Max-Planck-Institute for Heart and Lung Research, Department of Pharmacology, Bad Nauheim 61231, Germany; LOEWE Center for Translational Medicine and Pharmacology, Frankfurt 60596, Germany
| | - Marina Fedorova
- LifeArc, Accelerator Building, Open Innovation Campus, Stevenage, SG1 2FX, UK
| | - Baktybek Kojonazarov
- Institute for Lung Health (ILH), University Hospital Giessen and Marburg, Medical Clinic II, 35392 Giessen, Germany
| | - Sharandip Nijjar
- LifeArc, Accelerator Building, Open Innovation Campus, Stevenage, SG1 2FX, UK
| | - Seema Patel
- LifeArc, Accelerator Building, Open Innovation Campus, Stevenage, SG1 2FX, UK
| | - Sian Jossi
- LifeArc, Accelerator Building, Open Innovation Campus, Stevenage, SG1 2FX, UK
| | - Kovilen Sawmynaden
- LifeArc, Accelerator Building, Open Innovation Campus, Stevenage, SG1 2FX, UK
| | - Maud Henry
- LifeArc, Accelerator Building, Open Innovation Campus, Stevenage, SG1 2FX, UK
| | - Richard Brown
- LifeArc, Accelerator Building, Open Innovation Campus, Stevenage, SG1 2FX, UK
| | - David Matthews
- LifeArc, Accelerator Building, Open Innovation Campus, Stevenage, SG1 2FX, UK
| | - Stefan Offermanns
- Max-Planck-Institute for Heart and Lung Research, Department of Pharmacology, Bad Nauheim 61231, Germany; LOEWE Center for Translational Medicine and Pharmacology, Frankfurt 60596, Germany; Medical Faculty, University of Frankfurt, Frankfurt 60590, Germany
| | - Thomas Worzfeld
- Max-Planck-Institute for Heart and Lung Research, Department of Pharmacology, Bad Nauheim 61231, Germany; LOEWE Center for Translational Medicine and Pharmacology, Frankfurt 60596, Germany; Institute of Pharmacology, University of Marburg, Marburg 35043, Germany.
| |
Collapse
|
19
|
Marhelava K, Krawczyk M, Firczuk M, Fidyt K. CAR-T Cells Shoot for New Targets: Novel Approaches to Boost Adoptive Cell Therapy for B Cell-Derived Malignancies. Cells 2022; 11:1804. [PMID: 35681499 PMCID: PMC9180412 DOI: 10.3390/cells11111804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/27/2022] [Indexed: 12/10/2022] Open
Abstract
Chimeric antigen receptor (CAR)-T cell therapy is undeniably a promising tool in combating various types of hematological malignancies. However, it is not yet optimal and a significant number of patients experience a lack of response or relapse after the treatment. Therapy improvement requires careful analysis of the occurring problems and a deeper understanding of the reasons that stand behind them. In this review, we summarize the recent knowledge about CAR-T products' clinical performance and discuss diversified approaches taken to improve the major shortcomings of this therapy. Especially, we prioritize the challenges faced by CD19 CAR-T cell-based treatment of B cell-derived malignancies and revise the latest insights about mechanisms mediating therapy resistance. Since the loss of CD19 is one of the major obstacles to the success of CAR-T cell therapy, we present antigens that could be alternatively used for the treatment of various types of B cell-derived cancers.
Collapse
Affiliation(s)
- Katsiaryna Marhelava
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (K.M.); (M.K.); (M.F.)
| | - Marta Krawczyk
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (K.M.); (M.K.); (M.F.)
- Laboratory of Immunology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
- Doctoral School of Translational Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Malgorzata Firczuk
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (K.M.); (M.K.); (M.F.)
- Laboratory of Immunology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Klaudyna Fidyt
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (K.M.); (M.K.); (M.F.)
| |
Collapse
|
20
|
Ishii T, Ruiz-Torruella M, Yamamoto K, Yamaguchi T, Heidari A, Pierrelus R, Leon E, Shindo S, Rawas-Qalaji M, Pastore MR, Ikeda A, Nakamura S, Mawardi H, Kandalam U, Hardigan P, Witek L, Coelho PG, Kawai T. Locally Secreted Semaphorin 4D Is Engaged in Both Pathogenic Bone Resorption and Retarded Bone Regeneration in a Ligature-Induced Mouse Model of Periodontitis. Int J Mol Sci 2022; 23:ijms23105630. [PMID: 35628440 PMCID: PMC9148012 DOI: 10.3390/ijms23105630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 02/04/2023] Open
Abstract
It is well known that Semaphorin 4D (Sema4D) inhibits IGF-1-mediated osteogenesis by binding with PlexinB1 expressed on osteoblasts. However, its elevated level in the gingival crevice fluid of periodontitis patients and the broader scope of its activities in the context of potential upregulation of osteoclast-mediated periodontal bone-resorption suggest the need for further investigation of this multifaceted molecule. In short, the pathophysiological role of Sema4D in periodontitis requires further study. Accordingly, attachment of the ligature to the maxillary molar of mice for 7 days induced alveolar bone-resorption accompanied by locally elevated, soluble Sema4D (sSema4D), TNF-α and RANKL. Removal of the ligature induced spontaneous bone regeneration during the following 14 days, which was significantly promoted by anti-Sema4D-mAb administration. Anti-Sema4D-mAb was also suppressed in vitro osteoclastogenesis and pit formation by RANKL-stimulated BMMCs. While anti-Sema4D-mAb downmodulated the bone-resorption induced in mouse periodontitis, it neither affected local production of TNF-α and RANKL nor systemic skeletal bone remodeling. RANKL-induced osteoclastogenesis and resorptive activity were also suppressed by blocking of CD72, but not Plexin B2, suggesting that sSema4D released by osteoclasts promotes osteoclastogenesis via ligation to CD72 receptor. Overall, our data indicated that ssSema4D released by osteoclasts may play a dual function by decreasing bone formation, while upregulating bone-resorption.
Collapse
Affiliation(s)
- Takenobu Ishii
- Department of Orthodontics, Tokyo Dental College, Tokyo 101-0061, Japan;
| | | | - Kenta Yamamoto
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan;
| | - Tsuguno Yamaguchi
- Research and Development, LION Corporation, Odawara 256-0811, Japan;
| | - Alireza Heidari
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, 3200 South University Drive, Davie, Fort Lauderdale, FL 33328, USA; (A.H.); (R.P.); (E.L.); (S.S.); (M.R.-Q.); (M.R.P.); (S.N.)
| | - Roodelyne Pierrelus
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, 3200 South University Drive, Davie, Fort Lauderdale, FL 33328, USA; (A.H.); (R.P.); (E.L.); (S.S.); (M.R.-Q.); (M.R.P.); (S.N.)
| | - Elizabeth Leon
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, 3200 South University Drive, Davie, Fort Lauderdale, FL 33328, USA; (A.H.); (R.P.); (E.L.); (S.S.); (M.R.-Q.); (M.R.P.); (S.N.)
| | - Satoru Shindo
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, 3200 South University Drive, Davie, Fort Lauderdale, FL 33328, USA; (A.H.); (R.P.); (E.L.); (S.S.); (M.R.-Q.); (M.R.P.); (S.N.)
| | - Mohamad Rawas-Qalaji
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, 3200 South University Drive, Davie, Fort Lauderdale, FL 33328, USA; (A.H.); (R.P.); (E.L.); (S.S.); (M.R.-Q.); (M.R.P.); (S.N.)
| | - Maria Rita Pastore
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, 3200 South University Drive, Davie, Fort Lauderdale, FL 33328, USA; (A.H.); (R.P.); (E.L.); (S.S.); (M.R.-Q.); (M.R.P.); (S.N.)
| | - Atsushi Ikeda
- Department of Periodontics and Endodontics, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8525, Japan;
| | - Shin Nakamura
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, 3200 South University Drive, Davie, Fort Lauderdale, FL 33328, USA; (A.H.); (R.P.); (E.L.); (S.S.); (M.R.-Q.); (M.R.P.); (S.N.)
| | - Hani Mawardi
- Department of Oral Diagnostic Sciences, Faculty of Dentistry, King Abdul-Aziz University, Jeddah 21589, Saudi Arabia;
| | - Umadevi Kandalam
- Woody L. Hunt School of Dental Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA;
| | - Patrick Hardigan
- Patel College of Allopathic Medicine, Nova Southeastern University, 3200 South University Drive, Davie, Fort Lauderdale, FL 33328, USA;
| | - Lukasz Witek
- Division of Biomaterials, NYU College of Dentistry, New York, NY 10010, USA; (L.W.); (P.G.C.)
| | - Paulo G. Coelho
- Division of Biomaterials, NYU College of Dentistry, New York, NY 10010, USA; (L.W.); (P.G.C.)
| | - Toshihisa Kawai
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, 3200 South University Drive, Davie, Fort Lauderdale, FL 33328, USA; (A.H.); (R.P.); (E.L.); (S.S.); (M.R.-Q.); (M.R.P.); (S.N.)
- Cell Therapy Institute, Center for Collaborative Research, Nova Southeastern University, 3200 South University Drive, Fort Lauderdale, FL 33328, USA
- Correspondence: ; Tel.: +1-954-262-1282
| |
Collapse
|
21
|
Li X, Peng X, Yang S, Wei S, Fan Q, Liu J, Yang L, Li H. Targeting tumor innervation: premises, promises, and challenges. Cell Death Dis 2022; 8:131. [PMID: 35338118 PMCID: PMC8956600 DOI: 10.1038/s41420-022-00930-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/17/2021] [Accepted: 02/28/2022] [Indexed: 01/03/2023]
Abstract
A high intratumoral nerve density is correlated with poor survival, high metastasis, and high recurrence across multiple solid tumor types. Recent research has revealed that cancer cells release diverse neurotrophic factors and exosomes to promote tumor innervation, in addition, infiltrating nerves can also mediate multiple tumor biological processes via exosomes and neurotransmitters. In this review, through seminal studies establishing tumor innervation, we discuss the communication between peripheral nerves and tumor cells in the tumor microenvironment (TME), and revealed the nerve-tumor regulation mechanisms on oncogenic process, angiogenesis, lymphangiogenesis, and immunity. Finally, we discussed the promising directions of ‘old drugs newly used’ to target TME communication and clarified a new line to prevent tumor malignant capacity.
Collapse
Affiliation(s)
- Xinyu Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Xueqiang Peng
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Shuo Yang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Shibo Wei
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Qing Fan
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Jingang Liu
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Liang Yang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China.
| | - Hangyu Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China.
| |
Collapse
|
22
|
Dual-Function Semaphorin 4D Released by Platelets: Suppression of Osteoblastogenesis and Promotion of Osteoclastogenesis. Int J Mol Sci 2022; 23:ijms23062938. [PMID: 35328359 PMCID: PMC8955605 DOI: 10.3390/ijms23062938] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 02/04/2023] Open
Abstract
Effects of the antiosteoblastogenesis factor Semaphorin 4D (Sema4D), expressed by thrombin-activated platelets (TPs), on osteoblastogenesis, as well as osteoclastogenesis, were investigated in vitro. Intact platelets released both Sema4D and IGF-1. However, in response to stimulation with thrombin, platelets upregulated the release of Sema4D, but not IGF-1. Anti-Sema4D-neutralizing monoclonal antibody (mAb) upregulated TP-mediated osteoblastogenesis in MC3T3-E1 osteoblast precursors. MC3T3-E1 cells exposed to TPs induced phosphorylation of Akt and ERK further upregulated by the addition of anti-sema4D-mAb, suggesting the suppressive effects of TP-expressing Sema4D on osteoblastogenesis. On the other hand, TPs promoted RANKL-mediated osteoclastogenesis in the primary culture of bone-marrow-derived mononuclear cells (BMMCs). Among the known three receptors of Sema4D, including Plexin B1, Plexin B2 and CD72, little Plexin B2 was detected, and no Plexin B1 was detected, but a high level of CD72 mRNA was detected in RANKL-stimulated BMMCs by qPCR. Both anti-Sema4D-mAb and anti-CD72-mAb suppressed RANKL-induced osteoclast formation and bone resorptive activity, suggesting that Sema4D released by TPs promotes osteoclastogenesis via ligation to a CD72 receptor. This study demonstrated that Sema4D released by TPs suppresses osteogenic activity and promotes osteoclastogenesis, suggesting the novel property of platelets in bone-remodeling processes.
Collapse
|
23
|
Jiang J, Zhang F, Wan Y, Fang K, Yan ZD, Ren XL, Zhang R. Semaphorins as Potential Immune Therapeutic Targets for Cancer. Front Oncol 2022; 12:793805. [PMID: 35155237 PMCID: PMC8830438 DOI: 10.3389/fonc.2022.793805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/04/2022] [Indexed: 11/28/2022] Open
Abstract
Semaphorins are a large class of secreted or membrane-bound molecules. It has been reported that semaphorins play important roles in regulating several hallmarks of cancer, including angiogenesis, metastasis, and immune evasion. Semaphorins and their receptors are widely expressed on tumor cells and immune cells. However, the biological role of semaphorins in tumor immune microenvironment is intricate. The dysregulation of semaphorins influences the recruitment and infiltration of immune cells, leading to abnormal anti-tumor effect. Although the underlying mechanisms of semaphorins on regulating tumor-infiltrating immune cell activation and functions are not fully understood, semaphorins can notably be promising immunotherapy targets for cancer.
Collapse
Affiliation(s)
- Jun Jiang
- Department of Health Service, Fourth Military Medical University, Xi'an, China.,State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Fang Zhang
- Department of Respiratory Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yi Wan
- Department of Health Service, Fourth Military Medical University, Xi'an, China
| | - Ke Fang
- Department of Health Service, Fourth Military Medical University, Xi'an, China
| | - Ze-Dong Yan
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Xin-Ling Ren
- Department of Respiratory Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,Department of Pulmonary Medicine, Shenzhen General Hospital, Shenzhen University, Shenzhen, China
| | - Rui Zhang
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
24
|
Danchenko IY, Baidina TV, Kuklina EM, Trushnikova TN, Nekrasova IV. [Relapsing-remitting multiple sclerosis: clinical and immunological aspects of the pathology on the example of molecules Sema4D and CD72]. Zh Nevrol Psikhiatr Im S S Korsakova 2021; 121:75-81. [PMID: 34387451 DOI: 10.17116/jnevro202112107275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To study the expression of Sema4D (CD100), receptor CD72 and a role of Sema4D-CD72-dependent signal in the control of the functions of immunocompetent cells in relapsing-remitting multiple sclerosis (RRMS). MATERIAL AND METHODS We studied 76 patients, including 52 with RRMS (41 in remission and 11 in exacerbation), 35 women (67.3%) and 17 men (32.7%) aged 18-55 years, who did not receive disease-modifying drugs, and 24 healthy donors. A controlled clinical and immunological examination of patients with RRMS was carried out proving the involvement of the Sema4D molecule and its CD72 receptor in pathological reactions in this autoimmune disease. RESULTS AND CONCLUSION The use of SemaD as a target in the treatment of RRMS is scientifically substantiated. In case of a positive decision on the use of anti-Sema4D drugs, it will be necessary to take into account the effects of semaphorin not only in the central nervous system, but also in the immune system of patients with RRMS.
Collapse
Affiliation(s)
| | - T V Baidina
- Vagner Perm State Medical University, Perm, Russia
| | - E M Kuklina
- Institute of Ecology and Genetics of Microorganisms - Ural Branch of the Russian Academy of Sciences, Perm, Russia
| | | | - I V Nekrasova
- Institute of Ecology and Genetics of Microorganisms - Ural Branch of the Russian Academy of Sciences, Perm, Russia
| |
Collapse
|
25
|
Dai S, Wang Z, Yang Y, Guo T, Li W. Assessment on the lung injury of mice posed by airborne PM 2.5 collected from developing area in China and associated molecular mechanisms by integrated analysis of mRNA-seq and miRNA-seq. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112661. [PMID: 34416640 DOI: 10.1016/j.ecoenv.2021.112661] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/08/2021] [Accepted: 08/13/2021] [Indexed: 02/08/2023]
Abstract
Some epidemiological evidences showed exposure of airborne fine particulate matter (PM2.5) was associated with lung dysfunction. However, the adverse effects of PM2.5 from mid-scale city of China on the respiratory system were unknown. Correspondingly, the mechanisms, especially the epigenetic mechanism regulated by miRNAs, involved in PM2.5-induced lung injury has not been fully understood. In this study, male Balb/C mice were exposed to PM2.5 collected from mid-scale city (Baoji), China for 8 weeks (mean concentration 298.52 ± 25.86 μg/m3 at exposure chamber) using a whole-body exposure system. The carbon component was the main ingredient (45.80%) of PM2.5 followed by ions (43.19%). Meanwhile, the sum concentrations of polycyclic aromatic hydrocarbons (PAHs) and n-alkanes (C18-C33) were 570.48 and 2029.13 ng/m3 in the exposure chamber, respectively. Obvious lung injury including pulmonary inflammation and fibrosis (p < 0.05 compared with the control) were found from PM2.5 exposure group determined by micro-CT and histopathological assays, respectively, suggesting the health risk posed by PM2.5 from mid-scale city of China should be concerned. The integrated analysis between mRNA-seq and miRNA-seq revealed the differentially expression genes in lung tissues were enriched in immune pathways including B cell receptor signaling (p = 0.078) and cell adhesion molecules (CAMs) (p = 0.0068). The expression profiles of the genes and corresponding mRNAs involved into the immune pathways determined by RT-qPCR analysis were consistent with them conducted by transcriptome. Moreover, the expression levels of the proteins (i.e., CD19, CD81, PIK3CD, and CD22) involved into B cell receptor signaling pathway from exposure group were 1.71- to 6.948- folds compared with the control, validating the results of the genes expression profiles. Further, canonical correlation analysis (CCA) and multiple correlation analysis between the target genes and components of PM2.5 documented the organic compounds (i.e., Benzo(a)pyrene (p = 0.012) and octadecane (p = 0.05)) and inorganic elements (i.e., Cl-, Ti, Al, and Zn) was the key environmental factors. Cd19, Pik3cd, and Cd8b1 might be the key genes for lung dysfunction induced by PM2.5 illuminated using interactive analysis (p < 0.05). This work for the first time showed the adverse effects of PM2.5 in mid-scale city in China on respiratory system should be concerned, and the associated epigenetic mechanism regulated by miRNA were revealed. These results may provide new insight into the development of future assessment on the air pollution associated respiratory disease.
Collapse
Affiliation(s)
- Shuiping Dai
- National Center for Geriatrics Clinical Medicine Research, Department of Geriatrics and Gerontology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhenglu Wang
- College of oceanography, Hohai University, Nanjing 210098, China
| | - Ying Yang
- Center of Precision Medicine, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tingting Guo
- Center of Precision Medicine, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Weimin Li
- Center of Precision Medicine, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China; Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
26
|
The emerging roles of semaphorin4D/CD100 in immunological diseases. Biochem Soc Trans 2021; 48:2875-2890. [PMID: 33258873 DOI: 10.1042/bst20200821] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/27/2020] [Accepted: 11/02/2020] [Indexed: 02/05/2023]
Abstract
In vertebrates, the semaphorin family of proteins is composed of 21 members that are divided into five subfamilies, i.e. classes 3 to 7. Semaphorins play crucial roles in regulating multiple biological processes, such as neural remodeling, tissue regeneration, cancer progression, and, especially, in immunological regulation. Semaphorin 4D (SEMA4D), also known as CD100, is an important member of the semaphorin family and was first characterized as a lymphocyte-specific marker. SEMA4D has diverse effects on immunologic processes, including immune cell proliferation, differentiation, activation, and migration, through binding to its specific membrane receptors CD72, PLXNB1, and PLXNB2. Furthermore, SEMA4D and its underlying signaling have been increasingly linked with several immunological diseases. This review focuses on the significant immunoregulatory role of SEMA4D and the associated underlying mechanisms, as well as the potential application of SEMA4D as a diagnostic marker and therapeutic target for the treatment of immunological diseases.
Collapse
|
27
|
Overbey EG, Ng TT, Catini P, Griggs LM, Stewart P, Tkalcic S, Hawkins RD, Drechsler Y. Transcriptomes of an Array of Chicken Ovary, Intestinal, and Immune Cells and Tissues. Front Genet 2021; 12:664424. [PMID: 34276773 PMCID: PMC8278112 DOI: 10.3389/fgene.2021.664424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/27/2021] [Indexed: 12/16/2022] Open
Abstract
While the chicken (Gallus gallus) is the most consumed agricultural animal worldwide, the chicken transcriptome remains understudied. We have characterized the transcriptome of 10 cell and tissue types from the chicken using RNA-seq, spanning intestinal tissues (ileum, jejunum, proximal cecum), immune cells (B cells, bursa, macrophages, monocytes, spleen T cells, thymus), and reproductive tissue (ovary). We detected 17,872 genes and 24,812 transcripts across all cell and tissue types, representing 73% and 63% of the current gene annotation, respectively. Further quantification of RNA transcript biotypes revealed protein-coding and lncRNAs specific to an individual cell/tissue type. Each cell/tissue type also has an average of around 1.2 isoforms per gene, however, they all have at least one gene with at least 11 isoforms. Differential expression analysis revealed a large number of differentially expressed genes between tissues of the same category (immune and intestinal). Many of these differentially expressed genes in immune cells were involved in cellular processes relating to differentiation and cell metabolism as well as basic functions of immune cells such as cell adhesion and signal transduction. The differential expressed genes of the different segments of the chicken intestine (jejunum, ileum, proximal cecum) correlated to the metabolic processes in nutrient digestion and absorption. These data should provide a valuable resource in understanding the chicken genome.
Collapse
Affiliation(s)
- Eliah G Overbey
- Department of Genome Sciences, Interdepartmental Astrobiology Program, University of Washington, Seattle, WA, United States
| | - Theros T Ng
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, United States
| | - Pietro Catini
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, United States
| | - Lisa M Griggs
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, United States
| | - Paul Stewart
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, United States
| | - Suzana Tkalcic
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, United States
| | - R David Hawkins
- Department of Genome Sciences, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Yvonne Drechsler
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, United States
| |
Collapse
|
28
|
Carulli D, de Winter F, Verhaagen J. Semaphorins in Adult Nervous System Plasticity and Disease. Front Synaptic Neurosci 2021; 13:672891. [PMID: 34045951 PMCID: PMC8148045 DOI: 10.3389/fnsyn.2021.672891] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022] Open
Abstract
Semaphorins, originally discovered as guidance cues for developing axons, are involved in many processes that shape the nervous system during development, from neuronal proliferation and migration to neuritogenesis and synapse formation. Interestingly, the expression of many Semaphorins persists after development. For instance, Semaphorin 3A is a component of perineuronal nets, the extracellular matrix structures enwrapping certain types of neurons in the adult CNS, which contribute to the closure of the critical period for plasticity. Semaphorin 3G and 4C play a crucial role in the control of adult hippocampal connectivity and memory processes, and Semaphorin 5A and 7A regulate adult neurogenesis. This evidence points to a role of Semaphorins in the regulation of adult neuronal plasticity. In this review, we address the distribution of Semaphorins in the adult nervous system and we discuss their function in physiological and pathological processes.
Collapse
Affiliation(s)
- Daniela Carulli
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences, Amsterdam, Netherlands
- Department of Neuroscience Rita Levi-Montalcini and Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Turin, Italy
| | - Fred de Winter
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Joost Verhaagen
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences, Amsterdam, Netherlands
| |
Collapse
|
29
|
Lu Q, Cai P, Yu Y, Liu Z, Chen G, Zeng Z. Sema4D correlates with tumour immune infiltration and is a prognostic biomarker in bladder cancer, renal clear cell carcinoma, melanoma and thymoma. Autoimmunity 2021; 54:294-302. [PMID: 33974462 DOI: 10.1080/08916934.2021.1925885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Sema4D, a member of the immune semaphorin family, plays crucial roles in the immune regulation, bone resorption and nervous system. It is also involved in angiogenesis and tumour progression. However, systemic studies on the correlation between Sema4D expression and the immune infiltration or clinical outcomes in tumours are still limited. Here, we analysed the landscape of Sema4D expression and its prognostic value in the cancer genome atlas pan-cancer as well as the correlation between Sema4D and immune cell infiltration by Tumour Immune Estimation Resource and Gene Expression Profiling interactive analysis online tools. Results showed that a higher Sema4D expression was significantly correlated with a favourable overall survival in diverse solid tumours including bladder cancer (Hazards Ratio (HR)=0.68, p = .0095), kidney renal clear cell carcinoma (HR = 0.61, p = .0016), melanoma (HR = 0.58, p = 6.6e-05) and thymoma (HR = 0.1, p = .011). Interestingly, Sema4D expression has positive correlation with various tumour infiltrating immune cells and immune cell biomarkers in these tumours. These results suggest that Sema4D could be a prospective biomarker for calculating hazard ratio of tumour patients and their tumour immune infiltration levels.
Collapse
Affiliation(s)
- Qiongyu Lu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology of Jiangsu Province, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Ping Cai
- Jiangsu Institute of Hematology, First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Yan Yu
- Jiangsu Institute of Hematology, First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Ziting Liu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology of Jiangsu Province, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Guona Chen
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology of Jiangsu Province, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Zhao Zeng
- Jiangsu Institute of Hematology, First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
30
|
Abstract
Semaphorin 4D (Sema4D) is a classic member of the semaphorin family involved in axonal guidance processes. The key effects of Sema4D in neurons are mediated by high affinity plexin receptors and are associated with cytoskeleton rearrangement, leading to growth cone collapse or regulation of cell migration. Along with this, the semaphorin is widely represented in the immune system and has a pronounced immunoregulatory activity. The involvement of Sema4D in the control of immune cell migration was shown almost twenty years ago, in one of the first studies of semaphorin. The emergence of such work was quite predictable, since the most well-known effects of Sema4D outside the immune system were associated precisely with the control of cell motility. However, after identification of CD72 as a specific Sema4D receptor in the immune system, studies of the immunoregulatory activity of semaphorin focused on its CD72-dependent effects unrelated to cytoskeleton rearrangement, and this trend continues up to now. Nevertheless, a number of recent studies demonstrating the presence of plexin receptors for Sema4D in the immune system forces us to return to the question of whether this semaphorin can play its classic role of a guidance molecule in relation to immune cells too. The review discusses Sema4D involvement in the control of immune cell migration, as well as the mechanisms of these effects and their potential contribution to the development and function of immune system.
Collapse
Affiliation(s)
- Elena Kuklina
- Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, Perm, Russia
| |
Collapse
|
31
|
Younis RH, Ghita I, Elnaggar M, Chaisuparat R, Theofilou VI, Dyalram D, Ord RA, Davila E, Tallon LJ, Papadimitriou JC, Webb TJ, Bentzen SM, Lubek JE. Soluble Sema4D in Plasma of Head and Neck Squamous Cell Carcinoma Patients Is Associated With Underlying Non-Inflamed Tumor Profile. Front Immunol 2021; 12:596646. [PMID: 33776991 PMCID: PMC7991916 DOI: 10.3389/fimmu.2021.596646] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 01/20/2021] [Indexed: 11/19/2022] Open
Abstract
Semaphorin 4D (Sema4D) is a glycoprotein that is expressed by several tumors and immune cells. It can function as a membrane bound protein or as a cleaved soluble protein (sSema4D). We sought to investigate the translational potential of plasma sSema4D as an immune marker in plasma of patients with head and neck squamous cell carcinoma (HNSCC). Paired peripheral blood and tumor tissue samples of 104 patients with HNSCC were collected at the same time point to allow for real time analysis. Scoring of the histological inflammatory subtype (HIS) was carried out using Sema4D immunohistochemistry on the tumor tissue. sSema4D was detected in plasma using direct ELISA assay. Defining elevated sSema4D as values above the 95th percentile in healthy controls, our data showed that sSema4D levels in plasma were elevated in 25.0% (95% CI, 16.7–34.9%) of the patients with HNSCC and showed significant association with HIS immune excluded (HIS-IE) (p = 0.007), Sema4D+ve tumor cells (TCs) (p = 0.018) and PD-L1+ve immune cells (ICs) (p = 0.038). A multi-variable logistic regression analysis showed that HIS was significantly (P = 0.004) associated with elevated sSema4D, an association not explained by available patient-level factors. Using the IO-360 nanoString platform, differential gene expression (DGE) analysis of 10 HNSCC tumor tissues showed that patients with high sSema4D in plasma (HsS4D) clustered as IFN-γ negative tumor immune signature and were mostly HIS-IE. The IC type in the HsS4D paired tumor tissue was predominantly myeloid, while the lymphoid compartment was higher in the low sSema4D (LsS4D). The Wnt signaling pathway was upregulated in the HsS4D group. Further analysis using the IO-360, 770 gene set, showed significant non-inflamed profile of the HsS4D tumors compared to the LsS4D. In conclusion, our data reveals an association between sSema4D and the histological inflammatory subtype.
Collapse
Affiliation(s)
- Rania H Younis
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, MD, United States.,Tumor Immunology and Immunotherapy Division, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States.,Department of Oral Pathology, Faculty of Dentistry, University of Alexandria, Alexandria, Egypt
| | - Ioana Ghita
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, MD, United States
| | - Manar Elnaggar
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, MD, United States.,Department of Oral Pathology, Faculty of Dentistry, University of Alexandria, Alexandria, Egypt
| | - Risa Chaisuparat
- Department of Oral Pathology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Vasileios Ionas Theofilou
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, MD, United States.,Department of Oral Medicine and Pathology, School of Dentistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Donita Dyalram
- Tumor Immunology and Immunotherapy Division, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States.,Department of Oral and Maxillofacial Surgery, University of Maryland School of Dentistry, Baltimore, MD, United States
| | - Robert A Ord
- Tumor Immunology and Immunotherapy Division, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States.,Department of Oral and Maxillofacial Surgery, University of Maryland School of Dentistry, Baltimore, MD, United States
| | - Eduardo Davila
- Department of Medicine, University of Colorado, Aurora, CO, United States
| | - Luke J Tallon
- The Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States
| | - John C Papadimitriou
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Tonya J Webb
- Tumor Immunology and Immunotherapy Division, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States.,Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Søren M Bentzen
- Tumor Immunology and Immunotherapy Division, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States.,Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Joshua E Lubek
- Tumor Immunology and Immunotherapy Division, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States.,Department of Oral and Maxillofacial Surgery, University of Maryland School of Dentistry, Baltimore, MD, United States
| |
Collapse
|
32
|
Song Y, Wang L, Zhang L, Huang D. The involvement of semaphorin 7A in tumorigenic and immunoinflammatory regulation. J Cell Physiol 2021; 236:6235-6248. [PMID: 33611799 DOI: 10.1002/jcp.30340] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/12/2021] [Accepted: 02/05/2021] [Indexed: 02/04/2023]
Abstract
Semaphorins, a large group of highly conserved proteins, consist of eight subfamilies that are widely expressed in vertebrates, invertebrates, and viruses and exist in membrane-bound or secreted forms. First described as axon guidance cues during neurogenesis, semaphorins also perform physiological functions in other organ systems, such as bone homeostasis, immune response, and tumor progression. Semaphorin 7A (SEMA7A), also known as CDw108, is an immune semaphorin that modulates diverse immunoinflammatory processes, including immune cell interactions, inflammatory infiltration, and cytokine production. In addition, SEMA7A regulates the proliferation, migration, invasion, lymph formation, and angiogenesis of multiple types of tumor cells, and these effects are mediated by the interaction of SEMA7A with two specific receptors, PLXNC1 and integrins. Thus, SEMA7A is intimately related to the pathogenesis of multiple autoimmune and inflammation-related diseases and tumors. This review focuses on the role of SEMA7A in the pathogenesis of autoimmune disorders, inflammatory diseases, and tumors, as well as the underlying mechanisms. Furthermore, strategies targeting SEMA7A as a potential predictive, diagnostic, and therapeutic agent for these diseases are also addressed.
Collapse
Affiliation(s)
- Yao Song
- State Key Laboratory of Oral Diseases and National Clinical Research Center of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Liu Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lan Zhang
- State Key Laboratory of Oral Diseases and National Clinical Research Center of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Dingming Huang
- State Key Laboratory of Oral Diseases and National Clinical Research Center of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
33
|
Pan L, Feigin A. Huntington's Disease: New Frontiers in Therapeutics. Curr Neurol Neurosci Rep 2021; 21:10. [PMID: 33586075 DOI: 10.1007/s11910-021-01093-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2021] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW This article describes and discusses new potential disease-modifying therapies for Huntington's disease that are currently in human clinical trials as well as promising new therapies in preclinical development. RECENT FINDINGS Multiple potential disease-modifying therapeutics for HD are in active development, including direct DNA/gene therapies, RNA modulation, and therapies targeted at aberrant downstream pathways. The etiology of Huntington's disease (HD) is well-known as an abnormally expanded trinucleotide repeat within the huntingtin gene. However, the pathogenesis downstream of the mutant huntingtin gene is complex, involving multiple toxic pathways, including abnormal protein fragmentation and neuroinflammation. The current treatment of HD focuses largely on symptomatic management. This article discusses new, potential disease-modifying therapies that are currently in human clinical trials and preclinical development.
Collapse
Affiliation(s)
- Ling Pan
- Department of Neurology, The Marlene and Paolo Fresco Institute for Parkinson's and Movement Disorders, NYU Langone Health, 222 East 41st Street - 13th Floor, New York, USA.
| | - Andrew Feigin
- Department of Neurology, The Marlene and Paolo Fresco Institute for Parkinson's and Movement Disorders, NYU Langone Health, 222 East 41st Street - 13th Floor, New York, USA
| |
Collapse
|
34
|
Kuklina E, Nekrasova I, Glebezdina N. Signaling from membrane semaphorin 4D in T lymphocytes. Mol Immunol 2020; 129:56-62. [PMID: 32948333 DOI: 10.1016/j.molimm.2020.08.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/11/2020] [Accepted: 08/14/2020] [Indexed: 11/16/2022]
Abstract
Semaphorin 4D (Sema4D) is widely represented in the immune system in both membrane and soluble form, and controls immune processes through the specific receptors - these are generally accepted views. Here, an alternative way of Sema4D-dependent immunoregulation is presented, suggesting its functioning as a receptor. We have shown that activation of membrane Sema4D induces phosphorylation of Lck/ZAP-70 in intact T lymphocytes and enhances it in stimulated T cells. Since Sema4D is constitutively presented on the membrane of T lymphocytes, and classical Sema4D receptors are highly expressed by antigen-presenting cells, the membrane Sema4D can serve as an obligate costimulatory molecule in T lymphocyte priming or T-dependent B cell activation.
Collapse
Affiliation(s)
- Elena Kuklina
- Perm Federal Research Center, Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences, 614081, Perm, Russia.
| | - Irina Nekrasova
- Perm Federal Research Center, Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences, 614081, Perm, Russia
| | - Natalia Glebezdina
- Perm Federal Research Center, Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences, 614081, Perm, Russia
| |
Collapse
|
35
|
Yang Y, Chen J, Tang M, Yi C, Gao W, Bai X, Li Z, Yang F. Low levels of CD72 and CD100 expression on circulating lymphocytes in immunosuppressive phase of sepsis is associated with mortality in septic patients. J Intensive Care 2020. [DOI: 10.1186/s40560-020-00486-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Abstract
Background
Despite improvements in antimicrobial therapy and supportive care, sepsis is still a major public health issue. Recently, CD100 and its receptor in the immune system CD72 were shown to play a major role in immune regulation. The purpose of this study was to investigate the expression and clinical correlations of CD72 and CD100 on circulating lymphocytes of septic patients.
Methods
In total, 24 healthy controls and 54 septic patients were enrolled in this study. Considering the focus of the current study was on the immunosuppressive phase of sepsis, blood samples of patients were collected at days 3–4 after the onset of sepsis. The levels of CD72 and CD100 expression on circulating lymphocytes were measured by flow cytometry and serum IL-6, IL-10, and immunoglobulin M levels were determined by enzyme-linked immunosorbent assay.
Results
Our results showed that the levels of CD100 expression on T cells and CD72 expression on B cells were significantly lower in septic patients. Similarly, a significant decrease in the expression levels of CD72 and CD100 was observed in non-survivors compared with survivors. In addition, the reduction of immunoglobulin M levels and lymphocyte counts were correlated with the low CD72 and CD100 expression levels. Multivariate logistic regression analysis showed that the percentage of CD100+/CD8+ T cells and CD72+/CD19+ B cells were independent predictors of 28-day mortality in septic patients. Simultaneously, the receiver operating characteristic curve analysis showed that the combination of the percentage of CD100+/CD8+ T cells and sequential organ failure assessment score had the best predictive value of mortality risk.
Conclusions
Our study demonstrated that the decrease of the levels of CD72 and CD100 expression on circulating lymphocytes after 3–4 days of sepsis had a close correlation of the 28-day mortality of septic patients. Thus, CD72 and CD100 are promising biomarkers for assessing the prognosis of patients with sepsis.
Trial registration
Peripheral blood lymphocytes analysis detects CD72 and CD100 alteration in trauma patients; ChiCTR1900026367; Registered 4 October 2019; http://www.chictr.org.cn.
Collapse
|
36
|
Fard D, Tamagnone L. Semaphorins in health and disease. Cytokine Growth Factor Rev 2020; 57:55-63. [PMID: 32900601 DOI: 10.1016/j.cytogfr.2020.05.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 05/12/2020] [Indexed: 11/18/2022]
Abstract
Cell-cell communication is pivotal to guide embryo development, as well as to maintain adult tissues homeostasis and control immune response. Among extracellular factors responsible for this function, are the Semaphorins, a broad family of around 20 different molecular cues conserved in evolution and widely expressed in all tissues. The signaling cascades initiated by semaphorins depend on a family of conserved receptors, called Plexins, and on several additional molecules found in the receptor complexes. Moreover, multiple intracellular pathways have been described to act downstream of semaphorins, highlighting significant diversity in the signaling cascades controlled by this family. Notably, semaphorin expression is altered in many human diseases, such as immunopathologies, neurodegenerative diseases and cancer. This underscores the importance of semaphorins as regulatory factors in the tissue microenvironment and has prompted growing interest for assessing their potential relevance in medicine. This review article surveys the main contexts in which semaphorins have been found to regulate developing and healthy adult tissues, and the signaling cascades implicated in these functions. Vis a vis, we will highlight the main pathological processes in which semaphorins are thought to have a role thereof.
Collapse
Affiliation(s)
- Damon Fard
- University of Torino School of Medicine, Torino, Italy
| | - Luca Tamagnone
- Università Cattolica del Sacro Cuore, Rome, Italy; Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Rome, Italy.
| |
Collapse
|
37
|
Immune semaphorins: Crucial regulatory signals and novel therapeutic targets in asthma and allergic diseases. Eur J Pharmacol 2020; 881:173209. [PMID: 32454117 DOI: 10.1016/j.ejphar.2020.173209] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 11/20/2022]
Abstract
Asthma and allergic diseases are a group of chronic inflammatory disorders that arise as a result of excessive responses of the immune system against intrinsically harmless environmental substances. It is well known that substantial joint characteristics exist between the immune and nervous systems. The semaphorins (Semas) were initially characterized as axon-guidance molecules that play a crucial role during the development of the nervous system. However, increasing evidence indicates that a subset of Semas, termed "immune Semas", acting through their cognate receptors, namely, plexins (Plxns), and neuropilins (Nrps), also contributes to both physiological and pathological responses of the immune system. Notably, immune Semas exert critical roles in regulating a broad spectrum of biological processes, including immune cell-cell interactions, activation, differentiation, cell migration and mobility, angiogenesis, tumor progression, as well as inflammatory responses. Accumulating evidence indicates that the modification in the signaling of immune Semas could lead to various immune-mediated inflammatory diseases, ranging from cancer to autoimmunity and allergies. This review summarizes the recent evidence regarding the role of immune Semas in the pathogenesis of asthma and allergic diseases and discusses their therapeutic potential for treating these diseases.
Collapse
|
38
|
Shen Y, Ma Y, Xie J, Lin L, Shi Y, Li X, Shen P, Pan X, Ren H. A regulatory role for CD72 expression on B cells and increased soluble CD72 in primary Sjogren's syndrome. BMC Immunol 2020; 21:21. [PMID: 32306893 PMCID: PMC7168817 DOI: 10.1186/s12865-020-00351-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/06/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND CD72, a co-receptor of B cell receptor (BCR), has been reported to have both positive and negative effects on B cell functions in several immunological diseases. The B cell plays an important role in the pathogenesis of primary Sjogren's syndrome (pSS). However, whether CD72 is involved in the process remains unknown. This study aimed to observe the possible role of CD72 in the pathogenesis of pSS. RESULTS A total of 60 cases who fulfilled the American-European Consensus Group (AECG) criteria for the diagnosis of pSS and 61 gender and age-matched healthy controls were recruited in this study. The percentage of CD72+ B cells was 85.31 ± 8.37% in pSS patients and 76.91 ± 8.50% in healthy controls(p < 0.001). The percentage of CD72+ B cells was correlated to serum IgG levels in patients [β = 0.018(0.001-0.036), p = 0.034]. The level of serum soluble CD72 was significantly higher in pSS patients than the one in healthy controls (0.41 (0.29) vs 0.07 (0.08) ng/mL, p < 0.001). CONCLUSIONS The percentage of CD72+ B cells was upregulated in pSS patients and was correlated to the serum IgG level, which revealed the hyperactivity of B cells in this disease. The serum soluble CD72 level was also increased in pSS patients. These results indicated a potential role of CD72 in the pathogenesis of pSS.
Collapse
Affiliation(s)
- Yuqi Shen
- Department of Nephrology, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Yuhua Ma
- Department of Nephrology, Traditional Chinese Medicine Hospital of KunShan, Suzhou, China
| | - Jingyuan Xie
- Department of Nephrology, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Li Lin
- Department of Nephrology, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Yifan Shi
- Department of Nephrology, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Xiao Li
- Department of Nephrology, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Pingyan Shen
- Department of Nephrology, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Xiaoxia Pan
- Department of Nephrology, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Hong Ren
- Department of Nephrology, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China.
| |
Collapse
|
39
|
Wang HM, Zhang XH, Ye LQ, Zhang K, Yang NN, Geng S, Chen J, Zhao SX, Yang KL, Fan FF. Insufficient CD100 shedding contributes to suppression of CD8 + T-cell activity in non-small cell lung cancer. Immunology 2020; 160:209-219. [PMID: 32149403 DOI: 10.1111/imm.13189] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/01/2020] [Accepted: 03/02/2020] [Indexed: 12/11/2022] Open
Abstract
CD100 is an immune semaphorin constitutively expressed on T-cells. Matrix metalloproteinase (MMP) is an important mediator of membrane-bound CD100 (mCD100) cleavage to generate soluble CD100 (sCD100), which has immunoregulatory activity in immune cell responses. The aim of the study was to investigate the level and role of sCD100 and mCD100 in modulating CD8+ T-cell function in non-small cell lung cancer (NSCLC). sCD100 and MMP-14 levels in the serum and bronchoalveolar lavage fluid (BALF), and mCD100 expression on peripheral and lung-resident CD8+ T-cells were analysed in NSCLC patients. The ability to induce sCD100 and the effect of MMP-14 on mCD100 shedding for the regulation of non-cytolytic and cytolytic functions of CD8+ T-cells were also analysed in direct and indirect contact co-culture systems. NSCLC patients had lower serum sCD100 and higher mCD100 levels on CD8+ T-cells compared with healthy controls. BALF from the tumour site also had decreased sCD100 and increased mCD100 on CD8+ T-cells compared with the non-tumour site. Recombinant CD100 stimulation enhanced non-cytolytic and cytolytic functions of CD8+ T-cells from NSCLC patients, whereas blockade of CD100 receptor CD72 attenuated CD8+ T-cell activity. NSCLC patients had lower MMP-14 in the serum and in BALF from the tumour site. Recombinant MMP-14 mediated mCD100 shedding from CD8+ T-cell membrane, and led to promotion of CD8+ T-cell response in NSCLC patients. Overall, decreased MMP-14 resulted in insufficient CD100 shedding, leading to suppression of peripheral and lung-resident CD8+ T-cell activity in NSCLC.
Collapse
Affiliation(s)
- Hong-Min Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiao-Hong Zhang
- Department of Respiratory Medicine, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Li-Qun Ye
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kai Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ning-Ning Yang
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shen Geng
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jing Chen
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shun-Xin Zhao
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kang-Li Yang
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fei-Fei Fan
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
40
|
Rajabinejad M, Asadi G, Ranjbar S, Afshar Hezarkhani L, Salari F, Gorgin Karaji A, Rezaiemanesh A. Semaphorin 4A, 4C, and 4D: Function comparison in the autoimmunity, allergy, and cancer. Gene 2020; 746:144637. [PMID: 32244055 DOI: 10.1016/j.gene.2020.144637] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/10/2020] [Accepted: 03/30/2020] [Indexed: 01/02/2023]
Abstract
Semaphorins are a group of proteins that are divided into eight subclasses and identified by a conserved Sema domain on their carboxyl terminus. Sema4A, 4C, and 4D are the members of the fourth class of semaphorin family, which are known as membrane semaphorins; however, these molecules can be altered to soluble semaphorins by proteolytic cleavage. Semaphorins have various roles in the immune, nervous, and metabolic systems. In the immune system, these molecules contribute to the formation of cellular, humoral, and innate immune responses, such as inflammation, leukocyte migration, immunological synapse formation, and germinal center events. Given the diverse roles of semaphorins in the immune system, in this review, we have tried to give a comprehensive look at the role of these molecules in autoimmunity, allergy, and cancer. Sema4D and 4A seem to play a critical role in the pathogenesis of some autoimmune diseases, such as multiple sclerosis. In contrast, it has been shown that Sema4A and 4C have beneficial effects on allergies, and their absence can exacerbate the severity of the disease. In the case of cancer, an increase in all three of these molecules has been reported. Sema4D and 4C can contribute to tumor progression in human patients or experimental models, while the role of Sema4A has not yet been fully understood. In conclusion, semaphorins seem to be a favorable therapeutic target for autoimmune diseases and allergies. However, in cancer, studies have not yet been able to identify the exact role of semaphorins, and further studies are needed.
Collapse
Affiliation(s)
- Misagh Rajabinejad
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Gelayol Asadi
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sedigheh Ranjbar
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Leila Afshar Hezarkhani
- Department of Neurology, Farabi Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Farhad Salari
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Gorgin Karaji
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Alireza Rezaiemanesh
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
41
|
Iragavarapu-Charyulu V, Wojcikiewicz E, Urdaneta A. Semaphorins in Angiogenesis and Autoimmune Diseases: Therapeutic Targets? Front Immunol 2020; 11:346. [PMID: 32210960 PMCID: PMC7066498 DOI: 10.3389/fimmu.2020.00346] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 02/12/2020] [Indexed: 01/17/2023] Open
Abstract
The axonal guidance molecules, semaphorins, have been described to function both physiologically and pathologically outside of the nervous system. In this review, we focus on the vertebrate semaphorins found in classes 3 through 7 and their roles in vascular development and autoimmune diseases. Recent studies indicate that while some of these vertebrate semaphorins promote angiogenesis, others have an angiostatic function. Since some semaphorins are also expressed by different immune cells and are known to modulate immune responses, they have been implicated in autoimmune disorders such as multiple sclerosis, rheumatoid arthritis, systemic lupus erythematosus and systemic sclerosis. We conclude this review by addressing strategies targeting semaphorins as potential therapeutic agents for angiogenesis and autoimmune diseases.
Collapse
Affiliation(s)
| | - Ewa Wojcikiewicz
- Department of Biomedical Sciences, Florida Atlantic University, Boca Raton, FL, United States
| | - Alexandra Urdaneta
- Department of Biomedical Sciences, Florida Atlantic University, Boca Raton, FL, United States
| |
Collapse
|
42
|
Fatoba O, Ohtake Y, Itokazu T, Yamashita T. Immunotherapies in Huntington's disease and α-Synucleinopathies. Front Immunol 2020; 11:337. [PMID: 32161599 PMCID: PMC7052383 DOI: 10.3389/fimmu.2020.00337] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/11/2020] [Indexed: 12/13/2022] Open
Abstract
Modulation of immune activation using immunotherapy has attracted considerable attention for many years as a potential therapeutic intervention for several inflammation-associated neurodegenerative diseases. However, the efficacy of single-target immunotherapy intervention has shown limited or no efficacy in alleviating disease burden and restoring functional capacity. Marked immune system activation and neuroinflammation are important features and prodromal signs in polyQ repeat disorders and α-synucleinopathies. This review describes the current status and future directions of immunotherapies in proteinopathy-induced neurodegeneration with emphasis on preclinical and clinical efficacies of several anti-inflammatory compounds and antibody-based therapies for the treatment of Huntington's disease and α-synucleinopathies. The review concludes with how disease modification and functional restoration could be achieved by using targeted multimodality therapy to target multiple factors.
Collapse
Affiliation(s)
- Oluwaseun Fatoba
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan.,WPI -Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Yosuke Ohtake
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan.,Department of Neuro-Medical Science, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Takahide Itokazu
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan.,Department of Neuro-Medical Science, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan.,WPI -Immunology Frontier Research Center, Osaka University, Suita, Japan.,Department of Neuro-Medical Science, Graduate School of Medicine, Osaka University, Suita, Japan
| |
Collapse
|
43
|
Danchenko IY, Baidina TV, Kuklina EM, Trushnikova TN, Nekrasova IV. [Relapsing-remitting multiple sclerosis: clinical and immunological aspects of the pathology on the example Sema4D and CD72]. Zh Nevrol Psikhiatr Im S S Korsakova 2020; 119:63-71. [PMID: 31934990 DOI: 10.17116/jnevro20191191063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
AIM To explore the expression of Sema4D, CD72 receptor and a role of Sema4D-CD72 signal in the control of immunocompetent cell function in remitting-relapsing multiple sclerosis (RRMS). MATERIAL AND METHODS Fifty-two patients with RRMS diagnosis according to 2010 revised McDonald's criteria were studied. The control group included 24 healthy people. A flow cytometry method was used to measure the expression of semaphorin Sema4D by T-lymphocytes of peripheral blood, expression of CD72 receptor by B-lymphocytes, percentage of cells containing pro- and anti-inflammatory cytokines. The level of soluble Sema4D (sSema4D) was evaluated by ELISA. RESULTS The level of Sema4D expression on T-lymphocytes (Mean Fluorescence Intensity - MFI) prevailed in cell subpopulations in patients with RRMS compared with the control group. Characteristics of membrane and sSema4D correlate with clinical presentations of the autoimmune disease. An increase in sSema4D level during cell cultivation was identified in RRMS patients. The results show the involvement of Sema4D in the hyperactivation of B-cell-mediated immunity through CD72 receptor and induction of proinflammatory cytokine synthesis. CONCLUSION RRMS is associated with elevated expression of Sema4D in the immune system. Membrane and sSema4D involved in the pathological process in RRMS. The authors suggest several mechanisms of the involvement of semaphorin and its receptor in the pathogenesis of RRMS: the direct damage of nervous tissues by sSema4D penetrated through the blood brain barrier disrupted in RRMS or by membrane Sema4D due to the infiltration of the central nervous system by T-lymphocytes and hyperactivation of B-cell-mediated immunity.
Collapse
Affiliation(s)
| | - T V Baidina
- E.A. Vagner Perm State Medical University, Perm, Russia
| | - E M Kuklina
- Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences, Perm, Russia
| | | | - I V Nekrasova
- Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences, Perm, Russia
| |
Collapse
|
44
|
Tsuchihashi R, Sawano T, Watanabe F, Yamaguchi N, Yamaguchi W, Niimi K, Shibata S, Furuyama T, Tanaka H, Inagaki S. Upregulation of IFN-β induced by Sema4D-dependent partial Erk1/2 inhibition promotes NO production in microglia. Biochem Biophys Res Commun 2019; 521:827-832. [PMID: 31708102 DOI: 10.1016/j.bbrc.2019.10.201] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 10/31/2019] [Indexed: 01/01/2023]
Abstract
Interactions between Sema4D and its receptors, PlexinB1 and CD72, induce various functions, including axon guidance, angiogenesis, and immune activation. Our previous study revealed that Sema4D is involved in the upregulation of nitric oxide production in microglia after cerebral ischemia. In this study, we investigated the underlying mechanisms of the enhancement of microglial nitric oxide production by Sema4D. Primary microglia expressed PlexinB1 and CD72, and cortical microglia expressed CD72. Sema4D promoted nitric oxide production and slightly inhibited Erk1/2 phosphorylation in microglia. Partial Erk1/2 inhibition enhanced microglial nitric oxide production. Inhibition of Erk1/2 phosphorylation induced the expression of Ifn-β mRNA, and IFN-β promoted nitric oxide production in microglia. In the ischemic cortex, the expression of Ifn-β mRNA was downregulated by Sema4D deficiency. These findings indicated that the enhancement of nitric oxide production by Sema4D is involved in partial Erk1/2 inhibition and upregulation of IFN-β.
Collapse
Affiliation(s)
- Ryo Tsuchihashi
- Group of Neurobiology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Toshinori Sawano
- Group of Neurobiology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Suita, Japan; Laboratory of Pharmacology, Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Japan
| | - Fumiya Watanabe
- Group of Neurobiology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Natsumi Yamaguchi
- Laboratory of Pharmacology, Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Japan
| | | | - Kenta Niimi
- Group of Neurobiology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Suita, Japan; Kagawa Prefectural College of Health Sciences, Takamatsu, Japan
| | - Satoshi Shibata
- Group of Neurobiology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Suita, Japan; Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Tatsuo Furuyama
- Kagawa Prefectural College of Health Sciences, Takamatsu, Japan
| | - Hidekazu Tanaka
- Laboratory of Pharmacology, Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Japan
| | - Shinobu Inagaki
- Group of Neurobiology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Suita, Japan; United Graduate School of Child Development, Osaka University, Suita, Japan; Department of Physical Therapy, Osaka Yukioka College of Health Science, Ibaraki, Japan.
| |
Collapse
|
45
|
Zuazo-Gaztelu I, Pàez-Ribes M, Carrasco P, Martín L, Soler A, Martínez-Lozano M, Pons R, Llena J, Palomero L, Graupera M, Casanovas O. Antitumor Effects of Anti-Semaphorin 4D Antibody Unravel a Novel Proinvasive Mechanism of Vascular-Targeting Agents. Cancer Res 2019; 79:5328-5341. [PMID: 31239269 PMCID: PMC7611261 DOI: 10.1158/0008-5472.can-18-3436] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 04/08/2019] [Accepted: 06/21/2019] [Indexed: 01/15/2023]
Abstract
One of the main consequences of inhibition of neovessel growth and vessel pruning produced by angiogenesis inhibitors is increased intratumor hypoxia. Growing evidence indicates that tumor cells escape from this hypoxic environment to better nourished locations, presenting hypoxia as a positive stimulus for invasion. In particular, anti-VEGF/R therapies produce hypoxia-induced invasion and metastasis in a spontaneous mouse model of pancreatic neuroendocrine cancer (PanNET), RIP1-Tag2. Here, a novel vascular-targeting agent targeting semaphorin 4D (Sema4D) demonstrated impaired tumor growth and extended survival in the RIP1-Tag2 model. Surprisingly, although there was no induction of intratumor hypoxia by anti-Sema4D therapy, the increase in local invasion and distant metastases was comparable with the one produced by VEGFR inhibition. Mechanistically, the antitumor effect was due to an alteration in vascular function by modification of pericyte coverage involving platelet-derived growth factor B. On the other hand, the aggressive phenotype involved a macrophage-derived Sema4D signaling engagement, which induced their recruitment to the tumor invasive fronts and secretion of stromal cell-derived factor 1 (SDF1) that triggered tumor cell invasive behavior via CXCR4. A comprehensive clinical validation of the targets in different stages of PanNETs demonstrated the implication of both Sema4D and CXCR4 in tumor progression. Taken together, we demonstrate beneficial antitumor and prosurvival effects of anti-Sema4D antibody but also unravel a novel mechanism of tumor aggressivity. This mechanism implicates recruitment of Sema4D-positive macrophages to invasive fronts and their secretion of proinvasive molecules that ultimately induce local tumor invasion and distant metastasis in PanNETs. SIGNIFICANCE: An anti-semaphorin-4D vascular targeting agent demonstrates antitumor and prosurvival effects but also unravels a novel promalignant effect involving macrophage-derived SDF1 that promotes tumor invasion and metastasis, both in animal models and patients.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/79/20/5328/F1.large.jpg.See related commentary by Tamagnone and Franzolin, p. 5146.
Collapse
Affiliation(s)
- Iratxe Zuazo-Gaztelu
- Tumor Angiogenesis Group, ProCURE Research Program, Catalan Institute of Oncology, OncoBell Program, IDIBELL, Barcelona, Spain
| | - Marta Pàez-Ribes
- Tumor Angiogenesis Group, ProCURE Research Program, Catalan Institute of Oncology, OncoBell Program, IDIBELL, Barcelona, Spain
| | - Patricia Carrasco
- Tumor Angiogenesis Group, ProCURE Research Program, Catalan Institute of Oncology, OncoBell Program, IDIBELL, Barcelona, Spain
| | - Laura Martín
- Tumor Angiogenesis Group, ProCURE Research Program, Catalan Institute of Oncology, OncoBell Program, IDIBELL, Barcelona, Spain
| | - Adriana Soler
- Vascular Signaling Group, ProCURE Research Program, IDIBELL, Barcelona, Spain
| | - Mar Martínez-Lozano
- Tumor Angiogenesis Group, ProCURE Research Program, Catalan Institute of Oncology, OncoBell Program, IDIBELL, Barcelona, Spain
| | - Roser Pons
- Tumor Angiogenesis Group, ProCURE Research Program, Catalan Institute of Oncology, OncoBell Program, IDIBELL, Barcelona, Spain
| | - Judith Llena
- Vascular Signaling Group, ProCURE Research Program, IDIBELL, Barcelona, Spain
| | - Luis Palomero
- Tumor Angiogenesis Group, ProCURE Research Program, Catalan Institute of Oncology, OncoBell Program, IDIBELL, Barcelona, Spain
| | - Mariona Graupera
- Vascular Signaling Group, ProCURE Research Program, IDIBELL, Barcelona, Spain
| | - Oriol Casanovas
- Tumor Angiogenesis Group, ProCURE Research Program, Catalan Institute of Oncology, OncoBell Program, IDIBELL, Barcelona, Spain.
| |
Collapse
|
46
|
Yang S, Wang L, Pan W, Bayer W, Thoens C, Heim K, Dittmer U, Timm J, Wang Q, Yu Q, Luo J, Liu Y, Hofmann M, Thimme R, Zhang X, Chen H, Wang H, Feng X, Yang X, Lu Y, Lu M, Yang D, Liu J. MMP2/MMP9-mediated CD100 shedding is crucial for inducing intrahepatic anti-HBV CD8 T cell responses and HBV clearance. J Hepatol 2019; 71:685-698. [PMID: 31173811 DOI: 10.1016/j.jhep.2019.05.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 04/30/2019] [Accepted: 05/14/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND & AIMS CD100 is constitutively expressed on T cells and can be cleaved from the cell surface by matrix metalloproteases (MMPs) to become soluble CD100 (sCD100). Both membrane-bound CD100 (mCD100) and sCD100 have important immune regulatory functions that promote immune cell activation and responses. This study investigated the expression and role of mCD100 and sCD100 in regulating antiviral immune responses during HBV infection. METHODS mCD100 expression on T cells, sCD100 levels in the serum, and MMP expression in the liver and serum were analysed in patients with chronic HBV (CHB) and in HBV-replicating mice. The ability of sCD100 to mediate antigen-presenting cell maturation, HBV-specific T cell activation, and HBV clearance were analysed in HBV-replicating mice and patients with CHB. RESULTS Patients with CHB had higher mCD100 expression on T cells and lower serum sCD100 levels compared with healthy controls. Therapeutic sCD100 treatment resulted in the activation of DCs and liver sinusoidal endothelial cells, enhanced HBV-specific CD8 T cell responses, and accelerated HBV clearance, whereas blockade of its receptor CD72 attenuated the intrahepatic anti-HBV CD8 T cell response. Together with MMP9, MMP2 mediated mCD100 shedding from the T cell surface. Patients with CHB had significantly lower serum MMP2 levels, which positively correlated with serum sCD100 levels, compared with healthy controls. Inhibition of MMP2/9 activity resulted in an attenuated anti-HBV T cell response and delayed HBV clearance in mice. CONCLUSIONS MMP2/9-mediated sCD100 release has an important role in regulating intrahepatic anti-HBV CD8 T cell responses, thus mediating subsequent viral clearance during HBV infection. LAY SUMMARY Chronic hepatitis B virus (HBV) infection is a major public health problem worldwide. The clearance of HBV relies largely on an effective T cell immune response, which usually becomes dysregulated in chronic HBV infection. Our study provides a new mechanism to elucidate HBV persistence and a new target for developing immunotherapy strategies in patients chronically infected with HBV.
Collapse
Affiliation(s)
- Shangqing Yang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lu Wang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wen Pan
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wibke Bayer
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen 45147, Germany
| | - Christine Thoens
- Institute for Virology, Heinrich-Heine-University, University Hospital, Duesseldorf 40225, Germany
| | - Kathrin Heim
- Department of Medicine II, University Hospital Freiburg, Freiburg 79110, Germany; Faculty of Medicine, University of Freiburg, Freiburg 79110, Germany
| | - Ulf Dittmer
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen 45147, Germany
| | - Joerg Timm
- Institute for Virology, Heinrich-Heine-University, University Hospital, Duesseldorf 40225, Germany
| | - Qin Wang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qing Yu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jinzhuo Luo
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yanan Liu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Maike Hofmann
- Department of Medicine II, University Hospital Freiburg, Freiburg 79110, Germany; Faculty of Medicine, University of Freiburg, Freiburg 79110, Germany
| | - Robert Thimme
- Department of Medicine II, University Hospital Freiburg, Freiburg 79110, Germany; Faculty of Medicine, University of Freiburg, Freiburg 79110, Germany
| | - Xiaoyong Zhang
- Hepatology Unit and Key Laboratory for Organ Failure Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510551, China
| | - Hongtao Chen
- Department of Infectious Diseases, The Second Clinical Medical College, Jinan University, Shenzhen 510632, China
| | - Hua Wang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xuemei Feng
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xuecheng Yang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yinping Lu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Mengji Lu
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen 45147, Germany
| | - Dongliang Yang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jia Liu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
47
|
|
48
|
A high-sensitivity enzyme immunoassay for the quantification of soluble human semaphorin 4D in plasma. Anal Biochem 2019; 574:15-22. [DOI: 10.1016/j.ab.2019.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 02/15/2019] [Accepted: 03/11/2019] [Indexed: 12/13/2022]
|
49
|
Veyisoğlu G, Savran L, Narin F, Yılmaz HE, Avşar C, Sağlam M. Gingival crevicular fluid semaphorin 4D and peptidylarginine deiminase‐2 levels in periodontal health and disease. J Periodontol 2019; 90:973-981. [DOI: 10.1002/jper.18-0608] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 02/16/2019] [Accepted: 02/17/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Gözde Veyisoğlu
- Department of Periodontology, Faculty of DentistryBaskent University Ankara Turkey
- Department of Periodontology, Faculty of DentistryIzmir Katip Celebi University Izmir Turkey
| | - Levent Savran
- Department of Periodontology, Faculty of DentistryIzmir Katip Celebi University Izmir Turkey
| | - Figen Narin
- Department of Medical Biochemistry, School of MedicineIzmir Katip Celebi University Izmir Turkey
| | - Huriye Erbak Yılmaz
- Department of Medical Biochemistry, School of MedicineIzmir Katip Celebi University Izmir Turkey
| | - Candeğer Avşar
- Department of Medical Biochemistry, School of MedicineIzmir Katip Celebi University Izmir Turkey
| | - Mehmet Sağlam
- Department of Periodontology, Faculty of DentistryIzmir Katip Celebi University Izmir Turkey
| |
Collapse
|
50
|
Alebrahim D, Nayak M, Ward A, Ursomanno P, Shams R, Corsica A, Sleiman R, Fils KH, Silvestro M, Boytard L, Hadi T, Gelb B, Ramkhelawon B. Mapping Semaphorins and Netrins in the Pathogenesis of Human Thoracic Aortic Aneurysms. Int J Mol Sci 2019; 20:ijms20092100. [PMID: 31035427 PMCID: PMC6539328 DOI: 10.3390/ijms20092100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 12/22/2022] Open
Abstract
Thoracic aortic aneurysm (TAA) is a complex life-threatening disease characterized by extensive extracellular matrix (ECM) fragmentation and persistent inflammation, culminating in a weakened aorta. Although evidence suggests defective canonical signaling pathways in TAA, the full spectrum of mechanisms contributing to TAA is poorly understood, therefore limiting the scope of drug-based treatment. Here, we used a sensitive RNA sequencing approach to profile the transcriptomic atlas of human TAA. Pathway analysis revealed upregulation of key matrix-degrading enzymes and inflammation coincident with the axonal guidance pathway. We uncovered their novel association with TAA and focused on the expression of Semaphorins and Netrins. Comprehensive analysis of this pathway showed that several members were differentially expressed in TAA compared to controls. Immunohistochemistry revealed that Semaphorin4D and its receptor PlexinB1, similar to Netrin-1 proteins were highly expressed in damaged areas of TAA tissues but faintly detected in the vessel wall of non-diseased sections. It should be considered that the current study is limited by its sample size and the use of internal thoracic artery as control for TAA for the sequencing dataset. Our data determines important neuronal regulators of vascular inflammatory events and suggest Netrins and Semaphorins as potential key contributors of ECM degradation in TAA.
Collapse
Affiliation(s)
- Dornazsadat Alebrahim
- Division of Vascular Surgery, Department of Surgery, New York University Langone Health, New York, NY 10016, USA.
| | - Mangala Nayak
- Division of Vascular Surgery, Department of Surgery, New York University Langone Health, New York, NY 10016, USA.
| | - Alison Ward
- Department of Cardiothoracic Surgery, New York University Langone Health, New York, NY 10016, USA.
| | - Patricia Ursomanno
- Department of Cardiothoracic Surgery, New York University Langone Health, New York, NY 10016, USA.
| | - Rebecca Shams
- Division of Vascular Surgery, Department of Surgery, New York University Langone Health, New York, NY 10016, USA.
| | - Annanina Corsica
- Division of Vascular Surgery, Department of Surgery, New York University Langone Health, New York, NY 10016, USA.
| | - Rayan Sleiman
- Division of Vascular Surgery, Department of Surgery, New York University Langone Health, New York, NY 10016, USA.
| | - Kissinger Hyppolite Fils
- Division of Vascular Surgery, Department of Surgery, New York University Langone Health, New York, NY 10016, USA.
| | - Michele Silvestro
- Division of Vascular Surgery, Department of Surgery, New York University Langone Health, New York, NY 10016, USA.
| | - Ludovic Boytard
- Division of Vascular Surgery, Department of Surgery, New York University Langone Health, New York, NY 10016, USA.
| | - Tarik Hadi
- Division of Vascular Surgery, Department of Surgery, New York University Langone Health, New York, NY 10016, USA.
| | - Bruce Gelb
- Transplant Institute, New York University Langone Health, New York, NY 10016, USA.
| | - Bhama Ramkhelawon
- Division of Vascular Surgery, Department of Surgery, New York University Langone Health, New York, NY 10016, USA.
- Department of Cell Biology, New York University Langone Health, New York, NY 10016, USA.
| |
Collapse
|