1
|
Wang J, Jian K, Yang Q, Gu C, Sheng J, Zhou Y, Yin H, Zhang Z, Hua K, Zhang C. Retarding human adipose-derived MSCs senescence and promoting tendon repair using cell sheet engineering with a histone methyltransferase inhibitor. Sci Rep 2025; 15:6198. [PMID: 39979391 PMCID: PMC11842574 DOI: 10.1038/s41598-025-89234-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 02/04/2025] [Indexed: 02/22/2025] Open
Abstract
Mesenchymal stem cell (MSC) holds immense potential as candidates for cell therapy in the treatment of tendon injuries due to their remarkable ability for multiple cell differentiation. However, the proliferative and differentiation capacity of MSCs has been limited by cellular senescence during the process of expanding culture. Therefore, in this study, our aim was to maintain the beneficial properties of MSCs. We found that SETD7, a histone methyltransferase, was upregulated during ex vivo expansion of human adipose-derived mesenchymal stem cells (hAD-MSCs). Pharmacological inhibition of SETD7 with PFI-2 in hAD-MSCs cultures delayed their senescence, as evident by the diminished expression of senescent-associated genes and the maintenance of their proliferation and differentiation capacity. Upon transplantation, cell sheets derived from hAD-MSCs expanded with PFI-2 were better able to accelerate tendon repair. Therefore, the present findings reveal that SETD7 is an important target to improve the expansion of hAD-MSCs by delaying senescence, which is importance for the development of efficient stem cell-based therapeutic approaches.
Collapse
Affiliation(s)
- Junjuan Wang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, 310000, China
| | - Ke Jian
- Department of Biomedical Engineering, College of Biology, Hunan University, Changsha, 410082, China
| | - Qing Yang
- Department of Biomedical Engineering, College of Biology, Hunan University, Changsha, 410082, China
| | - Chunyi Gu
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, 310000, China
| | - Jiajun Sheng
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, 310000, China
| | - Yan Zhou
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, 310000, China
| | - Hantian Yin
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, 310000, China
| | - Zhihan Zhang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, 310000, China
| | - Kouzhen Hua
- Department of Anatomy, School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, 311300, China.
| | - Can Zhang
- Department of Biomedical Engineering, College of Biology, Hunan University, Changsha, 410082, China.
| |
Collapse
|
2
|
Zhang Z, Li M, Hou Y, Huang T, Zhang B, Lin Q, Shao G. SETD7 promotes LC3B methylation and degradation in ovarian cancer. J Biol Chem 2025; 301:108134. [PMID: 39725038 PMCID: PMC11791264 DOI: 10.1016/j.jbc.2024.108134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/08/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024] Open
Abstract
Microtubule-associated protein 1 light chain 3 (LC3) is a key autophagy-related protein involved in regulating autophagosome formation and autophagy activity. Post-translational modifications of LC3 are necessary to modulate its function. However, LC3 protein methylation and its physiological significance have not yet been elucidated. Here, we show that SET domain containing lysine methyltransferase 7 (SETD7) interacts with LC3B, a common isoform of LC3, and methylates LC3B at lysine 51 (K51). SETD7-mediated methylation of LC3B promotes ubiquitination and degradation of LC3B, resulting in reduced autophagosome formation. Furthermore, SETD7 exerts a tumor-promotive function in ovarian cancer (OC) cells in a K51 methylation-dependent manner. Collectively, our data define a novel modification of LC3B and highlight the oncogenic effect of SETD7 via mediating LC3B methylation and degradation.
Collapse
Affiliation(s)
- Ziwei Zhang
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Mingyang Li
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yanan Hou
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ting Huang
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Bowen Zhang
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Qiong Lin
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Genbao Shao
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China.
| |
Collapse
|
3
|
Meng Y, Huang R. Decoding the protein methylome: Identification, validation, and functional insights. Bioorg Med Chem 2025; 118:118056. [PMID: 39754853 PMCID: PMC11735303 DOI: 10.1016/j.bmc.2024.118056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/24/2024] [Accepted: 12/24/2024] [Indexed: 01/06/2025]
Abstract
Protein methylation regulates diverse cellular processes including gene expression and DNA repair. This review discusses the methods of identifying and validating substrates for protein methyltransferases (MTases), as well as the biological roles of methylation. Meanwhile, we outline continued efforts necessary to fully map MTase-substrate pairs and uncover the complex regulatory roles of protein methylation in cellular function.
Collapse
Affiliation(s)
- Ying Meng
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Drug Discovery, Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, United States
| | - Rong Huang
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Drug Discovery, Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, United States.
| |
Collapse
|
4
|
Nevzorov IA, Ivanikhina AV, Parfenyev SE, Nazarov AN, Fedorova OA, Shuvalov OY, Barlev NA, Daks AA. Methyltransferase Set7/9 Regulates Autophagy under Genotoxic Stress in Human Lung Cancer Cells. CELL AND TISSUE BIOLOGY 2024; 18:654-662. [DOI: 10.1134/s1990519x2470055x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/03/2024] [Accepted: 05/03/2024] [Indexed: 01/03/2025]
|
5
|
Ren D, Chen X, Liu H, Li M, Zheng L, Yong P, Huang M, Shi X, Xu Y, Chen S, Zhang Y, Zhu W. Exploring the efficacy of (R)-PFI-2 hydrochloride in mitigating noise-induced hearing loss by targeting NLRP3 inflammasome and NF-κB pathway to reduce inner ear inflammation. J Otol 2024; 19:200-206. [PMID: 39776548 PMCID: PMC11701333 DOI: 10.1016/j.joto.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/19/2024] [Accepted: 07/03/2024] [Indexed: 01/11/2025] Open
Abstract
Noise-induced hearing loss (NIHL) is primarily driven by inflammatory processes within the cochlea, where noise exposure triggers the activation of the NOD-like receptor protein 3 (NLRP3) inflammasome, leading to an inflammatory cascade. The interaction between increased NLRP3 expression and NF-κB activity can further amplify cochlear inflammation. Our findings reveal that (R)-PFI-2 hydrochloride, a selective inhibitor of the SETD7 enzyme, effectively inhibits the activation of the cochlear NF-κB pathway, suppresses the release of pro-inflammatory factors, and prevents inflammasome assembly. This intervention disrupts the perpetuating cycle of inflammation, thereby alleviating damage to cochlear hair cells attributed to acoustic trauma. Consequently, (R)-PFI-2 hydrochloride emerges as a promising pharmacological candidate for NIHL, targeting and moderating the excessive immune and inflammatory responses implicated in the pathology of hearing loss.
Collapse
Affiliation(s)
- Dawei Ren
- Department of Otorhinolaryngology, the First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Xuemin Chen
- Department of Otorhinolaryngology, No. 971 Hospital of People's Liberation Army Navy, Qingdao, 266000, Shandong Province, China
- Senior Department of Otolaryngology-Head & Neck Surgery, Chinese PLA General Hospital, National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, 100083, China
| | - Hongdong Liu
- Senior Department of Otolaryngology-Head & Neck Surgery, Chinese PLA General Hospital, National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, 100083, China
| | - Menghua Li
- Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou, 221000, Jiangsu, China
| | - Liting Zheng
- Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou, 221000, Jiangsu, China
| | - Pan Yong
- Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou, 221000, Jiangsu, China
| | - Mohe Huang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, Hainan Provine, China
- Song Li's Academician Workstation of Hainan University, School of Pharmaceutical Sciences, Yazhou Bay, Sanya,572000, Hainan Provine, China
| | - Xi Shi
- Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou, 221000, Jiangsu, China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, Hainan Provine, China
- Song Li's Academician Workstation of Hainan University, School of Pharmaceutical Sciences, Yazhou Bay, Sanya,572000, Hainan Provine, China
| | - Yice Xu
- Department of Otolaryngology-Head and Neck Surgery, The Central Hospital of Xiaogan, Xiaogan, 432000, Hubei, China
| | - Shujin Chen
- ENT Department, The People's Hospital of Rongchang District, Chongqing, 402460, China
| | - Yan Zhang
- Department of Otorhinolaryngology, the First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Wei Zhu
- Department of Otorhinolaryngology, the First Hospital of Jilin University, Changchun, 130021, Jilin, China
| |
Collapse
|
6
|
Cao D, Sun W, Li X, Jian L, Zhou X, Bode AM, Luo X. The role of novel protein acylations in cancer. Eur J Pharmacol 2024; 979:176841. [PMID: 39033839 DOI: 10.1016/j.ejphar.2024.176841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/23/2024]
Abstract
Novel protein acylations are a class of protein post-translational modifications, such as lactylation, succinylation, crotonylation, palmitoylation, and β-hydroxybutyrylation. These acylation modifications are common in prokaryotes and eukaryotes and play pivotal roles in various key cellular processes by regulating gene transcription, protein subcellular localization, stability and activity, protein-protein interactions, and protein-DNA interactions. The diversified acylations are closely associated with various human diseases, especially cancer. In this review, we provide an overview of the distinctive characteristics, effects, and regulatory factors of novel protein acylations. We also explore the various mechanisms through which novel protein acylations are involved in the occurrence and progression of cancer. Furthermore, we discuss the development of anti-cancer drugs targeting novel acylations, offering promising avenues for cancer treatment.
Collapse
Affiliation(s)
- Dan Cao
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
| | - Wenxuan Sun
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
| | - Xinyi Li
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
| | - Lian Jian
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
| | - Xinran Zhou
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA
| | - Xiangjian Luo
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China; Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China; Molecular Imaging Research Center of Central South University, Changsha, Hunan, 410078, China; Key Laboratory of Biological Nanotechnology of National Health Commission, Central South University, Changsha, Hunan, 410078, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410078, China.
| |
Collapse
|
7
|
Peng L, Shi Y, Deng J, Chen J, Xiang P, Zhong X. DANCR maintained colon epithelial homeostasis by regulating the TNFα/NF-κB pathway. Biochem Biophys Res Commun 2024; 723:150176. [PMID: 38820627 DOI: 10.1016/j.bbrc.2024.150176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/02/2024]
Abstract
Epithelial homeostasis is fundamental for the physiological functions of colon tissue. Dysregulation of colon epithelial structure leads to abnormal immune responses and diseases such as inflammatory bowel disease. In this work we found long non-coding RNA DANCR was a novel regulator to colon epithelial homeostasis. Silencing DANCR resulted in decreased expression of epithelial barrier proteins and enhanced susceptibility to TNFα stimulation, which was accompanied by hyperactivation of the NF-κB pathway. Mechanistical studies revealed DANCR modulated the expression of a protein methyltransferase SET7 to suppress responses to TNFα, as well as the activity of NF-κB pathway. In summary, DANCR regulated colon epithelial homeostasis through modulating the TNFα/NF-κB axis. These findings cast light on the discovery of novel regulators to colon epithelial homeostasis and added new evidence to the physiological functions of DANCR.
Collapse
Affiliation(s)
- Limei Peng
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Center for Stem Cell Biology and Tissue Engineering, Zhongshan School of Medicine, Sun Yat-Sen University, 74 Zhongshan Road 2nd, Guangzhou, 510080, China
| | - Yingpeng Shi
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Center for Stem Cell Biology and Tissue Engineering, Zhongshan School of Medicine, Sun Yat-Sen University, 74 Zhongshan Road 2nd, Guangzhou, 510080, China
| | - Jiacheng Deng
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Center for Stem Cell Biology and Tissue Engineering, Zhongshan School of Medicine, Sun Yat-Sen University, 74 Zhongshan Road 2nd, Guangzhou, 510080, China
| | - Jieyi Chen
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Center for Stem Cell Biology and Tissue Engineering, Zhongshan School of Medicine, Sun Yat-Sen University, 74 Zhongshan Road 2nd, Guangzhou, 510080, China
| | - Peng Xiang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Center for Stem Cell Biology and Tissue Engineering, Zhongshan School of Medicine, Sun Yat-Sen University, 74 Zhongshan Road 2nd, Guangzhou, 510080, China
| | - Xiaomin Zhong
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Center for Stem Cell Biology and Tissue Engineering, Zhongshan School of Medicine, Sun Yat-Sen University, 74 Zhongshan Road 2nd, Guangzhou, 510080, China.
| |
Collapse
|
8
|
Daks A, Parfenyev S, Shuvalov O, Fedorova O, Nazarov A, Melino G, Barlev NA. Lysine-specific methyltransferase Set7/9 in stemness, differentiation, and development. Biol Direct 2024; 19:41. [PMID: 38812048 PMCID: PMC11137904 DOI: 10.1186/s13062-024-00484-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/21/2024] [Indexed: 05/31/2024] Open
Abstract
The enzymes performing protein post-translational modifications (PTMs) form a critical post-translational regulatory circuitry that orchestrates literally all cellular processes in the organism. In particular, the balance between cellular stemness and differentiation is crucial for the development of multicellular organisms. Importantly, the fine-tuning of this balance on the genetic level is largely mediated by specific PTMs of histones including lysine methylation. Lysine methylation is carried out by special enzymes (lysine methyltransferases) that transfer the methyl group from S-adenosyl-L-methionine to the lysine residues of protein substrates. Set7/9 is one of the exemplary protein methyltransferases that however, has not been fully studied yet. It was originally discovered as histone H3 lysine 4-specific methyltransferase, which later was shown to methylate a number of non-histone proteins that are crucial regulators of stemness and differentiation, including p53, pRb, YAP, DNMT1, SOX2, FOXO3, and others. In this review we summarize the information available to date on the role of Set7/9 in cellular differentiation and tissue development during embryogenesis and in adult organisms. Finally, we highlight and discuss the role of Set7/9 in pathological processes associated with aberrant cellular differentiation and self-renewal, including the formation of cancer stem cells.
Collapse
Affiliation(s)
- Alexandra Daks
- Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russian Federation, 194064.
| | - Sergey Parfenyev
- Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russian Federation, 194064
| | - Oleg Shuvalov
- Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russian Federation, 194064
| | - Olga Fedorova
- Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russian Federation, 194064
| | - Alexander Nazarov
- Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russian Federation, 194064
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Nickolai A Barlev
- Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russian Federation, 194064.
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, 001000, Astana, Kazakhstan.
| |
Collapse
|
9
|
Shi Y, Wang Z, Shao Y, Guang Q, Zhang J, Liu B, Wu C, Wang Y, Sui P. Combined SET7/9 and CDK4 inhibition act synergistically against osteosarcoma. Biochem Biophys Res Commun 2024; 708:149808. [PMID: 38520914 DOI: 10.1016/j.bbrc.2024.149808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 03/25/2024]
Abstract
Osteosarcoma is the most common malignant bone tumor. It has a poor prognosis because of a lack of therapeutic targets and strategies. The SET domain-containing lysine-specific methyltransferase, SET7/9, has various functions in different cancer types in tissue-type and signaling context-dependent manners. The role of SET7/9 in osteosarcoma cells is currently controversial and its potential as a therapeutic candidate in osteosarcoma is unknown. In the present study, SET7/9 inhibition or ablation suppressed osteosarcoma cell proliferation by causing G1 arrest. Mechanistically, SET7/9 inhibition disrupted the interaction between cyclin-dependent kinase 4 (CDK4) and cyclin D1, which affected CDK4-cyclin D1 complex function, leading to decreased phosphorylation of retinoblastoma protein. CDK4 was overexpressed in osteosarcoma tissues and was closely related to a poor prognosis in patients with osteosarcoma. We therefore hypothesized that SET7/9 inhibition might increase the sensitivity of osteosarcoma cells to CDK4 inhibitors, potentially decreasing the risk of adverse effects of CDK4 inhibitors. The combination of SET7/9 and CDK4 inhibition enabled dose reductions of both inhibitors and had a synergistic effect against osteosarcoma growth in vivo. Collectively, these findings indicate that SET7/9 plays an oncogenic role in osteosarcoma by regulating CDK4-cyclin D1 complex interaction and function. The combination of SET7/9 and CDK4 inhibition may thus provide a novel effective therapeutic strategy for osteosarcoma with no significant toxicity.
Collapse
Affiliation(s)
- Yingxu Shi
- Department of Orthopedics, Affiliated Hospital of Jining Medical University, Jining, Shandong, 272007, China
| | - Zhonghao Wang
- Department of Clinical Medicine, Jining Medical University, Jining, Shandong, 272067, China
| | - Yiming Shao
- Department of Clinical Medicine, Jining Medical University, Jining, Shandong, 272067, China
| | - Qianqian Guang
- Department of Pathology, Affiliated Hospital of Jining Medical University, No. 89 Guhuai Road, Jining, 272029, Shandong, China
| | - Jian Zhang
- Department of Orthopedics, Affiliated Hospital of Jining Medical University, Jining, Shandong, 272007, China
| | - Baorui Liu
- Department of Orthopedics, Affiliated Hospital of Jining Medical University, Jining, Shandong, 272007, China
| | - Chunshen Wu
- Department of Orthopedics, Affiliated Hospital of Jining Medical University, Jining, Shandong, 272007, China
| | - Yexin Wang
- Department of Orthopedics, Affiliated Hospital of Jining Medical University, Jining, Shandong, 272007, China.
| | - Ping Sui
- Department of Clinical Medicine, Jining Medical University, Jining, Shandong, 272067, China.
| |
Collapse
|
10
|
Zhang M, Cai F, Guo J, Liu S, Ma G, Cai M, Zhang R, Deng J. ACAT2 suppresses the ubiquitination of YAP1 to enhance the proliferation and metastasis ability of gastric cancer via the upregulation of SETD7. Cell Death Dis 2024; 15:297. [PMID: 38670954 PMCID: PMC11053133 DOI: 10.1038/s41419-024-06666-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/06/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024]
Abstract
The contributions of aberrantly expressed metabolic enzymes to gastric cancer (GC) initiation and progression have been widely appreciated in recent years. Acetyl-CoA acetyltransferase 2 (ACAT2) is one member of the acetyl- CoA thiolase family. Previous studies demonstrated that ACAT2 either promotes or suppresses tumor progression in different conditions. However, the function and mechanisms of ACAT2 in GC remain unknown. We found that the expression of this enzyme was significantly increased in GC tissues compared with normal counterparts, which prompted us to further investigate the roles of this protein in GC biology. In vitro functional studies showed that ACAT2 knockdown markedly halted the proliferation and the motility of GC cells; these functions favoring malignant phenotypes of GC cells were further validated in animal experiments. Mechanistically, ACAT2 depletion significantly reduced the transcription of SETD7, which is a histone methyltransferase and plays critical roles in GC cells. We found that the pro-tumoral functions of ACAT2 were largely dependent on SETD7. Moreover, SETD7 decreased the ubiquitination level of Yes-associated protein 1 (YAP1), thereby protecting YAP1 from proteasome degradation. Increased YAP1 protein expression remarkably activated the YAP1/TAZ-TEAD1 signaling pathway, which further boosted the malignant phenotypes in GC cells. In conclusion, these findings highlight the pro-tumoral functions and molecular underpinnings of ACAT2 in GC cells, and suggest that ACAT2 could be a promising target in GC treatment.
Collapse
Affiliation(s)
- Mengmeng Zhang
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, PR China
| | - Fenglin Cai
- Department of Biochemistry and Molecular Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300060, PR China
| | - Jiamei Guo
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, PR China
| | - Siya Liu
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, PR China
| | - Gang Ma
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, PR China
| | - Mingzhi Cai
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, PR China
| | - Rupeng Zhang
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, PR China
| | - Jingyu Deng
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, PR China.
| |
Collapse
|
11
|
Wang J, Tan S, Zhang Y, Xu J, Li Y, Cheng Q, Ding C, Liu X, Chang J. Set7/9 aggravates ischemic brain injury via enhancing glutamine metabolism in a blocking Sirt5 manner. Cell Death Differ 2024; 31:511-523. [PMID: 38365969 PMCID: PMC11043079 DOI: 10.1038/s41418-024-01264-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/18/2024] Open
Abstract
The aberrant expression of methyltransferase Set7/9 plays a role in various diseases. However, the contribution of Set7/9 in ischemic stroke remains unclear. Here, we show ischemic injury results in a rapid elevation of Set7/9, which is accompanied by the downregulation of Sirt5, a deacetylase reported to protect against injury. Proteomic analysis identifies the decrease of chromobox homolog 1 (Cbx1) in knockdown Set7/9 neurons. Mechanistically, Set7/9 promotes the binding of Cbx1 to H3K9me2/3 and forms a transcription repressor complex at the Sirt5 promoter, ultimately repressing Sirt5 transcription. Thus, the deacetylation of Sirt5 substrate, glutaminase, which catalyzes the hydrolysis of glutamine to glutamate and ammonia, is decreased, promoting glutaminase expression and triggering excitotoxicity. Blocking Set7/9 eliminates H3K9me2/3 from the Sirt5 promoter and normalizes Sirt5 expression and Set7/9 knockout efficiently ameliorates brain ischemic injury by reducing the accumulation of ammonia and glutamate in a Sirt5-dependent manner. Collectively, the Set7/9-Sirt5 axis may be a promising epigenetic therapeutic target.
Collapse
Affiliation(s)
- Jinghuan Wang
- Shanghai Key Labortary of Vascular Lesions Regulation and Remodeling, Shanghai Pudong Hospital, Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai, 201203, China
| | - Subei Tan
- Shanghai Key Labortary of Vascular Lesions Regulation and Remodeling, Shanghai Pudong Hospital, Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai, 201203, China
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Zhongshan Hospital, Fudan University, Shanghai, 201203, China
| | - Yuyu Zhang
- Shanghai Key Labortary of Vascular Lesions Regulation and Remodeling, Shanghai Pudong Hospital, Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai, 201203, China
| | - Jie Xu
- Shanghai Key Labortary of Vascular Lesions Regulation and Remodeling, Shanghai Pudong Hospital, Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai, 201203, China
| | - Yuhui Li
- Shanghai Key Labortary of Vascular Lesions Regulation and Remodeling, Shanghai Pudong Hospital, Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai, 201203, China
| | - Qianwen Cheng
- Shanghai Key Labortary of Vascular Lesions Regulation and Remodeling, Shanghai Pudong Hospital, Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai, 201203, China
| | - Chen Ding
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Zhongshan Hospital, Fudan University, Shanghai, 201203, China.
| | - Xinhua Liu
- Shanghai Key Labortary of Vascular Lesions Regulation and Remodeling, Shanghai Pudong Hospital, Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai, 201203, China.
| | - Jun Chang
- Shanghai Key Labortary of Vascular Lesions Regulation and Remodeling, Shanghai Pudong Hospital, Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai, 201203, China.
| |
Collapse
|
12
|
Geiger LT, Balouek JA, Farrelly LA, Chen AS, Tang M, Bennett SN, Nestler EJ, Garcia BA, Maze I, Peña CJ. Early-life stress alters chromatin modifications in VTA to prime stress sensitivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.14.584631. [PMID: 38559030 PMCID: PMC10980038 DOI: 10.1101/2024.03.14.584631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Early-life stress increases sensitivity to subsequent stress, which has been observed among humans, other animals, at the level of cellular activity, and at the level of gene expression. However, the molecular mechanisms underlying such long-lasting sensitivity are poorly understood. We tested the hypothesis that persistent changes in transcription and transcriptional potential were maintained at the level of the epigenome, through changes in chromatin. We used a combination of bottom-up mass spectrometry, viral-mediated epigenome-editing, behavioral quantification, and RNA-sequencing in a mouse model of early-life stress, focusing on the ventral tegmental area (VTA), a brain region critically implicated in motivation, reward learning, stress response, and mood and drug disorders. We find that early-life stress in mice alters histone dynamics in VTA and that a majority of these modifications are associated with an open chromatin state that would predict active, primed, or poised gene expression, including enriched histone-3 lysine-4 methylation and the H3K4 monomethylase Setd7. Mimicking ELS through over-expression of Setd7 and enrichment of H3K4me1 in VTA recapitulates ELS-induced behavioral and transcriptional hypersensitivity to future stress. These findings enrich our understanding of the epigenetic mechanisms linking early-life environmental experiences to long-term alterations in stress reactivity within the brain's reward circuitry, with implications for understanding and potentially treating mood and anxiety disorders in humans.
Collapse
|
13
|
Guo P, Lim RC, Rajawasam K, Trinh T, Sun H, Zhang H. A methylation-phosphorylation switch controls EZH2 stability and hematopoiesis. eLife 2024; 13:e86168. [PMID: 38346162 PMCID: PMC10901513 DOI: 10.7554/elife.86168] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/11/2024] [Indexed: 02/29/2024] Open
Abstract
The Polycomb Repressive Complex 2 (PRC2) methylates H3K27 to regulate development and cell fate by transcriptional silencing. Alteration of PRC2 is associated with various cancers. Here, we show that mouse Kdm1a deletion causes a dramatic reduction of PRC2 proteins, whereas mouse null mutation of L3mbtl3 or Dcaf5 results in PRC2 accumulation and increased H3K27 trimethylation. The catalytic subunit of PRC2, EZH2, is methylated at lysine 20 (K20), promoting EZH2 proteolysis by L3MBTL3 and the CLR4DCAF5 ubiquitin ligase. KDM1A (LSD1) demethylates the methylated K20 to stabilize EZH2. K20 methylation is inhibited by AKT-mediated phosphorylation of serine 21 in EZH2. Mouse Ezh2K20R/K20R mutants develop hepatosplenomegaly associated with high GFI1B expression, and Ezh2K20R/K20R mutant bone marrows expand hematopoietic stem cells and downstream hematopoietic populations. Our studies reveal that EZH2 is regulated by methylation-dependent proteolysis, which is negatively controlled by AKT-mediated S21 phosphorylation to establish a methylation-phosphorylation switch to regulate the PRC2 activity and hematopoiesis.
Collapse
Affiliation(s)
- Pengfei Guo
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, United States
| | - Rebecca C Lim
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, United States
| | - Keshari Rajawasam
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, United States
| | - Tiffany Trinh
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, United States
| | - Hong Sun
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, United States
| | - Hui Zhang
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, United States
| |
Collapse
|
14
|
Fang Z, Huang T, Chai X, Zhan J, Zhu Q, Sun P, Zeng D, Liu C, Jiang B, He L, Zhou X, Liu M, Zhang X. Protein methylation characterization using NMR without isotopic labeling. Talanta 2024; 268:125289. [PMID: 37862753 DOI: 10.1016/j.talanta.2023.125289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/15/2023] [Accepted: 10/06/2023] [Indexed: 10/22/2023]
Abstract
Protein methylation is crucial in epigenetics, and targeting the involved methyltransferases shows great potential for therapeutic intervention with several inhibitors in clinical trials for oncology indications. Therefore, characterization of protein methylation is essential for understanding the methyltransferase function and discovering chemical inhibitors and antagonists. While NMR has been used to measure methylation rates, isotopic labeling of protein or methyl donors can be costly and cannot characterize demethylation of proteins extracted from natural sources. Our method employs a four-quantum filter 1H-13C experiment that selectively detects methyl groups, providing a simple way to characterize methylation and demethylation features of methyltransferases and demethylases, respectively, without requiring isotopic labeling. In our experiments, we successfully observed the methylation of H3 under lysate from various cells and tissues of mice with cancerous growth. The results revealed that H3 undergoes both mono- and dimethylation in all the tested lysates, but at varying rates and degrees. Significantly lower H3 methylation rates and levels were observed in both cervical tumor and breast tumor lysates compared with the corresponding cancerous cells and healthy cells lysates. These findings highlight the variability of histone H3 methylation patterns among healthy cells, cancerous cells, tumor tissues, and different tumor types, and suggest that this method has great potential in facilitating the development of effective interventions against these diseases. By characterizing the methylation features of suspected tumors or areas of concern, it provides valuable insights into the underlying mechanisms of cancer development and aids in identifying potential targets for therapeutic interventions.
Collapse
Affiliation(s)
- Zhongpei Fang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tao Huang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Xin Chai
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianhua Zhan
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Qinjun Zhu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Peng Sun
- Philips Healthcare, Wuhan, 430071, China
| | - Danyun Zeng
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Caixiang Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bin Jiang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China; Optics Valley Laboratory, Wuhan, 430074, China
| | - Lichun He
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Zhou
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China; Optics Valley Laboratory, Wuhan, 430074, China
| | - Maili Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China; Optics Valley Laboratory, Wuhan, 430074, China.
| | - Xu Zhang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China; Optics Valley Laboratory, Wuhan, 430074, China.
| |
Collapse
|
15
|
Koryakov DE. Diversity and functional specialization of H3K9-specific histone methyltransferases. Bioessays 2024; 46:e2300163. [PMID: 38058121 DOI: 10.1002/bies.202300163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 12/08/2023]
Abstract
Histone modifications play a critical role in the control over activities of the eukaryotic genome; among these chemical alterations, the methylation of lysine K9 in histone H3 (H3K9) is one of the most extensively studied. The number of enzymes capable of methylating H3K9 varies greatly across different organisms: in fission yeast, only one such methyltransferase is present, whereas in mammals, 10 are known. If there are several such enzymes, each of them must have some specific function, and they can interact with one another. Thus arises a complex system of interchangeability, "division of labor," and contacts with each other and with diverse proteins. Histone methyltransferases specialize in the number of methyl groups that they attach and have different intracellular localizations as well as different distributions on chromosomes. Each also shows distinct binding to different types of sequences and has a specific set of nonhistone substrates.
Collapse
Affiliation(s)
- Dmitry E Koryakov
- Lab of Molecular Cytogenetics, Institute of Molecular and Cellular Biology, Novosibirsk, Russia
| |
Collapse
|
16
|
Sun X, Zhu C, Liu W, Wang Z, Chen X, Bai Y, Xiao W, Liu X. Molecular characterization and expression of Megalobrama amblycephala (Wuchang bream) lysine monomethylase set7 and its potential role in hypoxia adaptation. AQUACULTURE REPORTS 2023; 33:101774. [DOI: 10.1016/j.aqrep.2023.101774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
17
|
Porzberg MRB, Lenstra DC, Damen E, Blaauw RH, Rutjes FPJT, Wegert A, Mecinović J. (R)-PFI-2 Analogues as Substrates and Inhibitors of Histone Lysine Methyltransferase SETD7. ChemMedChem 2023; 18:e202300457. [PMID: 37872124 DOI: 10.1002/cmdc.202300457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 10/25/2023]
Abstract
(R)-PFI-2 is a histone substrate-competitive inhibitor of the human histone lysine monomethyltransferase SETD7. Aimed at developing potent inhibitors of SETD7 that can also act as small molecule substrates, we replaced the pyrrolidine ring of (R)-PFI-2 with several side chains bearing nucleophilic functional groups. We explored the inhibitory activity of 20 novel (R)-PFI-2 analogues, and found that the most potent analogue has a hydroxyethyl side chain (7). SETD7's ability to catalyse methylation of (R)-PFI-2-based small molecules was evaluated by mass spectrometric assays, and we observed efficient methylation of analogues bearing lysine mimicking nucleophilic amines. The optimal side chain was found to be an aminoethyl group (1), which was surprisingly also dimethylated by SETD7. The work demonstrates that small molecules can act as both substrates and inhibitors of biomedically important SETD7.
Collapse
Affiliation(s)
- Miriam R B Porzberg
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen (The, Netherlands
| | - Danny C Lenstra
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen (The, Netherlands
| | - Eddy Damen
- Symeres Netherlands B.V., Kerkenbos 1013, 6546 BB, Nijmegen (The, Netherlands
| | - Richard H Blaauw
- Symeres Netherlands B.V., Kerkenbos 1013, 6546 BB, Nijmegen (The, Netherlands
| | - Floris P J T Rutjes
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen (The, Netherlands
| | - Anita Wegert
- Symeres Netherlands B.V., Kerkenbos 1013, 6546 BB, Nijmegen (The, Netherlands
| | - Jasmin Mecinović
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark
| |
Collapse
|
18
|
Serdyukova K, Swearingen AR, Coradin M, Nevo M, Tran H, Bajric E, Brumbaugh J. Leveraging dominant-negative histone H3 K-to-M mutations to study chromatin during differentiation and development. Development 2023; 150:dev202169. [PMID: 37846748 PMCID: PMC10617616 DOI: 10.1242/dev.202169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Histone modifications are associated with regulation of gene expression that controls a vast array of biological processes. Often, these associations are drawn by correlating the genomic location of a particular histone modification with gene expression or phenotype; however, establishing a causal relationship between histone marks and biological processes remains challenging. Consequently, there is a strong need for experimental approaches to directly manipulate histone modifications. A class of mutations on the N-terminal tail of histone H3, lysine-to-methionine (K-to-M) mutations, was identified as dominant-negative inhibitors of histone methylation at their respective and specific residues. The dominant-negative nature of K-to-M mutants makes them a valuable tool for studying the function of specific methylation marks on histone H3. Here, we review recent applications of K-to-M mutations to understand the role of histone methylation during development and homeostasis. We highlight important advantages and limitations that require consideration when using K-to-M mutants, particularly in a developmental context.
Collapse
Affiliation(s)
- Ksenia Serdyukova
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO 80045, USA
- Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Alison R. Swearingen
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO 80045, USA
- Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Mariel Coradin
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO 80045, USA
- Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Mika Nevo
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO 80045, USA
- Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Huong Tran
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO 80045, USA
- Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Emir Bajric
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO 80045, USA
- Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Justin Brumbaugh
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO 80045, USA
- Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
19
|
Chiang CY, Fan S, Zheng H, Guo W, Zheng Z, Sun Y, Zhong C, Zeng J, Li S, Zhang M, Xiao T, Zheng D. Methylation of KRAS by SETD7 promotes KRAS degradation in non-small cell lung cancer. Cell Rep 2023; 42:113003. [PMID: 37682707 DOI: 10.1016/j.celrep.2023.113003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 06/18/2023] [Accepted: 08/02/2023] [Indexed: 09/10/2023] Open
Abstract
Oncogenic KRAS mutations are a key driver for initiation and progression in non-small cell lung cancer (NSCLC). However, how post-translational modifications (PTMs) of KRAS, especially methylation, modify KRAS activity remain largely unclear. Here, we show that SET domain containing histone lysine methyltransferase 7 (SETD7) interacts with KRAS and methylates KRAS at lysines 182 and 184. SETD7-mediated methylation of KRAS leads to degradation of KRAS and attenuation of the RAS/MEK/ERK signaling cascade, endowing SETD7 with a potent tumor-suppressive role in NSCLC, both in vitro and in vivo. Mechanistically, RABGEF1, a ubiquitin E3 ligase of KRAS, is recruited and promotes KRAS degradation in a K182/K184 methylation-dependent manner. Notably, SETD7 is inversely correlated with KRAS at the protein level in clinical NSCLC tissues. Low SETD7 or RABGEF1 expression is associated with poor prognosis in lung adenocarcinoma patients. Altogether, our results define a tumor-suppressive function of SETD7 that operates via modulating KRAS methylation and degradation.
Collapse
Affiliation(s)
- Cheng-Yao Chiang
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, International Cancer Center, Department of Cell Biology and Genetics, Shenzhen University Medical School, Thoracic Surgery Department of the First Affiliated Hospital, Shenzhen University, Shenzhen 518055, China
| | - Songqing Fan
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Hongmei Zheng
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Wenjun Guo
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, International Cancer Center, Department of Cell Biology and Genetics, Shenzhen University Medical School, Thoracic Surgery Department of the First Affiliated Hospital, Shenzhen University, Shenzhen 518055, China
| | - Zehan Zheng
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, International Cancer Center, Department of Cell Biology and Genetics, Shenzhen University Medical School, Thoracic Surgery Department of the First Affiliated Hospital, Shenzhen University, Shenzhen 518055, China
| | - Yihua Sun
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Chuanqi Zhong
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Juan Zeng
- School of Biomedical Engineering, Guangdong Medical University, Dongguan, Guangdong 523808, China
| | - Shuaihu Li
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, International Cancer Center, Department of Cell Biology and Genetics, Shenzhen University Medical School, Thoracic Surgery Department of the First Affiliated Hospital, Shenzhen University, Shenzhen 518055, China
| | - Min Zhang
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, International Cancer Center, Department of Cell Biology and Genetics, Shenzhen University Medical School, Thoracic Surgery Department of the First Affiliated Hospital, Shenzhen University, Shenzhen 518055, China
| | - Tian Xiao
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, International Cancer Center, Department of Cell Biology and Genetics, Shenzhen University Medical School, Thoracic Surgery Department of the First Affiliated Hospital, Shenzhen University, Shenzhen 518055, China.
| | - Duo Zheng
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, International Cancer Center, Department of Cell Biology and Genetics, Shenzhen University Medical School, Thoracic Surgery Department of the First Affiliated Hospital, Shenzhen University, Shenzhen 518055, China.
| |
Collapse
|
20
|
Zhu JY, van de Leemput J, Han Z. The Roles of Histone Lysine Methyltransferases in Heart Development and Disease. J Cardiovasc Dev Dis 2023; 10:305. [PMID: 37504561 PMCID: PMC10380575 DOI: 10.3390/jcdd10070305] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 07/29/2023] Open
Abstract
Epigenetic marks regulate the transcriptomic landscape by facilitating the structural packing and unwinding of the genome, which is tightly folded inside the nucleus. Lysine-specific histone methylation is one such mark. It plays crucial roles during development, including in cell fate decisions, in tissue patterning, and in regulating cellular metabolic processes. It has also been associated with varying human developmental disorders. Heart disease has been linked to deregulated histone lysine methylation, and lysine-specific methyltransferases (KMTs) are overrepresented, i.e., more numerous than expected by chance, among the genes with variants associated with congenital heart disease. This review outlines the available evidence to support a role for individual KMTs in heart development and/or disease, including genetic associations in patients and supporting cell culture and animal model studies. It concludes with new advances in the field and new opportunities for treatment.
Collapse
Affiliation(s)
- Jun-yi Zhu
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Joyce van de Leemput
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Zhe Han
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
21
|
Kim HM, Zheng X, Lee E. Experimental Insights into the Interplay between Histone Modifiers and p53 in Regulating Gene Expression. Int J Mol Sci 2023; 24:11032. [PMID: 37446210 PMCID: PMC10342072 DOI: 10.3390/ijms241311032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Chromatin structure plays a fundamental role in regulating gene expression, with histone modifiers shaping the structure of chromatin by adding or removing chemical changes to histone proteins. The p53 transcription factor controls gene expression, binds target genes, and regulates their activity. While p53 has been extensively studied in cancer research, specifically in relation to fundamental cellular processes, including gene transcription, apoptosis, and cell cycle progression, its association with histone modifiers has received limited attention. This review explores the interplay between histone modifiers and p53 in regulating gene expression. We discuss how histone modifications can influence how p53 binds to target genes and how this interplay can be disrupted in cancer cells. This review provides insights into the complex mechanisms underlying gene regulation and their implications for potential cancer therapy.
Collapse
Affiliation(s)
- Hyun-Min Kim
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan 215316, China
| | | | | |
Collapse
|
22
|
Wang D, Li Y, Xu C, Wang H, Huang X, Jin X, Ren S, Gao J, Tong J, Liu J, Zhou J, Shi L. SETD7 promotes lateral plate mesoderm formation by modulating the Wnt/β-catenin signaling pathway. iScience 2023; 26:106917. [PMID: 37378343 PMCID: PMC10291335 DOI: 10.1016/j.isci.2023.106917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 02/16/2023] [Accepted: 05/14/2023] [Indexed: 06/29/2023] Open
Abstract
The role of SET domain containing 7 (SETD7) during human hematopoietic development remains elusive. Here, we found that deletion of SETD7 attenuated the generation of hematopoietic progenitor cells (HPCs) during the induction of hematopoietic differentiation from human embryonic stem cells (hESCs). Further analysis specified that SETD7 was required for lateral plate mesoderm (LPM) specification but dispensable for the generation of endothelial progenitor cells (EPCs) and HPCs. Mechanistically, rather than depending on its histone methyltransferase activity, SETD7 interacted with β-catenin at lysine residue 180 facilitated its degradation. Diminished SETD7 expression led to the accumulation of β-catenin and the consequent activation of the Wnt signaling pathway, which altered LPM patterning and facilitated the production of paraxial mesoderm (PM). Taken together, the findings indicate that SETD7 is related to LPM and PM patterning via posttranslational regulation of the Wnt/β-catenin signaling pathway, providing novel insights into mesoderm specification during hematopoietic differentiation from hESCs.
Collapse
Affiliation(s)
- Ding Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| | - Yapu Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| | - Changlu Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| | - Hongtao Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| | - Xin Huang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| | - Xu Jin
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| | - Sirui Ren
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| | - Jie Gao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| | - Jingyuan Tong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| | - Jinhua Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| | - Jiaxi Zhou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| | - Lihong Shi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| |
Collapse
|
23
|
Lu X, Huang L, Chen Y, Hu L, Zhong R, Chen L, Cheng W, Zheng B, Liang P. Effect of DHA-Enriched Phospholipids from Fish Roe on Rat Fecal Metabolites: Untargeted Metabolomic Analysis. Foods 2023; 12:foods12081687. [PMID: 37107484 PMCID: PMC10137559 DOI: 10.3390/foods12081687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/21/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Lipid metabolism disorder has become an important hidden danger threatening human health, and various supplements to treat lipid metabolism disorder have been studied. Our previous studies have shown that DHA-enriched phospholipids from large yellow croaker (Larimichthys Crocea) roe (LYCRPLs) have lipid-regulating effects. To better explain the effect of LYCRPLs on lipid regulation in rats, the fecal metabolites of rats were analyzed from the level of metabolomics in this study, and GC/MS metabolomics measurements were performed to figure out the effect of LYCRPLs on fecal metabolites in rats. Compared with the control (K) group, 101 metabolites were identified in the model (M) group. There were 54, 47, and 57 metabolites in the low-dose (GA), medium-dose (GB), and high-dose (GC) groups that were significantly different from that of group M, respectively. Eighteen potential biomarkers closely related to lipid metabolism were screened after intervention with different doses of LYCRPLs on rats, which were classified into several metabolic pathways in rats, including pyrimidine metabolism, the citric acid cycle (TCA cycle), the metabolism of L-cysteine, carnitine synthesis, pantothenate and CoA biosynthesis, glycolysis, and bile secretion. L-cysteine was speculated to be a useful biomarker of LYCRPLs acting on rat fecal metabolites. Our findings indicated that LYCRPLs may regulate lipid metabolism disorders in SD rats by activating these metabolic pathways.
Collapse
Affiliation(s)
- Xiaodan Lu
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition Ministry of Education, Fuzhou 350002, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Luyao Huang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition Ministry of Education, Fuzhou 350002, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yanjun Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ling Hu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Rongbin Zhong
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lijiao Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenjian Cheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Baodong Zheng
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition Ministry of Education, Fuzhou 350002, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Peng Liang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition Ministry of Education, Fuzhou 350002, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
24
|
Qiu R, Zhao S, Lu C, Xu Z, Shu E, Weng Q, Chen W, Fang S, Chen W, Zheng L, Zhao Z, Yang Y, Ji J. Proteomic analysis of DZIP3 interactome and its role in proliferation and metastasis in gastric cancer cells. Exp Cell Res 2023; 425:113525. [PMID: 36841324 DOI: 10.1016/j.yexcr.2023.113525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 02/02/2023] [Accepted: 02/22/2023] [Indexed: 02/27/2023]
Abstract
Gastric cancer is a serious malignant tumor in the world, accounting for the third cause of cancer death worldwide. The pathogenesis of gastric cancer is very complex, in which epigenetic inheritance plays an important role. In our study, we found that DZIP3 was significantly up-regulated in gastric cancer tissues as compared to adjacent normal tissue, which suggested it may be play a crucial part in gastric cancer. To clarify the mechanism of it, we further analyzed the interacting proteome and transcriptome of DZIP3. An association between DZIP3 and some epigenetic regulators, such as CUL4B complex, was verified. We also present the first proteomic characterization of the protein-protein interaction (PPI) network of DZIP3. Then, the transcriptome analysis of DZIP3 demonstrated that knockdown DZIP3 increased a cohort of genes, including SETD7 and ZBTB4, which have essential role in tumors. We also revealed that DZIP3 promotes proliferation and metastasis of gastric cancer cells. And the higher expression of DZIP3 is positively associated with the poor prognosis of several cancers. In summary, our study revealed a mechanistic role of DZIP3 in promoting proliferation and metastasis in gastric cancer, supporting the pursuit of DZIP3 as a potential target for gastric cancer therapy.
Collapse
Affiliation(s)
- Rongfang Qiu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China; Department of Radiology, Clinical College of the Affiliated Central Hospital, Lishui University, Lishui, 323000, China; Department of Radiology, Lishui Hospital of Zhejiang University, Lishui, 323000, China
| | - Siyu Zhao
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China; Department of Radiology, Clinical College of the Affiliated Central Hospital, Lishui University, Lishui, 323000, China
| | - Chenying Lu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China; Department of Radiology, Clinical College of the Affiliated Central Hospital, Lishui University, Lishui, 323000, China; Department of Radiology, Lishui Hospital of Zhejiang University, Lishui, 323000, China
| | - Ziwei Xu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China; Department of Radiology, Clinical College of the Affiliated Central Hospital, Lishui University, Lishui, 323000, China
| | - Enfen Shu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China; Department of Radiology, Clinical College of the Affiliated Central Hospital, Lishui University, Lishui, 323000, China; Department of Radiology, Lishui Hospital of Zhejiang University, Lishui, 323000, China
| | - Qiaoyou Weng
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China; Department of Radiology, Clinical College of the Affiliated Central Hospital, Lishui University, Lishui, 323000, China; Department of Radiology, Lishui Hospital of Zhejiang University, Lishui, 323000, China
| | - Weiqian Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China; Department of Radiology, Clinical College of the Affiliated Central Hospital, Lishui University, Lishui, 323000, China; Department of Radiology, Lishui Hospital of Zhejiang University, Lishui, 323000, China
| | - Shiji Fang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China; Department of Radiology, Clinical College of the Affiliated Central Hospital, Lishui University, Lishui, 323000, China; Department of Radiology, Lishui Hospital of Zhejiang University, Lishui, 323000, China
| | - Weiyue Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China; Department of Radiology, Clinical College of the Affiliated Central Hospital, Lishui University, Lishui, 323000, China; Department of Radiology, Lishui Hospital of Zhejiang University, Lishui, 323000, China
| | - Liyun Zheng
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China; Department of Radiology, Clinical College of the Affiliated Central Hospital, Lishui University, Lishui, 323000, China; Department of Radiology, Lishui Hospital of Zhejiang University, Lishui, 323000, China
| | - Zhongwei Zhao
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China; Department of Radiology, Clinical College of the Affiliated Central Hospital, Lishui University, Lishui, 323000, China; Department of Radiology, Lishui Hospital of Zhejiang University, Lishui, 323000, China
| | - Yang Yang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China; Department of Radiology, Clinical College of the Affiliated Central Hospital, Lishui University, Lishui, 323000, China; Department of Radiology, Lishui Hospital of Zhejiang University, Lishui, 323000, China.
| | - Jiansong Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China; Department of Radiology, Clinical College of the Affiliated Central Hospital, Lishui University, Lishui, 323000, China; Department of Radiology, Lishui Hospital of Zhejiang University, Lishui, 323000, China.
| |
Collapse
|
25
|
Deng H, Jia S, Tang J, Rong F, Xu C, Chen X, Wang Z, Zhu C, Sun X, Liao Q, Liu W, Li W, Xiao W, Liu X. SET7 methylates the deubiquitinase OTUB1 at Lys 122 to impair its binding to E2 enzyme UBC13 and relieve its suppressive role on ferroptosis. J Biol Chem 2023; 299:103054. [PMID: 36822329 PMCID: PMC10040876 DOI: 10.1016/j.jbc.2023.103054] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/23/2023] Open
Abstract
The deubiquitinating enzyme OTUB1 possesses canonical deubiquitinase (DUB) activity and noncanonical, catalytic-independent activity, which has been identified as an essential regulator of diverse physiological processes. Posttranslational modifications of OTUB1 affect both its DUB activity and its noncanonical activity of binding to the E2 ubiquitin-conjugation enzyme UBC13, but further investigation is needed to characterize the full inventory of modifications to OTUB1. Here, we demonstrate that SET7, a lysine monomethylase, directly interacts with OTUB1 to catalyze OTUB1 methylation at lysine 122. This modification does not affect DUB activity of OTUB1 but impairs its noncanonical activity, binding to UBC13. Moreover, we found using cell viability analysis and intracellular reactive oxygen species assay that SET7-mediated methylation of OTUB1 relieves its suppressive role on ferroptosis. Notably, the methylation-mimic mutant of OTUB1 not only loses the ability to bind to UBC13 but also relieves its suppressive role on Tert-Butyl hydroperoxide-induced cell death and Cystine starvation/Erastin-induced cellular reactive oxygen species. Collectively, our data identify a novel modification of OTUB1 that is critical for inhibiting its noncanonical activity.
Collapse
Affiliation(s)
- Hongyan Deng
- College of Life Science, Wuhan University, Wuhan, P. R. China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Shuke Jia
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China; University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Jinhua Tang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China; University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Fangjing Rong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China; University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Chenxi Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China; University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Xiaoyun Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China; University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Zixuan Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China; University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Chunchun Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China; University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Xueyi Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China; University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Qian Liao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China; University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Wen Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China; University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Wenhua Li
- College of Life Science, Wuhan University, Wuhan, P. R. China.
| | - Wuhan Xiao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China; University of Chinese Academy of Sciences, Beijing, P. R. China; Hubei Hongshan Laboratory, Wuhan, P. R. China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, P. R. China.
| | - Xing Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China; University of Chinese Academy of Sciences, Beijing, P. R. China; Hubei Hongshan Laboratory, Wuhan, P. R. China.
| |
Collapse
|
26
|
Yang S, Wang X, Bai J, Duan B. The role of SET domain containing lysine methyltransferase 7 in tumorigenesis and development. Cell Cycle 2023; 22:269-275. [PMID: 36101480 PMCID: PMC9851238 DOI: 10.1080/15384101.2022.2122257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 04/22/2022] [Accepted: 09/05/2022] [Indexed: 01/22/2023] Open
Abstract
SET domain containing lysine methyltransferase 7 (SETD7) belongs to the protein lysine methyltransferase family and can catalyze the monomethylation of histone H3K4, which plays a vital role in the regulation of cell cycle, cell differentiation, DNA damage response and chromatin remodeling through K/R-S/T-K (K is lysine residue) sites and the recognition of substrates mediated by SET, i-SET, and n-SET domains and electrostatic action. SETD7 also can regulate the transcription of several genes including β-catenin, Cullin l and lin-28 homolog A (LIN28A), etc. In addition, the abnormal expression of SETD7 can promote the proliferation, migration, invasion of tumor cells, predict the poor prognosis of tumor patients, and may be a potential target for tumor therapy. This paper reviews the structure of SETD7, its role in tumor genesis and development, and the current research progress of relevant targeted drugs to explore its regulatory mechanism in tumor genesis and development and the prospect of targeted therapy.
Collapse
Affiliation(s)
- Shangzhen Yang
- Department of Medical Oncology of Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi, China
- Xi’an Medical University, Xi’an, Shaanxi, China
| | - Xi Wang
- Department of Medical Oncology of Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi, China
| | - Jun Bai
- Department of Medical Oncology of Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi, China
| | - Baojun Duan
- Department of Medical Oncology of Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi, China
- Department of Medical Oncology of Baoji Central Hospital, Baoji Central Hospital, Baoji, Shaanxi, China
| |
Collapse
|
27
|
Set7 methyltransferase roles in myocardial protection from chronic stressors. Clin Sci (Lond) 2023; 137:105-108. [PMID: 36601782 DOI: 10.1042/cs20220773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 01/06/2023]
Abstract
Epigenome changes in chronic states of cardiovascular stress including diabetes, pressure overload and cardiomyopathies frequently involve changes in open chromatin and post-translation modifications of histone lysine residues at specific amino acid positions by acetylation, methylation and phosphorylation. Since the discovery of Set7 as an important regulator of histone H3 lysine 4 methylation state, there has been wide interest in its role in cardiovascular remodeling and cardiac dysfunction. Recent transcriptome and Fourier transform infrared spectroscopy analyses and in vivo assessments of cardiac function by Lunardon and colleagues now reveal a clear role of Set7 in the regulation of the extracellular matrix composition and cardiac hypertrophy in response to chronic isoproterenol induced cardiac stress.
Collapse
|
28
|
Luo S, Zhang H, Xie Y, Huang J, Luo D, Zhang Q. Decreased SUV39H1 at the promoter region leads to increased CREMα and accelerates autoimmune response in CD4 + T cells from patients with systemic lupus erythematosus. Clin Epigenetics 2022; 14:181. [PMID: 36536372 PMCID: PMC9764740 DOI: 10.1186/s13148-022-01411-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Overproduction of cAMP-responsive element modulator α (CREMα) in total T cells from patients with systemic lupus erythematosus (SLE) can inhibit IL-2 and increase IL-17A. These ultimately promote progression of SLE. This study aims to investigate the expression of CREMα in SLE CD4+ T cells and find out the mechanisms for the regulation of CREMα in SLE CD4+ T cells. RESULTS CREMα mRNA was overexpressed in CD4+ T cells from SLE patients. The levels of histone H3 lysine 9 trimethylation (H3K9me3) and suppressor of variation 3-9 homolog 1 (SUV39H1) at the CREMα promoter of SLE CD4+ T cells were markedly decreased. Down-regulating SUV39H1 in normal CD4+ T cells elevated the levels of CREMα, IL-17A, and histone H3 lysine 4 trimethylation (H3K4me3) in the CREMα promoter region, and lowered IL-2, H3K9me3, DNA methylation, and DNA methyltransferase 3a (DNMT3a) enrichments within the CREMα promoter, while no sharp change in SET domain containing 1 (Set1) at the CREMα promoter. Up-regulating SUV39H1 in SLE CD4+ T cells had the opposite effects. The DNA methylation and DNMT3a levels were obviously reduced, and H3K4me3 enrichment was greatly increased at the CREMα promoter of CD4+ T cells from SLE patients. The Set1 binding in the CREMα promoter region upgraded significantly, and knocking down Set1 in SLE CD4+ T cells alleviated the H3K4me3 enrichment within this region, suppressed CREMα and IL-17A productions, and promoted the levels of IL-2, CREMα promoter DNA methylation, and DNMT3a. But there were no obviously alterations in H3K9me3 and SUV39H1 amounts in the region after transfection. CONCLUSIONS Decreased SUV39H1 in the CREMα promoter region of CD4+ T cells from SLE patients contributes to under-expression of H3K9me3 at this region. In the meantime, the Set1 binding at the CREMα promoter of SLE CD4+ T cells is up-regulated. As a result, DNMT3a and DNA methylation levels alleviate, and H3K4me3 binding increases. All these lead to overproduction of CREMα. Thus, the secretion of IL-2 down-regulates and the concentration of IL-17A up-regulates, ultimately promoting SLE.
Collapse
Affiliation(s)
- Shuangyan Luo
- grid.216417.70000 0001 0379 7164Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital, Central South University, #139 Renmin Middle Rd, Changsha, 410011 Hunan People’s Republic of China
| | - Huilin Zhang
- grid.216417.70000 0001 0379 7164Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, #139 Renmin Middle Rd, Changsha, 410011 Hunan People’s Republic of China
| | - Yuming Xie
- grid.216417.70000 0001 0379 7164Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital, Central South University, #139 Renmin Middle Rd, Changsha, 410011 Hunan People’s Republic of China
| | - Junke Huang
- grid.216417.70000 0001 0379 7164Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital, Central South University, #139 Renmin Middle Rd, Changsha, 410011 Hunan People’s Republic of China
| | - Danhong Luo
- Department of Dermatology, The Fifth People’s Hospital of Hainan Province, #49 Longkun South Rd, Haikou, 570206 Hainan People’s Republic of China
| | - Qing Zhang
- grid.216417.70000 0001 0379 7164Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital, Central South University, #139 Renmin Middle Rd, Changsha, 410011 Hunan People’s Republic of China
| |
Collapse
|
29
|
Guo P, Hoang N, Sanchez J, Zhang EH, Rajawasam K, Trinidad K, Sun H, Zhang H. The assembly of mammalian SWI/SNF chromatin remodeling complexes is regulated by lysine-methylation dependent proteolysis. Nat Commun 2022; 13:6696. [PMID: 36335117 PMCID: PMC9637158 DOI: 10.1038/s41467-022-34348-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 10/24/2022] [Indexed: 11/08/2022] Open
Abstract
The assembly of mammalian SWI/SNF chromatin remodeling complexes is developmentally programed, and loss/mutations of SWI/SNF subunits alter the levels of other components through proteolysis, causing cancers. Here, we show that mouse Lsd1/Kdm1a deletion causes dramatic dissolution of SWI/SNF complexes and that LSD1 demethylates the methylated lysine residues in SMARCC1 and SMARCC2 to preserve the structural integrity of SWI/SNF complexes. The methylated SMARCC1/SMARCC2 are targeted for proteolysis by L3MBTL3 and the CRL4DCAF5 ubiquitin ligase complex. We identify SMARCC1 as the critical target of LSD1 and L3MBTL3 to maintain the pluripotency and self-renewal of embryonic stem cells. L3MBTL3 also regulates SMARCC1/SMARCC2 proteolysis induced by the loss of SWI/SNF subunits. Consistently, mouse L3mbtl3 deletion causes striking accumulation of SWI/SNF components, associated with embryonic lethality. Our studies reveal that the assembly/disassembly of SWI/SNF complexes is dynamically controlled by a lysine-methylation dependent proteolytic mechanism to maintain the integrity of the SWI/SNF complexes.
Collapse
Affiliation(s)
- Pengfei Guo
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, NV, 89154, USA
| | - Nam Hoang
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, NV, 89154, USA
| | - Joseph Sanchez
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, NV, 89154, USA
| | - Elaine H Zhang
- College of Natural Resources and College of Letters and Science, University of California, Berkeley, CA, 94720, USA
| | - Keshari Rajawasam
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, NV, 89154, USA
| | - Kristiana Trinidad
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, NV, 89154, USA
| | - Hong Sun
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, NV, 89154, USA
| | - Hui Zhang
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, NV, 89154, USA.
| |
Collapse
|
30
|
Chemical biology and pharmacology of histone lysine methylation inhibitors. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194840. [PMID: 35753676 DOI: 10.1016/j.bbagrm.2022.194840] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 12/20/2022]
Abstract
Histone lysine methylation is a post-translational modification that plays a key role in the epigenetic regulation of a broad spectrum of biological processes. Moreover, the dysregulation of histone lysine methyltransferases (KMTs) has been implicated in the pathogenesis of several diseases particularly cancer. Due to their pathobiological importance, KMTs have garnered immense attention over the last decade as attractive therapeutic targets. These endeavors have culminated in tens of chemical probes that have been used to interrogate many aspects of histone lysine methylation. Besides, over a dozen inhibitors have been advanced to clinical trials, including the EZH2 inhibitor tazemetostat approved for the treatment of follicular lymphoma and advanced epithelioid sarcoma. In this Review, we highlight the chemical biology and pharmacology of KMT inhibitors and targeted protein degraders focusing on the clinical development of EZH1/2, DOT1L, Menin-MLL, and WDR5-MLL inhibitors. We also briefly discuss the pharmacologic targeting of other KMTs.
Collapse
|
31
|
Chiang C, Yang H, Zhu L, Chen C, Chen C, Zuo Y, Zheng D. The Epigenetic Regulation of Nonhistone Proteins by SETD7: New Targets in Cancer. Front Genet 2022; 13:918509. [PMID: 35812730 PMCID: PMC9256981 DOI: 10.3389/fgene.2022.918509] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/27/2022] [Indexed: 11/23/2022] Open
Abstract
Epigenetic modifications are essential mechanism by which to ensure cell homeostasis. One such modification is lysine methylation of nonhistone proteins by SETD7, a mono-methyltransferase containing SET domains. SETD7 methylates over 30 proteins and is thus involved in various classical pathways. As such, SETD7 has been implicated in both the basic functions of normal tissues but also in several pathologies, such as cancers. In this review, we summarize the current knowledge of SETD7 substrates, especially transcriptional-related proteins and enzymes, and their putative roles upon SETD7-mediated methylation. We focus on the role of SETD7 in cancers, and speculate on the possible points of intervention and areas for future research.
Collapse
Affiliation(s)
- Chengyao Chiang
- Southern University of Science and Technology, Yantian Hospital, Shenzhen, China
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Cell Biology and Genetics, Department of Pharmacy, Shenzhen University International Cancer Center, School of Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital (Shenzhen Institute of Translational Medicine), Shenzhen University, Shenzhen, China
| | - Heng Yang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Cell Biology and Genetics, Department of Pharmacy, Shenzhen University International Cancer Center, School of Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital (Shenzhen Institute of Translational Medicine), Shenzhen University, Shenzhen, China
| | - Lizhi Zhu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Cell Biology and Genetics, Department of Pharmacy, Shenzhen University International Cancer Center, School of Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital (Shenzhen Institute of Translational Medicine), Shenzhen University, Shenzhen, China
| | - Chunlan Chen
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Cell Biology and Genetics, Department of Pharmacy, Shenzhen University International Cancer Center, School of Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital (Shenzhen Institute of Translational Medicine), Shenzhen University, Shenzhen, China
| | - Cheng Chen
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Cell Biology and Genetics, Department of Pharmacy, Shenzhen University International Cancer Center, School of Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital (Shenzhen Institute of Translational Medicine), Shenzhen University, Shenzhen, China
| | - You Zuo
- Southern University of Science and Technology, Yantian Hospital, Shenzhen, China
- *Correspondence: You Zuo, ; Duo Zheng,
| | - Duo Zheng
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Cell Biology and Genetics, Department of Pharmacy, Shenzhen University International Cancer Center, School of Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital (Shenzhen Institute of Translational Medicine), Shenzhen University, Shenzhen, China
- *Correspondence: You Zuo, ; Duo Zheng,
| |
Collapse
|
32
|
Crain AT, Klusza S, Armstrong RL, Santa Rosa P, Temple BRS, Strahl BD, McKay DJ, Matera AG, Duronio RJ. Distinct developmental phenotypes result from mutation of Set8/KMT5A and histone H4 lysine 20 in Drosophila melanogaster. Genetics 2022; 221:iyac054. [PMID: 35404465 PMCID: PMC9157153 DOI: 10.1093/genetics/iyac054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/28/2022] [Indexed: 01/27/2023] Open
Abstract
Mono-methylation of histone H4 lysine 20 (H4K20me1) is catalyzed by Set8/KMT5A and regulates numerous aspects of genome organization and function. Loss-of-function mutations in Drosophila melanogaster Set8 or mammalian KMT5A prevent H4K20me1 and disrupt development. Set8/KMT5A also has non-histone substrates, making it difficult to determine which developmental functions of Set8/KMT5A are attributable to H4K20me1 and which to other substrates or to non-catalytic roles. Here, we show that human KMT5A can functionally substitute for Set8 during Drosophila development and that the catalytic SET domains of the two enzymes are fully interchangeable. We also uncovered a role in eye development for the N-terminal domain of Set8 that cannot be complemented by human KMT5A. Whereas Set820/20 null mutants are inviable, we found that an R634G mutation in Set8 predicted from in vitro experiments to ablate catalytic activity resulted in viable adults. Additionally, Set8(R634G) mutants retain significant, albeit reduced, H4K20me1, indicating that the R634G mutation does not eliminate catalytic activity in vivo and is functionally hypomorphic rather than null. Flies engineered to express only unmodifiable H4 histones (H4K20A) can also complete development, but are phenotypically distinct from H4K20R, Set820/20 null, and Set8R634G mutants. Taken together, our results demonstrate functional conservation of KMT5A and Set8 enzymes, as well as distinct roles for Set8 and H4K20me1 in Drosophila development.
Collapse
Affiliation(s)
- Aaron T Crain
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599 USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599 USA
| | - Stephen Klusza
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599 USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599 USA
| | - Robin L Armstrong
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599 USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599 USA
| | | | - Brenda R S Temple
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599 USA
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, 27599 USA
| | - Brian D Strahl
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599 USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599 USA
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, 27599 USA
| | - Daniel J McKay
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599 USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599 USA
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599 USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599 USA
| | - A Gregory Matera
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599 USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599 USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599 USA
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599 USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599 USA
| | - Robert J Duronio
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599 USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599 USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599 USA
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599 USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599 USA
| |
Collapse
|
33
|
Tang J, Deng H, Wang Z, Zha H, Liao Q, Zhu C, Chen X, Sun X, Jia S, Ouyang G, Liu X, Xiao W. EGLN1 prolyl hydroxylation of hypoxia-induced transcription factor HIF1α is repressed by SET7-catalyzed lysine methylation. J Biol Chem 2022; 298:101961. [PMID: 35452683 PMCID: PMC9123262 DOI: 10.1016/j.jbc.2022.101961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 11/30/2022] Open
Abstract
Egg laying defective nine 1 (EGLN1) functions as an oxygen sensor to catalyze prolyl hydroxylation of the transcription factor hypoxia-inducible factor-1 α (HIF1α) under normoxia conditions, leading to its proteasomal degradation. Thus, EGLN1 plays a central role in the HIF-mediated hypoxia signaling pathway; however, the post-translational modifications that control EGLN1 function remain largely unknown. Here, we identified that a lysine monomethylase, SET7, catalyzes EGLN1 methylation on lysine 297, resulting in the repression of EGLN1 activity in catalyzing prolyl hydroxylation of HIF1α. Notably, we demonstrate that the methylation mimic mutant of EGLN1 loses the capability to suppress the hypoxia signaling pathway, leading to the enhancement of cell proliferation and the oxygen consumption rate. Collectively, our data identify a novel modification of EGLN1 that is critical for inhibiting its enzymatic activity, and which may benefit cellular adaptation to conditions of hypoxia.
Collapse
Affiliation(s)
- Jinhua Tang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hongyan Deng
- College of Life Science, Wuhan University, Wuhan, 430072, P. R. China
| | - Zixuan Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Huangyuan Zha
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences
| | - Qian Liao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chunchun Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiaoyun Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xueyi Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shuke Jia
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Gang Ouyang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xing Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Beijing, 100049, P. R. China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, P. R. China.
| | - Wuhan Xiao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Beijing, 100049, P. R. China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, P. R. China; Hubei Hongshan Laboratory, Wuhan, 430070, P. R. China.
| |
Collapse
|
34
|
Feoli A, Viviano M, Cipriano A, Milite C, Castellano S, Sbardella G. Lysine methyltransferase inhibitors: where we are now. RSC Chem Biol 2022; 3:359-406. [PMID: 35441141 PMCID: PMC8985178 DOI: 10.1039/d1cb00196e] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/10/2021] [Indexed: 12/14/2022] Open
Abstract
Protein lysine methyltransferases constitute a large family of epigenetic writers that catalyse the transfer of a methyl group from the cofactor S-adenosyl-l-methionine to histone- and non-histone-specific substrates. Alterations in the expression and activity of these proteins have been linked to the genesis and progress of several diseases, including cancer, neurological disorders, and growing defects, hence they represent interesting targets for new therapeutic approaches. Over the past two decades, the identification of modulators of lysine methyltransferases has increased tremendously, clarifying the role of these proteins in different physio-pathological states. The aim of this review is to furnish an updated outlook about the protein lysine methyltransferases disclosed modulators, reporting their potency, their mechanism of action and their eventual use in clinical and preclinical studies.
Collapse
Affiliation(s)
- Alessandra Feoli
- Department of Pharmacy, Epigenetic Med Chem Lab, University of Salerno via Giovanni Paolo II 132 I-84084 Fisciano SA Italy +39-089-96-9602 +39-089-96-9770
| | - Monica Viviano
- Department of Pharmacy, Epigenetic Med Chem Lab, University of Salerno via Giovanni Paolo II 132 I-84084 Fisciano SA Italy +39-089-96-9602 +39-089-96-9770
| | - Alessandra Cipriano
- Department of Pharmacy, Epigenetic Med Chem Lab, University of Salerno via Giovanni Paolo II 132 I-84084 Fisciano SA Italy +39-089-96-9602 +39-089-96-9770
| | - Ciro Milite
- Department of Pharmacy, Epigenetic Med Chem Lab, University of Salerno via Giovanni Paolo II 132 I-84084 Fisciano SA Italy +39-089-96-9602 +39-089-96-9770
| | - Sabrina Castellano
- Department of Pharmacy, Epigenetic Med Chem Lab, University of Salerno via Giovanni Paolo II 132 I-84084 Fisciano SA Italy +39-089-96-9602 +39-089-96-9770
| | - Gianluca Sbardella
- Department of Pharmacy, Epigenetic Med Chem Lab, University of Salerno via Giovanni Paolo II 132 I-84084 Fisciano SA Italy +39-089-96-9602 +39-089-96-9770
| |
Collapse
|
35
|
A Systematic Review to Define the Multi-Faceted Role of Lysine Methyltransferase SETD7 in Cancer. Cancers (Basel) 2022; 14:cancers14061414. [PMID: 35326563 PMCID: PMC8946661 DOI: 10.3390/cancers14061414] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 01/27/2023] Open
Abstract
Histone–lysine N-methyltransferase SETD7 regulates a variety of cancer-related processes, in a tissue-type and signalling context-dependent manner. To date, there is no consensus regarding SETD7´s biological functions, or potential for cancer diagnostics and therapeutics. In this work, we summarised the literature on SETD7 expression and function in cancer, to identify the contexts where SETD7 expression and targeting can lead to improvements in cancer diagnosis and therapy. The most studied cancers were found to be lung and osteosarcoma followed by colorectal and breast cancers. SETD7 mRNA and/or protein expression in human cancer tissue was evaluated using public databases and/or in-house cohorts, but its prognostic significance remains inconclusive. The most studied cancer-related processes regulated by SETD7 were cell proliferation, apoptosis, epithelial-mesenchymal transition, migration and invasion with special relevance to the pRb/E2F-1 pathway. SETD7 consistently prevented epithelial to mesenchymal transition in different cancer types, and inhibition of its function appears to be associated with improved response to DNA-damaging agents in most of the analysed studies. Stabilising mutations in SETD7 target proteins prevent their methylation or promote other competing post-translational modifications that can override the SETD7 effect. This indicates that a clear discrimination of these mutations and competing signalling pathways must be considered in future functional studies.
Collapse
|
36
|
Daks A, Vasileva E, Fedorova O, Shuvalov O, Barlev NA. The Role of Lysine Methyltransferase SET7/9 in Proliferation and Cell Stress Response. Life (Basel) 2022; 12:life12030362. [PMID: 35330113 PMCID: PMC8949485 DOI: 10.3390/life12030362] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 12/14/2022] Open
Abstract
Lysine-specific methyltransferase 7 (KMT7) SET7/9, aka Set7, Set9, or SetD7, or KMT5 was discovered 20 years ago, yet its biological role remains rather enigmatic. In this review, we analyze the particularities of SET7/9 enzymatic activity and substrate specificity with respect to its biological importance, mostly focusing on its two well-characterized biological functions: cellular proliferation and stress response.
Collapse
Affiliation(s)
- Alexandra Daks
- Institute of Cytology RAS, 194064 St. Petersburg, Russia; (A.D.); (E.V.); (O.F.); (O.S.)
| | - Elena Vasileva
- Institute of Cytology RAS, 194064 St. Petersburg, Russia; (A.D.); (E.V.); (O.F.); (O.S.)
- Children’s Hospital Los Angeles, University of Southern California, Los Angeles, CA 90027, USA
| | - Olga Fedorova
- Institute of Cytology RAS, 194064 St. Petersburg, Russia; (A.D.); (E.V.); (O.F.); (O.S.)
| | - Oleg Shuvalov
- Institute of Cytology RAS, 194064 St. Petersburg, Russia; (A.D.); (E.V.); (O.F.); (O.S.)
| | - Nickolai A. Barlev
- Institute of Cytology RAS, 194064 St. Petersburg, Russia; (A.D.); (E.V.); (O.F.); (O.S.)
- Correspondence:
| |
Collapse
|
37
|
Sin JH, Kashyap S, Acenas D, Cortez JT, Lee J, Marson A, Matloubian M, Waterfield MR. ATF7ip Targets Transposable Elements for H3K9me3 Deposition to Modify CD8 + T Cell Effector and Memory Responses. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1155-1169. [PMID: 35110421 PMCID: PMC8881383 DOI: 10.4049/jimmunol.2100996] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/18/2021] [Indexed: 11/19/2022]
Abstract
CD8+ T cells are critical for the immune response to pathogens and tumors, and CD8+ T cell memory protects against repeat infections. In this study, we identify the activating transcription factor 7 interacting protein (ATF7ip) as a critical regulator of CD8+ T cell immune responses. Mice with a T cell-specific deletion of ATF7ip have a CD8+ T cell-intrinsic enhancement of Il7r expression and Il2 expression leading to enhanced effector and memory responses. Chromatin immunoprecipitation sequencing studies identified ATF7ip as a repressor of Il7r and Il2 gene expression through the deposition of the repressive histone mark H3K9me3 at the Il7r gene and Il2-Il21 intergenic region. Interestingly, ATF7ip targeted transposable elements for H3K9me3 deposition at both the IL7r locus and the Il2-Il21 intergenic region, indicating that ATF7ip silencing of transposable elements is important for regulating CD8+ T cell function. These results demonstrate a new epigenetic pathway by which IL-7R and IL-2 production are constrained in CD8+ T cells, and this may open up new avenues for modulating their production.
Collapse
Affiliation(s)
- Jun Hyung Sin
- Division of Pediatric Rheumatology, University of California San Francisco, San Francisco, CA
- Department of Pediatrics, University of California San Francisco, San Francisco, CA
- Biomedical Sciences Graduate Program, University of California, San Francisco, CA
| | - Sujit Kashyap
- Division of Pediatric Rheumatology, University of California San Francisco, San Francisco, CA
- Department of Pediatrics, University of California San Francisco, San Francisco, CA
| | - Dante Acenas
- Diabetes Center, University of California, San Francisco, San Francisco, CA
| | - Jessica T Cortez
- Diabetes Center, University of California, San Francisco, San Francisco, CA
| | - James Lee
- Division of Hematology and Oncology, University of California, San Francisco, San Francisco, CA
- Department of Medicine, University of California San Francisco, San Francisco, CA
| | - Alexander Marson
- Biomedical Sciences Graduate Program, University of California, San Francisco, CA
- Diabetes Center, University of California, San Francisco, San Francisco, CA
- J. David Gladstone Institutes, San Francisco, CA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA
- Chan Zuckerberg Biohub, San Francisco, CA; and
| | - Mehrdad Matloubian
- Department of Medicine, University of California San Francisco, San Francisco, CA
- Division of Rheumatology, University of California San Francisco, San Francisco, CA
| | - Michael R Waterfield
- Division of Pediatric Rheumatology, University of California San Francisco, San Francisco, CA;
- Department of Pediatrics, University of California San Francisco, San Francisco, CA
- Biomedical Sciences Graduate Program, University of California, San Francisco, CA
| |
Collapse
|
38
|
Hematopoietic Progenitors and the Bone Marrow Niche Shape the Inflammatory Response and Contribute to Chronic Disease. Int J Mol Sci 2022; 23:ijms23042234. [PMID: 35216355 PMCID: PMC8879433 DOI: 10.3390/ijms23042234] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 11/17/2022] Open
Abstract
It is now well understood that the bone marrow (BM) compartment can sense systemic inflammatory signals and adapt through increased proliferation and lineage skewing. These coordinated and dynamic alterations in responding hematopoietic stem and progenitor cells (HSPCs), as well as in cells of the bone marrow niche, are increasingly viewed as key contributors to the inflammatory response. Growth factors, cytokines, metabolites, microbial products, and other signals can cause dysregulation across the entire hematopoietic hierarchy, leading to lineage-skewing and even long-term functional adaptations in bone marrow progenitor cells. These alterations may play a central role in the chronicity of disease as well as the links between many common chronic disorders. The possible existence of a form of “memory” in bone marrow progenitor cells is thought to contribute to innate immune responses via the generation of trained immunity (also called innate immune memory). These findings highlight how hematopoietic progenitors dynamically adapt to meet the demand for innate immune cells and how this adaptive response may be beneficial or detrimental depending on the context. In this review, we will discuss the role of bone marrow progenitor cells and their microenvironment in shaping the scope and scale of the immune response in health and disease.
Collapse
|
39
|
Mbadhi MN, Tang JM, Zhang JX. Histone Lysine Methylation and Long Non-Coding RNA: The New Target Players in Skeletal Muscle Cell Regeneration. Front Cell Dev Biol 2021; 9:759237. [PMID: 34926450 PMCID: PMC8678087 DOI: 10.3389/fcell.2021.759237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/11/2021] [Indexed: 11/13/2022] Open
Abstract
Satellite stem cell availability and high regenerative capacity have made them an ideal therapeutic approach for muscular dystrophies and neuromuscular diseases. Adult satellite stem cells remain in a quiescent state and become activated upon muscular injury. A series of molecular mechanisms succeed under the control of epigenetic regulation and various myogenic regulatory transcription factors myogenic regulatory factors, leading to their differentiation into skeletal muscles. The regulation of MRFs via various epigenetic factors, including DNA methylation, histone modification, and non-coding RNA, determine the fate of myogenesis. Furthermore, the development of histone deacetylation inhibitors (HDACi) has shown promising benefits in their use in clinical trials of muscular diseases. However, the complete application of using satellite stem cells in the clinic is still not achieved. While therapeutic advancements in the use of HDACi in clinical trials have emerged, histone methylation modulations and the long non-coding RNA (lncRNA) are still under study. A comprehensive understanding of these other significant epigenetic modulations is still incomplete. This review aims to discuss some of the current studies on these two significant epigenetic modulations, histone methylation and lncRNA, as potential epigenetic targets in skeletal muscle regeneration. Understanding the mechanisms that initiate myoblast differentiation from its proliferative state to generate new muscle fibres will provide valuable information to advance the field of regenerative medicine and stem cell transplant.
Collapse
Affiliation(s)
- Magdaleena Naemi Mbadhi
- Hubei Key Laboratory of Embryonic Stem Cell Research, Department of Physiology, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Jun-Ming Tang
- Hubei Key Laboratory of Embryonic Stem Cell Research, Department of Physiology, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Jing-Xuan Zhang
- Hubei Key Laboratory of Embryonic Stem Cell Research, Department of Physiology, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
40
|
Gao L, Yu W, Song P, Li Q. Non-histone methylation of SET7/9 and its biological functions. Recent Pat Anticancer Drug Discov 2021; 17:231-243. [PMID: 34856916 DOI: 10.2174/1574892816666211202160041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/01/2021] [Accepted: 10/02/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND (su(var)-3-9,enhancer-of-zeste,trithorax) domain-containing protein 7/9 (SET7/9) is a member of the protein lysine methyltransferases (PLMTs or PKMTs) family. It contains a SET domain. Recent studies demonstrate that SET7/9 methylates both lysine 4 of histone 3 (H3-K4) and lysine(s) of non-histone proteins, including transcription factors, tumor suppressors, and membrane-associated receptors. OBJECTIVE This article mainly reviews the non-histone methylation effects of SET7/9 and its functions in tumorigenesis and development. METHODS PubMed was screened for this information. RESULTS SET7/9 plays a key regulatory role in various biological processes such as cell proliferation, transcription regulation, cell cycle, protein stability, cardiac morphogenesis, and development. In addition, SET7/9 is involved in the pathogenesis of hair loss, breast cancer progression, human carotid plaque atherosclerosis, chronic kidney disease, diabetes, obesity, ovarian cancer, prostate cancer, hepatocellular carcinoma, and pulmonary fibrosis. CONCLUSION SET7/9 is an important methyltransferase, which can catalyze the methylation of a variety of proteins. Its substrates are closely related to the occurrence and development of tumors.
Collapse
Affiliation(s)
- Lili Gao
- Department of Pathology, Pudong New Area People's Hospital, Shanghai 201299. China
| | - Weiping Yu
- Department of Pathophysiology, Medical school of Southeast University, Nanjing 210009, Jiangsu. China
| | - Peng Song
- Department of Pathology, Pudong New Area People's Hospital, Shanghai 201299. China
| | - Qing Li
- Department of Pathology, Pudong New Area People's Hospital, Shanghai 201299. China
| |
Collapse
|
41
|
Usher ET, Namitz KEW, Cosgrove MS, Showalter SA. Probing multiple enzymatic methylation events in real time with NMR spectroscopy. Biophys J 2021; 120:4710-4721. [PMID: 34592262 PMCID: PMC8595733 DOI: 10.1016/j.bpj.2021.09.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 11/25/2022] Open
Abstract
Post-translational modification (PTM) of proteins is of critical importance to the regulation of many cellular processes in eukaryotic organisms. One of the most well-studied protein PTMs is methylation, wherein an enzyme catalyzes the transfer of a methyl group from a cofactor to a lysine or arginine side chain. Lysine methylation is especially abundant in the histone tails and is an important marker for denoting active or repressed genes. Given their relevance to transcriptional regulation, the study of methyltransferase function through in vitro experiments is an important stepping stone toward understanding the complex mechanisms of regulated gene expression. To date, most methyltransferase characterization strategies rely on the use of radioactive cofactors, detection of a methyl transfer byproduct, or discontinuous-type assays. Although such methods are suitable for some applications, information about multiple methylation events and kinetic intermediates is often lost. Herein, we describe the use of two-dimensional NMR to monitor mono-, di-, and trimethylation in a single reaction tube. To do so, we incorporated 13C into the donor methyl group of the enzyme cofactor S-adenosyl methionine. In this way, we may study enzymatic methylation by monitoring the appearance of distinct resonances corresponding to mono-, di-, or trimethyl lysine without the need to isotopically enrich the substrate. To demonstrate the capabilities of this method, we evaluated the activity of three lysine methyltransferases, Set7, MWRAD2 (MLL1 complex), and PRDM9, toward the histone H3 tail. We monitored mono- or multimethylation of histone H3 tail at lysine 4 through sequential short two-dimensional heteronuclear single quantum coherence experiments and fit the resulting progress curves to first-order kinetic models. In summary, NMR detection of PTMs in one-pot, real-time reaction using facile cofactor isotopic enrichment shows promise as a method toward understanding the intricate mechanisms of methyltransferases and other enzymes.
Collapse
Affiliation(s)
- Emery T Usher
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology
| | - Kevin E W Namitz
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania
| | - Michael S Cosgrove
- SUNY Upstate Medical University, Department of Biochemistry and Molecular Biology, Syracuse, New York
| | - Scott A Showalter
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology; Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania.
| |
Collapse
|
42
|
Daks A, Shuvalov O, Fedorova O, Petukhov A, Lezina L, Zharova A, Baidyuk E, Khudiakov A, Barlev NA. p53-Independent Effects of Set7/9 Lysine Methyltransferase on Metabolism of Non-Small Cell Lung Cancer Cells. Front Oncol 2021; 11:706668. [PMID: 34692483 PMCID: PMC8528242 DOI: 10.3389/fonc.2021.706668] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/14/2021] [Indexed: 11/13/2022] Open
Abstract
Set7/9 is a lysine-specific methyltransferase, which regulates the functioning of both the histone and non-histone substrates, thereby significantly affecting the global gene expression landscape. Using microarray expression profiling, we have identified several key master regulators of metabolic networks, including c-Myc, that were affected by Set7/9 status. Consistent with this observation, c-Myc transcriptional targets-genes encoding the glycolytic enzymes hexokinase (HK2), aldolase (ALDOB), and lactate dehydrogenase (LDHA)-were upregulated upon Set7/9 knockdown (Set7/9KD). Importantly, we showed the short hairpin RNA (shRNA)-mediated attenuation of Set7/9 augmented c-Myc, GLUT1, HK2, ALDOA, and LDHA expression in non-small cell lung cancer (NSCLC) cell lines, not only at the transcriptional but also at the protein level. In line with this observation, Set7/9KD significantly augmented the membrane mitochondrial potential (MMP), glycolysis, respiration, and the proliferation rate of NSCLC cells. Importantly, all these effects of Set7/9 on cell metabolism were p53-independent. Bioinformatic analysis has shown a synergistic impact of Set7/9 together with either GLUT1, HIF1A, HK2, or LDHA on the survival of lung cancer patients. Based on these evidence, we hypothesize that Set7/9 can be an important regulator of energy metabolism in NSCLC.
Collapse
Affiliation(s)
- Alexandra Daks
- Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russia
| | - Oleg Shuvalov
- Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russia
| | - Olga Fedorova
- Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russia
| | - Alexey Petukhov
- Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russia.,Institute of Molecular Biology and Genetics, Almazov National Medical Research Centre, St Petersburg, Russia
| | - Larissa Lezina
- Regulation of Cell Signaling Laboratory, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Arsenia Zharova
- Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russia
| | - Ekaterina Baidyuk
- Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russia
| | - Alexander Khudiakov
- Institute of Molecular Biology and Genetics, Almazov National Medical Research Centre, St Petersburg, Russia
| | - Nickolai A Barlev
- Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russia.,Regulation of Cell Signaling Laboratory, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| |
Collapse
|
43
|
Li M, Ning J, Wang J, Yan Q, Zhao K, Jia X. SETD7 regulates chondrocyte differentiation and glycolysis via the Hippo signaling pathway and HIF‑1α. Int J Mol Med 2021; 48:210. [PMID: 34617577 PMCID: PMC8510680 DOI: 10.3892/ijmm.2021.5043] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 08/30/2021] [Indexed: 12/24/2022] Open
Abstract
Chondrocytes are well adapted to hypoxia and produce more functional extracellular matrix in low oxygen environments in vitro. In our previous study, methyltransferase SET domain containing (SETD)7 regulated chondrocyte activity in hypoxic conditions. However, the precise association between SETD7 and chondrocyte differentiation under low oxygen partial pressure remains unclear. The association between SETD7 and chondrocyte differentiation was studied by silencing SETD7 in chondrocytes in vitro. The results showed that the silencing of SETD7 in ATDC5 cells inhibited the Hippo signaling pathway, decreased Yes-associated protein (YAP) phosphorylation and increased the levels of YAP and hypoxia inducible factor-1α (HIF-1α) in the nucleus. YAP combined with HIF-1α to form a complex that promoted the expression of genes involved in chondrogenic differentiation and the glycolytic pathway. Thus, SETD7 inhibited chondrocyte differentiation and glycolysis via the Hippo signaling pathway. The present study demonstrated that SETD7 was a potential molecular target that maintained the chondrocyte phenotype during cartilage tissue engineering and cartilage-associated disease.
Collapse
Affiliation(s)
- Maoquan Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Jinqiu Ning
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Jiwei Wang
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510140, P.R. China
| | - Qiqian Yan
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Ke Zhao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Xiaoshi Jia
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| |
Collapse
|
44
|
Norrie disease protein is essential for cochlear hair cell maturation. Proc Natl Acad Sci U S A 2021; 118:2106369118. [PMID: 34544869 DOI: 10.1073/pnas.2106369118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2021] [Indexed: 11/18/2022] Open
Abstract
Mutations in the gene for Norrie disease protein (Ndp) cause syndromic deafness and blindness. We show here that cochlear function in an Ndp knockout mouse deteriorated with age: At P3-P4, hair cells (HCs) showed progressive loss of Pou4f3 and Gfi1, key transcription factors for HC maturation, and Myo7a, a specialized myosin required for normal function of HC stereocilia. Loss of expression of these genes correlated to increasing HC loss and profound hearing loss by 2 mo. We show that overexpression of the Ndp gene in neonatal supporting cells or, remarkably, up-regulation of canonical Wnt signaling in HCs rescued HCs and cochlear function. We conclude that Ndp secreted from supporting cells orchestrates a transcriptional network for the maintenance and survival of HCs and that increasing the level of β-catenin, the intracellular effector of Wnt signaling, is sufficient to replace the functional requirement for Ndp in the cochlea.
Collapse
|
45
|
Daks A, Mamontova V, Fedorova O, Petukhov A, Shuvalov O, Parfenyev S, Netsvetay S, Venina A, Kizenko A, Imyanitov E, Barlev N. Set7/9 controls proliferation and genotoxic drug resistance of NSCLC cells. Biochem Biophys Res Commun 2021; 572:41-48. [PMID: 34343833 DOI: 10.1016/j.bbrc.2021.07.086] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 12/18/2022]
Abstract
The SET domain containing lysine-specific methyltransferase, Set7/9, covalently attaches methyl moieties to a variety of histone and non-histone substrates. Among the substrates of Set7/9 are: p53, NF-kB, PARP1, E2F1, and other transcription factors that regulate many vital processes in the cell. Through the post-translational regulation of these critical master-regulators Set7/9 is involved in regulation of cell proliferation, cancer progression, and DNA damage response. Noteworthy, the role of Set7/9 in tumorigenesis is contradictory and apparently depends on the cellular context. In this study, we investigated the effect of Set7/9 on tumorigenic characteristics of lung cancer cells. We showed that CRISPR/Cas9-mediated knock-out of Set7/9 in A549 and its shRNA-mediated knock-down in H1299 NSCLC cell lines both augment the proliferation rate of tumor cells compared to the matching wild-type cells. Mechanistically, ablation of Set7/9 increased the expression of cyclin A2 and D1 genes thereby promoting the accumulation of cells in S phase. Furthermore, knockout of Set7/9 decreased the expression of E-cadherin, whose product is critical for cell-cell interactions. Accordingly, this led to the increased migration of lung cancer cells. Finally, both ablation or pharmacological inhibition of Set7/9 enzymatic methyltransferase activity by the selective inhibitor (R)-PFI-2 sensitized NSCLC cells to genotoxic drug, doxorubicin. This effect was also recapitulated on patients-derived NSCLC cell lines. Taken together, our results suggest that Set7/9 plays anti-proliferative and DNA damage-protective roles in NSCLC cells and hence represents an attractive target for anti-cancer chemotherapy.
Collapse
Affiliation(s)
- Alexandra Daks
- Institute of Cytology, Russian Academy of Sciences, 194064, St Petersburg, Russian Federation.
| | - Victoria Mamontova
- Institute of Cytology, Russian Academy of Sciences, 194064, St Petersburg, Russian Federation
| | - Olga Fedorova
- Institute of Cytology, Russian Academy of Sciences, 194064, St Petersburg, Russian Federation
| | - Alexey Petukhov
- Institute of Cytology, Russian Academy of Sciences, 194064, St Petersburg, Russian Federation; Almazov National Medical Research Centre, Institute of Hematology, 197341, St Petersburg, Russian Federation
| | - Oleg Shuvalov
- Institute of Cytology, Russian Academy of Sciences, 194064, St Petersburg, Russian Federation
| | - Sergey Parfenyev
- Institute of Cytology, Russian Academy of Sciences, 194064, St Petersburg, Russian Federation
| | - Sofia Netsvetay
- Institute of Cytology, Russian Academy of Sciences, 194064, St Petersburg, Russian Federation
| | - Aigul Venina
- N.N. Petrov Institute of Oncology, 197758, Saint-Petersburg, Russian Federation
| | - Alena Kizenko
- Institute of Cytology, Russian Academy of Sciences, 194064, St Petersburg, Russian Federation
| | - Evgeny Imyanitov
- N.N. Petrov Institute of Oncology, 197758, Saint-Petersburg, Russian Federation
| | - Nickolai Barlev
- Institute of Cytology, Russian Academy of Sciences, 194064, St Petersburg, Russian Federation; Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Moscow Region, Russian Federation.
| |
Collapse
|
46
|
Histone H3K4 Methyltransferases as Targets for Drug-Resistant Cancers. BIOLOGY 2021; 10:biology10070581. [PMID: 34201935 PMCID: PMC8301125 DOI: 10.3390/biology10070581] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/16/2021] [Accepted: 06/22/2021] [Indexed: 12/30/2022]
Abstract
The KMT2 (MLL) family of proteins, including the major histone H3K4 methyltransferase found in mammals, exists as large complexes with common subunit proteins and exhibits enzymatic activity. SMYD, another H3K4 methyltransferase, and SET7/9 proteins catalyze the methylation of several non-histone targets, in addition to histone H3K4 residues. Despite these structural and functional commonalities, H3K4 methyltransferase proteins have specificity for their target genes and play a role in the development of various cancers as well as in drug resistance. In this review, we examine the overall role of histone H3K4 methyltransferase in the development of various cancers and in the progression of drug resistance. Compounds that inhibit protein-protein interactions between KMT2 family proteins and their common subunits or the activity of SMYD and SET7/9 are continuously being developed for the treatment of acute leukemia, triple-negative breast cancer, and castration-resistant prostate cancer. These H3K4 methyltransferase inhibitors, either alone or in combination with other drugs, are expected to play a role in overcoming drug resistance in leukemia and various solid cancers.
Collapse
|
47
|
Chen J, Horton J, Sagum C, Zhou J, Cheng X, Bedford MT. Histone H3 N-terminal mimicry drives a novel network of methyl-effector interactions. Biochem J 2021; 478:1943-1958. [PMID: 33969871 PMCID: PMC8166343 DOI: 10.1042/bcj20210203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022]
Abstract
The reader ability of PHD fingers is largely limited to the recognition of the histone H3 N-terminal tail. Distinct subsets of PHDs bind either H3K4me3 (a transcriptional activator mark) or H3K4me0 (a transcriptional repressor state). Structural studies have identified common features among the different H3K4me3 effector PHDs, including (1) removal of the initiator methionine residue of H3 to prevent steric interference, (2) a groove where arginine-2 binds, and (3) an aromatic cage that engages methylated lysine-4. We hypothesize that some PHDs might have the ability to engage with non-histone ligands, as long as they adhere to these three rules. A search of the human proteome revealed an enrichment of chromatin-binding proteins that met these criteria, which we termed H3 N-terminal mimicry proteins (H3TMs). Seven H3TMs were selected, and used to screen a protein domain microarray for potential effector domains, and they all had the ability to bind H3K4me3-interacting effector domains. Furthermore, the binding affinity between the VRK1 peptide and the PHD domain of PHF2 is ∼3-fold stronger than that of PHF2 and H3K4me3 interaction. The crystal structure of PHF2 PHD finger bound with VRK1 K4me3 peptide provides a molecular basis for stronger binding of VRK1 peptide. In addition, a number of the H3TMs peptides, in their unmethylated form, interact with NuRD transcriptional repressor complex. Our findings provide in vitro evidence that methylation of H3TMs can promote interactions with PHD and Tudor domain-containing proteins and potentially block interactions with the NuRD complex. We propose that these interactions can occur in vivo as well.
Collapse
Affiliation(s)
- Jianji Chen
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, U.S.A
- Graduate Program in Genetics & Epigenetics, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, U.S.A
| | - John Horton
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, U.S.A
| | - Cari Sagum
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, U.S.A
| | - Jujun Zhou
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, U.S.A
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, U.S.A
| | - Mark T. Bedford
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, U.S.A
| |
Collapse
|
48
|
Keating ST, Groh L, van der Heijden CDCC, Rodriguez H, Dos Santos JC, Fanucchi S, Okabe J, Kaipananickal H, van Puffelen JH, Helder L, Noz MP, Matzaraki V, Li Y, de Bree LCJ, Koeken VACM, Moorlag SJCFM, Mourits VP, Domínguez-Andrés J, Oosting M, Bulthuis EP, Koopman WJH, Mhlanga M, El-Osta A, Joosten LAB, Netea MG, Riksen NP. The Set7 Lysine Methyltransferase Regulates Plasticity in Oxidative Phosphorylation Necessary for Trained Immunity Induced by β-Glucan. Cell Rep 2021; 31:107548. [PMID: 32320649 PMCID: PMC7184679 DOI: 10.1016/j.celrep.2020.107548] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 01/31/2020] [Accepted: 03/31/2020] [Indexed: 12/25/2022] Open
Abstract
Trained immunity confers a sustained augmented response of innate immune cells to a secondary challenge, via a process dependent on metabolic and transcriptional reprogramming. Because of its previous associations with metabolic and transcriptional memory, as well as the importance of H3 histone lysine 4 monomethylation (H3K4me1) to innate immune memory, we hypothesize that the Set7 methyltransferase has an important role in trained immunity induced by β-glucan. Using pharmacological studies of human primary monocytes, we identify trained immunity-specific immunometabolic pathways regulated by Set7, including a previously unreported H3K4me1-dependent plasticity in the induction of oxidative phosphorylation. Recapitulation of β-glucan training in vivo additionally identifies Set7-dependent changes in gene expression previously associated with the modulation of myelopoiesis progenitors in trained immunity. By revealing Set7 as a key regulator of trained immunity, these findings provide mechanistic insight into sustained metabolic changes and underscore the importance of characterizing regulatory circuits of innate immune memory.
Set7 regulates enhanced cytokine production in trained immunity in vitro Set7 knockout mice are unable to mount trained immunity against endotoxin challenge Set7 modulates cellular respiration in β-glucan-trained macrophages Set7-dependent histone methylation regulates MDH2 and SDHB in trained cells
Collapse
Affiliation(s)
- Samuel T Keating
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Laszlo Groh
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Charlotte D C C van der Heijden
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Hanah Rodriguez
- Epigenetics in Human Health and Disease, Department of Diabetes, Monash University, Melbourne, VIC, Australia
| | - Jéssica C Dos Santos
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Stephanie Fanucchi
- Division of Chemical, Systems and Synthetic Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa; Gene Expression and Biophysics Group, CSIR Biosciences, Pretoria, South Africa
| | - Jun Okabe
- Epigenetics in Human Health and Disease, Department of Diabetes, Monash University, Melbourne, VIC, Australia
| | - Harikrishnan Kaipananickal
- Epigenetics in Human Health and Disease, Department of Diabetes, Monash University, Melbourne, VIC, Australia; Department of Clinical Pathology, The University of Melbourne, Melbourne, VIC, Australia
| | - Jelmer H van Puffelen
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands; Department for Health Evidence, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Leonie Helder
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Marlies P Noz
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Vasiliki Matzaraki
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Yang Li
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Computational Biology for Individualised Infection Medicine, Centre for Individualised Infection Medicine, Helmholtz Centre for Infection Research, Hannover Medical School, 30625 Hannover, Germany
| | - L Charlotte J de Bree
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands; Research Center for Vitamins and Vaccines, Bandim Health Project, Statens Serum Institut, Copenhagen, Denmark; Odense Patient Data Explorative Network, University of Southern Denmark/Odense University Hospital, Odense, Denmark
| | - Valerie A C M Koeken
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Simone J C F M Moorlag
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Vera P Mourits
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jorge Domínguez-Andrés
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Marije Oosting
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Elianne P Bulthuis
- Department of Biochemistry, Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Werner J H Koopman
- Department of Biochemistry, Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Musa Mhlanga
- Division of Chemical, Systems and Synthetic Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Assam El-Osta
- Epigenetics in Human Health and Disease, Department of Diabetes, Monash University, Melbourne, VIC, Australia; Department of Clinical Pathology, The University of Melbourne, Melbourne, VIC, Australia; Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong City, Hong Kong SAR
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Medical Genetics, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands; Department for Genomics and Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Niels P Riksen
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
49
|
Lee SY, Kwon J, Lee KA. Bcl2l10 induces metabolic alterations in ovarian cancer cells by regulating the TCA cycle enzymes SDHD and IDH1. Oncol Rep 2021; 45:47. [PMID: 33649794 PMCID: PMC7934226 DOI: 10.3892/or.2021.7998] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/03/2021] [Indexed: 01/07/2023] Open
Abstract
Bcl2‑like‑10 (Bcl2l10) has both oncogenic and tumor suppressor functions depending on the type of cancer. It has been previously demonstrated that the suppression of Bcl2l10 in ovarian cancer SKOV3 and A2780 cells causes cell cycle arrest and enhances cell proliferation, indicating that Bcl2l10 is a tumor suppressor gene in ovarian cancer cells. The aim of the present study was to identify possible downstream target genes and investigate the underlying mechanisms of action of Bcl2l10 in ovarian cancer cells. RNA sequencing (RNA‑Seq) was performed to obtain a list of differentially expressed genes (DEGs) in Bcl2l10‑suppressed SKOV3 and A2780 cells. The RNA‑Seq data were validated by reverse transcription‑quantitative PCR (RT‑qPCR) and western blot analysis, and the levels of metabolites after Bcl2l10‑knockdown were measured using colorimetric assay kits. Pathway enrichment analysis revealed that the commonly downregulated genes in SKOV3 and A2780 cells after Bcl2l10‑knockdown were significantly enriched in metabolic pathways. The analysis of the DEGs identified from RNA‑Seq and validated by RT‑qPCR revealed that succinate dehydrogenase complex subunit D (SDHD) and isocitrate dehydrogenase 1 (IDH1), which are key enzymes of the TCA cycle that regulate oncometabolite production, may be potential downstream targets of Bcl2l10. Furthermore, Bcl2l10‑knockdown induced the accumulation of succinate and isocitrate through the downregulation of SDHD and IDH1. The present study was the first to elucidate the metabolic regulatory functions of Bcl2l10 in ovarian cancer cells, and the results indicated that Bcl2l10 may serve as a potential therapeutic target in ovarian cancer.
Collapse
Affiliation(s)
- Su-Yeon Lee
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Gyeonggi 13488, Republic of Korea
| | - Jinie Kwon
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Gyeonggi 13488, Republic of Korea
| | - Kyung-Ah Lee
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Gyeonggi 13488, Republic of Korea,Correspondence to: Professor Kyung-Ah Lee, Department of Biomedical Science, College of Life Science, CHA University, 335 Pangyo-ro, Bundang, Seongnam, Gyeonggi 13488, Republic of Korea, E-mail:
| |
Collapse
|
50
|
Bernard BJ, Nigam N, Burkitt K, Saloura V. SMYD3: a regulator of epigenetic and signaling pathways in cancer. Clin Epigenetics 2021; 13:45. [PMID: 33637115 PMCID: PMC7912509 DOI: 10.1186/s13148-021-01021-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/02/2021] [Indexed: 12/16/2022] Open
Abstract
Chromatin modifiers and their implications in oncogenesis have been an exciting area of cancer research. These are enzymes that modify chromatin via post-translational modifications such as methylation, acetylation, sumoylation, phosphorylation, in addition to others. Depending on the modification, chromatin modifiers can either promote or repress transcription. SET and MYN-domain containing 3 (SMYD3) is a chromatin modifier that has been implicated in the development and progression of various cancer types. It was first reported to tri-methylate Histone 3 Lysine 4 (H3K4), a methylation mark known to promote transcription. However, since this discovery, other histone (H4K5 and H4K20, for example) and non-histone (VEGFR, HER2, MAP3K2, ER, and others) substrates of SMYD3 have been described, primarily in the context of cancer. This review aims to provide a background on basic characteristics of SMYD3, such as its protein structure and tissue expression profiles, discuss reported histone and non-histone substrates of SMYD3, and underscore prognostic and functional implications of SMYD3 in cancer. Finally, we briefly discuss ongoing efforts to develop inhibitors of SMYD3 for future therapeutic use. It is our hope that this review will help synthesize existing research on SMYD3 in an effort to propel future discovery.
Collapse
Affiliation(s)
- Benjamin J Bernard
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, 41 Medlars Drive, Bethesda, MD, 20852, USA
| | - Nupur Nigam
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, 41 Medlars Drive, Bethesda, MD, 20852, USA
| | | | - Vassiliki Saloura
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, 41 Medlars Drive, Bethesda, MD, 20852, USA.
| |
Collapse
|