1
|
Clarke TL, Johnson RL, Simone JJ, Carlone RL. The Endocannabinoid System and Invertebrate Neurodevelopment and Regeneration. Int J Mol Sci 2021; 22:2103. [PMID: 33672634 PMCID: PMC7924210 DOI: 10.3390/ijms22042103] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/12/2021] [Accepted: 02/17/2021] [Indexed: 12/17/2022] Open
Abstract
Cannabis has long been used for its medicinal and psychoactive properties. With the relatively new adoption of formal medicinal cannabis regulations worldwide, the study of cannabinoids, both endogenous and exogenous, has similarly flourished in more recent decades. In particular, research investigating the role of cannabinoids in regeneration and neurodevelopment has yielded promising results in vertebrate models. However, regeneration-competent vertebrates are few, whereas a myriad of invertebrate species have been established as superb models for regeneration. As such, this review aims to provide a comprehensive summary of the endocannabinoid system, with a focus on current advances in the area of endocannabinoid system contributions to invertebrate neurodevelopment and regeneration.
Collapse
Affiliation(s)
- Tristyn L. Clarke
- Department of Biological Sciences, Brock University, 1812 Sir Isaac brock Way, St. Catharines, ON L2S 3A1, Canada; (T.L.C.); (R.L.J.); (J.J.S.)
| | - Rachael L. Johnson
- Department of Biological Sciences, Brock University, 1812 Sir Isaac brock Way, St. Catharines, ON L2S 3A1, Canada; (T.L.C.); (R.L.J.); (J.J.S.)
| | - Jonathan J. Simone
- Department of Biological Sciences, Brock University, 1812 Sir Isaac brock Way, St. Catharines, ON L2S 3A1, Canada; (T.L.C.); (R.L.J.); (J.J.S.)
- Centre for Neuroscience, Brock University, 1812 Sir Isaac brock Way, St. Catharines, ON L2S 3A1, Canada
- eCB Consulting Inc., P.O. Box 652, 3 Cameron St. W., Cannington, ON L2S 3A1, Canada
| | - Robert L. Carlone
- Department of Biological Sciences, Brock University, 1812 Sir Isaac brock Way, St. Catharines, ON L2S 3A1, Canada; (T.L.C.); (R.L.J.); (J.J.S.)
- Centre for Neuroscience, Brock University, 1812 Sir Isaac brock Way, St. Catharines, ON L2S 3A1, Canada
| |
Collapse
|
2
|
Tripathi RKP. A perspective review on fatty acid amide hydrolase (FAAH) inhibitors as potential therapeutic agents. Eur J Med Chem 2019; 188:111953. [PMID: 31945644 DOI: 10.1016/j.ejmech.2019.111953] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 02/06/2023]
Abstract
Fatty acid amide hydrolase (FAAH) is an important enzyme creditworthy of hydrolyzing endocannabinoids and related-amidated signalling lipids, discovery of which has pioneered novel arena of pharmacological canvasses to unwrap its curative potency in various diseased circumstances. It presents contemporary basis for understanding molecules regulating and mediating inflammatory reactions, pain, anxiety, depression, and neurodegeneration. FAAH inhibitors form vital approach for discovery of therapeutic agents that are concerned with local elevation of endocannabinoids under certain stimuli, debarring adverse/unwanted secondary effects from global activation of cannabinoid receptors by exogenous cannabimimetics. During past decades, several molecules with excellent potency developed through tailor-made approaches entered into clinical trials, but none could reach market. Hence, hunt for novel, non-toxic and selective FAAH inhibitors are on horizon. This review summarizes present perception on FAAH in conjunction with its structure, mechanism of catalysis and biological functions. It also foregrounds recent development of molecules belonging to diverse chemical classes as potential FAAH inhibitors bobbing up from in-depth chemical, mechanistic and computational studies published since 2015-November 2019, focusing on their potency. This review will assist readers to obtain rationale on FAAH as potential target for addressing various disease conditions, acquiring significant knowledge on recently established inhibitor scaffolds and their development potentials. New technologies including MD-MM simulations and 3D-QSAR studies allow mechanistic characterization of enzyme. Assessment of in-vitro and in-vivo efficacy of existing FAAH inhibitors will facilitate researchers to design novel ligands utilizing modern drug design methods. The discussions will also impose precaution in decision making process, quashing possibility of late stage failure.
Collapse
Affiliation(s)
- Rati Kailash Prasad Tripathi
- Department of Pharmaceutical Science, Sushruta School of Medical and Paramedical Sciences, Assam University (A Central University), Silchar, Assam, 788011, India; Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
3
|
Roy J, Watson JE, Hong IS, Fan TM, Das A. Antitumorigenic Properties of Omega-3 Endocannabinoid Epoxides. J Med Chem 2018; 61:5569-5579. [PMID: 29856219 DOI: 10.1021/acs.jmedchem.8b00243] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Accumulating studies have linked inflammation to tumor progression. Dietary omega-3 fatty acids, such as docosahexaenoic acid (DHA), have been shown to suppress tumor growth through their conversion to epoxide metabolites. Alternatively, DHA is converted enzymatically into docosahexaenoylethanolamide (DHEA), an endocannabinoid with antiproliferative activity. Recently, we reported a novel class of anti-inflammatory DHEA-epoxide derivative called epoxydocospentaenoic-ethanolamide (EDP-EA) that contain both ethanolamide and epoxide moieties. Herein, we study the antitumorigenic properties of EDP-EAs in an osteosarcoma (OS) model. First, we show ∼80% increase in EDP-EAs in metastatic versus normal lungs of mice. We found significant differences in the apoptotic and antimigratory potencies of the different EDP-EA regioisomers, which were partially mediated through cannabinoid receptor 1 (CB1). Next, we synthesized derivatives of the most pro-apoptotic regioisomer. These derivatives had reduced hydrolytic susceptibility to fatty acid amide hydrolase (FAAH) and increased CB1-selective binding. Collectively, we report a novel class of EDP-EAs that exhibit antiangiogenic, antitumorigenic, and antimigratory properties in OS.
Collapse
|
4
|
Ueda N, Tsuboi K, Uyama T. N-acylethanolamine metabolism with special reference to N-acylethanolamine-hydrolyzing acid amidase (NAAA). Prog Lipid Res 2010; 49:299-315. [PMID: 20152858 DOI: 10.1016/j.plipres.2010.02.003] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
N-acylethanolamines (NAEs) constitute a class of bioactive lipid molecules present in animal and plant tissues. Among the NAEs, N-arachidonoylethanolamine (anandamide), N-palmitoylethanolamine, and N-oleoylethanolamine attract much attention due to cannabimimetic activity as an endocannabinoid, anti-inflammatory and analgesic activities, and anorexic activity, respectively. In mammalian tissues, NAEs are formed from glycerophospholipids through the phosphodiesterase-transacylation pathway consisting of Ca(2+)-dependent N-acyltransferase and N-acylphosphatidylethanolamine-hydrolyzing phospholipase D. Recent studies revealed the presence of alternative pathways and enzymes responsible for the NAE formation. As for the degradation of NAEs, fatty acid amide hydrolase (FAAH), which hydrolyzes NAEs to fatty acids and ethanolamine, plays a central role. However, a lysosomal enzyme referred to as NAE-hydrolyzing acid amidase (NAAA) also catalyzes the same reaction and may be a new target for the development of therapeutic drugs. In this article we discuss recent progress in the studies on the enzymes involved in the biosynthesis and degradation of NAEs with special reference to NAAA.
Collapse
Affiliation(s)
- Natsuo Ueda
- Department of Biochemistry, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa, Japan
| | | | | |
Collapse
|
5
|
Fraga D, Zanoni CIS, Rae GA, Parada CA, Souza GEP. Endogenous cannabinoids induce fever through the activation of CB1 receptors. Br J Pharmacol 2010; 157:1494-501. [PMID: 19681872 DOI: 10.1111/j.1476-5381.2009.00312.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE The effects of centrally administered cannabinoids on body core temperature (Tc) and the contribution of endogenous cannabinoids to thermoregulation and fever induced by lipopolysaccharide (LPS) (Sigma Chem. Co., St. Louis, MO, USA) were investigated. EXPERIMENTAL APPROACH Drug-induced changes in Tc of male Wistar rats were recorded over 6 h using a thermistor probe (Yellow Springs Instruments 402, Dayton, OH, USA) inserted into the rectum. KEY RESULTS Injection of anandamide [(arachidonoylethanolamide (AEA); Tocris, Ellisville, MO, USA], 0.01-1 microg i.c.v. or 0.1-100 ng intra-hypothalamic (i.h.), induced graded increases in Tc (peaks 1.5 and 1.6 degrees C at 4 h after 1 microg i.c.v. or 10 ng i.h.). The effect of AEA (1 microg, i.c.v.) was preceded by decreases in tail skin temperature and heat loss index (values at 1.5 h: vehicle 0.62, AEA 0.48). Bell-shaped curves were obtained for the increase in Tc induced by the fatty acid amide hydrolase inhibitor [3-(3-carbamoylphenyl)phenyl] N-cyclohexylcarbamate (Cayman Chemical Co., Ann Arbor, MI, USA) (0.001-1 ng i.c.v.; peak 1.9 degrees C at 5 h after 0.1 ng) and arachidonyl-2-chloroethylamide (ACEA; Tocris) (selective CB(1) agonist; 0.001-1 microg i.c.v.; peak 1.4 degrees C 5 h after 0.01 microg), but (R,S)-(+)-(2-Iodo-5-nitrobenzoyl)-[1-(1-methyl-piperidin-2-ylmethyl)-1H-indole-3-yl] methanone (Tocris) (selective CB(2) agonist) had no effect on Tc. AEA-induced fever was unaffected by i.c.v. pretreatment with 6-Iodo-2-methyl-1-[2-(4-morpholinyl)ethyl]-1H-indole-3-yl](4-methoxyphenyl) methanone (Tocris) (selective CB(2) antagonist), but reduced by i.c.v. pretreatment with N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (AM251; Tocris) (selective CB(1) antagonist). AM251 also reduced the fever induced by ACEA or LPS. CONCLUSIONS AND IMPLICATIONS The endogenous cannabinoid AEA induces an integrated febrile response through activation of CB(1) receptors. Endocannabinoids participate in the development of the febrile response to LPS constituting a target for antipyretic therapy.
Collapse
Affiliation(s)
- D Fraga
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
6
|
Gkini E, Anagnostopoulos D, Mavri-Vavayianni M, Siafaka-Kapadai A. Metabolism of 2-acylglycerol in rabbit and human platelets. Involvement of monoacylglycerol lipase and fatty acid amide hydrolase. Platelets 2009; 20:376-85. [DOI: 10.1080/09537100903121813] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Ahn K, Johnson DS, Cravatt BF. Fatty acid amide hydrolase as a potential therapeutic target for the treatment of pain and CNS disorders. Expert Opin Drug Discov 2009; 4:763-784. [PMID: 20544003 DOI: 10.1517/17460440903018857] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND: Fatty acid amide hydrolase (FAAH) is an integral membrane enzyme that hydrolyzes the endocannabinoid anandamide and related amidated signaling lipids. Genetic or pharmacological inactivation of FAAH produces analgesic, anti-inflammatory, anxiolytic, and antidepressant phenotypes without showing the undesirable side effects of direct cannabinoid receptor agonists, indicating that FAAH may be a promising therapeutic target. OBJECTIVES: This review highlights advances in the development of FAAH inhibitors of different mechanistic classes and their in vivo efficacy. Also highlighted are advances in technology for the in vitro and in vivo selectivity assessment of FAAH inhibitors employing activity-based protein profiling (ABPP) and click chemistry-ABPP, respectively. Recent reports on structure-based drug design for human FAAH generated by protein engineering using interspecies active site conversion are also discussed. METHODS: The literature searches of Medline and SciFinder databases were used. CONCLUSIONS: There has been tremendous progress in our understanding in FAAH and development of FAAH inhibitors with in vivo efficacy, selectivity, and drug like pharmacokinetic properties.
Collapse
Affiliation(s)
- Kay Ahn
- Pfizer Global Research and Development, Groton/New London Laboratories, Groton, CT 06340
| | | | | |
Collapse
|
8
|
Seierstad M, Breitenbucher JG. Discovery and development of fatty acid amide hydrolase (FAAH) inhibitors. J Med Chem 2009; 51:7327-43. [PMID: 18983142 DOI: 10.1021/jm800311k] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mark Seierstad
- Johnson & Johnson Pharmaceutical Research and Development, L.L.C., 3210 Merryfield Row, San Diego, California 92121, USA
| | | |
Collapse
|
9
|
A modified method for PCR-directed gene synthesis from large number of overlapping oligodeoxyribonucleotides. ACTA ACUST UNITED AC 2008; 70:820-2. [PMID: 18272229 DOI: 10.1016/j.jprot.2007.12.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Revised: 10/07/2007] [Accepted: 12/31/2007] [Indexed: 11/24/2022]
Abstract
Here we report an improved, reproducible, simple, rapid, and cost-effective PCR-based DNA synthesis method using short (25-40 bp) overlapping oligodeoxyribonucleotides (oligos). The method involves two steps; (1) assembly of multiple/overlapping oligos by PCR to generate the template DNA and (2) amplification of the template DNA sequence with the two outermost oligos as primers. We have tested this method by synthesizing approximately 35 genes ranging in size between 300 bp and 1700 bp and G+C content from moderate (30%) to high (65%). In addition, we used the method to introduce 29 mutations simultaneously into a single gene. Key to the success of this method is the use of optimized oligo concentrations and the type of DNA polymerase used. This simplified and highly reproducible method is expected to be beneficial for the synthesis of a wide variety of genes.
Collapse
|
10
|
Fezza F, De Simone C, Amadio D, Maccarrone M. Fatty acid amide hydrolase: a gate-keeper of the endocannabinoid system. Subcell Biochem 2008; 49:101-132. [PMID: 18751909 DOI: 10.1007/978-1-4020-8831-5_4] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The family of endocannabinoids contains several polyunsaturated fatty acid amides such as anandamide (AEA), but also esters such as 2-arachidonoylglycerol (2-AG). These compounds are the main endogenous agonists of cannabinoid receptors, able to mimic several pharmacological effects of Delta9-tetrahydrocannabinol (Delta9-THC), the active principle of Cannabis sativa preparations like hashish and marijuana. The activity of AEA at its receptors is limited by cellular uptake, through a putative membrane transporter, followed by intracellular degradation by fatty acid amide hydrolase (FAAH). Growing evidence demonstrates that FAAH is the critical regulator of the endogenous levels of AEA, suggesting that it may serve as an attractive therapeutic target for the treatment of human disorders. In particular, FAAH inhibitors may be next generation therapeutics of potential value for the treatment of pathologies of the central nervous system, and of peripheral tissues. Investigations into the structure and function of FAAH, its biological and therapeutic implications, as well as a description of different families of FAAH inhibitors, are the topic of this chapter.
Collapse
Affiliation(s)
- Filomena Fezza
- Department of Experimental Medicine and Biochemical Sciences, University of Rome, Rome, Italy
| | | | | | | |
Collapse
|
11
|
Ortar G, Cascio MG, De Petrocellis L, Morera E, Rossi F, Schiano-Moriello A, Nalli M, de Novellis V, Woodward DF, Maione S, Di Marzo V. New N-Arachidonoylserotonin Analogues with Potential “Dual” Mechanism of Action against Pain. J Med Chem 2007; 50:6554-69. [DOI: 10.1021/jm070678q] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Giorgio Ortar
- Dipartimento di Studi Farmaceutici, University of Rome “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy, Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Via dei Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy, Endocannabinoid Research Group, Institute of Cybernetics, Consiglio Nazionale delle Ricerche, Via dei Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy, Department of Biological Sciences, Allergan, Inc., 2525 Dupont Drive (RD-2C), Irvine,
| | - Maria Grazia Cascio
- Dipartimento di Studi Farmaceutici, University of Rome “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy, Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Via dei Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy, Endocannabinoid Research Group, Institute of Cybernetics, Consiglio Nazionale delle Ricerche, Via dei Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy, Department of Biological Sciences, Allergan, Inc., 2525 Dupont Drive (RD-2C), Irvine,
| | - Luciano De Petrocellis
- Dipartimento di Studi Farmaceutici, University of Rome “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy, Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Via dei Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy, Endocannabinoid Research Group, Institute of Cybernetics, Consiglio Nazionale delle Ricerche, Via dei Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy, Department of Biological Sciences, Allergan, Inc., 2525 Dupont Drive (RD-2C), Irvine,
| | - Enrico Morera
- Dipartimento di Studi Farmaceutici, University of Rome “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy, Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Via dei Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy, Endocannabinoid Research Group, Institute of Cybernetics, Consiglio Nazionale delle Ricerche, Via dei Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy, Department of Biological Sciences, Allergan, Inc., 2525 Dupont Drive (RD-2C), Irvine,
| | - Francesca Rossi
- Dipartimento di Studi Farmaceutici, University of Rome “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy, Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Via dei Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy, Endocannabinoid Research Group, Institute of Cybernetics, Consiglio Nazionale delle Ricerche, Via dei Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy, Department of Biological Sciences, Allergan, Inc., 2525 Dupont Drive (RD-2C), Irvine,
| | - Aniello Schiano-Moriello
- Dipartimento di Studi Farmaceutici, University of Rome “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy, Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Via dei Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy, Endocannabinoid Research Group, Institute of Cybernetics, Consiglio Nazionale delle Ricerche, Via dei Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy, Department of Biological Sciences, Allergan, Inc., 2525 Dupont Drive (RD-2C), Irvine,
| | - Marianna Nalli
- Dipartimento di Studi Farmaceutici, University of Rome “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy, Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Via dei Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy, Endocannabinoid Research Group, Institute of Cybernetics, Consiglio Nazionale delle Ricerche, Via dei Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy, Department of Biological Sciences, Allergan, Inc., 2525 Dupont Drive (RD-2C), Irvine,
| | - Vito de Novellis
- Dipartimento di Studi Farmaceutici, University of Rome “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy, Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Via dei Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy, Endocannabinoid Research Group, Institute of Cybernetics, Consiglio Nazionale delle Ricerche, Via dei Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy, Department of Biological Sciences, Allergan, Inc., 2525 Dupont Drive (RD-2C), Irvine,
| | - David F. Woodward
- Dipartimento di Studi Farmaceutici, University of Rome “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy, Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Via dei Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy, Endocannabinoid Research Group, Institute of Cybernetics, Consiglio Nazionale delle Ricerche, Via dei Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy, Department of Biological Sciences, Allergan, Inc., 2525 Dupont Drive (RD-2C), Irvine,
| | - Sabatino Maione
- Dipartimento di Studi Farmaceutici, University of Rome “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy, Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Via dei Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy, Endocannabinoid Research Group, Institute of Cybernetics, Consiglio Nazionale delle Ricerche, Via dei Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy, Department of Biological Sciences, Allergan, Inc., 2525 Dupont Drive (RD-2C), Irvine,
| | - Vincenzo Di Marzo
- Dipartimento di Studi Farmaceutici, University of Rome “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy, Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Via dei Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy, Endocannabinoid Research Group, Institute of Cybernetics, Consiglio Nazionale delle Ricerche, Via dei Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy, Department of Biological Sciences, Allergan, Inc., 2525 Dupont Drive (RD-2C), Irvine,
| |
Collapse
|
12
|
Labar G, Michaux C. Fatty acid amide hydrolase: from characterization to therapeutics. Chem Biodivers 2007; 4:1882-902. [PMID: 17712824 DOI: 10.1002/cbdv.200790157] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fatty acid amide hydrolase (FAAH) is an integral membrane enzyme within the amidase-signature family that terminates the action of several endogenous lipid messengers, including oleamide and the endocannabinoid anandamide. The hydrolysis of such messengers leads to molecules devoid of biological activity, and, therefore, modulates a number of neurobehavioral processes in mammals, including pain, sleep, feeding, and locomotor activity. Investigations into the structure and function of FAAH, its biological and therapeutic implications, as well as a description of different families of FAAH inhibitors are the topic of this review.
Collapse
Affiliation(s)
- Geoffray Labar
- Unité de Chimie pharmaceutique et de Radiopharmacie, Ecole de Pharmacie, Faculté de Médecine, Université catholique de Louvain, Avenue E. Mounier 73.40, B-1200 Bruxelles
| | | |
Collapse
|
13
|
Saario SM, Laitinen JT. Monoglyceride lipase as an enzyme hydrolyzing 2-arachidonoylglycerol. Chem Biodivers 2007; 4:1903-13. [PMID: 17712832 DOI: 10.1002/cbdv.200790158] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Susanna M Saario
- Department of Pharmaceutical Chemistry, University of Kuopio, P.O. Box 1627, FI-70211 Kuopio.
| | | |
Collapse
|
14
|
Abstract
Bioactive N-acylethanolamines, including the endocannabinoid anandamide and anti-inflammatory N-palmitoylethanolamine, are hydrolyzed to fatty acids and ethanolamine in animal tissues by the catalysis of fatty acid amide hydrolase (FAAH). We recently cloned cDNA of N-acylethanolamine-hydrolyzing acid amidase (NAAA), another enzyme catalyzing the same reaction, from human, rat, and mouse. NAAA reveals no sequence homology with FAAH and belongs to the choloylglycine hydrolase family. The most striking catalytic property of NAAA is pH optimum at 4.5-5, which is consistent with its immunocytochemical localization in lysosomes. In rat, NAAA is highly expressed in lung, spleen, thymus, and intestine. Notably, the expression level of NAAA is exceptionally high in rat alveolar macrophages. The primary structure of NAAA exhibits 33-35% amino acid identity to that of acid ceramidase, a lysosomal enzyme hydrolyzing ceramide to fatty acid and sphingosine. NAAA actually showed a low, but detectable ceramide-hydrolyzing activity, while acid ceramidase hydrolyzed N-lauroylethanolamine. Thus, NAAA is a novel lysosomal hydrolase, which is structurally and functionally similar to acid ceramidase. These results suggest a unique role of NAAA in the degradation of N-acylethanolamines.
Collapse
Affiliation(s)
- Kazuhito Tsuboi
- Department of Biochemistry, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan
| | | | | |
Collapse
|
15
|
Abstract
Oleamide (cis-9,10-octadecenoamide), a fatty acid primary amide discovered in the cerebrospinal fluid of sleep-deprived cats, has a variety of actions that give it potential as a signaling molecule, although these actions have not been extensively investigated in the cardiovascular system. The synthetic pathway probably involves synthesis of oleoylglycine and then conversion to oleamide by peptidylglycine alpha-amidating monooxygenase (PAM); breakdown of oleamide is by fatty acid amide hydrolase (FAAH). Oleamide interacts with voltage-gated Na(+) channels and allosterically with GABA(A) and 5-HT(7) receptors as well as having cannabinoid-like actions. The latter have been suggested to be due to potentiation of the effects of endocannabinoids such as anandamide by inhibiting FAAH-mediated hydrolysis. This might underlie an "entourage effect" whereby co-released endogenous nonagonist congeners of endocannabinoids protect the active molecule from hydrolysis by FAAH. However, oleamide has direct agonist actions at CB(1) cannabinoid receptors and also activates the TRPV1 vanilloid receptor. Other actions include inhibition of gap-junctional communication, and this might give oleamide a role in myocardial development. Many of these actions are absent from the trans isomer of 9,10-octadecenoamide. One of the most potent actions of oleamide is vasodilation. In rat small mesenteric artery the response does not involve CB(1) cannabinoid receptors but another pertussis toxin-sensitive, G protein-coupled receptor, as yet unidentified. This receptor is sensitive to rimonabant and O-1918, an antagonist at the putative "abnormal-cannabidiol" or endothelial "anandamide" receptors. Vasodilation is mediated by endothelium-derived nitric oxide, endothelium-dependent hyperpolarization, and also through activation of TRPV1 receptors. A physiological role for oleamide in the heart and circulation has yet to be demonstrated, as has production by cells of the cardiovascular system, but this molecule has a range of actions that could give it considerable modulatory power.
Collapse
Affiliation(s)
- C Robin Hiley
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD, UK.
| | | |
Collapse
|
16
|
Abstract
Fatty acid amide hydrolase (FAAH) is a mammalian integral membrane enzyme that degrades the fatty acid amide family of endogenous signaling lipids, which includes the endogenous cannabinoid anandamide and the sleep-inducing substance oleamide. FAAH belongs to a large and diverse class of enzymes referred to as the amidase signature (AS) family. Investigations into the structure and function of FAAH, in combination with complementary studies of other AS enzymes, have engendered provocative molecular models to explain how this enzyme integrates into cell membranes and terminates fatty acid amide signaling in vivo. These studies, as well as their biological and therapeutic implications, are the subject of this review.
Collapse
Affiliation(s)
- Michele K McKinney
- Departments of Cell Biology and Chemistry, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA.
| | | |
Collapse
|
17
|
Saario SM, Salo OMH, Nevalainen T, Poso A, Laitinen JT, Järvinen T, Niemi R. Characterization of the sulfhydryl-sensitive site in the enzyme responsible for hydrolysis of 2-arachidonoyl-glycerol in rat cerebellar membranes. ACTA ACUST UNITED AC 2005; 12:649-56. [PMID: 15975510 DOI: 10.1016/j.chembiol.2005.04.013] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2004] [Revised: 03/24/2005] [Accepted: 04/08/2005] [Indexed: 11/28/2022]
Abstract
We have previously reported that the endocannabinoid, 2-arachidonoyl-glycerol (2-AG), is hydrolyzed in rat cerebellar membranes by monoglyceride lipase (MGL)-like enzymatic activity. The present study shows that, like MGL, 2-AG-degrading enzymatic activity is sensitive to inhibition by sulfhydryl-specific reagents. Inhibition studies of this enzymatic activity by N-ethylmaleimide analogs revealed that analogs with bulky hydrophobic N-substitution were more potent inhibitors than hydrophilic or less bulky agents. Interestingly, the substrate analog N-arachidonylmaleimide was found to be the most potent inhibitor. A comparison model of MGL was constructed to get a view on the cysteine residues located near the binding site. These findings support our previous conclusion that the 2-AG-degrading enzymatic activity in rat cerebellar membranes corresponds to MGL or MGL-like enzyme and should facilitate further efforts to develop potent and more selective MGL inhibitors.
Collapse
Affiliation(s)
- Susanna M Saario
- Department of Pharmaceutical Chemistry, P.O. Box 1627, FIN-70211 Kuopio, Finland.
| | | | | | | | | | | | | |
Collapse
|
18
|
Matias I, McPartland JM, Di Marzo V. Occurrence and possible biological role of the endocannabinoid system in the sea squirt Ciona intestinalis. J Neurochem 2005; 93:1141-56. [PMID: 15934935 DOI: 10.1111/j.1471-4159.2005.03103.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A cannabinoid receptor orthologue (CiCBR) has been described in the sea squirt Ciona intestinalis. Here we report that CiCBR mRNA expression is highest in cerebral ganglion, branchial pharynx, heart and testis of C. intestinalis, and that this organism also contains cannabinoid receptor ligands and some of the enzymes for ligand biosynthesis and inactivation. Using liquid chromatography-mass spectrometry, the endocannabinoid anandamide was found in all tissues analysed (0.063-5.423 pmol/mg of lipid extract), with the highest concentrations being found in brain and heart. The endocannabinoid 2-arachidonoylglycerol (2-AG) was fivefold more abundant than anandamide, and was most abundant in stomach and intestine and least abundant in heart and ovaries (2.677-50.607 pmol/mg of lipid extract). Using phylogenomic analysis, we identified orthologues of several endocannabinoid synthesizing and degrading enzymes. In particular, we identified and partly sequenced a fatty acid amide hydrolase (FAAH) orthologue, showing 44% identity with human FAAH and containing nearly all the amino acids necessary for a functional FAAH enzyme. Ciona intestinalis also contained specific binding sites for cannabinoid receptor ligands, and an amidase enzyme with pH-dependency and subcellular/tissue distribution similar to mammalian FAAHs. Finally, a typical C. intestinalis behavioural response, siphon reopening after closure induced by mechanical stimulation, was inhibited by the cannabinoid receptor agonist HU-210, and this effect was significantly attenuated by mammalian cannabinoid receptor antagonists.
Collapse
Affiliation(s)
- Isabel Matias
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli (Napoli), Italy
| | | | | |
Collapse
|
19
|
Grazia Cascio M, Minassi A, Ligresti A, Appendino G, Burstein S, Di Marzo V. A structure-activity relationship study on N-arachidonoyl-amino acids as possible endogenous inhibitors of fatty acid amide hydrolase. Biochem Biophys Res Commun 2004; 314:192-6. [PMID: 14715265 DOI: 10.1016/j.bbrc.2003.12.075] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
N-arachidonoyl-glycine (NAGly) has been recently identified in rodent tissues and found to exhibit analgesic activity in vivo. NAGly is a potent inhibitor of the fatty acid amide hydrolase (FAAH), the enzyme primarily responsible for the degradation of the endocannabinoid N-arachidonoyl-ethanolamine (anandamide), and was shown recently to elevate the blood levels of the this analgesic compound. We have synthesized several N-arachidonoyl-amino acids of potential natural occurrence, as well as the D- and L-isomers of N-arachidonoyl-alanine, and have tested their activity on FAAH preparations from mouse, rat, and human cell lines, and from mouse or rat brain. The results indicate that the relative potency and enantioselectivity of N-arachidonoyl-amino acids as FAAH inhibitors depend on the animal species. Thus, whilst NAGly is the most potent compound on the rat and mouse enzymes, N-arachidonoyl-isoleucine is active only on human FAAH and N-arachidonoyl-alanine enantiomers show a varying degree of potency. Taken together, these data support the view that an enhancement of endogenous anandamide levels underlies in part the analgesic effects of NAGly in rodents.
Collapse
Affiliation(s)
- Maria Grazia Cascio
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, CNR, Via Campi Flegrei 34, Comprensorio A. Olivetti, Building 70, 80078 Pozzuoli (NA), Italy
| | | | | | | | | | | |
Collapse
|
20
|
Saario SM, Savinainen JR, Laitinen JT, Järvinen T, Niemi R. Monoglyceride lipase-like enzymatic activity is responsible for hydrolysis of 2-arachidonoylglycerol in rat cerebellar membranes. Biochem Pharmacol 2004; 67:1381-7. [PMID: 15013854 DOI: 10.1016/j.bcp.2003.12.003] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2003] [Accepted: 12/01/2003] [Indexed: 11/23/2022]
Abstract
2-Arachidonoylglycerol (2-AG) is an endogenous cannabinoid that binds to CB1 and CB2 cannabinoid receptors, inducing cannabimimetic effects. However, the cannabimimetic effects of 2-AG are weak in vivo due to its rapid enzymatic hydrolysis. The enzymatic hydrolysis of 2-AG has been proposed to mainly occur by monoglyceride lipase (monoacylglycerol lipase). Fatty acid amide hydrolase (FAAH), the enzyme responsible for the hydrolysis of N-arachidonoylethanolamide (AEA), is also able to hydrolyse 2-AG. In the present study, we investigated the hydrolysis of endocannabinoids in rat cerebellar membranes and observed that enzymatic activity towards 2-AG was 50-fold higher than that towards AEA. Furthermore, various inhibitors for 2-AG hydrolase activity were studied in rat cerebellar membranes. 2-AG hydrolysis was inhibited by methyl arachidonylfluorophosphonate, hexadecylsulphonyl fluoride and phenylmethylsulphonyl fluoride with ic(50) values of 2.2 nM, 241 nM and 155 microM, respectively. Potent FAAH inhibitors, such as OL-53 and URB597, did not inhibit the hydrolysis of 2-AG, suggesting that 2-AG is inactivated in rat cerebellar membranes by an enzyme distinct of FAAH. The observation that the hydrolysis of 1(3)-AG and 2-AG occurred at equal rates supports the role of MGL in 2-AG inactivation. This enzyme assay provides a useful method for future inhibition studies of 2-AG degrading enzyme(s) in brain membrane preparation having considerably higher MGL-like activity when compared to FAAH activity.
Collapse
Affiliation(s)
- Susanna M Saario
- Department of Pharmaceutical Chemistry, University of Kuopio, P.O. Box 1627, FIN-70211 Kuopio, Finland.
| | | | | | | | | |
Collapse
|
21
|
Shrestha R, Dixon RA, Chapman KD. Molecular identification of a functional homologue of the mammalian fatty acid amide hydrolase in Arabidopsis thaliana. J Biol Chem 2003; 278:34990-7. [PMID: 12824167 DOI: 10.1074/jbc.m305613200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
N-Acylethanolamines (NAEs) are endogenous constituents of plant and animal tissues, and in vertebrates their hydrolysis terminates their participation as lipid mediators in the endocannabinoid signaling system. The membrane-bound enzyme responsible for NAE hydrolysis in mammals has been identified at the molecular level (designated fatty acid amide hydrolase, FAAH), and although an analogous enzyme activity was identified in microsomes of cotton seedlings, no molecular information is available for this enzyme in plants. Here we report the identification, the heterologous expression (in Escherichia coli), and the biochemical characterization of an Arabidopsis thaliana FAAH homologue. Candidate Arabidopsis DNA sequences containing a characteristic amidase signature sequence (PS00571) were identified in plant genome data bases, and a cDNA was isolated by reverse transcriptase-PCR using Arabidopsis genome sequences to develop appropriate oligonucleotide primers. The cDNA was sequenced and predicted to encode a protein of 607 amino acids with 37% identity to rat FAAH within the amidase signature domain (18% over the entire length). Residues determined to be important for FAAH catalysis were conserved between the Arabidopsis and rat protein sequences. In addition, a single transmembrane domain near the N terminus was predicted in the Arabidopsis protein sequence, similar to that of the rat FAAH protein. The putative plant FAAH cDNA was expressed as an epitope/His-tagged fusion protein in E. coli and solubilized from cell lysates in the nonionic detergent, dodecyl maltoside. Affinity-purified recombinant protein was indeed active in hydrolyzing a variety of naturally occurring N-acylethanolamine types. Kinetic parameters and inhibition data for the recombinant Arabidopsis protein were consistent with these properties of the enzyme activity characterized previously in plant and animal systems. Collectively these data now provide support at the molecular level for a conserved mechanism between plants and animals for the metabolism of NAEs.
Collapse
Affiliation(s)
- Rhidaya Shrestha
- Department of Biological Sciences, Division of Biochemistry and Molecular Biology, University of North Texas, Denton, Texas 76203, USA
| | | | | |
Collapse
|
22
|
Ueda N, Katayama K, Goparaju SK, Kurahashi Y, Yamanaka K, Suzuki H, Yamamoto S. Catalytic properties of purified recombinant anandamide amidohydrolase. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 507:251-6. [PMID: 12664593 DOI: 10.1007/978-1-4615-0193-0_38] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Affiliation(s)
- Natsuo Ueda
- Department of Biochemistry, Tokushima University School of Medicine Tokushima 770-8503, Japan
| | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Endocannabinoids are a new class of lipid mediators, which includes amides and esters of long-chain polyunsaturated fatty acids. Anandamide (I) and 2-arachidonoylglycerol (II) are the main endogenous agonists of cannabinoid receptors, able to mimic several pharmacological effects of delta 9-tetrahydrocannabinol (III), the active principle of Cannabis sativa preparations such as hashish and marijuana. The pathways leading to the synthesis and release of anandamide and 2-arachidonoylglycerol from neuronal and nonneuronal cells are rather uncertain. Instead, evidence has accumulated showing that the activity of these compounds at their specific receptors is limited by cellular uptake through a specific membrane transporter, followed by intracellular degradation by a fatty acid amide hydrolase. Here, the endocannabinoids and the endocannabinoid-like compounds most relevant for human physiology will be discussed, along with the synthetic and degradative pathways of anandamide and 2-arachidonoylglycerol and their molecular targets on the cell surface. The main actions of the endocannabinoids in human cells and tissues will also be reviewed, focusing on the activities most recently discovered in the central nervous system and in the periphery.
Collapse
Affiliation(s)
- Mauro Maccarrone
- Department of Experimental Medicine and Biochemical Sciences, University of Rome Tor Vergata, I-00133 Rome, Italy
| | | |
Collapse
|
24
|
Dinh TP, Freund TF, Piomelli D. A role for monoglyceride lipase in 2-arachidonoylglycerol inactivation. Chem Phys Lipids 2002; 121:149-58. [PMID: 12505697 DOI: 10.1016/s0009-3084(02)00150-0] [Citation(s) in RCA: 245] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
2-Arachidonoylglycerol (2-AG) is a naturally occurring monoglyceride that activates cannabinoid receptors and meets several key requisites of an endogenous cannabinoid substance. It is present in the brain (where its levels are 170-folds higher than those of anandamide), is produced by neurons in an activity- and calcium-dependent manner, and is rapidly eliminated. The mechanism of 2-AG inactivation is not completely understood, but is thought to involve carrier-mediated transport into cells followed by enzymatic hydrolysis. We examined the possible role of the serine hydrolase, monoglyceride lipase (MGL), in brain 2-AG inactivation. We identified by homology screening a cDNA sequence encoding for a 303-amino acid protein, which conferred MGL activity upon transfection to COS-7 cells. Northern blot and in situ hybridization analyses revealed that MGL mRNA is unevenly present in the rat brain, with highest levels in regions where CB1 cannabinoid receptors are also expressed (hippocampus, cortex, anterior thalamus and cerebellum). Immunohistochemical studies in the hippocampus showed that MGL distribution has striking laminar specificity, suggesting a presynaptic localization of the enzyme. Adenovirus-mediated transfer of MGL cDNA into rat cortical neurons increased the degradation of endogenously produced 2-AG in these cells, whereas no such effect was observed on anandamide degradation. These results indicate that hydrolysis via MGL may be a primary route of 2-AG inactivation in intact neuronal cells.
Collapse
Affiliation(s)
- Thien P Dinh
- Department of Pharmacology, University of California, 360 Med Surge II, Irvine, CA 92697-4625, USA
| | | | | |
Collapse
|
25
|
Schmid HHO, Schmid PC, Berdyshev EV. Cell signaling by endocannabinoids and their congeners: questions of selectivity and other challenges. Chem Phys Lipids 2002; 121:111-34. [PMID: 12505695 DOI: 10.1016/s0009-3084(02)00157-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The major endocannabinoids, anandamide (N-arachidonoylethanolamide, 20:4n-6 N-acylethanolamine) and 2-arachidonoylglycerol (2-AG) are structurally and functionally similar, but they are produced by different metabolic pathways and their levels must therefore be regulated by different mechanisms. Both endocannabinoids are accompanied by cannabinoid receptor-inactive, saturated and mono- or di-unsaturated congeners which can influence their metabolism and function. Here we review published data on the presence and production of anandamide and 2-AG and their congeners in mammalian cells and discuss this information in terms of their proposed signaling functions.
Collapse
Affiliation(s)
- Harald H O Schmid
- The Hormel Institute, University of Minnesota, 801-16th Avenue N E, Austin, MN 55912, USA.
| | | | | |
Collapse
|
26
|
Cravatt BF, Lichtman AH. The enzymatic inactivation of the fatty acid amide class of signaling lipids. Chem Phys Lipids 2002; 121:135-48. [PMID: 12505696 DOI: 10.1016/s0009-3084(02)00147-0] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The fatty acid amide (FAA) class of signaling lipids modulates a number of neurobehavioral processes in mammals, including pain, sleep, feeding, and locomotor activity. Representative FAAs include the endogenous cannabinoid anandamide and the sleep-inducing lipid oleamide. Despite activating several neuroreceptor systems in vitro, most FAAs produce only weak and transient behavioral effects in vivo, presumably due to their expeditious catabolism. This review focuses on one enzyme, fatty acid amide hydrolase (FAAH) that appears to play a major role in regulating the amplitude and duration of FAA signals in vivo. In particular, we will highlight a series of recent papers that have investigated the physiological functions of the mouse and human FAAH enzymes. Collectively, these studies promote FAAH as a central component of FAA signaling pathways, especially those mediated by the endocannabinoid anandamide, and suggest that this enzyme may represent an attractive pharmaceutical target for the treatment of pain and related neurophysiological disorders.
Collapse
Affiliation(s)
- Benjamin F Cravatt
- Departments of Cell Biology and Chemistry, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, CA 92037, USA.
| | | |
Collapse
|
27
|
Abstract
Endocannabinoids (endogenous ligands of cannabinoid receptors) such as anandamide (N-arachidonoylethanolamine) and 2-arachidonoylglycerol (2-AG) are inactivated upon enzymatic hydrolysis. Recent progress in the enzymological and molecular biological studies on the 'endocannabinoid hydrolases' is reviewed in this article. Anandamide is hydrolyzed to arachidonic acid and ethanolamine by a membrane-bound amidase generally referred to as fatty acid amide hydrolase (FAAH). This enzyme has a broad substrate specificity, hydrolyzing oleamide (an endogenous sleep-inducing factor) and 2-AG as well as anandamide. cDNA cloning revealed that FAAH is composed of 579 amino acids and belongs to the amidase signature family. A serine residue functioning as a catalytic nucleophile and several other catalytically important residues were identified in its primary structure. Furthermore, recent generation and analysis of the FAAH gene-deficient mice demonstrated the central role of this enzyme in the metabolism of anandamide. Alternatively, an amidase, which is distinct from FAAH but also hydrolyzing anandamide and other N-acylethanolamines at acidic pH, was identified in human megakaryoblastic cells and rat organs such as lung and spleen. As for the 2-AG hydrolysis, in addition to the known monoacylglycerol lipase, other esterases and FAAH may be involved.
Collapse
Affiliation(s)
- Natsuo Ueda
- Department of Biochemistry, Kagawa Medical University, Miki, Japan.
| |
Collapse
|
28
|
Schmid HHO, Berdyshev EV. Cannabinoid receptor-inactive N-acylethanolamines and other fatty acid amides: metabolism and function. Prostaglandins Leukot Essent Fatty Acids 2002; 66:363-76. [PMID: 12052050 DOI: 10.1054/plef.2001.0348] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Although it is now generally accepted that long-chain N-acylethanolamines and their precursors, N-acylethanolamine phospholipids, exist as trace constituents in virtually all vertebrate cells and tissues, their possible biological functions are just emerging. While anandamide (N-arachidonoylethanolamine) has received much attention due to its ability to bind to and activate cannabinoid receptors, the saturated and monounsaturated N-acylethanolamines, which usually represent the vast majority, are cannabinoid receptor-inactive but appear to interact with endocannabinoids and to have other signaling functions as well. Also, primary fatty acid amides, including the amide of oleic acid, which acts as a sleep-inducing agent, do not interact with cannabinoid receptors but are catabolically related to endocannabinoids. Here we review published information on the occurrence, metabolism, and possible signaling functions of the cannabinoid receptor-inactive N-acylethanolamines and primary fatty acid amides.
Collapse
Affiliation(s)
- H H O Schmid
- The Hormel Institute, University of Minnesota, 801-16th Avenue NE, Austin, MN 55912, USA.
| | | |
Collapse
|
29
|
Abstract
The fatty acid amide hydrolase (FAAH), is the enzyme responsible for the hydrolysis of anandamide, an endocannabinoid. The FAAH knockout, the assays for FAAH, the activity of its substrates, its reversibility and its cloning from rat, mouse, human, and pig are covered in this review. The conserved regions of FAAH are described in terms of sequence and function, including the domains that contains the serine catalytic nucleophile, the hydrophobic domain important for self-association, the proline rich domain region which may be important for subcellular localization and the fatty acid chain binding domain. The FAAH mouse promoter region was characterized in terms of its transcription start site and its activity in different cell types. The distribution of FAAH in the major organs in the body is described as well as regional distribution in the brain and its correlation with cannabinoid receptors. Since FAAH is recognized as a drug target, a large number of inhibitors have been synthesized and tested since 1994 and these are reviewed in terms of reversibility, potency, and specificity for FAAH.
Collapse
Affiliation(s)
- D G Deutsch
- Department of Biochemistry and Cell Biology, State University of New York at Stony Brook, Stony Brook, NY 11794-5215, USA.
| | | | | |
Collapse
|
30
|
Fowler CJ, Jonsson KO, Tiger G. Fatty acid amide hydrolase: biochemistry, pharmacology, and therapeutic possibilities for an enzyme hydrolyzing anandamide, 2-arachidonoylglycerol, palmitoylethanolamide, and oleamide. Biochem Pharmacol 2001; 62:517-26. [PMID: 11585048 DOI: 10.1016/s0006-2952(01)00712-2] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Fatty acid amide hydrolase (FAAH) is responsible for the hydrolysis of a number of important endogenous fatty acid amides, including the endogenous cannabimimetic agent anandamide (AEA), the sleep-inducing compound oleamide, and the putative anti-inflammatory agent palmitoylethanolamide (PEA). In recent years, there have been great advances in our understanding of the biochemical and pharmacological properties of the enzyme. In this commentary, the structure and biochemical properties of FAAH and the development of potent and selective FAAH inhibitors are reviewed, together with a brief discussion on the therapeutic possibilities for such compounds in the treatment of inflammatory pain and ischaemic states.
Collapse
Affiliation(s)
- C J Fowler
- Department of Pharmacology and Clinical Neuroscience, Umeå University, Sweden.
| | | | | |
Collapse
|
31
|
Patricelli MP, Cravatt BF. Proteins regulating the biosynthesis and inactivation of neuromodulatory fatty acid amides. VITAMINS AND HORMONES 2001; 62:95-131. [PMID: 11345902 DOI: 10.1016/s0083-6729(01)62002-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Fatty acid amides (FAAs) represent a growing family of biologically active lipids implicated in a diverse range of cellular and physiological processes. At present, two general types of fatty acid amides, the N-acylethanolamines (NAEs) and the fatty acid primary amides (FAPAs), have been identified as potential physiological neuromodulators/neurotransmitters in mammals. Representative members of these two subfamilies include the endocannabinoid NAE anandamide and the sleep-inducing FAPA oleamide. In this Chapter, molecular mechanisms proposed for the biosynthesis and inactivation of FAAs are critically evaluated, with an emphasis placed on the biochemical and cell biological properties of proteins thought to mediate these processes.
Collapse
Affiliation(s)
- M P Patricelli
- Skaggs Institute for Chemical Biology and the Department of Cell Biology, Scripps Research Institute, La Jolla, California, USA
| | | |
Collapse
|
32
|
Holt S, Nilsson J, Omeir R, Tiger G, Fowler CJ. Effects of pH on the inhibition of fatty acid amidohydrolase by ibuprofen. Br J Pharmacol 2001; 133:513-20. [PMID: 11399668 PMCID: PMC1572815 DOI: 10.1038/sj.bjp.0704113] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The pharmacological properties of fatty acid amidohydrolase (FAAH) at different assay pH values were investigated using [(3)H]-anandamide ([(3)H]-AEA) as substrate in rat brain homogenates and in COS-1 [corrected] cells transfected with wild type and mutant FAAH. Rat brain hydrolysis of [(3)H]-AEA showed pH dependency with an optimum around pH 8-9. Between pH 6.3 and 8.2, the difference in activity was due to differences in the V(max), rather than the K(M) values. For inhibition of rat brain [(3)H]-AEA metabolism by a series of known FAAH inhibitors, the potencies of the enantiomers of ibuprofen and phenylmethylsulphonyl fluoride (PMSF) were higher at pH 5.28 than at pH 8.37, whereas the reverse was true for oleyl trifluoromethylketone (OTMK) and arachidonoylserotonin. At both pH values, (-)ibuprofen was a mixed-type inhibitor of FAAH. The K(i)((slope)) and K(i)((intercept)) values for (-)ibuprofen at pH 5.28 were 11 and 143 microM, respectively. At pH 8.37, the corresponding values were 185 and 3950 microM, respectively. The pH dependency for the inhibition by OTMK and (-)ibuprofen was also seen in COS-1 [corrected] cells transiently transfected with either wild type, S152A or C249A FAAH. No differences in potencies between the wild type and mutant enzymes were seen. It is concluded that the pharmacological properties of FAAH are highly pH-dependent. The higher potency of ibuprofen at lower pH values raises the possibility that in certain types of inflamed tissue, the concentration of this compound following oral administration may be sufficient to inhibit FAAH.
Collapse
Affiliation(s)
- Sandra Holt
- Department of Pharmacology and Clinical Neuroscience, Umeå University, SE-901 87 Umeå, Sweden
| | - Jonas Nilsson
- Department of Cell and Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden
| | - Romelda Omeir
- Department of Biochemistry and Cell Biology, State University of New York at Stony Brook, Stony Brook, New York, NY, 11974-5215, U.S.A
| | - Gunnar Tiger
- Department of Pharmacology and Clinical Neuroscience, Umeå University, SE-901 87 Umeå, Sweden
| | - Christopher J Fowler
- Department of Pharmacology and Clinical Neuroscience, Umeå University, SE-901 87 Umeå, Sweden
- Author for correspondence:
| |
Collapse
|
33
|
Deutsch DG, Glaser ST, Howell JM, Kunz JS, Puffenbarger RA, Hillard CJ, Abumrad N. The cellular uptake of anandamide is coupled to its breakdown by fatty-acid amide hydrolase. J Biol Chem 2001; 276:6967-73. [PMID: 11118429 DOI: 10.1074/jbc.m003161200] [Citation(s) in RCA: 167] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Anandamide is an endogenous compound that acts as an agonist at cannabinoid receptors. It is inactivated via intracellular degradation after its uptake into cells by a carrier-mediated process that depends upon a concentration gradient. The fate of anandamide in those cells containing an amidase called fatty-acid amide hydrolase (FAAH) is hydrolysis to arachidonic acid and ethanolamine. The active site nucleophilic serine of FAAH is inactivated by a variety of inhibitors including methylarachidonylfluorophosphonate (MAFP) and palmitylsulfonyl fluoride. In the current report, the net uptake of anandamide in cultured neuroblastoma (N18) and glioma (C6) cells, which contain FAAH, was decreased by nearly 50% after 6 min of incubation in the presence of MAFP. Uptake in laryngeal carcinoma (Hep2) cells, which lack FAAH, is not inhibited by MAFP. Free anandamide was found in all MAFP-treated cells and in control Hep2 cells, whereas phospholipid was the main product in N18 and C6 control cells when analyzed by TLC. The intracellular concentration of anandamide in N18, C6, and Hep2 cells was up to 18-fold greater than the extracellular concentration of 100 nm, which strongly suggests that it is sequestered within the cell by binding to membranes or proteins. The accumulation of anandamide and/or its breakdown products was found to vary among the different cell types, and this correlated approximately with the amount of FAAH activity, suggesting that the breakdown of anandamide is in part a driving force for uptake. This was shown most clearly in Hep2 cells transfected with FAAH. The uptake in these cells was 2-fold greater than in vector-transfected or untransfected Hep2 cells. Therefore, it appears that FAAH inhibitors reduce anandamide uptake by cells by shifting the anandamide concentration gradient in a direction that favors equilibrium. Because inhibition of FAAH increases the levels of extracellular anandamide, it may be a useful target for the design of therapeutic agents.
Collapse
Affiliation(s)
- D G Deutsch
- Department of Biochemistry and Cell Biology and Physiology and Biophysics, State University of New York at Stony Brook, 11974-5215, USA.
| | | | | | | | | | | | | |
Collapse
|
34
|
|
35
|
Boger DL, Fecik RA, Patterson JE, Miyauchi H, Patricelli MP, Cravatt BF. Fatty acid amide hydrolase substrate specificity. Bioorg Med Chem Lett 2000; 10:2613-6. [PMID: 11128635 DOI: 10.1016/s0960-894x(00)00528-x] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Fatty acid amide hydrolase (FAAH), also referred to as oleamide hydrolase and anandamide amidohydrolase, is a serine hydrolase responsible for the degradation of endogenous oleamide and anandamide, fatty acid amides that function as chemical messengers. FAAH hydrolyzes a range of fatty acid amides, and the present study examines the relative rates of hydrolysis of a variety of natural and unnatural fatty acid primary amide substrates using pure recombinant rat FAAH.
Collapse
Affiliation(s)
- D L Boger
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
The topic of this review is fatty acid amide hydrolase (FAAH), one of the best-characterized enzymes involved in the hydrolysis of bioactive lipids such as anandamide, 2-arachidonoylglycerol (2-AG), and oleamide. Herein, we discuss the nomenclature, the various assays that have been developed, the relative activity of the various substrates and the reversibility of the enzyme reactions catalyzed by FAAH. We also describe the cloning of the enzyme from rat and subsequent cDNA isolation from mouse, human, and pig. The proteins and the mRNAs from different species are compared. Cloning the enzyme permitted the purification and characterization of recombinant FAAH. The conserved regions of FAAH are described in terms of sequence and function, including the amidase domain which contains the serine catalytic nucleophile, the hydrophobic domain important for self association, and the proline rich domain region, which may be important for subcellular localization. The distribution of FAAH in the major organs of the body is described as well as regional distribution in the brain and its correlation with cannabinoid receptors. Since FAAH is recognized as a drug target, a large number of inhibitors have been synthesized and tested since 1994 and these are reviewed in terms of reversibility, potency, and specificity for FAAH and cannabinoid receptors.
Collapse
Affiliation(s)
- N Ueda
- Department of Biochemistry, School of Medicine, University of Tokushima, Kuramoto-cho, 770-8503, Tokushima, Japan
| | | | | | | |
Collapse
|
37
|
Schmid HH. Pathways and mechanisms of N-acylethanolamine biosynthesis: can anandamide be generated selectively? Chem Phys Lipids 2000; 108:71-87. [PMID: 11106783 DOI: 10.1016/s0009-3084(00)00188-2] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Long-chain N-acylethanolamines (NAEs) and their precursors, N-acylethanolamine phospholipids, are ubiquitous trace constituents of animal and human cells, tissues and body fluids. Their cellular levels appear to be tightly regulated and they accumulate as the result of injury. Saturated and monounsaturated congeners which represent the vast majority of cellular NAEs can have cytoprotective effects while polyunsaturated NAEs, especially 20:4n-6 NAE (anandamide), elicit physiological effects by binding to and activating cannabinoid receptors. It is the purpose of this article to review published data on the pathways and mechanisms of NAE biosynthesis in mammals and to evaluate this information for its physiological significance. The generation and turnover of NAE via N-acyl PE through the transacylation-phosphodiesterase pathway may represent a novel cannabinoid receptor-independent signalling system, analogous to and possibly related to ceramide-mediated cell signalling.
Collapse
Affiliation(s)
- H H Schmid
- The Hormel Institute, University of Minnesota, 801 16th Ave NE, Austin, MN 55912, USA.
| |
Collapse
|
38
|
Fowler CJ, Börjesson M, Tiger G. Differences in the pharmacological properties of rat and chicken brain fatty acid amidohydrolase. Br J Pharmacol 2000; 131:498-504. [PMID: 11015300 PMCID: PMC1572338 DOI: 10.1038/sj.bjp.0703569] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The pharmacological properties of fatty acid amidohydrolase (FAAH) were investigated in brains of 35-day-old chickens, since nothing is known about the enzyme in avian species. FAAH activity towards both [(3)H]-palmitoylethanolamide (PEA) [K(M)=1.5 microM] and [(3)H]-anandamide (AEA) [K(M)=5.4 microM] was demonstrated in the chicken brains. The chicken FAAH was inhibited by the substrate analogues oleyl trifluoromethylketone (OTMK) and diazomethylarachidonyl ketone (DAK) with similar potencies to the rat FAAH. However, in contrast to the rat brain, phenylmethylsulphonyl fluoride (PMSF) and the enantiomers of ibuprofen had very weak effects on chicken brain FAAH. Indomethacin and niflumic acid were found to inhibit rat brain AEA hydrolysis. The inhibition by indomethacin was reversible and competitive, with a K(i) value of 120 microM. Chicken FAAH was less sensitive to indomethacin than its rodent counterpart, but the inhibition was also competitive (K(i)). It is concluded that chicken FAAH activity has different pharmacological properties to its rodent counterpart.
Collapse
Affiliation(s)
- C J Fowler
- Department of Pharmacology and Clinical Neuroscience, Umeâ University, SE-901 87 Umeâ, Sweden.
| | | | | |
Collapse
|
39
|
Patricelli MP, Cravatt BF. Clarifying the catalytic roles of conserved residues in the amidase signature family. J Biol Chem 2000; 275:19177-84. [PMID: 10764768 DOI: 10.1074/jbc.m001607200] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fatty acid amide hydrolase (FAAH) is a mammalian integral membrane enzyme responsible for the hydrolysis of a number of neuromodulatory fatty acid amides, including the endogenous cannabinoid anandamide and the sleep-inducing lipid oleamide. FAAH belongs to a large class of hydrolytic enzymes termed the "amidase signature family," whose members are defined by a conserved stretch of approximately 130 amino acids termed the "amidase signature sequence." Recently, site-directed mutagenesis studies of FAAH have targeted a limited number of conserved residues in the amidase signature sequence of the enzyme, identifying Ser-241 as the catalytic nucleophile and Lys-142 as an acid/base catalyst. The roles of several other conserved residues with potentially important and/or overlapping catalytic functions have not yet been examined. In this study, we have mutated all potentially catalytic residues in FAAH that are conserved among members of the amidase signature family, and have assessed their individual roles in catalysis through chemical labeling and kinetic methods. Several of these residues appear to serve primarily structural roles, as their mutation produced FAAH variants with considerable catalytic activity but reduced expression in prokaryotic and/or eukaryotic systems. In contrast, five mutations, K142A, S217A, S218A, S241A, and R243A, decreased the amidase activity of FAAH greater than 100-fold without detectably impacting the structural integrity of the enzyme. The pH rate profiles, amide/ester selectivities, and fluorophosphonate reactivities of these mutants revealed distinct catalytic roles for each residue. Of particular interest, one mutant, R243A, displayed uncompromised esterase activity but severely reduced amidase activity, indicating that the amidase and esterase efficiencies of FAAH can be functionally uncoupled. Collectively, these studies provide evidence that amidase signature enzymes represent a large class of serine-lysine catalytic dyad hydrolases whose evolutionary distribution rivals that of the catalytic triad superfamily.
Collapse
Affiliation(s)
- M P Patricelli
- Skaggs Institute for Chemical Biology and the Department of Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Rd., La Jolla, California, USA
| | | |
Collapse
|
40
|
Hillard CJ. Biochemistry and pharmacology of the endocannabinoids arachidonylethanolamide and 2-arachidonylglycerol. Prostaglandins Other Lipid Mediat 2000; 61:3-18. [PMID: 10785538 DOI: 10.1016/s0090-6980(00)00051-4] [Citation(s) in RCA: 190] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The purpose of this review is to discuss the cellular synthesis and inactivation of two putative endogenous ligands of the cannabinoid receptor, N-arachidonylethanolamine (AEA) and 2-arachidonylglycerol (2-AG). Both ligands are synthesized by neurons and brain tissue in response to increased intracellular calcium concentrations. Both ligands are substrates for fatty acid amide hydrolase (FAAH). Both AEA and 2-AG bind to the neuronal form of the cannabinoid receptor (CB1). AEA binds the receptor with moderate affinity and has the characteristics of a partial agonist, whereas, 2-AG binds with low affinity but exhibits full efficacy. Two possible physiological roles of the endocannabinoids and the CB1 receptor are discussed: the regulation of gestation and the regulation of gastrointestinal motility.
Collapse
Affiliation(s)
- C J Hillard
- Department of Pharmacology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, USA.
| |
Collapse
|
41
|
Abstract
Anandamide (N-arachidonoylethanolamine) loses its cannabimimetic activity when it is hydrolyzed to arachidonic acid and ethanolamine by the catalysis of an enzyme referred to as anandamide amidohydrolase or fatty acid amide hydrolase. Cravatt's group and our group cloned cDNA of the enzyme from rat, human, mouse and pig, and the primary structures revealed that the enzymes belong to an amidase family characterized by the amidase signature sequence. The recombinant enzyme acted not only as an amidase for anandamide and oleamide, but also as an esterase for 2-arachidonoylglycerol. The reversibility of the enzymatic anandamide hydrolysis and synthesis was also confirmed with a purified recombinant enzyme. Several fatty acid derivatives like methyl arachidonyl fluorophosphonate potently inhibited the enzyme. The enzyme was distributed widely in mammalian organs such as liver, small intestine and brain. However, the anandamide hydrolyzing enzyme found in human megakaryoblastic cells was catalytically distinct from the previously known enzyme.
Collapse
Affiliation(s)
- N Ueda
- Department of Biochemistry, Tokushima University School of Medicine, 3-18-15, Kuramoto-cho, Tokushima, Japan.
| | | |
Collapse
|