1
|
Niu C, Zou Y, Dong M, Niu Y. Plant-derived compounds as potential neuroprotective agents in Parkinson's disease. Nutrition 2024; 130:112610. [PMID: 39546872 DOI: 10.1016/j.nut.2024.112610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/12/2024] [Accepted: 10/17/2024] [Indexed: 11/17/2024]
Abstract
OBJECTIVES Current Parkinson's disease (PD) medications treat symptoms; none can slow down or arrest the disease progression. Disease-modifying therapies for PD remain an urgent unmet clinical need. This review was designed to summarize recent findings regarding to the efficacy of phytochemicals in the treatment of PD and their underlying mechanisms. METHODS A literature search was performed using PubMed databases from inception until January 2024. RESULTS We first review the role of oxidative stress in PD and phytochemical-based antioxidant therapy. We then summarize recent work on neuroinflammation in the pathogenesis of PD, as well as preclinical data supporting anti-inflammatory efficacy in treating or preventing the disease. We last evaluate evidence for brain mitochondrial dysfunction in PD, together with the phytochemicals that protect mitochondrial function in preclinical model of PD. Furthermore, we discussed possible reasons for failures of preclinical-to-clinical translation for neuroprotective therapeutics. CONCLUSIONS There is now extensive evidence from preclinical studies that neuroprotective phytochemicals as promising candidate drugs for PD are needed to translate from the laboratory to the clinic.
Collapse
Affiliation(s)
- Chengu Niu
- Internal Medicine Residency Program, Rochester General Hospital, Rochester, NY 14621, USA
| | - Yu Zou
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China
| | - Miaoxian Dong
- The Institute of Medicine, Qiqihar Medical University, Qiqihar 161006, China
| | - Yingcai Niu
- The Institute of Medicine, Qiqihar Medical University, Qiqihar 161006, China.
| |
Collapse
|
2
|
Niu F, Xie W, Zhang W, Kawuki J, Yu X. Vitamin C, vitamin E, β-carotene and risk of Parkinson's disease: a systematic review and dose-response meta-analysis of observational studies. Nutr Neurosci 2024; 27:329-341. [PMID: 36961747 DOI: 10.1080/1028415x.2023.2192561] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
OBJECTIVE This study aimed to explore the relationship between the intake of vitamin C, vitamin E and β-carotene, and the risk of Parkinson's disease (PD). METHODS Web of Science, Embase, PubMed, Cochrane library, CNKI, and WanFang databases were searched from inception to 29 August 2022 for observational studies reporting the odds ratios (ORs) or relative risks (RRs) or hazard ratios (HRs) and 95% confidence intervals (CIs) of PD by Vitamin C/Vitamin E/β-carotene intake. Random-effects models, publication bias assessment, subgroup, sensitivity and dose-response analyses were performed, using.Stata version 12.0. RESULTS A total of 13 studies were included. There was no significant association between high-dose vitamin C intake and the risk of PD compared with low-dose vitamin C intake (RR = 0.98, 95%CI:0.89,1.08). Compared with low-dose intake, high-dose intake of vitamin E can prevent the risk of PD (RR = 0.87, 95%CI:0.77,0.99). Compared with lower β-carotene intake, there was a borderline non-significant correlation between higher intake and PD risk (RR = 0.91, 95%CI:0.82,1.01), and high dose β-carotene intake was found to be associated with a lower risk of PD in women (RR = 0.78, 95%CI:0.64,0.96). CONCLUSION This study shows that vitamin E intake can reduce the risk of PD and play a preventive role.
Collapse
Affiliation(s)
- Fang Niu
- Department of Epidemiology and Biostatistics, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Weihua Xie
- Department of Quality Management, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Weili Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Joseph Kawuki
- Centre for Health Behaviours Research, JC School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Xiaojin Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Southeast University, Nanjing, People's Republic of China
| |
Collapse
|
3
|
Neto A, Fernandes A, Barateiro A. The complex relationship between obesity and neurodegenerative diseases: an updated review. Front Cell Neurosci 2023; 17:1294420. [PMID: 38026693 PMCID: PMC10665538 DOI: 10.3389/fncel.2023.1294420] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Obesity is a global epidemic, affecting roughly 30% of the world's population and predicted to rise. This disease results from genetic, behavioral, societal, and environmental factors, leading to excessive fat accumulation, due to insufficient energy expenditure. The adipose tissue, once seen as a simple storage depot, is now recognized as a complex organ with various functions, including hormone regulation and modulation of metabolism, inflammation, and homeostasis. Obesity is associated with a low-grade inflammatory state and has been linked to neurodegenerative diseases like multiple sclerosis (MS), Alzheimer's (AD), and Parkinson's (PD). Mechanistically, reduced adipose expandability leads to hypertrophic adipocytes, triggering inflammation, insulin and leptin resistance, blood-brain barrier disruption, altered brain metabolism, neuronal inflammation, brain atrophy, and cognitive decline. Obesity impacts neurodegenerative disorders through shared underlying mechanisms, underscoring its potential as a modifiable risk factor for these diseases. Nevertheless, further research is needed to fully grasp the intricate connections between obesity and neurodegeneration. Collaborative efforts in this field hold promise for innovative strategies to address this complex relationship and develop effective prevention and treatment methods, which also includes specific diets and physical activities, ultimately improving quality of life and health.
Collapse
Affiliation(s)
- Alexandre Neto
- Central Nervous System, Blood and Peripheral Inflammation, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| | - Adelaide Fernandes
- Central Nervous System, Blood and Peripheral Inflammation, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| | - Andreia Barateiro
- Central Nervous System, Blood and Peripheral Inflammation, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
4
|
Patel TA, Kevadiya BD, Bajwa N, Singh PA, Zheng H, Kirabo A, Li YL, Patel KP. Role of Nanoparticle-Conjugates and Nanotheranostics in Abrogating Oxidative Stress and Ameliorating Neuroinflammation. Antioxidants (Basel) 2023; 12:1877. [PMID: 37891956 PMCID: PMC10604131 DOI: 10.3390/antiox12101877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Oxidative stress is a deteriorating condition that arises due to an imbalance between the reactive oxygen species and the antioxidant system or defense of the body. The key reasons for the development of such conditions are malfunctioning of various cell organelles, such as mitochondria, endoplasmic reticulum, and Golgi complex, as well as physical and mental disturbances. The nervous system has a relatively high utilization of oxygen, thus making it particularly vulnerable to oxidative stress, which eventually leads to neuronal atrophy and death. This advances the development of neuroinflammation and neurodegeneration-associated disorders such as Alzheimer's disease, Parkinson's disease, epilepsy, dementia, and other memory disorders. It is imperative to treat such conditions as early as possible before they worsen and progress to irreversible damage. Oxidative damage can be negated by two mechanisms: improving the cellular defense system or providing exogenous antioxidants. Natural antioxidants can normally handle such oxidative stress, but they have limited efficacy. The valuable features of nanoparticles and/or nanomaterials, in combination with antioxidant features, offer innovative nanotheranostic tools as potential therapeutic modalities. Hence, this review aims to represent novel therapeutic approaches like utilizing nanoparticles with antioxidant properties and nanotheranostics as delivery systems for potential therapeutic applications in various neuroinflammation- and neurodegeneration-associated disease conditions.
Collapse
Affiliation(s)
- Tapan A. Patel
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA;
| | - Bhavesh D. Kevadiya
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA;
| | - Neha Bajwa
- University Institute of Pharma Sciences (UIPS), Chandigarh University, Mohali 140413, Punjab, India; (N.B.); (P.A.S.)
| | - Preet Amol Singh
- University Institute of Pharma Sciences (UIPS), Chandigarh University, Mohali 140413, Punjab, India; (N.B.); (P.A.S.)
| | - Hong Zheng
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, SD 57069, USA;
| | - Annet Kirabo
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| | - Yu-Long Li
- Department of Emergency Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA;
| | - Kaushik P. Patel
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA;
| |
Collapse
|
5
|
Feng J, Zheng Y, Guo M, Ares I, Martínez M, Lopez-Torres B, Martínez-Larrañaga MR, Wang X, Anadón A, Martínez MA. Oxidative stress, the blood-brain barrier and neurodegenerative diseases: The critical beneficial role of dietary antioxidants. Acta Pharm Sin B 2023; 13:3988-4024. [PMID: 37799389 PMCID: PMC10547923 DOI: 10.1016/j.apsb.2023.07.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/16/2023] [Accepted: 06/13/2023] [Indexed: 10/07/2023] Open
Abstract
In recent years, growing awareness of the role of oxidative stress in brain health has prompted antioxidants, especially dietary antioxidants, to receive growing attention as possible treatments strategies for patients with neurodegenerative diseases (NDs). The most widely studied dietary antioxidants include active substances such as vitamins, carotenoids, flavonoids and polyphenols. Dietary antioxidants are found in usually consumed foods such as fresh fruits, vegetables, nuts and oils and are gaining popularity due to recently growing awareness of their potential for preventive and protective agents against NDs, as well as their abundant natural sources, generally non-toxic nature, and ease of long-term consumption. This review article examines the role of oxidative stress in the development of NDs, explores the 'two-sidedness' of the blood-brain barrier (BBB) as a protective barrier to the nervous system and an impeding barrier to the use of antioxidants as drug medicinal products and/or dietary antioxidants supplements for prevention and therapy and reviews the BBB permeability of common dietary antioxidant suplements and their potential efficacy in the prevention and treatment of NDs. Finally, current challenges and future directions for the prevention and treatment of NDs using dietary antioxidants are discussed, and useful information on the prevention and treatment of NDs is provided.
Collapse
Affiliation(s)
- Jin Feng
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China
| | - Youle Zheng
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
| | - Mingyue Guo
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
| | - Irma Ares
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), And Research Institute Hospital 12 de Octubre (i+12), Madrid 28040, Spain
| | - Marta Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), And Research Institute Hospital 12 de Octubre (i+12), Madrid 28040, Spain
| | - Bernardo Lopez-Torres
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), And Research Institute Hospital 12 de Octubre (i+12), Madrid 28040, Spain
| | - María-Rosa Martínez-Larrañaga
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), And Research Institute Hospital 12 de Octubre (i+12), Madrid 28040, Spain
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), And Research Institute Hospital 12 de Octubre (i+12), Madrid 28040, Spain
| | - Arturo Anadón
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), And Research Institute Hospital 12 de Octubre (i+12), Madrid 28040, Spain
| | - María-Aránzazu Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), And Research Institute Hospital 12 de Octubre (i+12), Madrid 28040, Spain
| |
Collapse
|
6
|
Jeon SH, Hwang YS, Oh SY, Shin BS, Kang MG, Lee MG, Yeom SW, Lee JH, Kang HG, Kim JS. Bidirectional association between Parkinson's disease and obstructive sleep apnea: a cohort study. J Clin Sleep Med 2023; 19:1615-1623. [PMID: 37185062 PMCID: PMC10476034 DOI: 10.5664/jcsm.10596] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 04/11/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023]
Abstract
STUDY OBJECTIVES Chronic intermittent hypoxia due to obstructive sleep apnea (OSA) causes oxidative stress, which may contribute to the pathophysiology of Parkinson's disease (PD). However, the bidirectional relationship between PD and OSA has not been satisfactorily established. The objective of this study was to try to estimate whether there is a bidirectional relationship between PD and OSA through a retrospective cohort study in the South Korean population. METHODS This study used data from the Korean National Health Information Database of the National Health Insurance Service, which contains data from 3.5 million individuals evenly distributed. In study 1, patients with OSA were matched in a 1:2 ratio with non-OSA controls. In study 2, patients with PD were matched in a 1:2 ratio with non-PD controls. A stratified Cox proportional hazards model was used to calculate hazard ratios. RESULTS In study 1, which included 6,396 patients with OSA and 12,792 non-OSA controls, the incidence of PD per 10,000 person-years was 11.59 in the OSA group and 8.46 in the non-OSA group. The OSA group demonstrated a 1.54-fold higher incidence of PD than the non-OSA group (95% confidence interval, 1.14-2.07; P < .05). In study 2, which included 3,427 patients with PD and 6,854 non-PD controls, the incidence of OSA per 10,000 person-years was 14.97 in the PD group and 7.72 in the non-PD group. The PD group demonstrated a 1.92-fold higher incidence of OSA than the non-PD group (95% confidence interval, 1.32-2.78; P < .05). CONCLUSIONS This study supports a possible bidirectional relationship between PD and OSA. CITATION Jeon S-H, Hwang YS, Oh S-Y, et al. Bidirectional association between Parkinson's disease and obstructive sleep apnea: a cohort study. J Clin Sleep Med. 2023;19(9):1615-1623.
Collapse
Affiliation(s)
- Seung-Ho Jeon
- Biomedical Research Institute, Jeonbuk National University Medical School and Hospital, Jeonju, South Korea
- Department of Neurology and Research Institute of Clinical Medicine of Jeonbuk National University, Jeonju, South Korea
| | - Yun Su Hwang
- Biomedical Research Institute, Jeonbuk National University Medical School and Hospital, Jeonju, South Korea
- Department of Neurology and Research Institute of Clinical Medicine of Jeonbuk National University, Jeonju, South Korea
| | - Sun-Young Oh
- Biomedical Research Institute, Jeonbuk National University Medical School and Hospital, Jeonju, South Korea
- Department of Neurology and Research Institute of Clinical Medicine of Jeonbuk National University, Jeonju, South Korea
| | - Byoung-Soo Shin
- Biomedical Research Institute, Jeonbuk National University Medical School and Hospital, Jeonju, South Korea
- Department of Neurology and Research Institute of Clinical Medicine of Jeonbuk National University, Jeonju, South Korea
| | - Min Gu Kang
- Department of Medical Informatics of Jeonbuk National University, Jeonju, South Korea
| | - Min Gyu Lee
- Department of Medical Informatics of Jeonbuk National University, Jeonju, South Korea
| | - Sang Woo Yeom
- Department of Medical Informatics of Jeonbuk National University, Jeonju, South Korea
| | - Jong Hwan Lee
- Department of Otorhinolaryngology and Research Institute of Clinical Medicine of Jeonbuk National University, Jeonju, South Korea
| | - Hyun Goo Kang
- Biomedical Research Institute, Jeonbuk National University Medical School and Hospital, Jeonju, South Korea
- Department of Neurology and Research Institute of Clinical Medicine of Jeonbuk National University, Jeonju, South Korea
| | - Jong Seung Kim
- Biomedical Research Institute, Jeonbuk National University Medical School and Hospital, Jeonju, South Korea
- Department of Otorhinolaryngology and Research Institute of Clinical Medicine of Jeonbuk National University, Jeonju, South Korea
- Department of Medical Informatics of Jeonbuk National University, Jeonju, South Korea
| |
Collapse
|
7
|
Luque-Campos N, Riquelme R, Molina L, Canedo-Marroquín G, Vega-Letter AM, Luz-Crawford P, Bustamante-Barrientos FA. Exploring the therapeutic potential of the mitochondrial transfer-associated enzymatic machinery in brain degeneration. Front Physiol 2023; 14:1217815. [PMID: 37576343 PMCID: PMC10416799 DOI: 10.3389/fphys.2023.1217815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/12/2023] [Indexed: 08/15/2023] Open
Abstract
Mitochondrial dysfunction is a central event in the pathogenesis of several degenerative brain disorders. It entails fission and fusion dynamics disruption, progressive decline in mitochondrial clearance, and uncontrolled oxidative stress. Many therapeutic strategies have been formulated to reverse these alterations, including replacing damaged mitochondria with healthy ones. Spontaneous mitochondrial transfer is a naturally occurring process with different biological functions. It comprises mitochondrial donation from one cell to another, carried out through different pathways, such as the formation and stabilization of tunneling nanotubules and Gap junctions and the release of extracellular vesicles with mitochondrial cargoes. Even though many aspects of regulating these mechanisms still need to be discovered, some key enzymatic regulators have been identified. This review summarizes the current knowledge on mitochondrial dysfunction in different neurodegenerative disorders. Besides, we analyzed the usage of mitochondrial transfer as an endogenous revitalization tool, emphasizing the enzyme regulators that govern this mechanism. Going deeper into this matter would be helpful to take advantage of the therapeutic potential of mitochondrial transfer.
Collapse
Affiliation(s)
- Noymar Luque-Campos
- Laboratorio de Inmunología Celular y Molecular, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- Centro de Investigación e Innovación Biomédica, Universidad de los Andes, Santiago, Chile
- IMPACT-Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Ricardo Riquelme
- Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Luis Molina
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Puerto Montt, Chile
| | - Gisela Canedo-Marroquín
- Centro de Investigación e Innovación Biomédica, Universidad de los Andes, Santiago, Chile
- Faculty of Dentistry, Universidad de los Andes, Santiago, Chile
| | - Ana María Vega-Letter
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaiso, Valparaiso, Chile
| | - Patricia Luz-Crawford
- Laboratorio de Inmunología Celular y Molecular, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- Centro de Investigación e Innovación Biomédica, Universidad de los Andes, Santiago, Chile
- IMPACT-Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Felipe A. Bustamante-Barrientos
- Laboratorio de Inmunología Celular y Molecular, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- Centro de Investigación e Innovación Biomédica, Universidad de los Andes, Santiago, Chile
- IMPACT-Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| |
Collapse
|
8
|
Xiong Z, Liu L, Jian Z, Ma Y, Li H, Jin X, Liao B, Wang K. Vitamin E and Multiple Health Outcomes: An Umbrella Review of Meta-Analyses. Nutrients 2023; 15:3301. [PMID: 37571239 PMCID: PMC10421296 DOI: 10.3390/nu15153301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/22/2023] [Accepted: 07/23/2023] [Indexed: 08/13/2023] Open
Abstract
The relationship between vitamin E intake or circulating α-tocopherol and various health outcomes is still debatable and uncertain. We conducted an umbrella review to identify the relationships between vitamin E intake or circulating tocopherol and health outcomes by merging and recalculating earlier meta-analyses. The connections that were found to be statistically significant were then classified into different evidence levels based on p values, between-study heterogeneity, prediction intervals, and small study effects. We finally included 32 eligible meta-analyses with four vitamin E sources and 64 unique health outcomes. Only the association between circulating α-tocopherol and wheeze or asthma in children was substantiated by consistent evidence. Suggestive evidence was suggested for seven results on endothelial function (supplemental vitamin E): serum C-reactive protein (CRP) concentrations (supplemental vitamin E), cervical cancer (dietary vitamin E), esophageal cancer (dietary vitamin E), cervical intraepithelial neoplasia (CIN, dietary vitamin E), pancreatic cancer (total vitamin E intake), and colorectal cancer (circulating α-tocopherol levels); all of these showed a protective effect consistent with the vitamin E source. In conclusion, our work has indicated that vitamin E is protective for several particular health outcomes. Further prospective studies are required when other factors that may contribute to bias are considered.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Banghua Liao
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu 610041, China; (Z.X.); (L.L.); (Z.J.); (Y.M.); (H.L.); (X.J.)
| | - Kunjie Wang
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu 610041, China; (Z.X.); (L.L.); (Z.J.); (Y.M.); (H.L.); (X.J.)
| |
Collapse
|
9
|
Brembati V, Faustini G, Longhena F, Bellucci A. Alpha synuclein post translational modifications: potential targets for Parkinson's disease therapy? Front Mol Neurosci 2023; 16:1197853. [PMID: 37305556 PMCID: PMC10248004 DOI: 10.3389/fnmol.2023.1197853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 04/27/2023] [Indexed: 06/13/2023] Open
Abstract
Parkinson's disease (PD) is the most common neurodegenerative disorder with motor symptoms. The neuropathological alterations characterizing the brain of patients with PD include the loss of dopaminergic neurons of the nigrostriatal system and the presence of Lewy bodies (LB), intraneuronal inclusions that are mainly composed of alpha-synuclein (α-Syn) fibrils. The accumulation of α-Syn in insoluble aggregates is a main neuropathological feature in PD and in other neurodegenerative diseases, including LB dementia (LBD) and multiple system atrophy (MSA), which are therefore defined as synucleinopathies. Compelling evidence supports that α-Syn post translational modifications (PTMs) such as phosphorylation, nitration, acetylation, O-GlcNAcylation, glycation, SUMOylation, ubiquitination and C-terminal cleavage, play important roles in the modulation α-Syn aggregation, solubility, turnover and membrane binding. In particular, PTMs can impact on α-Syn conformational state, thus supporting that their modulation can in turn affect α-Syn aggregation and its ability to seed further soluble α-Syn fibrillation. This review focuses on the importance of α-Syn PTMs in PD pathophysiology but also aims at highlighting their general relevance as possible biomarkers and, more importantly, as innovative therapeutic targets for synucleinopathies. In addition, we call attention to the multiple challenges that we still need to face to enable the development of novel therapeutic approaches modulating α-Syn PTMs.
Collapse
Affiliation(s)
| | | | | | - Arianna Bellucci
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
10
|
Gandla K, Babu AK, Unnisa A, Sharma I, Singh LP, Haque MA, Dashputre NL, Baig S, Siddiqui FA, Khandaker MU, Almujally A, Tamam N, Sulieman A, Khan SL, Emran TB. Carotenoids: Role in Neurodegenerative Diseases Remediation. Brain Sci 2023; 13:brainsci13030457. [PMID: 36979267 PMCID: PMC10046158 DOI: 10.3390/brainsci13030457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
Numerous factors can contribute to the development of neurodegenerative disorders (NDs), such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease, and multiple sclerosis. Oxidative stress (OS), a fairly common ND symptom, can be caused by more reactive oxygen species being made. In addition, the pathological state of NDs, which includes a high number of protein aggregates, could make chronic inflammation worse by activating microglia. Carotenoids, often known as "CTs", are pigments that exist naturally and play a vital role in the prevention of several brain illnesses. CTs are organic pigments with major significance in ND prevention. More than 600 CTs have been discovered in nature, and they may be found in a wide variety of creatures. Different forms of CTs are responsible for the red, yellow, and orange pigments seen in many animals and plants. Because of their unique structure, CTs exhibit a wide range of bioactive effects, such as anti-inflammatory and antioxidant effects. The preventive effects of CTs have led researchers to find a strong correlation between CT levels in the body and the avoidance and treatment of several ailments, including NDs. To further understand the connection between OS, neuroinflammation, and NDs, a literature review has been compiled. In addition, we have focused on the anti-inflammatory and antioxidant properties of CTs for the treatment and management of NDs.
Collapse
Affiliation(s)
- Kumaraswamy Gandla
- Department of Pharmaceutical Analysis, Chaitanya (Deemed to be University), Hanamakonda 506001, Telangana, India
| | - Ancha Kishore Babu
- School of Pharmacy, KPJ Healthcare University, Persiaran Seriemas, Nilai 71800, Negeri Sembilan, Malaysia
| | - Aziz Unnisa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Ha'il, Ha'il 55476, Saudi Arabia
| | - Indu Sharma
- Department of Physics, Career Point University, Hamirpur 176041, Himachal Pradesh, India
| | - Laliteshwar Pratap Singh
- Department of Pharmaceutical Chemistry, Narayan Institute of Pharmacy, Gopal Narayan Singh University, Jamuhar, Sasaram 821305, Bihar, India
| | - Mahammad Akiful Haque
- Department of Pharmaceutical Analysis, School of Pharmacy, Anurag University, Hyderabad 500088, Telangana, India
| | - Neelam Laxman Dashputre
- Department of Pharmacology, METs, Institute of Pharmacy Bhujbal Knowledge City, Adgaon, Nashik 422003, Maharashtra, India
| | - Shahajan Baig
- Clinical Research Associate, Clinnex, Ahmedabad 380054, Gujarat, India
| | - Falak A Siddiqui
- Department of Pharmaceutical Chemistry, N.B.S. Institute of Pharmacy, Ausa 413520, Maharashtra, India
| | - Mayeen Uddin Khandaker
- Centre for Applied Physics and Radiation Technologies, School of Engineering and Technology, Sunway University, Bandar Sunway 47500, Selangor, Malaysia
| | - Abdullah Almujally
- Department of Biomedical Physics, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Nissren Tamam
- Department of Physics, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Abdelmoneim Sulieman
- Radiology and Medical Imaging Department, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, P.O. Box 422, Alkharj 11942, Saudi Arabia
| | - Sharuk L Khan
- Department of Pharmaceutical Chemistry, N.B.S. Institute of Pharmacy, Ausa 413520, Maharashtra, India
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| |
Collapse
|
11
|
Tchekalarova J, Tzoneva R. Oxidative Stress and Aging as Risk Factors for Alzheimer's Disease and Parkinson's Disease: The Role of the Antioxidant Melatonin. Int J Mol Sci 2023; 24:3022. [PMID: 36769340 PMCID: PMC9917989 DOI: 10.3390/ijms24033022] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/29/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Aging and neurodegenerative diseases share common hallmarks, including mitochondrial dysfunction and protein aggregation. Moreover, one of the major issues of the demographic crisis today is related to the progressive rise in costs for care and maintenance of the standard living condition of aged patients with neurodegenerative diseases. There is a divergence in the etiology of neurodegenerative diseases. Still, a disturbed endogenous pro-oxidants/antioxidants balance is considered the crucial detrimental factor that makes the brain vulnerable to aging and progressive neurodegeneration. The present review focuses on the complex relationships between oxidative stress, autophagy, and the two of the most frequent neurodegenerative diseases associated with aging, Alzheimer's disease (AD) and Parkinson's disease (PD). Most of the available data support the hypothesis that a disturbed antioxidant defense system is a prerequisite for developing pathogenesis and clinical symptoms of ADs and PD. Furthermore, the release of the endogenous hormone melatonin from the pineal gland progressively diminishes with aging, and people's susceptibility to these diseases increases with age. Elucidation of the underlying mechanisms involved in deleterious conditions predisposing to neurodegeneration in aging, including the diminished role of melatonin, is important for elaborating precise treatment strategies for the pathogenesis of AD and PD.
Collapse
Affiliation(s)
- Jana Tchekalarova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, Block 23, 1113 Sofia, Bulgaria
| | - Rumiana Tzoneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, Block 21, 1113 Sofia, Bulgaria
| |
Collapse
|
12
|
Rahnemayan S, Ahari SG, Rikhtegar R, Riyahifar S, Sanaie S. An umbrella review of systematic reviews with meta-analysis on the role of vitamins in Parkinson's disease. Acta Neurol Belg 2023; 123:69-83. [PMID: 35920987 DOI: 10.1007/s13760-022-02055-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/20/2022] [Indexed: 12/01/2022]
Abstract
INTRODUCTION This umbrella review aimed to systematically review the available literature and assess the association of dietary intake or serum levels of different vitamins and the risk of PD, to help find out more efficient treatments for PD patients by replenishing the deficiency of vitamins. METHODS Pubmed/Medline, Scopus, Google Scholar and hand searching bibliographies of retrieved articles in duplicate, were used to detect all relevant meta-analyses investigating the relationship between vitamins and PD. After study selection, data were extracted from previously published meta-analyses and pooled by Review Manager version 5.4 and CMA software version 2.2.064 to achieve effect sizes. Level of statistical significance was set at P ≤ 0.05. RESULTS 14 meta-analyses were included in the meta-review. Serum vitamin D and B12 levels were significantly lower in PD (SMD = -0.67 and SMD = -0.40 respectively). Homocysteine (Hcy) levels were significantly higher in PD patients (SMD = 1.26). Also the odds ratio for highest vs. lowest vitamin E intake was 0.73 which was significant. However, there was no significant difference between vitamin A, C and B6 intake or serum levels in PD vs. control groups. CONCLUSION Serum vitamin D and B12 levels were significantly lower in PD in comparison to healthy individuals, while Hcy level was significantly higher in PD patients. Also higher vitamin E intake was associated with significantly lower risk of development of PD in comparison to lower vitamin E intake. However, there was no significant difference between risk of PD and higher vitamin A, C and B6 intake or serum levels of folate.
Collapse
Affiliation(s)
- Sama Rahnemayan
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Neurosciences Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Reza Rikhtegar
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, Faculty of Medicine, University Duisburg-Essen, Duisburg, Germany
| | - Sevda Riyahifar
- Department of Biostatics, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Sarvin Sanaie
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Golgasht Street, Tabriz, Iran.
| |
Collapse
|
13
|
Almikhlafi MA, Karami MM, Jana A, Alqurashi TM, Majrashi M, Alghamdi BS, Ashraf GM. Mitochondrial Medicine: A Promising Therapeutic Option Against Various Neurodegenerative Disorders. Curr Neuropharmacol 2023; 21:1165-1183. [PMID: 36043795 PMCID: PMC10286591 DOI: 10.2174/1570159x20666220830112408] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/05/2022] [Accepted: 07/14/2022] [Indexed: 11/22/2022] Open
Abstract
Abnormal mitochondrial morphology and metabolic dysfunction have been observed in many neurodegenerative disorders (NDDs). Mitochondrial dysfunction can be caused by aberrant mitochondrial DNA, mutant nuclear proteins that interact with mitochondria directly or indirectly, or for unknown reasons. Since mitochondria play a significant role in neurodegeneration, mitochondriatargeted therapies represent a prosperous direction for the development of novel drug compounds that can be used to treat NDDs. This review gives a brief description of how mitochondrial abnormalities lead to various NDDs such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. We further explore the promising therapeutic effectiveness of mitochondria- directed antioxidants, MitoQ, MitoVitE, MitoPBN, and dimebon. We have also discussed the possibility of mitochondrial gene therapy as a therapeutic option for these NDDs.
Collapse
Affiliation(s)
- Mohannad A. Almikhlafi
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Madinah, Saudi Arabia
| | - Mohammed M. Karami
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ankit Jana
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Campus-11, Patia, Bhubaneswar, Odisha, 751024, India
| | - Thamer M. Alqurashi
- Department of Pharmacology, Faculty of Medicine, Rabigh, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed Majrashi
- Department of Pharmacology, Faculty of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Badrah S. Alghamdi
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- The Neuroscience Research Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ghulam Md. Ashraf
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, University City, Sharjah 27272, United Arab Emirates
| |
Collapse
|
14
|
Perdigão JM, Teixeira BJB, Baia-da-Silva DC, Nascimento PC, Lima RR, Rogez H. Analysis of phenolic compounds in Parkinson's disease: a bibliometric assessment of the 100 most cited papers. Front Aging Neurosci 2023; 15:1149143. [PMID: 37205057 PMCID: PMC10185771 DOI: 10.3389/fnagi.2023.1149143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 04/13/2023] [Indexed: 05/21/2023] Open
Abstract
Objective The aim of this study was to identify and characterize the 100 most cited articles on Parkinson's disease (PD) and phenolic compounds (PCs). Methods Articles were selected in the Web of Science Core Collection up to June 2022 based on predetermined inclusion criteria, and the following bibliometric parameters were extracted: the number of citations, title, keywords, authors, year, study design, tested PC and therapeutic target. MapChart was used to create worldwide networks, and VOSviewer software was used to create bibliometric networks. Descriptive statistical analysis was used to identify the most researched PCs and therapeutic targets in PD. Results The most cited article was also the oldest. The most recent article was published in 2020. Asia and China were the continent and the country with the most articles in the list (55 and 29%, respectively). In vitro studies were the most common experimental designs among the 100 most cited articles (46%). The most evaluated PC was epigallocatechin. Oxidative stress was the most studied therapeutic target. Conclusion Despite the demonstrations in laboratorial studies, the results obtained point to the need for clinical studies to better elucidate this association.
Collapse
Affiliation(s)
- José Messias Perdigão
- Centre for Valorization of Amazonian Bioactive Compounds, Federal University of Pará, Belém, Brazil
| | | | - Daiane Claydes Baia-da-Silva
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Priscila Cunha Nascimento
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Herve Rogez
- Centre for Valorization of Amazonian Bioactive Compounds, Federal University of Pará, Belém, Brazil
- *Correspondence: Herve Rogez,
| |
Collapse
|
15
|
Fox DJ, Park SJ, Mischley LK. Comparison of Associations between MIND and Mediterranean Diet Scores with Patient-Reported Outcomes in Parkinson's Disease. Nutrients 2022; 14:nu14235185. [PMID: 36501214 PMCID: PMC9739738 DOI: 10.3390/nu14235185] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/27/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
The Mediterranean (MEDI) and Mediterranean-DASH Intervention for Neurodegenerative Delay (MIND) diets have been associated with a reduced risk of Parkinson’s disease (PD) diagnosis. However, studies evaluating whether these diets are associated with disease progression in those patients already diagnosed are lacking. The objective of this study was to evaluate whether MIND and MEDI scores were associated with improved patient-reported outcomes. Additionally, we sought to explore which questions on the MIND and MEDI scales were more strongly correlated with PD symptom severity. Data were obtained from the ongoing Modifiable Variables in Parkinsonism study, using patient-reported outcomes in Parkinson’s disease (PRO-PD) as the primary measure for symptom severity, and MIND and MEDI scales for diet score. After adjusting for age, gender, income, and years since diagnosis, for each 1-point increase in the MIND and MEDI scores, PRO-PD scores were 52.9 points lower (95%CI: −66.4, −39.4; p < 0.001) and 25.6 points lower (95%CI: −37.2, −14.0; p < 0.001), respectively (N = 1205). This study suggests MIND and MEDI scores are associated with fewer patient-reported symptoms over time, with each MIND point being twice as strong as a MEDI point in reducing symptom severity. Future dietary intervention trials should consider the MIND diet as a therapeutic strategy for improving long-term PD outcomes.
Collapse
Affiliation(s)
- Devon J. Fox
- Parkinson Center for Pragmatic Research, Seattle, WA 98133, USA
| | - Sarah JaeHwa Park
- Bastyr University Research Institute, Bastyr University, Kenmore, WA 98028, USA
| | - Laurie K. Mischley
- Parkinson Center for Pragmatic Research, Seattle, WA 98133, USA
- Bastyr University Research Institute, Bastyr University, Kenmore, WA 98028, USA
- Translational Bioenergetics Laboratory, Department of Radiology, University of Washington, Seattle, WA 98105, USA
- Correspondence:
| |
Collapse
|
16
|
Meulmeester FL, Luo J, Martens LG, Mills K, van Heemst D, Noordam R. Antioxidant Supplementation in Oxidative Stress-Related Diseases: What Have We Learned from Studies on Alpha-Tocopherol? Antioxidants (Basel) 2022; 11:antiox11122322. [PMID: 36552530 PMCID: PMC9774512 DOI: 10.3390/antiox11122322] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Oxidative stress has been proposed as a key contributor to lifestyle- and age-related diseases. Because free radicals play an important role in various processes such as immune responses and cellular signaling, the body possesses an arsenal of different enzymatic and non-enzymatic antioxidant defense mechanisms. Oxidative stress is, among others, the result of an imbalance between the production of various reactive oxygen species (ROS) and antioxidant defense mechanisms including vitamin E (α-tocopherol) as a non-enzymatic antioxidant. Dietary vitamins, such as vitamin C and E, can also be taken in as supplements. It has been postulated that increasing antioxidant levels through supplementation may delay and/or ameliorate outcomes of lifestyle- and age-related diseases that have been linked to oxidative stress. Although supported by many animal experiments and observational studies, randomized clinical trials in humans have failed to demonstrate any clinical benefit from antioxidant supplementation. Nevertheless, possible explanations for this discrepancy remain underreported. This review aims to provide an overview of recent developments and novel research techniques used to clarify the existing controversy on the benefits of antioxidant supplementation in health and disease, focusing on α-tocopherol as antioxidant. Based on the currently available literature, we propose that examining the difference between antioxidant activity and capacity, by considering the catabolism of antioxidants, will provide crucial knowledge on the preventative and therapeutical use of antioxidant supplementation in oxidative stress-related diseases.
Collapse
Affiliation(s)
- Fleur L. Meulmeester
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
- Correspondence: (F.L.M.); (R.N.); Tel.: +31-71-526-6640 (R.N.)
| | - Jiao Luo
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
- Department of Clinical Epidemiology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Leon G. Martens
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Kevin Mills
- NIHR Great Ormond Street Biomedical Research Centre, Great Ormond Street Hospital, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Diana van Heemst
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Raymond Noordam
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
- Correspondence: (F.L.M.); (R.N.); Tel.: +31-71-526-6640 (R.N.)
| |
Collapse
|
17
|
Wu LY, Chen JX, Chen GS, Gao H, Huo JH, Pang YF, Gao QH. Dietary β-carotene and vitamin A and risk of Parkinson disease: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2022; 101:e31002. [PMID: 36253999 PMCID: PMC9575799 DOI: 10.1097/md.0000000000031002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND The beneficial effects of dietary β-carotene and vitamin A on Parkinson disease (PD) have been confirmed, but some studies have yielded questionable results. Therefore, this meta-analysis investigated the effect of dietary β-carotene and vitamin A on the risk of PD. METHODS The following databases were searched for relevant paper: PubMed, Embase, Medline, Scopus, Cochrane Library, CNKI, Wanfang Med online, and Weipu databases for the relevant paper from 1990 to March 28, 2022. The studies included were as follows: β-carotene and vitamin A intake was measured using scientifically recognized approaches, such as food frequency questionnaire (FFQ); evaluation of odds ratios using OR, RR, or HR; β-carotene and vitamin A intake for three or more quantitative categories; and PD diagnosed by a neurologist or hospital records. RESULTS This study included 11 studies (four cohort studies, six case-control studies, and one cross-sectional study). The high β-carotene intake was associated with a significantly lower chance of developing PD than low β-carotene intake (pooled OR = 0.83, 95%CI = 0.74-0.94). Whereas the risk of advancement of PD was not significantly distinctive among the highest and lowest vitamin A intake (pooled OR = 1.08, 95%CI = 0.91-1.29). CONCLUSIONS Dietary β-carotene intake may have a protective effect against PD, whereas dietary vitamin A does not appear to have the same effect. More relevant studies are needed to include into meta-analysis in the further, as the recall bias and selection bias in retrospective and cross-sectional studies cause misclassifications in the assessment of nutrient intake.
Collapse
Affiliation(s)
- Ling-Yu Wu
- School of Public Health and Management, Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Ningxia, China
| | - Jing-Xin Chen
- School of Public Health and Management, Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Ningxia, China
| | - Gui-Sheng Chen
- Department of Neurology, General Hospital of Ningxia Medical University, Ningxia, China
| | - Hua Gao
- Department of Pharmacy, General Hospital of Ningxia Medical University, Ningxia, China
| | - Jing-Hong Huo
- School of Public Health and Management, Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Ningxia, China
| | - Yu-Fei Pang
- School of Public Health and Management, Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Ningxia, China
| | - Qing-Han Gao
- School of Public Health and Management, Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Ningxia, China
- * Correspondence: Qinghan Gao, School of Public Health and Management, Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, Ningxia 750004, China (e-mail: )
| |
Collapse
|
18
|
Xu K, Peng R, Zou Y, Jiang X, Sun Q, Song C. Vitamin C intake and multiple health outcomes: an umbrella review of systematic reviews and meta-analyses. Int J Food Sci Nutr 2022; 73:588-599. [PMID: 35291895 DOI: 10.1080/09637486.2022.2048359] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/22/2022] [Accepted: 02/27/2022] [Indexed: 12/26/2022]
Abstract
The purpose of this article was to assess the existing systematic reviews and meta-analyses for the association between vitamin C intake and multiple health outcomes. A total of 76 meta-analyses (51 papers) of randomised controlled trials and observational studies with 63 unique health outcomes were identified. Dose-response analysis showed that vitamin C intake was associated with reduced risk of all-cause mortality, cardiovascular disease (CVD), oesophageal cancer, gastric cancer, cervical cancer and lung cancer with an increment of 50-100 mg per day. Beneficial associations were also identified for respiratory, neurological, ophthalmologic, musculoskeletal, renal and dental outcomes. Harmful associations were found for breast cancer and kidney stones for vitamin C supplement intake. The benefits of vitamin C intake outweigh the disadvantages for a range of health outcomes. However, the recommendation of vitamin C supplements needs to be cautious. More prospective studies and well-designed randomised controlled trials (RCTs) are needed.
Collapse
Affiliation(s)
- Kedi Xu
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, China
| | - Rui Peng
- Department of Teaching and Research, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuanlin Zou
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, China
| | - Xiaoru Jiang
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, China
| | - Qiuyu Sun
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, China
| | - Chunhua Song
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
19
|
Kishimoto-Urata M, Urata S, Fujimoto C, Yamasoba T. Role of Oxidative Stress and Antioxidants in Acquired Inner Ear Disorders. Antioxidants (Basel) 2022; 11:1469. [PMID: 36009187 PMCID: PMC9405327 DOI: 10.3390/antiox11081469] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 01/27/2023] Open
Abstract
Oxygen metabolism in the mitochondria is essential for biological activity, and reactive oxygen species (ROS) are produced simultaneously in the cell. Once an imbalance between ROS production and degradation (oxidative stress) occurs, cells are damaged. Sensory organs, especially those for hearing, are constantly exposed during daily life. Therefore, almost all mammalian species are liable to hearing loss depending on their environment. In the auditory pathway, hair cells, spiral ganglion cells, and the stria vascularis, where mitochondria are abundant, are the main targets of ROS. Excessive generation of ROS in auditory sensory organs is widely known to cause sensorineural hearing loss, and mitochondria-targeted antioxidants are candidates for treatment. This review focuses on the relationship between acquired hearing loss and antioxidant use to provide an overview of novel antioxidants, namely medicines, supplemental nutrients, and natural foods, based on clinical, animal, and cultured-cell studies.
Collapse
Affiliation(s)
| | | | | | - Tatsuya Yamasoba
- Department of Otolaryngology, Graduate School of Medicine, The University of Tokyo, Tokyo 1138655, Japan; (M.K.-U.); (S.U.); (C.F.)
| |
Collapse
|
20
|
Cheng P, Zhang J, Liu W, Sun Q, Fu Z, Lin H, Bi S, Zhu J. Tea consumption and cerebral hemorrhage risk: a meta-analysis. Acta Neurol Belg 2022; 122:1247-1259. [PMID: 35633472 DOI: 10.1007/s13760-022-01973-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 04/27/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Tea contains many polyphenols with biological properties such as antithrombosis and antioxidation. Recent observational studies on tea consumption concerning cerebral hemorrhage risk have reported inconsistent results. This meta-analysis aimed to summarize the accumulated evidence on the association between tea consumption and cerebral hemorrhage risk. METHODS Web of Science, PubMed, Embase, and Scopus databases were searched to identify relevant studies through December 2021. Relative risks (RRs) or odds ratios (ORs) from observational studies were synthesized. RESULTS Ten studies involving over 721,827 participants were included. Higher tea consumption was correlated with a 23% (RR = 0.77; 95% CI 0.66-0.89) lower risk of cerebral hemorrhage. Subgroup meta-analyses indicated higher tea consumption was beneficial in preventing cerebral hemorrhage risk for green tea, alcohol-adjusted, fruit/vegetables-adjusted, and physical activity-adjusted subgroups, respectively (P < 0.01). Dose-response analysis indicated each one-cup (120 ml/cup) increment in tea or green tea intake/day was correlated with an average of 2% (RR = 0.98, 95% CI 0.976-0.990), or 6% (RR = 0.94; 95% CI 0.92-0.97) lower cerebral hemorrhage risk. CONCLUSIONS This study suggests that daily tea consumption is related to a lower risk of cerebral hemorrhage among adults. Green tea consumption appears to be more beneficial in preventing cerebral hemorrhage. Physical activity, fruit/vegetables, and alcohol may affect the relationship between tea consumption and hemorrhagic stroke. Future studies should investigate the interplay of tea with these factors.
Collapse
Affiliation(s)
- Pengfei Cheng
- Department of Neurology, Tianjin Medical University Nankai Hospital, No. 6 Changjiang Road, Nankai District, Tianjin, 300100, China.
- Department of Neurology, The First Affiliated Hospital of Jiamusi University, Jiamusi, 154002, China.
| | - Junxiang Zhang
- Department of Neurology, The First Affiliated Hospital of Jiamusi University, Jiamusi, 154002, China
| | - Wenting Liu
- Department of Neurology, The First Affiliated Hospital of Jiamusi University, Jiamusi, 154002, China
| | - Quan Sun
- College of Basic Medicine, Jiamusi University, Jiamusi, 154002, China
| | - Zhaoxin Fu
- Department of Nephrology, The First Affiliated Hospital of Jiamusi University, Jiamusi, 154002, China
| | - Hao Lin
- Department of Neurology, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Sheng Bi
- Department of Neurology, The First Affiliated Hospital of Jiamusi University, Jiamusi, 154002, China
| | - Jiaying Zhu
- Department of Neurology, The First Affiliated Hospital of Jiamusi University, Jiamusi, 154002, China
| |
Collapse
|
21
|
Rahimmi A, Tozandehjani S, Daraei M, Khademerfan M. The neuroprotective roles of Dietary Micronutrients on Parkinson’s disease: a review. Mol Biol Rep 2022; 49:8051-8060. [DOI: 10.1007/s11033-022-07345-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 12/01/2022]
|
22
|
Multiomics implicate gut microbiota in altered lipid and energy metabolism in Parkinson's disease. NPJ Parkinsons Dis 2022; 8:39. [PMID: 35411052 PMCID: PMC9001728 DOI: 10.1038/s41531-022-00300-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 03/04/2022] [Indexed: 12/19/2022] Open
Abstract
We aimed to investigate the link between serum metabolites, gut bacterial community composition, and clinical variables in Parkinson’s disease (PD) and healthy control subjects (HC). A total of 124 subjects were part of the study (63 PD patients and 61 HC subjects). 139 metabolite features were found to be predictive between the PD and Control groups. No associations were found between metabolite features and within-PD clinical variables. The results suggest alterations in serum metabolite profiles in PD, and the results of correlation analysis between metabolite features and microbiota suggest that several bacterial taxa are associated with altered lipid and energy metabolism in PD.
Collapse
|
23
|
Banerjee P, Saha I, Sarkar D, Maiti AK. Contributions and Limitations of Mitochondria-Targeted and Non-Targeted Antioxidants in the Treatment of Parkinsonism: an Updated Review. Neurotox Res 2022; 40:847-873. [PMID: 35386026 DOI: 10.1007/s12640-022-00501-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 11/24/2022]
Abstract
As conventional therapeutics can only treat the symptoms of Parkinson's disease (PD), major focus of research in recent times is to slow down or prevent the progression of neuronal degeneration in PD. Non-targeted antioxidants have been an integral part of the conventional therapeutics regimen; however, their importance have lessened over time because of their controversial outcomes in clinical PD trials. Inability to permeate and localize within the mitochondria remains the main drawback on the part of non-targeted antioxidants inspite of possessing free radical scavenging properties. In contrast, mitochondrial-targeted antioxidants (MTAs), a special class of compounds have emerged having high advantages over non-targeted antioxidants by virtue of efficient pharmacokinetics and better absorption rate with capability to localize many fold inside the mitochondrial matrix. Preclinical experimentations indicate that MTAs have the potential to act as better alternatives compared to conventional non-targeted antioxidants in treating PD; however, sufficient clinical trials have not been conducted to investigate the efficacies of MTAs in treating PD. Controversial clinical outcomes on the part of non-targeted antioxidants and lack of clinical trials involving MTAs have made it difficult to go ahead with a direct comparison and in turn have slowed down the progress of development of safer and better alternate strategies in treating PD. This review provides an insight on the roles MTAs and non-targeted antioxidants have played in the treatment of PD till date in preclinical and clinical settings and discusses about the limitations of mitochondria-targeted and non-targeted antioxidants that can be resolved for developing effective strategies in treating Parkinsonism.
Collapse
Affiliation(s)
- Priyajit Banerjee
- Department of Zoology, University of Burdwan, Burdwan, West Bengal, Pin-713104, India
| | - Ishita Saha
- Department of Physiology, Medical College Kolkata, Kolkata, West Bengal, Pin-700073, India
| | - Diptendu Sarkar
- Department of Microbiology, Ramakrishna Mission Vidyamandira, Belur Math, Howrah, West Bengal, 711202, India
| | - Arpan Kumar Maiti
- Mitochondrial Biology and Experimental Therapeutics Laboratory, Department of Zoology, University of North Bengal, District - Darjeeling, P.O. N.B.U, Raja Rammohunpur, West Bengal, Pin-734013, India.
| |
Collapse
|
24
|
Rakowski M, Porębski S, Grzelak A. Nutraceuticals as Modulators of Autophagy: Relevance in Parkinson’s Disease. Int J Mol Sci 2022; 23:ijms23073625. [PMID: 35408992 PMCID: PMC8998447 DOI: 10.3390/ijms23073625] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/20/2022] [Accepted: 03/23/2022] [Indexed: 12/29/2022] Open
Abstract
Dietary supplements and nutraceuticals have entered the mainstream. Especially in the media, they are strongly advertised as safe and even recommended for certain diseases. Although they may support conventional therapy, sometimes these substances can have unexpected side effects. This review is particularly focused on the modulation of autophagy by selected vitamins and nutraceuticals, and their relevance in the treatment of neurodegenerative diseases, especially Parkinson’s disease (PD). Autophagy is crucial in PD; thus, the induction of autophagy may alleviate the course of the disease by reducing the so-called Lewy bodies. Hence, we believe that those substances could be used in prevention and support of conventional therapy of neurodegenerative diseases. This review will shed some light on their ability to modulate the autophagy.
Collapse
Affiliation(s)
- Michał Rakowski
- The Bio-Med-Chem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, University of Lodz, 90-237 Lodz, Poland
- Cytometry Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (S.P.); (A.G.)
- Correspondence:
| | - Szymon Porębski
- Cytometry Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (S.P.); (A.G.)
| | - Agnieszka Grzelak
- Cytometry Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (S.P.); (A.G.)
| |
Collapse
|
25
|
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease and affects about 1% of the population over the age of 60 years in industrialised countries. The aim of this review is to examine nutrition in PD across three domains: dietary intake and the development of PD; whole body metabolism in PD and the effects of PD symptoms and treatment on nutritional status. In most cases, PD is believed to be caused by a combination of genetic and environmental factors and although there has been much research in the area, evidence suggests that poor dietary intake is not a risk factor for the development of PD. The evidence about body weight changes in both the prodromal and symptomatic phases of PD is inconclusive and is confounded by many factors. Malnutrition in PD has been documented as has sarcopaenia, although the prevalence of the latter remains uncertain due to a lack of consensus in the definition of sarcopaenia. PD symptoms, including those which are gastrointestinal and non-gastrointestinal, are known to adversely affect nutritional status. Similarly, PD treatments can cause nausea, vomiting and constipation, all of which can adversely affect nutritional status. Given that the prevalence of PD will increase as the population ages, it is important to understand the interplay between PD, comorbidities and nutritional status. Further research may contribute to the development of interventional strategies to improve symptoms, augment care and importantly, enhance the quality of life for patients living with this complex neurodegenerative disease.
Collapse
|
26
|
Ulatowski L, Ghelfi M, West R, Atkinson J, Finno CJ, Manor D. The tocopherol transfer protein TTP mediates Vitamin Vitamin E trafficking between cerebellar astrocytes and neurons. J Biol Chem 2022; 298:101712. [PMID: 35150738 PMCID: PMC8913317 DOI: 10.1016/j.jbc.2022.101712] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/31/2022] [Accepted: 02/04/2022] [Indexed: 12/13/2022] Open
Abstract
Alpha-tocopherol (vitamin E) is an essential nutrient that functions as a major lipid-soluble antioxidant in humans. The tocopherol transfer protein (TTP) binds α-tocopherol with high affinity and selectivity and regulates whole-body distribution of the vitamin. Heritable mutations in the TTPA gene result in familial vitamin E deficiency, elevated indices of oxidative stress, and progressive neurodegeneration that manifest primarily in spinocerebellar ataxia. Although the essential role of vitamin E in neurological health has been recognized for over 50 years, the mechanisms by which this essential nutrient is transported in the central nervous system are poorly understood. Here we found that, in the murine cerebellum, TTP is selectively expressed in GFAP-positive astrocytes, where it facilitates efflux of vitamin E to neighboring neurons. We also show that induction of oxidative stress enhances the transcription of the TtpA gene in cultured cerebellar astrocytes. Furthermore, secretion of vitamin E from astrocytes is mediated by an ABC-type transporter, and uptake of the vitamin into neurons involves the low-density lipoprotein receptor-related protein 1 (LRP1) receptor. Taken together, our data indicate that TTP-expressing astrocytes control the delivery of vitamin E from astrocytes to neurons, and that this process is homeostatically responsive to oxidative stress. These are the first observations that address the detailed molecular mechanisms of vitamin E transport in the central nervous system, and these results have important implications for understanding the molecular underpinnings of oxidative stress-related neurodegenerative diseases.
Collapse
Affiliation(s)
- L Ulatowski
- Department of Biology, Ursuline College, Pepper Pike, OH 44124
| | - Mikel Ghelfi
- Department of Chemistry, Brock University, St. Catharines, Ontario, L2S 3A1, Canada
| | - Ryan West
- Department of Chemistry, Brock University, St. Catharines, Ontario, L2S 3A1, Canada
| | - J Atkinson
- Department of Chemistry, Brock University, St. Catharines, Ontario, L2S 3A1, Canada
| | - C J Finno
- Department of Population Health and Reproduction, University of California School of Veterinary Medicine, Davis, CA 95616
| | - D Manor
- Departments of Nutrition and Pharmacology, School of Medicine, Cleveland, OH 44106; Case Western Reserve University and the Case Comprehensive Cancer Center, Cleveland, OH 44106.
| |
Collapse
|
27
|
Talebi S, Ghoreishy SM, Jayedi A, Travica N, Mohammadi H. Dietary Antioxidants and Risk of Parkinson's Disease: A Systematic Review and Dose-Response Meta-analysis of Observational Studies. Adv Nutr 2022; 13:1493-1504. [PMID: 35030236 PMCID: PMC9526846 DOI: 10.1093/advances/nmac001] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/09/2021] [Accepted: 01/10/2022] [Indexed: 01/28/2023] Open
Abstract
The aim of the current review was to explore the association between various dietary antioxidants and the risk of developing Parkinson's disease (PD). PubMed, Scopus, Web of Science, and Google Scholar were searched up to March 2021. Prospective, observational cohort studies, nested case-control, and case-control designs that investigated the association between antioxidants and PD risk were included. A random-effects model was used to pool the RRs. The certainty of the evidence was rated using the GRADE (Grading of Recommendations Assessment, Development, and Evaluations) scoring system. In addition, a dose-response relation was examined between antioxidant intake and PD risk. Six prospective cohort studies and 2 nested case-control (total n = 448,737 with 4654 cases), as well as 6 case-control (1948 controls, 1273 cases) studies were eligible. The pooled RR was significantly lower for the highest compared with the lowest intake categories of vitamin E (n = 7; 0.84; 95% CI: 0.71, 0.99) and anthocyanins (n = 2; 0.76; 95% CI: 0.61, 0.96) in cohort studies. Conversely, a significantly higher risk of PD was observed for higher lutein intake (n = 3; 1.86; 95% CI: 1.20, 2.88) among case-control studies. Dose-response meta-analyses indicated a significant association between a 50-mg/d increase in vitamin C (n = 6; RR: 0.94; 95% CI: 0.88, 0.99), a 5-mg/d increment in vitamin E (n = 7; RR: 0.84; 95% CI: 0.70, 0.99), a 2-mg/d increment in β-carotene (n = 6; RR: 0.94, 95% CI: 0.89, 0.99), and a 1-mg/d increment in zinc (n = 1; OR: 0.65; 95% CI: 0.49, 0.86) and a reduced risk of PD. Overall, higher intake of antioxidant-rich foods may be associated with a lower risk of PD. Future well-designed prospective studies are needed to validate the present findings. The protocol was registered in the International Prospective Register of Systematic Reviews (PROSPERO) database (https://www.crd.york.ac.uk/PROSPERO, CRD42021242511).
Collapse
Affiliation(s)
- Sepide Talebi
- Students’ Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran,Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mojtaba Ghoreishy
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Jayedi
- Social Determinant of Health Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Nikolaj Travica
- Deakin University, IMPACT–the Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Geelong, Australia
| | | |
Collapse
|
28
|
Human gut microbiota and Parkinson's disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 192:281-307. [DOI: 10.1016/bs.pmbts.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
29
|
Costas C, Faro LR. Do Naturally Occurring Antioxidants Protect Against Neurodegeneration of the Dopaminergic System? A Systematic Revision in Animal Models of Parkinson's Disease. Curr Neuropharmacol 2022; 20:432-459. [PMID: 33882808 PMCID: PMC9413795 DOI: 10.2174/1570159x19666210421092725] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/18/2021] [Accepted: 04/16/2021] [Indexed: 11/22/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease and is characterized by a significant decrease in dopamine levels, caused by progressive degeneration of the dopaminergic neurons in the nigrostriatal pathway. Multiple mechanisms have been implicated in its pathogenesis, including oxidative stress, neuroinflammation, protein aggregation, mitochondrial dysfunction, insufficient support for neurotrophic factors and cell apoptosis. The absence of treatments capable of slowing or stopping the progression of PD has increased the interest in the natural antioxidant substances present in the diet, since they have multiple beneficial properties and it is possible that they can influence the mechanisms responsible for the dysfunction and death of dopaminergic neurons. Thus, the purpose of this systematic review is to analyze the results obtained in a set of studies carried out in the last years, which describe the neuroprotective, antioxidant and regenerative functions of some naturally occurring antioxidants in experimental models of PD. The results show that the exogenous no enzymatic antioxidants can significantly modify the biochemical and behavioral mechanisms that contribute to the pathophysiology of Parkinsonism in experimental animals. Therefore, it is possible that they may contribute to effective neuroprotection by providing a significant improvement in neuropathological markers. In conclusion, the results of this review suggest that exogenous antioxidants can be promising therapeutic candidates for the prevention and treatment of PD.
Collapse
Affiliation(s)
- Carmen Costas
- Department of Functional Biology and Health Sciences, Faculty of Biology, University of Vigo, Campus Lagoas-Marcosende, 36310, Vigo, Spain
| | - Lilian R.F. Faro
- Department of Functional Biology and Health Sciences, Faculty of Biology, University of Vigo, Campus Lagoas-Marcosende, 36310, Vigo, Spain
| |
Collapse
|
30
|
Yemula N, Dietrich C, Dostal V, Hornberger M. Parkinson's Disease and the Gut: Symptoms, Nutrition, and Microbiota. JOURNAL OF PARKINSON'S DISEASE 2021; 11:1491-1505. [PMID: 34250955 PMCID: PMC8609682 DOI: 10.3233/jpd-212707] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Accepted: 06/22/2021] [Indexed: 12/24/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease worldwide, characterized by symptoms of bradykinesia, rigidity, postural instability, and tremor. Recently, there has been a growing focus on the relationship between the gut and the development of PD. Emerging to the forefront, an interesting concept has developed suggesting that the initial pathophysiological changes occur in the gastrointestinal tract before changes are seen within the brain. This review is aimed at highlighting the relationship between PD and the gastrointestinal tract, along with the supporting evidence for this. Firstly, we will focus on the gastrointestinal conditions and symptoms which commonly affects patients, including both upper and lower gastrointestinal issues. Secondly, the impact of nutrition and diet on neurological health and PD physiology, with particular emphasis on commonly consumed items including macronutrients and micronutrients. Finally, variability of the gut microbiome will also be discussed and its link with both the symptoms and signs of PD. The evidence presented in this review highly suggests that the initial pathogenesis in the gut may proceed the development of prodromal PD subtypes, and therefore building on this further could be imperative and lead to earlier diagnosis with new and improved therapeutics.
Collapse
Affiliation(s)
- Nehal Yemula
- Norfolk and Norwich University Hospital, Norwich, United Kingdom
| | - Celina Dietrich
- Faculty of Health and Medical Sciences, University of East Anglia, Norwich, United Kingdom
| | - Vaclav Dostal
- Norfolk and Norwich University Hospital, Norwich, United Kingdom
| | - Michael Hornberger
- Faculty of Health and Medical Sciences, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
31
|
Yoon SY, Park YH, Lee HJ, Kang DR, Kim YW. Lifestyle Factors and Parkinson Disease Risk: Korean Nationwide Cohort Study With Repeated Health Screening Data. Neurology 2021; 98:e641-e652. [PMID: 34649886 DOI: 10.1212/wnl.0000000000012942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 09/24/2021] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE Many previous studies, mostly performed in Western countries, on the effects of lifestyle factors on Parkinson's disease, used baseline lifestyle characteristics without directly accounting for changes in covariate values over time. The objective of this study was to evaluate the association of repeatedly measured lifestyle factors with Parkinson's disease risk in Korean population. METHODS We conducted a nationwide population-based cohort study. Among 512,836 Koreans in the national health checkup database, we selected individuals who underwent health screening ≥ 3 times between 2002 and 2015 and followed up until December 31, 2015. Parkinson's disease was defined using the International Classification of Diseases, Tenth Revision code G20 (with ≥ 3 times clinic visits for PD, to increase the diagnostic validity). Data on lifestyle factors such as smoking, alcohol consumption, and physical activity were collected using self-reported questionnaires. Logistic regression analysis with time-dependent covariates using generalized estimation equation models was performed to determine Parkinson's disease development. RESULTS During the 14-year follow-up, 2,655 patients developed Parkinson's disease. Smoking showed a dose-response inverse association with Parkinson's disease only in males (ex-smoker, Odds ratio [OR] =0.782, 95% confidence interval [CI] 0.713-0.858; current smoker, OR = 0.556, 95% CI 0.488-0.632). Alcohol consumption and regular physical activity were related to reduced Parkinson's disease development in both sexes; however, alcohol consumption in males (≤ 3 per week, OR=0.717, 95% CI 0.658-0.780; ≥ 4 per week, OR = 0.745, 95% CI 0.644-0.861) and physical activity in females (moderate, OR=0.792, 95% CI 0.748-0.840; vigorous, OR = 0.830, 95% CI 0.756-0.911) had more consistent associations with Parkinson's disease development compared to those of either sex. Participants with regular health screening showed a consistent relationship between lifestyle factors and Parkinson's disease development, whereas lifestyle factors in those without regular health screening had a decreased relationship with PD, even smoking habit. CONCLUSIONS Analysis using repeatedly measured lifestyle factors showed an association between lifestyle factors and Parkinson's disease development. Characteristics of lifestyle data including repeated measurements, timing, or regularity might influence results, and future studies with appropriate lifestyle factors could increase Parkinson's disease risk prediction. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that smoking, alcohol use, and physical activity are associated with reduced risk of Parkinson's disease in a Korean population.
Collapse
Affiliation(s)
- Seo Yeon Yoon
- Department of Physical Medicine and Rehabilitation, Korea University Guro Hospital, Seoul, Korea
| | - You Hyun Park
- Department of Biostatistics, Yonsei University, Seoul, Korea
| | - Hyo Jeong Lee
- Department of Rehabilitation Medicine, Bundang Jesaeng General Hospital, Gyeonggi-do, Korea
| | - Dae Ryong Kang
- Department of Precision Medicine & Biostatistics, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Yong Wook Kim
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
32
|
Rai SN, Singh P, Steinbusch HW, Vamanu E, Ashraf G, Singh MP. The Role of Vitamins in Neurodegenerative Disease: An Update. Biomedicines 2021; 9:1284. [PMID: 34680401 PMCID: PMC8533313 DOI: 10.3390/biomedicines9101284] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 02/06/2023] Open
Abstract
Acquiring the recommended daily allowance of vitamins is crucial for maintaining homeostatic balance in humans and other animals. A deficiency in or dysregulation of vitamins adversely affects the neuronal metabolism, which may lead to neurodegenerative diseases. In this article, we discuss how novel vitamin-based approaches aid in attenuating abnormal neuronal functioning in neurodegeneration-based brain diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease, Amyotrophic lateral sclerosis, and Prion disease. Vitamins show their therapeutic activity in Parkinson's disease by antioxidative and anti-inflammatory activity. In addition, different water- and lipid-soluble vitamins have also prevented amyloid beta and tau pathology. On the other hand, some results also show no correlation between vitamin action and the prevention of neurodegenerative diseases. Some vitamins also exhibit toxic activity too. This review discusses both the beneficial and null effects of vitamin supplementation for neurological disorders. The detailed mechanism of action of both water- and lipid-soluble vitamins is addressed in the manuscript. Hormesis is also an essential factor that is very helpful to determine the effective dose of vitamins. PubMed, Google Scholar, Web of Science, and Scopus were employed to conduct the literature search of original articles, review articles, and meta-analyses.
Collapse
Affiliation(s)
- Sachchida Nand Rai
- Centre of Biotechnology, University of Allahabad, Prayagraj 211002, India;
| | - Payal Singh
- Department of Zoology, MMV, Banaras Hindu University, Varanasi 221005, India;
| | - Harry W.M. Steinbusch
- Department of Cellular Neuroscience, Faculty of Health, Medicine & Life Sciences, Maastricht University, 6211 LK Maastricht, The Netherlands;
- Department of Cognitive Neuroscience, DGIST, Daegu 42988, Korea
| | - Emanuel Vamanu
- Faculty of Biotechnology, The University of Agronomic Science and Veterinary Medicine, 59 Marasti blvd, 1 District, 011464 Bucharest, Romania
| | - Ghulam Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohan Prasad Singh
- Centre of Biotechnology, University of Allahabad, Prayagraj 211002, India;
| |
Collapse
|
33
|
Hantikainen E, Trolle Lagerros Y, Bonn S. Author Response: Dietary Antioxidants and the Risk of Parkinson Disease: The Swedish National March Cohort. Neurology 2021; 97:511-512. [PMID: 34489347 DOI: 10.1212/wnl.0000000000012533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 07/01/2021] [Indexed: 11/15/2022] Open
|
34
|
Arora A, Behl T, Sehgal A, Singh S, Sharma N, Mathew B, Bungau S. Targeting cellular batteries for the therapy of neurological diseases. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:41517-41532. [PMID: 34080116 DOI: 10.1007/s11356-021-14665-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 05/27/2021] [Indexed: 06/12/2023]
Abstract
The mitochondria, apart from being known as the cell's "powerhouse," are crucial in the viability of nerve cells. Any damage to these cellular organelles can result in their cellular level dysfunction which includes rapidly multiplying reactive oxygen species (ROS) from the mitochondrial membrane, impaired calcium ion homeostasis, and disturbed mitochondrial dynamics by the formation of permeability transition pore in mitochondria. All these impaired biochemical changes lead to various neurological disorders such as progressive supranuclear palsy (PSP), Parkinson's disease (PD), and Alzheimer's disease (AD). Moreover, impaired mitochondrial functions are particularly prone to damage owing to prolonged lifespan and stretched length of the neurons. At the same time, neurons are highly dependent on ATP, and thus, the mitochondria play a central role in the pathogenesis pertaining to neuronal disorders. Dysfunction in the mitochondria is an early pathological hallmark of neurological disorders, and its early detection with the help of suitable biomarkers can lead to promising treatment in this area. Thus, the drugs which are targeting mitochondrial dysfunctions are the emerging area of research in connection with neurological disorders. This can be evidenced by the great opportunities for mitigation, diagnosis, and treatment of numerous human disorders that entail mitochondrial dysfunction at the nexus of their pathogenesis. Here, we throw light at the mitochondrial pathologies and indications of dysfunctional mitochondria in PD, AD, and PSP. There is also an insight into the possible therapeutic strategies highlighting the need for mitochondria-based medicine and made an attempt for claiming the prerequisite for the therapy of neurological diseases.
Collapse
Affiliation(s)
- Arpita Arora
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, India
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
35
|
Himalian R, Singh SK, Singh MP. Ameliorative Role of Nutraceuticals on Neurodegenerative Diseases Using the Drosophila melanogaster as a Discovery Model to Define Bioefficacy. J Am Coll Nutr 2021; 41:511-539. [PMID: 34125661 DOI: 10.1080/07315724.2021.1904305] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Neurodegeneration is the destruction of neurons, and once the neurons degenerate they can't revive. This is one of the most concerned health conditions among aged population, more than ∼70% of the elderly people are suffering from neurodegeneration. Among all of the neurodegenerative diseases, Alzheimer's disease (AD), Parkinson's disease (PD) and Poly-glutamine disease (Poly-Q) are the major one and affecting most of the people around the world and posing excessive burden on the society. In order to understand this disease in non-human animal models it is pertinent to examine in model organism and various animal model are being used for such diseases like rat, mice and non-vertebrate model like Drosophila. Drosophila melanogaster is one of the best animal proven by several eminent scientist and had received several Nobel prizes for uncovering mechanism of human related genes and highly efficient model for studying neurodegenerative diseases due to its great affinity with human disease-related genes. Another factor is also employed to act as therapeutic or preventive method that is nutraceuticals. Nutraceuticals are functional natural compounds with antioxidant properties and had extensively showed the neuroprotective effect in different organisms. These nutraceuticals having antioxidant properties act through scavenging free radicals or by increasing endogenous cellular antioxidant defense molecules. For the best benefit, we are trying to utilize these nutraceuticals, which will have no or negligible side effects. In this review, we are dealing with various types of such nutraceuticals which have potent value in the prevention and curing of the diseases related to neurodegeneration.HighlightsNeurodegeneration is the silently progressing disease which shows its symptoms when it is well rooted.Many chemical drugs (almost all) have only symptomatic relief with side effects.Potent mechanism of neurodegeneration and improvement effect by nutraceuticals is proposed.Based on the Indian Cuisine scientists are trying to find the medicine from the food or food components having antioxidant properties.The best model to study the neurodegenerative diseases is Drosophila melanogaster.Many nutraceuticals having antioxidant properties have been studied and attenuated various diseases are discussed.
Collapse
Affiliation(s)
- Ranjana Himalian
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Sandeep Kumar Singh
- Indian Scientific Education and Technology (ISET) Foundation, Lucknow, India
| | - Mahendra Pratap Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
36
|
Chang MC, Kwak SG, Kwak S. Effect of dietary vitamins C and E on the risk of Parkinson's disease: A meta-analysis. Clin Nutr 2021; 40:3922-3930. [PMID: 34139465 DOI: 10.1016/j.clnu.2021.05.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/08/2021] [Accepted: 05/12/2021] [Indexed: 01/15/2023]
Abstract
BACKGROUND & AIMS A neuroprotective effect of dietary vitamins C and E on Parkinson's disease (PD) has been suggested, however, several human studies have reported controversial results. Therefore, we conducted a meta-analysis on the effect of vitamins C and E on the risk of Parkinson's disease. METHODS A comprehensive literature search was conducted using the PubMed, EMBASE, Cochrane Library, and SCOPUS databases for studies published up to January 23, 2021. We included studies that reported (1) intake of vitamins C and E using validated methods; (2) assessment of odds ratio (OR), relative risk (RR), or hazard ratio (HR); and (3) patients with PD identified by a neurologist, hospital records, or death certificates. The Comprehensive Meta-Analysis Software 2 program was used for statistical analyses of the pooled data. RESULTS A total of 12 studies (four prospective cohort and eight case-control studies) were included in our meta-analysis. No significant risk reduction was observed in the high vitamin C intake group compared to low intake group. On the other hand, the high vitamin E intake group showed a significantly lower risk of development of PD than the low intake group (pooled OR = 0.799. 95% CI = 0.721 to 0.885). CONCLUSIONS We conclude that vitamin E might have a protective effect against PD, while vitamin C does not seem to have such an effect. However, the exact mechanism of the transport and regulation of vitamin E in the CNS remains elusive, and further studies would be necessary in this field.
Collapse
Affiliation(s)
- Min Cheol Chang
- Department of Physical Medicine & Rehabilitation, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Sang Gyu Kwak
- Department of Medical Statistics, College of Medicine, Catholic University of Daegu, Daegu, Republic of Korea
| | - Soyoung Kwak
- Department of Physical Medicine & Rehabilitation, College of Medicine, Yeungnam University, Daegu, Republic of Korea.
| |
Collapse
|
37
|
Abstract
The links between diet and Parkinson's disease (PD) are unclear and incomprehensible. However, numerous studies have demonstrated the correlation between diet, nutrients and health condition in PD patients. They indicate the possibility of management of the disease, which might be possible through nutrition. Pharmaceutical treatment as well as a complementary holistic approach to the patients should be considered. It is of critical importance to understand how the diet and nutrients might influence PD. A better understanding of the relationship between diet and PD could help to better manage the disease explain promising therapeutic approaches, minimize motor and nonmotor symptoms and disease progression based on a personalized diet. In this review, the recent literature on the observed nutrition disorders and the possible role of diet and nutrients in the prevention and potential regression of PD, as well as dietary interventions and supplementation used to manage the disease is revised.
Collapse
Affiliation(s)
- Paulina Gątarek
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Lodz, Poland
| | - Joanna Kałużna-Czaplińska
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Lodz, Poland
| |
Collapse
|
38
|
Hantikainen E, Trolle Lagerros Y, Ye W, Serafini M, Adami HO, Bellocco R, Bonn S. Dietary Antioxidants and the Risk of Parkinson Disease: The Swedish National March Cohort. Neurology 2021; 96:e895-e903. [PMID: 33408141 DOI: 10.1212/wnl.0000000000011373] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/05/2020] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To determine whether high baseline dietary antioxidants and total nonenzymatic antioxidant capacity (NEAC) is associated with a lower risk of Parkinson disease (PD) in men and women, we prospectively studied 43,865 men and women from a large Swedish cohort. METHODS In the Swedish National March Cohort, 43,865 men and women aged 18-94 years were followed through record linkages to National Health Registries from 1997 until 2016. Baseline dietary vitamin E, vitamin C, and beta-carotene intake, as well as NEAC, were assessed by a validated food frequency questionnaire collected at baseline. All exposure variables were adjusted for energy intake and categorized into tertiles. Multivariable Cox proportional hazard regression models were fitted to estimate hazard ratios (HRs) with 95% confidence intervals (CIs) for PD. RESULTS After a mean follow-up time of 17.6 years, we detected 465 incidence cases of PD. In the multivariable adjusted model, dietary vitamin E (HR 0.68, 95% CI 0.52-0.90; p for trend 0.005) and vitamin C (HR 0.68, 95% CI 0.52-0.89; p for trend 0.004) were inversely associated with the risk of PD when comparing participants in the highest vs the lowest tertiles of exposure. No association was found with estimated intake of dietary beta-carotene or NEAC. CONCLUSION Our findings suggest that dietary vitamin E and C intake might be inversely associated with the risk of PD. No association was found with dietary beta-carotene or NEAC. CLASSIFICATION OF EVIDENCE This study provides Class III evidence that dietary vitamin E and C intake are inversely associated with the risk of PD.
Collapse
Affiliation(s)
- Essi Hantikainen
- From the Department of Statistics and Quantitative Methods (E.H., R.B.), University of Milano-Bicocca, Milan; Institute for Biomedicine, Eurac Research (E.H.), Affiliated Institute of the University of Lübeck, Bolzano, Italy; Clinical Epidemiology Division, Department of Medicine (Solna) (Y.T.L., S.B.), and Department of Medical Epidemiology and Biostatistics (W.Y., H.-O.A., R.B.), Karolinska Institutet, Stockholm; Obesity Center, Academic Specialist Center (Y.T.L.), Stockholm Health Services, Sweden; Functional Food and Metabolic Stress Prevention Laboratory, Faculty of BioSciences and Technology for Food, Agriculture and Environment (M.S.), University of Teramo, Italy; and Clinical Effectiveness Research Group, Institute of Health (H.-O.A.), University of Oslo, Norway.
| | - Ylva Trolle Lagerros
- From the Department of Statistics and Quantitative Methods (E.H., R.B.), University of Milano-Bicocca, Milan; Institute for Biomedicine, Eurac Research (E.H.), Affiliated Institute of the University of Lübeck, Bolzano, Italy; Clinical Epidemiology Division, Department of Medicine (Solna) (Y.T.L., S.B.), and Department of Medical Epidemiology and Biostatistics (W.Y., H.-O.A., R.B.), Karolinska Institutet, Stockholm; Obesity Center, Academic Specialist Center (Y.T.L.), Stockholm Health Services, Sweden; Functional Food and Metabolic Stress Prevention Laboratory, Faculty of BioSciences and Technology for Food, Agriculture and Environment (M.S.), University of Teramo, Italy; and Clinical Effectiveness Research Group, Institute of Health (H.-O.A.), University of Oslo, Norway
| | - Weimin Ye
- From the Department of Statistics and Quantitative Methods (E.H., R.B.), University of Milano-Bicocca, Milan; Institute for Biomedicine, Eurac Research (E.H.), Affiliated Institute of the University of Lübeck, Bolzano, Italy; Clinical Epidemiology Division, Department of Medicine (Solna) (Y.T.L., S.B.), and Department of Medical Epidemiology and Biostatistics (W.Y., H.-O.A., R.B.), Karolinska Institutet, Stockholm; Obesity Center, Academic Specialist Center (Y.T.L.), Stockholm Health Services, Sweden; Functional Food and Metabolic Stress Prevention Laboratory, Faculty of BioSciences and Technology for Food, Agriculture and Environment (M.S.), University of Teramo, Italy; and Clinical Effectiveness Research Group, Institute of Health (H.-O.A.), University of Oslo, Norway
| | - Mauro Serafini
- From the Department of Statistics and Quantitative Methods (E.H., R.B.), University of Milano-Bicocca, Milan; Institute for Biomedicine, Eurac Research (E.H.), Affiliated Institute of the University of Lübeck, Bolzano, Italy; Clinical Epidemiology Division, Department of Medicine (Solna) (Y.T.L., S.B.), and Department of Medical Epidemiology and Biostatistics (W.Y., H.-O.A., R.B.), Karolinska Institutet, Stockholm; Obesity Center, Academic Specialist Center (Y.T.L.), Stockholm Health Services, Sweden; Functional Food and Metabolic Stress Prevention Laboratory, Faculty of BioSciences and Technology for Food, Agriculture and Environment (M.S.), University of Teramo, Italy; and Clinical Effectiveness Research Group, Institute of Health (H.-O.A.), University of Oslo, Norway
| | - Hans-Olov Adami
- From the Department of Statistics and Quantitative Methods (E.H., R.B.), University of Milano-Bicocca, Milan; Institute for Biomedicine, Eurac Research (E.H.), Affiliated Institute of the University of Lübeck, Bolzano, Italy; Clinical Epidemiology Division, Department of Medicine (Solna) (Y.T.L., S.B.), and Department of Medical Epidemiology and Biostatistics (W.Y., H.-O.A., R.B.), Karolinska Institutet, Stockholm; Obesity Center, Academic Specialist Center (Y.T.L.), Stockholm Health Services, Sweden; Functional Food and Metabolic Stress Prevention Laboratory, Faculty of BioSciences and Technology for Food, Agriculture and Environment (M.S.), University of Teramo, Italy; and Clinical Effectiveness Research Group, Institute of Health (H.-O.A.), University of Oslo, Norway
| | - Rino Bellocco
- From the Department of Statistics and Quantitative Methods (E.H., R.B.), University of Milano-Bicocca, Milan; Institute for Biomedicine, Eurac Research (E.H.), Affiliated Institute of the University of Lübeck, Bolzano, Italy; Clinical Epidemiology Division, Department of Medicine (Solna) (Y.T.L., S.B.), and Department of Medical Epidemiology and Biostatistics (W.Y., H.-O.A., R.B.), Karolinska Institutet, Stockholm; Obesity Center, Academic Specialist Center (Y.T.L.), Stockholm Health Services, Sweden; Functional Food and Metabolic Stress Prevention Laboratory, Faculty of BioSciences and Technology for Food, Agriculture and Environment (M.S.), University of Teramo, Italy; and Clinical Effectiveness Research Group, Institute of Health (H.-O.A.), University of Oslo, Norway
| | - Stephanie Bonn
- From the Department of Statistics and Quantitative Methods (E.H., R.B.), University of Milano-Bicocca, Milan; Institute for Biomedicine, Eurac Research (E.H.), Affiliated Institute of the University of Lübeck, Bolzano, Italy; Clinical Epidemiology Division, Department of Medicine (Solna) (Y.T.L., S.B.), and Department of Medical Epidemiology and Biostatistics (W.Y., H.-O.A., R.B.), Karolinska Institutet, Stockholm; Obesity Center, Academic Specialist Center (Y.T.L.), Stockholm Health Services, Sweden; Functional Food and Metabolic Stress Prevention Laboratory, Faculty of BioSciences and Technology for Food, Agriculture and Environment (M.S.), University of Teramo, Italy; and Clinical Effectiveness Research Group, Institute of Health (H.-O.A.), University of Oslo, Norway
| |
Collapse
|
39
|
Meléndez-Flores JD, Estrada-Bellmann I. Linking chronic kidney disease and Parkinson's disease: a literature review. Metab Brain Dis 2021; 36:1-12. [PMID: 32990929 DOI: 10.1007/s11011-020-00623-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/22/2020] [Indexed: 10/23/2022]
Abstract
Chronic kidney disease (CKD) has been typically implicated in cardiovascular risk, considering the function the kidney has related to blood pressure, vitamin D, red blood cell metabolism, and electrolyte and acid-base regulation. However, neurological consequences are also attributed to this disease. Among these, recent large epidemiological studies have demonstrated an increased risk for Parkinson's disease (PD) in patients with CKD. Multiple studies have evaluated individually the association of blood pressure, vitamin D, and red blood cell dysmetabolism with PD, however, no study has reviewed the potential mechanisms related to these components in context of CKD and PD. In this review, we explored the association of CKD and PD and linked the components of the former to propose potential pathways explaining a future increased risk for PD, where renin-angiotensin system, oxidative stress, and inflammation have a main role. Potential preventive and therapeutic interventions based on these associations are also explored. More preclinical studies are needed to confirm the potential link of CKD conditions and future PD risk, whereas more interventional studies targeting this association are warranted to confirm their potential benefit in PD.
Collapse
Affiliation(s)
- Jesús D Meléndez-Flores
- Neurology Division, Internal Medicine Department, University Hospital "Dr. José E. González", Universidad Autónoma de Nuevo León, Madero y Gonzalitos S/N, 64700, Monterrey, NL, Mexico
- Faculty of Medicine, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Ingrid Estrada-Bellmann
- Neurology Division, Internal Medicine Department, University Hospital "Dr. José E. González", Universidad Autónoma de Nuevo León, Madero y Gonzalitos S/N, 64700, Monterrey, NL, Mexico.
- Movement Disorders Clinic, Neurology Division, Internal Medicine Department, University Hospital "Dr. José E. González", Universidad Autónoma de Nuevo León, Monterrey, Mexico.
| |
Collapse
|
40
|
Abstract
Table olives, a product of olive tree (Olea europaea L.), is an important fermented product of the Mediterranean Diet. Agronomical factors, particularly the cultivar, the ripening stage and the processing method employed are the main factors influencing the nutritional and non-nutritional composition of table olives and their organoleptic properties. The important nutritional value of this product is due to its richness in monounsaturated fat (MUFA), mainly oleic acid, fibre and vitamin E together with the presence of several phytochemicals. Among these, hydroxytyrosol (HT) is the major phenolic compound present in all types of table olives. There is a scarcity of in vitro, in vivo and human studies of table olives. This review focused comprehensively on the nutrients and bioactive compound content as well as the health benefits assigned to table olives. The possible health benefits associated with their consumption are thought to be primarily related to effects of MUFA on cardiovascular health, the antioxidant (AO) capacity of vitamin E and its role in protecting the body from oxidative damage and the anti-inflammatory and AO activities of HT. The influence of multiple factors on composition of the end product and the potential innovation in the production of table olives through the reduction of its final salt content was also discussed.
Collapse
Key Words
- ALS, amyotrophic lateral sclerosis
- AO, antioxidant
- Alpha-tocopherol
- BP, blood pressure
- CVD, cardiovascular disease
- DM-II, Diabetes Mellitus 2
- EFSA, European Food Safety Authority
- FM, fat mass
- GSH, glutathione
- HDL-c, high-density lipoprotein cholesterol
- HT, hydroxytyrosol
- LDL-c, low-density lipoprotein cholesterol
- MD, Mediterranean Diet
- MUFA, monounsaturated fat
- Mediterranean Diet
- Monounsaturated fat
- NO, nitric oxide
- NaCl, sodium chloride
- NaOH, sodium hydroxide
- Nrf2, nuclear factor erythroid 2-related factor 2
- OL, oleuropein
- OO, olive oil
- PKC, protein kinase C
- PUFA, polyunsaturated fat
- Phenolic compounds
- RDA, Recommended Dietary Allowance
- ROS, reactive oxygen species
- TC, total cholesterol
- TG, triacylglycerol
- TG, triglyceride
- Table olives
- Ty, tyrosol
- WHO, World Health Organization
- cv, cultivar
- e.p, edible portion
- α-TOH, alpha-tocopherol
Collapse
|
41
|
Lipid Peroxidation and Antioxidant Supplementation in Neurodegenerative Diseases: A Review of Human Studies. Antioxidants (Basel) 2020; 9:antiox9111128. [PMID: 33202952 PMCID: PMC7696060 DOI: 10.3390/antiox9111128] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 02/05/2023] Open
Abstract
Being characterized by progressive and severe damage in neuronal cells, neurodegenerative diseases (NDDs) are the major cause of disability and morbidity in the elderly, imposing a significant economic and social burden. As major components of the central nervous system, lipids play important roles in neural health and pathology. Disturbed lipid metabolism, particularly lipid peroxidation (LPO), is associated with the development of many NDDs, including Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS), all of which show elevated levels of LPO products and LPO-modified proteins. Thus, the inhibition of neuronal oxidation might slow the progression and reduce the severity of NDD; natural antioxidants, such as polyphenols and antioxidant vitamins, seem to be the most promising agents. Here, we summarize current literature data that were derived from human studies on the effect of natural polyphenols and vitamins A, C, and E supplementation in patients with AD, PD, and ALS. Although these compounds may reduce the severity and slow the progression of NDD, research gaps remain in antioxidants supplementation in AD, PD, and ALS patients, which indicates that further human studies applying antioxidant supplementation in different forms of NDDs are urgently needed.
Collapse
|
42
|
Liu YH, Jensen GL, Na M, Mitchell DC, Wood GC, Still CD, Gao X. Diet Quality and Risk of Parkinson's Disease: A Prospective Study and Meta-Analysis. JOURNAL OF PARKINSONS DISEASE 2020; 11:337-347. [PMID: 33104042 DOI: 10.3233/jpd-202290] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Several dietary components have been shown to be neuroprotective against risk of neurodegeneration. However, limited observational studies have examined the role of overall diet quality on risk of Parkinson's disease. OBJECTIVES We examined the associations between diet quality and risk of Parkinson's disease in a prospective cohort study and meta-analysis. METHODS Included in the cohort study were 3,653 participants (1,519 men and 2,134 women; mean age: 81.5 years) in the Geisinger Rural Aging Study longitudinal cohort in Pennsylvania. Diet quality was assessed using a validated dietary screening tool containing 25 food- and behavior-specific questions in 2009. Potential Parkinson's cases were identified using electronic health records based on ICD9 (332.*), ICD10 (G20), and Parkinson-related treatments. Hazard ratios (HRs) and 95% confidence intervals (CIs) across diet quality tertiles were calculated using Cox proportional hazards models after adjusting for potential confounders. We further performed a meta-analysis by pooling our study with four published papers on this topic. Random-effects model was utilized to calculate the pooled risk ratios and 95% CIs. RESULTS During a mean of 6.94 years of follow-up, 47 incident Parkinson's cases were documented. Having high diet quality at baseline was associated with lower Parkinson's disease risk (adjusted HR for the highest vs the lowest diet quality tertile = 0.39; 95% CI: 0.17, 0.89; p-trend = 0.02). The meta-analysis including 140,617 individuals also showed that adherence to high diet quality or a healthy dietary pattern was associated with lower risk of Parkinson's disease (pooled risk ratio = 0.64; 95% CI: 0.49, 0.83). CONCLUSION Having high diet quality or a healthy dietary pattern was associated with lower future risk of Parkinson's disease.
Collapse
Affiliation(s)
- Yi-Hsuan Liu
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Gordon L Jensen
- Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Muzi Na
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Diane C Mitchell
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - G Craig Wood
- Obesity Institute, Geisinger Health System, Danville, PA, USA
| | | | - Xiang Gao
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
43
|
Yin W, Löf M, Pedersen NL, Sandin S, Fang F. Mediterranean Dietary Pattern at Middle Age and Risk of Parkinson's Disease: A Swedish Cohort Study. Mov Disord 2020; 36:255-260. [PMID: 33078857 PMCID: PMC7894345 DOI: 10.1002/mds.28314] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 09/03/2020] [Accepted: 09/08/2020] [Indexed: 12/15/2022] Open
Abstract
Background The Mediterranean diet has been proposed to protect against neurodegeneration. Objectives The aim of this study was to assess the association of adherence to Mediterranean dietary pattern (MDP) at middle age with risk for Parkinson's disease (PD) later in life. Method In a population‐based cohort of >47,000 Swedish women, information on diet was collected through a food frequency questionnaire during 1991–1992, from which adherence to MDP was calculated. We also collected detailed information on potential confounders. Clinical diagnosis of PD was ascertained from the Swedish National Patient Register through 2012. Results We observed an inverse association between adherence to MDP and PD, multivariable hazard ratio of 0.54 (95% confidence interval: 0.30–0.98), comparing high with low adherence. The association was noted primarily from age 65 years onward. One unit increase in the adherence score was associated with a 29% lower risk for PD at age ≥ 65 years (95% confidence interval: 0.57–0.89). Conclusion Higher adherence to a Mediterranean diet at middle age was associated with lower risk for PD. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society
Collapse
Affiliation(s)
- Weiyao Yin
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Marie Löf
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden.,Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Nancy L Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Sven Sandin
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,Department of Psychiatry, Ichan School of Medicine, Mount Sinai, New York, New York, USA.,Seaver Autism Center for Research and Treatment at Mount Sinai, New York, New York, USA
| | - Fang Fang
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
44
|
Oxidative Stress in Parkinson's Disease: Potential Benefits of Antioxidant Supplementation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2360872. [PMID: 33101584 PMCID: PMC7576349 DOI: 10.1155/2020/2360872] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 09/06/2020] [Accepted: 09/21/2020] [Indexed: 12/11/2022]
Abstract
Parkinson's disease (PD) occurs in approximately 1% of the population over 65 years of age and has become increasingly more common with advances in age. The number of individuals older than 60 years has been increasing in modern societies, as well as life expectancy in developing countries; therefore, PD may pose an impact on the economic, social, and health structures of these countries. Oxidative stress is highlighted as an important factor in the genesis of PD, involving several enzymes and signaling molecules in the underlying mechanisms of the disease. This review presents updated data on the involvement of oxidative stress in the disease, as well as the use of antioxidant supplements in its therapy.
Collapse
|
45
|
Ibrahim KS, El-Sayed EM. Beneficial Effects of Coconut Oil in Treatment of Parkinson’s Disease. NEUROPHYSIOLOGY+ 2020. [DOI: 10.1007/s11062-020-09866-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
46
|
Ying AF, Khan S, Wu Y, Jin A, Wong AS, Tan E, Yuan J, Koh W, Tan LC. Dietary Antioxidants and Risk of Parkinson's Disease in the Singapore Chinese Health Study. Mov Disord 2020; 35:1765-1773. [PMID: 32643256 PMCID: PMC7754435 DOI: 10.1002/mds.28173] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/24/2020] [Accepted: 05/26/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Despite experimental evidence implicating oxidative stress in the pathogenesis of PD, epidemiological studies have provided inconsistent associations between dietary antioxidants and risk of developing PD. Furthermore, no study has been done in any Asian population. OBJECTIVES We examined the associations for intake levels of dietary carotenoids (α-carotene, β-carotene, lycopene, β-cryptoxanthin, and lutein) and vitamins (vitamin A, C and E) and the risk of developing PD. METHODS We used data from the Singapore Chinese Health Study, a population-based prospective cohort of 63,257 men and women aged 45 to 74 years during enrollment in 1993-1998. Antioxidant intake was derived from a validated semiquantitative food frequency questionnaire. Incident cases were identified through follow-up interviews, hospital records, or PD registries through 31 July 2018. Hazard ratios and corresponding 95% confidence intervals were derived from multivariable Cox proportional hazard regression models with adjustment for other lifestyle and dietary factors. RESULTS During an average 19.4 years of follow-up, 544 incident PD cases were identified. No association was found for dietary carotenoids, individually or summed. Hazard ratio comparing highest to lowest quartile for total carotenoids was 0.98 (95% confidence interval: 0.76-1.28; Ptrend = 0.83). There were also no clear dose-dependent associations of dietary vitamins A, C, and E with risk of developing PD (all Ptrend ≥ 0.10). Sensitive analyses with lag time and excluding supplement use did not materially alter results. CONCLUSIONS Intake of dietary antioxidants, such as carotenoids and vitamins, was not associated with the risk of developing PD in Singaporean Chinese. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
| | - Shazma Khan
- Department of NeurologyNational Neuroscience InstituteSingapore
| | - Ying Wu
- Department of NeurologyNational Neuroscience InstituteSingapore
| | - Aizhen Jin
- Health Services and Systems Research, Duke‐NUS Medical SchoolSingapore
| | - Aidan S.Y. Wong
- Department of NeurologyNational Neuroscience InstituteSingapore
| | - Eng‐King Tan
- Health Services and Systems Research, Duke‐NUS Medical SchoolSingapore
- Department of NeurologyNational Neuroscience InstituteSingapore
| | - Jian‐Min Yuan
- Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, and Department of EpidemiologyGraduate School of Public Health, University of PittsburghPittsburghPennsylvaniaUSA
| | - Woon‐Puay Koh
- Health Services and Systems Research, Duke‐NUS Medical SchoolSingapore
- Saw Swee Hock School of Public HealthNational University of Singapore
| | - Louis C.S. Tan
- Health Services and Systems Research, Duke‐NUS Medical SchoolSingapore
- Department of NeurologyNational Neuroscience InstituteSingapore
| |
Collapse
|
47
|
Mahoney-Sánchez L, Bouchaoui H, Ayton S, Devos D, Duce JA, Devedjian JC. Ferroptosis and its potential role in the physiopathology of Parkinson's Disease. Prog Neurobiol 2020; 196:101890. [PMID: 32726602 DOI: 10.1016/j.pneurobio.2020.101890] [Citation(s) in RCA: 243] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/15/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023]
Abstract
Parkinson's Disease (PD) is a common and progressive neurodegenerative disorder characterised by motor impairments as well as non-motor symptoms. While dopamine-based therapies are effective in fighting the symptoms in the early stages of the disease, a lack of neuroprotective drugs means that the disease continues to progress. Along with the traditionally recognised pathological hallmarks of dopaminergic neuronal death and intracellular α-synuclein (α-syn) depositions, iron accumulation, elevated oxidative stress and lipid peroxidation damage are further conspicuous features of PD pathophysiology. However, the underlying mechanisms linking these pathological hallmarks with neurodegeneration still remain unclear. Ferroptosis, a regulated iron dependent cell death pathway involving a lethal accumulation of lipid peroxides, shares several features with PD pathophysiology. Interestingly, α-syn has been functionally linked with the metabolism of both iron and lipid, suggesting a possible interplay between dysregulated α-syn and other PD pathological hallmarks related to ferroptosis. This review will address the importance for understanding these disease mechanisms that could be targeted therapeutically. Anti-ferroptosis molecules are neuroprotective in PD animal models and the anti-ferroptotic iron chelator, deferiprone, slowed disease progression and improved motor function in two independent clinical trials for PD. An ongoing larger multi-centre phase 2 clinical trial will confirm the therapeutic potential of deferiprone and the relevance of ferroptosis in PD. This review addresses the known pathological features of PD in relation to the ferroptosis pathway with therapeutic implications of targeting this cell death pathway.
Collapse
Affiliation(s)
- Laura Mahoney-Sánchez
- Department of Medical Pharmacology, Lille University, INSERM UMRS_1172, University Hospital Centre, LICEND COEN Centre, LilNCog - Lille Neuroscience & Cognition, 59000, France
| | - Hind Bouchaoui
- Department of Medical Pharmacology, Lille University, INSERM UMRS_1172, University Hospital Centre, LICEND COEN Centre, LilNCog - Lille Neuroscience & Cognition, 59000, France
| | - Scott Ayton
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, Victoria, 3052, Australia
| | - David Devos
- Department of Medical Pharmacology, Lille University, INSERM UMRS_1172, University Hospital Centre, LICEND COEN Centre, LilNCog - Lille Neuroscience & Cognition, 59000, France.
| | - James A Duce
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, Victoria, 3052, Australia; ALBORADA Drug Discovery Institute, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0AH, United Kingdom.
| | - Jean-Christophe Devedjian
- Department of Medical Pharmacology, Lille University, INSERM UMRS_1172, University Hospital Centre, LICEND COEN Centre, LilNCog - Lille Neuroscience & Cognition, 59000, France; Université du Littoral Côte d'Opale-1, place de l'Yser, BP 72033, 59375, Dunkerque Cedex, France
| |
Collapse
|
48
|
Nánási N, Veres G, Cseh EK, Martos D, Hadady L, Klivényi P, Vécsei L, Zádori D. The assessment of possible gender-related effect of endogenous striatal alpha-tocopherol level on MPTP neurotoxicity in mice. Heliyon 2020; 6:e04425. [PMID: 32685739 PMCID: PMC7358721 DOI: 10.1016/j.heliyon.2020.e04425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 04/23/2020] [Accepted: 07/08/2020] [Indexed: 11/19/2022] Open
Abstract
Several studies supported an increased vulnerability of males regarding Parkinson's disease (PD) and its animal models, the background of which has not been exactly revealed, yet. In addition to hormonal differences, another possible factor behind that may be a female-predominant increase in endogenous striatal alpha-tocopherol (αT) level with aging, even significant at 16 weeks of age, previously demonstrated by the authors. Accordingly, the aim of the current study was the assessment whether this difference in striatal αT concentration may contribute to the above-mentioned distinct vulnerability of genders to nigrostriatal injury. Female and male C57Bl/6 mice at the age of 16 weeks were injected with 12 mg/kg body weight 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) 5 times at 2 h intervals or with saline. The levels of some biogenic amines (striatum) and αT (striatum and plasma) were determined by validated high performance liquid chromatography methods. Although the results proved previous findings, i.e., striatal dopamine decrease was less pronounced in females following MPTP treatment, and striatal αT level was significantly higher in female mice, the correlation between these 2 variables was not significant. Surprisingly, MPTP treatment did not affect striatal αT concentrations, but significantly decreased plasma αT levels without differences between genders. The current study, examining the possible role of elevated αT in female C57Bl/6 mice behind their decreased sensitivity to MPTP intoxication for the first time, was unable to demonstrate any remarkable connection between these 2 variables. These findings may further confirm that αT does not play a major role against neurotoxicity induced by MPTP.
Collapse
Affiliation(s)
- Nikolett Nánási
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - Gábor Veres
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
- MTA-SZTE Neuroscience Research Group, Szeged, Hungary
| | - Edina K. Cseh
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - Diána Martos
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - Levente Hadady
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - Péter Klivényi
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - László Vécsei
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
- MTA-SZTE Neuroscience Research Group, Szeged, Hungary
| | - Dénes Zádori
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
- Corresponding author.
| |
Collapse
|
49
|
|
50
|
Park HA, Ellis AC. Dietary Antioxidants and Parkinson's Disease. Antioxidants (Basel) 2020; 9:antiox9070570. [PMID: 32630250 PMCID: PMC7402163 DOI: 10.3390/antiox9070570] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/14/2020] [Accepted: 06/26/2020] [Indexed: 12/15/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disorder caused by the depletion of dopaminergic neurons in the basal ganglia, the movement center of the brain. Approximately 60,000 people are diagnosed with PD in the United States each year. Although the direct cause of PD can vary, accumulation of oxidative stress-induced neuronal damage due to increased production of reactive oxygen species (ROS) or impaired intracellular antioxidant defenses invariably occurs at the cellular levels. Pharmaceuticals such as dopaminergic prodrugs and agonists can alleviate some of the symptoms of PD. Currently, however, there is no treatment to halt the progression of PD pathology. Due to the nature of PD, a long and progressive neurodegenerative process, strategies to prevent or delay PD pathology may be well suited to lifestyle changes like dietary modification with antioxidant-rich foods to improve intracellular redox homeostasis. In this review, we discuss cellular and genetic factors that increase oxidative stress in PD. We also discuss neuroprotective roles of dietary antioxidants including vitamin C, vitamin E, carotenoids, selenium, and polyphenols along with their potential mechanisms to alleviate PD pathology.
Collapse
|