1
|
Zhao X, Zhou Q, Zhang H, Ono M, Furuyama T, Yamamoto R, Ishikura T, Kumai M, Nakamura Y, Shiga H, Miwa T, Kato N. Olfactory deprivation promotes amyloid β deposition in a mouse model of Alzheimer's disease. Brain Res 2025; 1851:149500. [PMID: 39922408 DOI: 10.1016/j.brainres.2025.149500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 01/12/2025] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
Olfactory dysfunction is regarded as an early marker for Alzheimer's disease (AD). Slowly progressing AD pathology is interpreted to impair cognition and olfactory sensation independently, while olfactory deficits emerge earlier. The present experiments tested the possibility that olfactory impairment may worsen cognition or AD pathology using 3xTg AD model mice with olfactory bulbectomy (OBX). In open-field tests, OBX was shown to increase anxiety-like behavior in both wild-type (WT) and AD model mice, and hyperactivity was induced in WT mice only. Spatial memory, assessed by the Morris water maze (MWM) test, was impaired in WT but not AD mice. Object memory, assessed by the novel object recognition test, was not changed by OBX either in WT or AD mice. Densitometry of Aβ plaques stained with 6E10 and anti-Aβ42 antibodies was carried out in sections containing the hippocampal formation obtained from AD mice aged 12 and 18 months. The plaque area was larger in the OBX than in the sham group at 12 months. At 18 months, there was also difference in the plaque area. Given that Aβ plaques emerge in 3xTg mice relatively later (>9 months of age) than in other models, OBX in 3xTg mice appears to exacerbate Aβ pathology at the early phase of Aβ emergence, implying a causative link of smell loss to AD pathogenesis. The accelerated Aβ plaque formation by OBX was accompanied by microglial activation. Early intervention to smell loss may be beneficial for AD control.
Collapse
Affiliation(s)
- Xirun Zhao
- Department of Physiology, Kanazawa Medical University, Uchinada 920-0293 Japan
| | - Qing Zhou
- Department of Physiology, Kanazawa Medical University, Uchinada 920-0293 Japan
| | - Huan Zhang
- Department of Physiology, Kanazawa Medical University, Uchinada 920-0293 Japan
| | - Munenori Ono
- Department of Physiology, Kanazawa Medical University, Uchinada 920-0293 Japan
| | - Takafumi Furuyama
- Department of Physiology, Kanazawa Medical University, Uchinada 920-0293 Japan
| | - Ryo Yamamoto
- Department of Physiology, Kanazawa Medical University, Uchinada 920-0293 Japan
| | - Tomoko Ishikura
- Department of Otorhinolaryngology, Kanazawa Medical University, Uchinada 920-0293 Japan
| | - Masami Kumai
- Department of Otorhinolaryngology, Kanazawa Medical University, Uchinada 920-0293 Japan
| | - Yukari Nakamura
- Department of Otorhinolaryngology, Kanazawa Medical University, Uchinada 920-0293 Japan
| | - Hideaki Shiga
- Department of Otorhinolaryngology, Kanazawa Medical University, Uchinada 920-0293 Japan
| | - Takaki Miwa
- Department of Otorhinolaryngology, Kanazawa Medical University, Uchinada 920-0293 Japan
| | - Nobuo Kato
- Department of Physiology, Kanazawa Medical University, Uchinada 920-0293 Japan.
| |
Collapse
|
2
|
Bembenek JP, Litwin T, Piechal A, Członkowska A, Antos A, Przybyłkowski A. Olfactory function in Wilson's disease-systematic literature review. Acta Neurol Belg 2025:10.1007/s13760-025-02741-y. [PMID: 39928288 DOI: 10.1007/s13760-025-02741-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 02/03/2025] [Indexed: 02/11/2025]
Abstract
In Wilson's disease (WD) improper copper metabolism results in copper accumulation in various organs, mainly brain and liver. The sense of smell is today one of the focuses of interest in aging and neurodegenerative diseases research. However, in WD olfactory function (OF) is still poorly investigated. Our aim was to perform a systematic review of the studies evaluating OF in WD. We searched PubMed for original papers evaluating olfactory function in WD and retrieved five articles. Additionally, one article was identified while viewing the references lists of the included studies. Finally, we included 6 studies. The number of patients ranged from 12 to 68 (altogether 222 WD patients) and their clinical characteristics were variable. Differences in methodology (mainly various tests used for OF evaluation) made it impossible to meta-analyze the data. OF was worse in WD than in controls in all studies. In 3 studies OF was impaired significantly in neurologic phenotype vs hepatic, which was not confirmed in 2 other studies. Correlation between OF and presence of brain lesions in magnetic resonance imaging was inconsistent across two studies. Only one study assessed brain regions involved in the olfactory tract by evaluating olfactory bulb volume. There was no effect of WD treatment, including its type and duration on OF (4 studies). One study additionally assessed taste which was preserved in WD. Although OF was found to be abnormal in WD, this area remains insufficiently explored. Further studies conducted on larger cohorts, with a focus on olfactory tract damage, is essential.
Collapse
Affiliation(s)
- Jan Paweł Bembenek
- Department of Clinical Neurophysiology, Institute of Psychiatry and Neurology, Warsaw, Poland.
- 2nd, Department of Neurology, Institute of Psychiatry and Neurology, ul. Sobieskiego 9, 02-957, Warsaw, Poland.
| | - Tomasz Litwin
- 2nd, Department of Neurology, Institute of Psychiatry and Neurology, ul. Sobieskiego 9, 02-957, Warsaw, Poland
| | - Agnieszka Piechal
- 2nd, Department of Neurology, Institute of Psychiatry and Neurology, ul. Sobieskiego 9, 02-957, Warsaw, Poland
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Warsaw, Poland
| | - Anna Członkowska
- 2nd, Department of Neurology, Institute of Psychiatry and Neurology, ul. Sobieskiego 9, 02-957, Warsaw, Poland
| | - Agnieszka Antos
- 2nd, Department of Neurology, Institute of Psychiatry and Neurology, ul. Sobieskiego 9, 02-957, Warsaw, Poland
| | - Adam Przybyłkowski
- Department of Gastroenterology and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
3
|
Tremblay C, Adler CH, Shill HA, Driver‐Dunckley E, Mehta S, Choudhury P, Belden C, Shprecher DR, Lee‐Iannotti JK, Atri A, Serrano GE, Beach TG. Predicting Post-Mortem α-Synuclein Pathology by the Combined Presence of Probable REM sleep behavior disorder and Hyposmia. Mov Disord Clin Pract 2025; 12:157-165. [PMID: 39499184 PMCID: PMC11802639 DOI: 10.1002/mdc3.14244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/07/2024] [Indexed: 11/07/2024] Open
Abstract
BACKGROUND Idiopathic rapid eye movement sleep behavior disorder (RBD) is a strong known predictor of a final clinicopathological diagnosis of a Lewy type α-synucleinopathy (LTS). Olfactory dysfunction is an early symptom of synucleinopathies and has been repeatedly associated with the presence of post-mortem LTS. OBJECTIVE To assess the combined value of a clinician diagnosis of probable RBD (PRBD) and hyposmia in predicting the post-mortem presence of LTS in a broader, less-selected, volunteer elderly population. METHODS We studied 652 autopsied subjects from the Arizona Study of Aging and Neurodegenerative Disorders, which were evaluated for PRBD, had completed annual movement and cognitive assessments, and had at least one the University of Pennsylvania Smell Identification Test (UPSIT) olfactory test. RESULTS Histological evidence of LTS was significantly more frequent in those who had PRBD (112/152: 73.7%) than those without (177/494: 35.8%) (P < 0.001). LTS was more frequent in cases with PRBD and a low UPSIT score (90.8%) compared to cases with PRBD only (73.7%) (P < 0.001) or cases with a low UPSIT score only (69.4%) (P < 0.001). Sensitivity of PRBD diagnosis for predicting LTS was 38.8% and specificity 88.8%, whereas sensitivity of a low UPSIT score was 74.4% and specificity 73.4% (Youden's index = 0.276 for PRBD, 0.478 for UPSIT). When combining both measures, sensitivity was 34.3% and specificity increased to 97.2%. CONCLUSION PRBD, diagnosed without sleep study confirmation, combined with a reduced olfactory performance is highly specific for predicting post-mortem presence of LTS. The combination of both measures may provide a cost-effective means of predicting LTS in a broader community.
Collapse
Affiliation(s)
- Cécilia Tremblay
- Departement of neuropathologyBanner Sun Health Research InstituteSun CityArizonaUSA
| | - Charles H. Adler
- Department of NeurologyMayo Clinic College of Medicine, Mayo Clinic ArizonaScottsdaleArizonaUSA
| | - Holly A. Shill
- Department of NeurologyBarrow Neurological InstitutePhoenixArizonaUSA
| | - Erika Driver‐Dunckley
- Department of NeurologyMayo Clinic College of Medicine, Mayo Clinic ArizonaScottsdaleArizonaUSA
| | - Shyamal Mehta
- Department of NeurologyMayo Clinic College of Medicine, Mayo Clinic ArizonaScottsdaleArizonaUSA
| | - Parichita Choudhury
- Departement of neuropathologyBanner Sun Health Research InstituteSun CityArizonaUSA
| | - Christine Belden
- Departement of neuropathologyBanner Sun Health Research InstituteSun CityArizonaUSA
| | - David R. Shprecher
- Departement of neuropathologyBanner Sun Health Research InstituteSun CityArizonaUSA
| | - Joyce K. Lee‐Iannotti
- Department of Neurology, Department of Internal MedicineUniversity of Arizona College of Medicine PhoenixPhoenixArizonaUSA
| | - Alireza Atri
- Departement of neuropathologyBanner Sun Health Research InstituteSun CityArizonaUSA
| | - Geidy E. Serrano
- Departement of neuropathologyBanner Sun Health Research InstituteSun CityArizonaUSA
| | - Thomas G. Beach
- Departement of neuropathologyBanner Sun Health Research InstituteSun CityArizonaUSA
| |
Collapse
|
4
|
Vásquez-Pérez JM, González-Guevara E, Gutiérrez-Buenabad D, Martínez-Gopar PE, Martinez-Lazcano JC, Cárdenas G. Is Nasal Dysbiosis a Required Component for Neuroinflammation in Major Depressive Disorder? Mol Neurobiol 2025; 62:2459-2469. [PMID: 39120823 DOI: 10.1007/s12035-024-04375-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 07/17/2024] [Indexed: 08/10/2024]
Abstract
Human microbiota is known to influence immune and cerebral responses by direct and/or indirect mechanisms, including hypothalamic-pituitary-adrenal axis signaling, activation of neural afferent circuits to the brain, and by altering the peripheral immune responses (cellular and humoral immune function, circulatory inflammatory cells, and the production of several inflammatory mediators, such as cytokines, chemokines, and reactive oxygen species). The inflammatory responses in the nasal mucosa (rhinitis) or paranasal sinuses (chronic rhinosinusitis) are dual conditions related with a greater risk for developing depression. In the nasal cavity, anatomic components of the olfactive function are in direct contact with the CNS through the olfactory receptors, neurons, and axons that end in the olfactory bulb and the entorhinal cortex. Local microbiome alterations (dysbiosis) are linked to transepithelial translocation of microorganisms and their metabolites, which disrupts the epithelial barrier and favors vascular permeability, increasing the levels of several inflammatory molecules (both cytokines and non-cytokine mediators: extracellular vesicles (exosomes) and neuropeptides), triggering local inflammation (rhinitis) and the spread of these components into the central nervous system (neuroinflammation). In this review, we discuss the role of microbiota-related immunity in conditions affecting the nasal mucosa (chronic rhinosinusitis and allergic rhinitis) and their relevance in major depressive disorders, focusing on the few mechanisms known to be involved and providing some hypothetical proposals on the pathophysiology of depression.
Collapse
Affiliation(s)
- Jorge Manuel Vásquez-Pérez
- Laboratorio de Neurogénesis, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de La Fuente Muñiz, 14370, Ciudad de México, Mexico
- Programa de Posgrado Doctorado en Ciencias Biomédicas, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Coyoacán, Ciudad de Mexico, Mexico
| | - Edith González-Guevara
- Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, 14269, Ciudad de México, Mexico
| | - Diana Gutiérrez-Buenabad
- Laboratorio de Neurogénesis, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de La Fuente Muñiz, 14370, Ciudad de México, Mexico
- Programa de Posgrado Doctorado en Ciencias Biomédicas, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Coyoacán, Ciudad de Mexico, Mexico
| | - Pablo Eliasib Martínez-Gopar
- Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, 14269, Ciudad de México, Mexico
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Sede Sur, 14330, Ciudad de México, Mexico
| | - Juan Carlos Martinez-Lazcano
- Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, 14269, Ciudad de México, Mexico
| | - Graciela Cárdenas
- Departamento de Neurología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Insurgentes Sur 3877, La Fama, Tlalpan, 14269, Ciudad de Mexico, Mexico.
| |
Collapse
|
5
|
Heim B, Mandler E, Peball M, Carbone F, Schwarzová K, Demjaha R, Tafrali C, Buchmann A, Khalil M, Djamshidian A, Seppi K. Serum neurofilament light chain but not serum glial fibrillary acidic protein is a marker of early Huntington's disease. J Neurol 2025; 272:174. [PMID: 39891767 PMCID: PMC11787204 DOI: 10.1007/s00415-025-12901-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 12/31/2024] [Accepted: 01/05/2025] [Indexed: 02/03/2025]
Abstract
BACKGROUND Huntington's disease (HD) is caused by CAG trinucleotide expansion on chromosome 4, leading to mutant Huntingtin production. Premanifest carriers show no obvious clinical signs, and early symptoms progress slowly. Fluid biomarkers like neurofilament light (NfL) and glial fibrillary acidic protein (GFAP), measurable in cerebrospinal fluid and serum (sNfL, sGFAP), offer potential predicting HD progression. OBJECTIVE To assess the role of sGFAP and sNfL and clinical biomarkers in different disease stages and correlate with disease progression. METHODS HD mutation carriers were categorized into clinical stages according to their motor symptoms and functional capacities. The Unified HD Rating Scale, cognitive assessments and olfactory tests were used to characterize the patients clinically. Furthermore, sNfL and sGFAP levels were assessed. RESULTS We consecutively included 44 HD mutation carriers (13 premanifest HD (preHD), 18 in early (early HD) and 13 in advanced (advanced HD) disease stages) and 19 healthy controls (HC). Advanced HD patients performed worse on all clinical tasks and had higher sGFAP and sNfL levels compared to other groups (all p values < 0.05). We did not find difference in sGFAP levels between the preHD, early HD and HC group (all p values > 0.05). In contrast, sNfL levels differed significantly between preHD and early HD, and HC (all p values < 0.05). ROC curve analysis revealed that the AUC of sGFAP (0.970) exhibited superior discriminatory accuracy compared to sNfL (0.791) levels in separating advanced from early HD patients. By contrast, ROC curve analysis revealed that the AUC of sNFL (0.988) exhibited superior discriminatory accuracy compared to sGFAP (0.609) levels in separating all HD mutation carriers from HC. CONCLUSIONS Our study indicates that sNfL can detect changes in very early and premanifest HD stages, whereas sGFAP showed differences in more advanced stages only.
Collapse
Affiliation(s)
- Beatrice Heim
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria.
| | - Elias Mandler
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Marina Peball
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Federico Carbone
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Katarína Schwarzová
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Rina Demjaha
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Cansu Tafrali
- Department of Neurology, Medical University of Graz, Graz, Austria
| | | | - Michael Khalil
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Atbin Djamshidian
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Klaus Seppi
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria.
- Department of Neurology, Hospital Kufstein, Kufstein, Austria.
| |
Collapse
|
6
|
Zhao Y, Hu Y, Yang J, Qi Y, Miao J, Miao M. Network pharmacology and experimental validation reveal the mechanisms of sniffing essential oil of Acori Tatarinowii rhizoma in treating olfactory dysfunction. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118851. [PMID: 39326811 DOI: 10.1016/j.jep.2024.118851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/19/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Acorus tatarinowii Rhizoma, a traditional Chinese medicine known for open the orifices and transform phlegm, is used in the treatment of brain disorders. The essential oil of Acorus tatarinowii Rhizoma (EOAT) has demonstrated neuroprotective properties clinically. However, research into its effect on Olfactory Dysfunction (OD) remains limited. AIM OF THE STUDY This study aimed to investigate the effects and mechanisms of sniffing EOAT on improving olfactory function in a 3-Methylindole (3-MI)-induced OD mouse model. MATERIALS AND METHODS The research involved intraperitoneal injection of 3-MI to induce OD in mice. The effects of EOAT treatment were assessed on olfactory function, olfactory bulb (OB) pathology, inflammatory factors, olfactory marker protein (OMP), microglial activation, and related pathway proteins and mRNA. RESULTS Based on the GC-MS analysis results of EOAT and network pharmacology studies, we predicted 18 targets associated with the treatment of OD. SLC6A3, MAOB, DRD1, and PTGS2 were identified as the core targets of EOAT against OD. Molecular docking and KEGG enrichment results indicated that EOAT may exert anti-inflammatory effects by acting on the core target PTGS2, with its anti-inflammatory mechanism possibly related to the PI3K/Akt signaling pathway. Subsequent animal experiments confirmed that inhalation of EOAT significantly increased the body weight of OD model mice, shortened the foraging time, enhanced the expression of OMP in OB, reduced damage to the OB cells, and improved olfactory function. Meanwhile, EOAT significantly alleviated the inflammatory response in OB of OD model mice, inhibited the activation of microglial cells, and suppressed the expression of PI3K/Akt signaling pathway proteins and mRNA. CONCLUSION EOAT inhalation could improve olfactory function in 3-MI-induced OD model. The underlying mechanism may be related to the modulation of the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Yinan Zhao
- Academy of Chinese Medicine Science, Henan University of Chinese Medicine, Zhengzhou, 450046, China; Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| | - Yilong Hu
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| | - Jingying Yang
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| | - Yupu Qi
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| | - Jinxin Miao
- Academy of Chinese Medicine Science, Henan University of Chinese Medicine, Zhengzhou, 450046, China; Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| | - Mingsan Miao
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| |
Collapse
|
7
|
Kamogashira T, Kikuta S, Yamasoba T. The Effects of Circadian Rhythm on Lead-Induced Toxicity in the DBC1.2 Olfactory Dark Basal Cell Line. Cells 2025; 14:81. [PMID: 39851509 PMCID: PMC11763871 DOI: 10.3390/cells14020081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/03/2025] [Accepted: 01/06/2025] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND/OBJECTIVES This study evaluated changes in circadian clock genes and mitochondrial function in a lead (Pb)-induced toxicity model of an olfactory epithelial cell line. METHODS The DBC1.2 olfactory dark basal cell line was used. Dexamethasone shock was used to reset the circadian clock 24 h (Group 1) and 36 h (Group 2) after seeding. Then, 60 h after seeding, the cells were treated with or without Pb (II) nitrate in HEPES buffer for 1 h. Mitochondrial function and cell viability were evaluated 84 h after seeding. RESULTS Mitochondrial function under Pb exposure was significantly impaired in Group 1 compared with Group 2. Cell numbers and viability did not significantly differ between groups. The mitochondrial membrane potential was significantly higher in Group 1 than Group 2, both without and with Pb exposure. CONCLUSIONS The circadian rhythm can alter the sensitivity to Pb-induced toxicity and mitochondrial damage in olfactory cells.
Collapse
Affiliation(s)
- Teru Kamogashira
- Department of Otolaryngology and Head and Neck Surgery, Faculty of Medicine, University of Tokyo, Tokyo 113-8655, Japan
| | - Shu Kikuta
- Department of Otolaryngology and Head and Neck Surgery, Faculty of Medicine, Nihon University, Tokyo 173-8610, Japan
| | - Tatsuya Yamasoba
- Department of Otolaryngology, Tokyo Teishin Hospital, Tokyo 102-0071, Japan
| |
Collapse
|
8
|
Byun JI, Sunwoo JS, Shin YW, Shin JW, Kim TJ, Jun JS, Shin JH, Kim HJ, Montplaisir J, Gagnon JF, Pelletier A, Delva A, Postuma RB, Jung KY. Clinical characteristics and phenoconversion in isolated REM sleep behavior disorder: a prospective single-center study in Korea, compared with Montreal cohort. J Clin Sleep Med 2025; 21:81-88. [PMID: 39177811 DOI: 10.5664/jcsm.11318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
STUDY OBJECTIVES Isolated rapid eye movement sleep behavior disorder is a prodromal synucleinopathy, but its conversion rate and subtypes can vary among different cohorts. We report the clinical characteristics and phenoconversion rate of the large single-center isolated rapid eye movement sleep behavior disorder cohort in Korea and compared it to the Montreal cohort. METHODS This prospective cohort study examined 238 patients with polysomnography confirmed isolated rapid eye movement sleep behavior disorder from Seoul National University Hospital (SNUH) who completed at least 1 follow-up evaluation. We compared the baseline and phenoconversion data of the SNUH cohort to those of 242 isolated rapid eye movement sleep behavior disorder patients in the Montreal cohort. RESULTS In the SNUH cohort, age at rapid eye movement sleep behavior disorder diagnosis was similar (66.4 ± 7.8 vs 65.6 ± 8.4, P = .265), but the proportion of men was lower (63.0% vs 74.0%, P = .01), and the duration of follow-up was shorter than that in the Montreal cohort (3.7 ± 2.0 vs 4.8 ± 3.6 years, P < .001). During follow-up, 34 (11.8%) patients in the SNUH cohort converted to neurodegenerative disease: 18 (52.9%) to Parkinson's disease, 9 (26.5%) to dementia with Lewy bodies, and 7 (20.6%) to multiple system atrophy. The conversion rate in the SNUH cohort was 15% after 3 years, 22% after 5 years, and 32% after 7 years, which was significantly lower than that of the Montreal cohort (log-rank test, P = .002). Among phenoconversion subtype, fewer patients in the SNUH group than in the Montreal group converted to dementia with Lewy bodies (Gray's test P = .001). CONCLUSIONS Through a comparative analysis between the SNUH and Montreal cohorts, we identified a significant difference in phenoconversion rates, particularly for dementia with Lewy bodies patients. These findings underscore the importance of further research into the underlying factors, such as racial and geographical factors contributing to such disparities. CITATION Byun J-I, Sunwoo J-S, Shin YW, et al. Clinical characteristics and phenoconversion in isolated REM sleep behavior disorder: a prospective single-center study in Korea, compared with Montreal cohort. J Clin Sleep Med. 2025;21(1):81-88.
Collapse
Affiliation(s)
- Jung-Ick Byun
- Department of Neurology, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul, Republic of Korea
| | - Jun-Sang Sunwoo
- Department of Neurology, Kangbuk Samsung Hospital, Seoul, Republic of Korea
| | - Yong Woo Shin
- Department of Neurology, Inha University Hospital, Incheon, Republic of Korea
| | - Jung-Won Shin
- Department of Neurology, CHA University, CHA Bundang Medical Center, Seongnam, Republic of Korea
| | - Tae-Joon Kim
- Department of Neurology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Jin-Sun Jun
- Department of Neurology, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Jung Hwan Shin
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Han-Joon Kim
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jacques Montplaisir
- Centre for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Montreal, Québec, Canada
| | - Jean-François Gagnon
- Centre for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Montreal, Québec, Canada
- Department of Psychology, Université du Québec à Montréal, Montreal, Québec, Canada
| | - Amelie Pelletier
- Centre for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Montreal, Québec, Canada
- Research Institute of McGill University Health Centre, Montreal, Québec, Canada
| | - Aline Delva
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Québec, Canada
| | - Ronald B Postuma
- Centre for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Montreal, Québec, Canada
- Research Institute of McGill University Health Centre, Montreal, Québec, Canada
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Québec, Canada
| | - Ki-Young Jung
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
9
|
Hong S, Baek SH, Lai MKP, Arumugam TV, Jo DG. Aging-associated sensory decline and Alzheimer's disease. Mol Neurodegener 2024; 19:93. [PMID: 39633396 PMCID: PMC11616278 DOI: 10.1186/s13024-024-00776-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 11/08/2024] [Indexed: 12/07/2024] Open
Abstract
Multisensory decline is common as people age, and aging is the primary risk of Alzheimer's Disease (AD). Recent studies have begun to shed light on the possibility that age-related sensory decline could accelerate AD pathogenesis, or be a prodromal indicator of AD. Sensory impairments, specifically in taste and smell, often emerge before cognitive symptoms in AD, indicating their potential as early biomarkers. Olfactory dysfunction has been frequently associated with AD and may offer valuable insights into early detection. Hearing impairment is significantly associated with AD, but its causal impact on AD progression remains unclear. The review also discusses visual and tactile deficits in AD, including retinal thinning and changes in tactile perception, highlighting their links to disease progression. Focusing on molecular mechanisms, the review explores the roles of amyloid-β (Aβ) accumulation and tau protein pathology in sensory decline and their bidirectional relationship with AD. In summary, the evidence presented conclusively supports advocating for an integrated approach to understanding AD and sensory decline, to enhance early detection, implementing preventive strategies, and developing therapeutic interventions for AD. This approach underscores the significance of sensory health in addressing neurodegenerative diseases, particularly AD.
Collapse
Affiliation(s)
- Suji Hong
- The School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Seung-Hyun Baek
- The School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Mitchell K P Lai
- Department of Pharmacology, Yong Loo Lin School of Medicine, Singapore, 117600, Singapore
| | - Thiruma V Arumugam
- The School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
- Centre for Cardiovascular Biology and Disease Research, La Trobe Institute for Molecular Science, Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, 3086, Australia.
| | - Dong-Gyu Jo
- The School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
- Biomedical Institute for Convergence at SKKU (BICS), Suwon, 16419, Republic of Korea.
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06355, Republic of Korea.
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
10
|
Devanand DP, Lee S, Luchsinger JA, Knopman D, Vassilaki M, Motter JN. Comparison of brief olfactory and cognitive assessments to neuroimaging biomarkers in the prediction of cognitive decline and dementia in the MCSA cohort. Alzheimers Dement 2024; 20:8346-8358. [PMID: 39387454 DOI: 10.1002/alz.14261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 10/15/2024]
Abstract
INTRODUCTION We evaluated impaired odor identification and global cognition as simple, cost-effective alternatives to neuroimaging biomarkers to predict cognitive decline and dementia in the Mayo Clinic Study of Aging. METHODS Six hundred forty-seven participants (mean 8.1, standard deviation 3.4 years' follow-up) had the following baseline procedures: modified Blessed Information Memory Concentration Test (BIMCT), 12-item Brief Smell Identification Test (BSIT), structural brain magnetic resonance imaging (MRI), and positron emission tomography (PET) imaging with 11C-Pittsburgh compound B (11C-PiB) and fluorodeoxyglucose (FDG; subset). RESULTS Cognitive decline developed in 102 participants and dementia in 34 participants. In survival analyses, PiB PET showed robust prediction for cognitive decline. Impaired BSIT, impaired BIMCT, MRI, and FDG measures were also significant predictors. The combination of demographics + BSIT + BIMCT showed strong predictive utility (C-index 0.81), similar to demographics + PiB PET (C-index 0.80). Similar but stronger results were obtained for prediction of dementia. DISCUSSION Impairment in both odor identification test and global cognition was comparable to PiB PET for predicting cognitive decline and dementia. HIGHLIGHTS In 647 participants in the population-based Mayo Clinic Study of Aging, several clinical markers and biomarkers each predicted cognitive decline or dementia during an average 8 years of follow-up. The combination of the demographic variables of age, sex, and education with a brief odor identification test (BSIT) and a global cognitive test (Blessed Information Memory Concentration Test) showed strong predictive utility (C-index 0.81) for cognitive decline that was similar to the demographic variables combined with Pittsburgh Compound B amyloid imaging (C-index 0.80). Combining a brief odor identification test with a brief cognitive test needs consideration as a simple, cost-effective option in the clinical assessment of individuals at risk of cognitive decline and dementia, as well as a potential tool to identify individuals who may benefit from disease-modifying treatments and to screen participants for prevention trials.
Collapse
Affiliation(s)
- Davangere P Devanand
- Department of Psychiatry, Columbia University, New York, New York, USA
- Division of Geriatric Psychiatry, New York State Psychiatric Institute, New York, New York, USA
| | - Seonjoo Lee
- Division of Mental Health Data Science, New York State Psychiatric Institute, New York, New York, USA
- Department of Biostatistics, Columbia University, New York, New York, USA
| | - José A Luchsinger
- Departments of Medicine and Epidemiology, Columbia University, New York, New York, USA
| | - David Knopman
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Maria Vassilaki
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Jeffrey N Motter
- Department of Psychiatry, Columbia University, New York, New York, USA
- Division of Geriatric Psychiatry, New York State Psychiatric Institute, New York, New York, USA
| |
Collapse
|
11
|
Zhang Z, Liu Y, Li Y, Geng T, Chen S, Wu S, Gao X. Association between perceived olfactory dysfunction and all-cause mortality in Chinese adults: A prospective community-based study. J Glob Health 2024; 14:04237. [PMID: 39545350 PMCID: PMC11565469 DOI: 10.7189/jogh.14.04237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024] Open
Abstract
Background Olfactory dysfunction has been suggested to be associated with all-cause mortality. Yet, there is a lack of large-scale cohorts to study this relationship. Methods Using data from the Kailuan cohort, we assessed 97 327 Chinese adults for perceived olfactory dysfunction at baseline and gathered mortality data from government records. We used Cox proportional hazards regression models to analyse the risk of all-cause mortality associated with perceived olfactory dysfunction, yielding hazard ratios (HRs) and 95% confidence intervals (CIs) with adjustment for multiple potential confounders. Results Over a median follow-up of 6.4-year, we recorded a total of 3903 deaths. Individuals reporting perceived olfactory dysfunction had a higher risk of mortality (adjusted HR = 1.42; 95% CI = 1.02-2.00) compared to those without the dysfunction. In sensitivity analyses, we found similar results after excluding participants with pre-existing obesity, cardiovascular diseases, those younger than 50 years old, individuals diagnosed with cancer or stroke during follow-up, and those who died within two years of follow-up. Conclusions Perceived olfactory dysfunction was associated with a high risk of all-cause mortality among Chinese adults. Our study is limited by failure to include a national-representative sample and misclassification of exposure assessment due to use of a subjective question to assess olfactory dysfunction. Further studies with objective are warranted to replicate our findings and understand the underlying mechanisms.
Collapse
Affiliation(s)
- Zhicheng Zhang
- School of Public Health, Institute of Nutrition, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yesong Liu
- Department of Neurology, Kailuan General Hospital, Tangshan, Hebei, China
| | - Yaqi Li
- School of Public Health, Institute of Nutrition, Fudan University, Shanghai, China
| | - Tingting Geng
- School of Public Health, Institute of Nutrition, Fudan University, Shanghai, China
| | - Shuohua Chen
- Department of Cardiology, Kailuan General Hospital, Tangshan, Hebei, China
| | - Shouling Wu
- Department of Cardiology, Kailuan General Hospital, Tangshan, Hebei, China
| | - Xiang Gao
- School of Public Health, Institute of Nutrition, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
12
|
Chen YN, Kostka JK. Beyond anosmia: olfactory dysfunction as a common denominator in neurodegenerative and neurodevelopmental disorders. Front Neurosci 2024; 18:1502779. [PMID: 39539496 PMCID: PMC11557544 DOI: 10.3389/fnins.2024.1502779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Olfactory dysfunction has emerged as a hallmark feature shared among several neurological conditions, including both neurodevelopmental and neurodegenerative disorders. While diseases of both categories have been extensively studied for decades, their association with olfaction has only recently gained attention. Olfactory deficits often manifest already during prodromal stages of these diseases, yet it remains unclear whether common pathophysiological changes along olfactory pathways cause such impairments. Here we probe into the intricate relationship between olfactory dysfunction and neurodegenerative and neurodevelopmental disorders, shedding light on their commonalities and underlying mechanisms. We begin by providing a brief overview of the olfactory circuit and its connections to higher-associated brain areas. Additionally, we discuss olfactory deficits in these disorders, focusing on potential common mechanisms that may contribute to olfactory dysfunction across both types of disorders. We further debate whether olfactory deficits contribute to the disease propagation or are simply an epiphenomenon. We conclude by emphasizing the significance of olfactory function as a potential pre-clinical diagnostic tool to identify individuals with neurological disorders that offers the opportunity for preventive intervention before other symptoms manifest.
Collapse
Affiliation(s)
- Yu-Nan Chen
- Institute of Developmental Neuroscience, Center of Molecular Neurobiology, Hamburg Center of Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johanna Katharina Kostka
- Institute of Developmental Neuroscience, Center of Molecular Neurobiology, Hamburg Center of Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
13
|
Loewenstein DSL, van Grinsven M, de Pont C, Dautzenberg PLJ, van Strien AM, Henssen D. Assessing the metabolism of the olfactory circuit by use of 18F-FDG PET-CT imaging in patients suspected of suffering from Alzheimer's disease or frontotemporal dementia. Alzheimers Res Ther 2024; 16:241. [PMID: 39472983 PMCID: PMC11520854 DOI: 10.1186/s13195-024-01604-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/16/2024] [Indexed: 11/02/2024]
Abstract
PURPOSE The loss of olfactory function is known to occur in patients suffering from (behavioral variant) frontotemporal dementia ((bv)FTD) and Alzheimer's disease (AD), although different pathophysiological mechanisms underpin this clinical symptom in both disorders. This study assessed whether brain metabolism of the olfactory circuit as assessed by positron emission tomography (PET) imaging with 2-[fluorine-18]fluoro-2-deoxy-d-glucose ([18F]-FDG) can distinguish these entities in different subsets of patients. METHODS Patients presenting with cognitive decline were included from a prospectively kept database: (1) bvFTD patients, (2) AD patients and (3) patients with logopenic primary progressive aphasia (PPA). Metabolic rates were calculated for different regions of the olfactory circuit for each subgroup and compared with a cohort of subjects with normal brain metabolism. Additionally, in patients with a logopenic PPA pattern on PET-imaging, statistical parametric mapping (SPM) analysis was performed. RESULTS The metabolism of subdivisions of the olfactory circuit as assessed by [18F]-FDG PET brain imaging to bvFTD and AD from control subjects resulted in sensitivity/specificity rates of 95/87.5% and 80/83.3%, respectively. A sensitivity/specificity rate of 100/87.5% was achieved when used to differentiate AD from bvFTD. In patients with the PPA pattern on imaging, the underlying cause (either FTD or AD) could be determined with a sensitivity/specificity rate of 88/82%. SPM analysis concurred that different regions of the olfactory circuit were affected in patients suffering from AD PPA or bvFTD PPA. CONCLUSION Metabolic dysfunction in the olfactory circuit is different in various neurodegenerative disorders. Further investigation of the correlations between the cerebral metabolism and the mechanisms which drive olfactory dysfunction is needed.
Collapse
Affiliation(s)
- Daniël S L Loewenstein
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, Nijmegen, 6525 EZ, The Netherlands.
| | - Max van Grinsven
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, Nijmegen, 6525 EZ, The Netherlands
| | - Cécile de Pont
- Department of Medical Imaging, Jeroen Bosch Hospital, 's Hertogenbosch, The Netherlands
| | - Paul L J Dautzenberg
- Department of Geriatrics, Jeroen Bosch Hospital, 's Hertogenbosch, The Netherlands
| | - Astrid M van Strien
- Department of Geriatrics, Jeroen Bosch Hospital, 's Hertogenbosch, The Netherlands
| | - Dylan Henssen
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, Nijmegen, 6525 EZ, The Netherlands
- Department of Medical Imaging, Jeroen Bosch Hospital, 's Hertogenbosch, The Netherlands
| |
Collapse
|
14
|
Gorodisky L, Honigstein D, Weissbrod A, Weissgross R, Soroka T, Shushan S, Sobel N. Humans without a sense of smell breathe differently. Nat Commun 2024; 15:8809. [PMID: 39438441 PMCID: PMC11496694 DOI: 10.1038/s41467-024-52650-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/18/2024] [Indexed: 10/25/2024] Open
Abstract
Olfaction may play a restricted role in human behavior, yet paradoxically, its absence in anosmia is associated with diverse deleterious outcomes, culminating in reduced life expectancy. The mammalian nose serves two purposes: olfaction and breathing. Because respiratory patterns are impacted by odors, we hypothesized that nasal respiratory airflow may be altered in anosmia. We apply a wearable device that precisely logs nasal airflow for 24-hour-long sessions in participants with isolated congenital anosmia and controls. We observe significantly altered patterns of respiratory nasal airflow in anosmia in wake and in sleep. These differences allow classification of anosmia at 83% accuracy using the respiratory trace alone. Patterns of respiratory airflow have pronounced impact on health, emotion and cognition. We therefore suggest that a portion of the deleterious outcomes associated with anosmia may be attributed to altered patterns of respiratory nasal airflow rather than a direct result of lost odor perception per se.
Collapse
Affiliation(s)
- Lior Gorodisky
- The Azrieli National Institute for Human Brain Imaging and Research, Weizmann Institute of Science, Rehovot, Israel.
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel.
| | - Danielle Honigstein
- The Azrieli National Institute for Human Brain Imaging and Research, Weizmann Institute of Science, Rehovot, Israel
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Aharon Weissbrod
- The Azrieli National Institute for Human Brain Imaging and Research, Weizmann Institute of Science, Rehovot, Israel
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Reut Weissgross
- The Azrieli National Institute for Human Brain Imaging and Research, Weizmann Institute of Science, Rehovot, Israel
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Timna Soroka
- The Azrieli National Institute for Human Brain Imaging and Research, Weizmann Institute of Science, Rehovot, Israel
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Sagit Shushan
- The Azrieli National Institute for Human Brain Imaging and Research, Weizmann Institute of Science, Rehovot, Israel
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- The Institute of Nose and Sinus Therapy and Clinical Investigations, The Edith Wolfson Medical Center, Holon, Israel
- Department of Otolaryngology-Head & Neck Surgery, The Edith Wolfson Medical Center, Holon, Israel
- Faculty of Medical & Health Sciences, Tel-Aviv University, Tel Aviv, Israel
| | - Noam Sobel
- The Azrieli National Institute for Human Brain Imaging and Research, Weizmann Institute of Science, Rehovot, Israel.
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
15
|
Yeh CF, Chuang TY, Lan MY, Lin YY, Huang WH, Hung YW. Soluble Epoxide Hydrolase Inhibitor Ameliorates Olfactory Dysfunction, Modulates Microglia Polarization, and Attenuates Neuroinflammation after Ischemic Brain Injury. J Neuroimmune Pharmacol 2024; 19:54. [PMID: 39417923 DOI: 10.1007/s11481-024-10155-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024]
Abstract
Olfactory bulb (OB) microglia activation and inflammation can lead to olfactory dysfunction, which often occurs after an ischemic stroke. Inhibition of soluble epoxide hydrolase (sEH) attenuates neuroinflammation in brain injuries by reducing the degradation of anti-inflammatory epoxyeicosatrienoic acids. However, whether sEH inhibitors can ameliorate olfactory dysfunction after an ischemic stroke remains unknown. Ischemic brain injury and olfactory dysfunction were induced by middle cerebral artery occlusion (MCAO) in Wistar Kyoto rats. The rats were administered 12-(3-adamantan-1-yl-ureido)-dodecanoic acid (AUDA), a selective sEH inhibitor. Olfactory function, cerebral infarct volume, and the degree of degeneration, microglial polarization and neuroinflammation in OB were evaluated. Following treatment with AUDA, rats subjected to MCAO displayed mild cerebral infarction and OB degeneration, as well as better olfactory performance. In OB, AUDA triggered a modulation of microglial polarization toward the M2 anti-inflammatory type, reduction in proinflammatory mediators, and enhancement of the antioxidant process. The effectiveness of AUDA in terms of anti-inflammatory, neuroprotection and anti-oxidative properties suggests that it may have clinical therapeutic implication for ischemic stroke related olfactory dysfunction.
Collapse
Affiliation(s)
- Chien-Fu Yeh
- Department of Otolaryngology-Head and Neck Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Otolaryngology, National Yang-Ming Chiao Tung University, Taipei, Taiwan
| | - Tung-Yueh Chuang
- Institute of Brain Science, National Yang-Ming Chiao Tung University, Taipei, Taiwan
| | - Ming-Ying Lan
- Department of Otolaryngology-Head and Neck Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Otolaryngology, National Yang-Ming Chiao Tung University, Taipei, Taiwan
| | - Yung-Yang Lin
- Department of Critical Care Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Brain Science, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
| | - Wei-Hao Huang
- Department of Otolaryngology-Head and Neck Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yu-Wen Hung
- Department of Life Sciences, College of Life Sciences, National Chung-Hsing University, No.145, Xingda Rd., South Dist, Taichung City, 402202, Taiwan.
| |
Collapse
|
16
|
Kehl MS, Mackay S, Ohla K, Schneider M, Borger V, Surges R, Spehr M, Mormann F. Single-neuron representations of odours in the human brain. Nature 2024; 634:626-634. [PMID: 39385026 PMCID: PMC11485236 DOI: 10.1038/s41586-024-08016-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 09/04/2024] [Indexed: 10/11/2024]
Abstract
Olfaction is a fundamental sensory modality that guides animal and human behaviour1,2. However, the underlying neural processes of human olfaction are still poorly understood at the fundamental-that is, the single-neuron-level. Here we report recordings of single-neuron activity in the piriform cortex and medial temporal lobe in awake humans performing an odour rating and identification task. We identified odour-modulated neurons within the piriform cortex, amygdala, entorhinal cortex and hippocampus. In each of these regions, neuronal firing accurately encodes odour identity. Notably, repeated odour presentations reduce response firing rates, demonstrating central repetition suppression and habituation. Different medial temporal lobe regions have distinct roles in odour processing, with amygdala neurons encoding subjective odour valence, and hippocampal neurons predicting behavioural odour identification performance. Whereas piriform neurons preferably encode chemical odour identity, hippocampal activity reflects subjective odour perception. Critically, we identify that piriform cortex neurons reliably encode odour-related images, supporting a multimodal role of the human piriform cortex. We also observe marked cross-modal coding of both odours and images, especially in the amygdala and piriform cortex. Moreover, we identify neurons that respond to semantically coherent odour and image information, demonstrating conceptual coding schemes in olfaction. Our results bridge the long-standing gap between animal models and non-invasive human studies and advance our understanding of odour processing in the human brain by identifying neuronal odour-coding principles, regional functional differences and cross-modal integration.
Collapse
Affiliation(s)
- Marcel S Kehl
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Sina Mackay
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Kathrin Ohla
- Science & Research, dsm-firmenich, Satigny, Switzerland
| | | | - Valeri Borger
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany
| | - Rainer Surges
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Marc Spehr
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, Aachen, Germany.
| | - Florian Mormann
- Department of Epileptology, University Hospital Bonn, Bonn, Germany.
| |
Collapse
|
17
|
Rocha AB, Zendrini GO, Juliani MPB, Frederico RCP, Bello VA, Oliveira CECD, Reiche EMV, Vitali-Silva A. Aura and osmophobia are associated with the IL1A -889C > T (rs1800587) variant in migraine. ARQUIVOS DE NEURO-PSIQUIATRIA 2024; 82:1-7. [PMID: 39505006 DOI: 10.1055/s-0044-1791200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
BACKGROUND Migraine belongs to the group of primary headaches, affecting 14.4% of the global population. The pathophysiological mechanisms of migraine involve the interplay between hypothalamic activation, cortical spreading depression, trigeminal stimulation, and inflammatory components with neurogenic inflammation or neuroinflammation. OBJECTIVE To assess the frequency of the IL1A -899C > T (rs1800587) genetic variant in patients with migraine and healthy controls, as well as its association with the clinical manifestations of migraine. METHODS We conducted a case-control study involving 92 migraine patients and 88 healthy controls matched for age, sex, body mass index (BMI), and ethnicity. Demographic, anthropometric, and clinical data were obtained. The IL1A -889C > T (rs1800587) variant was identified using real-time polymerase chain reaction. RESULTS The study comprised predominantly women and Caucasian individuals, with no significant differences in terms of age, sex, ethnicity, or BMI observed between the migraine and control groups. Within the migraine group, 57.6% had episodic migraines, and 45.7% experienced aura. The patients carrying the CT genotype showed stronger associations with the presence of aura (CT: 57.7%; TT: 27.5%; p = 0.027), and those carrying the CT and TT genotypes showed higher osmophobia rates when compared with the CC genotype (p = 0.003). The IL1A -889C > T genetic variant was not associated with migraine susceptibility, be it chronic or episodic, nor to other symptoms associated with migraine. CONCLUSION The IL1A -889C > T genetic variant was associated with aura and osmophobia in migraine patients.
Collapse
Affiliation(s)
- Amanda Brant Rocha
- Pontifícia Universidade Católica do Paraná, Faculdade de Medicina, Departamento de Medicina, Londrina PR, Brazil
| | - Giovana Ortiz Zendrini
- Pontifícia Universidade Católica do Paraná, Faculdade de Medicina, Departamento de Medicina, Londrina PR, Brazil
| | | | - Regina Célia Poli Frederico
- Pontifícia Universidade Católica do Paraná, Faculdade de Medicina, Departamento de Medicina, Londrina PR, Brazil
| | - Valéria Aparecida Bello
- Pontifícia Universidade Católica do Paraná, Faculdade de Medicina, Departamento de Medicina, Londrina PR, Brazil
| | | | - Edna Maria Vissoci Reiche
- Pontifícia Universidade Católica do Paraná, Faculdade de Medicina, Departamento de Medicina, Londrina PR, Brazil
| | - Aline Vitali-Silva
- Pontifícia Universidade Católica do Paraná, Faculdade de Medicina, Departamento de Medicina, Londrina PR, Brazil
| |
Collapse
|
18
|
Joseph PV, Abbas M, Goodney G, Diallo A, Gaye A. Genomic study of taste perception genes in African Americans reveals SNPs linked to Alzheimer's disease. Sci Rep 2024; 14:21560. [PMID: 39284855 PMCID: PMC11405524 DOI: 10.1038/s41598-024-71669-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/29/2024] [Indexed: 09/22/2024] Open
Abstract
While previous research has shown the potential links between taste perception pathways and brain-related conditions, the area involving Alzheimer's disease remains incompletely understood. Taste perception involves neurotransmitter signaling, including serotonin, glutamate, and dopamine. Disruptions in these pathways are implicated in neurodegenerative diseases. The integration of olfactory and taste signals in flavor perception may impact brain health, evident in olfactory dysfunction as an early symptom in neurodegenerative conditions. Shared immune response and inflammatory pathways may contribute to the association between altered taste perception and conditions like neurodegeneration, present in Alzheimer's disease. This study consists of an exploration of expression-quantitative trait loci (eQTL), utilizing whole-blood transcriptome profiles, of 28 taste perception genes, from a combined cohort of 475 African American subjects. This comprehensive dataset was subsequently intersected with single-nucleotide polymorphisms (SNPs) identified in Genome-Wide Association Studies (GWAS) of Alzheimer's Disease (AD). Finally, the investigation delved into assessing the association between eQTLs reported in GWAS of AD and the profiles of 741 proteins from the Olink Neurological Panel. The eQTL analysis unveiled 3,547 statistically significant SNP-Gene associations, involving 412 distinct SNPs that spanned all 28 taste genes. In 17 GWAS studies encompassing various traits, a total of 14 SNPs associated with 12 genes were identified, with three SNPs consistently linked to Alzheimer's disease across four GWAS studies. All three SNPs demonstrated significant associations with the down-regulation of TAS2R41, and two of them were additionally associated with the down-regulation of TAS2R60. In the subsequent pQTL analysis, two of the SNPs linked to TAS2R41 and TAS2R60 genes (rs117771145 and rs10228407) were correlated with the upregulation of two proteins, namely EPHB6 and ADGRB3. Our investigation introduces a new perspective to the understanding of Alzheimer's disease, emphasizing the significance of bitter taste receptor genes in its pathogenesis. These discoveries set the stage for subsequent research to delve into these receptors as promising avenues for both intervention and diagnosis. Nevertheless, the translation of these genetic insights into clinical practice requires a more profound understanding of the implicated pathways and their pertinence to the disease's progression across diverse populations.
Collapse
Affiliation(s)
- Paule Valery Joseph
- Sensory Science and Metabolism Unit, Biobehavioral Branch, National Institute On Alcohol Abuse and Alcoholism, National Institue of Nursing Research, National Institutes of Health, Bethesda, MD, USA
| | - Malak Abbas
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Gabriel Goodney
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ana Diallo
- Department of Pharmacotherapy & Outcomes Science, Virginia Commonwealth University, Richmond, VA, USA
| | - Amadou Gaye
- Department of Integrative Genomics and Epidemiology, School of Graduate Studies, Meharry Medical College, Nashville, TN, USA.
| |
Collapse
|
19
|
Bathini P, Brai E, Balin BJ, Bimler L, Corry DB, Devanand DP, Doty RL, Ehrlich GD, Eimer WA, Fulop T, Hahn DL, Hammond CJ, Infanti J, Itzhaki R, Lathe R, Little CS, McLeod R, Moein ST, Nelson AR, Perry G, Shemesh OA, Tanzi RE, Webley WC, Schultek NM, Alberi Auber L. Sensory Dysfunction, Microbial Infections, and Host Responses in Alzheimer's Disease. J Infect Dis 2024; 230:S150-S164. [PMID: 39255393 DOI: 10.1093/infdis/jiae328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024] Open
Abstract
Sensory functions of organs of the head and neck allow humans to interact with the environment and establish social bonds. With aging, smell, taste, vision, and hearing decline. Evidence suggests that accelerated impairment in sensory abilities can reflect a shift from healthy to pathological aging, including the development of Alzheimer's disease (AD) and other neurological disorders. While the drivers of early sensory alteration in AD are not elucidated, insults such as trauma and infections can affect sensory function. Herein, we review the involvement of the major head and neck sensory systems in AD, with emphasis on microbes exploiting sensory pathways to enter the brain (the "gateway" hypothesis) and the potential feedback loop by which sensory function may be impacted by central nervous system infection. We emphasize detection of sensory changes as first-line surveillance in senior adults to identify and remove potential insults, like microbial infections, that could precipitate brain pathology.
Collapse
Affiliation(s)
- Praveen Bathini
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
| | | | - Brian J Balin
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Center for Chronic Disorders of Aging, Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania, USA
- Intracell Research Group, LLC, Wake Forest, North Carolina, USA
| | - Lynn Bimler
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - David B Corry
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
- Department of Medicine, Dan L. Duncan Comprehensive Cancer Center, Biology of Inflammation Center, and the Michael E. DeBakey VA Center for Translational Research in Inflammatory Diseases, Baylor College of Medicine, Houston, Texas, USA
- Department of Pathology and Immunology, Dan L. Duncan Comprehensive Cancer Center, Biology of Inflammation Center, and the Michael E. DeBakey VA Center for Translational Research in Inflammatory Diseases, Baylor College of Medicine, Houston, Texas, USA
| | - Davangere P Devanand
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Department of Psychiatry and Neurology, Irving Medical Center, Columbia University, New York, USA
| | - Richard L Doty
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Smell and Taste Center, Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Garth D Ehrlich
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - William A Eimer
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Genetics and Aging Research Unit, Mass General Institute for Neurodegenerative Disease, Charlestown, Massachusetts, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
- Harvard Medical School, Harvard University, Cambridge, Massachusetts, USA
| | - Tamas Fulop
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Department of Medicine, Division of Geriatrics, Faculty of Medicine and Health Sciences, Research Center on Aging, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - David L Hahn
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Intracell Research Group, LLC, Wake Forest, North Carolina, USA
| | - Christine J Hammond
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Division of Research, Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania, USA
| | - Joseph Infanti
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Division of Research, Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania, USA
| | - Ruth Itzhaki
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Institute of Population Ageing, University of Oxford, Oxford, United Kingdom
| | - Richard Lathe
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Division of Infection Medicine, University of Edinburgh Medical School, Edinburgh, United Kingdom
| | - Christopher Scott Little
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Center for Chronic Disorders of Aging, Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania, USA
| | - Rima McLeod
- Departments of Ophthalmology and Visual Sciences, University of Chicago, Chicago, Illinois, USA
- Department of Pediatrics Infectious Diseases, University of Chicago, Chicago, Illinois, USA
| | - Shima T Moein
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Smell and Taste Center, Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Amy R Nelson
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, USA
| | - George Perry
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Intracell Research Group, LLC, Wake Forest, North Carolina, USA
- Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, USA
| | - Or A Shemesh
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Intracell Research Group, LLC, Wake Forest, North Carolina, USA
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Rudolph E Tanzi
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Genetics and Aging Research Unit, Mass General Institute for Neurodegenerative Disease, Charlestown, Massachusetts, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
- Harvard Medical School, Harvard University, Cambridge, Massachusetts, USA
| | - Wilmore C Webley
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Intracell Research Group, LLC, Wake Forest, North Carolina, USA
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
| | - Nikki M Schultek
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Intracell Research Group, LLC, Wake Forest, North Carolina, USA
| | - Lavinia Alberi Auber
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- BrainFit4Life, Fribourg, Switzerland
- Intracell Research Group, LLC, Wake Forest, North Carolina, USA
- Department of Medicine, University of Fribourg, Fribourg, Switzerland
- VitalizeDx, Epalinges, Switzerland
- VitalizeDx Eu, Trieste, Italy
| |
Collapse
|
20
|
Mussalo L, Lampinen R, Avesani S, Závodná T, Krejčík Z, Kalapudas J, Penttilä E, Löppönen H, Koivisto AM, Malm T, Topinka J, Giugno R, Jalava P, Kanninen KM. Traffic-related ultrafine particles impair mitochondrial functions in human olfactory mucosa cells - Implications for Alzheimer's disease. Redox Biol 2024; 75:103272. [PMID: 39047637 PMCID: PMC11321383 DOI: 10.1016/j.redox.2024.103272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/09/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024] Open
Abstract
Constituents of air pollution, the ultrafine particles (UFP) with a diameter of ≤0.1 μm, are considerably related to traffic emissions. Several studies link air pollution to Alzheimer's disease (AD), yet the exact relationship between the two remains poorly understood. Mitochondria are known targets of environmental toxicants, and their dysfunction is associated with neurodegenerative diseases. The olfactory mucosa (OM), located at the rooftop of the nasal cavity, is directly exposed to the environment and in contact with the brain. Mounting evidence suggests that the UFPs can impact the brain directly through the olfactory tract. By using primary human OM cultures established from nasal biopsies of cognitively healthy controls and individuals diagnosed with AD, we aimed to decipher the effects of traffic-related UFPs on mitochondria. The UFP samples were collected from the exhausts of a modern heavy-duty diesel engine (HDE) without aftertreatment systems, run with renewable diesel (A0) and petroleum diesel (A20), and from an engine of a 2019 model diesel passenger car (DI-E6d) equipped with state-of-the-art aftertreatment devices and run with renewable diesel (Euro6). OM cells were exposed to three different UFPs for 24-h and 72-h, after which cellular processes were assessed on the functional and transcriptomic levels. Our results show that UFPs impair mitochondrial functions in primary human OM cells by hampering oxidative phosphorylation (OXPHOS) and redox balance, and the responses of AD cells differ from cognitively healthy controls. RNA-Seq and IPA® revealed inhibition of OXPHOS and mitochondrial dysfunction in response to UFPs A0 and A20. Functional validation confirmed that A0 and A20 impair cellular respiration, decrease ATP levels, and disturb redox balance by altering NAD and glutathione metabolism, leading to increased ROS and oxidative stress. RNA-Seq and functional assessment revealed the presence of AD-related alterations in human OM cells and that different fuels and engine technologies elicit differential effects.
Collapse
Affiliation(s)
- Laura Mussalo
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210, Kuopio, Finland
| | - Riikka Lampinen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210, Kuopio, Finland
| | - Simone Avesani
- Department of Computer Science, University of Verona, 37134, Verona, Italy
| | - Táňa Závodná
- Department of Toxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
| | - Zdeněk Krejčík
- Department of Toxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
| | - Juho Kalapudas
- Department of Neurology, Neuro Centre, Kuopio University Hospital, 70210, Kuopio, Finland
| | - Elina Penttilä
- Department of Otorhinolaryngology, University of Eastern Finland and Kuopio University Hospital, 70210, Kuopio, Finland
| | - Heikki Löppönen
- Department of Otorhinolaryngology, University of Eastern Finland and Kuopio University Hospital, 70210, Kuopio, Finland
| | - Anne M Koivisto
- Department of Neurology, Neuro Centre, Kuopio University Hospital, 70210, Kuopio, Finland; Brain Research Unit, Department of Neurology, School of Medicine, University of Eastern Finland, 70210, Kuopio, Finland; Department of Neurology and Geriatrics, Helsinki University Hospital and Neurosciences, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
| | - Tarja Malm
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210, Kuopio, Finland
| | - Jan Topinka
- Department of Toxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
| | - Rosalba Giugno
- Department of Computer Science, University of Verona, 37134, Verona, Italy
| | - Pasi Jalava
- Inhalation Toxicology Laboratory, Department of Environmental and Biological Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Katja M Kanninen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210, Kuopio, Finland.
| |
Collapse
|
21
|
Yoo SW, Ryu DW, Oh Y, Ha S, Lyoo CH, Kim JS. Unraveling olfactory subtypes in Parkinson's disease and their effect on the natural history of the disease. J Neurol 2024; 271:6102-6113. [PMID: 39043904 DOI: 10.1007/s00415-024-12586-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/25/2024]
Abstract
BACKGROUND Hyposmia in Parkinson's disease (PD) had been studied before but had not been detailed by its temporal progression. This study observed how each olfactory subtype evolved in terms of motor symptoms, cardiac sympathetic innervation, and cognition. METHODS Two hundred and three early PD patients were classified as normosmia, hyposmia-converter (hypo-converter), and hyposmia. Their presynaptic monoamine availability at the time of diagnosis was assessed by positron emission tomography imaging using 18F-N-(3-fluoropropyl)-2beta-carbon ethoxy-3beta-(4-iodophenyl) nortropane and compared across the subtypes. Motor symptoms were evaluated in all patients, cardiac denervation was examined in 183 patients, and cognition in 195 patients were assessed using a neuropsychological battery. The domains were re-assessed 2-4 times, and the longitudinal data were analyzed to discern the natural course of each subtype. RESULTS Twenty-nine (14.3%) patients belonged to the normosmia group, 34 (16.7%) to the hypo-converter group, and the rest to the hyposmia (69.0%) group. 85.7% of the total population became hyposmic during an average 3 years of follow-up. The baseline motor symptoms, cardiac denervation, and cognition were comparable across the olfactory subtypes. Across the subtypes, a decline in the presynaptic monoamine densities of the caudate, especially the ventral-anterior subdivisions, correlated inversely with olfaction dysfunction. Over time, motor and cardiac denervation burdens worsened regardless of olfactory subtypes, but hypo-converters experienced faster cognitive deterioration than the other two groups. CONCLUSIONS The results suggest that the olfactory subtypes have differential significance along the disease course, which might reflect the involvement of different neuro-biochemical circuitries.
Collapse
Affiliation(s)
- Sang-Won Yoo
- Department of Neurology, College of Medicine, The Catholic University of Korea, Seoul St. Mary's Hospital, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Dong-Woo Ryu
- Department of Neurology, College of Medicine, The Catholic University of Korea, Seoul St. Mary's Hospital, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Yoonsang Oh
- Department of Neurology, College of Medicine, The Catholic University of Korea, Seoul St. Mary's Hospital, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Seunggyun Ha
- Division of Nuclear Medicine, Department of Radiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chul Hyoung Lyoo
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Joong-Seok Kim
- Department of Neurology, College of Medicine, The Catholic University of Korea, Seoul St. Mary's Hospital, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.
| |
Collapse
|
22
|
Liao W, Wang Y, Wang L, Li J, Huang D, Cheng W, Luan P. The current status and challenges of olfactory dysfunction study in Alzheimer's Disease. Ageing Res Rev 2024; 100:102453. [PMID: 39127444 DOI: 10.1016/j.arr.2024.102453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
Olfactory functioning involves multiple cognitive processes and the coordinated actions of various neural systems. Any disruption at any stage of this process may result in olfactory dysfunction, which is consequently widely used to predict the onset and progression of diseases, such as Alzheimer's Disease (AD). Although the underlying mechanisms have not yet been fully unraveled, apparent changes were observed in olfactory brain areas form patients who suffer from AD by means of medical imaging and electroencephalography (EEG). Olfactory dysfunction holds significant promise in detecting AD during the preclinical stage preceding mild cognitive impairment (MCI). Owing to the strong specificity, olfactory tests are prevalently applied for screening in community cohorts. And combining olfactory tests with other biomarkers may further establish an optimal model for AD prediction in studies of specific olfactory dysfunctions and improve the sensitivity and specificity of early AD diagnosis.
Collapse
Affiliation(s)
- Wanchen Liao
- Department of Alzheimer's Disease Clinical Research Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Yulin Wang
- Department of Alzheimer's Disease Clinical Research Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Lei Wang
- Department of Alzheimer's Disease Clinical Research Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Jun Li
- Department of Alzheimer's Disease Clinical Research Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Dongqing Huang
- Department of Alzheimer's Disease Clinical Research Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Weibin Cheng
- Department of Alzheimer's Disease Clinical Research Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China.
| | - Ping Luan
- Department of Alzheimer's Disease Clinical Research Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China.
| |
Collapse
|
23
|
Yeo BSY, Chan JH, Tan BKJ, Liu X, Tay L, Teo NWY, Charn TC. Olfactory Impairment and Frailty: A Systematic Review and Meta-Analysis. JAMA Otolaryngol Head Neck Surg 2024; 150:772-783. [PMID: 38990553 PMCID: PMC11240234 DOI: 10.1001/jamaoto.2024.1854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 05/10/2024] [Indexed: 07/12/2024]
Abstract
Importance Olfactory impairment (OI) and frailty are prevalent conditions associated with aging, but studies investigating their association with each other have been discordant. Objective To summarize current evidence surrounding the association between OI and frailty. Data Sources PubMed, Embase, Cochrane Library, SCOPUS, and CINAHL from inception to November 28, 2023. Study Selection This study included observational studies investigating the association between objectively or subjectively assessed OI and objectively evaluated frailty among adults. Data Extraction and Synthesis Two independent authors extracted data into a structured template. Maximally adjusted estimates were pooled using a random-effects model, and statistical heterogeneity was evaluated using I2 values. Additional prespecified subgroup and sensitivity analyses were performed. This study used the Newcastle-Ottawa Scale for bias assessment and the Grading of Recommendations Assessment, Development and Evaluation framework for overall evidence quality evaluation. Main Outcomes and Measures The primary outcome was the cross-sectional association between OI and frailty, for which the odds of frailty were compared between participants with and without OI. The secondary outcome was the cross-sectional association between frailty and OI, for which the odds of OI were compared between participants with and without frailty. Results This study included 10 studies with 10 624 patients (52.9% female; mean [SD] age, 62.9 [9.6] years). The Newcastle-Ottawa Scale score of studies ranged from low to moderate. Grading of Recommendations Assessment, Development and Evaluation scores ranged from low to moderate. OI was associated with a 2.32-fold (odds ratio [OR], 2.32; 95% CI, 1.63-3.31; I2 = 0%) greater odds of frailty compared with individuals with healthy olfactory function. The odds of OI was progressively greater with categorical frailty status, with a 1.55-fold (OR, 1.55; 95% CI, 1.32-1.82; I2 = 0%), 2.28-fold (OR, 2.28; 95% CI, 1.96-2.65; I2 = 0%), and 4.67-fold (OR, 4.67; 95% CI, 2.77-7.86; I2 = 0%) increase in odds for individuals with prefrailty, frailty, and the most frailty, respectively, compared with robust individuals. The results demonstrated stability in subgroup analyses (geographical continent of study, objective vs subjective olfactory assessment) and sensitivity tests. Conclusions and Relevance The results of this systematic review and meta-analysis suggest that there is an association between OI and frailty, with an increase in the odds of OI with worsening categorical frailty status among individuals with prefrailty, frailty, and the most frailty. OI may be a potential biomarker for frailty. Future studies could delve into whether OI may be a modifiable risk factor for frailty.
Collapse
Affiliation(s)
- Brian Sheng Yep Yeo
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jun He Chan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - Xuandao Liu
- Department of Otorhinolaryngology–Head and Neck Surgery, Singapore General Hospital, Singapore
| | - Laura Tay
- Department of General Medicine, Sengkang General Hospital, Singapore
- SingHealth Duke-NUS Centre of Memory and Cognitive Disorders, Singapore
| | - Neville Wei Yang Teo
- Department of Otorhinolaryngology–Head and Neck Surgery, Singapore General Hospital, Singapore
- Surgery Academic Clinical Programme, Duke-NUS Medical School, Singapore
| | - Tze Choong Charn
- Department of Otorhinolaryngology–Head and Neck Surgery, Singapore General Hospital, Singapore
- Surgery Academic Clinical Programme, Duke-NUS Medical School, Singapore
- Department of Otolaryngology–Head and Neck Surgery, Sengkang General Hospital, Singapore
| |
Collapse
|
24
|
Wang AY, Hu HY, Sun Y, Ou YN, Ma YH, Li M, Li QY, Tan L. Association between air pollution and cerebrospinal fluid alpha-synuclein in urban elders: the CABLE study. Front Aging Neurosci 2024; 16:1422772. [PMID: 39280698 PMCID: PMC11392785 DOI: 10.3389/fnagi.2024.1422772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/13/2024] [Indexed: 09/18/2024] Open
Abstract
Introduction Increasing evidence suggests that air pollution has a significant impact on the development of synucleinopathies, but the potential neurobiological mechanisms are unknown. We aimed to explore the associations of air pollution (including ozone [O3], nitrogen dioxide [NO2], and particulate matter [PM2.5]) with CSF α-syn levels in urban older adults. Methods We included 933 urban participants from the Chinese Alzheimer's Biomarker and LifestylE study. The 5-year average levels of air pollution exposure were estimated in the areas of residence. Multivariate linear regression was conducted to detect the correlation of air pollution with CSF α-syn levels. Subgroup analyses by age, gender, season, and history of coronary heart disease (CHD) were performed. Moreover, restricted cubic spline (RCS) models were applied to explore the potential nonlinear relationships. Results We found a significant correlation of CSF α-syn level with PM2.5 in urban participants. Specifically, multiple linear regression showed a significant negative association between PM2.5 and CSF α-syn level (p = 0.029), which was more significant in female, midlife, non-CHD, and cold season subgroups. Besides, RCS models showed that O3 had an inverse J-shaped association with CSF α-syn levels in urban participants (p for nonlinearity = 0.040), and the harmful effect possibly appeared when O3 was above 37.9 ppb. Discussion Long-term exposure to air pollution was associated with lower CSF α-syn levels, which may offer a new direction for exploring and preventing synucleinopathies.
Collapse
Affiliation(s)
- An-Yi Wang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - He-Ying Hu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yan Sun
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Ya-Nan Ou
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Ya-Hui Ma
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Meng Li
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Qiong-Yao Li
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| |
Collapse
|
25
|
Kausel L, Figueroa-Vargas A, Zamorano F, Stecher X, Aspé-Sánchez M, Carvajal-Paredes P, Márquez-Rodríguez V, Martínez-Molina MP, Román C, Soto-Fernández P, Valdebenito-Oyarzo G, Manterola C, Uribe-San-Martín R, Silva C, Henríquez-Ch R, Aboitiz F, Polania R, Guevara P, Muñoz-Venturelli P, Soto-Icaza P, Billeke P. Patients recovering from COVID-19 who presented with anosmia during their acute episode have behavioral, functional, and structural brain alterations. Sci Rep 2024; 14:19049. [PMID: 39152190 PMCID: PMC11329703 DOI: 10.1038/s41598-024-69772-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024] Open
Abstract
Patients recovering from COVID-19 commonly exhibit cognitive and brain alterations, yet the specific neuropathological mechanisms and risk factors underlying these alterations remain elusive. Given the significant global incidence of COVID-19, identifying factors that can distinguish individuals at risk of developing brain alterations is crucial for prioritizing follow-up care. Here, we report findings from a sample of patients consisting of 73 adults with a mild to moderate SARS-CoV-2 infection without signs of respiratory failure and 27 with infections attributed to other agents and no history of COVID-19. The participants underwent cognitive screening, a decision-making task, and MRI evaluations. We assessed for the presence of anosmia and the requirement for hospitalization. Groups did not differ in age or cognitive performance. Patients who presented with anosmia exhibited more impulsive alternative changes after a shift in probabilities (r = - 0.26, p = 0.001), while patients who required hospitalization showed more perseverative choices (r = 0.25, p = 0.003). Anosmia correlated with brain measures, including decreased functional activity during the decision-making task, thinning of cortical thickness in parietal regions, and loss of white matter integrity. Hence, anosmia could be a factor to be considered when identifying at-risk populations for follow-up.
Collapse
Affiliation(s)
- Leonie Kausel
- Laboratorio de Neurociencia Social y Neuromodulación (neuroCICS), Centro de Investigación en Complejidad Social (CICS), Facultad de Gobierno, Universidad del Desarrollo, Santiago, Chile
- Centro de Estudios en Neurociencia Humana y Neuropsicología (CENHN), Facultad de Psicología, Universidad Diego Portales, Santiago, Chile
| | - Alejandra Figueroa-Vargas
- Laboratorio de Neurociencia Social y Neuromodulación (neuroCICS), Centro de Investigación en Complejidad Social (CICS), Facultad de Gobierno, Universidad del Desarrollo, Santiago, Chile
- Laboratorio LaNCE, Centro Interdisciplinario de Neurociencia, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Francisco Zamorano
- Unidad de Imágenes Cuantitativas Avanzadas, Departamento de Imágenes, Clínica Alemana de Santiago, Facultad de Medicina CAS-UDD, Universidad del Desarrollo, Santiago, Chile
- Facultad de Ciencias Para El Cuidado de La Salud, Universidad San Sebastián, Santiago, Chile
| | - Ximena Stecher
- Unidad de Imágenes Cuantitativas Avanzadas, Departamento de Imágenes, Clínica Alemana de Santiago, Facultad de Medicina CAS-UDD, Universidad del Desarrollo, Santiago, Chile
- Departamento de Imágenes, Clínica Alemana de Santiago, Clínica Alemana de Santiago, Facultad de Medicina CAS-UDD, Universidad del Desarrollo, Santiago, Chile
| | - Mauricio Aspé-Sánchez
- Laboratorio de Neurogenética, Centro Interdisciplinario de Neurociencias de Valparaíso (CINV), Universidad de Valparaíso, Valparaiso, Chile
| | - Patricio Carvajal-Paredes
- Laboratorio de Neurociencia Social y Neuromodulación (neuroCICS), Centro de Investigación en Complejidad Social (CICS), Facultad de Gobierno, Universidad del Desarrollo, Santiago, Chile
| | - Victor Márquez-Rodríguez
- Laboratorio de Neurociencia Social y Neuromodulación (neuroCICS), Centro de Investigación en Complejidad Social (CICS), Facultad de Gobierno, Universidad del Desarrollo, Santiago, Chile
| | - María Paz Martínez-Molina
- Laboratorio de Neurociencia Social y Neuromodulación (neuroCICS), Centro de Investigación en Complejidad Social (CICS), Facultad de Gobierno, Universidad del Desarrollo, Santiago, Chile
| | - Claudio Román
- Centro de I&D en Ingeniería en Salud, Universidad de Valparaíso, Valparaíso, Chile
| | - Patricio Soto-Fernández
- Laboratorio de Neurociencia Social y Neuromodulación (neuroCICS), Centro de Investigación en Complejidad Social (CICS), Facultad de Gobierno, Universidad del Desarrollo, Santiago, Chile
- Laboratorio de Neurogenética, Centro Interdisciplinario de Neurociencias de Valparaíso (CINV), Universidad de Valparaíso, Valparaiso, Chile
- Departamento de Evaluación de Tecnologías Sanitarias y Salud Basada en Evidencia, División de Planificación Sanitaria, Subsecretaría de Salud Pública, Ministerio de Salud, Santiago, Chile
| | - Gabriela Valdebenito-Oyarzo
- Laboratorio de Neurociencia Social y Neuromodulación (neuroCICS), Centro de Investigación en Complejidad Social (CICS), Facultad de Gobierno, Universidad del Desarrollo, Santiago, Chile
| | - Carla Manterola
- Departamento de Pediatría, Clínica Alemana de Santiago, Universidad del Desarrollo, Santiago, Chile
| | - Reinaldo Uribe-San-Martín
- Departamento de Neurología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Servicio de Neurología, Hospital Dr. Sótero del Río, Santiago, Chile
| | - Claudio Silva
- Unidad de Imágenes Cuantitativas Avanzadas, Departamento de Imágenes, Clínica Alemana de Santiago, Facultad de Medicina CAS-UDD, Universidad del Desarrollo, Santiago, Chile
- Departamento de Imágenes, Clínica Alemana de Santiago, Clínica Alemana de Santiago, Facultad de Medicina CAS-UDD, Universidad del Desarrollo, Santiago, Chile
| | - Rodrigo Henríquez-Ch
- Laboratorio LaNCE, Centro Interdisciplinario de Neurociencia, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Neurología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Francisco Aboitiz
- Laboratorio LaNCE, Centro Interdisciplinario de Neurociencia, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Psiquiatría, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rafael Polania
- Decision Neuroscience Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Pamela Guevara
- Facultad de Ingeniería, Universidad de Concepción, Santiago, Chile
| | - Paula Muñoz-Venturelli
- Centro de Estudios Clínicos, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Patricia Soto-Icaza
- Laboratorio de Neurociencia Social y Neuromodulación (neuroCICS), Centro de Investigación en Complejidad Social (CICS), Facultad de Gobierno, Universidad del Desarrollo, Santiago, Chile.
| | - Pablo Billeke
- Laboratorio de Neurociencia Social y Neuromodulación (neuroCICS), Centro de Investigación en Complejidad Social (CICS), Facultad de Gobierno, Universidad del Desarrollo, Santiago, Chile.
| |
Collapse
|
26
|
Joseph PV, Abbas M, Goodney G, Diallo A, Gaye A. Genomic Study of Taste Perception Genes in African Americans Reveals SNPs Linked to Alzheimer's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.10.607452. [PMID: 39372803 PMCID: PMC11451608 DOI: 10.1101/2024.08.10.607452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Background While previous research has shown the potential links between taste perception pathways and brain-related conditions, the area involving Alzheimer's disease remains incompletely understood. Taste perception involves neurotransmitter signaling, including serotonin, glutamate, and dopamine. Disruptions in these pathways are implicated in neurodegenerative diseases. The integration of olfactory and taste signals in flavor perception may impact brain health, evident in olfactory dysfunction as an early symptom in neurodegenerative conditions. Shared immune response and inflammatory pathways may contribute to the association between altered taste perception and conditions like neurodegeneration, present in Alzheimer's disease. Methods This study consists of an exploration of expression-quantitative trait loci (eQTL), utilizing whole-blood transcriptome profiles, of 28 taste perception genes, from a combined cohort of 475 African American subjects. This comprehensive dataset was subsequently intersected with single-nucleotide polymorphisms (SNPs) identified in Genome-Wide Association Studies (GWAS) of Alzheimer's Disease (AD). Finally, the investigation delved into assessing the association between eQTLs reported in GWAS of AD and the profiles of 741 proteins from the Olink Neurological Panel. Results The eQTL analysis unveiled 3,547 statistically significant SNP-Gene associations, involving 412 distinct SNPs that spanned all 28 taste genes. In 17 GWAS studies encompassing various traits, a total of 14 SNPs associated with 12 genes were identified, with three SNPs consistently linked to Alzheimer's disease across four GWAS studies. All three SNPs demonstrated significant associations with the down-regulation of TAS2R41, and two of them were additionally associated with the down-regulation of TAS2R60. In the subsequent pQTL analysis, two of the SNPs linked to TAS2R41 and TAS2R60 genes (rs117771145 and rs10228407) were correlated with the upregulation of two proteins, namely EPHB6 and ADGRB3. Conclusions Our investigation introduces a new perspective to the understanding of Alzheimer's disease, emphasizing the significance of bitter taste receptor genes in its pathogenesis. These discoveries set the stage for subsequent research to delve into these receptors as promising avenues for both intervention and diagnosis. Nevertheless, the translation of these genetic insights into clinical practice requires a more profound understanding of the implicated pathways and their pertinence to the disease's progression across diverse populations.
Collapse
Affiliation(s)
- Paule Valery Joseph
- National Institute on Alcohol Abuse and Alcoholism, National Institue of Nursing Research, Sensory Science and Metabolism Unit, Biobehavioral Branch, National Institutes of Health, Bethesda, MD, USA
| | - Malak Abbas
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Gabriel Goodney
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ana Diallo
- Department of Pharmacotherapy & Outcomes Science, Virginia Commonwealth University, Richmond, VA
| | - Amadou Gaye
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
27
|
Renzetti S, van Thriel C, Lucchini RG, Smith DR, Peli M, Borgese L, Cirelli P, Bilo F, Patrono A, Cagna G, Rechtman E, Idili S, Ongaro E, Calza S, Rota M, Wright RO, Claus Henn B, Horton MK, Placidi D. A multi-environmental source approach to explore associations between metals exposure and olfactory identification among school-age children residing in northern Italy. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024; 34:699-708. [PMID: 38802534 DOI: 10.1038/s41370-024-00687-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Metal exposures can adversely impact olfactory function. Few studies have examined this association in children. Further, metal exposure occurs as a mixture, yet previous studies of metal-associated olfactory dysfunction only examined individual metals. Preventing olfactory dysfunctions can improve quality of life and prevent neurodegenerative diseases with long-term health implications. OBJECTIVE We aimed to test the association between exposure to a mixture of 12 metals measured in environmental sources and olfactory function among children and adolescents residing in the industrialized province of Brescia, Italy. METHODS We enrolled 130 children between 6 and 13 years old (51.5% females) and used the "Sniffin' Sticks" test to measure olfactory performance in identifying smells. We used a portable X-ray fluorescence instrument to determine concentrations of metals (arsenic (As), calcium, cadmium (Cd), chromium, copper, iron, manganese, lead (Pb), antimony, titanium, vanadium and zinc) in outdoor and indoor deposited dust and soil samples collected from participants' households. We used an extension of weighted quantile sum (WQS) regression to test the association between exposure to metal mixtures in multiple environmental media and olfactory function adjusting for age, sex, socio-economic status, intelligence quotient and parents' smoking status. RESULTS A higher multi-source mixture was significantly associated with a reduced Sniffin' Sticks identification score (β = -0.228; 95% CI -0.433, -0.020). Indoor dust concentrations of Pb, Cd and As provided the strongest contributions to this association (13.8%, 13.3% and 10.1%, respectively). The metal mixture in indoor dust contributed more (for 8 metals out of 12) to the association between metals and olfactory function compared to soil or outdoor dust. IMPACT STATEMENT Among a mixture of 12 metals measured in three different environmental sources (soil, outdoor and indoor dust), we identified Pb, Cd and As measured in indoor dust as the main contributors to reduced olfactory function in children and adolescents residing in an industrialized area. Exposure to indoor pollution can be effectively reduced through individual and public health interventions allowing to prevent the deterioration of olfactory functions. Moreover, the identification of the factors that can deteriorate olfactory functions can be a helpful instrument to improve quality of life and prevent neurodegenerative diseases as long-term health implications.
Collapse
Affiliation(s)
- Stefano Renzetti
- Department of Medical-Surgical Specialties, Radiological Sciences and Public Health, Università degli Studi di Brescia, Brescia, Italy.
| | - Christoph van Thriel
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Neurotoxicology and Chemosensation, TU Dortmund, Dortmund, Germany
| | - Roberto G Lucchini
- Department of Biochemical, Biomedical and Neurosciences, Università degli Studi di Modena e Reggio Emilia, Modena, Italy
- Department of Environmental Health Sciences, School of Public Health, Florida International University, Miami, FL, USA
| | - Donald R Smith
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA, USA
| | - Marco Peli
- Department of Civil, Environmental, Architectural Engineering and Mathematics, Università degli Studi di Brescia, Brescia, Italy
| | - Laura Borgese
- Department of Mechanical and Industrial Engineering, Università degli Studi di Brescia, Brescia, Italy
| | - Paola Cirelli
- Department of Mechanical and Industrial Engineering, Università degli Studi di Brescia, Brescia, Italy
| | - Fabjola Bilo
- Department of Mechanical and Industrial Engineering, Università degli Studi di Brescia, Brescia, Italy
| | - Alessandra Patrono
- Department of Medical-Surgical Specialties, Radiological Sciences and Public Health, Università degli Studi di Brescia, Brescia, Italy
- Department of Molecular and Translational Medicine, Università degli Studi di Brescia, Brescia, Italy
| | - Giuseppa Cagna
- Department of Medical-Surgical Specialties, Radiological Sciences and Public Health, Università degli Studi di Brescia, Brescia, Italy
| | - Elza Rechtman
- Department of Environmental Medicine and Public Health, Icahn School of Medicine, New York, NY, USA
| | - Stefania Idili
- Department of Medical-Surgical Specialties, Radiological Sciences and Public Health, Università degli Studi di Brescia, Brescia, Italy
| | - Elisa Ongaro
- Department of Medical-Surgical Specialties, Radiological Sciences and Public Health, Università degli Studi di Brescia, Brescia, Italy
| | - Stefano Calza
- Department of Molecular and Translational Medicine, Università degli Studi di Brescia, Brescia, Italy
| | - Matteo Rota
- Department of Molecular and Translational Medicine, Università degli Studi di Brescia, Brescia, Italy
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine, New York, NY, USA
| | - Birgit Claus Henn
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Megan K Horton
- Department of Environmental Medicine and Public Health, Icahn School of Medicine, New York, NY, USA
| | - Donatella Placidi
- Department of Medical-Surgical Specialties, Radiological Sciences and Public Health, Università degli Studi di Brescia, Brescia, Italy
| |
Collapse
|
28
|
Chamberlin KW, Yuan Y, Li C, Luo Z, Reeves M, Kucharska‐Newton A, Pinto JM, Ma J, Simonsick EM, Chen H. Olfactory Impairment and the Risk of Major Adverse Cardiovascular Outcomes in Older Adults. J Am Heart Assoc 2024; 13:e033320. [PMID: 38847146 PMCID: PMC11255730 DOI: 10.1161/jaha.123.033320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/27/2024] [Indexed: 06/18/2024]
Abstract
BACKGROUND Olfactory impairment is common in older adults and may be associated with adverse cardiovascular health; however, empirical evidence is sparse. We examined olfaction in relation to the risk of coronary heart disease (CHD), stroke, and congestive heart failure (CHF). METHODS AND RESULTS This study included 2537 older adults (aged 75.6±2.8 years) from the Health ABC (Health, Aging, and Body Composition) study with olfaction assessed by the 12-item Brief Smell Identification Test in 1999 to 2000, defined as poor (score ≤8), moderate (9-10), or good (11-12). The outcomes were incident CHD, stroke, and CHF. During up to a 12-year follow-up, 353 incident CHD, 258 stroke, and 477 CHF events were identified. Olfaction was statistically significantly associated with incident CHF, but not with CHD or stroke. After adjusting for demographics, risk factors, and biomarkers of CHF, the cause-specific hazard ratio (HR) of CHF was 1.32 (95% CI, 1.05-1.66) for moderate and 1.28 (95% CI, 1.01-1.64) for poor olfaction. These associations were robust in preplanned subgroup analyses by age, sex, race, and prevalent CHD/stroke. While the subgroup results were not statistically significantly different, the association of olfaction with CHF appeared to be evident among participants who reported very good to excellent health (HR, 1.47 [95% CI, 1.01-2.14] for moderate; and 1.76 [95% CI, 1.20-2.58] for poor olfaction), but not among those with fair to poor self-reported health (HR, 1.04 [95% CI, 0.64-1.70] for moderate; and 0.92 [95% CI, 0.58-1.47] for poor olfaction). CONCLUSIONS In community-dwelling older adults, a single olfaction test was associated with a long-term risk for incident CHF, particularly among those reporting very good to excellent health.
Collapse
Affiliation(s)
- Keran W. Chamberlin
- Department of Epidemiology and Biostatistics, College of Human MedicineMichigan State UniversityEast LansingMI
| | - Yaqun Yuan
- Department of Epidemiology and Biostatistics, College of Human MedicineMichigan State UniversityEast LansingMI
| | - Chenxi Li
- Department of Epidemiology and Biostatistics, College of Human MedicineMichigan State UniversityEast LansingMI
| | - Zhehui Luo
- Department of Epidemiology and Biostatistics, College of Human MedicineMichigan State UniversityEast LansingMI
| | - Mathew Reeves
- Department of Epidemiology and Biostatistics, College of Human MedicineMichigan State UniversityEast LansingMI
| | - Anna Kucharska‐Newton
- Department of EpidemiologyGillings School of Global Public Health, University of North Carolina at Chapel HillChapel HillNC
| | - Jayant M. Pinto
- Section of Otolaryngology‐Head and Neck Surgery, Department of SurgeryThe University of Chicago Medicine and Biological SciencesChicagoIL
| | - Jiantao Ma
- Division of Nutrition Epidemiology and Data Science, Gerald J. and Dorothy R. Friedman School of Nutrition Science and PolicyTufts UniversityBostonMA
| | - Eleanor M. Simonsick
- Translational Gerontology Branch, Intramural Research Program of the National Institutes of HealthNational Institute on AgingBethesdaMD
| | - Honglei Chen
- Department of Epidemiology and Biostatistics, College of Human MedicineMichigan State UniversityEast LansingMI
| |
Collapse
|
29
|
Tremblay C, Aslam S, Walker JE, Lorenzini I, Intorcia AJ, Arce RA, Choudhury P, Adler CH, Shill HA, Driver-Dunckley E, Mehta S, Piras IS, Belden CM, Atri A, Beach TG, Serrano GE. RNA sequencing of olfactory bulb in Parkinson's disease reveals gene alterations associated with olfactory dysfunction. Neurobiol Dis 2024; 196:106514. [PMID: 38663633 PMCID: PMC11132317 DOI: 10.1016/j.nbd.2024.106514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 04/29/2024] Open
Abstract
The olfactory bulb is involved early in the pathophysiology of Parkinson's disease (PD), which is consistent with the early onset of olfactory dysfunction. Identifying the molecular mechanisms through which PD affects the olfactory bulb could lead to a better understanding of the pathophysiology and etiology of olfactory dysfunction in PD. We specifically aimed to assess gene expression changes, affected pathways and co-expression network by whole transcriptomic profiling of the olfactory bulb in subjects with clinicopathologically defined PD. Bulk RNA sequencing was performed on frozen human olfactory bulbs of 20 PD and 20 controls without dementia or any other neurodegenerative disorder, from the Arizona Study of Aging and Neurodegenerative disorders and the Brain and Body Donation Program. Differential expression analysis (19 PD vs 19 controls) revealed 2164 significantly differentially expressed genes (1090 upregulated and 1074 downregulated) in PD. Pathways enriched in downregulated genes included oxidative phosphorylation, olfactory transduction, metabolic pathways, and neurotransmitters synapses while immune and inflammatory responses as well as cellular death related pathways were enriched within upregulated genes. An overrepresentation of microglial and astrocyte-related genes was observed amongst upregulated genes, and excitatory neuron-related genes were overrepresented amongst downregulated genes. Co-expression network analysis revealed significant modules highly correlated with PD and olfactory dysfunction that were found to be involved in the MAPK signaling pathway, cytokine-cytokine receptor interaction, cholinergic synapse, and metabolic pathways. LAIR1 (leukocyte associated immunoglobulin like receptor 1) and PPARA (peroxisome proliferator activated receptor alpha) were identified as hub genes with a high discriminative power between PD and controls reinforcing an important role of neuroinflammation in the olfactory bulb of PD subjects. Olfactory identification test score positively correlated with expression of genes coding for G-coupled protein, glutamatergic, GABAergic, and cholinergic receptor proteins and negatively correlated with genes for proteins expressed in glial olfactory ensheathing cells. In conclusion, this study reveals gene alterations associated with neuroinflammation, neurotransmitter dysfunction, and disruptions of factors involved in the initiation of olfactory transduction signaling that may be involved in PD-related olfactory dysfunction.
Collapse
Affiliation(s)
| | - Sidra Aslam
- Banner Sun Health Research Institute, Sun City, AZ, USA
| | | | | | | | | | | | - Charles H Adler
- Department of Neurology, Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Holly A Shill
- Department of Neurology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Erika Driver-Dunckley
- Department of Neurology, Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Shyamal Mehta
- Department of Neurology, Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Ignazio S Piras
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | | | - Alireza Atri
- Banner Sun Health Research Institute, Sun City, AZ, USA; Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
30
|
Verma AK, Lowery S, Lin LC, Duraisami E, Lloréns JEA, Qiu Q, Hefti M, Yu CR, Albers MW, Perlman S. Persistent Neurological Deficits in Mouse PASC Reveal Antiviral Drug Limitations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.02.596989. [PMID: 38895239 PMCID: PMC11185538 DOI: 10.1101/2024.06.02.596989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Post-Acute Sequelae of COVID-19 (PASC) encompasses persistent neurological symptoms, including olfactory and autonomic dysfunction. Here, we report chronic neurological dysfunction in mice infected with a virulent mouse-adapted SARS-CoV-2 that does not infect the brain. Long after recovery from nasal infection, we observed loss of tyrosine hydroxylase (TH) expression in olfactory bulb glomeruli and neurotransmitter levels in the substantia nigra (SN) persisted. Vulnerability of dopaminergic neurons in these brain areas was accompanied by increased levels of proinflammatory cytokines and neurobehavioral changes. RNAseq analysis unveiled persistent microglia activation, as found in human neurodegenerative diseases. Early treatment with antivirals (nirmatrelvir and molnupiravir) reduced virus titers and lung inflammation but failed to prevent neurological abnormalities, as observed in patients. Together these results show that chronic deficiencies in neuronal function in SARS-CoV-2-infected mice are not directly linked to ongoing olfactory epithelium dysfunction. Rather, they bear similarity with neurodegenerative disease, the vulnerability of which is exacerbated by chronic inflammation.
Collapse
Affiliation(s)
- Abhishek Kumar Verma
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242
| | - Shea Lowery
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242
| | - Li-Chin Lin
- Iowa Neuroscience Institute, University of Iowa, IA, USA 52242
- Department of Neurology, University of Iowa, Iowa City, IA 52242
| | | | | | - Qiang Qiu
- Stowers Institute for Medical Research, Kansas City, MO 64110
| | - Marco Hefti
- Department of Pathology, University of Iowa, Iowa City, IA 52242
| | - C. Ron Yu
- Stowers Institute for Medical Research, Kansas City, MO 64110
| | - Mark W. Albers
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Stanley Perlman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
31
|
Sanna F, Castelli MP, Mostallino R, Loy F, Masala C. Correlations between Gustatory, Olfactory, Cognitive Function, and Age in Healthy Women. Nutrients 2024; 16:1731. [PMID: 38892664 PMCID: PMC11175123 DOI: 10.3390/nu16111731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/22/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Aging is a progressive physiological degeneration associated with a decline in chemosensory processes and cognitive abilities and a reduction in synaptic plasticity. The biological bases of ageing are still not completely understood, and many theories have been proposed. This study aimed to evaluate the occurrence of age-related changes affecting the chemosensory function (gustatory and olfactory) and general cognitive abilities and their potential associations in women. To this aim, 319 women (the age ranging from 18 to 92 years) were recruited and divided into four different age groups: 18-34 years, 35-49 years, 50-64 years, and ≥65 years. Our results confirmed that in women, gustatory, olfactory, and cognitive functions decline, though in a different manner during aging. Olfactory and cognitive function showed a slight decline along the first three age classes, with a dramatic decrease after age 65 years, while gustatory function decreased more gradually. Olfactory and gustatory deficits may have a high degree of predictivity for general cognitive function as well as for specific cognitive subdomains such as visuospatial/executive abilities, language, memory, and attention. Our study highlighted the importance of using chemosensory assessments for the early diagnosis of cognitive decline and for the development of appropriate personalized risk prevention strategies.
Collapse
Affiliation(s)
- Fabrizio Sanna
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, SP 8 Monserrato, 09042 Cagliari, Italy; (M.P.C.); (R.M.); (F.L.); (C.M.)
| | | | | | | | | |
Collapse
|
32
|
Loughnane M, Tischler V, Khalid Saifeldeen R, Kontaris E. Aging and Olfactory Training: A Scoping Review. Innov Aging 2024; 8:igae044. [PMID: 38881614 PMCID: PMC11176978 DOI: 10.1093/geroni/igae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Indexed: 06/18/2024] Open
Abstract
Background and Objectives Decreased olfactory function commonly occurs alongside the aging process. Research suggests olfactory training (OT) has the potential to improve olfactory and cognitive function in individuals with and without olfactory dysfunction. The degree to which these benefits extend into older age and among those with cognitive impairment (i.e., people with dementia and mild cognitive impairment) is less clear. The purpose of the current review was to investigate the extent to which OT affects olfactory function, cognition, and well-being among older people. Research Design and Methods A scoping review of the literature was conducted in PubMed, Embase, EbscoHost, and SCOPUS. Articles were considered eligible for original research studies with human populations, included adults aged 55 and older, performed any type of OT, and included a form of olfactory testing. The data from the included studies were synthesized and presented narratively. Results A total of 23 studies were included. The results suggest that OT provides multiple benefits to older adults, including those with cognitive impairment. Particularly, OT was associated with measurable changes in olfactory function, improved cognitive function, specifically semantic verbal fluency and working memory, reduced depressive symptoms, and protection from cognitive decline. Discussion and Implications The findings suggest that benefits from OT extend beyond changes in olfactory function and include improved cognitive function, amelioration of depressive symptoms, and protection from cognitive decline. Future research is needed across specific participant groups, including those with differentiated types of dementia, to investigate the olfactory and cognitive benefits of OT.
Collapse
Affiliation(s)
| | | | | | - Emily Kontaris
- Health and Well-Being Centre of Excellence, Givaudan UK Limited, Ashford, UK
| |
Collapse
|
33
|
Bratman GN, Bembibre C, Daily GC, Doty RL, Hummel T, Jacobs LF, Kahn PH, Lashus C, Majid A, Miller JD, Oleszkiewicz A, Olvera-Alvarez H, Parma V, Riederer AM, Sieber NL, Williams J, Xiao J, Yu CP, Spengler JD. Nature and human well-being: The olfactory pathway. SCIENCE ADVANCES 2024; 10:eadn3028. [PMID: 38748806 PMCID: PMC11809653 DOI: 10.1126/sciadv.adn3028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/12/2024] [Indexed: 07/04/2024]
Abstract
The world is undergoing massive atmospheric and ecological change, driving unprecedented challenges to human well-being. Olfaction is a key sensory system through which these impacts occur. The sense of smell influences quality of and satisfaction with life, emotion, emotion regulation, cognitive function, social interactions, dietary choices, stress, and depressive symptoms. Exposures via the olfactory pathway can also lead to (anti-)inflammatory outcomes. Increased understanding is needed regarding the ways in which odorants generated by nature (i.e., natural olfactory environments) affect human well-being. With perspectives from a range of health, social, and natural sciences, we provide an overview of this unique sensory system, four consensus statements regarding olfaction and the environment, and a conceptual framework that integrates the olfactory pathway into an understanding of the effects of natural environments on human well-being. We then discuss how this framework can contribute to better accounting of the impacts of policy and land-use decision-making on natural olfactory environments and, in turn, on planetary health.
Collapse
Affiliation(s)
- Gregory N. Bratman
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA 98195, USA
- Department of Psychology, University of Washington, Seattle, WA 98195, USA
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA
| | - Cecilia Bembibre
- Institute for Sustainable Heritage, University College London, London, UK
| | - Gretchen C. Daily
- Natural Capital Project, Stanford University, Stanford, CA 94305, USA
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Woods Institute, Stanford University, Stanford, CA 94305, USA
| | - Richard L. Doty
- Smell and Taste Center, Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Thomas Hummel
- Interdisciplinary Center Smell and Taste, Department of Otorhinolaryngology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Lucia F. Jacobs
- Department of Psychology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Peter H. Kahn
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA 98195, USA
- Department of Psychology, University of Washington, Seattle, WA 98195, USA
| | - Connor Lashus
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA 98195, USA
| | - Asifa Majid
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | | | - Anna Oleszkiewicz
- Interdisciplinary Center Smell and Taste, Department of Otorhinolaryngology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Institute of Psychology, University of Wroclaw, Wrocław, Poland
| | | | | | - Anne M. Riederer
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA
| | - Nancy Long Sieber
- T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
| | - Jonathan Williams
- Air Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
- Climate and Atmosphere Research Center, The Cyprus Institute, Nicosia, Cyprus
| | - Jieling Xiao
- College of Architecture, Birmingham City University, Birmingham, UK
| | - Chia-Pin Yu
- School of Forestry and Resource Conservation, National Taiwan University, Taiwan
- The Experimental Forest, College of Bio-Resources and Agriculture, National Taiwan University, Taiwan
| | - John D. Spengler
- T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
| |
Collapse
|
34
|
Eckert MA, Benitez A, Soler ZM, Dubno JR, Schlosser RJ. Gray matter and episodic memory associations with olfaction in middle-aged to older adults. Int Forum Allergy Rhinol 2024; 14:961-971. [PMID: 37897207 PMCID: PMC11045322 DOI: 10.1002/alr.23290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/18/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND Age-related declines in olfaction contribute to low quality of life and appear to occur with declines in cognitive function, including diminished episodic memory. We tested the hypothesis that low gray matter volume within cortical regions that support olfaction and episodic memory can explain age-related differences in olfactory and episodic memory functions. METHODS T1-weighted images, Sniffin' Sticks olfactory measures, and the NIH Toolbox-Cognition Battery were administered to 131 middle-aged to older adults (50-86 years; 66% female). Correlation was used to examine the associations between these measures. A network-based image processing approach was then used to examine the degree to which spatial patterns of gray matter variance were related to the olfactory and cognitive measures. Structural equation modeling was used to characterize the relative specificity of olfactory, cognitive, gray matter, and aging associations. RESULTS Olfactory threshold, discrimination, and identification exhibited small to medium effect size associations with episodic memory performance (rs = 0.27-0.42, ps < 0.002). Gray matter volume within medial temporal and orbitofrontal cortex was also related to olfactory (discrimination and identification) and episodic memory function (rs = 0.21-0.36, ps < 0.019). Age and episodic memory explained the same variance in olfaction that was explained by the medial temporal and orbitofrontal pattern of gray matter volume. CONCLUSIONS The results of this cross-sectional study suggest that identifying mechanisms contributing to differences in medial temporal and orbitofrontal cortex will advance our understanding of co-morbid olfactory and cognitive declines.
Collapse
Affiliation(s)
- Mark A. Eckert
- Department of Otolaryngology – Head and Neck Surgery, Medical University of South Carolina
| | | | - Zachary M. Soler
- Department of Otolaryngology – Head and Neck Surgery, Medical University of South Carolina
| | - Judy R. Dubno
- Department of Otolaryngology – Head and Neck Surgery, Medical University of South Carolina
| | - Rodney J. Schlosser
- Department of Otolaryngology – Head and Neck Surgery, Medical University of South Carolina
| |
Collapse
|
35
|
Afghan R, Heysieattalab S, Zangbar HS, Ebrahimi-Kalan A, Jafari-Koshki T, Samadzadehaghdam N. Lavender Essential Oil Inhalation Improves Attentional Shifting and Accuracy: Evidence from Dynamic Changes of Cognitive Flexibility and Power Spectral Density of Electroencephalogram Signals. JOURNAL OF MEDICAL SIGNALS & SENSORS 2024; 14:12. [PMID: 38993201 PMCID: PMC11111129 DOI: 10.4103/jmss.jmss_57_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/09/2024] [Accepted: 01/30/2024] [Indexed: 07/13/2024]
Abstract
Background Cognitive flexibility, a vital component of executive function, entails the utilization of extended brain networks. Olfactory stimulation has been shown to influence various brain functions, particularly cognitive performance. Method To investigate aroma inhalation's effects on brain activity dynamics associated with cognitive flexibility, 20 healthy adults were recruited to complete a set-shifting task during two experimental conditions: no aroma stimuli vs. lavender essential oil inhalation. Using Thomson's multitaper approach, the normalized power spectral density (NPSD) was assessed for five frequency bands. Results Findings confirm that aroma inhalation significantly affects behavioral indices (i.e., reaction time (RT) and response accuracy) and electroencephalogram (EEG) signatures, especially in the frontal lobe. Participants showed a tremendous increase in theta and alpha NPSD, associated with relaxation, along with beta NPSD, associated with clear and fast thinking after inhaling the aroma. NPSD of the delta band, an indicator of the unconscious mind, significantly decreased when stimulated with lavender essential oil. Further, participants exhibited shorter RT and more accurate responses following aroma inhalation. Conclusion Our findings revealed significant changes in oscillatory power and behavioral performance after aroma inhalation, providing neural evidence that olfactory stimulation with lavender essential oil may facilitate cognitive flexibility.
Collapse
Affiliation(s)
- Reyhaneh Afghan
- Department of Biomedical Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Hamid Soltani Zangbar
- Department of Neurosciences and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Ebrahimi-Kalan
- Department of Neurosciences and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Jafari-Koshki
- Molecular Medicine Research Center, Department of Statistics and Epidemiology, Faculty of Health, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasser Samadzadehaghdam
- Department of Biomedical Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
36
|
Salmon MK, Cohen WG, Hu F, Aydin A, Coskun AK, Schilsky M, Doty RL. Taste and smell function in Wilson's disease. J Neurol Sci 2024; 459:122949. [PMID: 38493734 DOI: 10.1016/j.jns.2024.122949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/20/2024] [Accepted: 03/04/2024] [Indexed: 03/19/2024]
Abstract
OBJECTIVE Wilson's disease (WD) is a metabolic disorder associated with abnormal copper metabolism that results in hepatic, psychiatric, and neurologic symptoms. No investigation of taste function has been made in patients with WD, although olfactory dysfunction has been evaluated. METHODS Quantitative taste and smell test scores of 29 WD patients were compared to those of 790 healthy controls. Taste was measured using the 53-item Waterless Empirical Taste Test (WETT®) and smell using the 40-item revised University of Pennsylvania Smell Identification Test (R-UPSIT®). Multiple linear regression analysis controlled for age and sex. RESULTS Average WETT® scores did not differ meaningfully between WD and control subjects (respective medians & IQRs = 32 [28-42] & 34 [27-41]); linear regression coefficient = 1.19, 95% CI [-0.81, 3.19], p = 0.242). In contrast, WD was associated with significantly reduced olfactory function [respective median (IQR) R-UPSIT® scores = 35 (33-37) vs. 37 (35-38); adjusted linear regression coefficient = -1.59, 95% CI [-2.34, -0.833]; p < 0.001)]. Neither olfaction nor taste were influenced by WD symptom subtype [23 (79.3%) were hepatic-predominant; 6 (20.7%) neurologic predominant]; R-UPSIT®, p = 0.774; WETT®, p = 0.912). No effects of primary medication or years since diagnosis (R-UPSIT®, p = 0.147; WETT®, p = 0.935) were found. Weak correlations were present between R-UPSIT® and WETT® scores for both control (r=0.187, p < 0.0001) and WD (r=0.237) subjects, although the latter correlation did not reach the 0.05 α level (p = 0.084). CONCLUSION Although WD negatively impacts smell function, taste is spared. Research is needed to understand the pathophysiologic mechanisms responsible for this divergence.
Collapse
Affiliation(s)
- Mandy K Salmon
- Department of Otorhinolaryngology- Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - William G Cohen
- Department of Otorhinolaryngology- Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Fengling Hu
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Adem Aydin
- Department of Medicine and Surgery, Yale University Medical Center, New Haven, CT, USA
| | - Ayse K Coskun
- Department of Medicine and Surgery, Yale University Medical Center, New Haven, CT, USA
| | - Michael Schilsky
- Department of Medicine and Surgery, Yale University Medical Center, New Haven, CT, USA
| | - Richard L Doty
- Department of Otorhinolaryngology- Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Smell and Taste Center, Department of Otorhinolaryngology- Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
37
|
Kovalová M, Gottfriedová N, Mrázková E, Janout V, Janoutová J. Cognitive impairment, neurodegenerative disorders, and olfactory impairment: A literature review. OTOLARYNGOLOGIA POLSKA 2024; 78:1-17. [PMID: 38623856 DOI: 10.5604/01.3001.0053.6158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
<br><b>Introduction:</b> The early detection and diagnosis of dementia are of key importance in treatment, slowing disease progression, or suppressing symptoms. The possible role of changes in the sense of smell is considered with regard to potential markers for early detection of Alzheimer's disease (AD).</br> <br><b>Materials and methods:</b> A literature search was conducted using the electronic databases PubMed, Scopus, and Web of Science between May 30, 2022 and August 2, 2022. The term "dementia" was searched with keyword combinations related to olfaction.</br> <br><b>Results:</b> A total of 1,288 records were identified through the database search. Of these articles, 49 were ultimately included in the analysis. The results showed the potential role of changes in the sense of smell as potential biomarkers for early detection of AD. Multiple studies have shown that olfactory impairment may be observed in patients with AD, PD, MCI, or other types of dementia. Even though smell tests are able to detect olfactory loss caused by neurodegenerative diseases, they cannot reliably distinguish between certain diseases.</br> <br><b>Conclusions:</b> In individuals with cognitive impairment or neurodegenerative diseases, olfactory assessment has repeatedly been reported to be used for early diagnosis, but not for differential diagnosis.</br>.
Collapse
Affiliation(s)
- Martina Kovalová
- Center for Research and Science, Faculty of Health Sciences, Palacký University Olomouc, Czech Republic
| | - Nikol Gottfriedová
- Department of Epidemiology and Public Health, Faculty of Medicine, University of Ostrava, Czech Republic
| | - Eva Mrázková
- Center for Research and Science, Faculty of Health Sciences, Palacký University Olomouc, Czech Republic
| | - Vladimír Janout
- Center for Research and Science, Faculty of Health Sciences, Palacký University Olomouc, Czech Republic
| | - Jana Janoutová
- Center for Research and Science, Faculty of Health Sciences, Palacký University Olomouc, Czech Republic
| |
Collapse
|
38
|
Wang J, Li H, Wang C, Li D, Zhang Y, Shen M, Xu X, Wu T. Effect of Dl-3-n-Butylphthalide on olfaction in rotenone-induced Parkinson's rats. Front Neurol 2024; 15:1367973. [PMID: 38685946 PMCID: PMC11057415 DOI: 10.3389/fneur.2024.1367973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/18/2024] [Indexed: 05/02/2024] Open
Abstract
Background Parkinson's disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease. Olfactory dysfunction (OD) is an important nonmotor feature of PD. Dl-3-n-Butylphthalide (NBP) is a synthetic compound isolated from Apium graveolens seeds. The present study was conducted to investigate the effect of NBP on olfaction in rotenone-induced Parkinson's rats to explore the mechanism and pathway of OD in PD. Methods The PD model was established using rotenone-induced SD rats, divided into blank control, model, and treatment groups. A sham group was also established, with 10 rats in each group. The treatment group was given NBP (1 mg/kg, 10 mg/kg, and 100 mg/kg, dissolved in soybean oil) intragastrically for 28 days. Meanwhile, the control group rats were given intra-gastrically soybean oil. After behavioral testing, all rats were executed, and brain tissue was obtained. Proteomics and Proteomic quantification techniques (prm) quantification were used to detect proteomic changes in rat brain tissues. Results Compared with the control group, the model group showed significant differences in behavioral tests, and this difference was reduced after treatment. Proteomics results showed that after treatment with high-dose NBP, there were 42 differentially expressed proteins compared with the model group. Additionally, the olfactory marker (P08523) showed a significant upregulation difference. We then selected 22 target proteins for PRM quantification and quantified 17 of them. Among them, the olfactory marker protein was at least twofold upregulated in the RTH group compared to the model group.
Collapse
Affiliation(s)
- Jiawei Wang
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - He Li
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
- Third Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Canran Wang
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dayong Li
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yong Zhang
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Meichan Shen
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
- Geriatrics Department, Yuncheng County Traditional Chinese Medicine Hospital, Heze, China
| | - Xiangdong Xu
- Third Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tong Wu
- Third Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
39
|
Wang R, Lian T, He M, Guo P, Yu S, Zuo L, Hu Y, Zhang W. Clinical features and neurobiochemical mechanisms of olfactory dysfunction in patients with Parkinson disease. J Neurol 2024; 271:1959-1972. [PMID: 38151574 DOI: 10.1007/s00415-023-12122-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 12/29/2023]
Abstract
This study aimed to investigate clinical features, influencing factors and neurobiochemical mechanisms of olfactory dysfunction (OD) in Parkinson disease (PD). Total 39 patients were divided into the PD with OD (PD-OD) and PD with no OD (PD-nOD) groups according to overall olfactory function, including threshold, discrimination and identification, assessed by Sniffin' Sticks test. Motor function and non-motor symptoms were rated by multiple scales. Dopamine, acetylcholine, norepinephrine and 5-hydroxytryptamine levels in cerebrospinal fluid (CSF) were measured. We found that the PD-OD group showed significantly lower score of Montreal Cognitive Assessment Scale, higher scores of rapid eye movement sleep behavior disorder (RBD) Screening Questionnaire and Epworth Sleepiness Scale than the PD-nOD group (p < 0.05). RBD Screening Questionnaire score was independently associated with the scores of overall olfactory function and discrimination (p < 0.05). Dopamine and acetylcholine levels in CSF from the PD-OD group was significantly lower than that from the PD-nOD group (p < 0.05). Dopamine and acetylcholine levels in CSF were significantly and positively correlated with the scores of overall olfactory function, threshold, discrimination and identification in PD patients (p < 0.05). RBD Screening Questionnaire score was significantly and negatively correlated with acetylcholine level in CSF in PD patients with poor olfactory detection (p < 0.05). This investigation reveals that PD-OD is associated with cognitive impairment, probable RBD and excessive daytime sleepiness. PD-OD is correlated with the decreased levels of dopamine and acetylcholine in CSF. RBD is an independent influencing factor of overall olfactory function and discrimination, and the decreased acetylcholine level in CSF may be the common neurobiochemical basis of RBD and OD in PD patients.
Collapse
Grants
- 2016YFC1306000 National Key Research and Development Program of China
- 2016YFC1306300 National Key Research and Development Program of China
- 81970992 National Natural Science Foundation of China
- 81571229 National Natural Science Foundation of China
- 81071015 National Natural Science Foundation of China
- 30770745 National Natural Science Foundation of China
- 82201639 National Natural Science Foundation of China
- 2022-2-2048 Capital's Funds for Health Improvement and Research (CFH)
- kz201610025030 Key Technology R&D Program of Beijing Municipal Education Commission
- 4161004 Key Project of Natural Science Foundation of Beijing, China
- 7082032 Natural Science Foundation of Beijing, China
- JJ2018-48 Project of Scientific and Technological Development of Traditional Chinese Medicine in Beijing
- Z121107001012161 Capital Clinical Characteristic Application Research
- 2009-3-26 High Level Technical Personnel Training Project of Beijing Health System, China
- BIBD-PXM2013_014226_07_000084 Project of Beijing Institute for Brain Disorders
- 20071D0300400076 Excellent Personnel Training Project of Beijing, China
- IDHT20140514 Project of Construction of Innovative Teams and Teacher Career Development for Universities and Colleges Under Beijing Municipality
- JING-15-2 Beijing Healthcare Research Project, China
- 2015-JL-PT-X04 Basic-Clinical Research Cooperation Funding of Capital Medical University, China
- 10JL49 Basic-Clinical Research Cooperation Funding of Capital Medical University, China
- 14JL15 Basic-Clinical Research Cooperation Funding of Capital Medical University, China
- PYZ2018077 Natural Science Foundation of Capital Medical University, Beijing, China
- 2019-028 Science and Technology Development Fund of Beijing Rehabilitation Hospital, Capital Medical University
Collapse
Affiliation(s)
- Ruidan Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Tenghong Lian
- Center for Cognitive Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Mingyue He
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Peng Guo
- Center for Cognitive Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Shuyang Yu
- Center for Cognitive Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Lijun Zuo
- Center for Cognitive Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Yang Hu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Wei Zhang
- Center for Cognitive Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, 100053, China.
- Beijing Key Laboratory on Parkinson Disease, Beijing Institute for Brain Disorders, Beijing, 10053, China.
| |
Collapse
|
40
|
Lachén-Montes M, Cartas-Cejudo P, Cortés A, Anaya-Cubero E, Peral E, Ausín K, Díaz-Peña R, Fernández-Irigoyen J, Santamaría E. Involvement of Glucosamine 6 Phosphate Isomerase 2 (GNPDA2) Overproduction in β-Amyloid- and Tau P301L-Driven Pathomechanisms. Biomolecules 2024; 14:394. [PMID: 38672412 PMCID: PMC11048700 DOI: 10.3390/biom14040394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/18/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative olfactory disorder affecting millions of people worldwide. Alterations in the hexosamine- or glucose-related pathways have been described through AD progression. Specifically, an alteration in glucosamine 6 phosphate isomerase 2 (GNPDA2) protein levels has been observed in olfactory areas of AD subjects. However, the biological role of GNPDA2 in neurodegeneration remains unknown. Using mass spectrometry, multiple GNPDA2 interactors were identified in human nasal epithelial cells (NECs) mainly involved in intraciliary transport. Moreover, GNPDA2 overexpression induced an increment in NEC proliferation rates, accompanied by transcriptomic alterations in Type II interferon signaling or cellular stress responses. In contrast, the presence of beta-amyloid or mutated Tau-P301L in GNPDA2-overexpressing NECs induced a slowdown in the proliferative capacity in parallel with a disruption in protein processing. The proteomic characterization of Tau-P301L transgenic zebrafish embryos demonstrated that GNPDA2 overexpression interfered with collagen biosynthesis and RNA/protein processing, without inducing additional changes in axonal outgrowth defects or neuronal cell death. In humans, a significant increase in serum GNPDA2 levels was observed across multiple neurological proteinopathies (AD, Lewy body dementia, progressive supranuclear palsy, mixed dementia and amyotrophic lateral sclerosis) (n = 215). These data shed new light on GNPDA2-dependent mechanisms associated with the neurodegenerative process beyond the hexosamine route.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Enrique Santamaría
- Clinical Neuroproteomics Unit, Proteomics Platform, Navarrabiomed, Hospitalario Universitario de Navarra (HUN), IdiSNA, Navarra Institute for Health Research, Universidad Pública de Navarra (UPNA), Irunlarrea 3, 31008 Pamplona, Spain; (M.L.-M.); (P.C.-C.); (A.C.); (E.A.-C.); (E.P.); (K.A.); (R.D.-P.); (J.F.-I.)
| |
Collapse
|
41
|
Wei S, Xu T, Sang N, Yue H, Chen Y, Jiang T, Jiang T, Yin D. Mixed Metal Components in PM 2.5 Contribute to Chemokine Receptor CCR5-Mediated Neuroinflammation and Neuropathological Changes in the Mouse Olfactory Bulb. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4914-4925. [PMID: 38436231 DOI: 10.1021/acs.est.3c08506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Particulate matter, especially PM2.5, can invade the central nervous system (CNS) via the olfactory pathway to induce neurotoxicity. The olfactory bulb (OB) is the key component integrating immunoprotection and olfaction processing and is necessarily involved in the relevant CNS health outcomes. Here we show that a microglial chemokine receptor, CCR5, is the target of environmentally relevant PM2.5 in the OB to trigger neuroinflammation and then neuropathological injuries. Mechanistically, PM2.5-induced CCR5 upregulation results in the pro-inflammatory paradigm of microglial activation, which subsequently activates TLR4-NF-κB neuroinflammation signaling and induces neuropathological changes that are closely related to neurodegenerative disorders (e.g., Aβ deposition and disruption of the blood-brain barrier). We specifically highlight that manganese and lead in PM2.5 are the main contributors to CCR5-mediated microglial activation and neuroinflammation in synergy with aluminum. Our results uncover a possible pathway of PM2.5-induced neuroinflammation and identify the principal neurotoxic components, which can provide new insight into efficiently diminishing the adverse health effects of PM2.5.
Collapse
Affiliation(s)
- Sheng Wei
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ting Xu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Department of Key Laboratory, Changshu No.2 People's Hospital, Changshu 215500, China
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, China
| | - Huifeng Yue
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, China
| | - Yawen Chen
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Postdoctoral Research Station of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Tao Jiang
- Lyon Neuroscience Research Center (CRNL), Sensory Neuro-Ethology Team, 59 Bd Pinel, Bron 69500, France
| | - Tingwang Jiang
- Department of Key Laboratory, Changshu No.2 People's Hospital, Changshu 215500, China
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Department of Key Laboratory, Changshu No.2 People's Hospital, Changshu 215500, China
| |
Collapse
|
42
|
Zheng H, Gu C, Yang H. Identification of disease-specific bio-markers through network-based analysis of gene co-expression: A case study on Alzheimer's disease. Heliyon 2024; 10:e27070. [PMID: 38468964 PMCID: PMC10926071 DOI: 10.1016/j.heliyon.2024.e27070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/16/2024] [Accepted: 02/23/2024] [Indexed: 03/13/2024] Open
Abstract
Finding biomarker genes for complex diseases attracts persistent attention due to its application in clinics. In this paper, we propose a network-based method to obtain a set of biomarker genes. The key idea is to construct a gene co-expression network among sensitive genes and cluster the genes into different modules. For each module, we can identify its representative, i.e., the gene with the largest connectivity and the smallest average shortest path length to other genes within the module. We believe these representative genes could serve as a new set of potential biomarkers for diseases. As a typical example, we investigated Alzheimer's disease, obtaining a total of 16 potential representative genes, three of which belong to the non-transcriptome. A total of 11 out of these genes are found in literature from different perspectives and methods. The incipient groups were classified into two different subtypes using machine learning algorithms. We subjected the two subtypes to Gene Ontology analysis and Kyoto Encyclopedia of Genes and Genomes analysis with healthy groups and moderate groups, respectively. The two sub-type groups were involved in two different biological processes, demonstrating the validity of this approach. This method is disease-specific and independent; hence, it can be extended to classify other kinds of complex diseases.
Collapse
Affiliation(s)
- Hexiang Zheng
- Department of Systems Science, Business School, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Changgui Gu
- Department of Systems Science, Business School, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Huijie Yang
- Department of Systems Science, Business School, University of Shanghai for Science and Technology, Shanghai, 200093, China
| |
Collapse
|
43
|
Gu Y, Zhang J, Zhao X, Nie W, Xu X, Liu M, Zhang X. Olfactory dysfunction and its related molecular mechanisms in Parkinson's disease. Neural Regen Res 2024; 19:583-590. [PMID: 37721288 PMCID: PMC10581567 DOI: 10.4103/1673-5374.380875] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/15/2023] [Accepted: 06/13/2023] [Indexed: 09/19/2023] Open
Abstract
Changes in olfactory function are considered to be early biomarkers of Parkinson's disease. Olfactory dysfunction is one of the earliest non-motor features of Parkinson's disease, appearing in about 90% of patients with early-stage Parkinson's disease, and can often predate the diagnosis by years. Therefore, olfactory dysfunction should be considered a reliable marker of the disease. However, the mechanisms responsible for olfactory dysfunction are currently unknown. In this article, we clearly explain the pathology and medical definition of olfactory function as a biomarker for early-stage Parkinson's disease. On the basis of the findings of clinical olfactory function tests and animal model experiments as well as neurotransmitter expression levels, we further characterize the relationship between olfactory dysfunction and neurodegenerative diseases as well as the molecular mechanisms underlying olfactory dysfunction in the pathology of early-stage Parkinson's disease. The findings highlighted in this review suggest that olfactory dysfunction is an important biomarker for preclinical-stage Parkinson's disease. Therefore, therapeutic drugs targeting non-motor symptoms such as olfactory dysfunction in the early stage of Parkinson's disease may prevent or delay dopaminergic neurodegeneration and reduce motor symptoms, highlighting the potential of identifying effective targets for treating Parkinson's disease by inhibiting the deterioration of olfactory dysfunction.
Collapse
Affiliation(s)
- Yingying Gu
- College of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
| | - Jiaying Zhang
- College of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
| | - Xinru Zhao
- College of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
| | - Wenyuan Nie
- College of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
| | - Xiaole Xu
- College of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
| | - Mingxuan Liu
- College of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
| | - Xiaoling Zhang
- College of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
44
|
Papastrat KM, Lis CA, Caprioli D, Pickard H, Puche AC, Ramsey LA, Venniro M. Social odor choice buffers drug craving. Neuropsychopharmacology 2024; 49:731-739. [PMID: 38129664 PMCID: PMC10876954 DOI: 10.1038/s41386-023-01778-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
Social interactions are rewarding and protective against substance use disorders, but it is unclear which specific aspect of the complex sensory social experience drives these effects. Here, we investigated the role of olfactory sensory experience on social interaction, social preference over cocaine, and cocaine craving in rats. First, we conducted bulbectomy on both male and female rats to evaluate the necessity of olfactory system experience on the acquisition and maintenance of volitional social interaction. Next, we assessed the effect of bulbectomy on rats given a choice between social interaction and cocaine. Finally, we evaluated the influence of olfactory sensory experience by training rats on volitional partner-associated odors, assessing their preference for partner odors over cocaine to achieve voluntary abstinence and assessing its effect on the incubation of cocaine craving. Bulbectomy impaired operant social interaction without affecting food and cocaine self-administration. Rats with intact olfactory systems preferred social interaction over cocaine, while rats with impaired olfactory sense showed a preference for cocaine. Providing access to a partner odor in a choice procedure led to cocaine abstinence, preventing incubation of cocaine craving, in contrast to forced abstinence or non-contingent exposure to cocaine and partner odors. Our data suggests the olfactory sensory experience is necessary and sufficient for volitional social reward. Furthermore, the active preference for partner odors over cocaine buffers drug craving. Based on these findings, translational research should explore the use of social sensory-based treatments utilizing odor-focused foundations for individuals with substance use disorders.
Collapse
Affiliation(s)
- Kimberly M Papastrat
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Cody A Lis
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Daniele Caprioli
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
- Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | - Hanna Pickard
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Philosophy & Berman Institute of Bioethics, Johns Hopkins University, Baltimore, MD, USA
| | - Adam C Puche
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - Marco Venniro
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA.
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA.
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
45
|
Marrie RA, Maxwell CJ, Rotstein DL, Tsai CC, Tremlett H. Prodromes in demyelinating disorders, amyotrophic lateral sclerosis, Parkinson disease, and Alzheimer's dementia. Rev Neurol (Paris) 2024; 180:125-140. [PMID: 37567819 DOI: 10.1016/j.neurol.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/24/2023] [Accepted: 07/03/2023] [Indexed: 08/13/2023]
Abstract
A prodrome is an early set of symptoms, which indicates the onset of a disease; these symptoms are often non-specific. Prodromal phases are now recognized in multiple central nervous system diseases. The depth of understanding of the prodromal phase varies across diseases, being more nascent for multiple sclerosis for example, than for Parkinson disease or Alzheimer's disease. Key challenges when identifying the prodromal phase of a disease include the lack of specificity of prodromal symptoms, and consequent need for accessible and informative biomarkers. Further, heterogeneity of the prodromal phase may be influenced by age, sex, genetics and other poorly understood factors. Nonetheless, recognition that an individual is in the prodromal phase of disease offers the opportunity for earlier diagnosis and with it the opportunity for earlier intervention.
Collapse
Affiliation(s)
- R A Marrie
- Departments of Internal Medicine and Community Health Sciences, Rady Faculty of Health Sciences, Max-Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada.
| | - C J Maxwell
- Schools of Pharmacy and Public Health Sciences, University of Waterloo, Waterloo, Ontario, Canada; ICES, Toronto, Ontario, Canada
| | - D L Rotstein
- Department of Medicine, University of Toronto, 6, Queen's Park Crescent West, 3rd floor, M5S 3H2 Toronto, Ontario, Canada; Saint-Michael's Hospital, 30, Bond Street, M5B 1W8 Toronto, Ontario, Canada
| | - C-C Tsai
- Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - H Tremlett
- Faculty of Medicine (Neurology), University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
46
|
Jacobson PT, Vilarello BJ, Tervo JP, Waring NA, Gudis DA, Goldberg TE, Devanand DP, Overdevest JB. Associations between olfactory dysfunction and cognition: a scoping review. J Neurol 2024; 271:1170-1203. [PMID: 38217708 PMCID: PMC11144520 DOI: 10.1007/s00415-023-12057-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 01/15/2024]
Abstract
INTRODUCTION Strong evidence suggests that olfactory dysfunction (OD) can predict additional neurocognitive decline in neurodegenerative conditions such as Alzheimer's and Parkinson's diseases. However, research exploring olfaction and cognition in younger populations is limited. The aim of this review is to evaluate cognitive changes among non-elderly adults with non-COVID-19-related OD. METHODS We performed a structured comprehensive literature search of PubMed, Ovid Embase, Web of Science, and Cochrane Library in developing this scoping review. The primary outcome of interest was the association between OD and cognitive functioning in adults less than 60 years of age. RESULTS We identified 2878 studies for title and abstract review, with 167 undergoing full text review, and 54 selected for data extraction. Of these, 34 studies reported on populations of individuals restricted to the ages of 18-60, whereas the remaining 20 studies included a more heterogeneous population with the majority of individuals in this target age range in addition to some above the age of 60. The etiologies for smell loss among the included studies were neuropsychiatric disorders (37%), idiopathic cause (25%), type 2 diabetes (7%), trauma (5%), infection (4%), intellectual disability (4%), and other (18%). Some studies reported numerous associations and at times mixed, resulting in a total number of associations greater than the included number of 54 studies. Overall, 21/54 studies demonstrated a positive association between olfaction and cognition, 7/54 demonstrated no association, 25/54 reported mixed results, and only 1/54 demonstrated a negative association. CONCLUSION Most studies demonstrate a positive correlation between OD and cognition, but the data are mixed with associations less robust in this young adult population compared to elderly adults. Despite the heterogeneity in study populations and outcomes, this scoping review serves as a starting point for further investigation on this topic. Notably, as many studies in this review involved disorders that may have confounding effects on both olfaction and cognition, future research should control for these confounders and incorporate non-elderly individuals with non-psychiatric causes of smell loss.
Collapse
Affiliation(s)
- Patricia T Jacobson
- Department of Otolaryngology-Head and Neck Surgery, New York-Presbyterian/Columbia University Irving Medical Center, New York, NY, USA
| | - Brandon J Vilarello
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Jeremy P Tervo
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Nicholas A Waring
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - David A Gudis
- Department of Otolaryngology-Head and Neck Surgery, New York-Presbyterian/Columbia University Irving Medical Center, New York, NY, USA
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Terry E Goldberg
- Department of Psychiatry, New York-Presbyterian/Columbia University Irving Medical Center, New York, NY, USA
| | - D P Devanand
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Department of Psychiatry, New York-Presbyterian/Columbia University Irving Medical Center, New York, NY, USA
| | - Jonathan B Overdevest
- Department of Otolaryngology-Head and Neck Surgery, New York-Presbyterian/Columbia University Irving Medical Center, New York, NY, USA.
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
| |
Collapse
|
47
|
Liu D, Lu J, Wei L, Yao M, Yang H, Lv P, Wang H, Zhu Y, Zhu Z, Zhang X, Chen J, Yang QX, Zhang B. Olfactory deficit: a potential functional marker across the Alzheimer's disease continuum. Front Neurosci 2024; 18:1309482. [PMID: 38435057 PMCID: PMC10907997 DOI: 10.3389/fnins.2024.1309482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 02/02/2024] [Indexed: 03/05/2024] Open
Abstract
Alzheimer's disease (AD) is a prevalent form of dementia that affects an estimated 32 million individuals globally. Identifying early indicators is vital for screening at-risk populations and implementing timely interventions. At present, there is an urgent need for early and sensitive biomarkers to screen individuals at risk of AD. Among all sensory biomarkers, olfaction is currently one of the most promising indicators for AD. Olfactory dysfunction signifies a decline in the ability to detect, identify, or remember odors. Within the spectrum of AD, impairment in olfactory identification precedes detectable cognitive impairments, including mild cognitive impairment (MCI) and even the stage of subjective cognitive decline (SCD), by several years. Olfactory impairment is closely linked to the clinical symptoms and neuropathological biomarkers of AD, accompanied by significant structural and functional abnormalities in the brain. Olfactory behavior examination can subjectively evaluate the abilities of olfactory identification, threshold, and discrimination. Olfactory functional magnetic resonance imaging (fMRI) can provide a relatively objective assessment of olfactory capabilities, with the potential to become a promising tool for exploring the neural mechanisms of olfactory damage in AD. Here, we provide a timely review of recent literature on the characteristics, neuropathology, and examination of olfactory dysfunction in the AD continuum. We focus on the early changes in olfactory indicators detected by behavioral and fMRI assessments and discuss the potential of these techniques in MCI and preclinical AD. Despite the challenges and limitations of existing research, olfactory dysfunction has demonstrated its value in assessing neurodegenerative diseases and may serve as an early indicator of AD in the future.
Collapse
Affiliation(s)
- Dongming Liu
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jiaming Lu
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Liangpeng Wei
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Mei Yao
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Huiquan Yang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Pin Lv
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Haoyao Wang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yajing Zhu
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zhengyang Zhu
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xin Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jiu Chen
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Qing X. Yang
- Department of Radiology, Center for NMR Research, Penn State University College of Medicine, Hershey, PA, United States
| | - Bing Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing, China
- Institute of Brain Science, Nanjing University, Nanjing, China
- Jiangsu Provincial Medical Key Discipline (Laboratory), Nanjing, China
| |
Collapse
|
48
|
Liu M, Jiang N, Qin C, Xue Y, Wu J, Qiu Y, Yuan Q, Chen C, Huang L, Zhuang L, Wang P. Multimodal spatiotemporal monitoring of basal stem cell-derived organoids reveals progression of olfactory dysfunction in Alzheimer's disease. Biosens Bioelectron 2024; 246:115832. [PMID: 38016198 DOI: 10.1016/j.bios.2023.115832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/30/2023] [Accepted: 11/09/2023] [Indexed: 11/30/2023]
Abstract
Olfactory dysfunction (OD) is a highly prevalent symptom and an early sign of neurodegenerative diseases in humans. However, the roles of peripheral olfactory system in disease progression and the mechanisms behind neurodegeneration remain to be studied. Olfactory epithelium (OE) organoid is an ideal model to study pathophysiology in vitro, yet the reliance on 3D culture condition limits continual in situ monitoring of organoid development. Here, we combined impedance biosensors and live imaging for real-time spatiotemporal analysis of OE organoids morphological and physiological features during Alzheimer's disease (AD) progression. The impedance measurements showed that organoids generated from basal stem cells of APP/PS1 transgenic mice had lower proliferation rate than that from wild-type mice. In concert with the biosensor measurements, live imaging enabled to visualize the spatial and temporal dynamics of organoid morphology. Abnormal protein aggregation and accumulation, including amyloid plaques and neurofibrillary tangles, was found in AD organoids and increased as disease progressed. This multimodal in situ bioelectrical measurement and imaging provide a new platform for investigating onset mechanisms of OD, which would shed new light on early diagnosis and treatment of neurodegenerative disease.
Collapse
Affiliation(s)
- Mengxue Liu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; The MOE Frontier Science Center for Brain Science & Brain-machine Integration, Zhejiang University, Hangzhou 310027, China; State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Nan Jiang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; The MOE Frontier Science Center for Brain Science & Brain-machine Integration, Zhejiang University, Hangzhou 310027, China
| | - Chunlian Qin
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yingying Xue
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; The MOE Frontier Science Center for Brain Science & Brain-machine Integration, Zhejiang University, Hangzhou 310027, China
| | - Jianguo Wu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; The MOE Frontier Science Center for Brain Science & Brain-machine Integration, Zhejiang University, Hangzhou 310027, China
| | - Yong Qiu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; The MOE Frontier Science Center for Brain Science & Brain-machine Integration, Zhejiang University, Hangzhou 310027, China
| | - Qunchen Yuan
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; The MOE Frontier Science Center for Brain Science & Brain-machine Integration, Zhejiang University, Hangzhou 310027, China
| | - Changming Chen
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; The MOE Frontier Science Center for Brain Science & Brain-machine Integration, Zhejiang University, Hangzhou 310027, China
| | - Liquan Huang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Liujing Zhuang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai 200050, China.
| | - Ping Wang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; The MOE Frontier Science Center for Brain Science & Brain-machine Integration, Zhejiang University, Hangzhou 310027, China; State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai 200050, China.
| |
Collapse
|
49
|
Chao LL. Olfactory and cognitive decrements in 1991 Gulf War veterans with gulf war illness/chronic multisymptom illness. Environ Health 2024; 23:14. [PMID: 38291474 PMCID: PMC10825982 DOI: 10.1186/s12940-024-01058-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 01/26/2024] [Indexed: 02/01/2024]
Abstract
BACKGROUND Gulf War illness (GWI)/Chronic Multisymptom Illness (CMI) is a disorder related to military service in the 1991 Gulf War (GW). Prominent symptoms of GWI/CMI include fatigue, pain, and cognitive dysfunction. Although anosmia is not a typical GWI/CMI symptom, anecdotally some GW veterans have reported losing their sense smell shortly after the war. Because olfactory deficit is a prodromal symptom of neurodegenerative diseases like Parkinson's and Alzheimer's disease, and because we previously reported suggestive evidence that deployed GW veterans may be at increased risk for Mild Cognitive Impairment (MCI) and dementia, the current study examined the relationship between olfactory and cognitive function in deployed GW veterans. METHODS Eighty deployed GW veterans (mean age: 59.9 ±7.0; 4 female) were tested remotely with the University of Pennsylvania Smell Identification Test (UPSIT) and the Montreal Cognitive Assessment (MoCA). Veterans also completed self-report questionnaires about their health and deployment-related exposures and experiences. UPSIT and MoCA data from healthy control (HC) participants from the Parkinson's Progression Markers Initiative (PPMI) study were downloaded for comparison. RESULTS GW veterans had a mean UPSIT score of 27.8 ± 6.3 (range 9-37) and a mean MoCA score of 25.3 ± 2.8 (range 19-30). According to age- and sex-specific normative data, 31% of GW veterans (vs. 8% PPMI HCs) had UPSIT scores below the 10th percentile. Nearly half (45%) of GW veterans (vs. 8% PPMI HCs) had MoCA scores below the cut-off for identifying MCI. Among GW veterans, but not PPMI HCs, there was a positive correlation between UPSIT and MoCA scores (Spearman's ρ = 0.39, p < 0.001). There were no significant differences in UPSIT or MoCA scores between GW veterans with and without history of COVID or between those with and without Kansas GWI exclusionary conditions. CONCLUSIONS We found evidence of olfactory and cognitive deficits and a significant correlation between UPSIT and MoCA scores in a cohort of 80 deployed GW veterans, 99% of whom had CMI. Because impaired olfactory function has been associated with increased risk for MCI and dementia, it may be prudent to screen aging, deployed GW veterans with smell identification tests so that hypo- and anosmic veterans can be followed longitudinally and offered targeted neuroprotective therapies as they become available.
Collapse
Affiliation(s)
- Linda L Chao
- Departments of Radiology & Biomedical Imaging and Psychiatry & Behavioral Science, University of Calfiornia, 505 Parnassus Avenue, San Francisco, CA, 94143, USA.
- San Francisco Veterans Affairs Health Care System, 4150 Clement Street, San Francisco, CA, 94121, USA.
| |
Collapse
|
50
|
Cristaldi A, Oliveri Conti G, Pellitteri R, La Cognata V, Copat C, Pulvirenti E, Grasso A, Fiore M, Cavallaro S, Dell'Albani P, Ferrante M. In vitro exposure to PM 2.5 of olfactory Ensheathing cells and SH-SY5Y cells and possible association with neurodegenerative processes. ENVIRONMENTAL RESEARCH 2024; 241:117575. [PMID: 37925127 DOI: 10.1016/j.envres.2023.117575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/06/2023]
Abstract
PM2.5 exposure represents a risk factor for the public health. PM2.5 is able to cross the blood-alveolar and blood-brain barriers and reach the brain through three routes: nasal olfactory pathway, nose-brain pathway, blood-brain barrier pathway. We evaluated the effect of PM2.5 to induce cytotoxicity and reduced viability on in vitro cultures of OECs (Olfactory Ensheathing Cells) and SH-SY5Y cells. PM2.5 samples were collected in the metropolitan area of Catania, and the gravimetric determination of PM2.5, characterization of 10 trace elements and 16 polycyclic aromatic hydrocarbons (PAHs) were carried out for each sample. PM2.5 extracts were exposed to cultures of OECs and SH-SY5Y cells for 24-48-72 h, and the cell viability assay (MTT) was evaluated. Assessment of mitochondrial and cytoskeleton damage, and the assessment of apoptotic process were performed in the samples that showed lower cell viability. We have found an annual average value of PM2.5 = 16.9 μg/m3 and a maximum value of PM2.5 = 27.6 μg/m3 during the winter season. PM2.5 samples collected during the winter season also showed higher concentrations of PAHs and trace elements. The MTT assay showed a reduction in cell viability for both OECs (44%, 62%, 64%) and SH-SY5Y cells (16%, 17%, 28%) after 24-48-72 h of PM2.5 exposure. Furthermore, samples with lower cell viability showed a decrease in mitochondrial membrane potential, increased cytotoxicity, and also impaired cellular integrity and induction of the apoptotic process after increased expression of vimentin and caspase-3 activity, respectively. These events are involved in neurodegenerative processes and could be triggered not only by the concentration and time of exposure to PM2.5, but also by the presence of trace elements and PAHs on the PM2.5 substrate. The identification of more sensitive cell lines could be the key to understanding how exposure to PM2.5 can contribute to the onset of neurodegenerative processes.
Collapse
Affiliation(s)
- Antonio Cristaldi
- Department of Medical Sciences, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Italy; ISDE: International Society of Doctors for Environments - ISDE, Catania Section, Italy
| | - Gea Oliveri Conti
- Department of Medical Sciences, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Italy; ISDE: International Society of Doctors for Environments - ISDE, Catania Section, Italy; NANOMED: Research Center in Nanomedicine and Pharmaceutical Nanotechnology, Department of Drug and Health Sciences, University of Catania, Italy.
| | - Rosalia Pellitteri
- CNR-IRIB: National Research Council - Institute for Biomedical Research and Innovation, National Research Council, Catania, Italy
| | - Valentina La Cognata
- CNR-IRIB: National Research Council - Institute for Biomedical Research and Innovation, National Research Council, Catania, Italy.
| | - Chiara Copat
- Department of Medical Sciences, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Italy; ISDE: International Society of Doctors for Environments - ISDE, Catania Section, Italy
| | - Eloise Pulvirenti
- Department of Medical Sciences, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Italy; ISDE: International Society of Doctors for Environments - ISDE, Catania Section, Italy; Department of Biological, Geological and Environmental Sciences, University of Catania, Italy
| | - Alfina Grasso
- Department of Medical Sciences, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Italy
| | - Maria Fiore
- Department of Medical Sciences, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Italy; ISDE: International Society of Doctors for Environments - ISDE, Catania Section, Italy
| | - Sebastiano Cavallaro
- CNR-IRIB: National Research Council - Institute for Biomedical Research and Innovation, National Research Council, Catania, Italy
| | - Paola Dell'Albani
- CNR-IRIB: National Research Council - Institute for Biomedical Research and Innovation, National Research Council, Catania, Italy.
| | - Margherita Ferrante
- Department of Medical Sciences, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Italy; ISDE: International Society of Doctors for Environments - ISDE, Catania Section, Italy; NANOMED: Research Center in Nanomedicine and Pharmaceutical Nanotechnology, Department of Drug and Health Sciences, University of Catania, Italy
| |
Collapse
|