1
|
Gómez-Olarte S, Mailänder V, Castro-Neves J, Stojanovska V, Schumacher A, Meyer N, Zenclussen AC. The ENDOMIX perspective: how everyday chemical mixtures impact human health and reproduction by targeting the immune system†. Biol Reprod 2024; 111:1170-1187. [PMID: 39446589 DOI: 10.1093/biolre/ioae142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/01/2024] [Indexed: 10/26/2024] Open
Abstract
Endocrine-disrupting chemicals are natural and synthetic compounds found ubiquitously in the environment that interfere with the hormonal-immune axis, potentially impacting human health and reproduction. Exposure to endocrine-disrupting chemicals has been associated with numerous health risks, such as neurodevelopmental disorders, metabolic syndrome, thyroid dysfunction, infertility, and cancers. Nevertheless, the current approach to establishing causality between these substances and disease outcomes has limitations. Epidemiological and experimental research on endocrine-disrupting chemicals faces challenges in accurately assessing chemical exposure and interpreting non-monotonic dose response curves. In addition, most studies have focused on single chemicals or simple mixtures, overlooking complex real-life exposures and mechanistic insights, in particular regarding endocrine-disrupting chemicals' impact on the immune system. The ENDOMIX project, funded by the EU's Horizon Health Program, addresses these challenges by integrating epidemiological, risk assessment, and immunotoxicology methodologies. This systemic approach comprises the triangulation of human cohort, in vitro, and in vivo data to determine the combined effects of chemical mixtures. The present review presents and discusses current literature regarding human reproduction in the context of immunotolerance and chemical disruption mode of action. It further underscores the ENDOMIX perspective to elucidate the impact of endocrine-disrupting chemicals on immune-reproductive health.
Collapse
Affiliation(s)
- Sergio Gómez-Olarte
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research GmbH-UFZ, Permoserstraße 15, 04318, Leipzig, Germany
| | - Verena Mailänder
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research GmbH-UFZ, Permoserstraße 15, 04318, Leipzig, Germany
| | - Júlia Castro-Neves
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research GmbH-UFZ, Permoserstraße 15, 04318, Leipzig, Germany
| | - Violeta Stojanovska
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research GmbH-UFZ, Permoserstraße 15, 04318, Leipzig, Germany
| | - Anne Schumacher
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research GmbH-UFZ, Permoserstraße 15, 04318, Leipzig, Germany
- Perinatal Immunology, Saxonian Incubator for Clinical Translation (SIKT), Medical Faculty, Leipzig University, Philipp-Rosenthal-Straße 55, 04103, Leipzig, Germany
| | - Nicole Meyer
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research GmbH-UFZ, Permoserstraße 15, 04318, Leipzig, Germany
- Perinatal Immunology, Saxonian Incubator for Clinical Translation (SIKT), Medical Faculty, Leipzig University, Philipp-Rosenthal-Straße 55, 04103, Leipzig, Germany
| | - Ana C Zenclussen
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research GmbH-UFZ, Permoserstraße 15, 04318, Leipzig, Germany
- Perinatal Immunology, Saxonian Incubator for Clinical Translation (SIKT), Medical Faculty, Leipzig University, Philipp-Rosenthal-Straße 55, 04103, Leipzig, Germany
| |
Collapse
|
2
|
Cholico GN, Nault R, Zacharewski T. Cell-specific AHR-driven differential gene expression in the mouse liver cell following acute TCDD exposure. BMC Genomics 2024; 25:809. [PMID: 39198768 PMCID: PMC11351262 DOI: 10.1186/s12864-024-10730-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/21/2024] [Indexed: 09/01/2024] Open
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a persistent environmental contaminant that disrupts hepatic function leading to steatotic liver disease (SLD)-like pathologies, such as steatosis, steatohepatitis, and fibrosis. These effects are mediated by the aryl hydrocarbon receptor following changes in gene expression. Although diverse cell types are involved, initial cell-specific changes in gene expression have not been reported. In this study, differential gene expression in hepatic cell types was examined in male C57BL/6 mice gavaged with 30 µg/kg of TCDD using single-nuclei RNA-sequencing. Ten liver cell types were identified with the proportions of most cell types remaining unchanged, except for neutrophils which increased at 72 h. Gene expression suggests TCDD induced genes related to oxidative stress in hepatocytes as early as 2 h. Lipid homeostasis was disrupted in hepatocytes, macrophages, B cells, and T cells, characterized by the induction of genes associated with lipid transport, steroid hormone biosynthesis, and the suppression of β-oxidation, while linoleic acid metabolism was altered in hepatic stellate cells (HSCs), B cells, portal fibroblasts, and plasmacytoid dendritic cells. Pro-fibrogenic processes were also enriched, including the induction retinol metabolism genes in HSCs and the early induction of anti-fibrolysis genes in hepatocytes, endothelial cells, HSCs, and macrophages. Hepatocytes also had gene expression changes consistent with hepatocellular carcinoma. Collectively, these findings underscore the effects of TCDD in initiating SLD-like phenotypes and identified cell-specific gene expression changes related to oxidative stress, steatosis, fibrosis, cell proliferation and the development of HCC.
Collapse
Affiliation(s)
- Giovan N Cholico
- Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan, USA
| | - Rance Nault
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan, USA
- Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| | - Tim Zacharewski
- Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA.
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan, USA.
| |
Collapse
|
3
|
Daood NJ, Russo DP, Chung E, Qin X, Zhu H. Predicting Chemical Immunotoxicity through Data-Driven QSAR Modeling of Aryl Hydrocarbon Receptor Agonism and Related Toxicity Mechanisms. ENVIRONMENT & HEALTH (WASHINGTON, D.C.) 2024; 2:474-485. [PMID: 39049897 PMCID: PMC11264268 DOI: 10.1021/envhealth.4c00026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 07/27/2024]
Abstract
Computational modeling has emerged as a time-saving and cost-effective alternative to traditional animal testing for assessing chemicals for their potential hazards. However, few computational modeling studies for immunotoxicity were reported, with few models available for predicting toxicants due to the lack of training data and the complex mechanisms of immunotoxicity. In this study, we employed a data-driven quantitative structure-activity relationship (QSAR) modeling workflow to extensively enlarge the limited training data by revealing multiple targets involved in immunotoxicity. To this end, a probe data set of 6,341 chemicals was obtained from a high-throughput screening (HTS) assay testing for the activation of the aryl hydrocarbon receptor (AhR) signaling pathway, a key event leading to immunotoxicity. Searching this probe data set against PubChem yielded 3,183 assays with testing results for varying proportions of these 6,341 compounds. 100 assays were selected to develop QSAR models based on their correlations to AhR agonism. Twelve individual QSAR models were built for each assay using combinations of four machine-learning algorithms and three molecular fingerprints. 5-fold cross-validation of the resulting models showed good predictivity (average CCR = 0.73). A total of 20 assays were further selected based on QSAR model performance, and their resulting QSAR models showed good predictivity of potential immunotoxicants from external chemicals. This study provides a computational modeling strategy that can utilize large public toxicity data sets for modeling immunotoxicity and other toxicity endpoints, which have limited training data and complicated toxicity mechanisms.
Collapse
Affiliation(s)
- Nada J. Daood
- Department
of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| | - Daniel P. Russo
- Department
of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| | - Elena Chung
- Department
of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
- Center
for Biomedical Informatics and Genomics, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Xuebin Qin
- Tulane
National Primate Research Center, Tulane
University School of Medicine, Covington, Louisiana 70433, United States
| | - Hao Zhu
- Department
of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
- Center
for Biomedical Informatics and Genomics, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
| |
Collapse
|
4
|
Drago G, Aloi N, Ruggieri S, Longo A, Contrino ML, Contarino FM, Cibella F, Colombo P, Longo V. Guardians under Siege: Exploring Pollution's Effects on Human Immunity. Int J Mol Sci 2024; 25:7788. [PMID: 39063030 PMCID: PMC11277414 DOI: 10.3390/ijms25147788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Chemical pollution poses a significant threat to human health, with detrimental effects on various physiological systems, including the respiratory, cardiovascular, mental, and perinatal domains. While the impact of pollution on these systems has been extensively studied, the intricate relationship between chemical pollution and immunity remains a critical area of investigation. The focus of this study is to elucidate the relationship between chemical pollution and human immunity. To accomplish this task, this study presents a comprehensive review that encompasses in vitro, ex vivo, and in vivo studies, shedding light on the ways in which chemical pollution can modulate human immunity. Our aim is to unveil the complex mechanisms by which environmental contaminants compromise the delicate balance of the body's defense systems going beyond the well-established associations with defense systems and delving into the less-explored link between chemical exposure and various immune disorders, adding urgency to our understanding of the underlying mechanisms and their implications for public health.
Collapse
Affiliation(s)
- Gaspare Drago
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy; (G.D.); (N.A.); (S.R.); (A.L.); (F.C.); (V.L.)
| | - Noemi Aloi
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy; (G.D.); (N.A.); (S.R.); (A.L.); (F.C.); (V.L.)
| | - Silvia Ruggieri
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy; (G.D.); (N.A.); (S.R.); (A.L.); (F.C.); (V.L.)
| | - Alessandra Longo
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy; (G.D.); (N.A.); (S.R.); (A.L.); (F.C.); (V.L.)
| | - Maria Lia Contrino
- Azienda Sanitaria Provinciale di Siracusa, Corso Gelone 17, 96100 Siracusa, Italy; (M.L.C.); (F.M.C.)
| | - Fabio Massimo Contarino
- Azienda Sanitaria Provinciale di Siracusa, Corso Gelone 17, 96100 Siracusa, Italy; (M.L.C.); (F.M.C.)
| | - Fabio Cibella
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy; (G.D.); (N.A.); (S.R.); (A.L.); (F.C.); (V.L.)
| | - Paolo Colombo
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy; (G.D.); (N.A.); (S.R.); (A.L.); (F.C.); (V.L.)
| | - Valeria Longo
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy; (G.D.); (N.A.); (S.R.); (A.L.); (F.C.); (V.L.)
| |
Collapse
|
5
|
Wang K, Kim N, Bagherian M, Li K, Chou E, Colacino JA, Dolinoy DC, Sartor MA. Gene Target Prediction of Environmental Chemicals Using Coupled Matrix-Matrix Completion. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5889-5898. [PMID: 38501580 PMCID: PMC11131040 DOI: 10.1021/acs.est.4c00458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Human exposure to toxic chemicals presents a huge health burden. Key to understanding chemical toxicity is knowledge of the molecular target(s) of the chemicals. Because a comprehensive safety assessment for all chemicals is infeasible due to limited resources, a robust computational method for discovering targets of environmental exposures is a promising direction for public health research. In this study, we implemented a novel matrix completion algorithm named coupled matrix-matrix completion (CMMC) for predicting direct and indirect exposome-target interactions, which exploits the vast amount of accumulated data regarding chemical exposures and their molecular targets. Our approach achieved an AUC of 0.89 on a benchmark data set generated using data from the Comparative Toxicogenomics Database. Our case studies with bisphenol A and its analogues, PFAS, dioxins, PCBs, and VOCs show that CMMC can be used to accurately predict molecular targets of novel chemicals without any prior bioactivity knowledge. Our results demonstrate the feasibility and promise of computationally predicting environmental chemical-target interactions to efficiently prioritize chemicals in hazard identification and risk assessment.
Collapse
Affiliation(s)
- Kai Wang
- Department of Computational Medicine and Bioinformatics, School of Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nicole Kim
- Department of Computational Medicine and Bioinformatics, School of Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Maryam Bagherian
- Department of Computational Medicine and Bioinformatics, School of Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Michigan Institute for Data Science (MIDAS), University of Michigan, Ann Arbor, MI 48109, USA
| | - Kai Li
- Department of Computational Medicine and Bioinformatics, School of Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Elysia Chou
- Department of Computational Medicine and Bioinformatics, School of Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Justin A. Colacino
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dana C. Dolinoy
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Maureen A. Sartor
- Department of Computational Medicine and Bioinformatics, School of Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
6
|
Association of xenobiotic-metabolizing genes polymorphisms with cervical cancer risk in the Tunisian population. Mol Biol Rep 2023; 50:949-959. [PMID: 36376536 DOI: 10.1007/s11033-022-07945-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 09/13/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND Host genetic characteristics and environmental factors interactions may play a crucial role in cervical carcinogenesis. We investigated the impact of functional genetic variants of four xenobiotic-metabolizing genes (AhR, CYP1A1, GSTM1, and GSTT1) on cervical cancer development in Tunisian women. METHODS The AhR gene polymorphism was analyzed using the tetra-primer ARMS-PCR, whereas the CYP1A1 polymorphism genotypes were identified by PCR-RFLP. A multiplex ligation-dependent polymerase chain reaction approach was applied for the analysis of GSTM1 and GSTT1 polymorphisms. RESULTS The homozygous A/A genotype of the AhR gene (rs2066853) and the heterozygous T/C genotype of the CYP1A1 SNP (CYP1A1-MspI) appeared to be associated with an increased risk of cervical tumorigenesis (ORa = 2.81; ORa = 5.52, respectively). Furthermore, a significantly increased risk of cervical cancer was associated with the GSTT1 null genotype (ORa = 2.65). However, the null GSTM1 genotype showed any significant association with the risk of cervical cancer compared to the wild genotype (ORa = 1.18; p = 0.784). Considering the combined effect, we noted a significantly higher association with cancer risk for individuals with at least two high-risk genotypes of CYP1A1/GSTT1 (ORa = 4.2), individuals with at least two high-risk genotypes of CYP1A1/GSTT1/AhR (ORa = 11.3) and individuals with at least two high-risk genotypes of CYP1A1/GSTM1/GSTT1/AhR exploitation low-risk genotype as a reference. CONCLUSION This study indicated that the single-gene contribution and the combined effect of xenobiotic-metabolizing gene polymorphisms (AhR, CYP1A1-MspI, GSTM1, and GSTT1) may have a considerable association with increased cervical cancer risk.
Collapse
|
7
|
Singh NP, Yang X, Bam M, Nagarkatti M, Nagarkatti P. 2,3,7,8-Tetrachlorodibenzo-p-dioxin induces multigenerational alterations in the expression of microRNA in the thymus through epigenetic modifications. PNAS NEXUS 2023; 2:pgac290. [PMID: 36712935 PMCID: PMC9833045 DOI: 10.1093/pnasnexus/pgac290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 12/07/2022] [Indexed: 05/11/2023]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), a potent AhR ligand, is an environmental contaminant that is known for mediating toxicity across generations. However, whether TCDD can induce multigenerational changes in the expression of microRNAs (miRs) has not been previously studied. In the current study, we investigated the effect of administration of TCDD in pregnant mice (F0) on gestational day 14, on the expression of miRs in the thymus of F0 and subsequent generations (F1 and F2). Of the 3200 miRs screened, 160 miRs were dysregulated similarly in F0, F1, and F2 generations, while 46 miRs were differentially altered in F0 to F2 generations. Pathway analysis revealed that the changes in miR signature profile mediated by TCDD affected the genes that regulate cell signaling, apoptosis, thymic atrophy, cancer, immunosuppression, and other physiological pathways. A significant number of miRs that showed altered expression exhibited dioxin response elements (DRE) on their promoters. Focusing on one such miR, namely miR-203 that expressed DREs and was induced across F0 to F2 by TCDD, promoter analysis showed that one of the DREs expressed by miR-203 was functional to TCDD-mediated upregulation. Also, the histone methylation status of H3K4me3 in the miR-203 promoter was significantly increased near the transcriptional start site in TCDD-treated thymocytes across F0 to F2 generations. Genome-wide chromatin immunoprecipitation sequencing study suggested that TCDD may cause alterations in histone methylation in certain genes across the three generations. Together, the current study demonstrates that gestational exposure to TCDD can alter the expression of miRs in F0 through direct activation of DREs as well as across F0, F1, and F2 generations through epigenetic pathways.
Collapse
Affiliation(s)
- Narendra P Singh
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| | - Xiaoming Yang
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| | - Marpe Bam
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| | - Prakash Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| |
Collapse
|
8
|
Riaz F, Pan F, Wei P. Aryl hydrocarbon receptor: The master regulator of immune responses in allergic diseases. Front Immunol 2022; 13:1057555. [PMID: 36601108 PMCID: PMC9806217 DOI: 10.3389/fimmu.2022.1057555] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a widely studied ligand-activated cytosolic transcriptional factor that has been associated with the initiation and progression of various diseases, including autoimmune diseases, cancers, metabolic syndromes, and allergies. Generally, AhR responds and binds to environmental toxins/ligands, dietary ligands, and allergens to regulate toxicological, biological, cellular responses. In a canonical signaling manner, activation of AhR is responsible for the increase in cytochrome P450 enzymes which help individuals to degrade and metabolize these environmental toxins and ligands. However, canonical signaling cannot be applied to all the effects mediated by AhR. Recent findings indicate that activation of AhR signaling also interacts with some non-canonical factors like Kruppel-like-factor-6 (KLF6) or estrogen-receptor-alpha (Erα) to affect the expression of downstream genes. Meanwhile, enormous research has been conducted to evaluate the effect of AhR signaling on innate and adaptive immunity. It has been shown that AhR exerts numerous effects on mast cells, B cells, macrophages, antigen-presenting cells (APCs), Th1/Th2 cell balance, Th17, and regulatory T cells, thus, playing a significant role in allergens-induced diseases. This review discussed how AhR mediates immune responses in allergic diseases. Meanwhile, we believe that understanding the role of AhR in immune responses will enhance our knowledge of AhR-mediated immune regulation in allergic diseases. Also, it will help researchers to understand the role of AhR in regulating immune responses in autoimmune diseases, cancers, metabolic syndromes, and infectious diseases.
Collapse
Affiliation(s)
- Farooq Riaz
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Fan Pan
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, China,*Correspondence: Ping Wei, ; Fan Pan,
| | - Ping Wei
- Department of Otolaryngology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing, China,*Correspondence: Ping Wei, ; Fan Pan,
| |
Collapse
|
9
|
Foxx CL, Nagy MR, King AE, Albin D, DeKrey GK. TCDD exposure alters fecal IgA concentrations in male and female mice. BMC Pharmacol Toxicol 2022; 23:25. [PMID: 35449084 PMCID: PMC9026712 DOI: 10.1186/s40360-022-00563-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/30/2022] [Indexed: 11/16/2022] Open
Abstract
Background Activation of the aryl hydrocarbon receptor (AhR) can alter diurnal rhythms including those for innate lymphoid cell numbers, cytokine and hormone levels, and feeding behaviors. Because immune responses and antibody levels are modulated by exposure to AhR agonists, we hypothesized that some of the variation previously reported for the effects of AhR activation on fecal secretory immunoglobulin A (sIgA) levels could be explained by dysregulation of the diurnal sIgA rhythm. Methods C57Bl/6 J mice were exposed to peanut oil or 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, 10 or 40 μg/Kg) and fecal sIgA levels were determined in samples collected every 4 h over 4 days. Results Fecal sIgA concentrations were not significantly different between light and dark phases of the photoperiod in either male or female mice, and there were no significant circadian rhythms observed, but TCDD exposure significantly altered both fecal mesor sIgA and serum IgA concentrations, in parallel, in male (increased) and female (biphasic) mice. Conclusions AhR activation can contribute to the regulation of steady state IgA/sIgA concentrations. Supplementary Information The online version contains supplementary material available at 10.1186/s40360-022-00563-9.
Collapse
Affiliation(s)
- Christine L Foxx
- School of Biological Sciences, College of Natural and Health Sciences, University of Northern Colorado, Greeley, CO, 80639, USA
| | - Madeline R Nagy
- School of Biological Sciences, College of Natural and Health Sciences, University of Northern Colorado, Greeley, CO, 80639, USA
| | - Aspen E King
- School of Biological Sciences, College of Natural and Health Sciences, University of Northern Colorado, Greeley, CO, 80639, USA
| | - Dreycey Albin
- Department of Computer Science, College of Engineering and Applied Science, University of Colorado, Boulder, 80309, CO, USA
| | - Gregory K DeKrey
- School of Biological Sciences, College of Natural and Health Sciences, University of Northern Colorado, Greeley, CO, 80639, USA.
| |
Collapse
|
10
|
Ishihara Y, Kado SY, Bein KJ, He Y, Pouraryan AA, Urban A, Haarmann-Stemmann T, Sweeney C, Vogel CFA. Aryl Hydrocarbon Receptor Signaling Synergizes with TLR/NF-κB-Signaling for Induction of IL-22 Through Canonical and Non-Canonical AhR Pathways. FRONTIERS IN TOXICOLOGY 2022; 3:787360. [PMID: 35295139 PMCID: PMC8915841 DOI: 10.3389/ftox.2021.787360] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/30/2021] [Indexed: 12/24/2022] Open
Abstract
Interleukin 22 (IL-22) is critically involved in gut immunity and host defense and primarily produced by activated T cells. In different circumstances IL-22 may contribute to pathological conditions or act as a cancer promoting cytokine secreted by infiltrating immune cells. Here we show that bone marrow-derived macrophages (BMM) express and produce IL-22 after activation of the aryl hydrocarbon receptor (AhR) when cells are activated through the Toll-like receptor (TLR) family. The additional activation of AhR triggered a significant induction of IL-22 in TLR-activated BMM. Deletion and mutation constructs of the IL-22 promoter revealed that a consensus DRE and RelBAhRE binding element are necessary to mediate the synergistic effects of AhR and TLR ligands. Inhibitor studies and analysis of BMM derived from knockout mice confirmed that the synergistic induction of IL-22 by AhR and TLR ligands depend on the expression of AhR and Nuclear Factor-kappa B (NF-κB) member RelB. The exposure to particulate matter (PM) collected from traffic related air pollution (TRAP) and wildfires activated AhR as well as NF-κB signaling and significantly induced the expression of IL-22. In summary this study shows that simultaneous activation of the AhR and NF-κB signaling pathways leads to synergistic and prolonged induction of IL-22 by integrating signals of the canonical and non-canonical AhR pathway.
Collapse
Affiliation(s)
- Yasuhiro Ishihara
- Center for Health and the Environment, University of California, Davis, Davis, CA, United States,Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima, Japan
| | - Sarah Y. Kado
- Center for Health and the Environment, University of California, Davis, Davis, CA, United States
| | - Keith J. Bein
- Center for Health and the Environment, University of California, Davis, Davis, CA, United States
| | - Yi He
- Center for Health and the Environment, University of California, Davis, Davis, CA, United States
| | - Arshia A. Pouraryan
- Center for Health and the Environment, University of California, Davis, Davis, CA, United States
| | - Angelika Urban
- Center for Health and the Environment, University of California, Davis, Davis, CA, United States
| | | | - Colleen Sweeney
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Christoph F. A. Vogel
- Center for Health and the Environment, University of California, Davis, Davis, CA, United States,Department of Environmental Toxicology, University of California, Davis, Davis, CA, United States,*Correspondence: Christoph F. A. Vogel,
| |
Collapse
|
11
|
Kakutani H, Yuzuriha T, Nakao T, Ohta S. Long-term orally exposure of dioxins affects antigen-specific antibody production in mice. Toxicol Rep 2022; 9:53-57. [PMID: 35004181 PMCID: PMC8717457 DOI: 10.1016/j.toxrep.2021.12.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 12/15/2021] [Accepted: 12/18/2021] [Indexed: 11/24/2022] Open
Abstract
Antigen-specific (OVA) antibody production in the serum increased dose-dependently by TCDD concentrations below 500 ng/kg after long-term (10 weeks) exposure. Similar increases were seen in fecal and vaginal samples but were not significant. Th1 and Th2 lymphocyte responses, as determined by antibody and cytokine production, also significantly increased dose-dependently up to 500 ng/kg TCDD, and the Th1/Th2 balance was shifted toward Th1.
Dioxins are persistent environmental toxins that are still present in the food supply despite strong efforts to minimize exposure. Dioxins ingested by humans accumulate in fat and are excreted very slowly, so their long-term effects at low concentrations are a matter of concern. It is necessary to consider long-term, low-dose continuous administration under conditions that are as close as possible to a person's diet. In this study, we orally administered 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), the most common dioxin, at low doses in mice and observed the immunological effects. We found that antigen-specific (OVA) antibody production in the serum increased dose-dependently by TCDD concentrations below 500 ng/kg after long-term (10 weeks) exposure. Similar increases were seen in fecal and vaginal samples but were not significant. Th1 and Th2 lymphocyte responses, as determined by antibody and cytokine production, also significantly increased dose-dependently up to 500 ng/kg TCDD, and the Th1/Th2 balance was shifted toward Th1. These results indicate that low-dose, long-term TCDD exposure results in immunological abnormalities, perhaps by increasing antigen permeability. Different doses of dioxins may have opposing effects, being immunostimulatory at low doses (100 ng/kg/day) and immunosuppressive at high doses (500 ng/kg/day).
Collapse
Key Words
- 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)
- AhR, aryl hydrocarbon receptor
- EROD, ethoxyresorufin O-deethylase
- IFN-γ, interferon-gamma
- IL-10, interleukin-10
- IL-13, interleukin-13
- IL-17, interleukin-17
- IL-2, interleukin-2
- IL-4, interleukin-4
- Ig, immunoglobulin
- OVA, ovalbumin
- OVA-specific antibody titer
- Subclinical oral exposure of TCDD
- TCDD, 2,3,7,8-tetrachlorobibenzo-p-dioxin
- TDI, tolerable daily intake
Collapse
Affiliation(s)
- Hideki Kakutani
- Laboratory of Disease Prevention, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| | - Tomohiro Yuzuriha
- Laboratory of Disease Prevention, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| | - Teruyuki Nakao
- Laboratory of Disease Prevention, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| | - Souichi Ohta
- Laboratory of Disease Prevention, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| |
Collapse
|
12
|
Dopkins N, Neameh WH, Hall A, Lai Y, Rutkovsky A, Gandy AO, Lu K, Nagarkatti PS, Nagarkatti M. Effects of Acute 2,3,7,8-Tetrachlorodibenzo-p-Dioxin Exposure on the Circulating and Cecal Metabolome Profile. Int J Mol Sci 2021; 22:11801. [PMID: 34769237 PMCID: PMC8583798 DOI: 10.3390/ijms222111801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 10/28/2021] [Accepted: 10/28/2021] [Indexed: 02/06/2023] Open
Abstract
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a polyhalogenated planar hydrocarbon belonging to a group of highly toxic and persistent environmental contaminants known as "dioxins". TCDD is an animal teratogen and carcinogen that is well characterized for causing immunosuppression through activation of aryl hydrocarbon receptor (AHR). In this study, we investigated the effect of exposure of mice to an acute dose of TCDD on the metabolic profile within the serum and cecal contents to better define the effects of TCDD on host physiology. Our findings demonstrated that within the circulating metabolome following acute TCDD exposure, there was significant dysregulation in the metabolism of bioactive lipids, amino acids, and carbohydrates when compared with the vehicle (VEH)-treated mice. These widespread changes in metabolite abundance were identified to regulate host immunity via modulating nuclear factor-kappa B (NF-κB) and extracellular signal-regulated protein kinase (ERK1/2) activity and work as biomarkers for a variety of organ injuries and dysfunctions that follow TCDD exposure. Within the cecal content of mice exposed to TCDD, we were able to detect changes in inflammatory markers that regulate NF-κB, markers of injury-related inflammation, and changes in lysine degradation, nicotinamide metabolism, and butanoate metabolism, which collectively suggested an immediate suppression of broad-scale metabolic processes in the gastrointestinal tract. Collectively, these results demonstrate that acute TCDD exposure results in immediate irregularities in the circulating and intestinal metabolome, which likely contribute to TCDD toxicity and can be used as biomarkers for the early detection of individual exposure.
Collapse
Affiliation(s)
- Nicholas Dopkins
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | - Wurood Hantoosh Neameh
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | - Alina Hall
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | - Yunjia Lai
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Alex Rutkovsky
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | - Alexa Orr Gandy
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | - Kun Lu
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Prakash S Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| |
Collapse
|
13
|
Nomura T, Kabashima K. Advances in Atopic Dermatitis in 2019-2020: Endotypes from skin barrier, ethnicity, properties of antigen, cytokine profiles, microbiome, and engagement of immune cells. J Allergy Clin Immunol 2021; 148:1451-1462. [PMID: 34756922 DOI: 10.1016/j.jaci.2021.10.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022]
Abstract
Key research advances in atopic dermatitis (AD) suggest the complexity of its endotypes. A comprehensive serum biomarker panel revealed at least four types of AD. Some represent classic TH2-dominant AD with filaggrin mutations commonly reported in Europeans, a simultaneously activated multipolar axes of cytokines often reported in Asians, and an intrinsic type characterized by TH2-inferiority. Innate lymphoid cells, including NK cells, NKT cells, and fibroblasts, play a role in AD development and heterogeneity. Here, we discuss the endotypes of AD from the perspective of antigen types (hapten vs. protein antigens), barrier function, and a novel set of immune cells. Endotypic stratification of AD may lead to the development of customized therapeutic strategies in the future.
Collapse
Affiliation(s)
- Takashi Nomura
- Department of Dermatology, Faculty of Medicine, Kyoto University 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Kenji Kabashima
- Department of Dermatology, Faculty of Medicine, Kyoto University 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
14
|
Cho MK, Park JG, Iwata H, Kim EY. 2,3,7,8-Tetrachlorodibenzo-p-dioxin prompted differentiation to CD4 +CD8 -CD25 + and CD4 +CD8 +CD25 + Tregs and altered expression of immune-related genes in the thymus of chicken embryos. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 211:111947. [PMID: 33503546 DOI: 10.1016/j.ecoenv.2021.111947] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 01/10/2021] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
The chicken (Gallus gallus), which has three aryl hydrocarbon receptor (AHR) isoforms (ckAHR1, ckAHR2, and ckAHR1β) and two AHR nuclear translocator (ARNT) isoforms (ckARNT1 and ckARNT2), is highly sensitive to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and can serve as an avian model to gain an understanding of the mechanism underlying dioxin toxicity. To elucidate the mechanism of TCDD-induced immunotoxicity in avian species, we treated chicken embryos in ovo with graded concentrations of TCDD (1.5, 2.5, 3.0, 3.3, 3.5, and 4.0 μM). Initially, we measured mRNA expression levels of ckAHR and ckARNT isoforms and analyzed the T cell populations and transcriptome in the thymuses of TCDD-treated chicken embryos. Quantitative polymerase chain reaction analysis revealed that mRNA expressions of ckAHR1 and ckARNT2 were dominant in the thymus. Severe weight loss and thymus atrophy were observed in the TCDD-treated embryos. Immunophenotyping analyses demonstrated significant increases in CD4+CD8-CD25+ and CD4+CD8+CD25+ regulatory T cells (Tregs) populations following TCDD exposure, suggesting that TCDD suppresses T cell-mediated immune responses in chicken embryos. In addition, thymic transcriptome analyses intimated that alteration of the signaling pathways related to erb-b2 receptor tyrosine kinase 4 (ERBB4) and wnt family member 5A (WNT5A), and bone morphogenetic protein (BMP) may be associated with the TCDD-induced thymus atrophy. We also observed significantly altered expression levels of genes including interleukine 13 receptor subunit alpha 2 (IL13RA2), transforming growth factor beta 1 (TGFβ1), collagen type III alpha 1 chain (COL3A1), and collagen type IX alpha 3 chain (COL9A3), implying immunosuppression, fibrosis development, and collagen deposition. Collectively, these findings suggest that TCDD exposure activates the ckAHR1-ckARNT2 signaling pathway and suppresses immune responses through the prompted differentiation to CD4+CD8-CD25+ and CD4+CD8+CD25+ Tregs and altered expressions of immune-related genes in the thymus of chicken embryos.
Collapse
Affiliation(s)
- Min-Kyung Cho
- Department of Biology, Kyung Hee University, Hoegi-Dong, Dongdaemun-Gu, Seoul 130-701, Republic of Korea
| | - Jae-Gon Park
- Department of Life and Nanopharmaceutical Science, Kyung Hee University, Hoegi-Dong, Dongdaemun-Gu, Seoul 130-701, Republic of Korea
| | - Hisato Iwata
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama 790-8577, Japan
| | - Eun-Young Kim
- Department of Biology, Kyung Hee University, Hoegi-Dong, Dongdaemun-Gu, Seoul 130-701, Republic of Korea; Department of Life and Nanopharmaceutical Science, Kyung Hee University, Hoegi-Dong, Dongdaemun-Gu, Seoul 130-701, Republic of Korea.
| |
Collapse
|
15
|
Neamah WH, Busbee PB, Alghetaa H, Abdulla OA, Nagarkatti M, Nagarkatti P. AhR Activation Leads to Alterations in the Gut Microbiome with Consequent Effect on Induction of Myeloid Derived Suppressor Cells in a CXCR2-Dependent Manner. Int J Mol Sci 2020; 21:ijms21249613. [PMID: 33348596 PMCID: PMC7767008 DOI: 10.3390/ijms21249613] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/27/2020] [Accepted: 12/12/2020] [Indexed: 02/06/2023] Open
Abstract
Aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a potent ligand for AhR and a known carcinogen. While AhR activation by TCDD leads to significant immunosuppression, how this translates into carcinogenic signal is unclear. Recently, we demonstrated that activation of AhR by TCDD in naïve C57BL6 mice leads to massive induction of myeloid derived-suppressor cells (MDSCs). In the current study, we investigated the role of the gut microbiota in TCDD-mediated MDSC induction. TCDD caused significant alterations in the gut microbiome, such as increases in Prevotella and Lactobacillus, while decreasing Sutterella and Bacteroides. Fecal transplants from TCDD-treated donor mice into antibiotic-treated mice induced MDSCs and increased regulatory T-cells (Tregs). Injecting TCDD directly into antibiotic-treated mice also induced MDSCs, although to a lesser extent. These data suggested that TCDD-induced dysbiosis plays a critical role in MDSC induction. Interestingly, treatment with TCDD led to induction of MDSCs in the colon and undetectable levels of cysteine. MDSCs suppressed T cell proliferation while reconstitution with cysteine restored this response. Lastly, blocking CXC chemokine receptor 2 (CXCR2) impeded TCDD-mediated MDSC induction. Our data demonstrate that AhR activation by TCDD triggers dysbiosis which, in turn, regulates, at least in part, induction of MDSCs.
Collapse
|
16
|
Koh DH, Hwang JH, Park JG, Song WS, Iwata H, Kim EY. The AHR1-ARNT1 dimerization pair is a major regulator of the response to natural ligands, but not to TCDD, in the chicken. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 201:110835. [PMID: 32563159 DOI: 10.1016/j.ecoenv.2020.110835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/28/2020] [Accepted: 05/30/2020] [Indexed: 06/11/2023]
Abstract
The activation of the aryl hydrocarbon receptor (AHR) occurs through the binding of dioxin-like compounds (DLCs) or natural ligands. In this pathway, the AHR-ARNT (AHR nuclear translocator) heterodimer serves to regulate critical physiological functions, such as immune responses and the metabolism of xenobiotics. Birds have three AHR isoforms (AHR1, AHR1β, and AHR2) and two ARNT isoforms (ARNT1 and ARNT2). However, how AHR and ARNT dimerization pair in birds regulates the AHR signaling pathway in an isoform-specific manner remains unknown. In this study, we initially sought to clarify the major chicken AHR-ARNT (ckAHR-ckARNT) pairs by estimating the mRNA tissue distributions of various ckAHR and ckARNT isoforms. Our results indicated that the ckAHR1-ckARNT1 represented the major dimerization pair in most tissues except the brain. We then measured the transactivation potencies of various ckAHR-ckARNT pairs by natural ligands and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), in in vitro reporter gene assays using COS-7 and LMH cell lines. Our results from the in vitro assays demonstrated that the ckAHR1-ckARNT1 pair was strongly activated by the five natural ligands, namely, 6-formylindolo [3,2-b]carbazole, L-kynurenin, kynurenic acid, indoxyl-3-sulfate, and 1,3,7-tribromodibenzo-p-dioxin, but not by TCDD. In in silico ligand docking simulations with ckAHR1 homology models, all the natural ligands showed a interaction pattern that was distinct from that observed with anthropogenic DLCs, including TCDD. In conclusion, our findings indicate that the ckAHR1-ckARNT1 may be the most important dimerization pair in most tissues for regulating the physiological functions driven by natural ligands, although it was less reactive to TCDD.
Collapse
Affiliation(s)
- Dong-Hee Koh
- Department of Life and Nanopharmaceutical Science, Kyung Hee University, Hoegi-Dong, Dongdaemun-Gu, Seoul, 130-701, South Korea
| | - Ji-Hee Hwang
- Department of Life and Nanopharmaceutical Science, Kyung Hee University, Hoegi-Dong, Dongdaemun-Gu, Seoul, 130-701, South Korea
| | - Jae-Gon Park
- Department of Life and Nanopharmaceutical Science, Kyung Hee University, Hoegi-Dong, Dongdaemun-Gu, Seoul, 130-701, South Korea
| | - Woo-Seon Song
- Department of Life and Nanopharmaceutical Science, Kyung Hee University, Hoegi-Dong, Dongdaemun-Gu, Seoul, 130-701, South Korea
| | - Hisato Iwata
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, 790-8577, Japan.
| | - Eun-Young Kim
- Department of Life and Nanopharmaceutical Science, Kyung Hee University, Hoegi-Dong, Dongdaemun-Gu, Seoul, 130-701, South Korea; Department of Biology, Kyung Hee University, Hoegi-Dong, Dongdaemun-Gu, Seoul, 130-701, South Korea.
| |
Collapse
|
17
|
Dai Q, Xu X, Eskenazi B, Asante KA, Chen A, Fobil J, Bergman Å, Brennan L, Sly PD, Nnorom IC, Pascale A, Wang Q, Zeng EY, Zeng Z, Landrigan PJ, Bruné Drisse MN, Huo X. Severe dioxin-like compound (DLC) contamination in e-waste recycling areas: An under-recognized threat to local health. ENVIRONMENT INTERNATIONAL 2020; 139:105731. [PMID: 32315892 DOI: 10.1016/j.envint.2020.105731] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 02/05/2023]
Abstract
Electrical and electronic waste (e-waste) burning and recycling activities have become one of the main emission sources of dioxin-like compounds (DLCs). Workers involved in e-waste recycling operations and residents living near e-waste recycling sites (EWRS) are exposed to high levels of DLCs. Epidemiological and experimental in vivo studies have reported a range of interconnected responses in multiple systems with DLC exposure. However, due to the compositional complexity of DLCs and difficulties in assessing mixture effects of the complex mixture of e-waste-related contaminants, there are few studies concerning human health outcomes related to DLC exposure at informal EWRS. In this paper, we have reviewed the environmental levels and body burdens of DLCs at EWRS and compared them with the levels reported to be associated with observable adverse effects to assess the health risks of DLC exposure at EWRS. In general, DLC concentrations at EWRS of many countries have been decreasing in recent years due to stricter regulations on e-waste recycling activities, but the contamination status is still severe. Comparison with available data from industrial sites and well-known highly DLC contaminated areas shows that high levels of DLCs derived from crude e-waste recycling processes lead to elevated body burdens. The DLC levels in human blood and breast milk at EWRS are higher than those reported in some epidemiological studies that are related to various health impacts. The estimated total daily intakes of DLCs for people in EWRS far exceed the WHO recommended total daily intake limit. It can be inferred that people living in EWRS with high DLC contamination have higher health risks. Therefore, more well-designed epidemiological studies are urgently needed to focus on the health effects of DLC pollution in EWRS. Continuous monitoring of the temporal trends of DLC levels in EWRS after actions is of highest importance.
Collapse
Affiliation(s)
- Qingyuan Dai
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, China
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, China
| | - Brenda Eskenazi
- School of Public Health, University of California, Berkeley, USA
| | | | - Aimin Chen
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, USA
| | - Julius Fobil
- School of Public Health, University of Ghana, Ghana
| | - Åke Bergman
- Department of Environmental Science, Stockholm University, Sweden; Department of Science and Technology, Örebro University, Sweden; College of Environmental Science and Engineering, Tongji University, China
| | - Lesley Brennan
- Department of Obstetrics and Gynaecology, University of Alberta, Canada
| | - Peter D Sly
- Child Health Research Centre, University of Queensland, Australia
| | | | - Antonio Pascale
- Department of Toxicology, University of the Republic, Uruguay
| | - Qihua Wang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, China
| | - Eddy Y Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, China
| | - Zhijun Zeng
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, China
| | | | - Marie-Noel Bruné Drisse
- Department of Environment, Climate Change and Health, World Health Organization, Geneva, Switzerland
| | - Xia Huo
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, China.
| |
Collapse
|
18
|
Xu P, Chen Z, Wu L, Chen Y, Xu D, Shen H, Han J, Wang X, Lou X. Health risk of childhood exposure to PCDD/Fs emitted from a municipal waste incinerator in Zhejiang, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 689:937-944. [PMID: 31280174 DOI: 10.1016/j.scitotenv.2019.06.425] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/17/2019] [Accepted: 06/25/2019] [Indexed: 06/09/2023]
Abstract
This study aimed to evaluate the body burdens of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and their associated health impacts toward school-age children living near a municipal waste incinerator (MWI). A total of 82 children from the exposure area and 49 from the control area were recruited. We measured blood PCDD/F levels, conducted comet assays, calculated the percentage of 5-methylcytosine (%5-mC) and 5-hydroxymethylcytosine (%5-hmC), performed flow cytometry, measured hormonal levels, and analyzed hematological parameters. We also examined 17 congeners of PCDD/Fs in environmental samples, namely, eggs, rice, water, soil, and PM2.5. The mean blood levels of ΣPCDD/Fs and TEQ-ΣPCDD/Fs were statistically higher in the exposure group than in the control group (3.40 vs. 2.77 pg/g wet weight and 0.40 vs. 0.28 pg WHO-TEQ/g wet weight, respectively; p < 0.05). By contrast, the %5-mC and %5-hmC levels were statistically lower in the exposure group than in the control group (1.15% vs. 4.66% and 0.22% vs. 0.30%, respectively; p < 0.01), whereas the mean % tail DNA was statistically higher in the exposure group than in the control group (10.10% vs. 8.28%, p < 0.01). The mean blood levels of ΣPCDD/Fs and TEQ-ΣPCDD/Fs were both negatively correlated with %5-mC (r = -0.245 and r = -0.217, respectively; p < 0.01) but not with %5-hmC and % tail DNA (p > 0.05). Furthermore, the mean ΣPCDD/F levels in eggs and soil obtained from the exposure area were statistically higher than those of the samples obtained from the control area (31.08 vs. 4.32 pg/g dry weight and 1026.04 vs. 674.97 pg/g dry weight, respectively). In conclusion, children living near the MWI may suffer genetic and epigenetic modifications, such as DNA damage or global DNA hypomethylation due to the MWI-emitted PCDD/Fs and other contaminants.
Collapse
Affiliation(s)
- Peiwei Xu
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou 310051, China
| | - Zhijian Chen
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou 310051, China
| | - Lizhi Wu
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou 310051, China
| | - Yuan Chen
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou 310051, China
| | - Dandan Xu
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou 310051, China
| | - Haitao Shen
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou 310051, China
| | - Jianlong Han
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou 310051, China
| | - Xiaofeng Wang
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou 310051, China.
| | - Xiaoming Lou
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou 310051, China.
| |
Collapse
|
19
|
Birkett N, Al-Zoughool M, Bird M, Baan RA, Zielinski J, Krewski D. Overview of biological mechanisms of human carcinogens. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2019; 22:288-359. [PMID: 31631808 DOI: 10.1080/10937404.2019.1643539] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This review summarizes the carcinogenic mechanisms for 109 Group 1 human carcinogens identified as causes of human cancer through Volume 106 of the IARC Monographs. The International Agency for Research on Cancer (IARC) evaluates human, experimental and mechanistic evidence on agents suspected of inducing cancer in humans, using a well-established weight of evidence approach. The monographs provide detailed mechanistic information about all carcinogens. Carcinogens with closely similar mechanisms of action (e.g. agents emitting alpha particles) were combined into groups for the review. A narrative synopsis of the mechanistic profiles for the 86 carcinogens or carcinogen groups is presented, based primarily on information in the IARC monographs, supplemented with a non-systematic review. Most carcinogens included a genotoxic mechanism.
Collapse
Affiliation(s)
- Nicholas Birkett
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
- McLaughlin Centre for Population Health Risk Assessment, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Mustafa Al-Zoughool
- Department of Community and Environmental Health, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Michael Bird
- McLaughlin Centre for Population Health Risk Assessment, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Robert A Baan
- International Agency for Research on Cancer, Lyon, France
| | - Jan Zielinski
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
- McLaughlin Centre for Population Health Risk Assessment, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Daniel Krewski
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
- McLaughlin Centre for Population Health Risk Assessment, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Risk Sciences International, Ottawa, Canada
| |
Collapse
|
20
|
Neamah WH, Singh NP, Alghetaa H, Abdulla OA, Chatterjee S, Busbee PB, Nagarkatti M, Nagarkatti P. AhR Activation Leads to Massive Mobilization of Myeloid-Derived Suppressor Cells with Immunosuppressive Activity through Regulation of CXCR2 and MicroRNA miR-150-5p and miR-543-3p That Target Anti-Inflammatory Genes. THE JOURNAL OF IMMUNOLOGY 2019; 203:1830-1844. [PMID: 31492743 DOI: 10.4049/jimmunol.1900291] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 07/30/2019] [Indexed: 12/15/2022]
Abstract
The compound 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), an environmental contaminant, is a potent ligand for aryl hydrocarbon receptor (AhR). In the current study, we made an exciting observation that naive C57BL/6 mice that were exposed i.p. to TCDD showed massive mobilization of myeloid-derived suppressor cells (MDSCs) in the peritoneal cavity. These MDSCs were highly immunosuppressive and attenuated Con A-induced hepatitis upon adoptive transfer. TCDD administration in naive mice also led to induction of several chemokines and cytokines in the peritoneal cavity and serum (CCL2, CCL3, CCL4, CCL11, CXCL1, CXCL2, CXCL5, CXCL9, G-CSF, GM-CSF, VEGF, and M-CSF) and chemokine receptors on MDSCs (CCR1, CCR5, and CXCR2). Treatment with CXCR2 or AhR antagonist in mice led to marked reduction in TCDD-induced MDSCs. TCDD-induced MDSCs had high mitochondrial respiration and glycolytic rate and exhibited differential microRNA (miRNA) expression profile. Specifically, there was significant downregulation of miR-150-5p and miR-543-3p. These two miRNAs targeted and enhanced anti-inflammatory and MDSC-regulatory genes, including IL-10, PIM1, ARG2, STAT3, CCL11 and its receptors CCR3 and CCR5 as well as CXCR2. The role of miRs in MDSC activation was confirmed by transfection studies. Together, the current study demonstrates that activation of AhR in naive mice triggers robust mobilization of MDSCs through induction of chemokines and their receptors and MDSC activation through regulation of miRNA expression. AhR ligands include diverse compounds from environmental toxicants, such as TCDD, that are carcinogenic to dietary indoles that are anti-inflammatory. Our studies provide new insights on how such ligands may regulate health and disease through induction of MDSCs.
Collapse
Affiliation(s)
- Wurood Hantoosh Neamah
- Department of Pathology, Microbiology and Immunology, University of South Carolina, Columbia, SC 29208; and
| | - Narendra P Singh
- Department of Pathology, Microbiology and Immunology, University of South Carolina, Columbia, SC 29208; and
| | - Hasan Alghetaa
- Department of Pathology, Microbiology and Immunology, University of South Carolina, Columbia, SC 29208; and
| | - Osama A Abdulla
- Department of Pathology, Microbiology and Immunology, University of South Carolina, Columbia, SC 29208; and
| | - Saurabh Chatterjee
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC 29208
| | - Philip B Busbee
- Department of Pathology, Microbiology and Immunology, University of South Carolina, Columbia, SC 29208; and
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina, Columbia, SC 29208; and
| | - Prakash Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina, Columbia, SC 29208; and
| |
Collapse
|
21
|
Filip R, Shaw TA, Nishida A, Pezacki JP. Fungal natural alkaloid schizocommunin activates the aryl hydrocarbon receptor pathway. MEDCHEMCOMM 2019; 10:985-990. [PMID: 31303997 DOI: 10.1039/c9md00138g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/09/2019] [Indexed: 12/25/2022]
Abstract
Fungi, including mushrooms and mycelia, are a rich source for natural products with medicinal properties. In some cases, they can lead to opportunistic infections in humans and other mammals. In 1994, the first case of bronchopulmonary mycosis caused by the Schizophyllum commune fungus was described. Culture of the isolated specimen led to the extraction of an alkaloid compound, schizocommunin, which was more recently synthesised for biological characterization. Herein we describe schizocommunin and one of its analogues as cytotoxic against human hepatoma cells at low micromolar concentrations. Schizocommunin is shown to be a potent activator of the aryl hydrocarbon receptor (AhR) gene battery, more specifically increasing expression of the CYP1A1, CYP1B1 and UGT1A genes in human liver and lung cells. A luciferase reporter assay further confirms induction of transcription by these compounds at the xenobiotic response element. This study improves our understanding of the interaction between this fungal metabolite and xenobiotic detoxifying mechanisms in the body, and points to schizocommunin as a putative mediator of the allergic response and a useful molecule for the study of the AhR pathway.
Collapse
Affiliation(s)
- Roxana Filip
- Department of Chemistry and Biomolecular Sciences , University of Ottawa , Ottawa , Canada .
| | - Tyler A Shaw
- Department of Chemistry and Biomolecular Sciences , University of Ottawa , Ottawa , Canada .
| | - Atsushi Nishida
- Graduate School of Pharmaceutical Sciences , Chiba University , Chiba , Japan
| | - John Paul Pezacki
- Department of Chemistry and Biomolecular Sciences , University of Ottawa , Ottawa , Canada .
| |
Collapse
|
22
|
Pang C, Zhu C, Zhang Y, Ge Y, Li S, Huo S, Xu T, Stauber RH, Zhao B. 2,3,7,8-Tetrachloodibenzo-p-dioxin affects the differentiation of CD4 helper T cell. Toxicol Lett 2019; 311:49-57. [PMID: 31014974 DOI: 10.1016/j.toxlet.2019.04.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 03/20/2019] [Accepted: 04/11/2019] [Indexed: 12/22/2022]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), the most toxic congener of dioxins, is a persistent and ubiquitous environmental contaminant. Although the immunotoxic effects of TCDD have been reported, the mechanisms underlying these effects are still unclear. In this study, we have determined the toxic effects of TCDD on thymocytes and splenic T cells with in vitro cell culture systems. Magnetically isolated mouse splenic Th cells, Treg cells and the mixed spleen lymphocytes (SLC) were cultured and treated with TCDD and the differentiation of CD4 Th cells was determined by flow cytometery. Our results showed that different concentrations of TCDD caused immunotoxic effects through different toxicological mechanisms in both the purified mouse splenic Th cells and the mixed SLC. The low dose exposure to TCDD triggered regulatory effects in the immune system, while the high dose TCDD exposure resulted in severe immune toxicity. Notably, a decline of Treg subset was observed, suggesting an imbalanced immune regulation by TCDD treatment, as well as a possible decrease of TCDD's indirect effects on bystander immune cells. Our CD4 Th subset co-culture experiments showed that TCDD-induced pathobiology depended on immune cell balance, suggesting that cytokine-induced microenvironments further modulated toxic effects associated with TCDD exposure.
Collapse
Affiliation(s)
- Chengfang Pang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Department of Environment Engineering, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Conghui Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Yuanyuan Zhang
- Department of Endocrinology, Linyi People's Hospital, Linyi, 276003, China
| | - Ying Ge
- The Finsen Laboratory, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Denmark; Biotech Research and Innovation Centre, University of Copenhagen, 2200, Denmark
| | - Shujuan Li
- Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Shouliang Huo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Tuan Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Roland H Stauber
- Department of Nanobiomedicine/ENT, University Medical Center of Mainz, Langenbeckstrasse 1, 55101, Mainz, Germany
| | - Bin Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
23
|
Li H, Hong W, Jin X, Li G, Zhou G, Fan L. The aryl hydrocarbon receptor is a novel negative regulator of interleukin-17-mediated signaling and inflammation in vitro. FEBS Lett 2019; 593:952-961. [PMID: 30953345 DOI: 10.1002/1873-3468.13380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/24/2019] [Accepted: 03/06/2019] [Indexed: 12/02/2022]
Abstract
Interleukin (IL)-17 plays a critical role in the pathogenesis of inflammation and autoimmune diseases. The aryl hydrocarbon receptor (AHR) is a transcription factor responsible for the elimination of xenobiotic chemicals. However, it remains unknown whether AHR is involved in IL-17 signaling. Here, we demonstrate that knockdown of AHR significantly enhances, while overexpression or activation of AHR inhibits IL-17-induced inflammation in Hela cells. AHR specifically suppresses IL-17-induced p38 activation, and inhibition of p38 activity markedly reverses the effect of AHR knockdown on IL-17-induced inflammation. Mechanistically, AHR physically interacts with TAK1 and mitogen-activated protein kinase kinase 3/6 (MKK3/6) and disrupts TAK1-MKK3/6 interaction, leading to impaired IL-17 signaling. Thus, our study indicates that AHR negatively regulates IL-17-mediated signaling and inflammation at least partially through interfering with the interaction between TAK1 and MKK3/6.
Collapse
Affiliation(s)
- Hui Li
- Department of Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Wei Hong
- Department of Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Xiangyu Jin
- Department of Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Guangliang Li
- Department of Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Guoming Zhou
- Departments of Clinical Laboratory, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Liping Fan
- Department of Clinical Laboratory, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
24
|
Beamer CA, Kreitinger JM, Cole SL, Shepherd DM. Targeted deletion of the aryl hydrocarbon receptor in dendritic cells prevents thymic atrophy in response to dioxin. Arch Toxicol 2019; 93:355-368. [PMID: 30499018 PMCID: PMC6367717 DOI: 10.1007/s00204-018-2366-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 11/20/2018] [Indexed: 12/11/2022]
Abstract
In nearly every species examined, administration of the persistent environmental pollutant, 2,3,7,8-tetrachlorodibenzo-p-dioxin (dioxin, TCDD) causes profound immune suppression and thymic atrophy in an aryl hydrocarbon receptor (AhR) dependent manner. Moreover, TCDD alters the development and differentiation of thymocytes, resulting in decreases in the relative proportion and absolute number of double positive (DP, CD4+CD8+) thymocytes, as well as a relative enrichment in the relative proportion and absolute number of double negative (DN, CD4-CD8-) and single-positive (SP) CD4+CD8- and CD4-CD8+ thymocytes. Previous studies suggested that the target for TCDD-induced thymic atrophy resides within the hemopoietic compartment and implicated apoptosis, proliferation arrest of thymic progenitors, and emigration of DN thymocytes to the periphery as potential contributors to TCDD-induced thymic atrophy. However, the precise cellular and molecular mechanisms involved remain largely unknown. Our results show that administration of 10 µg/kg TCDD and 8 mg/kg 2-(1H-indol-3-ylcarbonyl)-4-thiazolecarboxylic acid methyl ester (ITE) induced AhR-dependent thymic atrophy in mice on day 7, whereas 100 mg/kg indole 3-carbinol (I3C) did not. Though our studies demonstrate that TCDD triggers a twofold increase in the frequency of apoptotic thymocytes, TCDD-induced thymic atrophy is not dependent on Fas-FasL interactions, and thus, enhanced apoptosis is unlikely to be a major mechanistic contributor. Finally, our results show that activation of the AhR in CD11c+ dendritic cells is directly responsible for TCDD-induced alterations in the development and differentiation of thymocytes, which results in thymic atrophy. Collectively, these results suggest that CD11c+ dendritic cells play a critical role in mediating TCDD-induced thymic atrophy and disruption of T lymphocyte development and differentiation in the thymus.
Collapse
Affiliation(s)
- Celine A Beamer
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, 32 Campus Drive, Skaggs Building Room 284, Missoula, MT, 59812, USA
| | | | - Shelby L Cole
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - David M Shepherd
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, 32 Campus Drive, Skaggs Building Room 284, Missoula, MT, 59812, USA.
| |
Collapse
|
25
|
Knutsen HK, Alexander J, Barregård L, Bignami M, Brüschweiler B, Ceccatelli S, Cottrill B, Dinovi M, Edler L, Grasl-Kraupp B, Hogstrand C, Nebbia CS, Oswald IP, Petersen A, Rose M, Roudot AC, Schwerdtle T, Vleminckx C, Vollmer G, Wallace H, Fürst P, Håkansson H, Halldorsson T, Lundebye AK, Pohjanvirta R, Rylander L, Smith A, van Loveren H, Waalkens-Berendsen I, Zeilmaker M, Binaglia M, Gómez Ruiz JÁ, Horváth Z, Christoph E, Ciccolallo L, Ramos Bordajandi L, Steinkellner H, Hoogenboom LR. Risk for animal and human health related to the presence of dioxins and dioxin-like PCBs in feed and food. EFSA J 2018; 16:e05333. [PMID: 32625737 PMCID: PMC7009407 DOI: 10.2903/j.efsa.2018.5333] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The European Commission asked EFSA for a scientific opinion on the risks for animal and human health related to the presence of dioxins (PCDD/Fs) and DL-PCBs in feed and food. The data from experimental animal and epidemiological studies were reviewed and it was decided to base the human risk assessment on effects observed in humans and to use animal data as supportive evidence. The critical effect was on semen quality, following pre- and postnatal exposure. The critical study showed a NOAEL of 7.0 pg WHO2005-TEQ/g fat in blood sampled at age 9 years based on PCDD/F-TEQs. No association was observed when including DL-PCB-TEQs. Using toxicokinetic modelling and taking into account the exposure from breastfeeding and a twofold higher intake during childhood, it was estimated that daily exposure in adolescents and adults should be below 0.25 pg TEQ/kg bw/day. The CONTAM Panel established a TWI of 2 pg TEQ/kg bw/week. With occurrence and consumption data from European countries, the mean and P95 intake of total TEQ by Adolescents, Adults, Elderly and Very Elderly varied between, respectively, 2.1 to 10.5, and 5.3 to 30.4 pg TEQ/kg bw/week, implying a considerable exceedance of the TWI. Toddlers and Other Children showed a higher exposure than older age groups, but this was accounted for when deriving the TWI. Exposure to PCDD/F-TEQ only was on average 2.4- and 2.7-fold lower for mean and P95 exposure than for total TEQ. PCDD/Fs and DL-PCBs are transferred to milk and eggs, and accumulate in fatty tissues and liver. Transfer rates and bioconcentration factors were identified for various species. The CONTAM Panel was not able to identify reference values in most farm and companion animals with the exception of NOAELs for mink, chicken and some fish species. The estimated exposure from feed for these species does not imply a risk.
Collapse
|
26
|
Dornbos P, Warren M, Crawford RB, Kaminski NE, Threadgill DW, LaPres JJ. Characterizing Serpinb2 as a Modulator of TCDD-Induced Suppression of the B Cell. Chem Res Toxicol 2018; 31:1248-1259. [PMID: 30339366 DOI: 10.1021/acs.chemrestox.8b00225] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
2,3,7,8-Tetrachlordibenzo- p-dioxin (TCDD) is an environmental pollutant that can cause various toxic effects, including chloracne, metabolic syndrome, and immune suppression. Most of the toxicity associated with TCDD is mediated through activation of the aryl hydrocarbon receptor (AHR). Recent research has suggested the presence of a wide-range of interindividual variability in TCDD-mediated suppression of the Immunoglobulin-M (IgM) response across the human population. In an attempt to identify putative modifiers of AHR-mediated immunosuppression beyond the AHR, B cells were isolated from a panel of genetically diverse mouse strain to scan for modulators that drive interstrain differences in TCDD-mediated suppression of the IgM response. Results implicated a region of mouse Chromosome 1 near a gene encoding serine peptidase inhibitor, clade B, member 2 ( Serpinb2) whose human ortholog is plasminogen activator inhibitor 2 (PAI2). Further downstream analyses indicated that Serpinb2 is dysregulated by TCDD and, furthermore, that B cells from Serpinb2 -/- mice are significantly more sensitive to TCDD-mediated suppression as compared to littermate controls. This study suggests a protective role of Serpinb2 within TCDD-mediated immunosuppression and, furthermore, a novel function of Serpinb2-related activity in the IgM response.
Collapse
Affiliation(s)
- Peter Dornbos
- Department of Biochemistry and Molecular Biology , Michigan State University , East Lansing , Michigan 48824 , United States.,Institute for Integrative Toxicology , Michigan State University , East Lansing , Michigan 48824 , United States
| | - Melanie Warren
- Interdisciplinary Program in Toxicology , Texas A&M University , College Station , Texas 77843 , United States
| | - Robert B Crawford
- Department of Pharmacology and Toxicology , Michigan State University , East Lansing , Michigan 48824 , United States
| | - Norbert E Kaminski
- Institute for Integrative Toxicology , Michigan State University , East Lansing , Michigan 48824 , United States.,Department of Pharmacology and Toxicology , Michigan State University , East Lansing , Michigan 48824 , United States
| | - David W Threadgill
- Interdisciplinary Program in Toxicology , Texas A&M University , College Station , Texas 77843 , United States
| | - John J LaPres
- Department of Biochemistry and Molecular Biology , Michigan State University , East Lansing , Michigan 48824 , United States.,Institute for Integrative Toxicology , Michigan State University , East Lansing , Michigan 48824 , United States
| |
Collapse
|
27
|
Zhou J, Zhang Q, Henriquez JE, Crawford RB, Kaminski NE. Lymphocyte-Specific Protein Tyrosine Kinase (LCK) is Involved in the Aryl Hydrocarbon Receptor-Mediated Impairment of Immunoglobulin Secretion in Human Primary B Cells. Toxicol Sci 2018; 165:322-334. [PMID: 29860352 PMCID: PMC6659013 DOI: 10.1093/toxsci/kfy133] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a cytosolic ligand-activated transcription factor involved in xenobiotic sensing, cell cycle regulation, and cell development. In humans, the activation of AHR by 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), a high affinity AHR-ligand, impairs the secretion of immunoglobulin M (IgM) to suppress humoral immunity. However, the mechanisms bridging the activation of AHR and the impairment of IgM secretion by human primary B cells remain poorly understood. Recent transcriptomic analysis revealed upregulation of lymphocyte-specific protein tyrosine kinase (LCK) in AHR-activated human primary B cells. LCK is a well-characterized tyrosine kinase that phosphorylates critical signaling proteins involved in activation and cytokine production in T cells. Conversely, the role of LCK in human primary B cells is not well understood. In the current studies, we have verified the transcriptomic finding by detecting AHR-mediated upregulation of LCK protein in human primary B cells. We also confirmed the role of AHR in the upregulation of LCK by using a specific AHR antagonist, which abolished the AHR-mediated increase of LCK. Furthermore, we have confirmed the role of LCK in the AHR-mediated suppression of IgM by using LCK specific inhibitors, which restored the IgM secretion by human B cells in the presence of TCDD. Collectively, the current studies demonstrate a novel role of LCK in IgM response and provide new insights into the mechanism for AHR-mediated impairment of immunoglobulin secretion by human primary B cells.
Collapse
Affiliation(s)
- Jiajun Zhou
- Department of Microbiology & Molecular Genetics
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824
| | - Qiang Zhang
- Department of Environmental Health, Rollins School of Public Health, Emory University, Georgia 30322
| | - Joseph E Henriquez
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, Michigan 48824
| | - Robert B Crawford
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824
| | - Norbert E Kaminski
- Department of Microbiology & Molecular Genetics
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
28
|
Zhou J, Henriquez J, Crawford R, Kaminski N. Suppression of the IgM Response by Aryl Hydrocarbon Receptor Activation in Human Primary B Cells Involves Impairment of Immunoglobulin Secretory Processes. Toxicol Sci 2018; 163:319-329. [PMID: 29462421 PMCID: PMC6659029 DOI: 10.1093/toxsci/kfy036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Aryl hydrocarbon receptor (AHR) activation by 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD) is well established at suppressing humoral immunity. Previous studies in mouse B cells revealed that decreased IgM production was due to a significant suppression in the mRNA levels of the immunoglobulin M components (IgH, IgJ, and Igκ chains) and subsequent decrease in IgM synthesis. In contrast, the current study shows that activation of AHR in human B cells also results in a significant suppression of the number of IgM-secreting cells, but this is not due to a decrease in the transcription or translation of IgH, IgJ, and Igκ chains. Instead, the reduced humoral response is due to the impairment of IgM secretion. This is further evidenced by an accumulation of intracellular IgM in human B cells, which indicates that activation of AHR alters distinct regulatory pathways in human and mouse B cells leading to the suppressed primary IgM response. Collectively, these results demonstrate that although AHR activation mediates suppression of humoral immune responses across many different animal species, the mechanism of action is not necessarily conserved across species.
Collapse
Affiliation(s)
- Jiajun Zhou
- Department of Microbiology and Molecular Genetics
- Institute for Integrative Toxicology
| | - Joseph Henriquez
- Institute for Integrative Toxicology
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan 48824
| | | | - Norbert Kaminski
- Institute for Integrative Toxicology
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
29
|
Micro124-mediated AHR expression regulates the inflammatory response of chronic rhinosinusitis (CRS) with nasal polyps. Biochem Biophys Res Commun 2018; 500:145-151. [PMID: 29605298 DOI: 10.1016/j.bbrc.2018.03.204] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 03/27/2018] [Indexed: 02/07/2023]
Abstract
MicroRNAs represent a component of the innate immune responses that can restrain inflammatory signaling, miR124 is an important member of inflammation-associated miRNAs, and abnormal miR124 expression is observed in many inflammatory diseases and immune disorders. However, the role and signaling pathways of miR124 in chronic rhinosinusitis with nasal polyps (CRSwNPs) have not been studied in detail. The aryl hydrocarbon receptor (AHR) is a ligand-inducible transcription factor that is highly conserved in evolution and plays important roles in the inflammatory response process. In our study, we describe the role of miR124 in the inflammatory response of CRS with nasal polyps. We found that the expression of miR124 was decreased in nasal polyps, and negatively correlated with the expression of AHR. MiR124 can inhibit AHR expression by directly target 3' untranslated region (3'-UTR) of AHR. To further investigate the relationship between miR124, AHR and CRS inflammatory response, we transfect HNEpC cells with miR124 mimic, miR124 inhibitors or siRNA of AHR, then all the results showed that miR124 could regulates cellular inflammatory response through negatively regulating AHR expression. This study demonstrated that the regulation of AHR expression by miR124 is critical to the development of inflammatory response in CRSwNPs.
Collapse
|
30
|
Abstract
Immunotoxicology is the study of immune system dysfunction that can result from occupational, inadvertent, or therapeutic exposure to a variety of chemical or biologic agents that alter the immune system and affect human health. Immunotoxicology can manifest in a variety of ways, with one of the most prominent effects being immunosuppression. Immunosuppression can be defined as a reduced ability of the immune system to respond to a challenge from a level considered normal, regardless of whether clinical disease results. Although immunosuppression can lead to an increased incidence and severity of infectious and neoplastic disease, interpreting data from experimental immunotoxicology studies, or even epidemiologic studies, for quantitative risk assessment has been a persistent challenge. Decades of research has resulted in the development of specific assays and the identification of sensitive endpoints that measure effects on the immune response, from which many regulatory agencies have developed specific immunotoxicity testing guidelines. However, establishing a direct link between exposure and disease manifestations for immunosuppression in humans is an ongoing challenge due to inherent limitations of epidemiological studies to draw causal conclusions. Efforts have been made to examine the relationships between laboratory measures of immune response and disease resistance in experimental animal models and also in human studies. The identification of sensitive endpoints and the development of experimental assays to identify suspect immunotoxicants are a primary focus of the field of immunotoxicology. This chapter is organized around sections discussing the impact and scientific basis of immunotoxicity testing, predictive immunotoxicity testing strategies, examples of immunotoxicity testing, and key considerations and recent developments related to effective testing strategies for health risk reduction.
Collapse
Affiliation(s)
- Stacey E Anderson
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA.
| | - Hillary L Shane
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| |
Collapse
|
31
|
Schiering C, Wincent E, Metidji A, Iseppon A, Li Y, Potocnik AJ, Omenetti S, Henderson CJ, Wolf CR, Nebert DW, Stockinger B. Feedback control of AHR signalling regulates intestinal immunity. Nature 2017; 542:242-245. [PMID: 28146477 PMCID: PMC5302159 DOI: 10.1038/nature21080] [Citation(s) in RCA: 378] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 12/22/2016] [Indexed: 01/17/2023]
Abstract
The aryl hydrocarbon receptor (AHR) recognizes xenobiotics as well as natural compounds such as tryptophan metabolites, dietary components and microbiota-derived factors, and it is important for maintenance of homeostasis at mucosal surfaces. AHR activation induces cytochrome P4501 (CYP1) enzymes, which oxygenate AHR ligands, leading to their metabolic clearance and detoxification. Thus, CYP1 enzymes have an important feedback role that curtails the duration of AHR signalling, but it remains unclear whether they also regulate AHR ligand availability in vivo. Here we show that dysregulated expression of Cyp1a1 in mice depletes the reservoir of natural AHR ligands, generating a quasi AHR-deficient state. Constitutive expression of Cyp1a1 throughout the body or restricted specifically to intestinal epithelial cells resulted in loss of AHR-dependent type 3 innate lymphoid cells and T helper 17 cells and increased susceptibility to enteric infection. The deleterious effects of excessive AHR ligand degradation on intestinal immune functions could be counter-balanced by increasing the intake of AHR ligands in the diet. Thus, our data indicate that intestinal epithelial cells serve as gatekeepers for the supply of AHR ligands to the host and emphasize the importance of feedback control in modulating AHR pathway activation.
Collapse
Affiliation(s)
| | - Emma Wincent
- Swedish Toxicology Sciences Research Center, Södertälje, Sweden
| | | | | | - Ying Li
- The Francis Crick Institute, London, UK
| | - Alexandre J Potocnik
- Institute of Immunology and Infection Research, The University of Edinburgh, Edinburgh, UK
| | | | - Colin J Henderson
- Dundee University School of Medicine, Division of Cancer Research, Dundee, UK
| | - C Roland Wolf
- Dundee University School of Medicine, Division of Cancer Research, Dundee, UK
| | - Daniel W Nebert
- University of Cincinnati, Department of Environmental Health, Cincinnati, Ohio, USA
| | | |
Collapse
|
32
|
Villa M, Gialitakis M, Tolaini M, Ahlfors H, Henderson CJ, Wolf CR, Brink R, Stockinger B. Aryl hydrocarbon receptor is required for optimal B-cell proliferation. EMBO J 2017; 36:116-128. [PMID: 27875245 PMCID: PMC5210087 DOI: 10.15252/embj.201695027] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 10/05/2016] [Accepted: 10/11/2016] [Indexed: 12/18/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR), a transcription factor known for mediating xenobiotic toxicity, is expressed in B cells, which are known targets for environmental pollutants. However, it is unclear what the physiological functions of AhR in B cells are. We show here that expression of Ahr in B cells is up-regulated upon B-cell receptor (BCR) engagement and IL-4 treatment. Addition of a natural ligand of AhR, FICZ, induces AhR translocation to the nucleus and transcription of the AhR target gene Cyp1a1, showing that the AhR pathway is functional in B cells. AhR-deficient (Ahr-/-) B cells proliferate less than AhR-sufficient (Ahr+/+) cells following in vitro BCR stimulation and in vivo adoptive transfer models confirmed that Ahr-/- B cells are outcompeted by Ahr+/+ cells. Transcriptome comparison of AhR-deficient and AhR-sufficient B cells identified cyclin O (Ccno), a direct target of AhR, as a top candidate affected by AhR deficiency.
Collapse
Affiliation(s)
- Matteo Villa
- The Francis Crick Institute, Mill Hill Laboratory, London, UK
| | | | - Mauro Tolaini
- The Francis Crick Institute, Mill Hill Laboratory, London, UK
| | - Helena Ahlfors
- The Francis Crick Institute, Mill Hill Laboratory, London, UK
| | - Colin J Henderson
- Division of Cancer Research, University of Dundee Ninewells Hospital and Medical School, Dundee, UK
| | - C Roland Wolf
- Division of Cancer Research, University of Dundee Ninewells Hospital and Medical School, Dundee, UK
| | - Robert Brink
- Garvan Institute of Medical Research, Sydney, NSW, Australia
| | | |
Collapse
|
33
|
Li J, Phadnis-Moghe AS, Crawford RB, Kaminski NE. Aryl hydrocarbon receptor activation by 2,3,7,8-tetrachlorodibenzo-p-dioxin impairs human B lymphopoiesis. Toxicology 2016; 378:17-24. [PMID: 28049042 DOI: 10.1016/j.tox.2016.12.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/20/2016] [Accepted: 12/31/2016] [Indexed: 12/13/2022]
Abstract
The homeostasis of peripheral B cell compartment requires lifelong B lymphopoiesis from hematopoietic stem cells (HSC). As a result, the B cell repertoire is susceptible to disruptions of hematopoiesis. Increasing evidence, primarily from rodent models, shows that the aryl hydrocarbon receptor (AHR) regulates hematopoiesis. To study the effects of persistent AHR activation on human B cell development, a potent AHR agonist and known environmental contaminant, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) was utilized. An in vitro B cell development model system was established by co-culturing human cord blood-derived HSCs with irradiated human primary bone marrow stromal cells. Using this in vitro model, we found that TCDD significantly suppressed the total number of hematopoietic stem and progenitor cells (HSPC) in a concentration-dependent manner. Cell death analysis demonstrated that the decrease in cell number was not due to cytotoxicity by TCDD. In addition, TCDD markedly decreased CD34 expression on HSPCs. Structure-activity relationship studies using dioxin congeners demonstrated a correlation between the relative AHR binding affinity and the magnitude of decrease in the number of HSPCs and CD34 expression, suggesting that AHR mediates the observed TCDD-elicited changes in HSPCs. Moreover, a significant reduction in lineage committed B cell-derived from HSCs was observed in the presence of TCDD, indicating impairment of human B cell development. Similar effects of TCDD were observed regardless of the use of stromal cells in cultures indicating a direct effect of TCDD on HSCs. Collectively, we demonstrate that AHR activation by TCDD on human HSCs impairs early stages of human B lymphopoiesis.
Collapse
Affiliation(s)
- Jinpeng Li
- Genetics Program, Michigan State University, East Lansing, MI, 48824, United States; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, United States
| | - Ashwini S Phadnis-Moghe
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, United States
| | - Robert B Crawford
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, United States; Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, 48824, United States
| | - Norbert E Kaminski
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, United States; Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, 48824, United States.
| |
Collapse
|
34
|
Kado S, Chang WLW, Chi AN, Wolny M, Shepherd DM, Vogel CFA. Aryl hydrocarbon receptor signaling modifies Toll-like receptor-regulated responses in human dendritic cells. Arch Toxicol 2016; 91:2209-2221. [PMID: 27783115 DOI: 10.1007/s00204-016-1880-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 10/20/2016] [Indexed: 01/04/2023]
Abstract
Currently, it is not well understood how ligands of the aryl hydrocarbon receptor (AhR) modify inflammatory responses triggered by Toll-like receptor (TLR) agonists in human dendritic cells (DCs). Here, we show that AhR ligands 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), the tryptophan derivatives 6-formylindolo[3,2-b] carbazole (FICZ), kynurenine (kyn), and the natural dietary compound indole-3-carbinol (I3C) differentially modify cytokine expression in human monocyte-derived DCs (MoDCs). The results show that TLR-activated MoDCs express higher levels of AhR and are more sensitive toward the effects of AhR ligands. Depending on the cytokine, treatment with AhR ligands led to a synergistic or antagonistic effect of the TLR-triggered response in MoDCs. Thus, activation of AhR increased the expression of interleukin (IL)-1β, but decreased the expression of IL-12A in TLR-activated MoDCs. Furthermore, TCDD and FICZ may have opposite effects on the expression of cytochrome P4501A1 (CYP1A1) in TLR8-activated MoDCs indicating that the effect of the specific AhR ligand may depend on the presence of the specific TLR agonist. Gene silencing showed that synergistic effects of AhR ligands on TLR-induced expression of IL-1β require a functional AhR and the expression of NF-κB RelB. On the other hand, repression of IL-12A by TCDD and FICZ involved the induction of the caudal type homeobox 2 (CDX2) transcription factor. Additionally, the levels of DC surface markers were decreased in MoDCs by TCDD, FICZ and I3C, but not by kyn. Overall, these data demonstrate that AhR modulates TLR-induced expression of cytokines and DC-specific surface markers in MoDCs involving NFκB RelB and the immune regulatory factor CDX2.
Collapse
Affiliation(s)
- Sarah Kado
- Center for Health and the Environment, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - W L William Chang
- Center for Comparative Medicine, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Aimy Nguyen Chi
- Center for Health and the Environment, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Monika Wolny
- Center for Health and the Environment, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - David M Shepherd
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Christoph F A Vogel
- Center for Health and the Environment, University of Montana, Missoula, MT, 59812, USA. .,Department of Environmental Toxicology, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA.
| |
Collapse
|
35
|
Dornbos P, Crawford RB, Kaminski NE, Hession SL, LaPres JJ. The Influence of Human Interindividual Variability on the Low-Dose Region of Dose-Response Curve Induced by 2,3,7,8-Tetrachlorodibenzo-p-Dioxin in Primary B Cells. Toxicol Sci 2016; 153:352-60. [PMID: 27473338 PMCID: PMC5036619 DOI: 10.1093/toxsci/kfw128] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The influence of interindividual variability is not typically assessed in traditional toxicological studies. Given that chemical exposures occur in heterogeneous populations, this knowledge gap has the potential to cause undue harm within the realms of public health and industrial and municipal finances. A recent report from the National Research Council (NRC) suggests that when accounting for interindividual variation in responses, traditionally assumed nonlinear dose-response relationships (DRRs) for noncancer-causing endpoints would better be explained with a linear relationship within the low-dose region. To address this knowledge gap and directly test the NRC's assumption, this study focused on assessing the DRR between 2,3,7,8-tetracholorodibenzo-p-dioxin (TCDD) exposure and immune suppression in a cohort of unique human donors. Human B cells were isolated from 51 individual donors and treated with logarithmically increasing concentrations of TCDD (0-30 nM TCDD). Two endpoints sensitive to TCDD were assessed: (1) number of IgM-secreting B cells and (2) quantity of IgM secreted. The results show that TCDD significantly suppressed both the number of IgM-secreting B cells and the quantity of IgM secreted (P < .05). Statistical model comparisons indicate that the low-dose region of the two DRRs is best explained with a nonlinear relationship. Rather than assuming low-dose linearity for all noncancer-causing DRRs, our study suggests the need to consider the specific mode of action of toxicants and pharmaceuticals during risk-management decision making.
Collapse
Affiliation(s)
- Peter Dornbos
- *Department of Biochemistry and Molecular Biology Institute for Integrative Toxicology
| | | | - Norbert E Kaminski
- Department of Pharmacology and Toxicology Institute for Integrative Toxicology
| | | | - John J LaPres
- *Department of Biochemistry and Molecular Biology Institute for Integrative Toxicology Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, Michigan
| |
Collapse
|
36
|
A Promoter Variant Within the Aryl Hydrocarbon Receptor Gene Is Associated with an Epithelial Barrier Defect in Smokers with Crohn's Disease. Inflamm Bowel Dis 2016; 22:2356-68. [PMID: 27598741 DOI: 10.1097/mib.0000000000000910] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Smoking worsens Crohn's disease (CD). The aryl hydrocarbon receptor (AhR) is a transcription factor that mediates the toxicity of dioxinlike chemicals. We hypothesized that AHR variants and smoking influence CD. METHODS Exon-intron boundaries and coding and promoter regions of AHR gene were sequenced (28 patients with inflammatory bowel disease; 4 healthy controls). Two identified variants (rs7796976 and rs2066853) were studied for an association with intestinal permeability (IP, oral sugar test) in patients with inflammatory bowel disease (stratified according to the smoking status). AHR expression was analyzed by quantitative real-time polymerase chain reaction in colonic biopsies from patients with CD (n = 53). Case-control analysis including a genotype-phenotype correlation was performed for both variants (n = 767 patients with inflammatory bowel disease; n = 466 healthy controls). RESULTS Sequencing identified a putative promoter variant (rs7796976) and a nonsynonymous variant (rs2066853; Arg554Lys) in AHR, both predicted to be functionally relevant. The major G-allele of rs7796976 increased the risk for disturbed IP (odds ratio 1.9, 95% confidence interval [CI], 1.1-3.2) in CD but not ulcerative colitis. We observed an additive effect of the rs7796976 genotype and smoking on IP (P = 0.005), which was also shown for rs2066853 (P = 0.004; variants not linked). Both variants showed a genotype-dependent AHR expression in colonic biopsies of patients with CD. No overall association with either CD or ulcerative colitis was observed; however, the rs7796976 genotype and smoking increased the risk for the L4 phenotype in CD. CONCLUSION Smoking and functionally relevant AHR variants increase IP in CD. Because AhR is known to mediate between smoking and inflammation, these variants might be involved in the deleterious effect of smoking on CD.
Collapse
|
37
|
Helle J, Bader MI, Keiler AM, Zierau O, Vollmer G, Chittur SV, Tenniswood M, Kretzschmar G. Cross-Talk in the Female Rat Mammary Gland: Influence of Aryl Hydrocarbon Receptor on Estrogen Receptor Signaling. ENVIRONMENTAL HEALTH PERSPECTIVES 2016; 124:601-610. [PMID: 26372666 PMCID: PMC4858405 DOI: 10.1289/ehp.1509680] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 09/10/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND Cross-talk between the aryl hydrocarbon receptor (AHR) and the estrogen receptor (ER) plays a major role in signaling processes in female reproductive organs. OBJECTIVES We investigated the influence of the AHR ligand 3-methylcholanthrene (3-MC) on ER-mediated signaling in mammary gland tissue of ovariectomized (ovx) rats. METHODS After 14 days of hormonal decline, ovx rats were treated for 3 days with 4 μg/kg 17β-estradiol (E2), 15 mg/kg 8-prenylnaringenin (8-PN), 15 mg/kg 3-MC, or a combination of these compounds (E2 + 3-MC, 8-PN + 3-MC). Whole-mount preparations of the mammary gland were used to count terminal end buds (TEBs). Protein expression studies (immunohistochemistry, immunofluorescence), a cDNA microarray, pathway analyses, and quantitative real-time polymerase chain reaction (qPCR) were performed to evaluate the interaction between AHR- and ER-mediated signaling pathways. RESULTS E2 treatment increased the number of TEBs and the levels of Ki-67 protein and progesterone receptor (PR); this treatment also changed the expression of 325 genes by more than 1.5-fold. Although 3-MC treatment alone had marginal impact on gene or protein expression, when rats were co-treated with 3-MC and E2, 3-MC strongly inhibited E2-induced TEB development, protein synthesis, and the expression of nearly half of E2-induced genes. This inhibitory effect of 3-MC was partially mirrored when 8-PN was used as an ER ligand. The anti-estrogenicity of ligand-activated AHR was at least partly due to decreased protein levels of ERα in ductal epithelial cells. CONCLUSION Our data show transcriptome-wide anti-estrogenic properties of ligand-activated AHR on ER-mediated processes in the mammary gland, thereby contributing an explanation for the chemopreventive and endocrine-disrupting potential of AHR ligands. CITATION Helle J, Bader MI, Keiler AM, Zierau O, Vollmer G, Chittur SV, Tenniswood M, Kretzschmar G. 2016. Cross-talk in the female rat mammary gland: influence of aryl hydrocarbon receptor on estrogen receptor signaling. Environ Health Perspect 124:601-610; http://dx.doi.org/10.1289/ehp.1509680.
Collapse
Affiliation(s)
- Janina Helle
- Institute of Zoology, Molecular Cell Physiology and Endocrinology, Technische Universität Dresden, Dresden, Germany
| | - Manuela I. Bader
- Institute of Zoology, Molecular Cell Physiology and Endocrinology, Technische Universität Dresden, Dresden, Germany
| | - Annekathrin M. Keiler
- Institute of Zoology, Molecular Cell Physiology and Endocrinology, Technische Universität Dresden, Dresden, Germany
| | - Oliver Zierau
- Institute of Zoology, Molecular Cell Physiology and Endocrinology, Technische Universität Dresden, Dresden, Germany
| | - Günter Vollmer
- Institute of Zoology, Molecular Cell Physiology and Endocrinology, Technische Universität Dresden, Dresden, Germany
| | - Sridar V. Chittur
- Department of Biomedical Sciences, University at Albany, State University of New York, Albany, New York, USA
| | - Martin Tenniswood
- Department of Biomedical Sciences, University at Albany, State University of New York, Albany, New York, USA
| | - Georg Kretzschmar
- Institute of Zoology, Molecular Cell Physiology and Endocrinology, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
38
|
Huang CY, Wu CL, Wu JS, Chang JW, Cheng YY, Kuo YC, Yang YC, Lee CC, Guo HR. Association between Blood Dioxin Level and Chronic Kidney Disease in an Endemic Area of Exposure. PLoS One 2016; 11:e0150248. [PMID: 26963719 PMCID: PMC4786121 DOI: 10.1371/journal.pone.0150248] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 02/11/2016] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Dioxin is an industrial pollutant related to various diseases, but epidemiological data on its effects on the kidney are limited. Therefore, we conducted a study to evaluate the association between dioxin exposure and chronic kidney disease (CKD) and identify the related factors. METHODS We conducted a community-based cross-sectional study and recruited participants from an area where the residents were exposed to dioxin released from a factory. We defined a "high dioxin level" as polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) ≥ 20 pg WHO98-TEQDF/g lipid in the serum and defined CKD as having an estimated glomerular filtration rate (e-GFR) ≤ 60 mL/min/1.73m2 or a diagnosis of CKD by a physician. The renal function was assessed between 2005 and 2010, and we excluded those who had had kidney diseases before the study started. Comparisons between patients of CKD and those who did not have CKD were made to identify the risk factors for CKD. RESULTS Of the 2898 participants, 1427 had high dioxin levels, and 156 had CKD. In the univariate analyses, CKD was associated with high dioxin levels, age, gender, metabolic syndrome, diabetes mellitus, hypertension, and high insulin and uric acid levels. After adjusting for other factors, we found high dioxin levels (adjusted odds ratio [AOR] = 1.76, 95% confidence interval [CI]: 1.04-2.99), female gender (AOR = 1.74, 95%CI: 1.20-2.53), hypertension (AOR = 1.68, 95%CI: 1.17-2.42), high insulin levels (AOR = 2.14, 95% CI: 1.26-3.61), high uric acid levels (AOR = 4.25, 95% CI: 2.92-6.20), and older age (AOR = 4.66, 95% CI: 1.87-11.62 for 40-64 year and AOR = 26.66, 95% CI: 10.51-67.62 for age ≥ 65 year) were independent predictors of CKD. CONCLUSION A high dioxin level was associated with an increased prevalence of CKD. Therefore, the kidney function of populations with exposure to dioxin should be monitored.
Collapse
Affiliation(s)
- Chien-Yuan Huang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Tainan Science Park Clinic, Chi-Mei Medical Center, Tainan, Taiwan
- Department of Occupational Safety and Health, Chang Jung Christian University, Tainan, Taiwan
| | - Cheng-Long Wu
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Occupational and Environmental Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
- Department of Occupational and Environmental Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jin-Shang Wu
- Department of Family Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jung-Wei Chang
- Department of Family Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ya-Yun Cheng
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yau-Chang Kuo
- Department of Occupational and Environmental Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
- Department of Occupational and Environmental Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Ching Yang
- Department of Family Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ching-Chang Lee
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Research Center for Environmental Trace Toxic Substances, National Cheng Kung University, Tainan, Taiwan
| | - How-Ran Guo
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Occupational and Environmental Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
- Department of Occupational and Environmental Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Research Center for Environmental Trace Toxic Substances, National Cheng Kung University, Tainan, Taiwan
- Occupational Safety, Health, and Medicine Research Center, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
39
|
Zhou L. AHR Function in Lymphocytes: Emerging Concepts. Trends Immunol 2016; 37:17-31. [PMID: 26700314 PMCID: PMC4707131 DOI: 10.1016/j.it.2015.11.007] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 11/13/2015] [Accepted: 11/13/2015] [Indexed: 12/12/2022]
Abstract
The aryl hydrocarbon receptor (AHR) is an important regulator of the development and function of both innate and adaptive immune cells through roles associated with AHR's ability to respond to cellular and dietary ligands. Recent findings have revealed tissue and context-specific functions for AHR in both homeostasis and in during an immune response. I review these findings here, and integrate them into the current understanding of the mechanisms that regulate AHR transcription and function. I propose a conceptual framework in which AHR function is determined by three factors: the amount of AHR in any given cell, the abundance and potency of AHR ligands within certain tissues, and the tissue microenvironment wherein AHR(+) cells reside. This complexity emphasizes the necessity cell-type specific genetic approaches towards the study of AHR function.
Collapse
Affiliation(s)
- Liang Zhou
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA.
| |
Collapse
|
40
|
Feng Y, Tian J, Krylova I, Xu T, Xie HQ, Guo TL, Zhao B. Chronic TCDD exposure results in the dysregulation of gene expression in splenic B-lymphocytes and in the impairments in T-cell and B-cell differentiation in mouse model. J Environ Sci (China) 2016; 39:218-227. [PMID: 26899660 DOI: 10.1016/j.jes.2015.11.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 11/01/2015] [Accepted: 11/02/2015] [Indexed: 06/05/2023]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) exposure in humans is associated with marked immune suppressions and increased incidence of lymphoblastic diseases. To elucidate mechanisms of impairments in humoral immune responses, we used a murine model. Following a 20-week administration of low doses of TCDD, we observed severely reduced antibody titers, dramatically decreased number of splenic Th1 and Th2 cells and an increase in CD19(+) B cells. Transcriptional profiling of CD19(+) B cells showed that markers of pre-B cells were significantly elevated, indicating delayed B cell maturation. These changes in B cells were accompanied by decreases of T helper cell numbers and reduced IgM and IgG titers. A transcriptome analysis of splenic B cells followed by Ingenuity Pathway Analysis (IPA) revealed a set of differentially expressed genes known to play roles in tumorigenesis, cell-proliferation and cell-migration. The most up-regulated transcript gene was Eph receptor A2 (EphA2), a known oncogene, and the most down-regulated transcript was ZBTB16 that codes for a negative transcriptional regulator important in epigenetic chromatin remodeling. IPA identified cAMP-responsive element modulator (CREM) and cAMP-responsive element binding protein 1 (CREB1) as top upstream regulators. Consistently, a MAPPER promoter database analysis showed that all top dysregulated genes had CREM and/or CREB1 binding sites in their promoter regions. In summary, our data showed that chronic TCDD exposure in mice caused suppressed humoral immunity accompanied with profound dysregulation of gene expression in splenic B-lymphocytes, likely through cAMP-dependent pathways. This dysregulation resulted in impairments in T-cell and B-cell differentiation and activation of the tumorigenic transcription program.
Collapse
Affiliation(s)
- Yu Feng
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Jijing Tian
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | | | - Tuan Xu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Heidi Qunhui Xie
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Tai L Guo
- Department of Veterinary Biosciences and Diagnostic Imaging, College of Veterinary Medicine, University of Georgia, Athens, GA 30602-7382, USA
| | - Bin Zhao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
41
|
Memari B, Bouttier M, Dimitrov V, Ouellette M, Behr MA, Fritz JH, White JH. Engagement of the Aryl Hydrocarbon Receptor in Mycobacterium tuberculosis-Infected Macrophages Has Pleiotropic Effects on Innate Immune Signaling. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 195:4479-91. [PMID: 26416282 DOI: 10.4049/jimmunol.1501141] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 09/02/2015] [Indexed: 12/12/2022]
Abstract
Understanding the mechanisms of host macrophage responses to Mycobacterium tuberculosis is essential for uncovering potential avenues of intervention to boost host resistance to infection. Macrophage transcriptome profiling revealed that M. tuberculosis infection strongly induced the expression of several enzymes controlling tryptophan catabolism. These included IDO1 and tryptophan 2,3-dioxygenase, which catalyze the rate-limiting step in the kynurenine pathway, producing ligands for the aryl hydrocarbon receptor (AHR). The AHR and heterodimeric partners AHR nuclear translocator and RELB are robustly expressed, and AHR and RELB levels increased further during infection. Infection enhanced AHR/AHR nuclear translocator and AHR/RELB DNA binding and stimulated the expression of AHR target genes, including that encoding the inflammatory cytokine IL-1β. AHR target gene expression was further enhanced by exogenous kynurenine, and exogenous tryptophan, kynurenine, or synthetic agonist indirubin reduced mycobacterial viability. Comparative expression profiling revealed that AHR ablation diminished the expression of numerous genes implicated in innate immune responses, including several cytokines. Notably, AHR depletion reduced the expression of IL23A and IL12B transcripts, which encode subunits of IL-23, a macrophage cytokine that stimulates production of IL-22 by innate lymphoid cells. AHR directly induced IL23A transcription in human and mouse macrophages through near-upstream enhancer regions. Taken together, these findings show that AHR signaling is strongly engaged in M. tuberculosis-infected macrophages and has widespread effects on innate immune responses. Moreover, they reveal a cascade of AHR-driven innate immune signaling, because IL-1β and IL-23 stimulate T cell subsets producing IL-22, another direct target of AHR transactivation.
Collapse
Affiliation(s)
- Babak Memari
- Department of Physiology, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Manuella Bouttier
- Department of Physiology, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Vassil Dimitrov
- Department of Physiology, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Marc Ouellette
- Department of Physiology, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Marcel A Behr
- Department of Medicine, McGill University, Montreal, Quebec H3G 1Y6, Canada; Montreal General Hospital, McGill University, Montreal, Quebec H3G 1A4, Canada; McGill International TB Centre, McGill University, Montreal, Quebec H3G 1A4, Canada; Division of Infectious Diseases and Medical Microbiology, McGill University, Montreal, Quebec H3G 1A4, Canada
| | - Jorg H Fritz
- Department of Physiology, McGill University, Montreal, Quebec H3G 1Y6, Canada; Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3G 0B1, Canada; and Complex Traits Group, McGill University, Montreal, Quebec H3G 0B1, Canada
| | - John H White
- Department of Physiology, McGill University, Montreal, Quebec H3G 1Y6, Canada; Department of Medicine, McGill University, Montreal, Quebec H3G 1Y6, Canada; McGill International TB Centre, McGill University, Montreal, Quebec H3G 1A4, Canada;
| |
Collapse
|
42
|
Klaassen CD, Cui JY. Review: Mechanisms of How the Intestinal Microbiota Alters the Effects of Drugs and Bile Acids. Drug Metab Dispos 2015; 43:1505-21. [PMID: 26261286 DOI: 10.1124/dmd.115.065698] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 08/05/2015] [Indexed: 12/27/2022] Open
Abstract
Information on the intestinal microbiota has increased exponentially this century because of technical advancements in genomics and metabolomics. Although information on the synthesis of bile acids by the liver and their transformation to secondary bile acids by the intestinal microbiota was the first example of the importance of the intestinal microbiota in biotransforming chemicals, this review will discuss numerous examples of the mechanisms by which the intestinal microbiota alters the pharmacology and toxicology of drugs and other chemicals. More specifically, the altered pharmacology and toxicology of salicylazosulfapridine, digoxin, l-dopa, acetaminophen, caffeic acid, phosphatidyl choline, carnitine, sorivudine, irinotecan, nonsteroidal anti-inflammatory drugs, heterocyclic amines, melamine, nitrazepam, and lovastatin will be reviewed. In addition, recent data that the intestinal microbiota alters drug metabolism of the host, especially Cyp3a, as well as the significance and potential mechanisms of this phenomenon are summarized. The review will conclude with an update of bile acid research, emphasizing the bile acid receptors (FXR and TGR5) that regulate not only bile acid synthesis and transport but also energy metabolism. Recent data indicate that by altering the intestinal microbiota, either by diet or drugs, one may be able to minimize the adverse effects of the Western diet by altering the composition of bile acids in the intestine that are agonists or antagonists of FXR and TGR5. Therefore, it may be possible to consider the intestinal microbiota as another drug target.
Collapse
Affiliation(s)
- Curtis D Klaassen
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| |
Collapse
|
43
|
Mohinta S, Kannan AK, Gowda K, Amin SG, Perdew GH, August A. Differential regulation of Th17 and T regulatory cell differentiation by aryl hydrocarbon receptor dependent xenobiotic response element dependent and independent pathways. Toxicol Sci 2015; 145:233-43. [PMID: 25716673 DOI: 10.1093/toxsci/kfv046] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) is regarded as an environmental sensor and has been shown to link environmental stresses with chronic inflammatory and autoimmune diseases. The AHR can be activated to regulate both the X/DRE (xenobiotic or dioxin response elements) as well as a non-X/DRE mediated pathway. Selective AHR modulators (SAhRMs) are recently identified compounds that activate non-X/DRE mediated pathway without activating the X/DRE-driven responses. Here, we have used 3 classes of AHR ligands; agonist, antagonist, and a SAhRM, to delineate the role of these AHR-driven pathways in T helper 17 (Th17)/T regulatory (Treg) regulation. We show that Th17 differentiation is primarily dependent on X/DRE-driven responses, whereas Treg differentiation can be suppressed by inhibiting non-X/DRE pathway. Using a model of Citrobacter rodentium infection, we further show that AHR agonist enhances Th17 production and promoted resolution of infection, whereas a SAhRM inhibited Th17 mediated responses with reduced resolution of infection. These data indicate that Th17/Treg function may be differentially regulated by SAhRMs that differentially activate the X/DRE and non-X/DRE mediated pathways, and point to a therapeutic strategy to leverage AHR function in the treatment of chronic inflammatory and autoimmune disease.
Collapse
Affiliation(s)
- Sonia Mohinta
- *Department of Microbiology and Immunology, Cornell University, Ithaca, New York 14853, Department of Pharmacology, Pennsylvania State College of Medicine, Hershey, Pennsylvania 17033 and Center for Molecular Toxicology, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania 16801
| | - Arun K Kannan
- *Department of Microbiology and Immunology, Cornell University, Ithaca, New York 14853, Department of Pharmacology, Pennsylvania State College of Medicine, Hershey, Pennsylvania 17033 and Center for Molecular Toxicology, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania 16801
| | - Krishne Gowda
- *Department of Microbiology and Immunology, Cornell University, Ithaca, New York 14853, Department of Pharmacology, Pennsylvania State College of Medicine, Hershey, Pennsylvania 17033 and Center for Molecular Toxicology, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania 16801
| | - Shantu G Amin
- *Department of Microbiology and Immunology, Cornell University, Ithaca, New York 14853, Department of Pharmacology, Pennsylvania State College of Medicine, Hershey, Pennsylvania 17033 and Center for Molecular Toxicology, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania 16801
| | - Gary H Perdew
- *Department of Microbiology and Immunology, Cornell University, Ithaca, New York 14853, Department of Pharmacology, Pennsylvania State College of Medicine, Hershey, Pennsylvania 17033 and Center for Molecular Toxicology, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania 16801
| | - Avery August
- *Department of Microbiology and Immunology, Cornell University, Ithaca, New York 14853, Department of Pharmacology, Pennsylvania State College of Medicine, Hershey, Pennsylvania 17033 and Center for Molecular Toxicology, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania 16801
| |
Collapse
|
44
|
Stockinger B, Di Meglio P, Gialitakis M, Duarte JH. The aryl hydrocarbon receptor: multitasking in the immune system. Annu Rev Immunol 2014; 32:403-32. [PMID: 24655296 DOI: 10.1146/annurev-immunol-032713-120245] [Citation(s) in RCA: 662] [Impact Index Per Article: 66.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The aryl hydrocarbon receptor (AhR), for many years almost exclusively studied by the pharmacology/toxicology field for its role in mediating the toxicity of xenobiotics such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), has more recently attracted the attention of immunologists. The evolutionary conservation of this transcription factor and its widespread expression in the immune system point to important physiological functions that are slowly being unraveled. In particular, the emphasis is now shifting from the role of AhR in the xenobiotic pathway toward its mode of action in response to physiological ligands. In this article, we review the current understanding of the molecular interactions and functions of AhR in the immune system in steady state and in the presence of infection and inflammation, with a focus on barrier organs such as the skin, the gut, and the lung.
Collapse
Affiliation(s)
- Brigitta Stockinger
- Division of Molecular Immunology, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, United Kingdom; , , ,
| | | | | | | |
Collapse
|
45
|
Novel role of hnRNP-A2/B1 in modulating aryl hydrocarbon receptor ligand sensitivity. Arch Toxicol 2014; 89:2027-38. [PMID: 25224401 DOI: 10.1007/s00204-014-1352-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 08/25/2014] [Indexed: 10/24/2022]
Abstract
The aryl hydrocarbon receptor (AHR) is responsible for susceptibility to its ligand-dependent responses. However, the effect of non-AHR factors is less clear. To explore the non-AHR factors, we used two mouse strains with different AHR genetic variants, namely C3H/lpr and MRL/lpr strains with Ala and Val as the 375th amino acid residue, respectively. To assess the contribution of AHR alone, COS-7 cells transiently expressing AHR from each strain were treated with 6-formylindolo[3,2-b]carbazole (FICZ) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), and xenobiotic-responsive element (XRE)-driven reporter gene activities were measured. FICZ-EC50 values for the C3H/lpr and MRL/lpr AHR-mediated transactivation were 0.023 and 0.046 nM, respectively, indicating a similar susceptibility in both AHR genotypes. In contrast, C3H/lpr AHR was fourfold more sensitive to TCDD than MRL/lpr AHR. By a pull-down assay using a XRE-containing PCR product as bait and the hepatic nuclear extracts of both FICZ-treated mouse strains, we identified two interacting proteins as heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNP-A2) and its splicing variant (hnRNP-A2b). Immunoprecipitation assays demonstrated the AHR interaction with hnRNP-A2/B1. When hnRNP-A2 was co-expressed with the MRL/lpr or C3H/lpr AHR in COS-7, FICZ treatment decreased EC50 to about threefold in both AHR genotypes, compared with EC50 in AHR alone. Similarly, hnRNP-A2b co-expression also lowered the FICZ-EC50 values. In TCDD-treated COS-7, responses depended on the AHR genotype; while no change in TCDD-EC50 was observed for C3H/lpr AHR when hnRNP-A2 was co-expressed, the value was reduced to nearly tenfold for MRL/lpr AHR. Co-transfection with hnRNP-A2b attenuated the AHR sensitivity to TCDD. In conclusion, the hnRNP-A2/B1 interacting with AHR may be a modulator of the AHR ligand sensitivity.
Collapse
|
46
|
Nakata Y, Nishi K, Nishimoto S, Sugahara T. Phenylhydroquinone induces loss of thymocytes through cell cycle arrest and apoptosis elevation in p53-dependent pathway. J Toxicol Sci 2013; 38:325-35. [PMID: 23665931 DOI: 10.2131/jts.38.325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
ortho-Phenylphenol has been employed in post-harvest treatment of citrus fruits. Although o-phenylphenol has been reported to cause carcinomas in the urinary tract in rats, toxicity to the immune organs is still unknown. Herein, we report that administration of o-phenylphenol induces thymic atrophy and loss of thymocytes in female BALB/c mice. The influence seems to result from inhibition of the thymocyte development, because increased and decreased populations of the CD4⁻ CD8⁻ double-negative and CD4⁺ CD8⁺ double-positive thymocytes were observed in the o-phenylphenol-administered mice, respectively. ortho-Phenylphenol is metabolized to phenylhydroquinone by cytochrome P450 monooxygenases. Phenylhydroquinone made cell cycle of thymocytes to be arrested through reduced expression of the genes associated with G₂/M phase and through phosphorylation of p53 at Ser15. Phosphorylation of p53 at Ser15 was upregulated by activation of not only ATR but also Erk1/2 and p38, leading to increase of apoptosis. Gene expression of cytochrome P450 1A1 (CYP1A1) was promoted in thymocytes from the o-phenylphenol-administered mice. Overall, our results suggest that o-phenylphenol induces CYP1A1 expression and is metabolized into phenylhydroquinone by the expressed CYP1A1 in thymocytes. The produced phenylhydroquinone in turn induces inhibition of thymocyte development through cell cycle arrest and apoptosis in the p53-dependent pathway.
Collapse
|
47
|
Vogel CFA, Wu D, Goth SR, Baek J, Lollies A, Domhardt R, Grindel A, Pessah IN. Aryl hydrocarbon receptor signaling regulates NF-κB RelB activation during dendritic-cell differentiation. Immunol Cell Biol 2013; 91:568-75. [PMID: 23999131 PMCID: PMC3806313 DOI: 10.1038/icb.2013.43] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 07/26/2013] [Accepted: 07/27/2013] [Indexed: 12/26/2022]
Abstract
How the aryl hydrocarbon receptor (AhR) regulates dendritic-cell (DC) differentiation is unknown. We show that activation of AhR by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) caused enhanced differentiation from immature DCs (IDCs) to mature DCs (MDCs) in the bone-marrow-derived DCs (BMDC) from B6 wild-type mice but not in the BMDCs from AhR-null mice as indicated by the expression of CD11c and class II major histocompatibility complex (MHC). Enhanced maturation of BMDCs was associated with elevated levels of CD86 and an increased AhR-dependent nuclear accumulation of nuclear factor-kappa-light-chain enhancer of activated B cell (NF-κB) member RelB in BMDCs. The expression of interleukin (IL) 10 and chemokine DC-CK1 was suppressed, whereas that of CXCL2, CXCL3 and IL-22 was significantly increased in AhR-activated BMDCs. Furthermore, TCDD induced expression of the regulatory enzymes indoleamine 2,3-dioxygenase (IDO1) and indoleamine 2,3-dioxygenase-like 1 (IDO2). Increased expression of IDO2 was associated with coexpression of the cell-surface marker CCR6. Interestingly, mRNA expression of the chemokine receptor CCR6 was drastically decreased in AhR-null IDCs and MDCs. Overall, these data demonstrate that AhR modifies the maturation of BMDCs associated with the induction of the regulatory enzyme IDO and altered expression of cytokine, chemokines and DC-specific surface markers and receptors.
Collapse
Affiliation(s)
- Christoph F A Vogel
- Department of Environmental Toxicology, University of California at Davis, Davis, CA, USA
- Center for Health and the Environment, University of California at Davis, Davis, CA, USA
| | - Dalei Wu
- Center for Health and the Environment, University of California at Davis, Davis, CA, USA
| | - Samuel R Goth
- School of Veterinary Medicine: Molecular Biosciences, University of California at Davis, Davis, CA, USA
| | - Jaeeun Baek
- Center for Health and the Environment, University of California at Davis, Davis, CA, USA
| | - Anna Lollies
- Center for Health and the Environment, University of California at Davis, Davis, CA, USA
| | - Rowena Domhardt
- Center for Health and the Environment, University of California at Davis, Davis, CA, USA
| | - Annemarie Grindel
- Center for Health and the Environment, University of California at Davis, Davis, CA, USA
| | - Isaac N Pessah
- School of Veterinary Medicine: Molecular Biosciences, University of California at Davis, Davis, CA, USA
| |
Collapse
|
48
|
2,3,7,8-tetrachlorodibenzo-p-dioxin slows the progression of experimental cutaneous Leishmaniasis in susceptible BALB/c and SCID mice. PLoS One 2013; 8:e76259. [PMID: 24098456 PMCID: PMC3788076 DOI: 10.1371/journal.pone.0076259] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 08/22/2013] [Indexed: 12/01/2022] Open
Abstract
In a model of experimental cutaneous leishmaniasis, pre-exposure of Leishmania major-resistant mice to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), an aryl hydrocarbon receptor agonist, causes suppression of the protective anti-parasite T helper 1 response while paradoxically also reducing parasite burdens in those animals. In this study, we examined if TCDD exposure could also reduce parasite burdens in L. major-susceptible BALB/c mice. In the highest dose group (160 µg/Kg), TCDD treatment caused a significant reduction of parasite burdens by 10-fold after three weeks while also causing a significant lymphoid atrophy indicating suppression of the non-protective T helper 2 response. A dose-dependent delay of foot lesion progression was also observed such that lesion size in the highest dose group was less than half that of controls after 35 days of infection. Importantly, although TCDD exposure initially reduced disease severity and prolonged the course of disease by as much as three fold in some animals, this effect was transitory and TCDD did not induce resistance to L. major infection. Because TCDD exposure reduced L. major burdens in both resistant and susceptible mice, we hypothesized that TCDD reduces L. major burdens in mice by a mechanism that does not involve adaptive immunity. To test this, severe combined immunodeficient (SCID) mice were used. In mice infected with a moderate number of L. major (10,000), TCDD treatment caused a time- and dose-dependent decrease of parasite burdens by nearly 100-fold after six weeks in the highest dose group (200 µg/Kg). A significant and dose-dependent delay of foot lesion progression was also observed in these animals. These results indicate that TCDD exposure can reduce the severity of leishmanial disease in mice independent of adaptive immunity.
Collapse
|
49
|
The immunotoxic effects of dual exposure to PCP and TCDD. Chem Biol Interact 2013; 206:166-74. [PMID: 24051191 DOI: 10.1016/j.cbi.2013.09.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 08/22/2013] [Accepted: 09/09/2013] [Indexed: 01/06/2023]
Abstract
Pentachlorophenol (PCP) was a commonly used fungicide, herbicide, insecticide, and bactericide in industrial, agricultural, and domestic settings; however, it was also contaminated with polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs). It has been reported that technical grade PCP had immunosuppressive effects and that the immune system was the major target of PCDD/PCDFs toxicity. Although the immune response after exposure to PCP or 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) has been studied, the toxic effects of exposure to both PCP and TCDD have not yet been reported. The aim of this study was to evaluate the effects on immune cells from mice intraperitoneally immunized with OVA and subsequently treated with PCP or TCDD alone or in combination by gavage. The animals were terminated on day 7 and 14, and the spleen and plasma samples were collected for immunotoxicity evaluation. The numbers and populations of splenocytes, T cell-derived cytokines produced by splenocytes, splenocyte-generated cytotoxicity and OVA-specific antibodies in plasma were investigated. Our results indicate that the spleen/body weight ratio and splenocyte number was reduced by TCDD alone; in addition, this reduction was enhanced when TCDD was combined with PCP. Exposure to TCDD alone or in conjunction with PCP suppressed many ovalbumin (OVA)-stimulated cytokines, including IL-2, IFN-γ, IL-4, IL-5, and IL-10. Furthermore, the immunoglobulins IgG and IgM were suppressed in mice administered by PCP alone, but the suppressive effects were greater in mice treated with TCDD alone or in combination with PCP. Co-exposure to PCP and TCDD resulted in an antagonistic effect on TCDD-induced suppression of IFN-γ and IL-10. Our results demonstrate that PCP alone is immunotoxic, regardless of the presence of TCDD. PCP led to mild changes in cytokine secretion, and it compromised splenocyte-generated cytotoxicity and IgM and IgG antibody production on day 7. The finding that PCP antagonizes TCDD-induced IFN-γ suppression could be due to the competitive binding of PCP to AhR (aryl hydrocarbon receptor).
Collapse
|
50
|
Całkosiński I, Rosińczuk-Tonderys J, Bazan J, Dzierzba K, Całkosińska M, Majda J, Dobrzyński M, Bronowicka-Szydełko A. The influence of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on hematological parameters during experimentally induced pleuritis in rats. Inflammation 2013; 36:387-404. [PMID: 23100032 PMCID: PMC3591537 DOI: 10.1007/s10753-012-9558-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Proper functioning of homeostatic mechanisms is characteristic for every healthy organism and enables adapting to environmental changes. These complicated systematic reactions can neutralize the harmful stress factors leading to various inflammatory reactions. The aim of this study was to determine dynamic changes in the inflammatory reaction after single 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) administration of 5 μg/kg body weight into rats with experimentally induced pleuritis. These changes were observed by monitoring the hematological blood parameters during inflammation. The obtained results proved that dioxins contribute to various changes in the character of the inflammatory response. TCDD administration before pleuritis initiation caused an increase of lymphocytes and significant decrease of the number of neutrophils during inflammation. The current study proved that administration of low TCDD dose (seven times lower than used in other studies) can cause thymus, spleen, or lymphatic gland atrophy. This finding indicates the toxic influence of small TCDD dose especially on the immune system.
Collapse
Affiliation(s)
- Ireneusz Całkosiński
- Department of Nervous System Diseases, The Faculty of Health Science, Wroclaw Medical University, Bartla 5, 51-618 Wroclaw, Poland
| | - Joanna Rosińczuk-Tonderys
- Department of Nervous System Diseases, The Faculty of Health Science, Wroclaw Medical University, Bartla 5, 51-618 Wroclaw, Poland
| | - Justyna Bazan
- Department of Nervous System Diseases, The Faculty of Health Science, Wroclaw Medical University, Bartla 5, 51-618 Wroclaw, Poland
| | - Katarzyna Dzierzba
- Department of Medical Biochemistry, Wroclaw Medical University, Chalubinskiego 10, 50-368 Wroclaw, Poland
| | - Monika Całkosińska
- Outpatient Clinic Medcom in Wojkowice, Wojkowice 28B, 55-020 Zurawina, Poland
| | - Jacek Majda
- Department of Diagnostics Laboratory, 4th Military Academic Hospital in Wroclaw, Weigla 5, 53-114 Wroclaw, Poland
| | - Maciej Dobrzyński
- Department of Conservative Dentistry and Pedodontics, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland
| | | |
Collapse
|