1
|
Zhang W, Qin P, Li M, Pan Z, Wu Z, Zhu Y, Liu Y, Li Y, Fang F. NAGK regulates the onset of puberty in female mice. Theriogenology 2024; 231:228-239. [PMID: 39488153 DOI: 10.1016/j.theriogenology.2024.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/23/2024] [Accepted: 10/23/2024] [Indexed: 11/04/2024]
Abstract
This study examines the role of N-acetylglucosamine kinase (NAGK) in initiating puberty in female mice. We employed real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR) and immunofluorescence to measure NAGK expression in the hypothalamic-pituitary-ovarian axis across various developmental stages: infant, prepuberty, puberty, and adult. We further investigated the impact of Nagk gene knockdown on puberty in female mice. This included assessing the expression of puberty-related genes both in vivo and in vitro, GT1-7 cells proliferation and apoptosis, concentrations of GnRH and Kisspeptin, puberty onset timing, serum levels of progesterone (P4) and estradiol (E2), and ovarian morphology. Results revealed that Nagk mRNA is present in the hypothalamus, pituitary, and ovaries throughout different developmental stages in female mice. In the hypothalamus, Nagk mRNA levels were comparable during infant and prepuberty, lowest during puberty, and highest in adult. In the pituitary, Nagk mRNA peaked in adult, with no significant variation between infant, prepuberty, and puberty. In the ovaries, Nagk mRNA levels increased during puberty and peaked in adult. NAGK is predominantly located in the arcuate nucleus (ARC), periventricular nucleus (PeN), dorsomedial hypothalamic nucleus (DMH), paraventricular nucleus (PVN), adenohypophysis, and in the ovarian oocytes, interstitium, and granulosa cells across all developmental stages in female mice. Nagk knockdown in GT1-7 cells decreased the transcriptional level of Gnrh, Kiss1, Gpr54, Igf1 and Mapk14 mRNA and cell proliferation but increased the level of β-catenin mRNA and cell apoptosis, while reducing GnRH secretion. Following ICV injection, Nagk gene knockdown mice exhibited delayed the timing of vaginal opening (VO) and reduced hypothalamic levels of Gnrh, Kiss1, Gpr54, Igf1, Mapk14, and β-catenin mRNA. Additionally, serum concentrations of E2 in Nagk gene knockdown mice were significantly lower compared to the control group. These findings indicate that Nagk regulates the expression of Gnrh and Kiss1 mRNA in GT1-7 cells, affects hypothalamus Gnrh mRNA levels and serum E2 concentration, and that its knockdown can delay puberty onset in female mice.
Collapse
Affiliation(s)
- Wei Zhang
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China; Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China
| | - Ping Qin
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China; Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China
| | - Mengxian Li
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China; Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China
| | - Zhihao Pan
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China; Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China
| | - Zhuoya Wu
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China; Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China
| | - Yanyun Zhu
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China; Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China
| | - Ya Liu
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China; Anhui Provincial Key Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei, Anhui, 230036, China; Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China
| | - Yunsheng Li
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China; Anhui Provincial Key Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei, Anhui, 230036, China; Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China
| | - Fugui Fang
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China; Anhui Provincial Key Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei, Anhui, 230036, China; Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China.
| |
Collapse
|
2
|
原 晋, 王 新, 崔 蕴, 王 雪. [Application of urinary luteinizing hormone in the prediction of central precocious puberty in girls]. BEIJING DA XUE XUE BAO. YI XUE BAN = JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2024; 56:788-793. [PMID: 39397455 PMCID: PMC11480549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Indexed: 10/15/2024]
Abstract
OBJECTIVE To evaluate the level of first morning voided (FMV) urinary luteinizing hormone (LH) in girls with breast development, and to determine the value of FMV urine LH in the evaluation of central precocious puberty (CPP). METHODS From September 2018 to April 2021, among the patients who were admitted to the Department of Pediatrics of Peking University Third Hospital for "precocious puberty" and underwent gonadotropin-releasing hormone (GnRH) stimulation test, a total of 108 girls were enrolled. According to CPP diagnostic criteria, they were divided into CPP group (n=45) and non-CPP group (n=63). The clinical characteristics and hormone levels of the two groups were compared. Receiver operating characteristic (ROC) curve was used to analyze the cut-off value of FMV urinary LH in the diagnosis of CPP in girls. Further analyses were done to evaluate the value of FMV urinary LH in the diagnosis of CPP using correlation analysis between urinary LH level and common clinical cha-racteristics. RESULTS ROC curve analysis showed that FMV urine LH level was significant for the diagnosis of CPP. The cut-off value of FMV urine LH was 0.69 IU/L (specificity 56.9%, sensitivity 85.0%, area under curve 0.804, P < 0.001). The basic clinical characteristics without GnRH stimulation test were analyzed by binary Logistic regression analysis, indicating that the level of FMV urine LH, uterine volume, ovarian volume and advanced T-bone age had predictive significance for CPP diagnosis in girls (OR values were 2.125, 1.961, 1.564 and 2.672, respectively). The prediction model was established and the area under the ROC curve was 0.904, P < 0.001. The level of FMV urine LH was positively correlated with the levels of serum LH, FSH and estrogen before GnRH stimulation test, the peak value of blood LH after GnRH stimulation test, T bone age and uterine volume, with r values of 0.462, 0.373, 0.242, 0.360, 0.373 and 0.263, respectively, and P values were < 0.001, < 0.001, 0.013, < 0.001, < 0.001 and 0.007, respectively. CONCLUSION FMV urine LH can provide a good indication for the diagnosis of CPP. Combining with bone age advanced level and pelvic ultrasound measurement, the predictive value of FMV urine LH can be further improved for the diagnosis of CPP in girls.
Collapse
Affiliation(s)
- 晋芳 原
- />北京大学第三医院儿科, 北京 100191Department of Pediatrics, Peking University Third Hospital, Beijing 100191, China
| | - 新利 王
- />北京大学第三医院儿科, 北京 100191Department of Pediatrics, Peking University Third Hospital, Beijing 100191, China
| | - 蕴璞 崔
- />北京大学第三医院儿科, 北京 100191Department of Pediatrics, Peking University Third Hospital, Beijing 100191, China
| | - 雪梅 王
- />北京大学第三医院儿科, 北京 100191Department of Pediatrics, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
3
|
Liu YC, Liao YT, Chen VCH, Chen YL. ADHD and Risk of Precocious Puberty: Considering the Impact of MPH. Biomedicines 2024; 12:2304. [PMID: 39457616 PMCID: PMC11505504 DOI: 10.3390/biomedicines12102304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES The complex association between attention-deficit/hyperactivity disorder (ADHD) and methylphenidate (MPH) with precocious puberty (PP) is still unclear. This study aims to investigate the association between ADHD, MPH, and PP. METHODS This is a nationwide cohort study including a total of 3,342,077 individuals, 186,681 with ADHD and 3,155,396 without. First, we compared the risk of PP between ADHD cases and non-ADHD cases. Second, we compared the risk of PP between MPH users and non-MPH users in patients with ADHD. RESULTS Patients with ADHD were at a greater risk of PP (adjusted hazard ratio [aHR], 2.01 [95% CI, 1.91-2.11]). In our moderation analyses, the female gender was a positive additive effect modifier of the association between ADHD and PP, whereas tics and intellectual disability were negative effect modifiers. In patients with ADHD, MPH users had a significantly lower risk of PP (aHR, 0.63 [95% CI 0.57-0.70]), and females had a negative effect modification on the association between MPH and PP. CONCLUSIONS Our study found that children with ADHD were at a greater risk of PP. Girls with ADHD were a group particularly vulnerable to PP. Comorbid tics or intellectual disability was associated with a lower risk of PP. Among patients with ADHD, MPH was protective against PP, especially in girls. However, these preliminary results need further validation due to the nature of them being from an electronic database study. Unmeasured confounding factors might affect the association between MPH and PP.
Collapse
Affiliation(s)
- Yi-Chun Liu
- Department of Psychiatry, Changhua Christian Children’s Hospital, Changhua 500010, Taiwan;
- Department of Psychiatry, Changhua Christian Hospital, Changhua 500209, Taiwan
- Department of Healthcare Administration, Asia University, Taichung 413305, Taiwan
| | - Yin-To Liao
- Department of Psychiatry, China Medical University, Taichung 404333, Taiwan;
- Department of Psychiatry, China Medical University Hospital, Taichung 404333, Taiwan
| | - Vincent Chin-Hung Chen
- School of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
- Department of Psychiatry, Chiayi Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
| | - Yi-Lung Chen
- Department of Healthcare Administration, Asia University, Taichung 413305, Taiwan
- Department of Psychology, Asia University, Taichung 413305, Taiwan
| |
Collapse
|
4
|
Esposito P, Dubé-Zinatelli E, Gandelman M, Liu E, Cappelletti L, Liang J, Ismail N. The enduring effects of antimicrobials and lipopolysaccharide on the cellular mechanisms and behaviours associated with neurodegeneration in pubertal male and female CD1 mice. Neuroscience 2024; 557:67-80. [PMID: 39127344 DOI: 10.1016/j.neuroscience.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/12/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
Puberty is a sensitive developmental period during which stressors can cause lasting brain and behavioural deficits. While the acute effects of pubertal lipopolysaccharide (LPS) and antimicrobial (AMNS) treatments are known, their enduring impacts on neurodegeneration-related mechanisms and behaviours remain unclear. This study examined these effects in male and female mice. At five weeks old, mice received 200ul of either broad-spectrum antimicrobials or water through oral gavage twice daily for seven days. At six weeks of age, they received an intraperitoneal injection of either saline or LPS. Four weeks later, adult mice underwent neurodegeneration-related behavioural tests, including the rotarod, forepaw stride length, reversed grid hang, open field, and buried pellet tests. Two days after the final test, brain and ileal samples were collected. Results showed that female mice treated with both AMNS and LPS exhibited deficits in neuromuscular strength, while males treated with LPS alone showed increased anxiety-like behaviours. Males treated with AMNS alone had decreased sigma-1 receptor (S1R) expression in the cornu ammonis 1 (CA1) and dentate gyrus (DG), while females treated with both AMNS and LPS had decreased S1R expression. Additionally, males treated with either LPS or AMNS had lower glial-derived neurotrophic factor receptor alpha-1 (GFRA1) expression in the primary motor cortex (M1) than females. Mice treated with LPS alone had decreased GFRA1 expression in the DG and decreased S1R expression in the secondary motor cortex (M2). These findings suggest that pubertal AMNS and LPS treatments may lead to enduring changes in biomarkers and behaviours related to neurodegeneration.
Collapse
Affiliation(s)
- Pasquale Esposito
- NISE Laboratory, School of Psychology, Faculty of Social Sciences, University of Ottawa, Ontario K1N 6N5, Canada
| | - Eleni Dubé-Zinatelli
- NISE Laboratory, School of Psychology, Faculty of Social Sciences, University of Ottawa, Ontario K1N 6N5, Canada
| | - Michelle Gandelman
- NISE Laboratory, School of Psychology, Faculty of Social Sciences, University of Ottawa, Ontario K1N 6N5, Canada
| | - Ella Liu
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Luna Cappelletti
- NISE Laboratory, School of Psychology, Faculty of Social Sciences, University of Ottawa, Ontario K1N 6N5, Canada
| | - Jacky Liang
- NISE Laboratory, School of Psychology, Faculty of Social Sciences, University of Ottawa, Ontario K1N 6N5, Canada
| | - Nafissa Ismail
- NISE Laboratory, School of Psychology, Faculty of Social Sciences, University of Ottawa, Ontario K1N 6N5, Canada; Brain and Mind Research Institute, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada.
| |
Collapse
|
5
|
Daniele C, Wacks RE, Farland LV, Manson JE, Qi L, Shadyab AH, Wassertheil-Smoller S, Spracklen CN. Associations between birthweight and preterm birth and the ages at menarche and menopause. BMC Womens Health 2024; 24:546. [PMID: 39363289 PMCID: PMC11448270 DOI: 10.1186/s12905-024-03384-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 09/23/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND Women who reach menarche and menopause at earlier ages have been shown to be at increased risk for numerous conditions including cardiovascular disease, cancer, depression, and obesity; however, risk factors for earlier ages of menarche and menopause are not fully understood. Therefore, we aimed to perform a retrospective investigation of the associations between a personal birthweight and/or being born preterm and the age of and menarche and menopause and related events in the Women's Health Initiative, a large, racially and ethnically diverse cohort of postmenopausal women. METHODS At study entry, women reported their birthweight by category (< 6 lbs., 6-7 lbs. 15 oz, 8-9 lbs. 15 oz, or ≥ 10 lbs.) and preterm birth status (4 or more weeks premature). Ages at events related to menarche and menopause were also self-reported. Linear regression and logistic regression models were used to estimate unadjusted and adjusted effect estimates (β) and odds ratios (OR), respectively (n ≤ 86,857). Individuals born preterm were excluded from all birthweight analyses. RESULTS After adjustments, individuals born weighing < 6lbs. were more likely to reach natural menopause at an earlier age (adjusted β=-0.361, SE = 0.09, P = < 0.001) and have a shorter reproductive window (adjusted β = -0.287, SE = 0.10, p < 0.004) compared to individuals weighing 6-7 lbs. 15 oz. Individuals born preterm were also more likely to reach natural menopause at an earlier age (adjusted β=-0.506, SE = 0.16, P = 0.001) and have a shorter reproductive window (adjusted β = -0.418, SE = 0.17, p < 0.006). CONCLUSIONS These findings raise concerns that, as more preterm and low birthweight individuals survive to adulthood, the prevalence of earlier-onset menarche and menopause may increase. Clinical counseling and interventions aimed at reducing the incidence of preterm and low birthweight births, as well as intensification of lifestyle modifications to reduce CVD risk among women with these early-life risk factors, should be prioritized.
Collapse
Affiliation(s)
- Christian Daniele
- Department of Biostatistics and Epidemiology, University of Massachusetts-Amherst, 715 North Pleasant Street, Amherst, MA, 01003, USA
| | - Rachel E Wacks
- Department of Biostatistics and Epidemiology, University of Massachusetts-Amherst, 715 North Pleasant Street, Amherst, MA, 01003, USA
| | - Leslie V Farland
- Department of Epidemiology and Biostatistics, Mel and Enid Zuckerman College of Public Health, University of Arizona, 1295 N. Martin Ave., Tucson, AZ, 85724, USA
| | - JoAnn E Manson
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 900 Commonwealth Ave., Boston, MA, 02215, USA
| | - Lihong Qi
- Department of Public Health Sciences, The University of California Davis, One Shields Ave., Med-Sci 1C Room 145, Davis, CA, 95616, USA
| | - Aladdin H Shadyab
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, 9500 Gilman Drive #0725, San Diego, La Jolla, CA, 92093, USA
| | - Sylvia Wassertheil-Smoller
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Cassandra N Spracklen
- Department of Biostatistics and Epidemiology, University of Massachusetts-Amherst, 715 North Pleasant Street, Amherst, MA, 01003, USA.
| |
Collapse
|
6
|
Gaml-Sørensen A, Brix N, Henriksen TB, Ramlau-Hansen CH. Maternal stress in pregnancy and pubertal timing in girls and boys: a cohort study. Fertil Steril 2024; 122:715-726. [PMID: 38848953 DOI: 10.1016/j.fertnstert.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/13/2024] [Accepted: 06/01/2024] [Indexed: 06/09/2024]
Abstract
OBJECTIVE To investigate whether maternal stress in pregnancy is associated with pubertal timing in girls and boys and to explore potential mediation by childhood body mass index (BMI) and childhood psychosocial stress. DESIGN Cohort study. SETTING Not applicable. PATIENTS In total, 14,702 girls and boys from the Puberty Cohort, nested within the Danish National Birth Cohort. INTERVENTION Maternal stress was obtained from a computer-assisted telephone interview in gestational weeks 30-32 as maternal life stress and emotional distress in pregnancy using questions on the basis of validated screening tools. Maternal life stress and emotional distress in pregnancy were analyzed separately and in an interaction analysis. MAIN OUTCOME MEASURES Pubertal timing was measured half-yearly from age 11 years and throughout pubertal development and assessed as Tanner stages 1-5 (breast and pubic hair development in girls and genital and pubic hair development in boys), menarche in girls, voice break and first ejaculation in boys, and occurrence of acne and axillary hair in both girls and boys. A combined estimate for overall pubertal timing was derived using Huber-White robust variance estimation. Mean differences in age at attaining the pubertal milestones according to prenatal exposure to no (reference), low-, moderate-, or high-maternal stress in pregnancy were estimated using a multivariable censored regression model. Potential mediation by childhood BMI and childhood psychosocial stress was investigated in separate models. RESULTS After adjustment for potential confounding factors, prenatal exposure to high-maternal life stress (combined estimate: -1.8 months [95% CI, -2.7 to -0.8] and -0.9 months [95% CI, -1.8 to 0.0]), high maternal emotional distress (combined estimate: -1.5 months [95% CI, -2.5 to -0.5] and -1.7 months [95% CI, -2.8 to -0.7]), and both high-maternal life stress and emotional distress (combined estimate: -2.8 months [95% CI, -4.2, to -1.4] and -1.7 months [95% CI, -3.1 to -0.2]) were associated with earlier pubertal timing in girls and boys, respectively. The associations were not mediated by childhood BMI or childhood psychosocial stress. CONCLUSIONS Prenatal exposure to maternal stress in pregnancy was associated with earlier pubertal timing in girls and boys in a dose-dependent manner. The associations were not mediated by childhood BMI or childhood psychosocial stress.
Collapse
Affiliation(s)
- Anne Gaml-Sørensen
- Research Unit for Epidemiology, Department of Public Health, Aarhus University, Aarhus C, Denmark.
| | - Nis Brix
- Research Unit for Epidemiology, Department of Public Health, Aarhus University, Aarhus C, Denmark; Department of Clinical Genetics, Aarhus University Hospital, Aarhus N, Denmark
| | - Tine B Henriksen
- Perinatal Epidemiology Research Unit, Department of Clinical Medicine, Aarhus N, Aarhus University; Department of Paediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus N, Denmark
| | - Cecilia H Ramlau-Hansen
- Research Unit for Epidemiology, Department of Public Health, Aarhus University, Aarhus C, Denmark
| |
Collapse
|
7
|
Kretzer S, Lawrence AJ, Pollard R, Ma X, Chen PJ, Amasi-Hartoonian N, Pariante C, Vallée C, Meaney M, Dazzan P. The Dynamic Interplay Between Puberty and Structural Brain Development as a Predictor of Mental Health Difficulties in Adolescence: A Systematic Review. Biol Psychiatry 2024; 96:585-603. [PMID: 38925264 DOI: 10.1016/j.biopsych.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 06/16/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
Puberty is a time of intense reorganization of brain structure and a high-risk period for the onset of mental health problems, with variations in pubertal timing and tempo intensifying this risk. We conducted 2 systematic reviews of articles published up to February 1, 2024, focusing on 1) the role of brain structure in the relationship between puberty and mental health, and 2) precision psychiatry research evaluating the utility of puberty in making individualized predictions of mental health outcomes in young people. The first review provides inconsistent evidence about whether and how pubertal and psychopathological processes may interact in relation to brain development. While most studies found an association between early puberty and mental health difficulties in adolescents, evidence on whether brain structure mediates this relationship is mixed. The pituitary gland was found to be associated with mental health status during this time, possibly through its central role in regulating puberty and its function in the hypothalamic-pituitary-gonadal and hypothalamic-pituitary-adrenal axes. In the second review, the design of studies that have explored puberty in predictive models did not allow for a quantification of its predictive power. However, when puberty was evaluated through physically observable characteristics rather than hormonal measures, it was more commonly identified as a predictor of depression, anxiety, and suicidality in adolescence. Social processes may be more relevant than biological ones to the link between puberty and mental health problems and represent an important target for educational strategies.
Collapse
Affiliation(s)
- Svenja Kretzer
- Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom; Singapore Institute for Clinical Sciences, Agency for Science, Technology & Research (A∗STAR) Singapore, Republic of Singapore.
| | - Andrew J Lawrence
- Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | - Rebecca Pollard
- Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | - Xuemei Ma
- Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | - Pei Jung Chen
- Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom; Department of Psychiatry, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Nare Amasi-Hartoonian
- Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom; NIHR Maudsley Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King's College London, London, United Kingdom
| | - Carmine Pariante
- Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | - Corentin Vallée
- Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | - Michael Meaney
- Singapore Institute for Clinical Sciences, Agency for Science, Technology & Research (A∗STAR) Singapore, Republic of Singapore; Douglas Hospital Research Centre, Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Paola Dazzan
- Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom; NIHR Maudsley Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King's College London, London, United Kingdom.
| |
Collapse
|
8
|
Andersen K, Rothausen KW, Håberg SE, Myrskylä M, Ramlau-Hansen CH, Gaml-Sørensen A. Sibling relatedness and pubertal development in girls and boys: A population-based cohort study. Ann Epidemiol 2024; 98:51-58. [PMID: 39182628 DOI: 10.1016/j.annepidem.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
PURPOSE To investigate the association between sibling relatedness and pubertal development in girls and boys. METHODS This cohort study consisted of 10,657 children from the Puberty Cohort, Denmark. Information on sibling relatedness was obtained by self-report. Information on pubertal markers was obtained half yearly from age 11 and throughout puberty. Mean age difference at attaining pubertal markers was estimated using interval-censored regression models according to sibling relatedness (full, half and/or step siblings; half and/or step siblings; no siblings; relative to full siblings). RESULTS Girls with both full, half and/or step siblings (-1.2 (CI 95 %: -2.5; 0.1) months), only half- and/or stepsiblings (-2.2 (CI 95 %: -3.7; -0.7) months), and no siblings (-5.5 (CI 95 %: -8.5; -2.5) months) entered puberty earlier than girls with full siblings. Boys with full, half and/or step siblings (-1.4 (CI 95 %: -2.7; -0.1) months), only half and/or step siblings (-1.2 (CI 95 %: -3.0; 0.6) months), and no siblings (-4.5 (CI 95 %: -8.8; -0.3) months) entered puberty earlier than boys with full siblings. CONCLUSIONS Children with sibling relatedness other than full siblings entered puberty earlier than their peers with full siblings even after adjustment for parental cohabitation status, childhood body mass index and childhood internalizing and externalizing symptoms.
Collapse
Affiliation(s)
- Katrine Andersen
- Department of Public Health, Research Unit for Epidemiology, Aarhus University, Aarhus, Denmark
| | | | - Siri Eldevik Håberg
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Mikko Myrskylä
- Max Planck Institute for Demographic Research, Rostock, Germany; Center for Social Data Science and Population Research Unit, University of Helsinki, Helsinki, Finland; Max Planck - University of Helsinki Center for Social Inequalities in Population Health, Rostock, Germany
| | | | - Anne Gaml-Sørensen
- Department of Public Health, Research Unit for Epidemiology, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
9
|
Puttawong D, Wejaphikul K, Thonusin C, Dejkhamron P, Chattipakorn N, Chattipakorn SC. Potential Role of Sleep Disturbance in the Development of Early Puberty: Past Clinical Evidence for Future Management. Pediatr Neurol 2024; 161:117-124. [PMID: 39368247 DOI: 10.1016/j.pediatrneurol.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 08/13/2024] [Accepted: 09/10/2024] [Indexed: 10/07/2024]
Abstract
The incidence of early puberty in children has been increasing. It has been suspected that both genetic and various environmental factors such as nutrition and hormonal exposure could influence the mechanisms underlying the earlier onset of puberty. Interestingly, several previous studies have reported a strong connection between sleep and puberty. Specifically, it was discovered that luteinizing hormone (LH), a potential marker for the onset of puberty, was increased during the deep sleep period. Furthermore, a high prevalence of early puberty was observed in patients with sleep disorders, especially in those experiencing narcolepsy. In this review article, findings related to the association between sleep disturbance and early puberty have been comprehensively summarized. Any contrary findings are also included and discussed. Advances in the knowledge surrounding sleep disturbance have led to a greater understanding of a correlation between early puberty and sleep disorder and provide alternative therapeutic options for the treatment of central precocious puberty in the future.
Collapse
Affiliation(s)
- Dolrutai Puttawong
- Faculty of Medicine, Division of Pediatric Endocrinology and Metabolism, Department of Pediatrics, Chiang Mai University, Chiang Mai, Thailand
| | - Karn Wejaphikul
- Faculty of Medicine, Division of Pediatric Endocrinology and Metabolism, Department of Pediatrics, Chiang Mai University, Chiang Mai, Thailand
| | - Chanisa Thonusin
- Faculty of Medicine, Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand; Faculty of Medicine, Cardiac Electrophysiology Unit, Department of Physiology, Chiang Mai University, Chiang Mai, Thailand
| | - Prapai Dejkhamron
- Faculty of Medicine, Division of Pediatric Endocrinology and Metabolism, Department of Pediatrics, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Faculty of Medicine, Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand; Faculty of Medicine, Cardiac Electrophysiology Unit, Department of Physiology, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Faculty of Medicine, Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand; Faculty of Dentistry, Department of Oral Biology and Diagnostic Sciences, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
10
|
Liu J, Song J, Li Y, Gao D, Ma Q, Song X, Jiang J, Zhang Y, Wang R, Dong Z, Chen L, Qin Y, Yuan W, Guo T, Song Z, Dong Y, Zou Z, Ma J. Geneenvironment interaction between phthalate exposure and pubertal genetic polymorphisms on blood pressure variability in children: Exploring the moderating effects of lifestyle behaviours. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116966. [PMID: 39216218 DOI: 10.1016/j.ecoenv.2024.116966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Phthalates (PAEs) are synthetic compounds extensively employed in consumer products. Blood pressure (BP) in children can vary, the degree of visit-to-visit BP variability (VVV) is at least partially independent of BP. The interactions between PAEs exposure, pubertal-related genetic susceptibility and lifestyles on childhood VVV are not investigated. This study utilized data from a cohort collected from Oct 2017-2020 in Xiamen, China. Seven urine PAE metabolites were measured. The long-term VVV was characterized employing the standard deviation (SD) and average real variability. We constructed a genetic risk score (GRS) of pubertal-related genes and healthy lifestyle scores. Exposed to high levels of mono-2-ethyl-5-hydroxyhexyl phthalate (MEHHP) (OR=1.43, 95 %CI=1.07, 1.92) and mono-2-ethyl-5-oxohexyl phthalate (OR=1.36, 95 % CI=1.01, 1.83) was related to increased SBP-SD, and the OR for high SBP-SD related to high GRS was 1.38 (95 % CI=1.02, 1.85). Compared to participants who had low GRS and low MEHHP exposure, participants exhibiting high GRS and MEHHP levels were more likely to experience high SBP-SD (OR=2.00, P<0.05). Individuals exhibiting low GRS, low MEHHP levels, and adhering to healthy lifestyles were associated with the least probability of experiencing high SBP-SD (OR=0.31, P<0.05). Increased PAEs exposure could elevate childhood systolic VVV, and exacerbated the adverse impact of pubertal-related genetic susceptibility on the high VVV of SBP; however, healthy lifestyles might alleviate these adverse effects. Promoting healthy lifestyles and reducing PAEs exposure for preventing elevated BP variability among children is important, especially for individuals with greater genetic susceptibility to early pubertal onset. ENVIRONMENTAL IMPLICATION: Blood pressure (BP) in children can vary, as a noninvasive, inexpensive and applicable method, the extent of visit-to-visit variability (VVV) is at least partially independent of BP. The interactions between phthalates (PAEs) exposure, variants of puberty-related genes and lifestyles on VVV are not investigated. Increased childhood systolic VVV might be associated with PAEs exposure, with the associations more pronounced combined with pubertal genetic susceptibility. Yet, healthy habits could partly eliminate such adverse effects. Our study underscores the importance of advocating for healthy lifestyles and reducing exposure to PAEs, especially among individuals with high genetic susceptibility to early puberty onset.
Collapse
Affiliation(s)
- Jieyu Liu
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Jieyun Song
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Yanhui Li
- School of Nursing, Peking University, Beijing, China
| | - Di Gao
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Qi Ma
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Xinli Song
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Jianuo Jiang
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Yi Zhang
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Ruolin Wang
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Ziqi Dong
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Li Chen
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Yang Qin
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Wen Yuan
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Tongjun Guo
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Zhiying Song
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Yanhui Dong
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China.
| | - Zhiyong Zou
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China.
| | - Jun Ma
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| |
Collapse
|
11
|
Ettienne EB, Grant-Kels JM, Striano P, Russo E, Neubauer D, Rose K. Pharmacogenomics and pediatric drug development: science and political power. A narrative review. Expert Opin Pharmacother 2024:1-7. [PMID: 39268964 DOI: 10.1080/14656566.2024.2401429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024]
Abstract
INTRODUCTION Pharmacogenomics (PGx) investigates how genomes control enzyme expression. Developmental pharmacology (DP) describes the temporal sequence of enzymes impacting absorption, distribution, metabolism, and excretion (ADME) of food and drugs. AREAS COVERED US and European Union (EU) legislation facilitate and/or enforce pediatric studies for all new drugs, called overall 'pediatric drug development' (PDD). DP and PDD look at patients' chronological age, but oscillate between legal and physiological meanings of the term 'child.' Children's bodies become mature with puberty. EXPERT OPINION Decades after first DP observations in babies, PGx offers a better understanding of the variability of safety and efficacy of drugs, of the process of aging, and of shifting enzyme patterns across aging. We should rethink and revise outdated interpretations of ADME changes in minors. The Declaration of Helsinki forbids pointless studies that some pediatric researchers and regulatory agencies, more so the EMA than the FDA, demand pointless pediatric studies is regrettable. Medicine needs to differentiate between legal and physiological meanings of the term 'child' and should use objective measures of maturity.
Collapse
Affiliation(s)
| | - Jane M Grant-Kels
- Dermatology, Pathology, and Pediatric Dermatology, University of Connecticut Health Center, Farmington, USA
| | | | - Emilio Russo
- Pharmacology, University of Magna Graecia, Catanzaro, Italy
| | - David Neubauer
- Department of Child, Adolescent & Developmental Neurology, University Childrens' Hospital, Ljubljana, Slovenia
| | - Klaus Rose
- klausrose Consulting, Riehen, Switzerland
| |
Collapse
|
12
|
Sun Y, Liu H, Mu C, Liu P, Hao C, Xin Y. Early puberty: a review on its role as a risk factor for metabolic and mental disorders. Front Pediatr 2024; 12:1326864. [PMID: 39328587 PMCID: PMC11424421 DOI: 10.3389/fped.2024.1326864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 08/30/2024] [Indexed: 09/28/2024] Open
Abstract
Accumulating evidence indicates that there is a trend of early puberty onset in humans. The early timing of puberty has raised concerns due to its association with significant negative health outcomes. However, overall impact and potential risk of early puberty remain uncertain. In this study, we conducted a comprehensive review of existing epidemiological studies to gain insights into the long-term adverse health effects associated with early puberty. Our objective was to provide a consolidated summary of these outcomes at a population level by considering studies that encompass various indicators of puberty. In all, early puberty has been identified as a potential risk factor for various metabolic diseases, such as obesity, diabetes, cardiovascular diseases (CVD). Children who experience early puberty are more likely to have a higher body mass index (BMI) during adulthood, increasing their risk of obesity. Early puberty also has been found to be an independent risk factor for diabetes mellitus, including gestational diabetes mellitus (GDM) and type 2 diabetes mellitus (T2DM), as earlier onset of menarche in girls and voice breaking in boys is associated with a higher prevalence of T2DM. Furthermore, evidence suggests that early puberty may contribute to an elevated risk of CVD, including conditions like coronary heart disease (CHD), stroke, angina, and hypertension. In addition, adolescents who experience early puberty, particularly girls, are more likely to suffer from mental problems, such as behavioral dysfunction and depression. Notably, early puberty has a more significant impact on girls than boys. Further research should consider the underlying mechanisms and potential preventive measures.
Collapse
Affiliation(s)
- Yukun Sun
- Department of Child and Adolescent Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Haiyan Liu
- Department of Child and Adolescent Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, China
- Department of Emergency Response,Tongren Center for Disease Control and Prevention, Tongren, Guizhou, China
| | - Chunguang Mu
- Department of Child and Adolescent Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Peipei Liu
- Clinical Systems Biology Laboratories, Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Changfu Hao
- Department of Child and Adolescent Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Yongjuan Xin
- Department of Child and Adolescent Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
13
|
Ko SH. Effects of Heat Stress-Induced Sex Hormone Dysregulation on Reproduction and Growth in Male Adolescents and Beneficial Foods. Nutrients 2024; 16:3032. [PMID: 39275346 PMCID: PMC11397449 DOI: 10.3390/nu16173032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/03/2024] [Accepted: 09/07/2024] [Indexed: 09/16/2024] Open
Abstract
Heat stress due to climate warming can significantly affect the synthesis of sex hormones in male adolescents, which can impair the ability of the hypothalamus to secrete gonadotropin-releasing hormone on the hypothalamic-pituitary-gonadal axis, which leads to a decrease in luteinizing hormone and follicle-stimulating hormone, which ultimately negatively affects spermatogenesis and testosterone synthesis. For optimal spermatogenesis, the testicular temperature should be 2-6 °C lower than body temperature. Heat stress directly affects the testes, damaging them and reducing testosterone synthesis. Additionally, chronic heat stress abnormally increases the level of aromatase in Leydig cells, which increases estradiol synthesis while decreasing testosterone, leading to an imbalance of sex hormones and spermatogenesis failure. Low levels of testosterone in male adolescents lead to delayed puberty and incomplete sexual maturation, negatively affect height growth and bone mineral density, and can lead to a decrease in lean body mass and an increase in fat mass. In order for male adolescents to acquire healthy reproductive capacity, it is recommended to provide sufficient nutrition and energy, avoid exposure to heat stress, and provide foods and supplements to prevent or repair testosterone reduction, germ cell damage, and sperm count reduction caused by heat stress so that they can enter a healthy adulthood.
Collapse
Affiliation(s)
- Seong-Hee Ko
- Major in Food Science and Nutrition, College of Human Ecology, Sookmyung Women's University, Seoul 04310, Republic of Korea
| |
Collapse
|
14
|
Calcaterra V, Vandoni M, Bianchi A, Pirazzi A, Tiranini L, Baldassarre P, Diotti M, Cavallo C, Nappi RE, Zuccotti G. Menstrual Dysfunction in Adolescent Female Athletes. Sports (Basel) 2024; 12:245. [PMID: 39330722 PMCID: PMC11435995 DOI: 10.3390/sports12090245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/27/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024] Open
Abstract
Despite the benefits of exercise on mental and physical health, excessive training loads can lead to health problems in the long term, including a wide spectrum of menstrual dysfunction (MD). This narrative review aims to analyze the relationship between physical exercise and MD in adolescent female athletes to support regular menstrual health monitoring and promote educational programs on reproductive risks. When dealing with MD in young athletes, several factors entangled with maturation of the hypothalamus-pituitary-ovarian axis should be considered. Firstly, some disciplines seem to have a higher prevalence of MD due to the high loads of training regimes and the early introduction of athletes to a competitive career. Moreover, low energy intake and a low body mass index appear to exacerbate existing MD. Lastly, disordered eating behaviors and psychological stress can contribute to MD in female athletes. The type of sport, influencing the intensity and duration of exercise, as well as individual psycho-physiological and environmental factors, may influence the role of physical activity in the manifestation of MD. Early recognition and management of MD, along with collaboration between sports organizations and health professionals, are crucial to minimize risks, ensure proper nutrition, and balance training with recovery. Keeping an open discussion on the topic may prospectively improve awareness, early diagnosis, and treatment strategies, as well as reduce injury risk and enhance sports performance.
Collapse
Affiliation(s)
- Valeria Calcaterra
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
- Pediatric Department, Buzzi Children's Hospital, 20154 Milano, Italy
| | - Matteo Vandoni
- Laboratory of Adapted Motor Activity (LAMA), Department of Public Health, Experimental Medicine and Forensic Science, University of Pavia, 27100 Pavia, Italy
| | - Alice Bianchi
- Pediatric Department, Buzzi Children's Hospital, 20154 Milano, Italy
| | - Agnese Pirazzi
- Laboratory of Adapted Motor Activity (LAMA), Department of Public Health, Experimental Medicine and Forensic Science, University of Pavia, 27100 Pavia, Italy
| | - Lara Tiranini
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
- Research Center for Reproductive Medicine, Gynecological Endocrinology and Menopause, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Paola Baldassarre
- Pediatric Department, Buzzi Children's Hospital, 20154 Milano, Italy
| | - Marianna Diotti
- Pediatric Department, Buzzi Children's Hospital, 20154 Milano, Italy
| | - Caterina Cavallo
- Laboratory of Adapted Motor Activity (LAMA), Department of Public Health, Experimental Medicine and Forensic Science, University of Pavia, 27100 Pavia, Italy
| | - Rossella Elena Nappi
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
- Research Center for Reproductive Medicine, Gynecological Endocrinology and Menopause, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Gianvincenzo Zuccotti
- Pediatric Department, Buzzi Children's Hospital, 20154 Milano, Italy
- Department of Biomedical and Clinical Sciences, University of Milano, 20157 Milano, Italy
| |
Collapse
|
15
|
Li Q, Chao T, Wang Y, Xuan R, Guo Y, He P, Zhang L, Wang J. Transcriptome analysis reveals miRNA expression profiles in hypothalamus tissues during the sexual development of Jining grey goats. BMC Genomics 2024; 25:832. [PMID: 39232653 PMCID: PMC11373458 DOI: 10.1186/s12864-024-10735-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 08/22/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND Exploring the physiological and molecular mechanisms underlying goat sexual maturation can enhance breeding practices and optimize reproductive efficiency and is therefore substantially important for practical breeding purposes. As an essential neuroendocrine organ in animals, the hypothalamus is involved in sexual development and other reproductive processes in female animals. Although microRNAs (miRNAs) have been identified as significant regulators of goat reproduction, there is a lack of research on the molecular regulatory mechanisms of hypothalamic miRNAs that are involved in the sexual development of goats. Therefore, we examined the dynamic changes in serum hormone profiles and hypothalamic miRNA expression profiles at four developmental stages (1 day (neonatal, D1, n = 5), 2 months (prepubertal, M2, n = 5), 4 months (sexual maturity, M4, n = 5), and 6 months (breeding period, M6, n = 5)) during sexual development in Jining grey goats. RESULTS Transcriptome analysis revealed 95 differentially expressed miRNAs (DEMs) in the hypothalamus of goats across the four developmental stages. The target genes of these miRNAs were significantly enriched in the GnRH signalling pathway, the PI3K-Akt signalling pathway, and the Ras signalling pathway (P < 0.05). Additionally, 16 DEMs are common among the M2 vs. D1, M4 vs. D1, and M6 vs. D1 comparisons, indicating that the transition from D1 to M2 represents a potentially critical period for sexual development in Jining grey goats. The bioinformatics analysis results indicate that miR-193a/miR-193b-3p-Annexin A7 (ANXA7), miR-324-5p-Adhesion G protein-coupled receptor A1 (ADGRA1), miR-324-3p-Erbb2 receptor tyrosine kinase 2 (ERBB2), and miR-324-3p-Rap guanine nucleotide exchange factor 3 (RAPGEF3) are potentially involved in biological processes such as hormone secretion, energy metabolism, and signal transduction. In addition, we further confirmed that miR-324-3p targets the regulatory gene RAPGEF3. CONCLUSION These results further enrich the expression profile of hypothalamic miRNAs in goats and provide important insights for studying the regulatory effects of hypothalamic miRNAs on the sexual development of goats after birth.
Collapse
Affiliation(s)
- Qing Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, 271014, Shandong Province, China
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an City, 271014, Shandong Province, China
| | - Tianle Chao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, 271014, Shandong Province, China
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an City, 271014, Shandong Province, China
| | - Yanyan Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, 271014, Shandong Province, China
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an City, 271014, Shandong Province, China
| | - Rong Xuan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, 271014, Shandong Province, China
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an City, 271014, Shandong Province, China
| | - Yanfei Guo
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, 271014, Shandong Province, China
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an City, 271014, Shandong Province, China
| | - Peipei He
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, 271014, Shandong Province, China
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an City, 271014, Shandong Province, China
| | - Lu Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, 271014, Shandong Province, China
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an City, 271014, Shandong Province, China
| | - Jianmin Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, 271014, Shandong Province, China.
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an City, 271014, Shandong Province, China.
| |
Collapse
|
16
|
Zhang Y, Luo C, Huang P, Chen L, Ma Y, Ding H. Effects of chronic exposure to a high fat diet, nutritive or non-nutritive sweeteners on hypothalamic-pituitary-adrenal (HPA) and -gonadal (HPG) axes of male Sprague-Dawley rats. Eur J Nutr 2024; 63:2209-2220. [PMID: 38743096 DOI: 10.1007/s00394-024-03427-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 05/06/2024] [Indexed: 05/16/2024]
Abstract
PURPOSE Diet-related factors are of great significance in the regulation of hypothalamic-pituitary-adrenal (HPA) and hypothalamic-pituitary-gonad (HPG) axes. In this study, we aimed to investigate the effects of chronic exposure to a high fat diet (HFD), fructose or sucralose on the endocrine functions. METHODS Male, Sprague-Dawley rats received a normal chow diet, HFD, 10% fructose or 0.02% sucralose for 10 weeks. Behavioral changes were assessed by open field (OFT) and elevated plus-maze (EPM) tests at week 8. H&E staining was used to observe pathological changes in adrenal cortex, testis and perirenal adipose tissue. Serum hormone concentrations were quantified via enzyme-linked immunosorbent assay (ELISA). The mRNA expression levels of genes along the HPA and HPG axes were determined using real-time PCR. RESULTS All types of dietary interventions increased body weight and disturbed metabolic homeostasis, with anxiogenic phenotype in behavioral tests and damage to cell morphology of adrenal cortex and testis being observed. Along the HPA axis, significantly increased corticotropin releasing hormone (CRH), adrenocorticotropic hormone (ACTH) and corticosterone (CORT) concentrations were observed in the HFD or 0.02% sucralose group. For HPG axis, gonadotropin-releasing hormone (GnRH) and estradiol (E2) concentrations were significantly increased in all dietary intervention groups, while decreased concentrations of follicle-stimulating hormone (FSH) and testosterone (T) were also detected. Moreover, transcriptional profiles of genes involved in the synthesis of hormones and corresponding hormone receptors were significantly altered. CONCLUSION Long-term consumption of HFD, fructose or sucralose manifested deleterious effects on endocrine system and resulted in the dysregulation of HPA and HPG axes.
Collapse
Affiliation(s)
- Yiyuan Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Wuhan University, Wuhan, 430000, China
| | - Chunyun Luo
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Wuhan University, Wuhan, 430000, China
| | - Puxin Huang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Wuhan University, Wuhan, 430000, China
| | - Lu Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Wuhan University, Wuhan, 430000, China
| | - Yufang Ma
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Wuhan University, Wuhan, 430000, China
| | - Hong Ding
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Wuhan University, Wuhan, 430000, China.
| |
Collapse
|
17
|
Pulcastro H, Ziv-Gal A. Parabens effects on female reproductive health - Review of evidence from epidemiological and rodent-based studies. Reprod Toxicol 2024; 128:108636. [PMID: 38876430 DOI: 10.1016/j.reprotox.2024.108636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/28/2024] [Accepted: 06/06/2024] [Indexed: 06/16/2024]
Abstract
Parabens have been used as antimicrobial preservatives since the 1920s. The prevalent use of parabens increases their detection in the environment and in women's biological samples including reproductive tissues. Recent studies suggest parabens may alter endocrine function and thus female reproductive health may be affected. In this literature review, we summarize findings on parabens and female reproduction while focusing on epidemiological and rodent-based studies. The topics reviewed include paraben effects on cyclicity, pregnancy, newborn and pubertal development, reproductive hormones, and ovarian and uterine specific outcomes. Overall, the scientific literature on paraben effects on female reproduction is limited and with some conflicting results. Yet, some epidemiological and/or rodent-based experimental studies report significant findings in relation to paraben effects on cyclicity, fertility, gestation length, birth weight, postnatal development and pubertal onset, hormone levels, and hormone signaling in reproductive tissues. Future epidemiological and experimental studies are needed to better understand paraben effects on female reproduction while focusing on human related exposures including mixtures, physiologic concentrations of parabens, and multi-generational studies.
Collapse
Affiliation(s)
- Hannah Pulcastro
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Ayelet Ziv-Gal
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
18
|
Xue P, Lin J, Tang J, Chen Y, Yu T, Chen C, Kong H, Lin C, Liu S. Association of obesity and menarche SNPs and interaction with environmental factors on precocious puberty. Pediatr Res 2024; 96:1076-1083. [PMID: 38649724 DOI: 10.1038/s41390-024-03168-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 02/21/2024] [Accepted: 03/10/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND Obesity is an important cause for the precocious or early puberty. However, the association between obesity-related loci and the risk of precocious puberty as well as the effect of gene-environment interaction are unclear, especially in the Chinese children population. METHODS This was a case-control study using baseline data from two cohorts and hospital cases in China. 15 SNPs loci and several environmental factors were included in the analysis of 1201 participants. Chi-square test and logistic regression were used to analyze the association between SNPs and precocious puberty. Additionally, exploratory factor analysis was conducted on 13 environmental variables, and then to explore their interaction with genes on precocious puberty. RESULTS The effect allele C of rs571312, and G of rs12970134 MC4R were associated with precocious puberty in girls with obesity. Regarding the gene-environment interaction, we found that when girls were in the high socioeconomic status, the rs571312 (OR: 3.996; 95% CI: 1.694-9.423) and rs12970134 (OR: 3.529; 95% CI: 1.452-8.573) risk genotypes had a greater effect on precocious puberty. CONCLUSIONS The obesity risk gene polymorphisms MC4R rs571312 and rs12970134 were associated with precocious puberty in Chinese girls with obesity, and girls with risk genotypes and high socioeconomic status should be given extra attention. IMPACT This is the first study that identified the association between rs571312 and rs12970134 of MC4R gene and precocious puberty in Chinese children. We found that when girls were in the high socioeconomic status, the risk genotypes of rs571312 and rs12970134 had a greater effect on precocious puberty. The results of this study have great public health implications. It is recommended that girls who are in high socioeconomic status and have a high genetic risk for early sexual maturity should closely monitor their pubertal development and consider early intervention strategies.
Collapse
Affiliation(s)
- Peng Xue
- School of Public Health, Shanghai Jiao Tong University, Shanghai, China
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianfei Lin
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jingyi Tang
- School of Public Health, Shanghai Jiao Tong University, Shanghai, China
| | - Yao Chen
- Department of Endocrinology and Genetic Metabolism, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tingting Yu
- School of Public Health, Shanghai Jiao Tong University, Shanghai, China
- Office of Hospital Infection Management, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Chang Chen
- School of Public Health, Shanghai Jiao Tong University, Shanghai, China
| | - Huijun Kong
- Department of Pediatrics, Qufu People's Hospital, Qufu, Shandong, China
| | - Cuilan Lin
- Boai Hospital of Zhongshan, Southern Medical University, Zhongshan, Guangdong, China
| | - Shijian Liu
- School of Public Health, Shanghai Jiao Tong University, Shanghai, China.
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
19
|
Yang S, Zhang L, Khan K, Travers J, Huang R, Jovanovic VM, Veeramachaneni R, Sakamuru S, Tristan CA, Davis EE, Klumpp-Thomas C, Witt KL, Simeonov A, Shaw ND, Xia M. Identification of Environmental Compounds That May Trigger Early Female Puberty by Activating Human GnRHR and KISS1R. Endocrinology 2024; 165:bqae103. [PMID: 39254333 PMCID: PMC11384912 DOI: 10.1210/endocr/bqae103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Indexed: 09/11/2024]
Abstract
There has been an alarming trend toward earlier puberty in girls, suggesting the influence of an environmental factor(s). As the reactivation of the reproductive axis during puberty is thought to be mediated by the hypothalamic neuropeptides kisspeptin and gonadotropin-releasing hormone (GnRH), we asked whether an environmental compound might activate the kisspeptin (KISS1R) or GnRH receptor (GnRHR). We used GnRHR or KISS1R-expressing HEK293 cells to screen the Tox21 10K compound library, a compendium of pharmaceuticals and environmental compounds, for GnRHR and KISS1R activation. Agonists were identified using Ca2+ flux and phosphorylated extracellularly regulated kinase (p-ERK) detection assays. Follow-up studies included measurement of genes known to be upregulated upon receptor activation using relevant murine or human cell lines and molecular docking simulation. Musk ambrette was identified as a KISS1R agonist, and treatment with musk ambrette led to increased expression of Gnrh1 in murine and human hypothalamic cells and expansion of GnRH neuronal area in developing zebrafish larvae. Molecular docking demonstrated that musk ambrette interacts with the His309, Gln122, and Gln123 residues of the KISS1R. A group of cholinergic agonists with structures similar to methacholine was identified as GnRHR agonists. When applied to murine gonadotrope cells, these agonists upregulated Fos, Jun, and/or Egr1. Molecular docking revealed a potential interaction between GnRHR and 5 agonists, with Asn305 constituting the most conservative GnRHR binding site. In summary, using a Tox21 10K compound library screen combined with cellular, molecular, and structural biology techniques, we have identified novel environmental agents that may activate the human KISS1R or GnRHR.
Collapse
Affiliation(s)
- Shu Yang
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Li Zhang
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kamal Khan
- Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University, Chicago, IL 60611, USA
| | - Jameson Travers
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ruili Huang
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vukasin M Jovanovic
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rithvik Veeramachaneni
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Srilatha Sakamuru
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Carlos A Tristan
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Erica E Davis
- Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University, Chicago, IL 60611, USA
- Department of Pediatrics, Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Carleen Klumpp-Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kristine L Witt
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Anton Simeonov
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Natalie D Shaw
- Pediatric Neuroendocrinology Group, Clinical Research Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709 USA
| | - Menghang Xia
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
20
|
Calcaterra V, Cena H, Loperfido F, Rossi V, Grazi R, Quatrale A, De Giuseppe R, Manuelli M, Zuccotti G. Evaluating Phthalates and Bisphenol in Foods: Risks for Precocious Puberty and Early-Onset Obesity. Nutrients 2024; 16:2732. [PMID: 39203868 PMCID: PMC11357315 DOI: 10.3390/nu16162732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
Recent scientific results indicate that diet is the primary source of exposure to endocrine-disrupting chemicals (EDCs) due to their use in food processing, pesticides, fertilizers, and migration from packaging to food, particularly in plastic or canned foods. Although EDCs are not listed on nutrition labels, their migration from packaging to food could inadvertently lead to food contamination, affecting individuals by inhalation, ingestion, and direct contact. The aim of our narrative review is to investigate the role of phthalates and bisphenol A (BPA) in foods, assessing their risks for precocious puberty (PP) and early-onset obesity, which are two clinical entities that are often associated and that share common pathogenetic mechanisms. The diverse outcomes observed across different studies highlight the complexity of phthalates and BPA effects on the human body, both in terms of early puberty, particularly in girls, and obesity with its metabolic disruptions. Moreover, obesity, which is independently linked to early puberty, might confound the relationship between exposure to these EDCs and pubertal timing. Given the potential public health implications, it is crucial to adopt a precautionary approach, minimizing exposure to these EDCs, especially in vulnerable populations such as children.
Collapse
Affiliation(s)
- Valeria Calcaterra
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milano, Italy; (V.R.); (R.G.)
| | - Hellas Cena
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (H.C.); (F.L.); (R.D.G.)
- Clinical Nutrition and Dietetics Unit, ICS Maugeri IRCCS, 27100 Pavia, Italy;
| | - Federica Loperfido
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (H.C.); (F.L.); (R.D.G.)
| | - Virginia Rossi
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milano, Italy; (V.R.); (R.G.)
| | - Roberta Grazi
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milano, Italy; (V.R.); (R.G.)
| | - Antonia Quatrale
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milano, Italy; (V.R.); (R.G.)
| | - Rachele De Giuseppe
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (H.C.); (F.L.); (R.D.G.)
| | - Matteo Manuelli
- Clinical Nutrition and Dietetics Unit, ICS Maugeri IRCCS, 27100 Pavia, Italy;
| | - Gianvincenzo Zuccotti
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milano, Italy; (V.R.); (R.G.)
- Department of Biomedical and Clinical Science, University of Milano, 20157 Milano, Italy;
| |
Collapse
|
21
|
Elhakeem A, Frysz M, Goncalves Soares A, Bell JA, Cole TJ, Heron J, Howe LD, Sebert S, Tilling K, Timpson NJ, Lawlor DA. Evaluation and comparison of nine growth and development-based measures of pubertal timing. COMMUNICATIONS MEDICINE 2024; 4:159. [PMID: 39112679 PMCID: PMC11306255 DOI: 10.1038/s43856-024-00580-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Pubertal timing is heritable, varies between individuals, and has implications for life-course health. There are many different indicators of pubertal timing, and how they relate to each other is unclear. Our aim was to quantitatively compare nine indicators of pubertal timing. METHODS We used data from questionnaires and height, weight, and bone measurements from ages 7-17 y in a population-based cohort of 4267 females and 4251 males to compare nine growth and development-based indicators of pubertal timing. We summarise age of each indicator, their phenotypic and genetic correlations, and how they relate to established genetic risk score (GRS) for puberty timing, and phenotypic childhood body composition measures. RESULTS We show that pubic hair in males (mean: 12.6 y) and breasts in females (11.5 y) are early indicators of puberty, and voice breaking (14.2 y) and menarche (12.7 y) are late indicators however, there is substantial variation between individuals in pubertal age. All indicators show evidence of positive phenotypic intercorrelations (e.g., r = 0.49: male genitalia and pubic hair ages), and positive genetic intercorrelations. An age at menarche GRS positively associates with all other pubertal age indicators (e.g., difference in female age at peak height velocity per SD higher GRS: 0.24 y, 95%CI: 0.21 to 0.26), as does an age at voice breaking GRS (e.g., difference in age at male axillary hair: 0.11 y, 0.07 to 0.15). Higher childhood fat mass and lean mass associated with earlier puberty timing. CONCLUSIONS Our findings provide insights into the measurements of the timing of pubertal growth and development and illustrate value of various pubertal timing indicators in life-course research.
Collapse
Affiliation(s)
- Ahmed Elhakeem
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK.
- Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK.
| | - Monika Frysz
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Ana Goncalves Soares
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK
| | - Joshua A Bell
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK
| | - Tim J Cole
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - Jon Heron
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK
| | - Laura D Howe
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK
| | - Sylvain Sebert
- Research Unit of Population Health, University of Oulu, Oulu, Finland
| | - Kate Tilling
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK
| | - Nicholas J Timpson
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK
| | - Deborah A Lawlor
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK
- NIHR Bristol Biomedical Research Centre, Bristol, UK
| |
Collapse
|
22
|
Karaman V, Karakilic-Ozturan E, Poyrazoglu S, Gelmez MY, Bas F, Darendeliler F, Uyguner ZO. Novel variants ensued genomic imprinting in familial central precocious puberty. J Endocrinol Invest 2024; 47:2041-2052. [PMID: 38367171 PMCID: PMC11266277 DOI: 10.1007/s40618-023-02300-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/29/2023] [Indexed: 02/19/2024]
Abstract
INTRODUCTION Central precocious puberty (CPP) is characterized by the early onset of puberty and is associated with the critical processes involved in the pubertal switch. The puberty-related gene pool in the human genome is considerably large though few have been described in CPP. Within those genes, the genomic imprinting features of the MKRN3 and DLK1 genes add additional complexity to the understanding of the pathologic pathways. This study aimed to investigate the molecular etiology in the CPP cohort. METHODS Eighteen familial CPP cases were investigated by Sanger sequencing for five CPP-related genes; DLK1, KISS1, KISS1R, MKRN3, and PROKR2. Segregation analysis was performed in all patients with pathogenic variants. Using an ELISA test, the functional pathogenicity of novel variants was also investigated in conjunction with serum delta-like 1 homolog (DLK1) concentrations. RESULTS In three probands, a known variant in the MKRN3 gene (c.982C>T/p.(Arg328Cys)) and two novel variants in the DLK1 gene (c.357C>G/p.(Tyr119Ter) and c.67+78C>T) were identified. All three were inherited from the paternal allele. The individuals carrying the DLK1 variants had low detectable DLK1 levels in their serum. CONCLUSIONS The frequencies were 5.5% (1/18) for MKRN3 11% (2/18) for DLK1, and none for either KISS1, KISS1R, and PROKR2. Low serum DLK1 levels in affected individuals supported the relationship between here described novel DLK1 gene variants with CPP. Nonsense nature of c.357C>G/p.(Tyr119Ter) and an alteration in the evolutionarily conserved nucleotide c.67+78C>T suggested the disruptive nature of the variant's compatibility with CPP.
Collapse
Affiliation(s)
- V Karaman
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Millet Cad. Çapa/Fatih, 34096, Istanbul, Turkey.
| | - E Karakilic-Ozturan
- Department of Pediatric Endocrinology and Diabetes, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - S Poyrazoglu
- Department of Pediatric Endocrinology and Diabetes, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - M Y Gelmez
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - F Bas
- Department of Pediatric Endocrinology and Diabetes, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - F Darendeliler
- Department of Pediatric Endocrinology and Diabetes, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Z O Uyguner
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Millet Cad. Çapa/Fatih, 34096, Istanbul, Turkey
| |
Collapse
|
23
|
Joo M, Nam S. Adolescent gut microbiome imbalance and its association with immune response in inflammatory bowel diseases and obesity. BMC Microbiol 2024; 24:268. [PMID: 39030520 PMCID: PMC11264842 DOI: 10.1186/s12866-024-03425-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 07/12/2024] [Indexed: 07/21/2024] Open
Abstract
BACKGROUND Recently, there has been an increase in the number of studies focusing on the association between the gut microbiome and obesity or inflammatory diseases, especially in adults. However, there is a lack of studies investigating the association between gut microbiome and gastrointestinal (GI) diseases in adolescents. METHOD We obtained 16S rRNA-seq datasets for gut microbiome analysis from 202 adolescents, comprising ulcerative colitis (UC), Crohn's disease (CD), obesity (Ob), and healthy controls (HC). We utilized Quantitative Insights Into Microbial Ecology (QIIME) and Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) to acquire Operational Taxonomic Units (OTUs). Subsequently, we analyzed Kyoto Encyclopedia of Genes and Genomes (KEGG) Orthology (KO) terms and pathway enrichment for the identified OTUs. RESULTS In this study, we investigated the difference between the gut microbiomes in adolescents with GI diseases and those in healthy adolescents using 202 samples of 16S rRNA sequencing data. The distribution of the six main gut microbiota (i.e., unclassified Dorea, unclassified Lachnospiraceae, unclassified Ruminococcus, Faecalibacterium prausnitzii, Prevotella copri, unclassified Sutterella) was different based on the status of obesity and inflammatory diseases. Dysbiosis was observed within Lachnospiraceae in adolescents with inflammatory diseases (i.e., UC and CD), and in adolescents with obesity within Prevotella and Sutterella. More specifically, our results showed that the relative abundance of Faecalibacterium prausnitzii and unclassified Lachnospiraceae was more than 10% and 8% higher, respectively, in the UC group compared to the CD, Ob, and HC groups. Additionally, the Ob group had over 20% and over 3% higher levels of Prevotella copri and unclassified Sutterella, respectively, compared to the UC, CD, and HC groups. Also, inspecting associations between the six specific microbiota and KO terms, we found that the six microbiota -relating KO terms were associated with NOD-like receptor signaling. These six taxa differences may affect the immune system and inflammatory response by affecting NOD-like receptor signaling in the host during critical adolescence. CONCLUSION In this study, we discovered that dysbiosis of the microbial community had varying degrees of influence on the inflammatory and immune response pathways in adolescents with inflammatory diseases and obesity.
Collapse
Affiliation(s)
- Minjae Joo
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology (GAIHST), Gachon University, Incheon, 21999, Korea
| | - Seungyoon Nam
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology (GAIHST), Gachon University, Incheon, 21999, Korea.
- Department of Genome Medicine and Science, AI Convergence Center for Medical Science, Gachon Institute of Genome Medicine and Science, Gachon University Gil Medical Center, Gachon University College of Medicine, Dokjeom-Ro 3Beon-Gil, 38-13, Namdong-Gu, Incheon, 21565, Republic of Korea.
| |
Collapse
|
24
|
Rohayem J, Alexander EC, Heger S, Nordenström A, Howard SR. Mini-Puberty, Physiological and Disordered: Consequences, and Potential for Therapeutic Replacement. Endocr Rev 2024; 45:460-492. [PMID: 38436980 PMCID: PMC11244267 DOI: 10.1210/endrev/bnae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Indexed: 03/05/2024]
Abstract
There are 3 physiological waves of central hypothalamic-pituitary-gonadal (HPG) axis activity over the lifetime. The first occurs during fetal life, the second-termed "mini-puberty"-in the first months after birth, and the third at puberty. After adolescence, the axis remains active all through adulthood. Congenital hypogonadotropic hypogonadism (CHH) is a rare genetic disorder characterized by a deficiency in hypothalamic gonadotropin-releasing hormone (GnRH) secretion or action. In cases of severe CHH, all 3 waves of GnRH pulsatility are absent. The absence of fetal HPG axis activation manifests in around 50% of male newborns with micropenis and/or undescended testes (cryptorchidism). In these boys, the lack of the mini-puberty phase accentuates testicular immaturity. This is characterized by a low number of Sertoli cells, which are important for future reproductive capacity. Thus, absent mini-puberty will have detrimental effects on later fertility in these males. The diagnosis of CHH is often missed in infants, and even if recognized, there is no consensus on optimal therapeutic management. Here we review physiological mini-puberty and consequences of central HPG axis disorders; provide a diagnostic approach to allow for early identification of these conditions; and review current treatment options for replacement of mini-puberty in male infants with CHH. There is evidence from small case series that replacement with gonadotropins to mimic "mini-puberty" in males could have beneficial outcomes not only regarding testis descent, but also normalization of testis and penile sizes. Moreover, such therapeutic replacement regimens in disordered mini-puberty could address both reproductive and nonreproductive implications.
Collapse
Affiliation(s)
- Julia Rohayem
- Department of Pediatric Endocrinology and Diabetology, Children's Hospital of Eastern Switzerland, 9006 St. Gallen, Switzerland
- University of Muenster, 48149 Muenster, Germany
| | - Emma C Alexander
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Sabine Heger
- Department of Pediatric Endocrinology, Children's Hospital Auf der Bult, 30173 Hannover, Germany
| | - Anna Nordenström
- Pediatric Endocrinology, Karolinska Institutet, Astrid Lindgren Children's Hospital, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Sasha R Howard
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, UK
- Department of Paediatric Endocrinology, Royal London Children's Hospital, Barts Health NHS Trust, London E1 1FR, UK
| |
Collapse
|
25
|
Oh J, Choi JE, Lee R, Mun E, Kim KH, Lee JH, Lee J, Kim S, Kim HS, Ha E. Long-term exposure to air pollution and precocious puberty in South Korea. ENVIRONMENTAL RESEARCH 2024; 252:118916. [PMID: 38614201 DOI: 10.1016/j.envres.2024.118916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/25/2024] [Accepted: 04/09/2024] [Indexed: 04/15/2024]
Abstract
BACKGROUND AND AIM The increasing prevalence of precocious puberty (PP) has emerged as a significant medical and social problem worldwide. However, research on the relationship between long-term air pollution exposure and PP has been relatively limited. We thus investigated the association between long-term air pollution exposure and the onset of PP in South Korea. METHODS We investigated a retrospective cohort using the Korea National Health Insurance Database. Six-year-old children born from 2007 to 2009 were examined (2013-2015). We included boys ≤10 years and girls aged ≤9 years who visited hospitals for early pubertal development, were diagnosed with PP per the ICD-10 (E228, E301, and E309), and received gonadotropin-releasing hormone agonist treatment. We analyzed data for boys up until 10 years old (60-month follow-up) and for girls up to 9 years old (48-month follow-up). We assessed the association between long-term air pollution exposure and the onset of PP using a Cox proportional hazard model. We estimated hazard ratios (HRs) and 95% confidence intervals (CIs) per 1 μg/m3 increase in fine particulate matter (PM2.5) and particulate matter (PM10) and per 1 ppb increase in sulfur dioxide (SO2), nitrogen dioxide (NO2), and ozone (O3). RESULTS This study included 1,205,784 children aged six years old between 2013 and 2015. A positive association was found between the 48-month moving average PM2.5 (HR: 1.019; 95% CI: 1.012, 1.027), PM10 (HR: 1.009; 95% CI: 1.006, 1.013), SO2 (HR: 1.037; 95% CI: 1.018, 1.055), and O3 (HR: 1.006; 95% CI: 1.001, 1.010) exposure and PP in girls but not boys. CONCLUSIONS This study provides valuable insights into the harmful effects of air pollution during childhood and adolescence, emphasizing that air pollution is a risk factor that should be managed and reduced.
Collapse
Affiliation(s)
- Jongmin Oh
- Department of Environmental Medicine, College of Medicine, Ewha Womans University, Seoul, Republic of Korea; Institute of Ewha-SCL for Environmental Health (IESEH), College of Medicine, Ewha Womans University, Seoul, Republic of Korea; Department of Human Systems Medicine, College of Medicine, Seoul National University, Seoul, Republic of Korea; Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Republic of Korea
| | - Jung Eun Choi
- Department of Pediatrics, Ewha Womans University College of Medicine, Seoul, Republic of Korea
| | - Rosie Lee
- Department of Pediatrics, Ewha Womans University College of Medicine, Seoul, Republic of Korea
| | - Eunji Mun
- Department of Pediatrics, Ewha Womans University College of Medicine, Seoul, Republic of Korea
| | - Kyung Hee Kim
- Department of Pediatrics, Ewha Womans University College of Medicine, Seoul, Republic of Korea
| | - Ji Hyen Lee
- Institute of Ewha-SCL for Environmental Health (IESEH), College of Medicine, Ewha Womans University, Seoul, Republic of Korea; Department of Pediatrics, Ewha Womans University College of Medicine, Seoul, Republic of Korea
| | - Jungsil Lee
- Department of Environmental Medicine, College of Medicine, Ewha Womans University, Seoul, Republic of Korea; Institute of Ewha-SCL for Environmental Health (IESEH), College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Soontae Kim
- Department of Environmental and Safety Engineering, Ajou University, Suwon, Republic of Korea
| | - Hae Soon Kim
- Institute of Ewha-SCL for Environmental Health (IESEH), College of Medicine, Ewha Womans University, Seoul, Republic of Korea; Department of Pediatrics, Ewha Womans University College of Medicine, Seoul, Republic of Korea.
| | - Eunhee Ha
- Department of Environmental Medicine, College of Medicine, Ewha Womans University, Seoul, Republic of Korea; Institute of Ewha-SCL for Environmental Health (IESEH), College of Medicine, Ewha Womans University, Seoul, Republic of Korea; System Health & Engineering Major in Graduate School (BK21 Plus Program), Ewha Womans University, Seoul, Republic of Korea.
| |
Collapse
|
26
|
Sinen O, Sinen AG, Derin N, Aslan MA. Nasal application of kisspeptin-54 mitigates motor deficits by reducing nigrostriatal dopamine loss in hemiparkinsonian rats. Behav Brain Res 2024; 468:115035. [PMID: 38703793 DOI: 10.1016/j.bbr.2024.115035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Parkinson's Disease is a progressive neurodegenerative disorder characterized by motor symptoms resulting from the loss of nigrostriatal dopaminergic neurons. Kisspeptins (KPs) are a family of neuropeptides that are encoded by the Kiss-1 gene, which exert their physiological effects through interaction with the GPR54 receptor. In the current investigation, we investigated the prospective protective effects of central KP-54 treatments on nigrostriatal dopaminergic neurons and consequent motor performance correlates in 6-hydroxydopamine (6-OHDA)-lesioned rats. Male adult Sprague Dawley rats underwent stereotaxic injection of 6-OHDA into the right medial forebrain bundle to induce hemiparkinsonism. Following surgery, rats received chronic central treatments of nasal or intracerebroventricular KP-54 (logarithmically increasing doses) for seven consecutive days. Motor performance was evaluated seven days post-surgery utilizing the open field test and catalepsy test. The levels of dopamine in the striatum were determined with mass spectrometry. Immunohistochemical analysis was conducted to assess the immunoreactivities of tyrosine hydroxylase (TH) and the GPR54 in the substantia nigra. The dose-response curve revealed a median effective dose value of ≈3 nmol/kg for both central injections. Due to its non-invasive and effective nature, nasal administration was utilized in the second phase of our study. Chronic administration of KP-54 (3nmol/kg, nasally) significantly protected 6-OHDA-induced motor deficits. Nasal KP-54 attenuated the loss of nigrostriatal dopaminergic neurons induced by 6-OHDA. Additionally, significant correlations were observed between motor performance and nigrostriatal dopamine levels. Immunohistochemical analysis demonstrated the localization of the GPR54 within TH-positive nigral cells. These findings suggest the potential efficacy of central KP-54 on motor impairments in hemiparkinsonism.
Collapse
Affiliation(s)
- Osman Sinen
- Department of Physiology, Akdeniz University, Faculty of Medicine, Antalya, Turkey.
| | - Ayşegül Gemici Sinen
- Department of Biophysics, Akdeniz University, Faculty of Medicine, Antalya, Turkey
| | - Narin Derin
- Department of Biophysics, Akdeniz University, Faculty of Medicine, Antalya, Turkey
| | - Mutay Aydın Aslan
- Department of Medical Biochemistry, Akdeniz University, Faculty of Medicine, Antalya, Turkey
| |
Collapse
|
27
|
Palumbo S, Palumbo D, Cirillo G, Giurato G, Aiello F, Miraglia Del Giudice E, Grandone A. Methylome analysis in girls with idiopathic central precocious puberty. Clin Epigenetics 2024; 16:82. [PMID: 38909248 PMCID: PMC11193236 DOI: 10.1186/s13148-024-01683-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/22/2024] [Indexed: 06/24/2024] Open
Abstract
BACKGROUND Genetic and environmental factors are implicated in many developmental processes. Recent evidence, however, has suggested that epigenetic changes may also influence the onset of puberty or the susceptibility to a wide range of diseases later in life. The present study aims to investigate changes in genomic DNA methylation profiles associated with pubertal onset analyzing human peripheral blood leukocytes from three different groups of subjects: 19 girls with central precocious puberty (CPP), 14 healthy prepubertal girls matched by age and 13 healthy pubertal girls matched by pubertal stage. For this purpose, the comparisons were performed between pre- and pubertal controls to identify changes in normal pubertal transition and CPP versus pre- and pubertal controls. RESULTS Analysis of methylation changes associated with normal pubertal transition identified 1006 differentially methylated CpG sites, 86% of them were found to be hypermethylated in prepubertal controls. Some of these CpG sites reside in genes associated with the age of menarche or transcription factors involved in the process of pubertal development. Analysis of methylome profiles in CPP patients showed 65% and 55% hypomethylated CpG sites compared with prepubertal and pubertal controls, respectively. In addition, interestingly, our results revealed the presence of 43 differentially methylated genes coding for zinc finger (ZNF) proteins. Gene ontology and IPA analysis performed in the three groups studied revealed significant enrichment of them in some pathways related to neuronal communication (semaphorin and gustation pathways), estrogens action, some cancers (particularly breast and ovarian) or metabolism (particularly sirtuin). CONCLUSIONS The different methylation profiles of girls with normal and precocious puberty indicate that regulation of the pubertal process in humans is associated with specific epigenetic changes. Differentially methylated genes include ZNF genes that may play a role in developmental control. In addition, our data highlight changes in the methylation status of genes involved in signaling pathways that determine the migration and function of GnRH neurons and the onset of metabolic and neoplastic diseases that may be associated with CPP in later life.
Collapse
Affiliation(s)
- Stefania Palumbo
- Department of Women's and Children's Health and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Via Luigi De Crecchio 2, 80138, Naples, Italy.
| | - Domenico Palumbo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry SMS, University of Salerno, Salerno, Italy
| | - Grazia Cirillo
- Department of Women's and Children's Health and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Via Luigi De Crecchio 2, 80138, Naples, Italy
| | - Giorgio Giurato
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry SMS, University of Salerno, Salerno, Italy
| | - Francesca Aiello
- Department of Women's and Children's Health and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Via Luigi De Crecchio 2, 80138, Naples, Italy
| | - Emanuele Miraglia Del Giudice
- Department of Women's and Children's Health and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Via Luigi De Crecchio 2, 80138, Naples, Italy
| | - Anna Grandone
- Department of Women's and Children's Health and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Via Luigi De Crecchio 2, 80138, Naples, Italy
| |
Collapse
|
28
|
Liu YC, Liao YT, Wen MH, Chen VCH, Chen YL. The Association between Autism Spectrum Disorder and Precocious Puberty: Considering Effect Modification by Sex and Neuropsychiatric Comorbidities. J Pers Med 2024; 14:632. [PMID: 38929853 PMCID: PMC11204849 DOI: 10.3390/jpm14060632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/07/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Limited knowledge is available about the association between autistic spectrum disorder (ASD) and precocious puberty. Our study examined the association between the two medical conditions and effect modification by sex and neuropsychiatric comorbidities in a nationwide population. To compare the risk of precocious puberty between ASD and non-ASD cases, we conducted a Cox regression analysis using ASD as the exposure and time to precocious puberty as the outcome. We adjusted for sex, attention-deficit/hyperactivity disorder (ADHD), tic disorder, obsessive-compulsive disorder (OCD), anxiety disorder, intellectual disability, and epilepsy. We performed a moderation analysis to examine the potential moderating effects of sex and comorbidities. Patients with ASD were prone to have precocious puberty, with an adjusted hazard ratio (aHR) of 1.80 (95% CI: 1.61-2.01). For effect modification, sex, specifically females, moderated the association between ASD and precocious puberty, with a relative excess risk due to interaction (RERI) of 7.35 (95% CI 4.90-9.80). No significant effect modification was found for any of the comorbidities within the scope of additive effect modification. We found that patients with ASD were prone to precocious puberty, regardless of sex or comorbid neuropsychiatric disorders. Girls with ASD are at a particularly higher risk of developing precocious puberty.
Collapse
Affiliation(s)
- Yi-Chun Liu
- Department of Psychiatry, Changhua Christian Children’s Hospital, Changhua 500, Taiwan;
- Department of Psychiatry, Changhua Christian Hospital, Changhua 500, Taiwan
- Department of Healthcare Administration, Asia University, Taichung 413, Taiwan
| | - Yin-To Liao
- Department of Psychiatry, China Medical University, Taichung 404, Taiwan;
- Department of Psychiatry, China Medical University Hospital, Taichung 404, Taiwan
| | - Mei-Hong Wen
- Department of Pediatric Endocrinology, Sing Wish Hospital, Kaohsiung 813, Taiwan;
| | - Vincent Chin-Hung Chen
- School of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
- Department of Psychiatry, Chiayi Chang Gung Memorial Hospital, Chiayi 613, Taiwan
| | - Yi-Lung Chen
- Department of Healthcare Administration, Asia University, Taichung 413, Taiwan
- Department of Psychology, Asia University, Taichung 413, Taiwan
| |
Collapse
|
29
|
Lee DH, Kim J, Kim HY. Temporal trend of age at menarche in Korean females born between 1927 and 2004: a population-based study. Front Endocrinol (Lausanne) 2024; 15:1399984. [PMID: 38894747 PMCID: PMC11182987 DOI: 10.3389/fendo.2024.1399984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/30/2024] [Indexed: 06/21/2024] Open
Abstract
Backgrounds The age at menarche has decreased worldwide. Previous studies on Korean adolescents have reported a downward trend in age at menarche. This study aimed to investigate the current trends in age at menarche among Korean adolescents using nationally representative data. Materials and methods The study used data from the Korea National Health and Nutrition Examination Survey 2007-2021. A total of 50,730 females born between 1927 and 2004 with information on age at menarche were included. The trend in age at menarche was analyzed according to 15 birth-year groups (with 5-year intervals) using quantile regression analysis. Results The mean age at menarche decreased from 16.92 ± 0.06 years for females born before 1935 to 12.45 ± 0.04 years for females born between 2000 and 2004 (p <.001). According to the percentile group of age at menarche, mean menarche age decreased by -0.071 years per year (95% confidence interval [CI], -0.072 to -0.070) in total, -0.050 years per year (95% CI, -0.052 to -0.048) in the 3rd percentile group, -0.088 years per year (95% CI, -0.091 to -0.085) in the 97th percentile group (p <.001 for all). A decreasing trend of age at menarche was more prominent in the obesity group (-0.080 years per year, 95% CI, -0.082 to -0.078) compared to the non-obesity group (-0.069 years per year, 95% CI, -0.071 to -0.068) (p <.001 for both). Conclusion Ongoing downward trend in age at menarche was observed in Korean females born until 2004, decreasing by 0.71 years per decade. The downward trend was faster in individuals with a higher percentile of age at menarche and in those with obesity.
Collapse
Affiliation(s)
- Da Hye Lee
- Department of Pediatrics, Chung-Ang University Hospital, Seoul, Republic of Korea
| | - Jaehyun Kim
- Department of Pediatrics, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Pediatrics, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Hwa Young Kim
- Department of Pediatrics, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Pediatrics, College of Medicine, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
30
|
Chiou JS, Lin YJ, Chang CYY, Liang WM, Liu TY, Yang JS, Chou CH, Lu HF, Chiu ML, Lin TH, Liao CC, Huang SM, Chou IC, Li TM, Huang PY, Chien TS, Chen HR, Tsai FJ. Menarche-a journey into womanhood: age at menarche and health-related outcomes in East Asians. Hum Reprod 2024; 39:1336-1350. [PMID: 38527428 DOI: 10.1093/humrep/deae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 02/22/2024] [Indexed: 03/27/2024] Open
Abstract
STUDY QUESTION Are there associations of age at menarche (AAM) with health-related outcomes in East Asians? SUMMARY ANSWER AAM is associated with osteoporosis, Type 2 diabetes (T2D), glaucoma, and uterine fibroids, as demonstrated through observational studies, polygenic risk scores, genetic correlations, and Mendelian randomization (MR), with additional findings indicating a causal effect of BMI and T2D on earlier AAM. WHAT IS KNOWN ALREADY Puberty timing is linked to adult disease risk, but research predominantly focuses on European populations, with limited studies in other groups. STUDY DESIGN, SIZE, DURATION We performed an AAM genome-wide association study (GWAS) with 57 890 Han Taiwanese females and examined the association between AAM and 154 disease outcomes using the Taiwanese database. Additionally, we examined genetic correlations between AAM and 113 diseases and 67 phenotypes using Japanese GWAS summary statistics. PARTICIPANTS/MATERIALS, SETTING, METHODS We performed AAM GWAS and gene-based GWAS studies to obtain summary statistics and identify potential AAM-related genes. We applied phenotype, polygenic risk scores, and genetic correlation analyses of AAM to explore health-related outcomes, using multivariate regression and linkage disequilibrium score regression analyses. We also explored potential bidirectional causal relationships between AAM and related outcomes through univariable and multivariable MR analyses. MAIN RESULTS AND THE ROLE OF CHANCE Fifteen lead single-nucleotide polymorphisms and 24 distinct genes were associated with AAM in Taiwan. AAM was genetically associated with later menarche and menopause, greater height, increased osteoporosis risk, but lower BMI, and reduced risks of T2D, glaucoma, and uterine fibroids in East Asians. Bidirectional MR analyses indicated that higher BMI/T2D causally leads to earlier AAM. LIMITATIONS, REASONS FOR CAUTION Our findings were specific to Han Taiwanese individuals, with genetic correlation analyses conducted in East Asians. Further research in other ethnic groups is necessary. WIDER IMPLICATIONS OF THE FINDINGS Our study provides insights into the genetic architecture of AAM and its health-related outcomes in East Asians, highlighting causal links between BMI/T2D and earlier AAM, which may suggest potential prevention strategies for early puberty. STUDY FUNDING/COMPETING INTEREST(S) The work was supported by China Medical University, Taiwan (CMU110-S-17, CMU110-S-24, CMU110-MF-49, CMU111-SR-158, CMU111-MF-105, CMU111-MF-21, CMU111-S-35, CMU112-SR-30, and CMU112-MF-101), the China Medical University Hospital, Taiwan (DMR-111-062, DMR-111-153, DMR-112-042, DMR-113-038, and DMR-113-103), and the Ministry of Science and Technology, Taiwan (MOST 111-2314-B-039-063-MY3, MOST 111-2314-B-039-064-MY3, MOST 111-2410-H-039-002-MY3, and NSTC 112-2813-C-039-036-B). The funders had no influence on the data collection, analyses, or conclusions of the study. No conflict of interests to declare. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Jian-Shiun Chiou
- PhD Program for Health Science and Industry, College of Health Care, China Medical University, Taichung, Taiwan
- Department of Health Services Administration, China Medical University, Taichung, Taiwan
| | - Ying-Ju Lin
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Cherry Yin-Yi Chang
- Division of Minimal Invasive Endoscopy Surgery, Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung, Taiwan
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Wen-Miin Liang
- Department of Health Services Administration, China Medical University, Taichung, Taiwan
| | - Ting-Yuan Liu
- Million-Person Precision Medicine Initiative, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Jai-Sing Yang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Chen-Hsing Chou
- PhD Program for Health Science and Industry, College of Health Care, China Medical University, Taichung, Taiwan
- Department of Health Services Administration, China Medical University, Taichung, Taiwan
| | - Hsing-Fang Lu
- Million-Person Precision Medicine Initiative, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Mu-Lin Chiu
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Ting-Hsu Lin
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Chiu-Chu Liao
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Shao-Mei Huang
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - I-Ching Chou
- Department of Pediatrics, China Medical University Children's Hospital, Taichung, Taiwan
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
| | - Te-Mao Li
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Peng-Yan Huang
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Tzu-Shun Chien
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Hou-Ren Chen
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Fuu-Jen Tsai
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Pediatrics, China Medical University Children's Hospital, Taichung, Taiwan
- Division of Medical Genetics, China Medical University Children's Hospital, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
31
|
Bangalore Krishna K, Witchel SF. Normal Puberty. Endocrinol Metab Clin North Am 2024; 53:183-194. [PMID: 38677861 DOI: 10.1016/j.ecl.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2024]
Abstract
Puberty is characterized by gonadarche and adrenarche. Gonadarche represents the reactivation of the hypothalamic-pituitary-gonadal axis with increased gonadotropin-releasing hormone, luteinizing hormone, and follicle-stimulating hormone secretion following the quiescence during childhood. Pubarche is the development of pubic hair, axillary hair, apocrine odor reflecting the onset of pubertal adrenal maturation known as adrenarche. A detailed understanding of these pubertal processes will help clarify relationships between the timing of the onset of puberty and cardiovascular, metabolic, and reproductive outcomes in adulthood. The onset of gonadarche is influenced by neuroendocrine signals, genetic variants, metabolic factors, and environmental elements.
Collapse
Affiliation(s)
- Kanthi Bangalore Krishna
- Division of Pediatric Endocrinology and Diabetes, UPMC Childrens Hospital of Pittsburgh, Pittsburgh, PA, USA.
| | - Selma F Witchel
- Division of Pediatric Endocrinology and Diabetes, UPMC Childrens Hospital of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
32
|
Liu D, Lv W, Liu WV, Tian T, Qin Y, Li Y, Liu Q, Cai J, Gao S, Ding G, Zhao Y, Zhou Y, Xie Y, Zhu W. MRI Radiomics Features of Adenohypophysis Determine the Activation of Hypothalamic-Pituitary-Gonadal Axis in Peri-Puberty Children. J Magn Reson Imaging 2024; 59:1769-1776. [PMID: 37501392 DOI: 10.1002/jmri.28914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/07/2023] [Accepted: 07/07/2023] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND The status of the hypothalamic-pituitary-gonadal (HPG) axis is important for assessing the onset of physiological or pathological puberty. The reference standard gonadotropin-releasing hormone (GnRH) stimulation test requires hospital admission and repeated blood samples. A simple noninvasive method would be beneficial. OBJECTIVES To explore a noninvasive method for evaluating HPG axis activation in children using an MRI radiomics model. STUDY TYPE Retrospective. POPULATION Two hundred thirty-nine children (83 male; 3.6-14.6 years) with hypophysial MRI and GnRH stimulation tests, randomly divided a training set (168 children) and a test set (71 children). FIELD STRENGTH/SEQUENCE 3.0 T, 3D isotropic fast spin echo (CUBE) T1-weighted imaging (T1WI) sequences. ASSESSMENT Radiomics features were extracted from sagittal 3D CUBE T1WI, and imaging signatures were generated using the least absolute shrinkage and selection operator (LASSO) with 10-fold cross-validation. Diagnostic performance for differential diagnosis of HPG status was compared between a radiomics model and MRI features (adenohypophyseal height [aPH] and volume [aPV]). STATISTICAL TESTS Receiver operating characteristic (ROC) and decision curve analysis (DCA). A P value <0.05 was considered statistically significant. RESULTS Eight hundred fifty-one radiomics features were extracted and reduced to 10 by the LASSO method in the training cohort. The radiomics model based on CUBE T1WI showed good performance in assessment of HPG axis activation with an area under the ROC curve (AUC) of 0.81 (95% CI: 0.71, 0.91) in the test set. The AUC of the radiomics model was significantly higher than that of aPH (0.81 vs. 0.65) but there was no significant difference compared to aPV (0.81 vs. 0.78, P = 0.58). In DCA analysis, the radiomics signature showed higher net benefit over the aPV and aPH models. DATA CONCLUSIONS The MRI radiomics model has potential to assess HPG axis activation status noninvasively, potentially providing valuable information in the diagnosis of patients with pathological puberty onset. EVIDENCE LEVEL 4 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Dong Liu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wenzhi Lv
- Department of Artificial Intelligence, Julei Technology Company, Wuhan, Hubei, China
| | | | - Tian Tian
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuanyuan Qin
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yakun Li
- Department of Endocrinology and Metabolism, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qin Liu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jianjian Cai
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Sikang Gao
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Guojun Ding
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yunyun Zhao
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yiran Zhou
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yan Xie
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
33
|
Pinnaro CT, Curtis VA. Variability in Pubertal Timing Among Asian American, Native Hawaiian, and Pacific Islander Subgroups. JAMA Netw Open 2024; 7:e2410203. [PMID: 38739395 DOI: 10.1001/jamanetworkopen.2024.10203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/14/2024] Open
Affiliation(s)
- Catherina T Pinnaro
- Stead Family Department of Pediatrics, Division of Pediatric Endocrinology, University of Iowa, Iowa City
| | - Vanessa A Curtis
- Stead Family Department of Pediatrics, Division of Pediatric Endocrinology, University of Iowa, Iowa City
- Stead Family Department of Pediatrics, Division of Child and Community Health, University of Iowa, Iowa City
| |
Collapse
|
34
|
Wang J, Tang Y, Chen G, Yang M, Gao Q, Wang Y, Zhou W. Irisin combined index to diagnose central precocious puberty in girls: a cross-sectional study. BMC Pediatr 2024; 24:275. [PMID: 38671415 PMCID: PMC11046821 DOI: 10.1186/s12887-024-04743-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND To investigate serum irisin levels in girls at different developmental status and explore the significance of irisin for the diagnosis of central precocious puberty (CPP) in girls. METHODS In this cross-sectional study 111 girls were enrolled, including 43 cases of CPP, 44 cases of peripheral precocious puberty (PPP) and 24 cases of girls with normal sexual development as controls. The data on age, weight and height, measured blood levels of luteinizing hormone (LH), follicle stimulating hormone (FSH), estradiol, and irisin were collected. Pelvic Doppler ultrasound was performed to evaluate uterine length, transverse diameter, anteroposterior diameter. The girls were divided into non-CPP group and CPP group according to gonadotropin-releasing hormone (GnRH) stimulation test. RESULTS Serum irisin levels were significantly higher in CPP group than in PPP group and normal control group. Serum irisin level was positively correlated with basal LH level, basal FSH level, peak LH level, peak LH /FSH ratio, uterine volume, bone age, and bone age index. The area under the curve, cut-off value, sensitivity and specificity of serum irisin were 0.958, 219.255 pg/ml, 100% and 80.6%. The combined diagnosis of CPP in girls by serum irisin and serum basal LH combined with uterine volume had an AUC, sensitivity, and specificity of 0.994, 97.6%, and 100%, superior to that of the single index. CONCLUSIONS Serum irisin level in girls with CPP is significantly increased. An irisin combined index could help the diagnosis of CPP in girls.
Collapse
Affiliation(s)
- Jie Wang
- Department of Pediatrics, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, 223300, China
| | - Yongquan Tang
- Department of Pediatrics, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, 223300, China
| | - Guanyu Chen
- Department of Pediatrics, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, 223300, China
| | - Mingming Yang
- Department of Pediatrics, Huai'an Clinical College of Xuzhou Medical University, Huai'an, 223300, China
| | - Qian Gao
- Department of Pediatrics, Huai'an Clinical College of Xuzhou Medical University, Huai'an, 223300, China
| | - Yingdan Wang
- Department of Pediatrics, Huai'an Clinical College of Xuzhou Medical University, Huai'an, 223300, China
| | - Wendi Zhou
- Department of Pediatrics, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, 223300, China.
- Department of Pediatrics, Huai'an Clinical College of Xuzhou Medical University, Huai'an, 223300, China.
| |
Collapse
|
35
|
Marra A, Bondesan A, Caroli D, Sartorio A. Complete Blood Count-Derived Inflammation Indexes Are Useful in Predicting Metabolic Syndrome in Children and Adolescents with Severe Obesity. J Clin Med 2024; 13:2120. [PMID: 38610885 PMCID: PMC11012534 DOI: 10.3390/jcm13072120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/30/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Background: Childhood obesity is a globally increasing pathological condition leading to long-term health issues such as cardiovascular diseases and metabolic syndrome (MetS). This study aimed to determine the clinical value of the Complete Blood Count-derived inflammation indexes Monocyte/HDL-C ratio (MHR), Lymphocyte/HDL-C ratio (LHR), Neutrophil/HDL-C ratio (NHR), and System Inflammation Response Index (SIRI) to predict the presence of metabolic syndrome and its association with cardiovascular risk markers (HOMA-IR, TG/HDL-C, and non-HDL-C) in children and adolescents with obesity. Methods: The study included a total of 552 children/adolescents with severe obesity (BMI: 36.4 [32.7-40.7] kg/m2; 219 males, 333 females; age: 14.8 [12.9-16.3] years), who were further subdivided based on the presence or absence of metabolic syndrome (MetS+ and MetS respectively). Results: The MHR, LHR, and NHR indexes (p < 0.0001), but not SIRI (p = 0.524), were significantly higher in the MetS+ compared to the MetS- subgroup, showing a positive correlation with the degree of MetS severity (p < 0.0001). Furthermore, MHR, LHR, and NHR were positively associated with cardiometabolic risk biomarkers (HOMA-IR: MHR p = 0.000, LHR p = 0.001, NHR p < 0.0001; TG/HDL-C: MHR, LHR, NHR p < 0.000; non-HDL-C: MHR, LHR p < 0.0001, NHR p = 0.000). Finally, the ROC curve analysis demonstrated that among the analyzed indexes, only MHR, LHR, and NHR had diagnostic value in distinguishing MetS patients among children and adolescents with obesity (MHR: AUC = 0.7045; LHR: AUC = 0.7205; NHR: AUC = 0.6934; p < 0.0001). Conclusions: In conclusion, the MHR, LHR, and NHR indexes, but not the SIRI index, can be considered useful tools for pediatricians to assess the risk of MetS and cardiometabolic diseases in children and adolescents with obesity and to develop multidisciplinary intervention strategies to counteract the widespread disease.
Collapse
Affiliation(s)
- Alice Marra
- Experimental Laboratory for Auxo-Endocrinological Research, Istituto Auxologico Italiano, IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico), 28824 Verbania, Italy; (A.B.); (D.C.); (A.S.)
| | - Adele Bondesan
- Experimental Laboratory for Auxo-Endocrinological Research, Istituto Auxologico Italiano, IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico), 28824 Verbania, Italy; (A.B.); (D.C.); (A.S.)
| | - Diana Caroli
- Experimental Laboratory for Auxo-Endocrinological Research, Istituto Auxologico Italiano, IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico), 28824 Verbania, Italy; (A.B.); (D.C.); (A.S.)
| | - Alessandro Sartorio
- Experimental Laboratory for Auxo-Endocrinological Research, Istituto Auxologico Italiano, IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico), 28824 Verbania, Italy; (A.B.); (D.C.); (A.S.)
- Experimental Laboratory for Auxo-Endocrinological Research, Istituto Auxologico Italiano, IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico), 20145 Milan, Italy
| |
Collapse
|
36
|
Chen Z, You Q, Wang J, Dong Z, Wang W, Yang Y, Ma X, Li C, Lu W. The functional study of a novel MKRN3 missense mutation associated with familial central precocious puberty. Am J Med Genet A 2024; 194:e63460. [PMID: 38054352 DOI: 10.1002/ajmg.a.63460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 10/16/2023] [Indexed: 12/07/2023]
Abstract
Central precocious puberty (CPP) refers to a syndrome of early puberty initiation with a characteristic increase in the release of gonadotropin-releasing hormone (GnRH); therefore, it is also called GnRH-related precocious puberty. About a quarter of idiopathic central precocious puberty (ICPP) may be familial. Studies suggest that mutations of makorin ring finger protein 3 (MKRN3) can cause familial central precocious puberty (FCPP). In this report, we describe a Chinese female patient carrying a novel MKRN3 variant (c.980G>A/p.Arg327His) and presenting the CPP phenotype. This novel variant attenuated its own ubiquitination, degradation, and inhibition on the transcriptional and translational activity of GNRH1, which was verified through functional tests. We can consider this variant as a loss-of-function mutation, which subsides the inhibition of GnRH1-related signaling and gives rise to GnRH-related precocious puberty.
Collapse
Affiliation(s)
- Ziwei Chen
- Department of Pediatrics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Qing You
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Junqi Wang
- Department of Pediatrics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Zhiya Dong
- Department of Pediatrics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Wei Wang
- Department of Pediatrics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Yuanyan Yang
- Department of Pediatrics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoyu Ma
- Department of Pediatrics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Chuanyin Li
- Cancer Center, Shanghai Tenth People's Hospital, School of Medicine Tongji University, Shanghai, China
| | - Wenli Lu
- Department of Pediatrics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
37
|
Pineda S, Lignell S, Gyllenhammar I, Lampa E, Benskin JP, Lundh T, Lindh C, Kiviranta H, Glynn A. Socio-demographic inequalities influence differences in the chemical exposome among Swedish adolescents. ENVIRONMENT INTERNATIONAL 2024; 186:108618. [PMID: 38593688 DOI: 10.1016/j.envint.2024.108618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/05/2024] [Accepted: 03/29/2024] [Indexed: 04/11/2024]
Abstract
Relatively little is known about the relationship between socio-demographic factors and the chemical exposome in adolescent populations. This knowledge gap hampers global efforts to meet certain UN sustainability goals. The present work addresses this problem in Swedish adolescents by discerning patterns within the chemical exposome and identify demographic groups susceptible to heightened exposures. Enlisting the Riksmaten Adolescents 2016-17 (RMA) study population (N = 1082) in human-biomonitoring, and using proportional odds ordinal logistic regression models, we examined the associations between concentrations of a diverse array of substances (N = 63) with the determinants: gender, age, participant/maternal birth country income per capita level, parental education levels, and geographic place of living (longitude/latitude). Participant/maternal birth country exhibited a significant association with the concentrations of 46 substances, followed by gender (N = 41), and longitude (N = 37). Notably, individuals born in high-income countries by high-income country mothers demonstrated substantially higher estimated adjusted means (EAM) concentrations of polychlorinated biphenyls (PCBs), brominated flame retardants (BFRs) and per- and polyfluoroalkyl substances (PFASs) compared to those born in low-income countries by low-income country mothers. A reverse trend was observed for cobalt (Co), cadmium (Cd), lead (Pb), aluminium (Al), chlorinated pesticides, and phthalate metabolites. Males exhibited higher EAM concentrations of chromium (Cr), mercury (Hg), Pb, PCBs, chlorinated pesticides, BFRs and PFASs than females. In contrast, females displayed higher EAM concentrations of Mn, Co, Cd and metabolites of phthalates and phosphorous flame retardants, and phenolic substances. Geographical disparities, indicative of north-to-south or west-to-east substance concentrations gradients, were identified in Sweden. Only a limited number of lifestyle, physiological and dietary factors were identified as possible drivers of demographic inequalities for specific substances. This research underscores birth country, gender, and geographical disparities as contributors to exposure differences among Swedish adolescents. Identifying underlying drivers is crucial to addressing societal inequalities associated with chemical exposure and aligning with UN sustainability goals.
Collapse
Affiliation(s)
- Sebastian Pineda
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | - Sanna Lignell
- Division of Risk and Benefit Assessment, Swedish Food Agency, Uppsala, Sweden
| | - Irina Gyllenhammar
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, Uppsala, Sweden; Division of Risk and Benefit Assessment, Swedish Food Agency, Uppsala, Sweden
| | - Erik Lampa
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Jonathan P Benskin
- Department of Environmental Science, Stockholm University, Stockholm, Sweden
| | - Thomas Lundh
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Christian Lindh
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Hannu Kiviranta
- Environmental Health Unit, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Anders Glynn
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
38
|
Wang L, Ye X, Liu J. Effects of pharmaceutical and personal care products on pubertal development: Evidence from human and animal studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123533. [PMID: 38341062 DOI: 10.1016/j.envpol.2024.123533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/20/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
Pharmaceutical and personal care products (PPCPs) include a wide range of drugs, personal care products and household chemicals that are produced and used in significant quantities. The safety of PPCPs has become a growing concern in recent decades due to their ubiquitous presence in the environment and potential risks to human health. PPCPs have been detected in various human biological samples, including those from children and adolescents, at concentrations ranging from several ng/L to several thousand μg/L. Epidemiological studies have shown associations between exposure to PPCPs and changes in the timing of puberty in children and adolescents. Animal studies have shown that exposure to PPCPs results in advanced or delayed pubertal onset. Mechanisms by which PPCPs regulate pubertal development include alteration of the hypothalamic kisspeptin and GnRH networks, disruption of steroid hormones, and modulation of metabolic function and epigenetics. Gaps in knowledge and further research needs include the assessment of environmental exposure to pharmaceuticals in children and adolescents, low-dose and long-term effects of exposure to PPCPs, and the modes of action of PPCPs on pubertal development. In summary, this comprehensive review examines the potential effects of exposure to PPCPs on pubertal development based on evidence from human and animal studies.
Collapse
Affiliation(s)
- Linping Wang
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaoqing Ye
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jing Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
39
|
Toivonen E, Lee E, Leppänen MH, Laitinen T, Kähönen M, Lakka TA, Haapala EA. The associations of depressive symptoms and perceived stress with arterial health in adolescents. Physiol Rep 2024; 12:e15986. [PMID: 38519264 PMCID: PMC10959692 DOI: 10.14814/phy2.15986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/06/2024] [Accepted: 03/14/2024] [Indexed: 03/24/2024] Open
Abstract
Cardiovascular and mental diseases are among the most important global health problems, but little is known on the associations between mental and arterial health in adolescents. Therefore, we investigated the associations of arterial health with depressive symptoms and perceived stress in adolescents. A total of 277 adolescents, 151 boys, 126 girls, aged 15-17 years participated in the study. Depressive symptoms were assessed using the Beck Depression Inventory and perceived stress by the Cohen Perceived Stress Scale. Arterial health was assessed by measures from carotid ultrasonography (carotid intima-media thickness, Young's Elastic Modulus, carotid artery distensibility, stiffness index), impedance cardiography (pulse wave velocity, cardio-ankle vascular index), and pulse contour analysis (reflection index, stiffness index). The data were analyzed using linear regression models adjusted for age and sex. Depressive symptoms or perceived stress were not associated with indices of arterial health in the whole study group (β = -0.08 to 0.09, p > 0.05), in boys (β = -0.13 to 0.10, p > 0.05) or in girls (standardized regression coefficient β = -0.16 to 0.08, p > 0.05). We found no associations of depressive symptoms and perceived stress with arterial health in adolescents. These observations suggest that the association between mental and arterial health problems develop in later life.
Collapse
Affiliation(s)
- Emmi Toivonen
- Faculty of Sports and Health SciencesUniversity of JyväskyläJyväskyläFinland
| | - Earric Lee
- Faculty of Sports and Health SciencesUniversity of JyväskyläJyväskyläFinland
- Institut de Cardiologie de MontréalMontréalQCCanada
- École de kinésiologie et des sciences de l’activité physiqueUniversité de MontréalMontréalQCCanada
| | - Marja H. Leppänen
- Institute of Biomedicine, University of Eastern FinlandKuopio CampusKuopioFinland
| | - Tomi Laitinen
- Department of Clinical Physiology and Nuclear ImagingUniversity of Eastern Finland and Kuopio University HospitalKuopioFinland
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital and Faculty of Medicine and Health TechnologyTampere UniversityTampereFinland
| | - Timo A. Lakka
- Institute of Biomedicine, University of Eastern FinlandKuopio CampusKuopioFinland
- Department of Clinical Physiology and Nuclear ImagingUniversity of Eastern Finland and Kuopio University HospitalKuopioFinland
- Foundation for Research in Health Exercise and NutritionKuopio Research Institute of Exercise MedicineKuopioFinland
| | - Eero A. Haapala
- Faculty of Sports and Health SciencesUniversity of JyväskyläJyväskyläFinland
- Institute of Biomedicine, University of Eastern FinlandKuopio CampusKuopioFinland
| |
Collapse
|
40
|
Marino JA, Davis EP, Glynn LM, Sandman CA, Hahn-Holbrook J. Temporal relation between pubertal development and peer victimization in a prospective sample of US adolescents. Aggress Behav 2024; 50:e22139. [PMID: 38348515 PMCID: PMC10983834 DOI: 10.1002/ab.22139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/26/2023] [Accepted: 01/21/2024] [Indexed: 02/15/2024]
Abstract
Peer victimization typically peaks in early adolescence, leading researchers to hypothesize that pubertal timing is a meaningful predictor of peer victimization. However, previous methodological approaches have limited our ability to parse out which puberty cues are associated with peer victimization because gonadal and adrenal puberty, two independent processes, have either been conflated or adrenal puberty timing has been ignored. In addition, previous research has overlooked the possibility of reverse causality-that peer victimization might drive pubertal timing, as it has been shown to do in non-human primates. To fill these gaps, we followed 265 adolescents (47% female) prospectively across three-time points (Mage : T1 = 9.6, T2 = 12.0, T3 = 14.4) and measured self-report peer victimization and self- and maternal-report of gonadal and adrenal pubertal development on the Pubertal Development Scale. Multilevel modeling revealed that females who were further along in adrenal puberty at age 9 were more likely to report peer victimization at age 12 (Cohen's d = 0.25, p = .005). The relation between gonadal puberty status and peer victimization was not significant for either sex. In terms of the reverse direction, the relation between early peer victimization and later pubertal development was not significant in either sex. Overall, our findings suggest that adrenal puberty status, but not gonadal puberty status, predicted peer victimization in females, highlighting the need to separate gonadal and adrenal pubertal processes in future studies.
Collapse
Affiliation(s)
- Jessica A. Marino
- Department of Psychology, University of California, Merced, California, USA
| | - Elysia Poggi Davis
- Department of Psychology, University of Denver, Denver, Colorado, USA
- Department of Pediatrics, University of California, Irvine, California, USA
| | - Laura M. Glynn
- Department of Psychology, Chapman University, Orange, California, USA
| | - Curt A. Sandman
- Department of Psychiatry and Human Behavior, University of California, Irvine, California, USA
| | - Jennifer Hahn-Holbrook
- Department of Psychology, University of California, Merced, California, USA
- Health Sciences Research Institute, University of California, Merced, California, USA
| |
Collapse
|
41
|
Eren H, Sezer B, Deniz Y. Evaluation of the differences in the localization of the lingula mandibulae according to pubertal development in children: A new anthropological and forensic approach. Arch Oral Biol 2024; 159:105892. [PMID: 38241846 DOI: 10.1016/j.archoralbio.2024.105892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/22/2023] [Accepted: 01/04/2024] [Indexed: 01/21/2024]
Abstract
OBJECTIVE This study aims to investigate changes in lingula mandibulae localization before and after puberty and sex differences. DESIGN 288 panoramic radiographs evaluated retrospectively were divided into four groups according to pubertal development: under and over 10 years old for females and under and over 11 years old for males. Four anatomic sites were used as reference points: (a) the anterior border of the ramus; (b) the posterior border of the ramus; (c) the deepest point of mandibular notch; and (d) the angulus mandibulae. The ratio of the distances from the lingula mandibulae to points (a) and (b) and the ratio of the distances from the lingula mandibulae to points (c) and (d) were determined. Two-way ANOVA was performed to assess differences between subgroups based on sex and puberty, and a Bonferroni post-hoc test was performed for multiple comparisons. RESULTS Puberty and sex has a significant interaction effect on the vertical location of the lingula mandibulae. Postpubertal lingula mandibulae is positioned proportionally more anteriorly by prepubertal localization. In addition, the lingula mandibulae is situated more posteriorly in females compared to males. A significant interaction effect of puberty and sex was observed in relation to the vertical positioning of the lingula mandibulae. CONCLUSIONS The spatial localization of the lingula mandibulae and its spatial displacement with age can be used both in estimating sex and the onset of puberty. Changes in the localization of lingula mandibulae according to pubertal development and sex can be used in forensic and anthropological contexts.
Collapse
Affiliation(s)
- Hakan Eren
- Department of Dentomaxillofacial Radiology, School of Dentistry, Çanakkale Onsekiz Mart University, Çanakkale, Turkiye
| | - Berkant Sezer
- Department of Pediatric Dentistry, School of Dentistry, Çanakkale Onsekiz Mart University, Çanakkale, Turkiye.
| | - Yeşim Deniz
- Department of Dentomaxillofacial Radiology, School of Dentistry, Çanakkale Onsekiz Mart University, Çanakkale, Turkiye; Department of Oral and Maxillofacial Radiology, Graduate School of Dentistry, Osaka University, Osaka, Japan
| |
Collapse
|
42
|
Granata L, Fanikos M, Brenhouse HC. Early life adversity accelerates hypothalamic drive of pubertal timing in female rats with associated enhanced acoustic startle. Horm Behav 2024; 159:105478. [PMID: 38241961 PMCID: PMC10926229 DOI: 10.1016/j.yhbeh.2024.105478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 01/21/2024]
Abstract
Early life adversity in the form of childhood maltreatment in humans or as modeled by maternal separation (MS) in rodents is often associated with an earlier emergence of puberty in females. Earlier pubertal initiation is an example of accelerated biological aging and predicts later risk for anxiety in women, especially in populations exposed to early life trauma. Here we investigated external pubertal markers as well as hypothalamic gene expression of pubertal regulators kisspeptin and gonadotropin-releasing hormone, to determine a biological substrate for MS-induced accelerated puberty. We further investigated a mechanism by which developmental stress might regulate pubertal timing. As kisspeptin and gonadotropin-releasing hormone secretion are typically inhibited by corticotropin releasing hormone at its receptor CRH-R1, we hypothesized that MS induces a downregulation of Crhr1 gene transcription in a cell-specific manner. Finally, we explored the association between pubertal timing and anxiety-like behavior in an acoustic startle paradigm, to drive future preclinical research linking accelerated puberty and anxiety. We replicated previous findings that MS leads to earlier puberty in females but not males, and found expression of kisspeptin and gonadotropin-releasing hormone mRNA to be prematurely increased in MS females. RNAscope confirmed increased expression of these genes, and further revealed that kisspeptin-expressing neurons in females were less likely to express Crhr1 after MS. Early puberty was associated with higher acoustic startle magnitude in females. Taken together, these findings indicate precocial maturation of central pubertal timing mechanisms after MS, as well as a potential role of CRH-R1 in these effects and an association with a translational measure of anxiety.
Collapse
Affiliation(s)
- Lauren Granata
- Psychology Department, Northeastern University, Boston, MA, United States of America
| | - Michaela Fanikos
- Psychology Department, Northeastern University, Boston, MA, United States of America
| | - Heather C Brenhouse
- Psychology Department, Northeastern University, Boston, MA, United States of America.
| |
Collapse
|
43
|
Amato E, Taroc EZM, Forni PE. Illuminating the terminal nerve: Uncovering the link between GnRH-1 neuron and olfactory development. J Comp Neurol 2024; 532:e25599. [PMID: 38488687 PMCID: PMC10958589 DOI: 10.1002/cne.25599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/11/2024] [Accepted: 02/19/2024] [Indexed: 03/18/2024]
Abstract
During embryonic development, the olfactory placode (OP) generates migratory neurons, including olfactory pioneer neurons, cells of the terminal nerve (TN), gonadotropin-releasing hormone-1 (GnRH-1) neurons, and other uncharacterized neurons. Pioneer neurons from the OP induce olfactory bulb (OB) morphogenesis. In mice, GnRH-1 neurons appear in the olfactory system around mid-gestation and migrate via the TN axons to different brain regions. The GnRH-1 neurons are crucial in controlling the hypothalamic-pituitary-gonadal axis. Kallmann syndrome is characterized by impaired olfactory system development, defective OBs, secretion of GnRH-1, and infertility. The precise mechanistic link between the olfactory system and GnRH-1 development remains unclear. Studies in humans and mice highlight the importance of the prokineticin-2/prokineticin-receptor-2 (Prokr2) signaling pathway in OB morphogenesis and GnRH-1 neuronal migration. Prokr2 loss-of-function mutations can cause Kallmann syndrome (KS), and hence the Prokr2 signaling pathway represents a unique model to decipher the olfactory/GnRH-1 connection. We discovered that Prokr2 is expressed in the TN neurons during the critical period of GnRH-1 neuron formation, migration, and induction of OB morphogenesis. Single-cell RNA sequencing identified that the TN is formed by neurons distinct from the olfactory neurons. The TN neurons express multiple genes associated with KS. Our study suggests that the aberrant development of pioneer/TN neurons might cause the KS spectrum.
Collapse
Affiliation(s)
- Enrico Amato
- Department of Biological Sciences, The Center for Neuroscience Research, The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Ed Zandro M. Taroc
- Department of Biological Sciences, The Center for Neuroscience Research, The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Paolo E. Forni
- Department of Biological Sciences, The Center for Neuroscience Research, The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| |
Collapse
|
44
|
Lin CY, Nguyen NN, Tsai WL, Hsieh RH, Wu HT, Chen YC. Aspartame Intake Delayed Puberty Onset in Female Offspring Rats and Girls. Mol Nutr Food Res 2024; 68:e2300270. [PMID: 38389198 DOI: 10.1002/mnfr.202300270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 01/14/2024] [Indexed: 02/24/2024]
Abstract
SCOPE The disturbance of the hypothalamic-pituitary-gonadal (HPG) axis, gut microbiota (GM) community, and short-chain fatty acids (SCFAs) is a triggering factor for pubertal onset. The study investigates the effects of the long-term intake of aspartame on puberty and GM in animals and humans. METHODS AND RESULTS Aspartame-fed female offspring rats result in vaginal opening time prolongation, serum estrogen reduction, and serum luteinizing hormone elevation. , 60 mg kg-1 aspartame treatment decreases the mRNA levels of gonadotropin-releasing hormone (GnRH), Kiss1, and G protein-coupled receptor 54 (GPR54), increases the mRNA level of RFamide-related peptide-3 (RFRP-3), and decreases the expression of GnRH neurons in the hypothalamus. Significant differences in relative bacterial abundance at the genus levels and decreased fecal SCFA levels are noted by 60 mg kg-1 aspartame treatment. Among which, Escherichia-Shigella is negatively correlated with several SCFAs. In girls, high-dose aspartame consumption decreases the risk of precocious puberty. CONCLUSIONS Aspartame reduces the chance of puberty occurring earlier than usual in female offspring and girls. Particularly, 60 mg kg-1 aspartame-fed female offspring delays pubertal onset through the dysregulation of HPG axis and GM composition by inhibiting the Kiss1/GPR54 system and inducing the RFRP-3. An acceptable dose of aspartame should be recommended during childhood.
Collapse
Affiliation(s)
- Chia-Yuan Lin
- Department of Food Science, National Taiwan Ocean University, Keelung, 202301, Taiwan
- Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Nam Nhat Nguyen
- College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Wan-Ling Tsai
- Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
- Department of Health Promotion and Gerontological Care, College of LOHAS, Taipei University of Marine Technology, New Taipei City, 25172, Taiwan
| | - Rong-Hong Hsieh
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, 110, Taiwan
| | - Hung-Tsung Wu
- Department of Internal Medicine, School of Medicine, College of Medicine, National Cheng Kung, University, Tainan, 701, Taiwan
| | - Yang-Ching Chen
- Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, 110, Taiwan
- Department of Family Medicine, Taipei Medical University Hospital, Taipei, 11031, Taiwan
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei, 110, Taiwan
- Department of Family Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, 116, Taiwan
- Nutrition Research Center, Taipei Medical University Hospital, Taipei, 110, Taiwan
| |
Collapse
|
45
|
Goggi G, Moro M, Chilà A, Fatti L, Cangiano B, Federici S, Galazzi E, Carbone E, Soranna D, Vezzoli V, Persani L, Bonomi M. COVID-19 lockdown and the rate of central precocious puberty. J Endocrinol Invest 2024; 47:315-323. [PMID: 37566202 PMCID: PMC10859329 DOI: 10.1007/s40618-023-02146-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/18/2023] [Indexed: 08/12/2023]
Abstract
PURPOSE The aim of our study was to compare the incidence of idiopathic central precocious puberty (CPP) in our highly specialized Endocrinological Center before and after the onset of COVID-19 lockdown; we also aimed to identify any potential difference between girls with CPP from the two different time periods. METHODS We retrospectively analyzed the auxological profile of 49 girls with idiopathic CPP: 30 with pre-lockdown onset and 19 with post-lockdown onset of the disease. We collected patients' characteristics (medical history, physical examination, baseline and dynamic hormonal assessment, bone age, pelvic ultrasound) and compared them between the two groups. RESULTS We registered an almost threefold increase in CPP incidence in the 2020-2021 period compared to the previous six years. In post-lockdown patients we found a trend for an earlier diagnosis in terms of both chronological age (p 0.0866) and days between the onset of first pubertal signs and diagnosis (p 0.0618). We also found that post-lockdown patients had a significantly lower hypothalamus-pituitary-gonadal axis activation (lower ∆LH% after GnRH test, p 0.0497), a significantly lower increase in bone age calculated at RUS with TW3 method (p 0.0438) and a significantly reduced ovarian activation in females (lower delta-4-androstenedione levels, p 0.0115). Interestingly, post-lockdown patients were born from mothers with an older age at menarche (p 0.0039). CONCLUSIONS Besides confirming a significant increase in new diagnoses of CPP in the post-lockdown period, our findings among Post-lockdown girls also suggest a less progressive form of CPP and a stronger environmental influence compared to genetic background in determining the timing of pubertal onset.
Collapse
Affiliation(s)
- G Goggi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - M Moro
- Department of Endocrine and Metabolic Diseases, Istituto Auxologico Italiano IRCCS, P.le Brescia 20, 20149, Milan, Italy
| | - A Chilà
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - L Fatti
- Department of Endocrine and Metabolic Diseases, Istituto Auxologico Italiano IRCCS, P.le Brescia 20, 20149, Milan, Italy
| | - B Cangiano
- Department of Endocrine and Metabolic Diseases, Istituto Auxologico Italiano IRCCS, P.le Brescia 20, 20149, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - S Federici
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - E Galazzi
- Department of Endocrine and Metabolic Diseases, Istituto Auxologico Italiano IRCCS, P.le Brescia 20, 20149, Milan, Italy
| | - E Carbone
- Department of Endocrine and Metabolic Diseases, Istituto Auxologico Italiano IRCCS, P.le Brescia 20, 20149, Milan, Italy
| | - D Soranna
- Biostatistic Unit, Istituto Auxologico Italiano IRCCS, Milan, Italy
| | - V Vezzoli
- Department of Endocrine and Metabolic Diseases, Istituto Auxologico Italiano IRCCS, P.le Brescia 20, 20149, Milan, Italy
| | - L Persani
- Department of Endocrine and Metabolic Diseases, Istituto Auxologico Italiano IRCCS, P.le Brescia 20, 20149, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - M Bonomi
- Department of Endocrine and Metabolic Diseases, Istituto Auxologico Italiano IRCCS, P.le Brescia 20, 20149, Milan, Italy.
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy.
| |
Collapse
|
46
|
Goldberg M, Chang CJ, Ogunsina K, O’Brien KM, Taylor KW, White AJ, Sandler DP. Personal Care Product Use during Puberty and Incident Breast Cancer among Black, Hispanic/Latina, and White Women in a Prospective US-Wide Cohort. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:27001. [PMID: 38306193 PMCID: PMC10836586 DOI: 10.1289/ehp13882] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/27/2023] [Accepted: 01/04/2024] [Indexed: 02/04/2024]
Abstract
BACKGROUND Some personal care products (PCPs) contain endocrine-disrupting chemicals that may affect breast cancer (BC) risk. Patterns of use vary by race and ethnicity. Use often starts in adolescence, when rapidly developing breast tissue may be more susceptible to environmental carcinogens. Few studies have examined associations of BC with PCP use during this susceptible window. OBJECTIVES We characterized race and ethnicity-specific patterns of PCP use at 10-13 years of age and estimated associations of use with incident BC. METHODS At enrollment (2003-2009), Sister Study participants (n = 4,049 Black, 2,104 Latina, and 39,312 White women) 35-74 years of age reported use of 37 "everyday" PCPs during the ages of 10-13 y (did not use, sometimes, or frequently used). We conducted race and ethnicity-specific latent class analyses to separately identify groups of women with similar patterns of beauty, hair, and skincare/hygiene product use. We estimated hazard ratios (HRs) and 95% confidence intervals (CIs) for associations of identified PCP classes and single products with incident BC using Cox proportional hazards regression. RESULTS During a mean follow-up time of 10.8 y, 280 Black, 128 Latina, and 3,137 White women were diagnosed with BC. Classes of adolescent PCP use were not clearly associated with BC diagnosis among Black, Latina, or White women. HRs were elevated but imprecise for frequent nail product and perfume use in Black women (HR = 1.34; 95% CI: 0.85, 2.12) and greater hair product use in Black (HR = 1.28; 95% CI: 0.91, 1.80) and Latina (HR = 1.42; 95% CI: 0.81, 2.48) women compared with lighter use. In single-product models, we observed higher BC incidence associated with frequent use of lipstick, nail products, pomade, perfume, makeup remover, and acne/blemish products in at least one group. DISCUSSION This work provides some support for the hypothesis that PCP use during puberty is associated with BC risk. More research is needed to confirm these novel findings. https://doi.org/10.1289/EHP13882.
Collapse
Affiliation(s)
- Mandy Goldberg
- Epidemiology Branch, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | - Che-Jung Chang
- Epidemiology Branch, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | - Kemi Ogunsina
- Epidemiology Branch, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | - Katie M. O’Brien
- Epidemiology Branch, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | - Kyla W. Taylor
- Integrative Health Assessments Branch, Division of Translational Toxicology, NIEHS, NIH, DHHS, Research Triangle Park, North Carolina, USA
| | - Alexandra J. White
- Epidemiology Branch, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | - Dale P. Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| |
Collapse
|
47
|
Niu Z, Duan L, Du Y, Yu F, Chen R, Li Z, Ba Y, Zhou G. Effect of zinc intake on association between fluoride exposure and abnormal sex steroid hormones among US pubertal males: NHANES, 2013-2016. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:2759-2772. [PMID: 38063965 DOI: 10.1007/s11356-023-31135-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/16/2023] [Indexed: 01/18/2024]
Abstract
Excessive fluoride exposure can disturb the balance of sex hormones. Zinc is essential for sex hormone synthesis and spermatogenesis. But it is not clear how zinc affects the relationship of fluoride exposure with abnormal sex steroid hormones. Here, a total of 1008 pubertal males from the National Health and Nutrition Examination Survey (NHANES) in two cycles (2013-2014, 2015-2016) were enrolled. The concentrations of water fluoride and plasma fluoride and the levels of serum testosterone, estradiol, and sex hormone binding globulin (SHBG) were measured. Two 24-h dietary recall interviews were conducted to assess the dietary zinc intake. The relationships of fluoride exposure and zinc intake with sex hormones were examined using linear regression and logistic regression models, while the generalized additive model was used to evaluate their non-linear relationship. Our findings revealed that for every two-fold increase in plasma fluoride concentration, testosterone levels decreased by 7.27% (95% CI - 11.49%, - 2.86%) and estradiol levels decreased by 8.73% (95% CI - 13.61%, - 3.57%). There was also significant non-linear association observed between zinc intake and SHBG levels. Being in the first tertile of plasma fluoride had a 60% lower risk of high SHBG (OR = 0.40, 95% CI 0.18, 0.89) compared with being in the second tertile. When compared to the first tertile, being in the second tertile of zinc intake was associated with a 63% (OR = 0.37, 95% CI 0.14, 0.98) lower risk of high SHBG. Furthermore, we observed an interactive effect between the plasma fluoride and zinc intake on estradiol and SHBG, as well as the risk of high SHBG (P-interaction < 0.10). These findings suggest that fluoride exposure and zinc intake can affect sex steroid hormone levels and the risk of high SHBG. Notably, zinc intake may alleviate the increased risk of high SHBG and the abnormal changes of estradiol and SHBG caused by higher fluoride exposure.
Collapse
Affiliation(s)
- Zeyuan Niu
- Department of Environment Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Leizhen Duan
- Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Yuhui Du
- Department of Environment Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Fangfang Yu
- Department of Environment Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Ruiqin Chen
- Jinshui District Center for Disease Control and Prevention, Zhengzhou, Henan, People's Republic of China
| | - Zhiyuan Li
- Department of Environment Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Yue Ba
- Department of Environment Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
- Yellow River Institute for Ecological Protection & Regional Coordinated Development, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Guoyu Zhou
- Department of Environment Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China.
- National Health Commission Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, Zhengzhou, Henan, People's Republic of China.
| |
Collapse
|
48
|
Lettieri A, Oleari R, van den Munkhof MH, van Battum EY, Verhagen MG, Tacconi C, Spreafico M, Paganoni AJJ, Azzarelli R, Andre' V, Amoruso F, Palazzolo L, Eberini I, Dunkel L, Howard SR, Fantin A, Pasterkamp RJ, Cariboni A. SEMA6A drives GnRH neuron-dependent puberty onset by tuning median eminence vascular permeability. Nat Commun 2023; 14:8097. [PMID: 38062045 PMCID: PMC10703890 DOI: 10.1038/s41467-023-43820-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Innervation of the hypothalamic median eminence by Gonadotropin-Releasing Hormone (GnRH) neurons is vital to ensure puberty onset and successful reproduction. However, the molecular and cellular mechanisms underlying median eminence development and pubertal timing are incompletely understood. Here we show that Semaphorin-6A is strongly expressed by median eminence-resident oligodendrocytes positioned adjacent to GnRH neuron projections and fenestrated capillaries, and that Semaphorin-6A is required for GnRH neuron innervation and puberty onset. In vitro and in vivo experiments reveal an unexpected function for Semaphorin-6A, via its receptor Plexin-A2, in the control of median eminence vascular permeability to maintain neuroendocrine homeostasis. To support the significance of these findings in humans, we identify patients with delayed puberty carrying a novel pathogenic variant of SEMA6A. In all, our data reveal a role for Semaphorin-6A in regulating GnRH neuron patterning by tuning the median eminence vascular barrier and thereby controlling puberty onset.
Collapse
Affiliation(s)
- Antonella Lettieri
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133, Milan, Italy
- Department of Health Sciences, University of Milan, Via di Rudinì 8, 20142, Milano, Italy
| | - Roberto Oleari
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133, Milan, Italy
| | - Marleen Hester van den Munkhof
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | - Eljo Yvette van Battum
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | - Marieke Geerte Verhagen
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
- VIB-KU Leuven, Center for Brain & Disease Research, Leuven, Belgium
| | - Carlotta Tacconi
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco Spreafico
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy
| | | | - Roberta Azzarelli
- Wellcome - Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Valentina Andre'
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133, Milan, Italy
| | - Federica Amoruso
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133, Milan, Italy
| | - Luca Palazzolo
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133, Milan, Italy
| | - Ivano Eberini
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133, Milan, Italy
| | - Leo Dunkel
- Centre for Endocrinology William Harvey Research Institute Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Sasha Rose Howard
- Centre for Endocrinology William Harvey Research Institute Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
- Department of Paediatric Endocrinology, Barts Health NHS Trust, London, E1 1FR, UK
| | - Alessandro Fantin
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy.
| | - Ronald Jeroen Pasterkamp
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands.
| | - Anna Cariboni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133, Milan, Italy.
| |
Collapse
|
49
|
Zou P, Zhang L, Zhang R, Wang C, Lin X, Lai C, Lu Y, Yan Z. Development and Validation of a Combined MRI Radiomics, Imaging and Clinical Parameter-Based Machine Learning Model for Identifying Idiopathic Central Precocious Puberty in Girls. J Magn Reson Imaging 2023; 58:1977-1987. [PMID: 36995000 DOI: 10.1002/jmri.28709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/15/2023] [Accepted: 03/15/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND Idiopathic central precocious puberty (ICPP) impairs child development, without early intervention. The current reference standard, the gonadotropin-releasing hormone stimulation test, is invasive which may hinder diagnosis and intervention. PURPOSE To develop a model for accurate diagnosis of ICPP, by integrating pituitary MRI, carpal bone age, gonadal ultrasound, and basic clinical data. STUDY TYPE Retrospective. POPULATION A total of 492 girls with PP (185 with ICPP and 307 peripheral precocious puberty [PPP]) were randomly divided by reference standard into training (75%) and internal validation (25%) data. Fifty-one subjects (16 with ICPP, 35 with PPP) provided by another hospital as external validation. FIELD STRENGTH/SEQUENCE T1-weighted (spin echo [SE], fast SE, cube) and T2-weighted (fast SE-fat suppression) imaging at 3.0 T or 1.5 T. ASSESSMENT Radiomics features were extracted from pituitary MRI after manual segmentation. Carpal bone age, ovarian, follicle and uterine volumes and endometrium presence were assessed from radiographs and gonadal ultrasound. Four machine learning methods were developed: a pituitary MRI radiomics model, an integrated image model (with pituitary MRI, gonadal ultrasound and bone age), a basic clinical model (with age and sex hormone data), and an integrated multimodal model combining all features. STATISTICAL TESTS Intraclass correlation coefficients were used to assess consistency of segmentation. Receiver operating characteristic (ROC) curves and the Delong tests were used to assess and compare the diagnostic performance of models. P < 0.05 was considered statistically significant. RESULTS The area under of the ROC curve (AUC) of the pituitary MRI radiomics model, integrated image model, basic clinical model, and integrated multimodal model in the training data was 0.668, 0.809, 0.792, and 0.860. The integrated multimodal model had higher diagnostic efficacy (AUC of 0.862 and 0.866 for internal and external validation). CONCLUSION The integrated multimodal model may have potential as an alternative clinical approach to diagnose ICPP. EVIDENCE LEVEL 3. TECHNICAL EFFICACY Stage 2.
Collapse
Affiliation(s)
- Pinfa Zou
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lingfeng Zhang
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ruifang Zhang
- Department of Radiology, Children's hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Chenyan Wang
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - XingTong Lin
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Can Lai
- Department of Radiology, Children's hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yi Lu
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhihan Yan
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
50
|
Carson MD, Westwater C, Novince CM. Adolescence and the Microbiome: Implications for Healthy Growth and Maturation. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1900-1909. [PMID: 37673331 PMCID: PMC10699129 DOI: 10.1016/j.ajpath.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/19/2023] [Accepted: 07/26/2023] [Indexed: 09/08/2023]
Abstract
The gut microbiota was initially thought to develop into a stable, adult-like profile during early postnatal life. The formation of the gut microbiota during early life has been shown to contribute to healthy growth and has lifelong implications for host health. Adolescence, the developmental period between childhood and adulthood, is a critical window for healthy growth and maturation. The composition of the gut microbiota in adolescents is distinct from that of children and adults, which supports the premise that the gut microbiota continues to develop during adolescence toward an adult-like profile. Research has begun to shift its focus from understanding the gut microbiome at the extremes of the life span to evaluating the importance of the gut microbiome during adolescence and its role in healthy development. This article provides an overview of adolescent development, host-microbiota interactions, and experimental models used to discern effects of gut microbiota on health and disease. Herein, the role of the gut microbiota is reviewed as it relates to adolescent: i) brain development, cognition, and behavior; ii) metabolism and adiposity; and iii) skeletal growth and bone mass accrual. Future directions are addressed, including omics investigations defining mechanisms through which the gut microbiota influences adolescent development. Furthermore, we discuss advancing noninvasive interventions targeting the adolescent gut microbiota that could be employed to support healthy growth and maturation.
Collapse
Affiliation(s)
- Matthew D Carson
- Departments of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Caroline Westwater
- Departments of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina; Department of Microbiology and Immunology, College of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Chad M Novince
- Departments of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina; Division of Endocrinology, Department of Pediatrics, College of Medicine, Medical University of South Carolina, Charleston, South Carolina; Division of Periodontics, Department of Stomatology, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina.
| |
Collapse
|