1
|
Du Y, Gao X, Chen J, Chen X, Liu H, He W, Liu L, Jiang Y, He B, Deng Z, Liang C, Guo F. OGT mediated HDAC5 O-GlcNAcylation promotes osteogenesis by regulating the homeostasis of epigenetic modifications and proteolysis. J Orthop Translat 2025; 50:14-29. [PMID: 39659899 PMCID: PMC11626777 DOI: 10.1016/j.jot.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/19/2024] [Accepted: 10/17/2024] [Indexed: 12/12/2024] Open
Abstract
Background O-GlcNAc transferase (OGT) is responsible for attaching O-linked N-acetylglucosamine (O-GlcNAc) to proteins, regulating diverse cellular processes ranging from transcription and translation to signaling and metabolism. This study focuses on the role and mechanisms of OGT in osteogenesis. Materials and methods We found that OGT is downregulated in osteoporosis by bioinformatics analysis, determined its role in osteogenic differentiation by using OGT inhibitors (or OGA inhibitors) as well as conditional knockout OGT mice in vitro and in vivo, and explored and specific mechanisms by quantitative proteomic analysis and RNA-seq, qRT-PCR, western blotting, immunofluorescence, H&E, ALP, ARS, Masson staining, IHC, micro CT, etc. Results we revealed that OGT positively influenced osteogenesis and osteoblast differentiation in vitro as well as ovariectomy (OVX) mice in vivo. Consistently, mice with conditionally depleted OGT exhibited a reduction in bone mass, while O-GlcNAcylation enhancer could partially recover bone mass in ovariectomy (OVX) mice. Mechanistically, quantitative proteomic analysis and high-throughput RNAseq further reveals that HDAC5 is one of the endogenous O-GlcNAcylation substrates, and O-GlcNAcylation of HDAC5 on Thr934 promotes its translocation to lysosomes and subsequent degradation, thus, elevating the O-GlcNAcylation level of HDAC5 leads to its cytoplasmic cleavage, consequently diminished its nuclear entry and enhanced DNA transcription. The OGT-mediated O-GlcNAcylation of HDAC5 modulates the balance between its cytoplasmic proteolysis and nuclear entry, thereby impacting the Notch signaling pathway and DNA epigenetic modifications then playing a role in osteogenesis. Conclusion OGT is a regulator that promotes osteoblast differentiation and bone regeneration. Additionally, it highlights the critical function of HDAC5 O-GlcNAcylation in controlling epigenetics. This study offers fresh perspectives on osteogenesis and O-GlcNAcylation, proposing that the OGT-mediated O-GlcNAcylation of HDAC5 could be a promising target for osteoporosis treatment. The translational potential of this article On one side, OGT might potentially be used as a new biomarker for clinical diagnosis of osteoporosis (OP) in the future. On the other side, small molecule inhibitors of HDAC5, a glycosylation substrate of OGT, or OGT agonists such as silymarin, could all potentially serve as therapeutic targets for the prevention or treatment of OP in the future.
Collapse
Affiliation(s)
- Yu Du
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Xiang Gao
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Jianqiang Chen
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Xinxin Chen
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Hang Liu
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Wenge He
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, China
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Lu Liu
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Yue Jiang
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Baicheng He
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Zhongliang Deng
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Chao Liang
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Fengjin Guo
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| |
Collapse
|
2
|
Pan Y, Liu T, Li L, He L, Pan S, Liu Y. Exploration of Key Regulatory Factors in Mesenchymal Stem Cell Continuous Osteogenic Differentiation via Transcriptomic Analysis. Genes (Basel) 2024; 15:1568. [PMID: 39766835 PMCID: PMC11675713 DOI: 10.3390/genes15121568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/24/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES Mesenchymal stem cells (MSCs) possess the remarkable ability to differentiate into various cell types, including osteoblasts. Understanding the molecular mechanisms governing MSC osteogenic differentiation is crucial for advancing clinical applications and our comprehension of complex disease processes. However, the key biological molecules regulating this process remain incompletely understood. METHODS In this study, we conducted systematic re-analyses of published high-throughput transcriptomic datasets to identify and validate key biological molecules that dynamically regulate MSC osteogenic differentiation. Our approach involved a comprehensive analysis of gene expression patterns across human tissues, followed by the rigorous experimental validation of the identified candidates. RESULTS Through integrated analytical and experimental approaches, we utilized high-throughput transcriptomics to identify four critical regulators of MSC osteogenic differentiation: PTBP1, H2AFZ, BCL6, and TTPAL (C20ORF121). Among these, PTBP1 and H2AFZ functioned as positive regulators, while BCL6 and TTPAL acted as negative regulators in osteogenesis. The regulatory roles of these genes in osteogenesis were further validated via overexpression experiments. CONCLUSIONS Our findings advance our understanding of MSC differentiation fate determination and open new therapeutic possibilities for bone-related disorders. The identification of these regulators provides a foundation for developing targeted interventions in regenerative medicine.
Collapse
Affiliation(s)
- Yu Pan
- Department of Orthopedic Surgery, The Affiliated People’s Hospital of Jiangsu University, Zhenjiang 212002, China; (Y.P.); (T.L.)
- School of Medicine, Jiangsu University, Zhenjiang 2012013, China
| | - Tao Liu
- Department of Orthopedic Surgery, The Affiliated People’s Hospital of Jiangsu University, Zhenjiang 212002, China; (Y.P.); (T.L.)
| | - Linfeng Li
- Department of Orthopedic Surgery, Southwest Hospital Jiangbei Area (The 958th Hospital of Chinese People’s Liberation Army), Chongqing 400020, China;
| | - Liang He
- School of Medicine, Tongji University, Shanghai 201619, China;
| | - Shu Pan
- Computer Science School, Jiangsu University of Science and Technology, Zhenjiang 212003, China
| | - Yuwei Liu
- School of Medicine, Jiangsu University, Zhenjiang 2012013, China
| |
Collapse
|
3
|
Zhao AS, Liu Y, Mulvey JJ, Tchang BG. Treatment of glucocorticoid-induced osteoporosis with concurrent denosumab and romosozumab: a case report. Osteoporos Int 2024; 35:2061-2068. [PMID: 39289209 DOI: 10.1007/s00198-024-07243-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 08/26/2024] [Indexed: 09/19/2024]
Abstract
Osteoporosis is a metabolic bone disorder for which treatment options include antiresorptive therapies (e.g., bisphosphonates, denosumab); anabolics (e.g., teriparatide, abaloparatide); and dual mechanisms (e.g., romosozumab). Management of osteoporosis with concurrent antiresorptive and anabolic agents may be superior to monotherapy, as demonstrated in the DATA trial with the combination of denosumab and teriparatide. However, there is limited experience with the combination of denosumab and romosozumab, which may be an alternative antiresorptive/anabolic regimen for individuals who are not candidates for PTH receptor agonists. In this case, we present a young man with glucocorticoid-induced osteoporosis who could not tolerate a daily injectable anabolic and who experienced improvement in bone mineral density with concurrent denosumab and off-label romosozumab administration.
Collapse
Affiliation(s)
- Alice S Zhao
- New York Presbyterian Weill Cornell Medical College, New York, NY, USA
| | - Yi Liu
- Weill Cornell Medicine, New York, NY, USA
| | | | | |
Collapse
|
4
|
Tan J, Guo A, Zhang K, Jiang Y, Liu H. The effect of empagliflozin (sodium-glucose cotransporter-2 inhibitor) on osteoporosis and glycemic parameters in patients with type 2 diabetes: a quasi-experimental study. BMC Musculoskelet Disord 2024; 25:793. [PMID: 39375646 PMCID: PMC11460138 DOI: 10.1186/s12891-024-07900-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/23/2024] [Indexed: 10/09/2024] Open
Abstract
OBJECTIVE Diabetic osteoporosis (DOP) is a metabolic disease that occurs in patients with diabetes due to insufficient insulin secretion. This condition can lead to sensory neuropathy, nephropathy, retinopathy, and hypoglycemic events, which can increase the risk of fractures. This study aimed to assess the effectiveness of Empagliflozin, a sodium-glucose cotransporter-2 (SGLT-2) inhibitor, in treating diabetic osteoporosis (DOP) and preventing fractures. METHODS This quasi-experimental study enrolled 100 patients with diabetic osteoporosis from February 2023 to February 2024. Participants were randomly assigned to an intervention group (n = 50) and a control group (n = 50). The intervention group received Empagliflozin in combination with symptomatic treatment, while the control group received only symptomatic treatment. The treatment duration was six months. Fasting blood glucose (FBG), 2-hour postprandial blood glucose (2 h PG), glycosylated hemoglobin A1c (Hb A1c), bone mineral density (BMD), serum phosphorus and calcium concentration were measured after the intervention and the incidence of fracture was followed up for 12 months. The data were analyzed using SPSS 23. Descriptive statistics (mean, standard deviation, and percentage) and analytical methods (t test, Chi square) were also used to analyze the data. RESULTS After six months of treatment, the intervention group exhibited significantly lower levels of FBG (P < 0.001), 2 h-PG (P = 0.001), and HbA1c (P < 0.001) than the control group. Additionally, bone mineral density, serum phosphorus, and calcium levels were significantly higher in the intervention group (P < 0.001). After a 12-months follow-up, the incidence of fractures in the intervention group was 2%, while it was 16.33% in the control group (P < 0.05). CONCLUSION Empagliflozin, when combined with symptomatic treatment, demonstrates a positive clinical effect in patients with diabetic osteoporosis. The treatment effectively improves blood glucose metabolism, bone mineral density, and phosphorus and calcium metabolism, ultimately leading to a significant reduction in the incidence of fracture.
Collapse
Affiliation(s)
- Jinmei Tan
- Endocrine Department, General Hospital of the Yangtze River Shipping, Wuhan Brain Hospital, Wuhan, 430000, China
| | - Aili Guo
- Endocrine Department, General Hospital of the Yangtze River Shipping, Wuhan Brain Hospital, Wuhan, 430000, China
| | - Keqin Zhang
- Endocrine Department, Tongji Hospital of Tongji University, Shanghai, 200000, China
| | - Yanli Jiang
- Endocrine Department, Liyuan Hospital Affiliated to Tongji Medical College of Huazhong, University of Science and Technology, Wuhan, 430000, China
| | - Huaning Liu
- Geriatrics Department, General Hospital of the Yangtze River Shipping, Wuhan Brain Hospital, Wuhan, 430000, China.
| |
Collapse
|
5
|
Cong T, Viola DCM, Witayakom W, Nieves JW, Lane JM. What's New in Osteoporosis: Emphasis on the Aging Athlete. J Bone Joint Surg Am 2024; 106:1538-1545. [PMID: 39052756 DOI: 10.2106/jbjs.24.00644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Affiliation(s)
- Ting Cong
- Metabolic Bone Disease Service, Department of Orthopedics, Hospital for Special Surgery, New York, NY
- Department of Orthopedics, Weill Cornell Medicine, New York, NY
| | - Dan C M Viola
- Metabolic Bone Disease Service, Department of Orthopedics, Hospital for Special Surgery, New York, NY
- Department of Orthopedics, Weill Cornell Medicine, New York, NY
| | - Witchaporn Witayakom
- Metabolic Bone Disease Service, Department of Orthopedics, Hospital for Special Surgery, New York, NY
- Department of Orthopedics, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Jeri W Nieves
- Metabolic Bone Disease Service, Department of Orthopedics, Hospital for Special Surgery, New York, NY
- Mailman School of Public Health, Columbia University, New York, NY
| | - Joseph M Lane
- Metabolic Bone Disease Service, Department of Orthopedics, Hospital for Special Surgery, New York, NY
- Department of Orthopedics, Weill Cornell Medicine, New York, NY
| |
Collapse
|
6
|
Gao G, Cui J, Xie Y, Dong J. Effects of romosozumab combined with routine therapy on pain relief, disease progression and adverse reactions in patients with postmenopausal osteoporosis: a systematic review and meta-analysis. Front Med (Lausanne) 2024; 11:1440948. [PMID: 39206178 PMCID: PMC11349545 DOI: 10.3389/fmed.2024.1440948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Background Postmenopausal osteoporosis (PMOP) increases fracture risk in women. Though traditional treatments are slow to act, combining romosozumab with conventional therapy shows promise. Despite its growing use, studies on effectiveness are limited. This study aims to systematically evaluate the combined therapy's impact on pain relief, disease progression, and adverse reactions in PMOP patients. Methods Databases including PubMed, EMBASE, ScienceDirect, and the Cochrane Library were searched from their inception to September 2023 to identify randomized controlled trials (RCTs) evaluating the role of romosozumab in PMOP. Random or fixed effect models were employed for statistical analysis. Two reviewers independently assessed the quality of the included studies and extracted the data. The meta-analysis was conducted using RevMan 5.4 software. Results Six RCTs with a total sample size of 17,985 cases were included. The incidence of vertebral fractures was compared and analyzed after 12 and 24 months of treatment. Romosozumab significantly reduced the incidence of vertebral fractures at 24 months (OR = 0.36; 95% CI: 0.35-0.52) but not at 12 months (OR = 0.39; 95% CI: 0.14-1.05). It was also associated with a decreased incidence of nonvertebral fractures (OR = 0.79; 95% CI: 0.66-0.94) and clinical fractures at 24 months (OR = 0.70; 95% CI: 0.59-0.82) compared to standard therapy. Romosozumab demonstrated a significant improvement in percentage change in bone mineral density (BMD) [mean difference (MD) = 10.38; 95% CI: 4.62-16.14] and in hip joint BMD (MD = 4.24; 95% CI: 2.92-5.56). There was no notable difference in adverse reactions compared to standard care (p > 0.05). Funnel plots displayed a predominantly symmetrical pattern, suggesting no evidence of publication bias in the selected literature. Conclusion Combining romosozumab with conventional therapy effectively treats PMOP, significantly reducing vertebral, non-vertebral, and clinical fractures while increasing BMD in the hip, femoral neck, and lumbar spine. However, further high-quality studies are needed for validation.
Collapse
Affiliation(s)
- Ge Gao
- Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jian Cui
- The First Affiliated Hospital of Shandong First Medical University (Shandong Qianfo Mountain Hospital), Jinan, China
| | - Yuanyuan Xie
- Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jing Dong
- The First Affiliated Hospital of Shandong First Medical University (Shandong Qianfo Mountain Hospital), Jinan, China
| |
Collapse
|
7
|
Chen YJ, Jia LH, Han TH, Zhao ZH, Yang J, Xiao JP, Yang HJ, Yang K. Osteoporosis treatment: current drugs and future developments. Front Pharmacol 2024; 15:1456796. [PMID: 39188952 PMCID: PMC11345277 DOI: 10.3389/fphar.2024.1456796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 07/31/2024] [Indexed: 08/28/2024] Open
Abstract
Osteoporosis is a common systemic metabolic disease characterized by a decrease in bone density and bone mass, destruction of bone tissue microstructure, and increased bone fragility leading to fracture susceptibility. Pharmacological treatment of osteoporosis is the focus of current research, and anti-osteoporosis drugs usually play a role in inhibiting bone resorption, promoting bone formation, and having a dual role. However, most of the drugs have the disadvantages of single target and high toxic and side effects. There are many types of traditional Chinese medicines (TCM), from a wide range of sources and mostly plants. Herbal plants have unique advantages in regulating the relationship between osteoporosis and the immune system, acupuncture therapy has significant therapeutic effects in combination with medicine for osteoporosis. The target cells and specific molecular mechanisms of TCM in preventing and treating osteoporosis have not been fully elucidated. At present, there is a lack of comprehensive understanding of the pathological mechanism of the disease. Therefore, a better understanding of the pathological signaling pathways and key molecules involved in the pathogenesis of osteoporosis is crucial for the design of therapeutic targets and drug development. In this paper, we review the development and current status of anti-osteoporosis drugs currently in clinical application and under development to provide relevant basis and reference for drug prevention and treatment of osteoporosis, with the aim of promoting pharmacological research and new drug development.
Collapse
Affiliation(s)
- Ya-jing Chen
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Urology, Jinhua Hospital of Traditional Chinese Medicine, Affiliated to Zhejiang University of Traditional Chinese Medicine, Jinhua, China
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou, China
| | - Li-hua Jia
- Department of Urology, Jinhua Hospital of Traditional Chinese Medicine, Affiliated to Zhejiang University of Traditional Chinese Medicine, Jinhua, China
| | - Tao-hong Han
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou, China
| | - Zhi-hui Zhao
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou, China
| | - Jian Yang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Dexing Research and Training Center of Chinese Medical Sciences, Dexing, China
| | - Jun-ping Xiao
- Jiangxi Prozin Pharmaceutical Co., Ltd., Jiangxi, China
| | - Hong-Jun Yang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ke Yang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou, China
| |
Collapse
|
8
|
Cao G, Hu S, Ning Y, Dou X, Ding C, Wang L, Wang Z, Sang X, Yang Q, Shi J, Hao M, Han X. Traditional Chinese medicine in osteoporosis: from pathogenesis to potential activity. Front Pharmacol 2024; 15:1370900. [PMID: 38628648 PMCID: PMC11019011 DOI: 10.3389/fphar.2024.1370900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/11/2024] [Indexed: 04/19/2024] Open
Abstract
Osteoporosis characterized by decreased bone density and mass, is a systemic bone disease with the destruction of microstructure and increase in fragility. Osteoporosis is attributed to multiple causes, including aging, inflammation, diabetes mellitus, and other factors induced by the adverse effects of medications. Without treatment, osteoporosis will further progress and bring great trouble to human life. Due to the various causes, the treatment of osteoporosis is mainly aimed at improving bone metabolism, inhibiting bone resorption, and promoting bone formation. Although the currently approved drugs can reduce the risk of fragility fractures in individuals, a single drug has limitations in terms of safety and effectiveness. By contrast, traditional Chinese medicine (TCM), a characteristic discipline in China, including syndrome differentiation, Chinese medicine prescription, and active ingredients, shows unique advantages in the treatment of osteoporosis and has received attention all over the world. Therefore, this review summarized the pathogenic factors, pathogenesis, therapy limitations, and advantages of TCM, aiming at providing new ideas for the prevention and treatment of OP.
Collapse
Affiliation(s)
- Gang Cao
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - ShaoQi Hu
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yan Ning
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xinyue Dou
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chuan Ding
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lu Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zeping Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xianan Sang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiao Yang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiangnan Shi
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Min Hao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xin Han
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
9
|
Zhang L, Wang W, Wen L, Xue F, Li J, Qian Y. Treatment for Gorham-Stout syndrome with a combination of teriparatide and denosumab. Osteoporos Int 2024; 35:727-731. [PMID: 38062162 DOI: 10.1007/s00198-023-06995-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/30/2023] [Indexed: 03/22/2024]
Abstract
Gorham-Stout syndrome is an aggressive, non-hereditary, and rare disease affecting bone metabolism. Its etiology and pathogenesis remain elusive. The syndrome manifests with diverse clinical symptoms, often leading to frequent misdiagnoses and presenting challenges in treatment. In this study, we report a case of cranial and maxillary osteolysis in a 47-year-old female patient with somatic mutations in the VEGF-A, VEGF-B, and VEGF-C genes and the EPHB4 gene. After treatment with bisphosphonates, this patient still had persistent resorption of the mandible, but switching to a teriparatide and denosumab combination yielded substantial improvement. This study is the first report to show that teriparatide combined with denosumab can be used to treat Gorham-Stout syndrome.
Collapse
Affiliation(s)
- Liqin Zhang
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Kunming Medical University, No. 1088 Mid Hai Yuan Road, Gaoxin District, Kunming, 650106, China
| | - Weihong Wang
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Kunming Medical University, No. 1088 Mid Hai Yuan Road, Gaoxin District, Kunming, 650106, China.
| | - Liang Wen
- Department of Medical Imaging, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Fenglin Xue
- Department of Pathology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Jingyi Li
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Kunming Medical University, No. 1088 Mid Hai Yuan Road, Gaoxin District, Kunming, 650106, China
| | - Yemei Qian
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Kunming Medical University, No. 1088 Mid Hai Yuan Road, Gaoxin District, Kunming, 650106, China
| |
Collapse
|
10
|
Wang P, Shao W, Li Z, Wang B, Lv X, Huang Y, Feng Y. Non-bone-derived exosomes: a new perspective on regulators of bone homeostasis. Cell Commun Signal 2024; 22:70. [PMID: 38273356 PMCID: PMC10811851 DOI: 10.1186/s12964-023-01431-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 12/09/2023] [Indexed: 01/27/2024] Open
Abstract
Accumulating evidence indicates that exosomes help to regulate bone homeostasis. The roles of bone-derived exosomes have been well-described; however, recent studies have shown that some non-bone-derived exosomes have better bone targeting ability than bone-derived exosomes and that their performance as a drug delivery vehicle for regulating bone homeostasis may be better than that of bone-derived exosomes, and the sources of non-bone-derived exosomes are more extensive and can thus be better for clinical needs. Here, we sort non-bone-derived exosomes and describe their composition and biogenesis. Their roles and specific mechanisms in bone homeostasis and bone-related diseases are also discussed. Furthermore, we reveal obstacles to current research and future challenges in the practical application of exosomes, and we provide potential strategies for more effective application of exosomes for the regulation of bone homeostasis and the treatment of bone-related diseases. Video Abstract.
Collapse
Affiliation(s)
- Ping Wang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wenkai Shao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zilin Li
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bo Wang
- Department of Rehabilitation, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiao Lv
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yiyao Huang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| | - Yong Feng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
11
|
Arora MK, Kumar L, Marwah S. Combination Therapy of Denosumab and Teriparatide in Osteoporosis. Indian J Orthop 2023; 57:147-149. [PMID: 38107811 PMCID: PMC10721572 DOI: 10.1007/s43465-023-01051-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 11/08/2023] [Indexed: 12/19/2023]
Abstract
Osteoporosis is a chronic disease that often requires long-term treatment for many years. The clinician should know about all the drugs that are currently being used for treatment in osteoporosis and their mechanism of action, efficacy, safety profile, mode of administration and number of years they can be given safely without causing significant adverse effects. The categories of drugs that are currently being used for osteoporosis are antiresorptives such as oral and intravenous bisphosphonates, denosumab, and anabolics like teriparatide. This article will focus on the combination therapy of denosumab and teriparatide and will discuss how this combination is better than other class of drugs when given alone or in combination in osteoporosis patients especially those who are at high risk of fragility fractures.
Collapse
|
12
|
Gera I, Szücs N. [The recombinant human parathyroid hormone, teriparatide as an alternative remedy for the medication-related osteonecrosis of the jaw]. Orv Hetil 2023; 164:1406-1415. [PMID: 37695713 DOI: 10.1556/650.2023.32861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 06/30/2023] [Indexed: 09/13/2023]
Abstract
In developed countries, osteoporosis is one of the most common debilitating conditions in the population over the age of 50. Unfortunately, the pathomechanism of the disease is still not fully understood. Nowadays, the administration of antiresorptive drugs blocking osteoclastic activity is the most commonly used medication to slow down the speed of the bone loss. One of the uncommon side effects of such drugs is the medication-related osteonecrosis of the jaw (MRONJ). Recently, a number of alternative therapeutic approaches has been tested and published, amongst them the recombinant human parathyroid hormone (rhPTH, teriparatide) use, which is turning into a promising treatment modality. According to certain meta-analyses, its pharmacological effect on increasing bone mineral density and controlling pathological vertebral fractures is superior to antiresorptive drugs; however, the so-called "off-label" application of teriparatide remains controversial. As intermittent administration of teriparatide stimulates bone formation, several animal and clinical studies indicated that systemic application of teriparatide shortened fracture healing time and improved quality of the callus and the newly formed bone. Furthermore, recently several clinical studies showed the beneficial effect of the intermittent rhPTH administration in the management of MRONJ. This article reviews the history of the anabolic effect of the low-dose rhPTH discovery, provides evidence-based data from animal and human studies, summarizes its biological mechanisms and the clinical benefits of the anabolic therapy and also their possible role in the management of MRONJ. The majority of the clinical data indicates that, in the case of therapy-resistant osteonecrosis, it may be worthwhile to apply short-term intermittent teriparatide therapy. Notwithstanding, more randomized clinical trials are necessary in order to confirm the efficacy and the safety of the use of teriparatide in the treatment of MRONJ. Orv Hetil. 2023; 164(36): 1406-1415.
Collapse
Affiliation(s)
- István Gera
- 1 Semmelweis Egyetem, Fogorvostudományi Kar, Parodontológiai Klinika Budapest, Szentkirályi u. 47., 1088 Magyarország
| | - Nikolette Szücs
- 2 Semmelweis Egyetem, Általános Orvostudományi Kar, Belgyógyászati és Onkológiai Klinika Budapest Magyarország
| |
Collapse
|
13
|
Huang X, Ma J, Wei Y, Chen H, Chu W. Identification of biomarkers associated with diagnosis of postmenopausal osteoporosis patients based on bioinformatics and machine learning. Front Genet 2023; 14:1198417. [PMID: 37465165 PMCID: PMC10352088 DOI: 10.3389/fgene.2023.1198417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/19/2023] [Indexed: 07/20/2023] Open
Abstract
Background: Accumulating evidence suggests that postmenopausal osteoporosis (PMOP) is a common chronic systemic metabolic bone disease, but its specific molecular pathogenesis remains unclear. This study aimed to identify novel genetic diagnostic markers for PMOP. Methods: In this paper, we combined three GEO datasets to identify differentially expressed genes (DEGs) and performed functional enrichment analysis of PMOP-related differential genes. Key genes were analyzed using two machine learning algorithms, namely, LASSO and the Gaussian mixture model, and candidate biomarkers were found after taking the intersection. After further ceRNA network construction, methylation analysis, and immune infiltration analysis, ACACB and WWP1 were finally selected as diagnostic markers. Twenty-four clinical samples were collected, and the expression levels of biomarkers in PMOP were detected by qPCR. Results: We identified 34 differential genes in PMOP. DEG enrichment was mainly related to amino acid synthesis, inflammatory response, and apoptosis. The ceRNA network construction found that XIST-hsa-miR-15a-5p/hsa-miR-15b-5p/hsa-miR-497-5p and hsa-miR-195-5p-WWP1/ACACB may be RNA regulatory pathways regulating PMOP disease progression. ACACB and WWP1 were identified as diagnostic genes for PMOP, and validated in datasets and clinical sample experiments. In addition, these two genes were also significantly associated with immune cells, such as T, B, and NK cells. Conclusion: Overall, we identified two vital diagnostic genes responsible for PMOP. The results may help provide potential immunotherapeutic targets for PMOP.
Collapse
Affiliation(s)
- Xinzhou Huang
- Department of Orthopedics, 3201 Hospital of Xi’an Jiaotong University Health Science Center, Hanzhong, China
| | - Jinliang Ma
- Department of Orthopedics, The First People’s Hospital of Jingzhou (First Affiliated Hospital of Yangtze University), Jingzhou, China
| | - Yongkun Wei
- Department of Orthopedics, 3201 Hospital of Xi’an Jiaotong University Health Science Center, Hanzhong, China
| | - Hui Chen
- Department of Clinical Laboratory, The First People’s Hospital of Jingzhou (First Affiliated Hospital of Yangtze University), Jingzhou, China
| | - Wei Chu
- Department of Orthopedics, The First People’s Hospital of Jingzhou (First Affiliated Hospital of Yangtze University), Jingzhou, China
| |
Collapse
|
14
|
Castillo EJ, Jiron JM, Croft CS, Freehill DG, Castillo CM, Kura J, Yarrow JF, Bhattacharyya I, Kimmel DB, Aguirre JI. Intermittent parathyroid hormone enhances the healing of medication-related osteonecrosis of the jaw lesions in rice rats. Front Med (Lausanne) 2023; 10:1179350. [PMID: 37404809 PMCID: PMC10315582 DOI: 10.3389/fmed.2023.1179350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 05/26/2023] [Indexed: 07/06/2023] Open
Abstract
Medication-related osteonecrosis of the jaw (MRONJ) is a potentially severe adverse event in patients treated with antiresorptives. Management of MRONJ is challenging, and no non-antibiotic, established medical treatment exists. Intermittent parathyroid hormone (iPTH) has been used off-label to treat MRONJ with favorable results. However, its medical efficacy has rarely been substantiated in clinical or preclinical experiments. Using a validated rice rat, infection-based model of MRONJ, we evaluated the effects of iPTH on established MRONJ. We hypothesize that iPTH contributes to MRONJ resolution by enhancing alveolar bone turnover and healing oral soft tissues. Eighty-four rice rats began a standard rodent chow diet at age 4 weeks to induce localized periodontitis. Rats were simultaneously randomized to receive saline (vehicle, VEH) or zoledronic acid (ZOL, 80 μg/kg IV) every 4 weeks. Oral exams were conducted bi-weekly to assign a gross quadrant grade (GQG, 0-4) to evaluate any lesion at the lingual aspect of the interdental space between maxillary molar (M2) and M3. 14 of 20 VEH-treated rice rats (70%) developed maxillary localized periodontitis with GQG 2-3 after 30 ± 10 weeks of saline. Additionally, 40 of 64 ZOL-treated rice rats with periodontitis developed MRONJ-like lesions after 30 ± 10 weeks of ZOL treatment. Rice rats with localized periodontitis or MRONJ-like lesions were treated with saline or iPTH (40 μg/kg) subcutaneously (SC) 3 times/week For 6 weeks until euthanasia. We found that iPTH -treated ZOL rats had a lower prevalence of MRONJ (p < 0.001), with lower severity extent of oral lesions (p = 0.003) and percentage of empty osteocyte lacunae (p < 0.001). ZOL rats treated with iPTH displayed a higher osteoblast surface (p < 0.001), more osteoblasts (p < 0.001), higher osteoclast surface (p < 0.001) and more osteoclasts (p = 0.002) at alveolar bone surfaces than ZOL/VEH rats. Greater gingival epithelial thickness and epithelial cell proliferation rate was found in the oral mucosa and gingiva of ZOL/PTH rats than in ZOL/VEH rats (p < 0.001). Our data suggest that iPTH is an efficacious non-operative medicinal therapy that accelerates oral healing and enhances the resolution of MRONJ lesions in ZOL-treated rice rats.
Collapse
Affiliation(s)
- E. J. Castillo
- Department of Physiological Sciences, University of Florida, Gainesville, FL, United States
| | - J. M. Jiron
- Department of Physiological Sciences, University of Florida, Gainesville, FL, United States
| | - C. S. Croft
- Department of Physiological Sciences, University of Florida, Gainesville, FL, United States
| | - D. G. Freehill
- Department of Physiological Sciences, University of Florida, Gainesville, FL, United States
| | - C. M. Castillo
- Department of Physiological Sciences, University of Florida, Gainesville, FL, United States
| | - J. Kura
- VA Medical Center, Research Service, Gainesville, FL, United States
| | - J. F. Yarrow
- VA Medical Center, Research Service, Gainesville, FL, United States
| | - I. Bhattacharyya
- Department of Oral and Maxillofacial Diagnostic Sciences, College of Dentistry, University of Florida, Gainesville, FL, United States
| | - D. B. Kimmel
- Department of Physiological Sciences, University of Florida, Gainesville, FL, United States
| | - J. Ignacio Aguirre
- Department of Physiological Sciences, University of Florida, Gainesville, FL, United States
| |
Collapse
|
15
|
Xu H, Wang W, Liu X, Huang W, Zhu C, Xu Y, Yang H, Bai J, Geng D. Targeting strategies for bone diseases: signaling pathways and clinical studies. Signal Transduct Target Ther 2023; 8:202. [PMID: 37198232 DOI: 10.1038/s41392-023-01467-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 04/02/2023] [Accepted: 04/19/2023] [Indexed: 05/19/2023] Open
Abstract
Since the proposal of Paul Ehrlich's magic bullet concept over 100 years ago, tremendous advances have occurred in targeted therapy. From the initial selective antibody, antitoxin to targeted drug delivery that emerged in the past decades, more precise therapeutic efficacy is realized in specific pathological sites of clinical diseases. As a highly pyknotic mineralized tissue with lessened blood flow, bone is characterized by a complex remodeling and homeostatic regulation mechanism, which makes drug therapy for skeletal diseases more challenging than other tissues. Bone-targeted therapy has been considered a promising therapeutic approach for handling such drawbacks. With the deepening understanding of bone biology, improvements in some established bone-targeted drugs and novel therapeutic targets for drugs and deliveries have emerged on the horizon. In this review, we provide a panoramic summary of recent advances in therapeutic strategies based on bone targeting. We highlight targeting strategies based on bone structure and remodeling biology. For bone-targeted therapeutic agents, in addition to improvements of the classic denosumab, romosozumab, and PTH1R ligands, potential regulation of the remodeling process targeting other key membrane expressions, cellular crosstalk, and gene expression, of all bone cells has been exploited. For bone-targeted drug delivery, different delivery strategies targeting bone matrix, bone marrow, and specific bone cells are summarized with a comparison between different targeting ligands. Ultimately, this review will summarize recent advances in the clinical translation of bone-targeted therapies and provide a perspective on the challenges for the application of bone-targeted therapy in the clinic and future trends in this area.
Collapse
Affiliation(s)
- Hao Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, P. R. China
| | - Wentao Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, P. R. China
| | - Xin Liu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, P. R. China
| | - Wei Huang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230031, Anhui, China
| | - Chen Zhu
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230031, Anhui, China
| | - Yaozeng Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, P. R. China
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, P. R. China.
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215006, Jiangsu, China.
| | - Jiaxiang Bai
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, P. R. China.
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215006, Jiangsu, China.
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, P. R. China.
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215006, Jiangsu, China.
| |
Collapse
|
16
|
Li J, Yao Z, Liu X, Duan R, Yi X, Ayoub A, Sanders JO, Mesfin A, Xing L, Boyce BF. TGFβ1 +CCR5 + neutrophil subset increases in bone marrow and causes age-related osteoporosis in male mice. Nat Commun 2023; 14:159. [PMID: 36631487 PMCID: PMC9834218 DOI: 10.1038/s41467-023-35801-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 01/03/2023] [Indexed: 01/13/2023] Open
Abstract
TGFβ1 induces age-related bone loss by promoting degradation of TNF receptor-associated factor 3 (TRAF3), levels of which decrease in murine and human bone during aging. We report that a subset of neutrophils (TGFβ1+CCR5+) is the major source of TGFβ1 in murine bone. Their numbers are increased in bone marrow (BM) of aged wild-type mice and adult mice with TRAF3 conditionally deleted in mesenchymal progenitor cells (MPCs), associated with increased expression in BM of the chemokine, CCL5, suggesting that TRAF3 in MPCs limits TGFβ1+CCR5+ neutrophil numbers in BM of young mice. During aging, TGFβ1-induced TRAF3 degradation in MPCs promotes NF-κB-mediated expression of CCL5 by MPCs, associated with higher TGFβ1+CCR5+ neutrophil numbers in BM where they induce bone loss. TGFβ1+CCR5+ neutrophils decreased bone mass in male mice. The FDA-approved CCR5 antagonist, maraviroc, reduced TGFβ1+CCR5+ neutrophil numbers in BM and increased bone mass in aged mice. 15-mon-old mice with TGFβRII specifically deleted in MPCs had lower numbers of TGFβ1+CCR5+ neutrophils in BM and higher bone volume than wild-type littermates. We propose that pharmacologic reduction of TGFβ1+CCR5+ neutrophil numbers in BM could treat or prevent age-related osteoporosis.
Collapse
Affiliation(s)
- Jinbo Li
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA.
- Institute of Health and Medical Research, Hebei Medical University, Shijiazhuang, Hebei, 050017, China.
| | - Zhenqiang Yao
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Xin Liu
- Department of Orthopedics, Tianjin Hospital, Tianjin, China
| | - Rong Duan
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Xiangjiao Yi
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Akram Ayoub
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
- Leica Biosystems, Deer Park, IL, 60010, USA
| | - James O Sanders
- Department of Orthopaedics and Rehabilitation Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
- Department of Orthopaedics, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Addisu Mesfin
- Department of Orthopaedics and Rehabilitation Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Lianping Xing
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Brendan F Boyce
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA.
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, 14642, USA.
- Department of Orthopaedics and Rehabilitation Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| |
Collapse
|
17
|
Ramchand SK, David NL, Lee H, Bruce M, Bouxsein ML, Tsai JN, Leder BZ. The Effect of Zoledronic Acid on Bone Microarchitecture and Strength after Denosumab and Teriparatide Administration: DATA-HD Study Extension. J Bone Miner Res 2023; 38:26-34. [PMID: 36333954 PMCID: PMC10098948 DOI: 10.1002/jbmr.4737] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/12/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
Abstract
The combination of denosumab and teriparatide is an effective treatment strategy in postmenopausal osteoporosis, though skeletal gains are promptly lost when these agents are discontinued. In the DATA-HD study, we reported that a single dose of zoledronic acid (ZOL) maintains the increases in areal spine and hip bone mineral density (BMD) achieved with this combination for at least 12 months. The capacity of ZOL to maintain corresponding improvements in peripheral volumetric BMD and microarchitecture, however, has not been reported. In the 15-month DATA-HD study, 76 postmenopausal osteoporotic women were randomized to receive 9 months of teriparatide (20-μg or 40-μg daily) overlapped with denosumab (60 mg at months 3 and 9). In the Extension study, 53 participants received a single dose of ZOL (5 mg intravenously) 24-35 weeks after the last denosumab dose. We measured volumetric BMD and microarchitecture at the distal radius and tibia using high-resolution peripheral quantitative computed tomography at months 27 and 42. Despite ZOL administration, total and cortical BMD gradually decreased over 27 months resulting in values similar to baseline at the radius but still significantly above baseline at the tibia. At both sites, cortical porosity decreased to values below pretreatment baseline at month 27 but then increased from month 27 to 42. There were no significant changes in trabecular parameters throughout the 27-month post-ZOL observation period. Stiffness and failure load, at both sites, decreased progressively from month 15 42 though remained above baseline at the tibia. These findings suggest that in contrast to the largely maintained gains in dual-energy X-ray absorptiometry (DXA)-derived spine and hip BMD, a single dose of ZOL was not as effective in maintaining the gains in volumetric peripheral bone density and microarchitecture produced by 15 months of overlapping treatment with denosumab and teriparatide. Alternative therapeutic approaches that can fully maintain improvements in peripheral bone parameters require further study. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Sabashini K Ramchand
- Department of Medicine, Endocrine Unit, Massachusetts General Hospital, Harvard University, Boston, MA, USA.,Department of Medicine, Endocrine Unit, Austin Hospital, The University of Melbourne, Victoria, Australia
| | - Natalie L David
- Department of Medicine, Endocrine Unit, Massachusetts General Hospital, Harvard University, Boston, MA, USA
| | - Hang Lee
- Biostatistics Center, Massachusetts General Hospital, Boston, MA, USA
| | - Michael Bruce
- Department of Medicine, Endocrine Unit, Massachusetts General Hospital, Harvard University, Boston, MA, USA
| | - Mary L Bouxsein
- Department of Orthopedic Surgery, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Joy N Tsai
- Department of Medicine, Endocrine Unit, Massachusetts General Hospital, Harvard University, Boston, MA, USA
| | - Benjamin Z Leder
- Department of Medicine, Endocrine Unit, Massachusetts General Hospital, Harvard University, Boston, MA, USA
| |
Collapse
|
18
|
Chandran M. The why and how of sequential and combination therapy in osteoporosis. A review of the current evidence. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2022; 66:724-738. [PMID: 36382762 PMCID: PMC10118820 DOI: 10.20945/2359-3997000000564] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
It is now well recognized that over the lifetime of a patient with osteoporosis, more than one medication will be needed to treat the disease and to decrease fracture risk. Though current gaps in osteoporosis therapy can be potentially mitigated with sequential and combination regimens, how to move seamlessly amongst the multiple treatments currently available for osteoporosis for sustained efficacy is still unclear. Data from recent studies show that an anabolic agent such as teriparatide or romosozumab followed by an antiresorptive affords maximal gain in BMD and possibly better and earlier fracture risk reduction compared to a regimen which follows the opposite sequence. Sequentially moving to a bisphosphonate such as alendronate from an anabolic agent such as abaloparatide has also been shown to preserve the fracture reduction benefits seen with the latter. This sequence of an anabolic agent followed by an antiresorptive should especially be considered in the high-risk patient with imminent fracture risk to rapidly reduce the risk of subsequent fractures. The data surrounding optimum timing of initiation of bisphosphonate therapy following denosumab discontinuation is still unclear. Though data suggests that combining a bisphosphonate with teriparatide does not provide substantial BMD gains compared to monotherapy, the concomitant administration of denosumab with teriparatide has been shown to significantly increase areal BMD as well as to increase volumetric BMD and estimated bone strength. This narrative review explores the available evidence regarding the various sequential and combination therapy approaches and the potential role they could play in better managing osteoporosis.
Collapse
|
19
|
LeBoff MS, Greenspan SL, Insogna KL, Lewiecki EM, Saag KG, Singer AJ, Siris ES. The clinician's guide to prevention and treatment of osteoporosis. Osteoporos Int 2022; 33:2049-2102. [PMID: 35478046 PMCID: PMC9546973 DOI: 10.1007/s00198-021-05900-y] [Citation(s) in RCA: 477] [Impact Index Per Article: 159.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 02/19/2021] [Indexed: 12/16/2022]
Abstract
Osteoporosis is the most common metabolic bone disease in the USA and the world. It is a subclinical condition until complicated by fracture(s). These fractures place an enormous medical and personal burden on individuals who suffer from them and take a significant economic toll. Any new fracture in an adult aged 50 years or older signifies imminent elevated risk for subsequent fractures, particularly in the year following the initial fracture. What a patient perceives as an unfortunate accident may be seen as a sentinel event indicative of bone fragility and increased future fracture risk even when the result of considerable trauma. Clinical or subclinical vertebral fractures, the most common type of osteoporotic fractures, are associated with a 5-fold increased risk for additional vertebral fractures and a 2- to 3-fold increased risk for fractures at other sites. Untreated osteoporosis can lead to a vicious cycle of recurrent fracture(s), often resulting in disability and premature death. In appropriate patients, treatment with effective antifracture medication prevents fractures and improves outcomes. Primary care providers and medical specialists are critical gatekeepers who can identify fractures and initiate proven osteoporosis interventions. Osteoporosis detection, diagnosis, and treatment should be routine practice in all adult healthcare settings. The Bone Health and Osteoporosis Foundation (BHOF) - formerly the National Osteoporosis Foundation - first published the Clinician's Guide in 1999 to provide accurate information on osteoporosis prevention and treatment. Since that time, significant improvements have been made in diagnostic technologies and treatments for osteoporosis. Despite these advances, a disturbing gap persists in patient care. At-risk patients are often not screened to establish fracture probability and not educated about fracture prevention. Most concerning, the majority of highest risk women and men who have a fracture(s) are not diagnosed and do not receive effective, FDA-approved therapies. Even those prescribed appropriate therapy are unlikely to take the medication as prescribed. The Clinician's Guide offers concise recommendations regarding prevention, risk assessment, diagnosis, and treatment of osteoporosis in postmenopausal women and men aged 50 years and older. It includes indications for bone densitometry as well as fracture risk thresholds for pharmacologic intervention. Current medications build bone and/or decrease bone breakdown and dramatically reduce incident fractures. All antifracture therapeutics treat but do not cure the disease. Skeletal deterioration resumes sooner or later when a medication is discontinued-sooner for nonbisphosphonates and later for bisphosphonates. Even if normal BMD is achieved, osteoporosis and elevated risk for fracture are still present. The diagnosis of osteoporosis persists even if subsequent DXA T-scores are above - 2.5. Ongoing monitoring and strategic interventions will be necessary if fractures are to be avoided. In addition to pharmacotherapy, adequate intake of calcium and vitamin D, avoidance of smoking and excessive alcohol intake, weight-bearing and resistance-training exercise, and fall prevention are included in the fracture prevention armamentarium. Where possible, recommendations in this guide are based on evidence from RCTs; however, relevant published data and guidance from expert clinical experience provides the basis for recommendations in those areas where RCT evidence is currently deficient or not applicable to the many osteoporosis patients not considered for RCT participation due to age and morbidity.
Collapse
Affiliation(s)
- M. S. LeBoff
- Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Ave, Boston, MA 02115 USA
| | - S. L. Greenspan
- University of Pittsburgh Medical Center, 1110 Kaufmann Building, 3471 Fifth Ave, Pittsburgh, PA 15213 USA
| | - K. L. Insogna
- Yale School of Medicine, 333 Cedar St, New Haven, CT 06520 USA
| | - E. M. Lewiecki
- University of New Mexico Health Sciences Center, 300 Oak St NE, Albuquerque, NM 87106 USA
| | - K. G. Saag
- University of Alabama at Birmingham, 1720 2nd Avenue South, FOT 820, Birmingham, AL 35294 USA
| | - A. J. Singer
- MedStar Georgetown University Hospital and Georgetown University Medical Center, 3800 Reservoir Road NW, 3rd Floor, Washington, DC 20007 USA
| | - E. S. Siris
- Columbia University Irving Medical Center, 180 Fort Washington Ave, Suite 9-903, New York, NY 10032 USA
| |
Collapse
|
20
|
Li M, Zhang Z, Xue Q, Li Q, Jin X, Dong J, Cheng Q, You L, Lin H, Tang H, Shen L, Gao X, Hu J, Chao A, Li P, Shi R, Zheng S, Zhang Y, Xiong X, Yu W, Xia W. Efficacy of generic teriparatide and alendronate in Chinese postmenopausal women with osteoporosis: a prospective study. Arch Osteoporos 2022; 17:103. [PMID: 35900607 PMCID: PMC9334369 DOI: 10.1007/s11657-022-01131-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 06/13/2022] [Indexed: 02/08/2023]
Abstract
The efficacy of generic teriparatide in improving BMD at lumbar spine in patients with osteoporosis was similar to that of alendronate. It provided a new choice for osteoporosis treatment in Chinese population. INTRODUCTION To determine whether the efficacy of generic teriparatide is noninferior to alendronate for Chinese postmenopausal women with osteoporosis. METHODS Eligible patients were randomly assigned (2:1) in a 48-week, open-label design to receive 20 µg sc daily teriparatide or 70 mg oral weekly alendronate. Primary outcome was percentage change in BMD at the lumbar spine from baseline to 48 weeks and was assessed for non-inferiority. The same outcome was further assessed for superiority as a secondary endpoint. RESULTS Three hundred ninety-one and 196 participants were randomly assigned to the teriparatide or alendronate group, of whom 379 and 194 receiving at least one dose of teriparatide and alendronate treatment were eligible for the efficacy analysis. Teriparatide was non-inferior to alendronate for BMD change at lumbar spine (treatment difference: 0.7%, 95% CI: - 0.3 to 1.7%), which excluded the predefined non-inferiority margin of - 1.5%. However, teriparatide was not statistically superior to alendronate in improving BMD at lumbar spine (P = 0.169). At 48 weeks, changes in BMD at total hip were - 1.0% and 2.2% in teriparatide and alendronate group, respectively (P < 0.001). The incidence of new fracture showed no statistical difference between groups (P = 0.128). Serum P1NP and β-CTX levels significantly increased in the teriparatide group and markedly decreased in alendronate group (all P < 0.001 vs baseline). The adverse events (AEs) and serious AEs were more common in the teriparatide group than in the alendronate group, which were mainly teriparatide-related hypercalcemia, elevated alkaline phosphatase or parathyroid hormone, dizziness, and arthralgia. CONCLUSIONS Teriparatide was not inferior to alendronate in increasing BMD at lumbar spine in Chinese postmenopausal women, and they achieved these effects through different mechanisms.
Collapse
Affiliation(s)
- Mei Li
- Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhenlin Zhang
- Department of Osteoporosis and Bone Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Qingyun Xue
- Department of Orthopaedics, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Qifu Li
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaolan Jin
- Department of Endocrinology, Western Theater Command General Hospital, Chengdu, China
| | - Jin Dong
- Department of Endocrinology, The First Affiliated Hospital of Shanxi Medical University, Taiyuan, China
| | - Qun Cheng
- Department of Osteoporosis and Bone Disease, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Li You
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, China
| | - Hua Lin
- Department of Orthopaedics, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Hai Tang
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong'an Road, Xicheng District, Beijing, China
| | - Lin Shen
- Department of Integrated of Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Xin Gao
- Department of Endocrinology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ji Hu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, Soochow, China
| | - Aijun Chao
- Department of Orthopaedics, Tianjin Hospital, Tianjin, China
| | - Pengqiu Li
- Department of Endocrinology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Rui Shi
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Shuhui Zheng
- Department of Orthopaedics, Heibei General Hospital, Zhengzhou, China
| | - Ying Zhang
- Department of Endocrinology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaojiang Xiong
- Department of Orthopedics Joint Disease Area, Chongqing Three Gorges Central Hospital, Chongqing, China
| | - Wei Yu
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Weibo Xia
- Department of Endocrinology, Key Laboratory of Endocrinology, NHC, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
21
|
Wang Z, Zhao Z, Gao B, Zhang L. Exosome mediated biological functions within skeletal microenvironment. Front Bioeng Biotechnol 2022; 10:953916. [PMID: 35935491 PMCID: PMC9355125 DOI: 10.3389/fbioe.2022.953916] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/29/2022] [Indexed: 12/02/2022] Open
Abstract
Exosomes are membranous lipid vesicles fused with intracellular multicellular bodies that are released into the extracellular environment. They contain bioactive substances, including proteins, RNAs, lipids, and cytokine receptors. Exosomes in the skeletal microenvironment are derived from a variety of cells such as bone marrow mesenchymal stem cells (BMSCs), osteoblasts, osteoclasts, and osteocytes. Their biological function is key in paracrine or endocrine signaling. Exosomes play a role in bone remodeling by regulating cell proliferation and differentiation. Genetic engineering technology combined with exosome-based drug delivery can therapy bone metabolic diseases. In this review, we summarized the pathways of exosomes derived from different skeletal cells (i.e., BMSCs, osteoblasts, osteocytes, and osteoclasts) regulate the skeletal microenvironment through proteins, mRNAs, and non-coding RNAs. By exploring the role of exosomes in the skeletal microenvironment, we provide a theoretical basis for the clinical treatment of bone-related metabolic diseases, which may lay the foundation to improve bone tumor microenvironments, alleviate drug resistance in patients.
Collapse
Affiliation(s)
- Zhikun Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Zhonghan Zhao
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Bo Gao
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- *Correspondence: Bo Gao, ; Lingli Zhang,
| | - Lingli Zhang
- College of Athletic Performance, Shanghai University of Sport, Shanghai, China
- *Correspondence: Bo Gao, ; Lingli Zhang,
| |
Collapse
|
22
|
Paese CLB, Chang CF, Kristeková D, Brugmann SA. Pharmacological intervention of the FGF-PTH axis as a potential therapeutic for craniofacial ciliopathies. Dis Model Mech 2022; 15:275968. [PMID: 35818799 PMCID: PMC9403750 DOI: 10.1242/dmm.049611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/05/2022] [Indexed: 11/20/2022] Open
Abstract
Ciliopathies represent a disease class characterized by a broad range of phenotypes including polycystic kidneys and skeletal anomalies. Ciliopathic skeletal phenotypes are among the most common and most difficult to treat due to a poor understanding of the pathological mechanisms leading to disease. Using an avian model (talpid2) for a human ciliopathy with both kidney and skeletal anomalies (Orofaciodigital syndrome 14), we identified disruptions in the FGF23-PTH axis that resulted in reduced calcium uptake in the developing mandible and subsequent micrognathia. While pharmacological intervention with the FDA-approved pan-FGFR inhibitor AZD4547 alone rescued expression of the FGF target Sprouty2, it did not significantly rescue micrognathia. In contrast, treatment with a cocktail of AZD4547 and Teriparatide acetate, a PTH agonist and FDA-approved treatment for osteoporosis, resulted in a molecular, cellular, and phenotypic rescue of ciliopathic micrognathia in talpid2 mutants. Together, these data provide novel insight into pathological molecular mechanisms associated with ciliopathic skeletal phenotypes and a potential therapeutic strategy for a pleiotropic disease class with limited to no treatment options.
Collapse
Affiliation(s)
- Christian Louis Bonatto Paese
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ching-Fang Chang
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Daniela Kristeková
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, v.v.i., Czech Academy of Sciences, Brno 602 00, Czech Republic.,Department of Experimental Biology, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
| | - Samantha A Brugmann
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Division of Plastic Surgery, Department of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
23
|
Sun Y, Li Y, Li J, Xie X, Gu F, Sui Z, Zhang K, Yu T. Efficacy of the Combination of Teriparatide and Denosumab in the Treatment of Postmenopausal Osteoporosis: A Meta-Analysis. Front Pharmacol 2022; 13:888208. [PMID: 35685637 PMCID: PMC9170942 DOI: 10.3389/fphar.2022.888208] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/04/2022] [Indexed: 01/20/2023] Open
Abstract
Aim: Evidence on the efficacy of combination treatment of teriparatide and denosumab for osteoporosis remains controversial. We aim to compare the efficacy between the combination treatment and monotherapy among patients with postmenopausal osteoporosis. Methods and results: We systematically searched PubMed, EMBASE, the Cochrane Library, and Web of Science up to 26 January 2022, for relevant studies. This meta-analysis reviewed all randomized controlled trials (RCTs) that reported on the combination treatment of teriparatide and denosumab in patients with postmenopausal osteoporosis. The articles were examined individually by two reviewers, and the relevant data was extracted. We combined weighted mean difference (WMD) for bone mineral density (BMD) using random- or fixed- effect models and conducted subgroup analyses. Sensitivity analyses were performed, and possible publication bias was also assessed. Overall, combination treatment enhanced the mean percent change of bone mineral density in lumbar spine than monotherapy (WMD = 2.91, 95%CI: 1.983.83; p = 0.00). And, combination treatment has been beneficial for enhancing the mean percent change of BMD in hip (WMD = 3.19, 95%CI: 2.25∼4.13; p = 0.00). There was no significant difference between combination treatment and monotherapy in terms of the adverse events (RR = 0.81, 95%CI: 0.45∼1.45; p = 0.472). Conclusion: The meta-analysis indicates that combination treatment led to greater BMD at the lumbar spine and hip in comparison to monotherapy, without an increased incidence of adverse events. Systematic Review Registration: (https://inplasy.com/), identifier (Inplasy Protocol 2734).
Collapse
Affiliation(s)
- Yang Sun
- Department of Orthopedics, The First Hospital of Jilin University, Jilin Changchun, China
| | - Yue Li
- Department of Social Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiangbi Li
- Department of Orthopedics, The First Hospital of Jilin University, Jilin Changchun, China
| | - Xiaoping Xie
- Department of Orthopedics, The First Hospital of Jilin University, Jilin Changchun, China
| | - Feng Gu
- Department of Orthopedics, The First Hospital of Jilin University, Jilin Changchun, China
| | - Zhenjiang Sui
- Department of Orthopedics, The First Hospital of Jilin University, Jilin Changchun, China
| | - Ke Zhang
- Department of Orthopedics, The First Hospital of Jilin University, Jilin Changchun, China
| | - Tiecheng Yu
- Department of Orthopedics, The First Hospital of Jilin University, Jilin Changchun, China
- *Correspondence: Tiecheng Yu,
| |
Collapse
|
24
|
Treyball A, Bergeron AC, Brooks DJ, Langlais AL, Hashmi H, Nagano K, Barlow D, Neilson RJ, Roy TA, Nevola KT, Houseknecht KL, Baron R, Bouxsein ML, Guntur AR, Motyl KJ. Propranolol Promotes Bone Formation and Limits Resorption Through Novel Mechanisms During Anabolic Parathyroid Hormone Treatment in Female C57BL/6J Mice. J Bone Miner Res 2022; 37:954-971. [PMID: 35122666 PMCID: PMC9098680 DOI: 10.1002/jbmr.4523] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 01/15/2022] [Accepted: 01/30/2022] [Indexed: 11/09/2022]
Abstract
Although the nonselective β-blocker, propranolol, improves bone density with parathyroid hormone (PTH) treatment in mice, the mechanism of this effect is unclear. To address this, we used a combination of in vitro and in vivo approaches to address how propranolol influences bone remodeling in the context of PTH treatment. In female C57BL/6J mice, intermittent PTH and propranolol administration had complementary effects in the trabecular bone of the distal femur and fifth lumbar vertebra (L5 ), with combination treatment achieving microarchitectural parameters beyond that of PTH alone. Combined treatment improved the serum bone formation marker, procollagen type 1 N propeptide (P1NP), but did not impact other histomorphometric parameters relating to osteoblast function at the L5 . In vitro, propranolol amplified the acute, PTH-induced, intracellular calcium signal in osteoblast-like cells. The most striking finding, however, was suppression of PTH-induced bone resorption. Despite this, PTH-induced receptor activator of nuclear factor κ-B ligand (RANKL) mRNA and protein levels were unaltered by propranolol, which led us to hypothesize that propranolol could act directly on osteoclasts. Using in situ methods, we found Adrb2 expression in osteoclasts in vivo, suggesting β-blockers may directly impact osteoclasts. Consistent with this, we found propranolol directly suppresses osteoclast differentiation in vitro. Taken together, this work suggests a strong anti-osteoclastic effect of nonselective β-blockers in vivo, indicating that combining propranolol with PTH could be beneficial to patients with extremely low bone density. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Annika Treyball
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME
| | - Audrey C. Bergeron
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME
| | - Daniel J. Brooks
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Boston, MA
| | - Audrie L. Langlais
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME
| | - Hina Hashmi
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME
| | - Kenichi Nagano
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA
| | - Deborah Barlow
- Department of Biomedical Sciences, University of New England, Biddeford, ME
| | - Ryan J. Neilson
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME
| | - Tyler A. Roy
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME
| | - Kathleen T. Nevola
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME
- Tufts Graduate School of Biomedical Sciences, Tufts University, Boston, MA
| | | | - Roland Baron
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA
| | - Mary L. Bouxsein
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Boston, MA
- Department of Orthopedic Surgery, Harvard Medical School, Boston, MA
| | - Anyonya R. Guntur
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME
- Tufts University School of Medicine, Tufts University, Boston, MA
| | - Katherine J. Motyl
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME
- Tufts University School of Medicine, Tufts University, Boston, MA
| |
Collapse
|
25
|
Reid IR, Billington EO. Drug therapy for osteoporosis in older adults. Lancet 2022; 399:1080-1092. [PMID: 35279261 DOI: 10.1016/s0140-6736(21)02646-5] [Citation(s) in RCA: 310] [Impact Index Per Article: 103.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 10/14/2021] [Accepted: 11/11/2021] [Indexed: 02/07/2023]
Abstract
The goal of osteoporosis management is to prevent fractures. Several pharmacological agents are available to lower fracture risk, either by reducing bone resorption or by stimulating bone formation. Bisphosphonates are the most widely used anti-resorptives, reducing bone turnover markers to low premenopausal concentrations and reducing fracture rates (vertebral by 50-70%, non-vertebral by 20-30%, and hip by ~40%). Bisphosphonates bind avidly to bone mineral and have an offset of effect measured in months to years. Long term, continuous use of oral bisphosphonates is usually interspersed with drug holidays of 1-2 years, to minimise the risk of atypical femoral fractures. Denosumab is a monoclonal antibody against RANKL that potently inhibits osteoclast development and activity. Denosumab is administered by subcutaneous injection every 6 months. Anti-fracture effects of denosumab are similar to those of the bisphosphonates, but there is a pronounced loss of anti-resorptive effect from 7 months after the last injection, which can result in clusters of rebound vertebral fractures. Two classes of anabolic drugs are now available to stimulate bone formation. Teriparatide and abaloparatide both target the parathyroid hormone-1 receptor, and are given by daily subcutaneous injection for up to 2 years. Romosozumab is an anti-sclerostin monoclonal antibody that stimulates bone formation and inhibits resorption. Romosozumab is given as monthly subcutaneous injections for 1 year. Head-to-head studies suggest that anabolic agents have greater anti-fracture efficacy and produce larger increases in bone density than anti-resorptive drugs. The effects of anabolic agents are transient, so transition to anti-resorptive drugs is required. The optimal strategy for cycling anabolics, anti-resorptives, and off-treatment periods remains to be determined.
Collapse
Affiliation(s)
- Ian R Reid
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Auckland District Health Board, Auckland, New Zealand.
| | - Emma O Billington
- Division of Endocrinology and Metabolism, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
26
|
Tonk CH, Shoushrah SH, Babczyk P, El Khaldi-Hansen B, Schulze M, Herten M, Tobiasch E. Therapeutic Treatments for Osteoporosis-Which Combination of Pills Is the Best among the Bad? Int J Mol Sci 2022; 23:1393. [PMID: 35163315 PMCID: PMC8836178 DOI: 10.3390/ijms23031393] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 12/13/2022] Open
Abstract
Osteoporosis is a chronical, systemic skeletal disorder characterized by an increase in bone resorption, which leads to reduced bone density. The reduction in bone mineral density and therefore low bone mass results in an increased risk of fractures. Osteoporosis is caused by an imbalance in the normally strictly regulated bone homeostasis. This imbalance is caused by overactive bone-resorbing osteoclasts, while bone-synthesizing osteoblasts do not compensate for this. In this review, the mechanism is presented, underlined by in vitro and animal models to investigate this imbalance as well as the current status of clinical trials. Furthermore, new therapeutic strategies for osteoporosis are presented, such as anabolic treatments and catabolic treatments and treatments using biomaterials and biomolecules. Another focus is on new combination therapies with multiple drugs which are currently considered more beneficial for the treatment of osteoporosis than monotherapies. Taken together, this review starts with an overview and ends with the newest approaches for osteoporosis therapies and a future perspective not presented so far.
Collapse
Affiliation(s)
- Christian Horst Tonk
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Str. 20, 53359 Rheinbach, Germany; (C.H.T.); (S.H.S.); (P.B.); (B.E.K.-H.); (M.S.); (E.T.)
| | - Sarah Hani Shoushrah
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Str. 20, 53359 Rheinbach, Germany; (C.H.T.); (S.H.S.); (P.B.); (B.E.K.-H.); (M.S.); (E.T.)
| | - Patrick Babczyk
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Str. 20, 53359 Rheinbach, Germany; (C.H.T.); (S.H.S.); (P.B.); (B.E.K.-H.); (M.S.); (E.T.)
| | - Basma El Khaldi-Hansen
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Str. 20, 53359 Rheinbach, Germany; (C.H.T.); (S.H.S.); (P.B.); (B.E.K.-H.); (M.S.); (E.T.)
| | - Margit Schulze
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Str. 20, 53359 Rheinbach, Germany; (C.H.T.); (S.H.S.); (P.B.); (B.E.K.-H.); (M.S.); (E.T.)
| | - Monika Herten
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Edda Tobiasch
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Str. 20, 53359 Rheinbach, Germany; (C.H.T.); (S.H.S.); (P.B.); (B.E.K.-H.); (M.S.); (E.T.)
| |
Collapse
|
27
|
Duan K, Guan J. [Research progress of exosomes in treatment of osteoporosis]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2021; 35:1642-1649. [PMID: 34913324 DOI: 10.7507/1002-1892.202105106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Objective To review the research progress of exosomes (EXOs) derived from different cells in the treatment of osteoporosis (OP). Methods Recent relevant literature about EXOs for OP therapy was extensively reviewed. And the related mechanism and clinical application prospect of EXOs derived from different cells in OP therapy were summarized and analyzed. Results EXOs derived from various cells, including bone marrow mesenchymal stem cells, osteoblasts, osteoclasts, osteocytes, and endothelial cells, et al, can participate in many links in the process of bone remodeling, and their mechanisms involve the regulation of proliferation and differentiation of bone-related cells, the promotion of vascular regeneration and immune regulation, and the suppression of inflammatory reactions. A variety of bioactive substances contained in EXOs are the basis of regulating the process of bone remodeling, and the combination of genetic engineering technology and EXOs-based drug delivery can further improve the therapeutic effect of OP. Conclusion EXOs derived from different cells have great therapeutic effects on OP, and have the advantages of low immunogenicity, high stability, strong targeting ability, and easy storage. EXOs has broad clinical application prospects and is expected to become a new strategy for OP treatment.
Collapse
Affiliation(s)
- Keyou Duan
- Department of Orthopaedics, the First Affiliated Hospital of Bengbu Medical College, Bengbu Anhui, 233000, P.R.China.,Key Laboratory of Anhui Province for Tissue Transplantation, Bengbu Anhui, 233000, P.R.China
| | - Jianzhong Guan
- Department of Orthopaedics, the First Affiliated Hospital of Bengbu Medical College, Bengbu Anhui, 233000, P.R.China.,Key Laboratory of Anhui Province for Tissue Transplantation, Bengbu Anhui, 233000, P.R.China
| |
Collapse
|
28
|
Migliorini F, Maffulli N, Colarossi G, Eschweiler J, Tingart M, Betsch M. Effect of drugs on bone mineral density in postmenopausal osteoporosis: a Bayesian network meta-analysis. J Orthop Surg Res 2021; 16:533. [PMID: 34452621 PMCID: PMC8393477 DOI: 10.1186/s13018-021-02678-x] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/16/2021] [Indexed: 12/24/2022] Open
Abstract
Background Osteoporosis affects mostly postmenopausal women, leading to deterioration of the microarchitectural bone structure and low bone mass, with an increased fracture risk with associated disability, morbidity and mortality. This Bayesian network meta-analysis compared the effects of current anti-osteoporosis drugs on bone mineral density. Methods The present systematic review and network meta-analysis follows the PRISMA extension statement to report systematic reviews incorporating network meta-analyses of health care interventions. The literature search was performed in June 2021. All randomised clinical trials that have investigated the effects of two or more drug treatments on BMD for postmenopausal osteoporosis were accessed. The network comparisons were performed through the STATA Software/MP routine for Bayesian hierarchical random-effects model analysis. The inverse variance method with standardised mean difference (SMD) was used for analysis. Results Data from 64 RCTs involving 82,732 patients were retrieved. The mean follow-up was 29.7 ± 19.6 months. Denosumab resulted in a higher spine BMD (SMD −0.220; SE 3.379), followed by pamidronate (SMD −5.662; SE 2.635) and zoledronate (SMD −10.701; SE 2.871). Denosumab resulted in a higher hip BMD (SMD −0.256; SE 3.184), followed by alendronate (SMD −17.032; SE 3.191) and ibandronate (SMD −17.250; SE 2.264). Denosumab resulted in a higher femur BMD (SMD 0.097; SE 2.091), followed by alendronate (SMD −16.030; SE 1.702) and ibandronate (SMD −17.000; SE 1.679). Conclusion Denosumab results in higher spine BMD in selected women with postmenopausal osteoporosis. Denosumab had the highest influence on hip and femur BMD. Level of evidence Level I, Bayesian network meta-analysis of RCTs
Collapse
Affiliation(s)
- Filippo Migliorini
- Department of Orthopaedic, Trauma, and Reconstructive Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074, Aachen, Germany.
| | - Nicola Maffulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Salerno, Italy.,Queen Mary University of London, Barts and the London School of Medicine and Dentistry, Centre for Sports and Exercise Medicine, Mile End Hospital, 275 Bancroft Road, London, E1 4DG, England.,School of Pharmacy and Bioengineering, Keele University Faculty of Medicine, Thornburrow Drive, Stoke on Trent, England
| | - Giorgia Colarossi
- Department of Orthopaedic, Trauma, and Reconstructive Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Jörg Eschweiler
- Department of Orthopaedic, Trauma, and Reconstructive Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Markus Tingart
- Department of Orthopaedic, Trauma, and Reconstructive Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Marcel Betsch
- Department of Orthopaedics and Trauma Surgery, University Hospital Mannheim, Medical Faculty of the University Heidelberg, Mannheim, Germany
| |
Collapse
|
29
|
Li SS, He SH, Xie PY, Li W, Zhang XX, Li TF, Li DF. Recent Progresses in the Treatment of Osteoporosis. Front Pharmacol 2021; 12:717065. [PMID: 34366868 PMCID: PMC8339209 DOI: 10.3389/fphar.2021.717065] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 07/12/2021] [Indexed: 12/23/2022] Open
Abstract
Osteoporosis (OP) is a chronic bone disease characterized by aberrant microstructure and macrostructure of bone, leading to reduced bone mass and increased risk of fragile fractures. Anti-resorptive drugs, especially, bisphosphonates, are currently the treatment of choice in most developing countries. However, they do have limitations and adverse effects, which, to some extent, helped the development of anabolic drugs such as teriparatide and romosozumab. In patients with high or very high risk for fracture, sequential or combined therapies may be considered with the initial drugs being anabolic agents. Great endeavors have been made to find next generation drugs with maximal efficacy and minimal toxicity, and improved understanding of the role of different signaling pathways and their crosstalk in the pathogenesis of OP may help achieve this goal. Our review focused on recent progress with regards to the drug development by modification of Wnt pathway, while other pathways/molecules were also discussed briefly. In addition, new observations made in recent years in bone biology were summarized and discussed for the treatment of OP.
Collapse
Affiliation(s)
- Shan-Shan Li
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shi-Hao He
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Peng-Yu Xie
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei Li
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin-Xin Zhang
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tian-Fang Li
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dai-Feng Li
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Department of Magnetic Resonance Imaging, Henan Key Laboratory of Functional Magnetic Resonance Imaging and Molecular Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
30
|
Zhang YW, Li YJ, Lu PP, Dai GC, Chen XX, Rui YF. The modulatory effect and implication of gut microbiota on osteoporosis: from the perspective of "brain-gut-bone" axis. Food Funct 2021; 12:5703-5718. [PMID: 34048514 DOI: 10.1039/d0fo03468a] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Osteoporosis (OP) is a kind of systemic metabolic disease characterized by decreased bone mass and destruction of the bone microstructure. In recent years, it has become an expected research trend to explore the cross-linking relationship in the pathogenesis process of OP so as to develop reasonable and effective intervention strategies. With the further development of intestinal microbiology and the profound exploration of the gut microbiota (GM), it has been further revealed that the "brain-gut" axis may be a potential target for the bone, thereby affecting the occurrence and progression of OP. Hence, based on the concept of "brain-gut-bone" axis, we look forward to deeply discussing and summarizing the cross-linking relationship of OP in the next three parts, including the "brain-bone" connection, "gut-bone" connection, and "brain-gut" connection, so as to provide an emerging thought for the prevention strategies and mechanism researches of OP.
Collapse
Affiliation(s)
- Yuan-Wei Zhang
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China. and Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China and School of Medicine, Southeast University, Nanjing, Jiangsu, China and Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, China and Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Ying-Juan Li
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China and Department of Geriatrics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Pan-Pan Lu
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China. and Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China and School of Medicine, Southeast University, Nanjing, Jiangsu, China and Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, China and Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Guang-Chun Dai
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China. and Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China and School of Medicine, Southeast University, Nanjing, Jiangsu, China and Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, China and Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Xiang-Xu Chen
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China. and Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China and School of Medicine, Southeast University, Nanjing, Jiangsu, China and Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, China and Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Yun-Feng Rui
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China. and Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China and School of Medicine, Southeast University, Nanjing, Jiangsu, China and Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, China and Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
31
|
Saul D, Drake MT. Update on Approved Osteoporosis Therapies Including Combination and Sequential Use of Agents. Endocrinol Metab Clin North Am 2021; 50:179-191. [PMID: 34023037 DOI: 10.1016/j.ecl.2021.03.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Osteoporosis is characterized by reduced bone mass leading to diminished skeletal integrity and an increased risk for fracture. Multiple agents exist that are effective for the treatment of osteoporosis. These can be broadly categorized into those that reduce the risk for additional loss of bone mass (anti-resorptive agents) and those that augment existing bone mass (anabolic agents). This article reviews the different medications within each class, and discusses more recent data regarding the combination and sequential use of these medications for optimization of skeletal health in patients at high risk for fracture.
Collapse
Affiliation(s)
- Dominik Saul
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Mayo Clinic, Rochester, MN, USA; Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA; Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University of Göttingen, Robert-Koch-Str. 40, Göttingen 37075, Germany
| | - Matthew T Drake
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Mayo Clinic, Rochester, MN, USA; Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
32
|
Migliorini F, Maffulli N, Spiezia F, Peretti GM, Tingart M, Giorgino R. Potential of biomarkers during pharmacological therapy setting for postmenopausal osteoporosis: a systematic review. J Orthop Surg Res 2021; 16:351. [PMID: 34059108 PMCID: PMC8165809 DOI: 10.1186/s13018-021-02497-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 05/23/2021] [Indexed: 12/11/2022] Open
Abstract
Background Biochemical markers of bone turnover (BTMs), such as the bone alkaline phosphatase (bALP), procollagen type I N propeptide (PINP), serum cross-linked C-telopeptides of type I collagen (bCTx), and urinary cross-linked N-telopeptides of type I collagen (NTx), are used to manage therapy monitoring in osteoporotic patients. This systematic review analyzed the potential of these BMTs in predicting the clinical outcomes in terms of BMD, t-score, rate of fractures, and adverse events during the therapy setting in postmenopausal osteoporosis. Methods All randomized clinical trials (RCTs) reporting data on biomarkers for postmenopausal osteoporosis were accessed. Only articles reporting quantitative data on the level of biomarkers at baseline and on the outcomes of interest at the last follow-up were eligible. Results A total of 36,706 patients were retrieved. Greater values of bALP were associated with a greater rate of vertebral (P = 0.001) and non-vertebral fractures (P = 0.0001). Greater values of NTx at baseline were associated with a greater rate of adverse events at the last follow-up (P = 0.02). Greater values of CTx at baseline were associated with a greater rate of adverse events leading to discontinuation (P = 0.04), gastrointestinal adverse events (P = 0.0001), musculoskeletal adverse events (P = 0.04), and mortality (P = 0.04). Greater values of PINP at baseline were associated with greater rates of gastrointestinal adverse events (P = 0.02) at the last follow-up. Conclusion The present analysis supports the adoption of BMTs during pharmacological therapy setting of patients suffering from osteoporosis. Level of evidence I, systematic review of RCTs
Collapse
Affiliation(s)
- Filippo Migliorini
- Department of Orthopaedic Surgery, University Clinic Aachen, RWTH Aachen University Clinic, Pauwelsstraße 30, 52074, Aachen, Germany.
| | - Nicola Maffulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081, Baronissi, SA, Italy.,School of Pharmacy and Bioengineering, Keele University Faculty of Medicine, Thornburrow Drive, Stoke on Trent, Newcastle-under-Lyme, England.,Queen Mary University of London, Barts and the London School of Medicine and Dentistry, Centre for Sports and Exercise Medicine, Mile End Hospital, 275 Bancroft Road, London, E1 4DG, England
| | - Filippo Spiezia
- Department of Orthopedics and Trauma Surgery, Ospedale San Carlo di Potenza, Potenza, Italy
| | - Giuseppe Maria Peretti
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy.,Department of Orthopaedic Surgery, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Markus Tingart
- Department of Orthopaedic Surgery, University Clinic Aachen, RWTH Aachen University Clinic, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Riccardo Giorgino
- Department of Orthopaedic Surgery, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| |
Collapse
|
33
|
Ramchand SK, David NL, Lee H, Eastell R, Tsai JN, Leder BZ. Efficacy of Zoledronic Acid in Maintaining Areal and Volumetric Bone Density After Combined Denosumab and Teriparatide Administration: DATA-HD Study Extension. J Bone Miner Res 2021; 36:921-930. [PMID: 33507574 DOI: 10.1002/jbmr.4259] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 01/04/2021] [Accepted: 01/20/2021] [Indexed: 12/25/2022]
Abstract
Combined teriparatide and denosumab rapidly and substantially increases bone mineral density (BMD) at all anatomic sites. Discontinuation of denosumab however, results in high-turnover bone loss and increased fracture risk. The optimal way to prevent this bone loss remains undefined. This study is a preplanned extension of the DATA-HD study, where postmenopausal women with osteoporosis were randomized to receive 9 months of either 20 μg or 40 μg of teriparatide daily overlapping with denosumab (60 mg administered at months 3 and 9). At the completion of this 15-month study, women were invited to enroll in the DATA-HD Extension where they received a single dose of zoledronic acid (5 mg) 24 to 35 weeks after the last denosumab dose. Areal BMD and bone turnover markers were measured at month 27 and 42 (12 and 27 months after zoledronic acid, respectively) and spine and hip volumetric bone density by quantitative CT was measured at month 42. Fifty-three women enrolled in the DATA-HD Extension. At the femoral neck and total hip, the mean 5.6% and 5.1% gains in BMD achieved from month 0 to 15 were maintained both 12 and 27 months after zoledronic acid administration. At the spine, the mean 13.6% gain in BMD achieved from month 0 to 15 was maintained for the first 12 months but modestly decreased thereafter, resulting in a 3.0% reduction (95% CI, -4.0% to -2.0%, p < .0001) 27 months after zoledronic acid. The pattern of BMD changes between months 15 and 42 were qualitatively similar in the 20-μg and 40-μg groups. A single dose of zoledronic acid effectively maintains the large and rapid total hip and femoral neck BMD increases achieved with combination teriparatide/denosumab therapy for at least 27 months following the transition. Spine BMD was also largely, though not fully, maintained during this period. These data suggest that the DATA-HD Extension regimen may be an effective strategy in the long-term management of patients at high risk of fragility fracture. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Sabashini K Ramchand
- Department of Medicine, Endocrine Unit, Massachusetts General Hospital, Harvard University, Boston, MA, USA.,Department of Medicine, Endocrine Unit, Austin Hospital, The University of Melbourne, Heidelberg, VIC, Australia
| | - Natalie L David
- Department of Medicine, Endocrine Unit, Massachusetts General Hospital, Harvard University, Boston, MA, USA
| | - Hang Lee
- Biostatistics Center, Massachusetts General Hospital, Boston, MA, USA
| | - Richard Eastell
- Academic Unit of Bone Metabolism, University of Sheffield, Sheffield, UK
| | - Joy N Tsai
- Department of Medicine, Endocrine Unit, Massachusetts General Hospital, Harvard University, Boston, MA, USA
| | - Benjamin Z Leder
- Department of Medicine, Endocrine Unit, Massachusetts General Hospital, Harvard University, Boston, MA, USA
| |
Collapse
|
34
|
Review of Current Real-World Experience with Teriparatide as Treatment of Osteoporosis in Different Patient Groups. J Clin Med 2021; 10:jcm10071403. [PMID: 33915736 PMCID: PMC8037129 DOI: 10.3390/jcm10071403] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/14/2021] [Accepted: 03/19/2021] [Indexed: 12/17/2022] Open
Abstract
Teriparatide has proven effective in reducing both vertebral and non-vertebral fractures in clinical trials of post-menopausal and glucocorticoid-induced osteoporosis. Widespread adoption of Teriparatide over the last two decades means that there is now substantial experience of its use in routine clinical practice, which is summarized in this paper. Extensive real-world experience of Teriparatide in post-menopausal osteoporosis confirms the fracture and bone density benefits seen in clinical trials, with similar outcomes identified also in male and glucocorticoid-induced osteoporosis. Conversely, very limited experience has been reported in pre-menopausal osteoporosis or in the use of Teriparatide in combination with other therapies. Surveillance studies have identified no safety signals relating to the possible association of Teriparatide with osteosarcoma. We also review the evidence for predicting response to Teriparatide in order to inform the debate on where best to use Teriparatide in an increasingly crowded therapeutic landscape.
Collapse
|
35
|
McClung MR. Role of bone-forming agents in the management of osteoporosis. Aging Clin Exp Res 2021; 33:775-791. [PMID: 33594648 DOI: 10.1007/s40520-020-01708-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/01/2020] [Indexed: 12/13/2022]
Abstract
Recent evidence confirms the superiority of osteoanabolic therapy compared to anti-remodeling drugs for rapid improvement in bone density and fracture risk reduction, providing strong justification for the use of these anabolic agents as the initial therapy in high-risk patients, to be followed by anti-remodeling therapy. This review will highlight the results of recent studies and define the current status of osteoanabolic therapy for osteoporosis.
Collapse
Affiliation(s)
- Michael R McClung
- Oregon Osteoporosis Center, Portland, OR, USA.
- Mary MacKillop Center for Health Research, Australian Catholic University, Melbourne, VIC, Australia.
| |
Collapse
|
36
|
Obermayer-Pietsch B, Fössl I, Dimai HP. [Long-term treatment concepts for osteoporosis]. Internist (Berl) 2021; 62:474-485. [PMID: 33710362 PMCID: PMC8079292 DOI: 10.1007/s00108-021-00993-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2021] [Indexed: 11/30/2022]
Abstract
Die Notwendigkeit einer Langzeittherapie bei Osteoporose, eine teils eingeschränkte Compliance, aber auch die Möglichkeit von erheblichen Nebenwirkungen bei einer pharmakologischen Osteoporosetherapie beschäftigen sowohl die medizinischen Richtlinien als auch die Betroffenen in vielfacher Weise. In dieser Übersicht wird auf den Stand der zur Verfügung stehenden Osteoporosepharmazeutika und die aktuellen wissenschaftlich fundierten Grundlagen einer langjährigen Anwendung, das potenzielle Monitoring und mögliche Therapieänderungen mit dem spezifischen Augenmerk auf künftige Entwicklungen eingegangen.
Collapse
Affiliation(s)
- Barbara Obermayer-Pietsch
- Klin. Abteilung Endokrinologie und Diabetologie, Univ. Klinik für Innere Medizin, Medizinische Universität Graz, Auenbruggerplatz 15, 8036, Graz, Österreich.
| | - Ines Fössl
- Klin. Abteilung Endokrinologie und Diabetologie, Univ. Klinik für Innere Medizin, Medizinische Universität Graz, Auenbruggerplatz 15, 8036, Graz, Österreich
| | - Hans Peter Dimai
- Klin. Abteilung Endokrinologie und Diabetologie, Univ. Klinik für Innere Medizin, Medizinische Universität Graz, Auenbruggerplatz 15, 8036, Graz, Österreich
| |
Collapse
|
37
|
Recent developments towards closing the gap in osteoporosis management. EGYPTIAN RHEUMATOLOGY AND REHABILITATION 2021. [DOI: 10.1186/s43166-020-00048-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Abstract
Background
A fracture that occurs in people with low bone mass in the setting of minimal trauma—such as a fall from standing height—meets the criteria for the clinical diagnosis of osteoporosis and qualifies this particular individual for being at high risk of further fractures, particularly in the first 2 years after the index fracture. Therefore, it is vital to identify those individuals at very high and high fracture risk with the potential of instantly starting osteoporosis therapy.
Main body
Currently, there are unmet needs in the management of bone fragility and fracture prevention. Therefore, re-stratification of the people according to their risk of fracture, and, also, identify what is and is not achievable using different osteoporosis therapies, represent a major step forward. In 2020, the dichotomisation of high risk into high and very high-risk categories, which represent a new concept in osteoporosis assessment, was published by the IOF and the ESCEO. This coincided with proliferation of the available therapies with different modes of action and new therapeutic targets for treating osteoporosis. Fear of complications, even though rare, associated with long-term bisphosphonates and the positive impact of osteoanabolic agents on fracture reduction and bone quality, have changed the prescribing patterns and paved the way for sequential and combined therapy.
Conclusion
The incorporation of recent concepts in osteoporosis and the development of new interventional thresholds have positive implication on strategies for osteoporotic patients’ diagnosis and management.
Collapse
|
38
|
Zhang C, Song C. Combination Therapy of PTH and Antiresorptive Drugs on Osteoporosis: A Review of Treatment Alternatives. Front Pharmacol 2021; 11:607017. [PMID: 33584284 PMCID: PMC7874063 DOI: 10.3389/fphar.2020.607017] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/21/2020] [Indexed: 12/04/2022] Open
Abstract
Antiresorptive drugs have been widely used for osteoporosis. Intermittent parathyroid hormone (PTH), an anabolic agent, increases osteoblast production rate and inhibits apoptosis of osteoblasts, thus increasing skeletal mass besides improving bone microarchitecture and strength. Combination therapy for osteoporosis produced great interests and controversies. Therefore, we performed a systematic literature search from PubMed, EMBASE, Scopus, Web of Science, CINDHL, and the Cochrane Database of Systematic Reviews using the search terms PTH or teriparatide combined with bisphosphonate, alendronate, ibandronate, risedronate, raloxifene, denosumab, and zoledronic acid with the limit osteoporosis. At last, 36 related articles were included for further analysis. Findings from previous studies revealed that combination therapy in different conditions of naive or previous bisphosphonate treatment might have different outcomes. The use of combination therapy, however, may be an alternative option among osteoporotic patients with a history of bisphosphonate use. Combined teriparatide with denosumab appear to show the most substantial and clinically relevant skeletal benefits to osteoporotic patients. Additional research is necessary to define optimal methods of developing sequential and/or cyclical combinations of PTH and antiresorptive agents.
Collapse
Affiliation(s)
- Chenggui Zhang
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Diseases, Beijing, China
| | - Chunli Song
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Diseases, Beijing, China
| |
Collapse
|
39
|
Migliorini F, Colarossi G, Baroncini A, Eschweiler J, Tingart M, Maffulli N. Pharmacological Management of Postmenopausal Osteoporosis: a Level I Evidence Based - Expert Opinion. Expert Rev Clin Pharmacol 2021; 14:105-119. [PMID: 33183112 DOI: 10.1080/17512433.2021.1851192] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Objectives: Postmenopausal osteoporosis carries a high risk of fractures, which decrease quality of life and are associated with high morbidity, mortality, and economic burden. The best pharmacological treatment options to manage and prevent osteoporotic fractures remain still unclear. The present study investigated the efficacy and safety of the most commonly employed drugs in the management of postmenopausal osteoporosis. Methods: Only RCTs comparing different drugs for the management of postmenopausal osteoporosis were included. Data from 76 RCTs (205,011 patients) were collected. The mean follow-up was 27.6 ± 14.9 months. Results: Denosumab reported the lowest rate of non-vertebral fractures (LOR -1.57), Romosozumab the lowest rate of vertebral fractures (LOR 1.99), and Ibandronate the lowest rate of hip fractures (LOR0.18). Serious adverse events resulted in the lowest in the Raloxifene group (LOR 3.11), while those leading to study discontinuation were lowest in the Romosozumab cohort (LOR 2.65). Conclusions: Denosumab resulted in most effective, particularly in reducing the occurrence of non-vertebral fractures. Romosozumab and Ibandronate resulted best to prevent, respectively, vertebral fractures and hip fractures. Adverse events leading to study discontinuation were less frequent in the Romosozumab and Denosumab groups, while Raloxifene and Alendronate showed a lower incidence of serious adverse events overall. Level of evidence: I, Bayesian network meta-analysis of RCTs.
Collapse
Affiliation(s)
- Filippo Migliorini
- Department of Orthopaedics, University Clinic Aachen, RWTH Aachen University Clinic , Aachen, Germany
| | - Giorgia Colarossi
- Department of Cardiac and Thoracic Surgery, University Clinic Aachen, RWTH Aachen University Clinic , Aachen, Germany
| | - Alice Baroncini
- Department of Orthopaedics, University Clinic Aachen, RWTH Aachen University Clinic , Aachen, Germany
| | - Jörg Eschweiler
- Department of Orthopaedics, University Clinic Aachen, RWTH Aachen University Clinic , Aachen, Germany
| | - Markus Tingart
- Department of Orthopaedics, University Clinic Aachen, RWTH Aachen University Clinic , Aachen, Germany
| | - Nicola Maffulli
- Department of Medicine, Surgery and Dentistry, University of Salerno , Baronissi (SA), Italy.,Queen Mary University of London , Barts and London School of Medicine and Dentistry, Centre for Sports and Exercise Medicine, London, UK.,School of Pharmacy and Bioengineering , Keele University Faculty of Medicine, Stoke on Trent, UK
| |
Collapse
|
40
|
Oser S, Häuselmann HJ. [Different Perspectives of Drug Holiday and Combination Therapies When Treating Osteoporosis]. PRAXIS 2021; 110:975-983. [PMID: 34875857 DOI: 10.1024/1661-8157/a003762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Different Perspectives of Drug Holiday and Combination Therapies When Treating Osteoporosis Abstract. Sequential and combined therapy for osteoporosis is challenging because of the many options, and difficult because robust fracture data are not available, especially for combination therapies, mostly because the studies are too small. The principle of sequential and combined therapy for osteoporosis is that osteoanabolic therapy (teriparatide [TPTD]), whether sequential or combined, leads to an increase in bone mineral density (BMD), especially in the lumbar spine. The only exception is the sequence of TPTD after denosumab (Dmab), which leads to a loss (transient) of BMD in both the lumbar spine and the hip; for this reason, this sequence should be avoided at all costs. A second principle is that the stronger and longer the antiresorptive pretreatment was, the more delayed and reduced the effect of osteoanabolic therapy (TPTD). A third principle is the need for antiresorptive retreatment after therapies with TPTD and Dmab or their combination to prevent vertebral fractures (Dmab) and maintain bone density (TPTD). An effect of osteoanabolic therapy with TPTD on BMD of the hip is expected only in combination with antiresorptive therapy (bisphosphonates, Dmab). If the antiresorptive therapy is not continued, there is a transient loss in the first months of osteoanabolic monotherapy, the more so the stronger the antiresorptive pretreatment was.
Collapse
Affiliation(s)
- Sven Oser
- Zentrum für Rheuma- und Knochenerkrankungen, Klinik Im Park, Zürich
| | | |
Collapse
|
41
|
Ramchand SK, David NL, Lee H, Bruce M, Bouxsein ML, Leder BZ, Tsai JN. Effects of Combination Denosumab and High-Dose Teriparatide Administration on Bone Microarchitecture and Estimated Strength: The DATA-HD HR-pQCT Study. J Bone Miner Res 2021; 36:41-51. [PMID: 32790196 DOI: 10.1002/jbmr.4161] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/21/2020] [Accepted: 08/05/2020] [Indexed: 11/11/2022]
Abstract
In postmenopausal women at high risk of fracture, we previously reported that combined denosumab and high-dose (HD; 40 μg) teriparatide increased spine and hip bone mineral density (BMD) more than combination with standard-dose teriparatide (SD; 20 μg). To assess the effects of these combinations on bone microarchitecture and estimated bone strength, we performed high-resolution peripheral quantitative computed tomography (HR-pQCT) at the distal radius and distal tibia in these women, who were randomized to receive either teriparatide 20 μg (n = 39) or 40 μg (n = 37) during months 0 to 9 overlapped with denosumab 60 mg s.c. given at months 3 and 9, for a 15-month study duration. The 69 women who completed at least one study visit after baseline are included in this analysis. Over 15 months, increases in total BMD were higher in the HD-group than the SD-group at the distal tibia (5.3% versus 3.4%, p = 0.01) with a similar trend at the distal radius (2.6% versus 1.0%, p = 0.06). At 15 months, cortical porosity remained similar to baseline, with absolute differences of -0.1% and -0.7% at the distal tibia and -0.4% and -0.1% at the distal radius in the HD-group and SD-group, respectively; p = NS for all comparisons. Tibial cortical tissue mineral density increased similarly in both treatment groups (1.3% [p < 0.0001 versus baseline] and 1.5% [p < 0.0001 versus baseline] in the HD-group and SD-group, respectively; p = 0.75 for overall group difference). Improvements in trabecular microarchitecture at the distal tibia and estimated strength by micro-finite element analysis at both sites were numerically greater in the HD-group compared with SD-group but not significantly so. Together, these findings suggest that short-term treatment combining denosumab with either high- or standard-dose teriparatide improves HR-pQCT measures of bone density, microstructure, and estimated strength, with greater gains in total bone density observed in the HD-group, which may be of benefit in postmenopausal women with severe osteoporosis. © 2020 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Sabashini K Ramchand
- Department of Medicine, Endocrine Unit, Massachusetts General Hospital, Harvard University, Boston, MA, USA.,Department of Medicine, Endocrine Unit, Austin Hospital, The University of Melbourne, Melbourne, Australia
| | - Natalie L David
- Department of Medicine, Endocrine Unit, Massachusetts General Hospital, Harvard University, Boston, MA, USA
| | - Hang Lee
- Biostatistics Center, Massachusetts General Hospital, Boston, MA, USA
| | - Michael Bruce
- Department of Medicine, Endocrine Unit, Massachusetts General Hospital, Harvard University, Boston, MA, USA
| | - Mary L Bouxsein
- Department of Orthopedic Surgery, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Benjamin Z Leder
- Department of Medicine, Endocrine Unit, Massachusetts General Hospital, Harvard University, Boston, MA, USA
| | - Joy N Tsai
- Department of Medicine, Endocrine Unit, Massachusetts General Hospital, Harvard University, Boston, MA, USA
| |
Collapse
|
42
|
Noble JA, McKenna MJ, Crowley RK. Should denosumab treatment for osteoporosis be continued indefinitely? Ther Adv Endocrinol Metab 2021; 12:20420188211010052. [PMID: 34104392 PMCID: PMC8072936 DOI: 10.1177/20420188211010052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 03/24/2021] [Indexed: 12/15/2022] Open
Abstract
Denosumab was approved for the treatment of postmenopausal osteoporosis in 2010, based on the FREEDOM study, which indicated a benefit in terms of increased bone mineral density and reduced risk of major osteoporotic fracture. In the initial clinical studies it was noted that discontinuation of denosumab can lead to a rebound of bone turnover markers and loss of accrued bone mineral density. An increased risk of fractures (multiple vertebral fractures in particular) associated with discontinuation was noted after approval and marketing of denosumab. For many patients experiencing gain in bone mineral density and fracture prevention while taking denosumab, there is no reason to stop therapy. However, discontinuation of denosumab may happen due to non-adherence; potential lack of efficacy in an individual; where reimbursement for therapy is limited to those with bone mineral density in the osteoporosis range, when assessment reveals this has been exceeded; or patient or physician concern regarding side effects. This review paper aims to discuss these concerns and to summarize the data available to date regarding sequential osteoporosis therapy following denosumab cessation to reduce the risk of multiple vertebral fracture.
Collapse
Affiliation(s)
- Jane A. Noble
- Department of Endocrinology, St Vincent’s University Hospital, Dublin, Ireland
| | - Malachi J. McKenna
- St Vincent’s Private Hospital, Dublin, Ireland
- School of Medicine and Medical Science, University College Dublin, Belfield, Dublin, Ireland
| | | |
Collapse
|
43
|
Nasomyont N, Keefe C, Tian C, Hornung L, Khoury J, Tilden JC, Hochwalt P, Jackson E, Rybalsky I, Wong BL, Rutter MM. Safety and efficacy of teriparatide treatment for severe osteoporosis in patients with Duchenne muscular dystrophy. Osteoporos Int 2020; 31:2449-2459. [PMID: 32676823 DOI: 10.1007/s00198-020-05549-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/08/2020] [Indexed: 01/07/2023]
Abstract
UNLABELLED Osteoporosis is a major concern in patients with Duchenne muscular dystrophy. In this novel study of teriparatide treatment in 6 patients with severe osteoporosis, bone health (fractures, vertebral morphometry, and DXA) remained stable, with no adverse events. These findings will help inform future osteoporosis research in this challenging population. INTRODUCTION Despite standard therapy with vitamin D and bisphosphonates (BP), many patients with Duchenne muscular dystrophy (DMD) continue to sustain fragility fractures due to long-term glucocorticoid treatment and limited mobility. We aimed to evaluate the safety and efficacy of teriparatide for the treatment of severe osteoporosis in adolescent and young adult patients with DMD. METHODS We prospectively treated 6 patients with DMD who had severe osteoporosis with teriparatide 20 mcg subcutaneously daily for 1-2 years. Inclusion criteria were long-term glucocorticoid therapy, and severe osteoporosis despite treatment with BP, or intolerance to BP. We examined long bone and vertebral fracture outcomes, including vertebral morphometry measures, bone mineral density and content, bone formation markers, safety indices, and adverse events. RESULTS The mean age at teriparatide start was 17.9 years (range 13.9-22.1 years). All 6 patients were on daily glucocorticoids (mean ± SD; duration 10.9 ± 2.5 years) and 5 were non-ambulatory. Five patients had been treated with BP for 7.9 ± 4.2 years. All had vertebral and a history of long bone fragility fractures at baseline. Vertebral heights and Genant fracture grading remained stable. Long bone fracture rate appeared to decrease (from 0.84/year to 0.09/year); one patient sustained a long bone fracture at 6 months of treatment. Trajectories for change in bone mineral density and content were not different post- vs. pre-teriparatide. Procollagen type 1 amino-terminal propeptide (P1NP) increased, while laboratory safety indices remained stable and non-concerning. No adverse events were observed. CONCLUSION In six patients with DMD treated with teriparatide for severe osteoporosis, we observed stable bone health and modest increases in P1NP, without safety concerns. Further studies are needed to better understand teriparatide efficacy for treatment of osteoporosis in patients with DMD.
Collapse
Affiliation(s)
- N Nasomyont
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 7012, Cincinnati, OH, 45229-3026, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - C Keefe
- Diabetes and Endocrinology, Helen DeVos Children's Hospital, Grand Rapids, MI, USA
| | - C Tian
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - L Hornung
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - J Khoury
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 7012, Cincinnati, OH, 45229-3026, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | | | - P Hochwalt
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - E Jackson
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Nephrology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - I Rybalsky
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - B L Wong
- Department of Pediatrics, University of Massachusetts Memorial Children's Medical Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - M M Rutter
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 7012, Cincinnati, OH, 45229-3026, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
44
|
Akhter S, Qureshi AR, El-Khechen HA, Bozzo A, Khan M, Patel R, Bhandari M, Aleem I. The efficacy of teriparatide on lumbar spine bone mineral density, vertebral fracture incidence and pain in post-menopausal osteoporotic patients: A systematic review and meta-analysis. Bone Rep 2020; 13:100728. [PMID: 33145376 PMCID: PMC7591342 DOI: 10.1016/j.bonr.2020.100728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 10/10/2020] [Accepted: 10/14/2020] [Indexed: 11/20/2022] Open
Abstract
Objective Teriparatide has been increasingly utilized in the management of osteoporosis. The efficacy of low and high dose teriparatide on lumbar spine bone mineral density, vertebral fracture incidence and pain is unknown. We sought to determine the efficacy of teriparatide on these patient-important outcomes using a systematic review and meta-analysis. Methods A systematic search of electronic databases (MEDLINE, EMBASE, CENTRAL, CINAHL) was performed to identify randomized controlled trials (RCTs) that evaluate teriparatide to any comparator for the treatment of osteoporosis in postmenopausal women. The Grades of Recommendation Assessment, Development and Evaluation (GRADE) criteria were used by two independent reviewers to assess the strength and quality of evidence. Results A total of 20 studies (n = 6024) were included in this review, with 2855 patients receiving teriparatide and 3169 patients receiving placebo or control treatment. A teriparatide dose of 20 μg/day increased lumbar spine bone mineral density (BMD) (standardized mean difference (SMD) 0.34 standard deviation (SD) units higher (95% CI 0.19–0.48 SDs higher) in comparison to placebo. Relative to anti-resorptive agents, 20 μg/day of teriparatide had a range from 0.14 SD units to 0.96 SD units higher (95% CI, 0.08 SDs lower to 0.36 SDs higher, CI, 0.33–1.59 SDs higher, respectively). 20 μg/day teriparatide had a significant effect on pain severity to placebo or control (SMD 0.80, 95% CI, 1.16–0.43 SDs lower) and also decreased the incidence of vertebral fractures compared to placebo (relative risk 0.31, 95% CI 0.21 to 0.46). Arthralgia and extremity pain incidence were also calculated; there were 15 and 8 fewer events per 1000 patients with the use of 20 μg/day of teriparatide compared to placebo or control, respectively. Conclusion High quality evidence supports the utilization of teriparatide 20 μg/day dose to significantly improve lumbar spine BMD and decrease incidence of vertebral fractures and pain severity relative to all comparators. 40 μg/day dose of teriparatide demonstrated significantly better results with prolonged treatment. This data is valuable for clinicians involved in the care of this growing demographic of patients. Further investigation on the safety and efficacy of teriparatide in higher doses for the long-term treatment of osteoporosis in postmenopausal women should be conducted through high-quality clinical trials. Teriparatide (20 μg/day) significantly improves lumbar spine bone mineral density. Teriparatide (20 μg/day) reduces vertebral fracture incidence and pain. Increased teriparatide dose (40 μg/day) may have even greater clinical efficacy. Further investigation on safety profiles for longer-term treatment is warranted.
Collapse
Affiliation(s)
- Shakib Akhter
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Canada.,Department of Orthopaedic Surgery, McMaster University, Canada
| | - Abdul Rehman Qureshi
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Canada
| | - Hussein Ali El-Khechen
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Canada
| | - Anthony Bozzo
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Canada.,Department of Orthopaedic Surgery, McMaster University, Canada
| | - Moin Khan
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Canada.,Department of Orthopaedic Surgery, McMaster University, Canada
| | - Rakesh Patel
- Department of Orthopaedic Surgery, University of Michigan, United States of America
| | - Mohit Bhandari
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Canada.,Department of Orthopaedic Surgery, McMaster University, Canada.,OrthoEvidence, Burlington, Ontario, Canada
| | - Ilyas Aleem
- Department of Orthopaedic Surgery, University of Michigan, United States of America
| |
Collapse
|
45
|
Stutz C, Batool F, Petit C, Strub M, Kuchler-Bopp S, Benkirane-Jessel N, Huck O. Influence of parathyroid hormone on periodontal healing in animal models: A systematic review. Arch Oral Biol 2020; 120:104932. [PMID: 33113458 DOI: 10.1016/j.archoralbio.2020.104932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 07/10/2020] [Accepted: 09/21/2020] [Indexed: 12/09/2022]
Abstract
OBJECTIVES The purpose of this systematic review was to determine the potential interest of parathyroid hormone (PTH) as an adjunct to periodontal treatment based on studies performed in rodents. MATERIALS & METHODS Electronic databases (MEDLINE, Web of Science) were searched up to December 2019. Studies assessing the impact of PTH administration in experimental periodontitis in rodents have been identified. RESULTS Amongst the 247 identified articles, 10 met the inclusion criteria and were included in this systematic review. Experimental periodontitis was mainly induced by ligature placement or surgically with a dental bur. All studies considered bone healing after PTH administration at different frequencies as primary outcome. Results showed that an intermittent administration of PTH promoted bone healing and neovascularization. Nevertheless, a decrease of soft tissue inflammation was also observed. CONCLUSION Intermittent administration of PTH appears to enhance significantly periodontal healing and to promote alveolar bone regeneration. However, due to the risk of side effects, the development of scaffolds allowing its local and time-controlled delivery is of importance.
Collapse
Affiliation(s)
- Céline Stutz
- INSERM, UMR 1260 'Osteoarticular and Dental Regenerative Nanomedicine', Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Fareeha Batool
- INSERM, UMR 1260 'Osteoarticular and Dental Regenerative Nanomedicine', Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Catherine Petit
- INSERM, UMR 1260 'Osteoarticular and Dental Regenerative Nanomedicine', Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France; Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France; Pôle de Médecine et de Chirurgie Bucco-Dentaires, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Marion Strub
- INSERM, UMR 1260 'Osteoarticular and Dental Regenerative Nanomedicine', Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France; Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France; Pôle de Médecine et de Chirurgie Bucco-Dentaires, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Sabine Kuchler-Bopp
- INSERM, UMR 1260 'Osteoarticular and Dental Regenerative Nanomedicine', Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Nadia Benkirane-Jessel
- INSERM, UMR 1260 'Osteoarticular and Dental Regenerative Nanomedicine', Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Olivier Huck
- INSERM, UMR 1260 'Osteoarticular and Dental Regenerative Nanomedicine', Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France; Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France; Pôle de Médecine et de Chirurgie Bucco-Dentaires, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.
| |
Collapse
|
46
|
Xie X, Xiong Y, Panayi AC, Hu L, Zhou W, Xue H, Lin Z, Chen L, Yan C, Mi B, Liu G. Exosomes as a Novel Approach to Reverse Osteoporosis: A Review of the Literature. Front Bioeng Biotechnol 2020; 8:594247. [PMID: 33195163 PMCID: PMC7644826 DOI: 10.3389/fbioe.2020.594247] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/06/2020] [Indexed: 01/04/2023] Open
Abstract
Osteoporosis is a chronic disease requiring long-term, sometimes lifelong, management. With the aging population, the prevalence of osteoporosis is increasing, and with it so is the risk of hip fracture and subsequent poor quality of life and higher mortality. Current therapies for osteoporosis have various significant side effects limiting patient compliance and use. Recent evidence has demonstrated the significant role of exosomes in osteoporosis both in vivo and in vitro. In this review, we summarize the pathogenesis of senile osteoporosis, highlight the properties and advantages of exosomes, and explore the recent literature on the use of exosomes in osteogenesis regulation. This is a very helpful review as several exosomes-based therapeutics have recently entered clinical trials for non-skeletal applications, such as pancreatic cancer, renal transplantation, and therefore it is urgent for bone researchers to explore whether exosomes can become the next class of orthobiologics for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Xudong Xie
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Xiong
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Adriana C Panayi
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Liangcong Hu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wu Zhou
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hang Xue
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ze Lin
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lang Chen
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenchen Yan
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bobin Mi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guohui Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
47
|
Ramchand SK, David NL, Leder BZ, Tsai JN. Bone Mineral Density Response With Denosumab in Combination With Standard or High-Dose Teriparatide: The DATA-HD RCT. J Clin Endocrinol Metab 2020; 105:dgz163. [PMID: 31674641 PMCID: PMC7112977 DOI: 10.1210/clinem/dgz163] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/27/2019] [Indexed: 01/22/2023]
Abstract
CONTEXT In the Denosumab and High-Dose Teriparatide Administration (DATA-HD) study, we reported that 15 months of combined high-dose (HD) teriparatide and denosumab increased mean areal bone mineral density (aBMD) at the hip and spine more than combined denosumab and standard-dose (SD) teriparatide. OBJECTIVE In the current analysis, we compare the individual rates of aBMD response between the treatment groups. DESIGN Single-site, open-label, randomized controlled trial in which postmenopausal women received either teriparatide 20-μg daily (SD) or 40-μg daily (HD) given months 0 through 9, overlapped with denosumab 60 mg, given months 3 through 15 (15 months' total duration). The proportion of participants in the SD and HD groups experiencing total hip, femoral neck, and lumbar spine aBMD gains of >3%, >6%, and >9% were compared. PARTICIPANTS Postmenopausal women with osteoporosis completing all study visits (n = 60). MAIN OUTCOME MEASURE(S) aBMD (dual x-ray absorptiometry). RESULTS At the end of the 15-month treatment period, a higher proportion of women in the HD group had aBMD increases >3% (83% vs. 58%, P = .037) and >6% (45% vs. 19%, P = .034) at the total hip, and >3% at the femoral neck (86% vs. 63%, P = .044). At the lumbar spine, >3% response rates were similar, whereas the >6% and >9% response rates were greater in the HD group (100% vs. 79%, P = .012 and 93% vs. 59%, P = .003, respectively). CONCLUSION Compared with the SD regimen, more women treated with the HD regimen achieved clinically meaningful and rapid gains in hip and spine aBMD. These results suggest that this approach may provide unique benefits in the treatment of postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Sabashini K Ramchand
- Department of Medicine, Endocrine Unit, Massachusetts General Hospital, Harvard University, Boston, MA
- Department of Medicine, Endocrine Unit, Austin Hospital, The University of Melbourne, Victoria, Australia
| | - Natalie L David
- Department of Medicine, Endocrine Unit, Massachusetts General Hospital, Harvard University, Boston, MA
| | - Benjamin Z Leder
- Department of Medicine, Endocrine Unit, Massachusetts General Hospital, Harvard University, Boston, MA
| | - Joy N Tsai
- Department of Medicine, Endocrine Unit, Massachusetts General Hospital, Harvard University, Boston, MA
| |
Collapse
|
48
|
Anastasilakis AD, Polyzos SA, Yavropoulou MP, Makras P. Combination and sequential treatment in women with postmenopausal osteoporosis. Expert Opin Pharmacother 2020; 21:477-490. [PMID: 31990595 DOI: 10.1080/14656566.2020.1717468] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Introduction: Since postmenopausal osteoporosis is a chronic, potentially disabling condition requiring long-term treatment, the physician is expected to decide the optimal treatment strategy, e.g. how to use the available osteoanabolic and antiresorptive agents, sequentially or in combination, in the most effective and safe way, based on personalized patient care.Areas covered: Herein, the authors outline clinical data regarding the efficacy and safety of various sequential treatment strategies. More specifically, they compare the efficacy of osteoanabolic agents when they precede or follow antiresorptive treatment, as well as the efficacy of antiresorptives following other antiresorptives. Finally, the authors quote and discuss available evidence regarding the efficacy and safety of the co-administration of osteoanabolics and antiresorptives in comparison with monotherapies.Expert opinion: Initiation with an osteoanabolic agent followed by an antiresorptive seems to be the optimal treatment sequence, at least in patients with severe osteoporosis. Osteoanabolic treatment following antiresorptives seems to lead in more modest responses in bone mineral density (BMD) and bone turnover markers. Combination therapy with teriparatide and denosumab or zoledronate has achieved higher BMD gains compared to each agent alone; however, due to the high cost, combination therapy is rarely compensated. On the contrary, the combination of teriparatide with alendronate results in smaller BMD increases than TPTD monotherapy.
Collapse
Affiliation(s)
| | - Stergios A Polyzos
- First Department of Pharmacology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Maria P Yavropoulou
- Endocrinology Unit, 1st Propaedeutic Department of Internal Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Polyzois Makras
- Department of Endocrinology and Diabetes, 251 Hellenic Air Force & VA General Hospital, Athens, Greece
| |
Collapse
|
49
|
Abstract
PURPOSE OF REVIEW Osteoporotic fractures are common and can be devastating. Although multiple different medications with unique mechanisms of action are currently available in our arsenal to attempt to prevent fractures, an ideal opportunity in which to use these medications in combination remains elusive. New data has emerged over the past few years in regards to assessing which medication combinations may be productive and efficacious. RECENT FINDINGS Previous studies performed using different medications to treat osteoporosis in combination proved either not overall beneficial or inconclusive. More recent studies suggest a potential additive and synergistic benefit of certain combination therapies, particularly with the use of denosumab and teriparatide in select situations. SUMMARY The knowledge of modern data as to when the potential use of combination therapy in treating osteoporosis may be useful is critical to the acquisition of proficiency in the ideal management of our patients at highest risk for fracture. Although not recommended yet by current guidelines, the advancement of expertise in this field, both in research studies, and clinical practice, will help us discern how to best consider the use of combination treatment now and in the future.
Collapse
Affiliation(s)
- Jennifer J Kelly
- Department of Medicine, Division of Endocrinology and Diabetes, University of Vermont Medical Center, Burlington, Vermont, USA
| | | |
Collapse
|
50
|
Khosla S. Personalising osteoporosis treatment for patients at high risk of fracture. Lancet Diabetes Endocrinol 2019; 7:739-741. [PMID: 31447410 PMCID: PMC7082959 DOI: 10.1016/s2213-8587(19)30266-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 07/23/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Sundeep Khosla
- Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| |
Collapse
|