1
|
Zhang YF, Qiao W, Zhuang J, Feng H, Zhang Z, Zhang Y. Association of ultra-processed food intake with severe non-alcoholic fatty liver disease: a prospective study of 143073 UK Biobank participants. J Nutr Health Aging 2024; 28:100352. [PMID: 39340900 DOI: 10.1016/j.jnha.2024.100352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/21/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024]
Abstract
BACKGROUND Previous studies indicate a link between non-alcoholic fatty liver disease (NAFLD) and unhealthy dietary patterns or nutrient intake. However, it remains unclear whether ultra-processed foods (UPF) contribute to an increased risk of NAFLD. This study aimed to explore how ultra-processed food consumption correlates with severe NAFLD using the UK Biobank data. METHODS This prospective cohort study included 143,073 participants from the UK Biobank. UPF consumption levels were determined using the NOVA classification and quantified from 24-h dietary recall data. The association between UPF consumption and severe NAFLD (hospitalization or death) was initially examined using Cox proportional hazards models with intake quartiles. Nonlinear associations were investigated using penalized cubic splines fitted in the Cox proportional hazards models. Adjustments were made for general characteristics, sociodemographic factors, body mass index (BMI), and lifestyle. RESULTS Throughout the median follow-up period of 10.5 years, 1,445 participants developed severe NAFLD. The adjusted models indicated a significant increase in severe NAFLD risk in higher UPF intake groups compared to the lowest quartile (HR: 1.26 [95% CI: 1.11-1.43]). Subgroup analysis revealed that individuals with a BMI of 25 or higher were at greater risk in the highest quartile of UPF consumption. Sensitivity analyses yielded results consistent with these findings. CONCLUSION Higher consumption of UPF is associated with an increased risk of severe NAFLD. Reducing the intake of UPF can be a potential approach to lower the risk of NAFLD.
Collapse
Affiliation(s)
- Yi-Feng Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Wanning Qiao
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Jinhong Zhuang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Hanxiao Feng
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Zhilan Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yang Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
2
|
Kinney GA, Haddad EN, Gopalakrishnan N, Sugino KY, Garrow LS, Ng PKW, Comstock SS. Impacts of Whole-Grain Soft Red, Whole-Grain Soft White, and Refined Soft White Wheat Flour Crackers on Gastrointestinal Inflammation and the Gut Microbiota of Adult Humans. BIOLOGY 2024; 13:677. [PMID: 39336104 PMCID: PMC11428712 DOI: 10.3390/biology13090677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/30/2024]
Abstract
Consumption of whole-grain wheat has been associated with positive health outcomes, but it remains unclear whether different types of wheat elicit varying effects on the gut microbiome and intestinal inflammation. The objectives of this research were to investigate the effect of two whole-grain wheat flours versus refined wheat flour on the diversity of the human gut microbiota, as well as on butyrate production capacity and gastrointestinal inflammation, using one-week dietary interventions. For this study, 28 participants were recruited, with ages ranging from 18 to 55 years and a mean BMI of 26.0 kg/m2. For four weeks, participants were provided 80 g daily servings of different wheat crackers: Week A was a run-in period of crackers made from soft white wheat flour, Week B crackers were whole-grain soft white wheat flour, Week C crackers were a wash-out period identical to Week A, and Week D crackers were whole-grain soft red wheat flour. At the end of each week, participants provided fecal samples that were analyzed for markers of intestinal inflammation, including lipocalin and calprotectin, using enzyme-linked immunosorbent assays and quantitative real-time PCR. The primary outcome, gut bacterial community alpha and beta diversity, was similar across timepoints. Three taxa significantly differed in abundance following both whole-grain wheat flour interventions: Escherichia/Shigella and Acidaminococcus were significantly depleted, and Lachnospiraceae NK4A136 group was enriched. Secondary outcomes determined that protein markers of intestinal inflammation and genes related to putative butyrate production capacity were similar throughout the study period, with no significant changes. Lipocalin concentrations ranged from 14.8 to 22.6 ng/mL while calprotectin ranged from 33.2 to 62.5 ng/mL across all 4 weeks. The addition of wheat crackers to the adult human subjects' usual diet had a minimal impact on their gastrointestinal inflammation or the gut microbiota.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sarah S. Comstock
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
3
|
Fabiano GA, Shinn LM, Antunes AEC. Relationship between Oat Consumption, Gut Microbiota Modulation, and Short-Chain Fatty Acid Synthesis: An Integrative Review. Nutrients 2023; 15:3534. [PMID: 37630725 PMCID: PMC10459712 DOI: 10.3390/nu15163534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
The gut microbiota consists of a set of microorganisms that colonizes the intestine and ferment fibers, among other nutrients, from the host's diet. A healthy gut microbiota, colonized mainly by beneficial microorganisms, has a positive effect on digestion and plays a role in disease prevention. However, dysregulation of the gut microbiota can contribute to various diseases. The nutrition of the host plays an important role in determining the composition of the gut microbiota. A healthy diet, rich in fiber, can beneficially modulate the gut microbiota. In this sense, oats are a source of both soluble and insoluble fiber. Oats are considered a functional ingredient with prebiotic potential and contain plant proteins, unsaturated fats, and antioxidant compounds. The impact of oat consumption on the gut microbiota is still emerging. Associations between oat consumption and the abundance of Akkermansia muciniphila, Roseburia, Lactobacillus, Bifidobacterium, and Faecalibacterium prausnitzii have already been observed. Therefore, this integrative review summarizes the findings from studies on the relationship between oat consumption, the gut microbiota, and the metabolites, mainly short-chain fatty acids, it produces.
Collapse
Affiliation(s)
- Giovanna Alexandre Fabiano
- School of Applied Sciences (FCA), State University of Campinas, 1300 Pedro Zaccaria St., Limeira 13484-350, SP, Brazil;
| | | | | |
Collapse
|
4
|
Yu D, Zhu L, Gao M, Yin Z, Zhang Z, Zhu L, Zhan X. A Comparative Study of the Effects of Whole Cereals and Refined Cereals on Intestinal Microbiota. Foods 2023; 12:2847. [PMID: 37569116 PMCID: PMC10418403 DOI: 10.3390/foods12152847] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Cereals are one of the most important foods on which human beings rely to sustain basic life activities and are closely related to human health. This study investigated the effects of different steamed buns on intestinal microbiota. Three steamed buns were prepared using refined flour (RF), 1:1 mixed flour (MF), and whole wheat flour (WF). In vitro digestion simulations were conducted using a bionic gastrointestinal reactor (BGR) to examine their influence on intestinal microbiota. The results showed that at 0.5% addition, butyric acid and short-chain fatty acids in WF were significantly different from those in RF and MF (p < 0.05). WF also promoted the proliferation of beneficial microbiota, such as Megamonas and Subdoligranulum. At 0.5%, 1.0%, and 1.5% additions of WF, acetic acid and short-chain fatty acids at 1.5% WF increased by 1167.5% and 11.4% from 0.5% WF, respectively, and by 20.2% and 7.6% from 1.0% WF, respectively. WF also promoted the proliferation of Bifidobacterium, Lactobacillus, and Bacteroides and inhibited the growth of pathogenic microbiota, such as Streptococcus, Enterococcus, and Klebsiella. These findings support the consumption of whole cereals and offer insights into the development of new functional foods derived from wheat.
Collapse
Affiliation(s)
- Dan Yu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (D.Y.); (L.Z.); (M.G.); (Z.Y.); (Z.Z.); (L.Z.)
| | - Li Zhu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (D.Y.); (L.Z.); (M.G.); (Z.Y.); (Z.Z.); (L.Z.)
- A & F Biotech. Ltd., Burnaby, BC V5A 3P6, Canada
| | - Minjie Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (D.Y.); (L.Z.); (M.G.); (Z.Y.); (Z.Z.); (L.Z.)
| | - Zhongwei Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (D.Y.); (L.Z.); (M.G.); (Z.Y.); (Z.Z.); (L.Z.)
| | - Zijian Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (D.Y.); (L.Z.); (M.G.); (Z.Y.); (Z.Z.); (L.Z.)
| | - Ling Zhu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (D.Y.); (L.Z.); (M.G.); (Z.Y.); (Z.Z.); (L.Z.)
| | - Xiaobei Zhan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (D.Y.); (L.Z.); (M.G.); (Z.Y.); (Z.Z.); (L.Z.)
| |
Collapse
|
5
|
Hitache Z, Al-Dalali S, Pei H, Cao X. Review of the Health Benefits of Cereals and Pseudocereals on Human Gut Microbiota. FOOD BIOPROCESS TECH 2023. [DOI: 10.1007/s11947-023-03069-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
6
|
Sushytskyi L, Synytsya A, Čopíková J, Lukáč P, Rajsiglová L, Tenti P, Vannucci LE. Perspectives in the Application of High, Medium, and Low Molecular Weight Oat β-d-Glucans in Dietary Nutrition and Food Technology-A Short Overview. Foods 2023; 12:foods12061121. [PMID: 36981048 PMCID: PMC10048208 DOI: 10.3390/foods12061121] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/30/2023] Open
Abstract
For centuries human civilization has cultivated oats, and now they are consumed in various forms of food, from instant breakfasts to beverages. They are a nutrient-rich food containing linear mixed-linkage (1 → 3) (1 → 4)-β-d-glucans, which are relatively well soluble in water and responsible for various biological effects: the regulation of the blood cholesterol level, as well as being anti-inflammatory, prebiotic, antioxidant, and tumor-preventing. Numerous studies, especially in the last two decades, highlight the differences in the biological properties of the oat β-d-glucan fractions of low, medium, and high molecular weight. These fractions differ in their features due to variations in bioavailability related to the rheological properties of these polysaccharides, and their association with food matrices, purity, and mode of preparation or modification. There is strong evidence that, under different conditions, the molecular weight may determine the potency of oat-extracted β-d-glucans. In this review, we intend to give a concise overview of the properties and studies of the biological activities of oat β-d-glucan preparations depending on their molecular weight and how they represent a prospective ingredient of functional food with the potential to prevent or modulate various pathological conditions.
Collapse
Affiliation(s)
- Leonid Sushytskyi
- Department of Carbohydrates and Cereals, University of Chemistry and Technology, Technická 5, 166 28 Prague, Czech Republic
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Andriy Synytsya
- Department of Carbohydrates and Cereals, University of Chemistry and Technology, Technická 5, 166 28 Prague, Czech Republic
| | - Jana Čopíková
- Department of Carbohydrates and Cereals, University of Chemistry and Technology, Technická 5, 166 28 Prague, Czech Republic
| | - Pavol Lukáč
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
- Faculty of Science, Charles University, Albertov 6, 128 00 Prague, Czech Republic
| | - Lenka Rajsiglová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
- Faculty of Science, Charles University, Albertov 6, 128 00 Prague, Czech Republic
| | - Paolo Tenti
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
- Faculty of Science, Charles University, Albertov 6, 128 00 Prague, Czech Republic
| | - Luca E Vannucci
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| |
Collapse
|
7
|
Freijy TM, Cribb L, Oliver G, Metri NJ, Opie RS, Jacka FN, Hawrelak JA, Rucklidge JJ, Ng CH, Sarris J. Effects of a high-prebiotic diet versus probiotic supplements versus synbiotics on adult mental health: The "Gut Feelings" randomised controlled trial. Front Neurosci 2023; 16:1097278. [PMID: 36815026 PMCID: PMC9940791 DOI: 10.3389/fnins.2022.1097278] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 12/15/2022] [Indexed: 02/09/2023] Open
Abstract
Background Preliminary evidence supports the use of dietary interventions and gut microbiota-targeted interventions such as probiotic or prebiotic supplementation for improving mental health. We report on the first randomised controlled trial (RCT) to examine the effects of a high-prebiotic dietary intervention and probiotic supplements on mental health. Methods "Gut Feelings" was an 8-week, 2 × 2 factorial RCT of 119 adults with moderate psychological distress and low prebiotic food intake. Treatment arms: (1) probiotic supplement and diet-as-usual (probiotic group); (2) high-prebiotic diet and placebo supplement (prebiotic diet group); (3) probiotic supplement and high-prebiotic diet (synbiotic group); and (4) placebo supplement and diet-as-usual (placebo group). The primary outcome was assessment of total mood disturbance (TMD; Profile of Mood States Short Form) from baseline to 8 weeks. Secondary outcomes included anxiety, depression, stress, sleep, and wellbeing measures. Results A modified intention-to-treat analysis using linear mixed effects models revealed that the prebiotic diet reduced TMD relative to placebo at 8 weeks [Cohen's d = -0.60, 95% confidence interval (CI) = -1.18, -0.03; p = 0.039]. There was no evidence of symptom improvement from the probiotic (d = -0.19, 95% CI = -0.75, 0.38; p = 0.51) or synbiotic treatments (d = -0.03, 95% CI = -0.59, 0.53; p = 0.92). Improved anxiety, stress, and sleep were noted in response to the prebiotic diet while the probiotic tentatively improved wellbeing, relative to placebo. No benefit was found in response to the synbiotic intervention. All treatments were well tolerated with few adverse events. Conclusion A high-prebiotic dietary intervention may improve mood, anxiety, stress, and sleep in adults with moderate psychological distress and low prebiotic intake. A synbiotic combination of high-prebiotic diet and probiotic supplement does not appear to have a beneficial effect on mental health outcomes, though further evidence is required. Results are limited by the relatively small sample size. Clinical trial registration https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=372753, identifier ACTRN12617000795392.
Collapse
Affiliation(s)
- Tanya M. Freijy
- Professorial Unit, The Melbourne Clinic, Department of Psychiatry, The University of Melbourne, Melbourne, VIC, Australia,Faculty of Medicine, Dentistry and Health Sciences, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - Lachlan Cribb
- Professorial Unit, The Melbourne Clinic, Department of Psychiatry, The University of Melbourne, Melbourne, VIC, Australia
| | - Georgina Oliver
- Professorial Unit, The Melbourne Clinic, Department of Psychiatry, The University of Melbourne, Melbourne, VIC, Australia
| | - Najwa-Joelle Metri
- NICM Health Research Institute, Western Sydney University, Westmead, NSW, Australia
| | - Rachelle S. Opie
- IPAN, School of Exercise and Nutrition Sciences, Deakin University, Melbourne, VIC, Australia
| | - Felice N. Jacka
- School of Medicine, Food and Mood Centre, IMPACT Strategic Research Centre, Deakin University, Melbourne, VIC, Australia,Centre for Adolescent Health, Murdoch Children’s Research Institute, Melbourne, VIC, Australia,College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, OLD, Australia
| | - Jason A. Hawrelak
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS, Australia,Human Nutrition and Functional Medicine Department, University of Western States, Portland, OR, United States
| | - Julia J. Rucklidge
- School of Psychology, Speech and Hearing, University of Canterbury, Christchurch, New Zealand
| | - Chee H. Ng
- Professorial Unit, The Melbourne Clinic, Department of Psychiatry, The University of Melbourne, Melbourne, VIC, Australia
| | - Jerome Sarris
- Professorial Unit, The Melbourne Clinic, Department of Psychiatry, The University of Melbourne, Melbourne, VIC, Australia,Faculty of Medicine, Dentistry and Health Sciences, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia,NICM Health Research Institute, Western Sydney University, Westmead, NSW, Australia,*Correspondence: Jerome Sarris,
| |
Collapse
|
8
|
Liu Z, Huang H, Xie J, Xu C. Dietary Patterns and Long-Term Outcomes in Patients with NAFLD: A Prospective Analysis of 128,695 UK Biobank Participants. Nutrients 2023; 15:nu15020271. [PMID: 36678145 PMCID: PMC9862257 DOI: 10.3390/nu15020271] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Large longitudinal studies exploring the role of dietary patterns in the assessment of long-term outcomes of NAFLD are still lacking. We conducted a prospective analysis of 128,695 UK Biobank participants. Cox proportional hazards models were used to estimate the risk associated with two dietary patterns for long-term outcomes of NAFLD. During a median follow-up of 12.5 years, 1925 cases of end-stage liver disease (ESLD) and 12,466 deaths occurred in patients with NAFLD. Compared with patients in the lowest quintile, those in the highest quintile of the diet quality score was negatively associated with the risks of ESLD and all-cause mortality (HRQ5vsQ1: 0.76, 95% CI: 0.66−0.87, p < 0.001; HRQ5vsQ1: 0.84, 95% CI: 0.79−0.88, p < 0.001, respectively). NAFLD patients with high-quality carbohydrate patterns carried a 0.74-fold risk of ESLD and a 0.86-fold risk of all-cause mortality (HRQ5vsQ1: 0.74, 95% CI: 0.65−0.86, p < 0.001; HRQ5vsQ1: 0.86, 95% CI: 0.82−0.91, p < 0.001, respectively). For prudent dietary patterns rich in vegetables, fruits and fish, the adjusted HR Q5vsQ1 (95% CI) was 0.87 (0.76−0.99) and 0.94 (0.89−0.99) for ESLD and all-cause mortality of NAFLD patients. There was a U-shaped association between the meat-rich dietary pattern and all-cause mortality in patients with NAFLD. These findings suggest that a diet characterized by a high-quality, high intake of vegetables, fruits, fish and whole grains as well as an appropriate intake of meat, was associated with a lower risk of adverse outcomes of NAFLD.
Collapse
Affiliation(s)
- Zhening Liu
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Hangkai Huang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jiarong Xie
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Department of Gastroenterology, Ningbo First Hospital, Ningbo 315010, China
- Zhejiang Provincial Clinical Research Center for Digestive Diseases, Hangzhou 310003, China
| | - Chengfu Xu
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Zhejiang Provincial Clinical Research Center for Digestive Diseases, Hangzhou 310003, China
- Correspondence:
| |
Collapse
|
9
|
Romero-Gómez M, Aller R, Martín-Bermudo F. Dietary Recommendations for the Management of Non-alcoholic Fatty Liver Disease (NAFLD): A Nutritional Geometry Perspective. Semin Liver Dis 2022; 42:434-445. [PMID: 36307105 DOI: 10.1055/s-0042-1757711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Diet could be both culprit and solution of NAFLD. Dietary modifications have been associated with histological features improvement in NAFLD. The Western diet was related to a greater risk of disease progression while the Mediterranean diet (MD) could promote regression of histological lesions. Modifications in the nutrient composition seems to have lesser impact on NAFLD than dietary modifications. An intrinsic interaction between nutrients in the diet support a specific effect not seen when added separately. Dietary modifications should focus on promoting weight loss but also look for patterns that are able to promote histological improvement. Although several micronutrients' deficit has been related to NAFLD progression, prescribing these micronutrients' supplementation did not reach a positive impact. However, an enriching diet with specific nutrients could be useful, like olive oil supplemented in MD. Geometry of nutrition defines a framework to better understand the interaction between nutrients, foods, and dietetic pattern in the model of diseases and how we could approach taking into consideration the interaction between meals and disease features. After analyzing baseline diet and histological lesions, we could calculate the distance to optimal diet and to promote changes in lifestyle to reach all these goals. A standard MD menu would be recommended.
Collapse
Affiliation(s)
- Manuel Romero-Gómez
- Digestive Diseases Unit, Department of Medicine, SeLiver Group, Institute of Biomedicine of Sevilla (HUVR/CSIC/US), University of Seville, Hospital Universitario Virgen del Rocío, Seville, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Rocío Aller
- Gastroenterology Department, Centro de Investigación de Endocrinología y Nutrición, Centro de Investigación Biomédoca en Red de Enfermedades Infecciosas (CIBERINF), Facultad de Medicina, University of Valladolid, Hospital Clínico de Valladolid, Valladolid, Spain
| | - Franz Martín-Bermudo
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad Pablo de Olavide, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| |
Collapse
|
10
|
Dioum EHM, Schneider KL, Vigerust DJ, Cox BD, Chu Y, Zachwieja JJ, Furman D. Oats Lower Age-Related Systemic Chronic Inflammation (iAge) in Adults at Risk for Cardiovascular Disease. Nutrients 2022; 14:nu14214471. [PMID: 36364734 PMCID: PMC9656573 DOI: 10.3390/nu14214471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 11/16/2022] Open
Abstract
Despite being largely preventable, cardiovascular disease (CVD) is still the leading cause of death globally. Recent studies suggest that the immune system, particularly a form of systemic chronic inflammation (SCI), is involved in the mechanisms leading to CVD; thus, targeting SCI may help prevent or delay the onset of CVD. In a recent placebo-controlled randomized clinical trial, an oat product providing 3 g of β-Glucan improved cholesterol low-density lipoprotein (LDL) levels and lowered cardiovascular risk in adults with borderline high cholesterol. Here, we conducted a secondary measurement of the serum samples to test whether the oat product has the potential to reduce SCI and improve other clinical outcomes related to healthy aging. We investigated the effects of the oat product on a novel metric for SCI called Inflammatory Age® (iAge®), derived from the Stanford 1000 Immunomes Project. The iAge® predicts multimorbidity, frailty, immune decline, premature cardiovascular aging, and all-cause mortality on a personalized level. A beneficial effect of the oat product was observed in subjects with elevated levels of iAge® at baseline (>49.6 iAge® years) as early as two weeks post-treatment. The rice control group did not show any significant change in iAge®. Interestingly, the effects of the oat product on iAge® were largely driven by a decrease in the Eotaxin-1 protein, an aging-related chemokine, independent of a person’s gender, body mass index, or chronological age. Thus, we describe a novel anti-SCI role for oats that could have a major impact on functional, preventative, and personalized medicine.
Collapse
Affiliation(s)
- El Hadji M Dioum
- Quaker Oats Center of Excellence, PepsiCo Health and Nutrition Sciences, Chicago, IL 60607, USA
| | | | | | - Bryan D Cox
- Edifice Health Inc., San Mateo, CA 94401, USA
| | - YiFang Chu
- Quaker Oats Center of Excellence, PepsiCo Health and Nutrition Sciences, Chicago, IL 60607, USA
| | - Jeffery J Zachwieja
- Quaker Oats Center of Excellence, PepsiCo Health and Nutrition Sciences, Chicago, IL 60607, USA
| | | |
Collapse
|
11
|
Association between Mediterranean Diet and Fatty Liver in Women with Overweight and Obesity. Nutrients 2022; 14:nu14183771. [PMID: 36145146 PMCID: PMC9501123 DOI: 10.3390/nu14183771] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
Obesity is a risk factor for NAFLD. However, not all people with obesity have an excessive intrahepatic fat content. Adherence to a high-quality dietary pattern may also promote liver health in obesity. A cross-sectional study of 2967 women with overweight and obesity was carried out to assess the association between a Mediterranean diet and fatty liver. All women underwent clinical examination, anthropometric measurements, blood sampling, ultrasound measurements of abdominal visceral and subcutaneous fat, and assessment of adherence to the Mediterranean diet using the 14-item MEDAS questionnaire. Fatty liver index (FLI), NAFLD fatty liver steatosis (NAFLD-FLS) and hepatic steatosis index (HSI) were calculated. In women with obesity, the MEDAS score was inversely associated with FLI (β = −0.60, 95% CI: −1.04, −0.16, p = 0.008), NAFLD-FLS (β = −0.092, 95% CI: −0.134, −0.049, p < 0.001) and HSI (β = −0.17, 95% CI: −0.30, −0.04, p = 0.011). Stronger associations were observed in premenopausal women with obesity. Mediterranean diet was inversely associated with NAFLD-FLS in women with overweight, independently of menopausal status. In conclusion, Mediterranean diet is associated with a better liver status in women with overweight and obesity. This may have a public health impact and be useful in drafting nutritional guidelines for NAFLD.
Collapse
|
12
|
The Gut Microbiome among Postmenopausal Latvian Women in Relation to Dietary Habits. Nutrients 2022; 14:nu14173568. [PMID: 36079824 PMCID: PMC9460340 DOI: 10.3390/nu14173568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022] Open
Abstract
In recent years, many studies have been initiated to characterise the human gut microbiome in relation to different factors like age, lifestyle, and dietary habits. This study aimed to evaluate the impact of yoghurt intake on the gut microbiome among postmenopausal women and how overall dietary habits modulate the gut microbiome. In total, 52 participants were included in the study and two groups—a control (n = 26) and experimental group (n = 26)—were established. The study was eight weeks long. Both study groups were allowed to consume a self-selected diet, but the experimental group had to additionally consume 175 g of plain organic milk yoghurt on a daily basis for eight weeks. In addition, a series of questionnaires were completed, including a questionnaire on the subject’s sociodemographic background, health status, and lifestyle factors, as well as a food frequency questionnaire. Stool samples were collected for the analysis of the gut microbiome (both prior to and after the eight weeks of the study). Sequencing of V4-V5 regions of the 16S rRNA gene was used to determine the bacterial composition of stool samples. The dominant phylum from the gut microbiome was Firmicutes (~70% to 73%), followed by Bacteroidota (~20% to 23%). Although no significant changes in the gut microbiome were related to daily consumption of yoghurt, we report that consumption of food products like grains, grain-based products, milk and milk products, and beverages (tea, coffee) is associated with differences in the composition of the gut microbiome. Establishing nutritional strategies to shape the gut microbiome could contribute to improved health status in postmenopausal women, but further research is needed.
Collapse
|
13
|
Effect of Cereals and Legumes Processing on In Situ Rumen Protein Degradability: A Review. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8080363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The determination of the ruminal degradability rate of feeds, mainly starch and crude protein, is one of the most common methods to evaluate the nutritional value of ruminant feed. The protein requirements for ruminants are met from microbial protein and undegraded dietary protein digested in the small intestine. In order to reach maximum productivity, high-quality proteins are needed, and the requirement for undegraded dietary protein increases with the performance of the animal. This protein can be supplied by reducing the ruminal degradation to increase the amount of protein digested post-rumen, but the form in which a feed is administered influences degradability, and grain processing, especially, is a common practice to improve feed efficiency. Despite these aspects, studies on the effects of feed processing methods on protein degradability are limited, even though more and more ruminants are fed with processed feeds. For these reasons, this review investigated the protein degradability of different processed cereals and legumes in ruminants based on the analysis of available literature in order to take stock of the state of the art on this topic. Results showed that: First, the majority of the papers are focused on the energy aspects mainly due to carbohydrate-rich feeds; second, the majority of the studies in the literature are quite old, probably because the changes occurred in the animal testing legislation that made in vivo studies more and more difficult in the last 20 years; third, as a consequence, the few data available in recent years concern in vitro experiments; fourth, we found a high variability of the experimental conditions thus affecting protein degradability and making it quite difficult to compare the different results.
Collapse
|
14
|
He L, Wang C, Simujide H, Aricha H, Zhang J, Liu B, Aorigele C. Effects of Pathogenic Escherichia coli Infection on the Flora Composition, Function, and Content of Short-Chain Fatty Acids in Calf Feces. Animals (Basel) 2022; 12:959. [PMID: 35454206 PMCID: PMC9028710 DOI: 10.3390/ani12080959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/18/2022] [Accepted: 04/04/2022] [Indexed: 12/16/2022] Open
Abstract
Calf diarrhea caused by pathogenic Escherichia coli is a major cause of death in calves, with a mortality rate of over 50%. It is crucial to understand the pathogenesis and development of calf diarrhea for its prevention and treatment. We aimed to study the effect of pathogenic E. coli on the flora composition, function, and short-chain fatty acid (SCFA) content of calf feces using a calf diarrhea model. Sixty-four newborn Holstein calves (40-43 kg) were divided into a normal group (NG; n = 32) and a test group (TG; n = 32). At the beginning of the experiment, the TG were orally administered pathogenic E. coli O1 (2.5 × 1011 CFU/mL, 100 mL) to establish a calf diarrhea model, and the NG were orally administered the same amount of physiological saline solution. The calves of the two groups were subjected to the same feeding and management. Fresh feces samples were collected at different time points and subjected to 16S rRNA high-throughput sequencing and gas chromatography-mass spectrometry to determine the fecal microbial composition and SCFA content. Pathogenic E. coli O1 significantly altered microbiotas composition in the feces of calves, increasing the relative abundance of Proteobacteria and decreasing that of Firmicutes. It also led to a significant increase in the relative abundance of Escherichia-Shigella and a decrease in Lactobacillus, as well as significantly decreased SCFA content. Therefore, we postulate that pathogenic E. coli induces calf diarrhea by causing intestinal florae imbalance and reducing the content of SCFA.
Collapse
Affiliation(s)
- Lina He
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (L.H.); (H.S.); (H.A.); (J.Z.); (B.L.)
| | - Chunjie Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China;
| | - Huasai Simujide
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (L.H.); (H.S.); (H.A.); (J.Z.); (B.L.)
| | - Han Aricha
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (L.H.); (H.S.); (H.A.); (J.Z.); (B.L.)
| | - Jian Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (L.H.); (H.S.); (H.A.); (J.Z.); (B.L.)
| | - Bo Liu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (L.H.); (H.S.); (H.A.); (J.Z.); (B.L.)
| | - Chen Aorigele
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (L.H.); (H.S.); (H.A.); (J.Z.); (B.L.)
| |
Collapse
|
15
|
Liu J, Hefni ME, Witthöft CM, Bergström M, Burleigh S, Nyman M, Hållenius F. Effects of Whole Brown Bean and Its Isolated Fiber Fraction on Plasma Lipid Profile, Atherosclerosis, Gut Microbiota, and Microbiota-Dependent Metabolites in Apoe-/- Mice. Nutrients 2022; 14:nu14050937. [PMID: 35267913 PMCID: PMC8912725 DOI: 10.3390/nu14050937] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/10/2022] [Accepted: 02/18/2022] [Indexed: 12/21/2022] Open
Abstract
The health benefits of bean consumption are widely recognized and are largely attributed to the dietary fiber content. This study investigated and compared the effects of whole brown beans and an isolated bean dietary fiber fraction on the plasma lipid profile, atherosclerotic plaque amount, gut microbiota, and microbiota-dependent metabolites (cecal short-chain fatty acids (SCFAs) and plasma methylamines) in Apoe−/− mice fed high fat diets for 10.5 weeks. The results showed that both whole bean and the isolated fiber fraction had a tendency to lower atherosclerotic plaque amount, but not plasma lipid concentration. The whole bean diet led to a significantly higher diversity of gut microbiota compared with the high fat diet. Both bean diets resulted in a lower Firmicutes/Bacteroidetes ratio, higher relative abundance of unclassified S24-7, Prevotella, Bifidobacterium, and unclassified Clostridiales, and lower abundance of Lactobacillus. Both bean diets resulted in higher formation of all cecal SCFAs (higher proportion of propionic acid and lower proportion of acetic acid) and higher plasma trimethylamine N-oxide concentrations compared with the high fat diet. Whole beans and the isolated fiber fraction exerted similar positive effects on atherosclerotic plaque amount, gut microbiota, and cecal SCFAs in Apoe−/− mice compared with the control diets.
Collapse
Affiliation(s)
- Jiyun Liu
- Department of Chemistry and Biomedical Sciences, Faculty of Health and Life Sciences, Linnaeus University, 39231 Kalmar, Sweden; (M.E.H.); (C.M.W.); (M.B.)
- Correspondence: ; Tel.: +46-072-451-6957
| | - Mohammed E. Hefni
- Department of Chemistry and Biomedical Sciences, Faculty of Health and Life Sciences, Linnaeus University, 39231 Kalmar, Sweden; (M.E.H.); (C.M.W.); (M.B.)
- Food Industries Department, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt
| | - Cornelia M. Witthöft
- Department of Chemistry and Biomedical Sciences, Faculty of Health and Life Sciences, Linnaeus University, 39231 Kalmar, Sweden; (M.E.H.); (C.M.W.); (M.B.)
| | - Maria Bergström
- Department of Chemistry and Biomedical Sciences, Faculty of Health and Life Sciences, Linnaeus University, 39231 Kalmar, Sweden; (M.E.H.); (C.M.W.); (M.B.)
| | - Stephen Burleigh
- Department of Food Technology, Engineering and Nutrition, Lund University, 22100 Lund, Sweden; (S.B.); (M.N.); (F.H.)
| | - Margareta Nyman
- Department of Food Technology, Engineering and Nutrition, Lund University, 22100 Lund, Sweden; (S.B.); (M.N.); (F.H.)
| | - Frida Hållenius
- Department of Food Technology, Engineering and Nutrition, Lund University, 22100 Lund, Sweden; (S.B.); (M.N.); (F.H.)
| |
Collapse
|
16
|
Smith C, Van Haute MJ, Xian Y, Segura Munoz RR, Liu S, Schmaltz RJ, Ramer-Tait AE, Rose DJ. Carbohydrate utilization by the gut microbiome determines host health responsiveness to whole grain type and processing methods. Gut Microbes 2022; 14:2126275. [PMID: 36130094 PMCID: PMC9519025 DOI: 10.1080/19490976.2022.2126275] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/02/2022] [Accepted: 09/13/2022] [Indexed: 02/04/2023] Open
Abstract
Little is known about how interactions among grain processing, grain type, and carbohydrate utilization (CU) by the microbiome influence the health benefits of whole grains. Therefore, two whole grains - brown rice and whole wheat - and two processing methods - boiling (porridge) and extrusion - were studied for their effects on host metabolic outcomes in mice harboring human microbiomes previously shown in vitro to have high or low CU. Mice carrying either microbiome experienced increases in body weight and glycemia when consuming Western diets supplemented with extruded grains versus porridge. However, mice with the high but not low CU microbiome also gained more weight and fat over time and were less glucose tolerant when consuming extruded grain diets. In high CU microbiome mice, the exacerbated negative health outcomes associated with extrusion were related to altered abundances of Lachnospiraceae and Ruminococcaceae as well as elevated sugar degradation and colonic acetate production. The amplicon sequence variants (ASVs) associated with extruded and porridge diets in this in vivo study were not the same as those identified in our prior in vitro study; however, the predicted functions were highly correlated. In conclusion, mice harboring both high and low CU microbiomes responded to the whole grain diets similarly, except the high CU microbiome mice exhibited exacerbated effects due to excessive acetate production, indicating that CU by the microbiome is linked to host metabolic health outcomes. Our work demonstrates that a greater understanding of food processing effects on the microbiome is necessary for developing foods that promote rather than diminish host health.Abbreviations: CU- carbohydrate utilization; SCFA- short-chain fatty acids; GF- germ-free; HMA, human-microbiome associated; ipGTT- intraperitoneal glucose tolerance test; HOMA-IR- Homeostatic Model Assessment for Insulin Resistance; AUC- area under the glycemia curve; ASV- amplicon sequence variant; lf- low-fat; wd- Western diet; wd_wwp- Western diet containing whole wheat porridge; wd_wwe- Western diet containing whole wheat extrudate; wd_bre- Western diet containing brown rice extrudate; wd_extr- Western diet containing either whole wheat or brown rice extrudate.
Collapse
Affiliation(s)
- Caroline Smith
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
- Grain Research and Quality, Ardent Mills, Denver, CO, USA
| | - Mallory J. Van Haute
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, USA
- Research and Development, Synbiotic Health, Lincoln, NE, USA
| | - Yibo Xian
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Rafael R. Segura Munoz
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, USA
- Department of Systems & Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Sujun Liu
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Robert J. Schmaltz
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Amanda E. Ramer-Tait
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Devin J. Rose
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, USA
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, USA
| |
Collapse
|
17
|
Ren G, Fan X, Teng C, Li Y, Everaert N, Blecker C. The Beneficial Effect of Coarse Cereals on Chronic Diseases through Regulating Gut Microbiota. Foods 2021; 10:foods10112891. [PMID: 34829172 PMCID: PMC8620804 DOI: 10.3390/foods10112891] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/15/2021] [Accepted: 11/19/2021] [Indexed: 12/20/2022] Open
Abstract
In recent years, chronic diseases including obesity, diabetes, cancer, cardiovascular, and neurodegenerative disorders have been the leading causes of incapacity and death globally. Increasing evidence suggests that improvements of lifestyle habits and diet is the most commonly adopted strategy for the prevention of chronic disorders. Moreover, many dietary compounds have revealed health-promoting benefits beyond their nutritional effects. It is worth noting that diet plays an important role in shaping the intestinal microbiota. Coarse cereals constitute important sources of nutrients for the gut microbiota and contribute to a healthy gut microbiome. Furthermore, the gut microbiota converts coarse cereals into functional substances and mediates the interaction between the host and these components. In this study, we summarize the recent findings concerning functional components of cereal grains and their potential chemopreventive activity via modulating the gut microbiota.
Collapse
Affiliation(s)
- Guixing Ren
- College of Pharmacy and Biological Engineering, Chengdu University, No. 1 Shilling Road, Chenglo Avenue, Longquan District, Chengdu 610106, China;
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, No. 80 South Xueyuan Road, Haidian District, Beijing 100081, China; (X.F.); (C.T.)
- Correspondence: ; Tel.: +86-10-6211-5596; Fax: +86-10-6215-6596
| | - Xin Fan
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, No. 80 South Xueyuan Road, Haidian District, Beijing 100081, China; (X.F.); (C.T.)
- Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium; (N.E.); (C.B.)
| | - Cong Teng
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, No. 80 South Xueyuan Road, Haidian District, Beijing 100081, China; (X.F.); (C.T.)
| | - Yajie Li
- College of Pharmacy and Biological Engineering, Chengdu University, No. 1 Shilling Road, Chenglo Avenue, Longquan District, Chengdu 610106, China;
| | - Nadia Everaert
- Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium; (N.E.); (C.B.)
| | - Christophe Blecker
- Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium; (N.E.); (C.B.)
| |
Collapse
|
18
|
Valido E, Stoyanov J, Bertolo A, Hertig-Godeschalk A, Zeh RM, Flueck JL, Minder B, Stojic S, Metzger B, Bussler W, Muka T, Kern H, Glisic M. Systematic Review of the Effects of Oat Intake on Gastrointestinal Health. J Nutr 2021; 151:3075-3090. [PMID: 34486656 DOI: 10.1093/jn/nxab245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/27/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Oats are a food source with multiple health benefits that could support beneficial bacterial groups and provide important bioactive compounds for the gut. OBJECTIVES This review explores the association between oat intake, gastrointestinal (GI) symptoms, and microbial community changes in individuals with celiac disease (CeD), irritable bowel syndrome (IBS), and inflammatory bowel disease (IBD) and without GI disease. METHODS Four databases and Google Scholar were systematically searched from inception until April 29, 2021. Clinical trials, observational studies, and in vitro studies with human gut-derived samples were included. RESULTS There were 84 articles [23 randomized controlled trials (RCTs), 21 nonrandomized trials, 8 observational studies, and 32 in vitro studies] included. Oat intake increased total bacterial count, Lactobacilli spp., and Bifidobacterium spp. in healthy individuals and those with CeD. There was an increased concentration of short-chain fatty acids and improved gut permeability with oat intake but with no significant quality-of-life difference. In some individuals with CeD, consumption of certain oat types was associated with worsening of GI symptoms. We found no studies reporting on IBS and only 3 for IBD. The quality of RCTs showed some concerns mostly in domains of randomization (73.9%), whereas the quality of evidence of non-RCTs, observational studies, and in vitro studies was satisfactory. CONCLUSIONS Oat intake was associated with the increase of beneficial bacterial groups in individuals without GI disease and those with CeD. Most studies showed no changes in GI symptoms with oat consumption. In vitro studies in CeD provide insight to oat-sensitive individuals and their GI mucosa, but the clinical studies remain limited, precluding our ability to draw firm conclusions. The prevalence of oat sensitivity in individuals with CeD should be further explored as this could improve clinical management and facilitate inclusion of oat in the diet for this population.
Collapse
Affiliation(s)
- Ezra Valido
- Swiss Paraplegic Research, Nottwil, Switzerland
- Department of Health Sciences, University of Lucerne, Lucerne, Switzerland
| | | | | | | | | | | | - Beatrice Minder
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland
| | - Stevan Stojic
- Department of Health Sciences, University of Lucerne, Lucerne, Switzerland
| | - Brandon Metzger
- Standard Process Nutrition Innovation Center, Kannapolis, NC, USA
| | - Weston Bussler
- Standard Process Nutrition Innovation Center, Kannapolis, NC, USA
| | - Taulant Muka
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland
| | - Hua Kern
- Standard Process Nutrition Innovation Center, Kannapolis, NC, USA
| | - Marija Glisic
- Swiss Paraplegic Research, Nottwil, Switzerland
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland
| |
Collapse
|
19
|
Ferreira RDS, Mendonça LABM, dos Santos C, Hiane PA, Matias R, Franco OL, de Oliveira AKM, do Nascimento VA, Pott A, Carvalho CME, Guimarães RDCA. Do Bioactive Food Compound with Avena sativa L., Linum usitatissimum L. and Glycine max L. Supplementation with Moringa oleifera Lam. Have a Role against Nutritional Disorders? An Overview of the In Vitro and In Vivo Evidence. Nutrients 2021; 13:2294. [PMID: 34371804 PMCID: PMC8308451 DOI: 10.3390/nu13072294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 02/08/2023] Open
Abstract
Functional clinical nutrition is an integrative science; it uses dietary strategies, functional foods and medicinal plants, as well as combinations thereof. Both functional foods and medicinal plants, whether associated or not, form nutraceuticals, which can bring benefits to health, in addition to being included in the prevention and treatment of diseases. Some functional food effects from Avena sativa L. (oats), Linum usitatissimum L. (brown flaxseed), Glycine max L. (soya) and Moringa oleifera have been proposed for nutritional disorders through in vitro and in vivo tests. A formulation called a bioactive food compound (BFC) showed efficiency in the association of oats, flaxseed and soy for dyslipidemia and obesity. In this review, we discuss the effects of BFC in other nutritional disorders, as well as the beneficial effects of M. oleifera in obesity, cardiovascular disease, diabetes mellitus type 2, metabolic syndrome, intestinal inflammatory diseases/colorectal carcinogenesis and malnutrition. In addition, we hypothesized that a BFC enriched with M. oleifera could present a synergistic effect and play a potential benefit in nutritional disorders. The traditional consumption of M. oleifera preparations can allow associations with other formulations, such as BFC. These nutraceutical formulations can be easily accepted and can be used in sweet preparations (fruit and/or vegetable juices, fruit and/or vegetable vitamins, porridges, yogurt, cream, mousses or fruit salads, cakes and cookies) or savory (vegetable purees, soups, broths and various sauces), cooked or not. These formulations can be low-cost and easy-to-use. The association of bioactive food substances in dietary formulations can facilitate adherence to consumption and, thus, contribute to the planning of future nutritional interventions for the prevention and adjuvant treatment of the clinical conditions presented in this study. This can be extended to the general population. However, an investigation through clinical studies is needed to prove applicability in humans.
Collapse
Affiliation(s)
- Rosângela dos Santos Ferreira
- Graduate Program in Biotechnology, S-Inova Biotech, Catholic University Dom Bosco-UCDB, Campo Grande 79117-010, MS, Brazil; (R.d.S.F.); (L.A.B.M.M.); (C.d.S.); (O.L.F.); (C.M.E.C.)
| | - Lígia Aurélio Bezerra Maranhão Mendonça
- Graduate Program in Biotechnology, S-Inova Biotech, Catholic University Dom Bosco-UCDB, Campo Grande 79117-010, MS, Brazil; (R.d.S.F.); (L.A.B.M.M.); (C.d.S.); (O.L.F.); (C.M.E.C.)
| | - Cristiane dos Santos
- Graduate Program in Biotechnology, S-Inova Biotech, Catholic University Dom Bosco-UCDB, Campo Grande 79117-010, MS, Brazil; (R.d.S.F.); (L.A.B.M.M.); (C.d.S.); (O.L.F.); (C.M.E.C.)
| | - Priscila Aiko Hiane
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul-UFMS, Campo Grande 79079-900, MS, Brazil; (P.A.H.); (V.A.d.N.)
| | - Rosemary Matias
- Graduate Program in Environment and Regional Development, University Anhanguera Uniderp, Campo Grande 79035-470, MS, Brazil; (R.M.); (A.K.M.d.O.)
| | - Octávio Luiz Franco
- Graduate Program in Biotechnology, S-Inova Biotech, Catholic University Dom Bosco-UCDB, Campo Grande 79117-010, MS, Brazil; (R.d.S.F.); (L.A.B.M.M.); (C.d.S.); (O.L.F.); (C.M.E.C.)
- Graduate Program in Genomic Sciences and Biotechnology, Center of Proteomic and Biochemical Analysis, Catholic University of Brazilia, Brasília 70790-160, DF, Brazil
| | - Ademir Kleber Morbeck de Oliveira
- Graduate Program in Environment and Regional Development, University Anhanguera Uniderp, Campo Grande 79035-470, MS, Brazil; (R.M.); (A.K.M.d.O.)
| | - Valter Aragão do Nascimento
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul-UFMS, Campo Grande 79079-900, MS, Brazil; (P.A.H.); (V.A.d.N.)
| | - Arnildo Pott
- Institute of Biosciences, Federal University of Mato Grosso do Sul-UFMS, Campo Grande 79079-900, MS, Brazil;
| | - Cristiano Marcelo Espinola Carvalho
- Graduate Program in Biotechnology, S-Inova Biotech, Catholic University Dom Bosco-UCDB, Campo Grande 79117-010, MS, Brazil; (R.d.S.F.); (L.A.B.M.M.); (C.d.S.); (O.L.F.); (C.M.E.C.)
| | - Rita de Cássia Avellaneda Guimarães
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul-UFMS, Campo Grande 79079-900, MS, Brazil; (P.A.H.); (V.A.d.N.)
| |
Collapse
|
20
|
Koo B, Nyachoti CM. Effect of oat particle size on energy and nutrient utilization in growing pigs. J Anim Sci 2021; 99:6262584. [PMID: 33939816 DOI: 10.1093/jas/skab134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/22/2021] [Indexed: 11/13/2022] Open
Abstract
An experiment was conducted to determine the energy content of oats and to investigate the effects of oat particle size on nutrient and energy balance in growing pigs. Eighteen barrows (23.56 ± 0.94 kg initial body weight) were randomly assigned to one of the three dietary treatments with six replicates per treatment. Whole oats were ground with a hammermill fitted with 4.8- and 3.2-mm screens to make coarse and medium particle size oats, respectively. Medium oats were further ground with a rotary steel cutting grinder fitted with a 2.0-mm screen, and the further ground oats were mixed with medium oats in a 1:3 ratio to make fine oats. Three experimental diets consisted of 96.3% of the coarse, medium, or fine oats as a sole source of energy were used. Pigs were fed diets for 16 d, including 10 d for adaptation and 6 d for total fecal and urine collection. Pigs were then moved into indirect calorimetry chambers to determine 24-h heat production and 12-h fasting heat production. All data were analyzed using the MIXED procedure of SAS with the individual pig as the experimental unit. The geometric mean particle sizes for coarse, medium, and fine oats were 765, 619, and 569 μm, respectively. Pigs fed the medium oats diet tended to have (P < 0.10) greater apparent total tract digestibility (ATTD) of starch, neutral detergent fiber, and gross energy than those fed coarse oats diet. The medium oats diet contained greater (P < 0.05) digestible energy (DE), metabolizable energy (ME), and net energy (NE) than the coarse oats diet. Pigs fed the fine oats diet had lower (P < 0.05) ATTD of Ca and P than those fed the coarse oats diet. The DE, ME, and NE contents of fine oats were comparable with those of coarse oats. The determined NE contents for coarse, medium, and fine oats were 2,335, 2,615, and 2,521 kcal/kg on a dry matter basis, respectively. The NE content in medium oats was greater (P < 0.05) than the NE values predicted using published equations. In conclusion, it was suggested to grind whole oats for 619 μm concerning energy utilization. Further grinding to 569 μm reduces Ca and P digestibility.
Collapse
Affiliation(s)
- Bonjin Koo
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | | |
Collapse
|
21
|
van Trijp MPH, Schutte S, Esser D, Wopereis S, Hoevenaars FPM, Hooiveld GJEJ, Afman LA. Minor Changes in the Composition and Function of the Gut Microbiota During a 12-Week Whole Grain Wheat or Refined Wheat Intervention Correlate with Liver Fat in Overweight and Obese Adults. J Nutr 2021; 151:491-502. [PMID: 33188417 PMCID: PMC7948209 DOI: 10.1093/jn/nxaa312] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/27/2020] [Accepted: 09/17/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Whole grain wheat (WGW) products are advocated as a healthy choice when compared with refined wheat (RW). One proposed mechanism for these health benefits is via the microbiota, because WGW contains multiple fibers. WGW consumption has been proposed to ameliorate nonalcoholic fatty liver disease, in which microbiota might play a role. OBJECTIVES We investigated the effect of WGW compared with RW intervention on the fecal microbiota composition and functionality, and correlated intervention-induced changes in bacteria with changes in liver health parameters in adults with overweight or obesity. METHODS We used data of a 12-wk double-blind, randomized, controlled, parallel trial to examine the effects of a WGW (98 g/d) or RW (98 g/d) intervention on the secondary outcomes fecal microbiota composition, predicted microbiota functionality, and stool consistency in 37 women and men (aged 45-70 y, BMI 25-35 kg/m2). The changes in microbiota composition, measured using 16S ribosomal RNA gene sequencing, after a 12-wk intervention were analyzed with nonparametric tests, and correlated with changes in liver fat and circulating concentrations of liver enzymes including alanine transaminase, aspartate transaminase, γ-glutamyltransferase, and serum amyloid A. RESULTS The WGW intervention increased the mean (± SD) relative abundances of Ruminococcaceae_UCG-014 (baseline: 2.2 ± 4.6%, differential change over time (Δ) 0.51 ± 4.2%), Ruminiclostridium_9 (baseline: 0.065 ± 0.11%, Δ 0.054 ± 0.14%), and Ruminococcaceae_NK4A214_group (baseline: 0.37 ± 0.56%, Δ 0.17 ± 0.83%), and also the predicted pathway acetyl-CoA fermentation to butyrate II (baseline: 0.23 ± 0.062%, Δ 0.035 ± 0.059%), compared with the RW intervention (P values <0.05). A change in Ruminococcaceae_NK4A214_group was positively correlated with the change in liver fat, in both the WGW (ρ = 0.54; P = 0.026) and RW (ρ = 0.67; P = 0.024) groups. CONCLUSIONS In middle-aged overweight and obese adults, a 12-wk WGW intervention increased the relative abundance of a number of bacterial taxa from the family Ruminococcaceae and increased predicted fermentation pathways when compared with an RW intervention. Potential protective health effects of replacement of RW by WGW on metabolic organs, such as the liver, via modulation of the microbiota, deserve further investigation.This trial was registered at clinicaltrials.gov as NCT02385149.
Collapse
Affiliation(s)
- Mara P H van Trijp
- Nutrition, Metabolism & Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Sophie Schutte
- Nutrition, Metabolism & Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Diederik Esser
- Nutrition, Metabolism & Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Suzan Wopereis
- TNO, Netherlands Organization for Applied Scientific Research, Zeist, The Netherlands
| | - Femke P M Hoevenaars
- TNO, Netherlands Organization for Applied Scientific Research, Zeist, The Netherlands
| | - Guido J E J Hooiveld
- Nutrition, Metabolism & Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Lydia A Afman
- Nutrition, Metabolism & Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
22
|
Shi Z, Zhu Y, Teng C, Yao Y, Ren G, Richel A. Anti-obesity effects of α-amylase inhibitor enriched-extract from white common beans (Phaseolus vulgaris L.) associated with the modulation of gut microbiota composition in high-fat diet-induced obese rats. Food Funct 2020; 11:1624-1634. [PMID: 32022058 DOI: 10.1039/c9fo01813a] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
α-Amylase inhibitors (α-AI) have great potential to treat obesity. In this study, an α-AI enriched extract (α-AIE) with a specific activity of 1027.1 ± 154.2 (U per mg protein) was prepared from white common bean (Phaseolus vulgaris L.) seeds. Its anti-obesity effect and gut microbiota modulation properties were verified in high-fat diet-induced obese rats. The intake of the α-AIE significantly reduced body weight gain and improved serum lipid levels (p < 0.05). In addition, rats fed the α-AIE diet exhibited higher total short-chain fatty-acid (SCFA) concentrations (p < 0.05) in their colonic contents. β-Diversity analysis, principal component analysis and a Venn diagram showed that α-AIE administration changed the gut microbiota composition. At the phylum level, the relative abundances of Firmicutes and Proteobacteria decreased and the relative abundances of Bacteroidetes and Akkermansia increased. In addition, 89 operational taxonomic units (OTUs) significantly responding to the high-fat diet and 30 OTUs significantly responding to the α-AIE were identified. The OTUs enriched by the α-AIE were mainly assigned to putative SCFA-producing bacteria, including Bacteroides, Butyricoccus, Blautia and Eubacterium. Twenty-two OTUs were found to be significantly correlated with obesity indexes. Taken together, the present results suggest that the intake of the α-AIE attenuated obesity and modulated gut microbiota.
Collapse
Affiliation(s)
- Zhenxing Shi
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), 80 South Xueyuan Road, Haidian, Beijing 100081, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
23
|
Korczak R, Kocher M, Swanson KS. Effects of oats on gastrointestinal health as assessed by in vitro, animal, and human studies. Nutr Rev 2020; 78:343-363. [PMID: 31638148 DOI: 10.1093/nutrit/nuz064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Oats are uniquely nutritious, owing to their composition of bioactive compounds, lipids, and β-glucan. Scientific research has established that oats can improve diet quality, reduce cholesterol, regulate satiety, and protect against carcinogenesis in the colon; however, determining the effects of oats on gastrointestinal health and the gut microbiome is a newer, evolving area of research. To better understand the effects of oats on gastrointestinal health in humans, a literature review with predefined search criteria was conducted using the PubMed database and keywords for common gastrointestinal health outcomes. Moreover, to examine the gastrointestinal effects of oats across the scientific spectrum, a similar search strategy was executed to identify animal studies. In vitro studies were identified from the reference lists of human and animal studies. A total of 8 human studies, 19 animal studies, and 5 in vitro studies met the inclusion criteria for this review. The evidence in humans shows beneficial effects of oats on gastrointestinal health, with supportive evidence provided by in vitro and animal studies. The effective dose of oats varies by type, although an amount providing 2.5 to 2.9 g of β-glucan per day was shown to decrease fecal pH and alter fecal bacteria. For oat bran, 40 to 100 g/d was shown to increase fecal bacterial mass and short-chain fatty acids in humans. Differences in study design, methodology, and type of oats tested make valid comparisons difficult. The identification of best practices for the design of oat studies should be a priority in future research, as the findings will be useful for determining how oats influence specific indices of gastrointestinal health, including the composition of the human gut microbiome.
Collapse
Affiliation(s)
- Renee Korczak
- Department of Food Science and Nutrition, University of Minnesota, St Paul, Minnesota, USA
| | - Megan Kocher
- University of Minnesota Libraries, St Paul, Minnesota, USA
| | - Kelly S Swanson
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
24
|
Campanella A, Iacovazzi PA, Misciagna G, Bonfiglio C, Mirizzi A, Franco I, Bianco A, Sorino P, Caruso MG, Cisternino AM, Buongiorno C, Liuzzi R, Osella AR. The Effect of Three Mediterranean Diets on Remnant Cholesterol and Non-Alcoholic Fatty Liver Disease: A Secondary Analysis. Nutrients 2020; 12:E1674. [PMID: 32512752 PMCID: PMC7352824 DOI: 10.3390/nu12061674] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 06/02/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Elevated fasting remnant cholesterol (REM-C) levels have been associated with an increased cardiovascular risk in patients with metabolic syndrome (Mets) and Non-Alcoholic Fatty Liver Disease (NAFLD). We aimed to estimate the effect of different diets on REM-C levels in patients with MetS, as well as the association between NAFLD and REM-C. METHODS This is a secondary analysis of the MEDIDIET study, a parallel-arm Randomized Clinical Trial (RCT). We examined 237 people with MetS who underwent Liver Ultrasound (LUS) to assess the NAFLD score at baseline, 3-, and 6-months follow-up. Subjects were randomly assigned to the Mediterranean diet (MD), Low Glycemic Index diet (LGID), or Low Glycemic Index Mediterranean diet (LGIMD). REM-C was calculated as [total cholesterol-low density lipoprotein cholesterol (LDL-C)-high density lipoprotein cholesterol (HDL-C)]. RESULTS REM-C levels were higher in subjects with moderate or severe NAFLD than in mild or absent ones. All diets had a direct effect in lowering the levels of REM-C after 3 and 6 months of intervention. In adherents subjects, this effect was stronger among LGIMD as compared to the control group. There was also a significant increase in REM-C levels among Severe NAFLD subjects at 3 months and a decrease at 6 months. CONCLUSIONS fasting REM-C level is independently associated with the grade of severity of NAFLD. LGIMD adherence directly reduced the fasting REM-C in patients with MetS.
Collapse
Affiliation(s)
- Angelo Campanella
- Laboratory of Epidemiology and Biostatistics, National Institute of Gastroenterology, “S. de Bellis” Research Hospital, Castellana Grotte (Bari), Via Turi 27, 70013 Castellana Grotte, Italy; (A.C.); (C.B.); (A.M.); (I.F.); (A.B.); (P.S.); (C.B.); (R.L.)
| | - Palma A. Iacovazzi
- Department of Clinical Pathology, National Institute of Gastroenterology, “S. de Bellis” Research Hospital, Castellana Grotte (Bari), Via Turi 27, 70013 Castellana Grotte, Italy;
| | - Giovanni Misciagna
- Scientific and Ethical Committee, University Hospital Policlinico, 70124 Bari, Italy;
| | - Caterina Bonfiglio
- Laboratory of Epidemiology and Biostatistics, National Institute of Gastroenterology, “S. de Bellis” Research Hospital, Castellana Grotte (Bari), Via Turi 27, 70013 Castellana Grotte, Italy; (A.C.); (C.B.); (A.M.); (I.F.); (A.B.); (P.S.); (C.B.); (R.L.)
| | - Antonella Mirizzi
- Laboratory of Epidemiology and Biostatistics, National Institute of Gastroenterology, “S. de Bellis” Research Hospital, Castellana Grotte (Bari), Via Turi 27, 70013 Castellana Grotte, Italy; (A.C.); (C.B.); (A.M.); (I.F.); (A.B.); (P.S.); (C.B.); (R.L.)
| | - Isabella Franco
- Laboratory of Epidemiology and Biostatistics, National Institute of Gastroenterology, “S. de Bellis” Research Hospital, Castellana Grotte (Bari), Via Turi 27, 70013 Castellana Grotte, Italy; (A.C.); (C.B.); (A.M.); (I.F.); (A.B.); (P.S.); (C.B.); (R.L.)
| | - Antonella Bianco
- Laboratory of Epidemiology and Biostatistics, National Institute of Gastroenterology, “S. de Bellis” Research Hospital, Castellana Grotte (Bari), Via Turi 27, 70013 Castellana Grotte, Italy; (A.C.); (C.B.); (A.M.); (I.F.); (A.B.); (P.S.); (C.B.); (R.L.)
| | - Paolo Sorino
- Laboratory of Epidemiology and Biostatistics, National Institute of Gastroenterology, “S. de Bellis” Research Hospital, Castellana Grotte (Bari), Via Turi 27, 70013 Castellana Grotte, Italy; (A.C.); (C.B.); (A.M.); (I.F.); (A.B.); (P.S.); (C.B.); (R.L.)
| | - Maria G. Caruso
- Ambulatory of Clinical Nutrition, National Institute of Gastroenterology, “S. de Bellis” Research Hospital, Castellana Grotte (Bari), Via Turi 27, 70013 Castellana Grotte, Italy; (M.G.C.); (A.M.C.)
| | - Anna M. Cisternino
- Ambulatory of Clinical Nutrition, National Institute of Gastroenterology, “S. de Bellis” Research Hospital, Castellana Grotte (Bari), Via Turi 27, 70013 Castellana Grotte, Italy; (M.G.C.); (A.M.C.)
| | - Claudia Buongiorno
- Laboratory of Epidemiology and Biostatistics, National Institute of Gastroenterology, “S. de Bellis” Research Hospital, Castellana Grotte (Bari), Via Turi 27, 70013 Castellana Grotte, Italy; (A.C.); (C.B.); (A.M.); (I.F.); (A.B.); (P.S.); (C.B.); (R.L.)
| | - Rosalba Liuzzi
- Laboratory of Epidemiology and Biostatistics, National Institute of Gastroenterology, “S. de Bellis” Research Hospital, Castellana Grotte (Bari), Via Turi 27, 70013 Castellana Grotte, Italy; (A.C.); (C.B.); (A.M.); (I.F.); (A.B.); (P.S.); (C.B.); (R.L.)
| | - Alberto R. Osella
- Laboratory of Epidemiology and Biostatistics, National Institute of Gastroenterology, “S. de Bellis” Research Hospital, Castellana Grotte (Bari), Via Turi 27, 70013 Castellana Grotte, Italy; (A.C.); (C.B.); (A.M.); (I.F.); (A.B.); (P.S.); (C.B.); (R.L.)
| |
Collapse
|
25
|
Storz MA, Küster O. Hypocaloric, plant-based oatmeal interventions in the treatment of poorly-controlled type 2 diabetes: A review. Nutr Health 2019; 25:281-290. [PMID: 31500515 DOI: 10.1177/0260106019874683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
BACKGROUND Lifestyle interventions, including dietary modifications, play a key role in the treatment of type 2 diabetes. By the second half of the last century, dietary oatmeal interventions had frequently been used in patients with diabetes; however, with the widespread introduction of insulin, this practice gradually fell into disuse. Within the last decades, the original oatmeal intervention, first described in 1903, has been modified towards a hypocaloric, low-fat, and plant-based intervention. AIM The aim of this review was to investigate the current role of these adapted short-term dietary oatmeal interventions in the treatment of patients suffering from poorly-controlled type 2 diabetes. A special focus was put on opportunities for and barriers to its clinical implementation and its potential mechanisms of action. METHODS The electronic databases of PubMed and Google Scholar were searched using the keywords "oat," "oats," "oatmeal," and "diabetes." RESULTS While there are a limited number of clinical studies including hypocaloric short-term dietary oatmeal interventions, there is evidence that these interventions may lead to a significant decrease in mean blood glucose levels and a significant reduction of insulin dosage in patients suffering from poorly-controlled type 2 diabetes. CONCLUSION Modified short-term dietary oatmeal interventions are an effective and economical tool in the treatment of patients suffering from poorly-controlled type 2 diabetes.
Collapse
Affiliation(s)
- Maximilian Andreas Storz
- Department of Internal Medicine and Gastroenterology, Die Filderklinik, Filderstadt-Bonlanden, Germany
| | - Onno Küster
- Department of Internal Medicine and Gastroenterology, Die Filderklinik, Filderstadt-Bonlanden, Germany
| |
Collapse
|
26
|
Joyce SA, Kamil A, Fleige L, Gahan CGM. The Cholesterol-Lowering Effect of Oats and Oat Beta Glucan: Modes of Action and Potential Role of Bile Acids and the Microbiome. Front Nutr 2019; 6:171. [PMID: 31828074 PMCID: PMC6892284 DOI: 10.3389/fnut.2019.00171] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 10/23/2019] [Indexed: 12/13/2022] Open
Abstract
Consumption of sufficient quantities of oat products has been shown to reduce host cholesterol and thereby modulate cardiovascular disease risk. The effects are proposed to be mediated by the gel-forming properties of oat β-glucan which modulates host bile acid and cholesterol metabolism and potentially removes intestinal cholesterol for excretion. However, the gut microbiota has emerged as a major factor regulating cholesterol metabolism in the host. Oat β-glucan has been shown to modulate the gut microbiota, particularly those bacterial species that influence host bile acid metabolism and production of short chain fatty acids, factors which are regulators of host cholesterol homeostasis. Given a significant role for the gut microbiota in cholesterol metabolism it is likely that the effects of oat β-glucan on the host are multifaceted and involve regulation of microbe-host interactions at the gut interface. Here we consider the potential for oat β-glucan to influence microbial populations in the gut with potential consequences for bile acid metabolism, reverse cholesterol transport (RCT), short-chain fatty acid (SCFA) production, bacterial metabolism of cholesterol and microbe-host signaling.
Collapse
Affiliation(s)
- Susan A Joyce
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Alison Kamil
- Quaker Oats Center of Excellence, PepsiCo R&D Nutrition, Barrington, IL, United States
| | - Lisa Fleige
- Quaker Oats Center of Excellence, PepsiCo R&D Nutrition, Barrington, IL, United States
| | - Cormac G M Gahan
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland.,School of Pharmacy, University College Cork, Cork, Ireland
| |
Collapse
|
27
|
Infant Cereals: Current Status, Challenges, and Future Opportunities for Whole Grains. Nutrients 2019; 11:nu11020473. [PMID: 30813426 PMCID: PMC6412837 DOI: 10.3390/nu11020473] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/18/2019] [Accepted: 02/20/2019] [Indexed: 12/13/2022] Open
Abstract
Infant cereals play an important role in the complementary feeding period. The aim of this study was to review existing research about the quantity, type, and degree of infant cereal processing, with a special focus on whole grain infant cereals. Accumulating evidence shows many benefits of whole grain consumption for human health. Likewise, consumers are frequently linking the term whole grains to healthiness and naturality, and sustainable food production becomes a more important aspect when choosing an infant cereal brand. Whole grain cereals should be consumed as early as possible, i.e., during infancy. However, there are several challenges that food manufacturers are facing that need to be addressed. Recommendations are needed for the intake of whole grain cereals for infants and young children, including product-labeling guidelines for whole grain foods targeting these age stages. Another challenge is minimizing the higher contaminant content in whole grains, as well as those formed during processing. Yet, the greatest challenge may be to drive consumers' acceptance, including taste. The complementary feeding period is absolutely key in shaping the infant's food preferences and habits; therefore, it is the appropriate stage in life at which to introduce whole grain cereals for the acceptance of whole grains across the entire lifespan.
Collapse
|
28
|
Zaslavsky O, Zelber-Sagi S, Shikany JM, Orchard T, Wallace R, Snetselaar L, Tinker L. Anatomy of the Mediterranean Diet and Mortality Among Older Women with Frailty. J Nutr Gerontol Geriatr 2018; 37:269-281. [PMID: 30118645 DOI: 10.1080/21551197.2018.1496217] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
We examined individual components of the Mediterranean Diet (Med) and evaluated their relative contribution to mortality rates in older women with frailty. A sample (N = 10,431) included Women's Health Initiative Observational Study participants aged 65-84 y with complete frailty diagnostic criteria and dietary data. Frailty was assessed with modified Fried's criteria, and dietary data were collected through food frequency questionnaire. Over a mean follow-up of 12.4 y (range 3-21.0), 3,259 (31.2%) deaths occurred. Crude death rates demonstrated a decrease in mortality with higher intake of individual Med components. However, in the mutually adjusted models, most Med components on their own were not significantly associated with mortality. Exceptions were vegetables, nuts, and whole grains. A higher intake of vegetables, nuts, and whole grains were associated with a significantly decreased hazard of mortality, by 9% (P = 0.02), 13% (P < 0.001), and 17% (P < 0.001), respectively. The relative contribution of these components to diet mortality associations were 21%, 42%, and 57% for vegetables, nuts, and whole grains, respectively. Subgroup analyses by chronic morbidity, smoking status, or excluding women with early death did not substantially change these results.
Collapse
Affiliation(s)
- Oleg Zaslavsky
- a School of Nursing , University of Washington , Seattle , Washington, USA
| | - Shira Zelber-Sagi
- b Faculty of Health Science and Social Welfare , University of Haifa , Haifa , Israel
| | - James M Shikany
- c Division of Preventive Medicine , University of Alabama , Birmingham , Alabama , USA
| | - Tonya Orchard
- d College of Education and Human Ecology , Ohio State University , Columbus , Ohio USA
| | - Robert Wallace
- e College of Public Health , University of Iowa , Iowa City , Iowa , USA
| | - Linda Snetselaar
- e College of Public Health , University of Iowa , Iowa City , Iowa , USA
| | - Lesley Tinker
- f Public Health Sciences , Fred Hutchinson Cancer Research Center , Seattle , Washington , USA
| |
Collapse
|
29
|
Han F, Wang Y, Han Y, Zhao J, Han F, Song G, Jiang P, Miao H. Effects of Whole-Grain Rice and Wheat on Composition of Gut Microbiota and Short-Chain Fatty Acids in Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:6326-6335. [PMID: 29766722 DOI: 10.1021/acs.jafc.8b01891] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Diets rich in whole grain (WG) cereals bring lower disease risks compared with refined grain-based diets. We investigated the effects of polished rice (PR), refined wheat (RW), unpolished rice (UPR), and whole wheat (WW) on short-chain fatty acids (SCFAs) and gut microbiota in ileal, cecal, and colonic digesta of normal rats. Animals fed with UPR and WW diets exhibited higher total SCFA in cecal and colonic digesta compared with those fed with PR and RW diets. Wheat diets contributed higher total SCFA than rice diets. In cecal and colonic digesta, animals fed with UPR and WW diets demonstrated higher acetate and butyrate contents than those given PR and RW. Firmicutes were the dominant eumycota in rat ileum digesta (>92% abundance). Cecal and colonic digesta were dominated by Firmicutes, Verrucomicrobia, and Bacteroidetes. UPR and WW affected gut microbiota, decreasing the proportion of Firmicutes to Bacteroidetes. SMB53, Lactobacillus, and Faecalibacterium were the main bacterial genera in ileal digesta. Akkermansia was highest in cecal and colonic digesta. In the colonic digesta of rats, the relative abundance of Akkermansia in rats on wheat diets was higher than that in rats on rice diets ( P < 0.05). Thus, UPR and WW could modulate gut microbiota composition and increase the SCFA concentration. Wheat diet was superior to rice diet in terms of intestinal microbiota adjustment.
Collapse
Affiliation(s)
- Fei Han
- Academy of State Administration of Grain , Beijing 100037 , People's Republic of China
| | - Yong Wang
- Academy of State Administration of Grain , Beijing 100037 , People's Republic of China
| | - Yangyang Han
- Academy of State Administration of Grain , Beijing 100037 , People's Republic of China
- School of Food Science & Technology , Jiangnan University , Wuxi , Jiangsu 214122 , People's Republic of China
| | - Jianxin Zhao
- School of Food Science & Technology , Jiangnan University , Wuxi , Jiangsu 214122 , People's Republic of China
| | - Fenli Han
- Academy of State Administration of Grain , Beijing 100037 , People's Republic of China
- School of Food Science & Technology , Jiangnan University , Wuxi , Jiangsu 214122 , People's Republic of China
| | - Ge Song
- Academy of State Administration of Grain , Beijing 100037 , People's Republic of China
| | - Ping Jiang
- Academy of State Administration of Grain , Beijing 100037 , People's Republic of China
| | - Haijiang Miao
- Academy of State Administration of Grain , Beijing 100037 , People's Republic of China
| |
Collapse
|
30
|
Zelber-Sagi S, Salomone F, Mlynarsky L. The Mediterranean dietary pattern as the diet of choice for non-alcoholic fatty liver disease: Evidence and plausible mechanisms. Liver Int 2017; 37:936-949. [PMID: 28371239 DOI: 10.1111/liv.13435] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 03/22/2017] [Indexed: 12/11/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become a major global health burden, leading to increased risk for cirrhosis, hepatocellular carcinoma, type-2 diabetes and cardiovascular disease. Lifestyle intervention aiming at weight reduction is the most established treatment. However, changing the dietary composition even without weight loss can also reduce steatosis and improve metabolic alterations as insulin resistance and lipid profile. The Mediterranean diet (MD) pattern has been proposed as appropriate for this goal, and was recommended as the diet of choice for the treatment of NAFLD by the EASL-EASD-EASO Clinical Practice Guidelines. The MD has an established superiority in long term weight reduction over low fat diet, but it improves metabolic status and steatosis even without it. However, the effect on liver inflammation and fibrosis was tested only in few observational studies with positive results. Furthermore, considering the strong association between NAFLD and diabetes and CVD, the MD has a highly established advantage in prevention of these diseases, demonstrated in randomized clinical trials. The individual components of the MD such as olive oil, fish, nuts, whole grains, fruits, and vegetables, have been shown to beneficially effect or negatively correlate with NAFLD, while consumption of components that characterize a Western dietary pattern as soft drinks, fructose, meat and saturated fatty acids have been shown to have detrimental association with NAFLD. In this review we will cover the epidemiological evidence and the plausible molecular mechanisms by which the MD as a whole and each of its components can be of benefit in NAFLD.
Collapse
Affiliation(s)
- Shira Zelber-Sagi
- School of Public Health, University of Haifa, Haifa, Israel.,Liver Unit, Department of Gastroenterology, Tel Aviv Medical Center, Tel-Aviv, Israel
| | - Federico Salomone
- Division of Gastroenterology, Ospedale di Acireale, Azienda Sanitaria Provinciale di Catania, Catania, Italy
| | - Liat Mlynarsky
- Liver Unit, Department of Gastroenterology, Tel Aviv Medical Center, Tel-Aviv, Israel.,The Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
31
|
Sang S, Chu Y. Whole grain oats, more than just a fiber: Role of unique phytochemicals. Mol Nutr Food Res 2017; 61. [PMID: 28067025 DOI: 10.1002/mnfr.201600715] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/11/2016] [Accepted: 12/30/2016] [Indexed: 11/12/2022]
Abstract
Oats are a good source of soluble dietary fiber, especially β-glucan, which has outstanding functional and nutritional properties. β-Glucan is considered to be the major active component of oats because of its cholesterol-lowering and antidiabetic effects. However, the nutritional benefits of oats appear to go beyond fiber to bioactive phytochemicals with strong antioxidant and anti-inflammatory effects. In this review, we summarize current knowledge on the chemistry, stability, bioavailability, and health effects of two unique phytochemicals in oats, avenanthramides, and avenacosides A and B. We conclude that studies on the beneficial effects of avenanthramides and avenacosides A and B are still in their infancy, and additional health benefits of these unique oat components may yet be identified.
Collapse
Affiliation(s)
- Shengmin Sang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, Kannapolis, NC, USA
| | - YiFang Chu
- Quaker Oats Center of Excellence, PepsiCo R&D Nutrition, Barrington, IL, USA
| |
Collapse
|
32
|
Norin E, Engstrand L, Hellström P, Martin Marais L, Midtvedt T, Möllby R, Ernberg I. FIBFLO – a study design for comparing the effects of diets on the microbiome and its metabolism: β-glucan or not? MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2017. [PMCID: PMC5445632 DOI: 10.1080/16512235.2017.1281946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- E. Norin
- The FIBFLO-Group, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - L. Engstrand
- The FIBFLO-Group, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - P. Hellström
- The FIBFLO-Group, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Department of gastroenterology & hepatology, Akademiska Hospital, Uppsala, Sweden
| | - L. Martin Marais
- The FIBFLO-Group, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Lantmännen, Stockholm, Sweden
| | - T. Midtvedt
- The FIBFLO-Group, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - R. Möllby
- The FIBFLO-Group, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - I. Ernberg
- The FIBFLO-Group, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
33
|
Huang H, Krishnan HB, Pham Q, Yu LL, Wang TTY. Soy and Gut Microbiota: Interaction and Implication for Human Health. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:8695-8709. [PMID: 27798832 DOI: 10.1021/acs.jafc.6b03725] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Soy (Glycine max) is a major commodity in the United States, and soy foods are gaining popularity due to their reported health-promoting effects. In the past two decades, soy and soy bioactive components have been studied for their health-promoting/disease-preventing activities and potential mechanisms of action. Recent studies have identified gut microbiota as an important component in the human body ecosystem and possibly a critical modulator of human health. Soy foods' interaction with the gut microbiota may critically influence many aspects of human development, physiology, immunity, and nutrition at different stages of life. This review summarizes current knowledge on the effects of soy foods and soy components on gut microbiota population and composition. It was found, although results vary in different studies, in general, both animal and human studies have shown that consumption of soy foods can increase the levels of bifidobacteria and lactobacilli and alter the ratio between Firmicutes and Bacteroidetes. These changes in microbiota are consistent with reported reductions in pathogenic bacteria populations in the gut, thereby lowering the risk of diseases and leading to beneficial effects on human health.
Collapse
Affiliation(s)
- Haiqiu Huang
- Diet, Genomics and Immunology Laboratory, U.S. Department of Agriculture-Agricultural Research Service , Beltsville, Maryland 20705, United States
| | - Hari B Krishnan
- Plant Genetics Research Unit, U.S. Department of Agriculture-Agricultural Research Service, University of Missouri , Columbia, Missouri 65211, United States
| | - Quynhchi Pham
- Diet, Genomics and Immunology Laboratory, U.S. Department of Agriculture-Agricultural Research Service , Beltsville, Maryland 20705, United States
| | - Liangli Lucy Yu
- Department of Nutrition and Food Science, University of Maryland , College Park, Maryland 20742, United States
| | - Thomas T Y Wang
- Diet, Genomics and Immunology Laboratory, U.S. Department of Agriculture-Agricultural Research Service , Beltsville, Maryland 20705, United States
| |
Collapse
|
34
|
Providing evidence to support the development of whole grain dietary recommendations in the United Kingdom. Proc Nutr Soc 2016; 76:369-377. [PMID: 27766990 DOI: 10.1017/s0029665116000793] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Observational evidence suggests that increased whole grain (WG) intake reduces the risks of many non-communicable diseases, such as CVD, type 2 diabetes, obesity and certain cancers. More recently, studies have shown that WG intake lowers all-cause and cause-specific mortality. Much of the reported evidence on risk reduction is from US and Scandinavian populations, where there are tangible WG dietary recommendations. At present there is no quantity-specific WG dietary recommendation in the UK, instead we are advised to choose WG or higher fibre versions. Despite recognition of WG as an important component of a healthy diet, monitoring of WG intake in the UK has been poor, with the latest intake assessment from data collected in 2000-2001 for adults and in 1997 for children. To update this information we examined WG intake in the National Diet and Nutrition Survey rolling programme 2008-2011 after developing our database of WG food composition, a key resource in determining WG intake accurately. The results showed median WG intakes remain low in both adults and children and below that of countries with quantity-specific guidance. We also found a reduction in C-reactive protein concentrations and leucocyte counts with increased WG intake, although no association with other markers of cardio-metabolic health. The recent recommendations by the UK Scientific Advisory Committee on Nutrition to increase dietary fibre intake will require a greater emphasis on consuming more WG. Specific recommendations on WG intake in the UK are warranted as is the development of public health policy to promote consumption of these important foods.
Collapse
|
35
|
Abstract
Although many studies have demonstrated that components of the hemostatic system may be involved in signaling leading to cancer progression, the potential mechanisms by which they contribute to cancer dissemination are not yet precisely understood. Among known coagulant factors, tissue factor (TF) and thrombin play a pivotal role in cancer invasion. They may be generated in the tumor microenvironment independently of blood coagulation and can induce cell signaling through activation of protease-activated receptors (PARs). PARs are transmembrane G-protein-coupled receptors (GPCRs) that are activated by a unique proteolytic mechanism. They play important roles in vascular physiology, neural tube closure, hemostasis, and inflammation. All of these agents (TF, thrombin, PARs—mainly PAR-1 and PAR-2) are thought to promote cancer invasion and metastasis at least in part by facilitating tumor cell migration, angiogenesis, and interactions with host vascular cells, including platelets, fibroblasts, and endothelial cells lining blood vessels. Here, we discuss the role of PARs and their activators in cancer progression, focusing on TF- and thrombin-mediated actions. Therapeutic options tailored specifically to inhibit PAR-induced signaling in cancer patients are presented as well.
Collapse
|
36
|
Li X, Cai X, Ma X, Jing L, Gu J, Bao L, Li J, Xu M, Zhang Z, Li Y. Short- and Long-Term Effects of Wholegrain Oat Intake on Weight Management and Glucolipid Metabolism in Overweight Type-2 Diabetics: A Randomized Control Trial. Nutrients 2016; 8:nu8090549. [PMID: 27618090 PMCID: PMC5037534 DOI: 10.3390/nu8090549] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/29/2016] [Accepted: 09/01/2016] [Indexed: 12/23/2022] Open
Abstract
Glycemic control and weight reduction are primary goals for the management of overweight and obese type 2 diabetes mellitus (T2DM). Effective management cannot be achieved without an appropriate diet. Our study aimed to evaluate the short- and long-term effects of oat intake and develop a reasonable dietary plan for overweight T2DM patients. A randomized control trial, registered under ClinicalTrials.gov (Identification code: NCT01495052), was carried out among adult T2DM patients. A subgroup of 298 overweight subjects was selected and received a 30-day centralized intervention and 1-year free-living follow-up. Participants were randomly allocated to one of the following four groups. The usual care group (n = 60) received no intervention; the healthy diet group (n = 79) received a low-fat and high-fiber diet (“healthy diet”); the 50 g-oats group (n = 80) and 100 g-oats group (n = 79) received the “healthy diet” with the same amount of cereals replaced by 50 g and 100 g oats respectively. Anthropometric, blood glycemic and lipid variables were measured. For the 30-day intervention, significant differences in the changes of FPG (fasting plasma glucose), PPG (postprandial plasma glucose), HbA1c (glycosylated hemoglobin), HOMA-IR (homeostasis model assessment of insulin resistance), TC (total cholesterol), TG (total triglycerides), and LDL-c (low-density lipoprotein cholesterol) were observed among the four groups. Compared to the healthy diet group, the 50 g-oats group had a bigger reduction in PPG (mean difference (MD): −1.04 mmol/L; 95% CI: −2.03, −0.05) and TC (MD: −0.24 mmol/L; 95% CI: −0.47, −0.01); the 100 g-oats group had a bigger reduction in PPG (MD: −1.48 mmol/L; 95% CI: −2.57, −0.39), HOMA-IR (MD: −1.77 mU·mol/L2; 95% CI: −3.49, −0.05), TC (MD: −0.33 mmol/L; 95% CI: −0.56, −0.10) and LDL-c (MD: −0.22 mmol/L; 95% CI: −0.41, −0.03). In the 1-year follow-up, greater effects in reducing weight (MD: −0.89 kg; 95% CI: −1.56, −0.22), HbA1c (MD: −0.64%; 95% CI: −1.19, −0.09) and TG (MD: −0.70 mmol/L; 95% CI: −1.11, −0.29) were observed in the 100 g-oats group. In conclusion, short- and long-term oat intake had significant effects on controlling hyperglycemia, lowering blood lipid and reducing weight. Our study provided some supportive evidence for recommending oat as a good whole grain selection for overweight diabetics.
Collapse
Affiliation(s)
- Xue Li
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China.
- Centre for Population Health Sciences, University of Edinburgh, Edinburgh EH8 9AG, UK.
| | - Xiaxia Cai
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China.
- Department of Nutrition and Food Hygiene, School of Public Health, Capital Medical University, Beijing 100191, China.
| | - Xiaotao Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China.
- Department of Clinical Nutrition, China-Japan Friendship Hospital, Peking University, Beijing 100191, China.
| | - Lulu Jing
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China.
| | - Jiaojiao Gu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China.
| | - Lei Bao
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China.
- Department of Clinical Nutrition, International Hospital, Peking University, Beijing 100191, China.
| | - Jun Li
- The 153 Hospital of People's Liberation Army, Zhengzhou 450001, China.
| | - Meihong Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China.
| | - Zhaofeng Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China.
| | - Yong Li
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China.
| |
Collapse
|
37
|
Diets containing different fermentable substrates can affect mucosal and systemic immune parameters in rats under homeostatic conditions. J Funct Foods 2016. [DOI: 10.1016/j.jff.2015.11.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
38
|
van den Broeck HC, Londono DM, Timmer R, Smulders MJM, Gilissen LJWJ, van der Meer IM. Profiling of Nutritional and Health-Related Compounds in Oat Varieties. Foods 2015; 5:foods5010002. [PMID: 28231097 PMCID: PMC5224580 DOI: 10.3390/foods5010002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 12/14/2015] [Accepted: 12/17/2015] [Indexed: 11/16/2022] Open
Abstract
The use of oats in the human diet has decreased over the past 70 years. This is an unfortunate development from the perspective of human health because oats have a high nutritional value and contain many compounds, including β-glucan, polyphenols, vitamins, and unsaturated fatty acids that are able to maintain or may even improve consumer’s health. In addition, oats fit into a gluten-free diet of celiac disease patients because they lack the T-cell stimulating epitopes from wheat, rye, and barley. We focused on the presence of health-related compounds in oats and how their levels vary among varieties in response to the type of soil. Ten oat varieties were grown in the Netherlands in sandy and clay soil and were analyzed for the presence and concentration of healthy compounds (β-glucan, fatty acids, vitamin E, and antioxidant activity), avenin composition, total protein and starch content, and agronomical characteristics. Principal component analysis showed that genetic background influenced the levels of all analyzed components. Protein, starch, β-glucan, and antioxidants were also affected by the type of soil. The obtained results showed that this kind of analysis can be used to profile oat varieties in general and enables the selection of specific varieties with specific compound characteristics.
Collapse
Affiliation(s)
- Hetty C van den Broeck
- Wageningen University & Research Centre, Plant Research International, P.O. Box 16, 6700 AA Wageningen, The Netherlands.
| | - Diana M Londono
- Wageningen University & Research Centre, Plant Research International, P.O. Box 16, 6700 AA Wageningen, The Netherlands.
| | - Ruud Timmer
- Wageningen University & Research Centre, Applied Plant Research, P.O. Box 430, 8200 AK Lelystad, The Netherlands.
| | - Marinus J M Smulders
- Wageningen University & Research Centre, Plant Research International, P.O. Box 16, 6700 AA Wageningen, The Netherlands.
| | - Ludovicus J W J Gilissen
- Wageningen University & Research Centre, Plant Research International, P.O. Box 16, 6700 AA Wageningen, The Netherlands.
| | - Ingrid M van der Meer
- Wageningen University & Research Centre, Plant Research International, P.O. Box 16, 6700 AA Wageningen, The Netherlands.
| |
Collapse
|
39
|
Abstract
Oatmeal porridge has been consumed for centuries and has several health benefits. We aimed to investigate the effect of oatmeal porridge on gut microflora functions. A total of ten healthy subjects ingested 60 g oatmeal porridge daily for 1 week. The following microflora-associated characteristics were assessed before and after the intervention: intestinal gas production following lactulose ingestion, faecal excretion of SCFA and faecal levels of urease and β-galactosidase. In addition, rectal levels of PGE2 were measured. Microbial fermentation as evaluated by intestinal gas production and excretion of SCFA did not change significantly following the dietary intervention. However, faecal levels of β-galactosidase and urease decreased after eating oatmeal porridge (P=0·049 and 0·031, respectively). Host inflammatory state, as measured by rectal levels of PGE2, also decreased, but the change was not significant (P=0·168). The results suggest that oatmeal porridge has an effect on gut microbial functions and may possess potential prebiotic properties that deserve to be investigated further.
Collapse
|
40
|
Ben Halima N, Ben Saad R, Khemakhem B, Fendri I, Abdelkafi S. Oat (Avena sativa L.): Oil and Nutriment Compounds Valorization for Potential Use in Industrial Applications. J Oleo Sci 2015; 64:915-32. [PMID: 26250424 DOI: 10.5650/jos.ess15074] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Oat is a promising plant for the future. It is edible and beneficial thanks to its nutritional, medicinal and pharmaceutical uses and, hence, recognized to be useful for a healthier world. The assessment of the vital functions of oat components is important for industries requiring correct health labelling, valid during the shelf life of any product. Oil, enzymes and other biomolecules of nutraceutic or dietary usage from oats would be valorized for this purpose. Although oats have a unique and versatile composition including antioxidants and biomolecules indispensable for health, they are undervalued in comparison with other staple cereals such as wheat, barley and rice. Furthermore, oats, apart from maize, comprise a high oil content used for a wide range of beneficial purposes. In addition, they contain beta glucan that has proven to be very helpful in reducing blood cholesterol levels and other cardiovascular diseases risks. In fact, there is diversity in the composition and content of the beneficial oat components within their genotypes and the different environmental conditions and, thus, oats are amenable to be enhanced by agronomic practices and genetic approaches.
Collapse
Affiliation(s)
- Nihed Ben Halima
- Biological Engineering Department, National School of Engineers of Sfax, University of Sfax
| | | | | | | | | |
Collapse
|
41
|
Effects of two whole-grain barley varieties on caecal SCFA, gut microbiota and plasma inflammatory markers in rats consuming low- and high-fat diets. Br J Nutr 2015; 113:1558-70. [DOI: 10.1017/s0007114515000793] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mixed-linkage β-glucans are fermented by the colon microbiota that give rise to SCFA. Propionic and butyric acids have been found to play an important role in colonic health, as well as they may have extraintestinal metabolic effects. The aim of the present study was to investigate how two whole-grain barley varieties differing in dietary fibre and β-glucan content affected caecal SCFA, gut microbiota and some plasma inflammatory markers in rats consuming low-fat (LF) or high-fat (HF) diets. Barley increased the caecal pool of SCFA in rats fed the LF and HF diets compared with those fed the control diet, and the effect was generally dependent on fibre content, an exception was butyric acid in the LF setting. Furthermore, whole-grain barley reduced plasma lipopolysaccharide-binding protein and monocyte chemoattractant protein-1, increased the caecal abundance of Lactobacillus and decreased the Bacteroides fragilis group, but increased the number of Bifidobacterium only when dietary fat was consumed at a low level. Fat content influenced the effects of barley: rats fed the HF diets had a higher caecal pool of acetic and propionic acids, higher concentrations of amino acids and higher amounts of lipids in the portal plasma and liver than rats fed the LF diets; however, less amounts of butyric acid were generally formed. Interestingly, there was an increase in the caecal abundance of Akkermansia and the caecal pool of succinic acid, and a decrease in the proportion of Bifidobacterium and the Clostridium leptum group. In summary, whole-grain barley decreased HF diet-induced inflammation, which was possibly related to the formation of SCFA and changes in microbiota composition. High β-glucan content in the diet was associated with reduced plasma cholesterol levels.
Collapse
|
42
|
Abstract
A large body of clinical evidence suggests that the consumption of 3 g or more per d of β-glucan from oats or barley, as part of a diet low in saturated fat and cholesterol, may reduce the risk of CHD. The unique chemical and physical properties of oats and physiological responses to oat consumption contribute to their demonstrated health benefits; other health attributes are still under evaluation. Many of these benefits, such as those associated with a reduced risk of CVD, are codified in health claims by several regulatory agencies, such as the Food and Drug Administration in the USA and the European Food Safety Authority in Europe. Despite these oat–health relationships, an apparent decline in agricultural production, the presence of an array of plant pathogens, and dynamics of climatic conditions may preclude the availability and subsequent consumption of this commodity worldwide. Therefore, it is incumbent on scientists from multiple disciplines to advance research in a spectrum of arenas, including physico-chemical properties of oats, the impact of oats on an array of non-communicable diseases and human microbiome, agricultural practices and environments, and processing technologies that contribute to global food policies.
Collapse
|
43
|
Processing of oats and the impact of processing operations on nutrition and health benefits. Br J Nutr 2014; 112 Suppl 2:S58-64. [DOI: 10.1017/s000711451400227x] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Oats are a uniquely nutritious food as they contain an excellent lipid profile and high amounts of soluble fibre. However, an oat kernel is largely non-digestible and thus must be utilised in milled form to reap its nutritional benefits. Milling is made up of numerous steps, the most important being dehulling to expose the digestible groat, heat processing to inactivate enzymes that cause rancidity, and cutting, rolling or grinding to convert the groat into a product that can be used directly in oatmeal or can be used as a food ingredient in products such as bread, ready-to-eat breakfast cereals and snack bars. Oats can also be processed into oat bran and fibre to obtain high-fibre-containing fractions that can be used in a variety of food products.
Collapse
|