1
|
Goldman DM, Warbeck CB, Karlsen MC. Protein and Leucine Requirements for Maximal Muscular Development and Athletic Performance Are Achieved with Completely Plant-Based Diets Modeled to Meet Energy Needs in Adult Male Rugby Players. Sports (Basel) 2024; 12:186. [PMID: 39058077 PMCID: PMC11281145 DOI: 10.3390/sports12070186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/30/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Rugby athletes consume large amounts of animal protein in accordance with conventional dietary guidance to increase muscle mass and strength. This misaligns with national dietary guidelines, which suggest limiting meat consumption for chronic disease prevention. The ability of completely plant-based diets to satisfy the nutritional needs of rugby players has not been explored. This study scaled nutrient data from a large population consuming completely plant-based diets with limited supplemental protein to meet the calorie requirements of adult male rugby athletes to assess whether protein and leucine recommendations for muscular development and athletic performance would be achieved. Calorie requirements were estimated from research that employed the doubly labeled water method, and dietary data from the Adventist Health Study-2 were scaled to this level. The modeled protein level was 1.68 g/kg/day, which meets recommendations for maximal gains in muscle mass, strength, and athletic performance. The modeled leucine level was 2.9 g/meal for four daily meals, which exceeds the threshold proposed to maximally stimulate muscle protein synthesis in young men. These results indicate that consuming large portions of completely plant-based meals can satisfy protein and leucine requirements for maximal muscular development and athletic performance in adult male rugby athletes while aligning with public health recommendations.
Collapse
Affiliation(s)
- David M. Goldman
- Department of Public Health, University of Helsinki, 00014 Helsinki, Finland
- Department of Research and Development, Metabite Inc., New York, NY 10036, USA
| | - Cassandra B. Warbeck
- Department of Family Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada;
| | - Micaela C. Karlsen
- Department of Research, American College of Lifestyle Medicine, Chesterfield, MO 63006, USA;
- Departments of Applied Nutrition and Global Public Health, University of New England, Biddeford, ME 04005, USA
| |
Collapse
|
2
|
Goldman DM, Warbeck CB, Karlsen MC. Protein Requirements for Maximal Muscle Mass and Athletic Performance Are Achieved with Completely Plant-Based Diets Scaled to Meet Energy Needs: A Modeling Study in Professional American Football Players. Nutrients 2024; 16:1903. [PMID: 38931258 PMCID: PMC11206900 DOI: 10.3390/nu16121903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/07/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
American football players consume large quantities of animal-sourced protein in adherence with traditional recommendations to maximize muscle development and athletic performance. This contrasts with dietary guidelines, which recommend reducing meat intake and increasing consumption of plant-based foods to promote health and reduce the risk of chronic disease. The capacity of completely plant-based diets to meet the nutritional needs of American football players has not been studied. This modeling study scaled dietary data from a large cohort following completely plant-based diets to meet the energy requirements of professional American football players to determine whether protein, leucine, and micronutrient needs for physical performance and health were met. The Cunningham equation was used to estimate calorie requirements. Nutrient intakes from the Adventist Health Study 2 were then scaled to this calorie level. Protein values ranged from 1.6-2.2 g/kg/day and leucine values ranged from 3.8-4.1 g/meal at each of four daily meals, therefore meeting and exceeding levels theorized to maximize muscle mass, muscle strength, and muscle protein synthesis, respectively. Plant-based diets scaled to meet the energy needs of professional American football players satisfied protein, leucine, and micronutrient requirements for muscle development and athletic performance. These findings suggest that completely plant-based diets could bridge the gap between dietary recommendations for chronic disease prevention and athletic performance in American football players.
Collapse
Affiliation(s)
- David M. Goldman
- Department of Public Health, University of Helsinki, 00014 Helsinki, Finland
- Department of Research and Development, Metabite Inc., New York, NY 10036, USA
| | - Cassandra B. Warbeck
- Department of Family Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada;
| | - Micaela C. Karlsen
- Department of Research, American College of Lifestyle Medicine, Chesterfield, MO 63006, USA;
- Departments of Applied Nutrition and Global Public Health, Adjunct Faculty, University of New England, Biddeford, ME 04005, USA
| |
Collapse
|
3
|
Lievens E, Van Vossel K, Van de Casteele F, Derave W, Murdoch JB. The effects of residual dipolar coupling on carnosine in proton muscle spectra. NMR IN BIOMEDICINE 2024; 37:e5083. [PMID: 38217329 DOI: 10.1002/nbm.5083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/23/2023] [Accepted: 11/08/2023] [Indexed: 01/15/2024]
Abstract
Carnosine, an MR-visible dipeptide in human muscle, is well characterized by two peaks at ~8 and ~7 ppm from C2 and C4 imidazole protons. Like creatine and other metabolites, carnosine is subject to residual dipolar coupling in the anisotropic environment of muscle fibers, but the effects have not been studied extensively. Single-voxel TE 30-32 PRESS spectra from three different 3T studies were acquired from gastrocnemius medialis and soleus muscles in the human lower leg. In these studies, carnosine T2 values were measured, and spectra were obtained at three different foot angles. LCModel was used to fit the carnosine peaks with a basis set that was generated using shaped RF pulses and included a range of dipolar couplings affecting the C4 peak. A seven-parameter analytic expression was used to fit the CH2 doublets of creatine. It incorporated an optimized "effective TE" value to model the effect of shaped RF pulses. The fits confirm that the triplet C4 peak of carnosine is dipolar coupled to a pair of CH2 protons, with no need to include a contribution from a separate pool of freely rotating uncoupled carnosine. Moreover, the couplings experienced by carnosine C4 protons and creatine CH2 protons are strongly correlated (R2 = 0.88, P<0.001), exhibiting a similar 3cos2 θ - 1 dependence on the angle θ between fiber orientation and B0. T2 values for the singlet C2 peak of gastrocnemius carnosine are inversely proportional to the C4 dipolar coupling strength (R2 = 0.97, P < 0.001), which in turn is a function of foot orientation. This dependence indicates that careful positioning of the foot while acquiring lower leg muscle spectra is important to obtain reproducible carnosine concentrations. As proton magnetic resonance spectroscopy of carnosine is currently used to non-invasively estimate the muscle fiber typology, these results have important implications in sport science.
Collapse
Affiliation(s)
- Eline Lievens
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Kim Van Vossel
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | | | - Wim Derave
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - James B Murdoch
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
4
|
Amraotkar AR, Hoetker D, Negahdar MJ, Ng CK, Lorkiewicz P, Owolabi US, Baba SP, Bhatnagar A, O’Toole TE. Comparative evaluation of different modalities for measuring in vivo carnosine levels. PLoS One 2024; 19:e0299872. [PMID: 38536838 PMCID: PMC10971688 DOI: 10.1371/journal.pone.0299872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 02/16/2024] [Indexed: 08/30/2024] Open
Abstract
Carnosine is an endogenous di-peptide (β-alanine -L- histidine) involved in maintaining tissue homeostasis. It is most abundant in skeletal muscle where its concentration has been determined in biopsy samples using tandem mass spectrometry (MS-MS). Carnosine levels can also be assessed in intact leg muscles by proton magnetic resonance spectroscopy (1H-MRS) or in blood and urine samples using mass spectrometry. Nevertheless, it remains uncertain how carnosine levels from these distinct compartments are correlated with each other when measured in the same individual. Furthermore, it is unclear which measurement modality might be most suitable for large-scale clinical studies. Hence, in 31 healthy volunteers, we assessed carnosine levels in skeletal muscle, via 1H-MRS, and in erythrocytes and urine by MS-MS. While muscle carnosine levels were higher in males (C2 peak, p = 0.010; C4 peak, p = 0.018), there was no sex-associated difference in urinary (p = 0.433) or erythrocyte (p = 0.858) levels. In a linear regression model adjusted for age, sex, race, and diet, there was a positive association between erythrocyte and urinary carnosine. However, no association was observed between 1H-MRS and erythrocytes or urinary measures. In the relationship between muscle versus urinary and erythrocyte measures, females had a positive association, while males did not show any association. We also found that 1H-MRS measures were highly sensitive to location of measurement. Thus, it is uncertain whether 1H-MRS can accurately and reliably predict endogenous carnosine levels. In contrast, urinary and erythrocyte carnosine measures may be stable and in greater synchrony, and given financial and logistical concerns, may be a feasible alternative for large-scale clinical studies.
Collapse
Affiliation(s)
- Alok R. Amraotkar
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, United States of America
- Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, United States of America
| | - David Hoetker
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, United States of America
- Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, United States of America
| | - Mohammad J. Negahdar
- Department of Radiology, University of Louisville, Louisville, KY, United States of America
| | - Chin K. Ng
- Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, United States of America
| | - Pawel Lorkiewicz
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, United States of America
- Department of Chemistry, University of Louisville, Louisville, KY, United States of America
| | - Ugochukwu S. Owolabi
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, United States of America
| | - Shahid P. Baba
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, United States of America
- Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, United States of America
| | - Aruni Bhatnagar
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, United States of America
- Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, United States of America
| | - Timothy E. O’Toole
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, United States of America
- Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, United States of America
| |
Collapse
|
5
|
de Guingand DL, Palmer KR, Callahan DL, Snow RJ, Davies-Tuck ML, Ellery SJ. Creatine and pregnancy outcomes: a prospective cohort study of creatine metabolism in low-risk pregnant females. Am J Clin Nutr 2024; 119:838-849. [PMID: 38432717 DOI: 10.1016/j.ajcnut.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/12/2023] [Accepted: 11/09/2023] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND Physiological adaptations during pregnancy alter nutrient and energy metabolism. Creatine may be important for maintaining cellular energy homeostasis throughout pregnancy. However, the impact of pregnancy on endogenous and exogenous creatine availability has never been comprehensively explored. OBJECTIVES To undertake a prospective cohort study and determine the physiological ranges of creatine and associated metabolites throughout human pregnancy. METHODS Females with a singleton low-risk pregnancy were recruited at an Australian health service. Maternal blood and urine were collected at 5-time points from 10-36 weeks of gestation, and cord blood and placental samples were collected at birth. Creatine and associated amino acids and metabolites of creatine synthesis were analyzed. Dietary data were captured to determine effects of exogenous creatine intake. Associations between creatine metabolism and neonatal growth parameters were examined. RESULTS Two hundred and eighty-two females were included. Maternal plasma creatine remained stable throughout pregnancy [β: -0.003 μM; 95% confidence interval (CI): -0.07, 0.07; P = 0.94], though urinary creatine declined in late gestation (β: 0.38 μM/mmol/L creatinine (CRN); 95% CI: -0.47, -0.29; P < 0.0001). Plasma guanidinoacetate (GAA; the precursor to creatine during endogenous synthesis) fell from 10-29 weeks of gestation before rising until birth (β: -0.38 μM/mmol/L CRN; 95% CI: -0.47, -0.29; P < 0.0001). Urinary GAA followed an opposing pattern (β: 2.52 μM/mmol/L CRN; 95% CI: 1.47, 3.58, P < 0.001). Animal protein intake was positively correlated with maternal plasma creatine until ∼32 weeks of gestation (β: 0.07-0.18 μM; 95% CI: 0.006, 0.25; P ≤ 0.001). There were no links between creatine and neonatal growth, but increased urinary GAA in early pregnancy was associated with a slight reduction in head circumference at birth (β: -0.01 cm; 95% CI: -0.02, -0.004; P = 0.003). CONCLUSIONS Although maternal plasma creatine concentrations were highly conserved, creatine metabolism appears to adjust throughout pregnancy. An ability to maintain creatine concentrations through diet and shifts in endogenous synthesis may impact fetal growth. This trial was registered at [registry name] as ACTRN12618001558213.
Collapse
Affiliation(s)
- Deborah L de Guingand
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia; Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
| | - Kirsten R Palmer
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia; Monash Women and Newborn, Monash Health, Melbourne, Australia
| | - Damien L Callahan
- School of Life and Environmental Science, Deakin University, Melbourne, Australia
| | - Rod J Snow
- Institute for Physical Activity and Nutrition, Deakin University, Melbourne, Australia
| | - Miranda L Davies-Tuck
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia; Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
| | - Stacey J Ellery
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia; Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia.
| |
Collapse
|
6
|
Longobardi I, Gualano B, Seguro AC, Roschel H. Is It Time for a Requiem for Creatine Supplementation-Induced Kidney Failure? A Narrative Review. Nutrients 2023; 15:nu15061466. [PMID: 36986197 PMCID: PMC10054094 DOI: 10.3390/nu15061466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/22/2023] Open
Abstract
Creatine has become one of the most popular dietary supplements among a wide range of healthy and clinical populations. However, its potential adverse effects on kidney health are still a matter of concern. This is a narrative review of the effects of creatine supplementation on kidney function. Despite a few case reports and animal studies suggesting that creatine may impair kidney function, clinical trials with controlled designs do not support this claim. Creatine supplementation may increase serum creatinine (Crn) concentration for some individuals, but it does not necessarily indicate kidney dysfunction, as creatine is spontaneously converted into Crn. Based on studies assessing kidney function using reliable methods, creatine supplements have been shown to be safe for human consumption. Further studies with people who have pre-existing kidney disease remain necessary.
Collapse
Affiliation(s)
- Igor Longobardi
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, School of Medicine, University of Sao Paulo, Sao Paulo 01246-903, SP, Brazil; (I.L.); (B.G.)
| | - Bruno Gualano
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, School of Medicine, University of Sao Paulo, Sao Paulo 01246-903, SP, Brazil; (I.L.); (B.G.)
- Rheumatology Division, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, Sao Paulo 01246-903, SP, Brazil
| | - Antonio Carlos Seguro
- Nephrology Division, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, Sao Paulo 01246-903, SP, Brazil;
| | - Hamilton Roschel
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, School of Medicine, University of Sao Paulo, Sao Paulo 01246-903, SP, Brazil; (I.L.); (B.G.)
- Rheumatology Division, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, Sao Paulo 01246-903, SP, Brazil
- Correspondence: ; Tel.: +55-11-3061-8789
| |
Collapse
|
7
|
Ahmed A, Afzaal M, Ali SW, Muzammil HS, Masood A, Saleem MA, Saeed F, Hussain M, Rasheed A, Al Jbawi E. Effect of vegan diet (VD) on sports performance: a mechanistic review of metabolic cascades. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2120495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Aftab Ahmed
- Department of Nutritional Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Afzaal
- Department of Food Sciences, Government College University, Faisalabad, Pakistan
| | - Shinawar Waseem Ali
- Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Hafiz Shehzad Muzammil
- National Institute of Food Science and Technology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Ammar Masood
- Department of Nutritional Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Awais Saleem
- Department of Nutritional Sciences, Government College University, Faisalabad, Pakistan
| | - Farhan Saeed
- Department of Food Sciences, Government College University, Faisalabad, Pakistan
| | - Muzzamal Hussain
- Department of Food Sciences, Government College University, Faisalabad, Pakistan
| | - Amara Rasheed
- Department of Food Sciences, Government College University, Faisalabad, Pakistan
| | | |
Collapse
|
8
|
Roberts AK, Busque V, Robinson JL, Landry MJ, Gardner CD. SWAP-MEAT Athlete (study with appetizing plant-food, meat eating alternatives trial) - investigating the impact of three different diets on recreational athletic performance: a randomized crossover trial. Nutr J 2022; 21:69. [PMID: 36384651 PMCID: PMC9666956 DOI: 10.1186/s12937-022-00820-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/17/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Plant-based diets are known to be beneficial for cardiovascular health and promote environmental sustainability. However, many athletes avoid plant-based diets due to concerns of protein inadequacy. OBJECTIVES To investigate the impact of two predominately plant-based diets-whole food plant-based (WFPB) and plant-based meat alternatives (PBMA)-vs. an omnivorous diet, favoring red meat and poultry (Animal), on endurance and muscular strength. METHODS 12 recreational runners and 12 resistance trainers were assigned to three diets-WFPB, PBMA, and Animal-for 4 weeks each, in random order. Primary outcomes for runners (12-minute timed run) and resistance trainers (composite machine strength) were collected at baseline and after diets, along with secondary performance outcomes and dietary data. RESULTS 22 recreational athletes completed the study (age: 26.2 ± 4.4 years; sex: 10 female, 12 male; BMI: 23.1 ± 2.4 kg/m2). Mean differences in 12-minute timed run - WFPB vs. Animal (- 23.4 m; 95% CI: - 107 to 60.0 m) and PBMA vs. Animal (- 2.9 m; 95% CI: - 119 to 113 m) - were not significant. Mean percent differences in composite machine strength - WFPB vs. Animal (- 2.7%; 95% CI: - 5.8 to 0.4% and PBMA vs. Animal (- 0.7%; 95% CI: - 3.5 to 2.2%) - were not significant. Average protein intake for all diets met International Society for Sports Nutrition recommendations. CONCLUSIONS Our findings suggest recreational athletes can maintain athletic performance on both an omnivorous diet and two diets that are predominately plant-based. TRIAL REGISTRATION NCT05472701. Retrospectively registered.
Collapse
Affiliation(s)
- Aubrey K. Roberts
- Stanford Prevention Research Center, Stanford University School of Medicine, Stanford, CA USA
| | - Vincent Busque
- Stanford Prevention Research Center, Stanford University School of Medicine, Stanford, CA USA
| | - Jennifer L. Robinson
- Stanford Prevention Research Center, Stanford University School of Medicine, Stanford, CA USA
| | - Matthew J. Landry
- Stanford Prevention Research Center, Stanford University School of Medicine, Stanford, CA USA
| | - Christopher D. Gardner
- Stanford Prevention Research Center, Stanford University School of Medicine, Stanford, CA USA
| |
Collapse
|
9
|
De Brandt J, Derave W, Vandenabeele F, Pomiès P, Blancquaert L, Keytsman C, Barusso-Grüninger MS, de Lima FF, Hayot M, Spruit MA, Burtin C. Efficacy of 12 weeks oral beta-alanine supplementation in patients with chronic obstructive pulmonary disease: a double-blind, randomized, placebo-controlled trial. J Cachexia Sarcopenia Muscle 2022; 13:2361-2372. [PMID: 35977911 PMCID: PMC9530565 DOI: 10.1002/jcsm.13048] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/28/2022] [Accepted: 06/14/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Beta-alanine (BA) supplementation increases muscle carnosine, an abundant endogenous antioxidant and pH buffer in skeletal muscle. Carnosine loading promotes exercise capacity in healthy older adults. As patients with chronic obstructive pulmonary disease (COPD) suffer from elevated exercise-induced muscle oxidative/carbonyl stress and acidosis, and from reduced muscle carnosine stores, it was investigated whether BA supplementation augments muscle carnosine and induces beneficial changes in exercise capacity, quadriceps function, and muscle oxidative/carbonyl stress in patients with COPD. METHODS In this double-blind, randomized, placebo (PL)-controlled trial (clinicaltrials.gov identifier: NCT02770417), 40 patients (75% male) with COPD (mean ± standard deviation: age 65 ± 6 years; FEV1 % predicted 55 ± 14%) were assigned to 12 weeks oral BA or PL supplementation (3.2 g/day). The primary outcome, i.e. muscle carnosine, was quantified from m. vastus lateralis biopsies obtained before and after intervention. Co-primary outcomes, i.e. incremental and constant work rate cycle capacity, were also assessed. Linear mixed model analyses were performed. Compliance with and side effects of supplement intake and secondary outcomes (quadriceps strength and endurance, and muscle oxidative/carbonyl stress) were also assessed. RESULTS Beta-alanine supplementation increased muscle carnosine in comparison with PL in patients with COPD (mean difference [95% confidence interval]; +2.82 [1.49-4.14] mmol/kg wet weight; P < 0.001). Maximal incremental cycling capacity (VO2 peak: +0.5 [-0.7 to 1.7] mL/kg/min; P = 0.384, Wpeak: +5 [-1 to 11] W; P = 0.103) and time to exhaustion on the constant work rate cycle test (+28 [-179 to 236] s; P = 0.782) did not change significantly. Compliance with supplement intake was similar in BA (median (quartile 1-quartile 3); 100 (98-100)%) and PL (98 (96-100)%) (P = 0.294) groups, and patients did not report side effects possibly related to supplement intake. No change was observed in secondary outcomes. CONCLUSIONS Beta-alanine supplementation is efficacious in augmenting muscle carnosine (+54% from mean baseline value) without side effects in patients with COPD in comparison with PL. However, accompanied beneficial changes in exercise capacity, quadriceps function, and muscle oxidative/carbonyl stress were not observed.
Collapse
Affiliation(s)
- Jana De Brandt
- Faculty of Rehabilitation Sciences, REVAL - Rehabilitation Research Center, Hasselt University, Diepenbeek, Belgium.,BIOMED - Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Wim Derave
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Frank Vandenabeele
- Faculty of Rehabilitation Sciences, REVAL - Rehabilitation Research Center, Hasselt University, Diepenbeek, Belgium
| | - Pascal Pomiès
- PhyMedExp, University of Montpellier - INSERM - CNRS - CHRU Montpellier, Montpellier, France
| | - Laura Blancquaert
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Charly Keytsman
- Faculty of Rehabilitation Sciences, REVAL - Rehabilitation Research Center, Hasselt University, Diepenbeek, Belgium.,BIOMED - Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Marina S Barusso-Grüninger
- Faculty of Rehabilitation Sciences, REVAL - Rehabilitation Research Center, Hasselt University, Diepenbeek, Belgium.,LEFiR - Spirometry and Respiratory Laboratory, São Carlos Federal University - UFSCar, São Carlos, São Paulo, Brazil
| | - Fabiano F de Lima
- Faculty of Rehabilitation Sciences, REVAL - Rehabilitation Research Center, Hasselt University, Diepenbeek, Belgium.,Faculty of Science and Technology, Department of Physical Therapy, Postgraduate Program in Physical Therapy, São Paulo State University (UNESP), Presidente Prudente, São Paulo, Brazil
| | - Maurice Hayot
- PhyMedExp, University of Montpellier - INSERM - CNRS - CHRU Montpellier, Montpellier, France
| | - Martijn A Spruit
- Department of Research and Education, CIRO+, Horn, The Netherlands.,Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Chris Burtin
- Faculty of Rehabilitation Sciences, REVAL - Rehabilitation Research Center, Hasselt University, Diepenbeek, Belgium.,BIOMED - Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
10
|
Anti-Inflammatory Diet Prevents Subclinical Colonic Inflammation and Alters Metabolomic Profile of Ulcerative Colitis Patients in Clinical Remission. Nutrients 2022; 14:nu14163294. [PMID: 36014800 PMCID: PMC9414437 DOI: 10.3390/nu14163294] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/07/2022] [Indexed: 12/02/2022] Open
Abstract
A relationship between ulcerative colitis (UC) and diet has been shown in epidemiological and experimental studies. In a 6-month, open-label, randomized, placebo-controlled trial, adult UC patients in clinical remission were randomized to either an “Anti-inflammatory Diet (AID)” or “Canada’s Food Guide (CFG)”. Menu plans in the AID were designed to increase the dietary intake of dietary fiber, probiotics, antioxidants, and omega-3 fatty acids and to decrease the intake of red meat, processed meat, and added sugar. Stool was collected for fecal calprotectin (FCP) and microbial analysis. Metabolomic analysis was performed on urine, serum, and stool samples at the baseline and study endpoint. In this study, 53 patients were randomized. Five (19.2%) patients in the AID and 8 (29.6%) patients in the CFG experienced a clinical relapse. The subclinical response to the intervention (defined as FCP < 150 µg/g at the endpoint) was significantly higher in the AID group (69.2 vs. 37.0%, p = 0.02). The patients in the AID group had an increased intake of zinc, phosphorus, selenium, yogurt, and seafood versus the control group. Adherence to the AID was associated with significant changes in the metabolome, with decreased fecal acetone and xanthine levels along with increased fecal taurine and urinary carnosine and p-hydroxybenzoic acid levels. The AID subjects also had increases in fecal Bifidobacteriaceae, Lachnospiraceae, and Ruminococcaceae. In this study, we found thatdietary modifications involving the increased intake of anti-inflammatory foods combined with a decreased intake of pro-inflammatory foods were associated with metabolic and microbial changes in UC patients in clinical remission and were effective in preventing subclinical inflammation.
Collapse
|
11
|
Kreider RB, Jäger R, Purpura M. Bioavailability, Efficacy, Safety, and Regulatory Status of Creatine and Related Compounds: A Critical Review. Nutrients 2022; 14:nu14051035. [PMID: 35268011 PMCID: PMC8912867 DOI: 10.3390/nu14051035] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 12/12/2022] Open
Abstract
In 2011, we published a paper providing an overview about the bioavailability, efficacy, and regulatory status of creatine monohydrate (CrM), as well as other “novel forms” of creatine that were being marketed at the time. This paper concluded that no other purported form of creatine had been shown to be a more effective source of creatine than CrM, and that CrM was recognized by international regulatory authorities as safe for use in dietary supplements. Moreover, that most purported “forms” of creatine that were being marketed at the time were either less bioavailable, less effective, more expensive, and/or not sufficiently studied in terms of safety and/or efficacy. We also provided examples of several “forms” of creatine that were being marketed that were not bioavailable sources of creatine or less effective than CrM in comparative effectiveness trials. We had hoped that this paper would encourage supplement manufacturers to use CrM in dietary supplements given the overwhelming efficacy and safety profile. Alternatively, encourage them to conduct research to show their purported “form” of creatine was a bioavailable, effective, and safe source of creatine before making unsubstantiated claims of greater efficacy and/or safety than CrM. Unfortunately, unsupported misrepresentations about the effectiveness and safety of various “forms” of creatine have continued. The purpose of this critical review is to: (1) provide an overview of the physiochemical properties, bioavailability, and safety of CrM; (2) describe the data needed to substantiate claims that a “novel form” of creatine is a bioavailable, effective, and safe source of creatine; (3) examine whether other marketed sources of creatine are more effective sources of creatine than CrM; (4) provide an update about the regulatory status of CrM and other purported sources of creatine sold as dietary supplements; and (5) provide guidance regarding the type of research needed to validate that a purported “new form” of creatine is a bioavailable, effective and safe source of creatine for dietary supplements. Based on this analysis, we categorized forms of creatine that are being sold as dietary supplements as either having strong, some, or no evidence of bioavailability and safety. As will be seen, CrM continues to be the only source of creatine that has substantial evidence to support bioavailability, efficacy, and safety. Additionally, CrM is the source of creatine recommended explicitly by professional societies and organizations and approved for use in global markets as a dietary ingredient or food additive.
Collapse
Affiliation(s)
- Richard B. Kreider
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843, USA
- Correspondence: ; Tel.: +1-972-458-1498
| | - Ralf Jäger
- Increnovo LLC, Milwaukee, WI 53202, USA; (R.J.); (M.P.)
| | | |
Collapse
|
12
|
Conrado de Souza A, da Silva Brandão M, Lima Oliveira D, Garcez de Carvalho F, Costa ML, Aragão-Santos JC, Santos do Nascimento MV, Silva-Grigoletto M, Mendes-Netto RS. Active vegetarians show better lower limb strength and power than active omnivores. Int J Sports Med 2022; 43:715-720. [PMID: 35088394 DOI: 10.1055/a-1753-1322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Vegetarian diets have become popular among athletes and active individuals and can have advantages for physical performance, but the results are still conflicting regarding muscle strength and power. The aim of this study was to evaluate the diet and physical performance of vegetarians through tests of dynamic, isometric, and relative strength; muscle power; and aerobic capacity. In this cross-sectional study, 32 vegetarians and 26 omnivores, who were physically active, were evaluated for the Healthy Eating Index and performance tested back squat, handgrip strength, isometric deadlift strength, jump with countermovement, and maximum aerobic speed (MAS). Improved diet quality (63.24 ± 14.40 vs. 54 ± 16.80, p<0.05), greater relative strength (1.03 ± 0.23 vs. 0.91 ± 0.12, p<0.05), and greater jump height (43.77 ± 9.91 vs. 38.45 ± 8.92, p<0.05) were found among vegetarians. No difference was seen in MAS (13.5 ± 2 vs. 11 ± 3, p>0.05) or isometric strength of upper limbs (77 ± 29 vs. 70 ± 50, p>0.05) and lower limbs (89 ± 41 vs. 97 ± 50, p>0.05). Thus, we conclude that vegetarians and omnivores show similar performance in strength and aerobic capacity, but in our sample, vegetarians show higher levels of relative strength and power.
Collapse
Affiliation(s)
- Alice Conrado de Souza
- Postgraduate Program in Physical Education, Federal University of Sergipe, Sao Cristovao, Brazil
| | - Marcos da Silva Brandão
- Postgraduate Program in Nutrition Sciences, Federal University of Sergipe, Sao Cristovao, Brazil
| | - David Lima Oliveira
- Postgraduate Program in Nutrition Sciences, Federal University of Sergipe, Sao Cristovao, Brazil
| | | | - Marcela Larissa Costa
- Postgraduate Program in Nutrition Sciences, Federal University of Sergipe, Sao Cristovao, Brazil
| | | | | | - Marzo Silva-Grigoletto
- Postgraduate Program in Physical Education, Federal University of Sergipe, Sao Cristovao, Brazil
| | | |
Collapse
|
13
|
Jakše B. Placing a Well-Designed Vegan Diet for Slovenes. Nutrients 2021; 13:4545. [PMID: 34960098 PMCID: PMC8706043 DOI: 10.3390/nu13124545] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 02/06/2023] Open
Abstract
Interest in vegan diets has increased globally as well as in Slovenia. The quantity of new scientific data requires a thorough synthesis of new findings and considerations about the current reserved position of the vegan diet in Slovenia. There is frequently confusion about the benefits of vegetarian diets that are often uncritically passed on to vegan diets and vice versa. This narrative review aims to serve as a framework for a well-designed vegan diet. We present advice on how to maximize the benefits and minimize the risks associated with the vegan diet and lifestyle. We highlight the proper terminology, present the health effects of a vegan diet and emphasize the nutrients of concern. In addition, we provide guidance for implementing a well-designed vegan diet in daily life. We conducted a PubMed search, up to November 2021, for studies on key nutrients (proteins, vitamin B12, vitamin D, omega-3 long chain polyunsaturated fatty acids (eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)), calcium, iron, zinc, iodine and selenium) in vegan diets. Given the limited amount of scientific evidence, we focus primarily on the general adult population. A well-designed vegan diet that includes a wide variety of plant foods and supplementation of vitamin B12, vitamin D in the winter months and potentially EPA/DHA is safe and nutritionally adequate. It has the potential to maintain and/or to improve health. For physically active adult populations, athletes or individuals with fast-paced lifestyles, there is room for further appropriate supplementation of a conventional vegan diet according to individuals' health status, needs and goals without compromising their health. A healthy vegan lifestyle, as included in government guidelines for a healthy lifestyle, includes regular physical activity, avoidance of smoking, restriction of alcohol and appropriate sleep hygiene.
Collapse
Affiliation(s)
- Boštjan Jakše
- Department of Food Science, Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
14
|
Cegielski J, Wilkinson DJ, Brook MS, Boereboom C, Phillips BE, Gladman JFR, Smith K, Atherton PJ. Combined in vivo muscle mass, muscle protein synthesis and muscle protein breakdown measurement: a 'Combined Oral Stable Isotope Assessment of Muscle (COSIAM)' approach. GeroScience 2021; 43:2653-2665. [PMID: 34046811 PMCID: PMC8602438 DOI: 10.1007/s11357-021-00386-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/17/2021] [Indexed: 12/01/2022] Open
Abstract
Optimising approaches for measuring skeletal muscle mass and turnover that are widely applicable, minimally invasive and cost effective is crucial in furthering research into sarcopenia and cachexia. Traditional approaches for measurement of muscle protein turnover require infusion of expensive, sterile, isotopically labelled tracers which limits the applicability of these approaches in certain populations (e.g. clinical, frail elderly). To concurrently quantify skeletal muscle mass and muscle protein turnover i.e. muscle protein synthesis (MPS) and muscle protein breakdown (MPB), in elderly human volunteers using stable-isotope labelled tracers i.e. Methyl-[D3]-creatine (D3-Cr), deuterium oxide (D2O), and Methyl-[D3]-3-methylhistidine (D3-3MH), to measure muscle mass, MPS and MPB, respectively. We recruited 10 older males (71 ± 4 y, BMI: 25 ± 4 kg.m2, mean ± SD) into a 4-day study, with DXA and consumption of D2O and D3-Cr tracers on day 1. D3-3MH was consumed on day 3, 24 h prior to returning to the lab. From urine, saliva and blood samples, and a single muscle biopsy (vastus lateralis), we determined muscle mass, MPS and MPB. D3-Cr derived muscle mass was positively correlated to appendicular fat-free mass (AFFM) estimated by DXA (r = 0.69, P = 0.027). Rates of cumulative myofibrillar MPS over 3 days were 0.072%/h (95% CI, 0.064 to 0.081%/h). Whole-body MPB over 6 h was 0.052 (95% CI, 0.038 to 0.067). These rates were similar to previous literature. We demonstrate the potential for D3-Cr to be used alongside D2O and D3-3MH for concurrent measurement of muscle mass, MPS, and MPB using a minimally invasive design, applicable for clinical and frail populations.
Collapse
Affiliation(s)
- Jessica Cegielski
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRC, Clinical, Metabolic and Molecular Physiology, School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Uttoxeter Road, Derby, DE22 3DT, UK
| | - Daniel J Wilkinson
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRC, Clinical, Metabolic and Molecular Physiology, School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Uttoxeter Road, Derby, DE22 3DT, UK
| | - Matthew S Brook
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRC, Clinical, Metabolic and Molecular Physiology, School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Uttoxeter Road, Derby, DE22 3DT, UK
| | - Catherine Boereboom
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRC, Clinical, Metabolic and Molecular Physiology, School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Uttoxeter Road, Derby, DE22 3DT, UK
- Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Bethan E Phillips
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRC, Clinical, Metabolic and Molecular Physiology, School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Uttoxeter Road, Derby, DE22 3DT, UK
| | - John F R Gladman
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRC, Clinical, Metabolic and Molecular Physiology, School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Uttoxeter Road, Derby, DE22 3DT, UK
| | - Kenneth Smith
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRC, Clinical, Metabolic and Molecular Physiology, School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Uttoxeter Road, Derby, DE22 3DT, UK
| | - Philip J Atherton
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRC, Clinical, Metabolic and Molecular Physiology, School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Uttoxeter Road, Derby, DE22 3DT, UK.
| |
Collapse
|
15
|
Pohl A, Schünemann F, Bersiner K, Gehlert S. The Impact of Vegan and Vegetarian Diets on Physical Performance and Molecular Signaling in Skeletal Muscle. Nutrients 2021; 13:3884. [PMID: 34836139 PMCID: PMC8623732 DOI: 10.3390/nu13113884] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 12/12/2022] Open
Abstract
Muscular adaptations can be triggered by exercise and diet. As vegan and vegetarian diets differ in nutrient composition compared to an omnivorous diet, a change in dietary regimen might alter physiological responses to physical exercise and influence physical performance. Mitochondria abundance, muscle capillary density, hemoglobin concentration, endothelial function, functional heart morphology and availability of carbohydrates affect endurance performance and can be influenced by diet. Based on these factors, a vegan and vegetarian diet possesses potentially advantageous properties for endurance performance. Properties of the contractile elements, muscle protein synthesis, the neuromuscular system and phosphagen availability affect strength performance and can also be influenced by diet. However, a vegan and vegetarian diet possesses potentially disadvantageous properties for strength performance. Current research has failed to demonstrate consistent differences of performance between diets but a trend towards improved performance after vegetarian and vegan diets for both endurance and strength exercise has been shown. Importantly, diet alters molecular signaling via leucine, creatine, DHA and EPA that directly modulates skeletal muscle adaptation. By changing the gut microbiome, diet can modulate signaling through the production of SFCA.
Collapse
Affiliation(s)
- Alexander Pohl
- Department of Biosciences of Sport Science, Institute of Sport Science, University of Hildesheim, 31141 Hildesheim, Germany; (F.S.); (K.B.); (S.G.)
| | - Frederik Schünemann
- Department of Biosciences of Sport Science, Institute of Sport Science, University of Hildesheim, 31141 Hildesheim, Germany; (F.S.); (K.B.); (S.G.)
| | - Käthe Bersiner
- Department of Biosciences of Sport Science, Institute of Sport Science, University of Hildesheim, 31141 Hildesheim, Germany; (F.S.); (K.B.); (S.G.)
| | - Sebastian Gehlert
- Department of Biosciences of Sport Science, Institute of Sport Science, University of Hildesheim, 31141 Hildesheim, Germany; (F.S.); (K.B.); (S.G.)
- Department for Molecular and Cellular Sports Medicine, German Sports University Cologne, 50933 Cologne, Germany
| |
Collapse
|
16
|
Deng X, Si J, Qu Y, Jie L, He Y, Wang C, Zhang Y. Vegetarian diet duration's influence on women's gut environment. GENES & NUTRITION 2021; 16:16. [PMID: 34600491 PMCID: PMC8487541 DOI: 10.1186/s12263-021-00697-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/13/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Nutrient composition of vegetarian diets is greatly different from that of omnivore diets, which may fundamentally influence the gut microbiota and fecal metabolites. The interactions between diet pattern and gut environment need further illustration. This study aims to compare the difference in the gut microbiota and fecal metabolites between vegetarian and omnivore female adults and explore associations between dietary choices/duration and gut environment changes. METHODS In this study, investigations on the fecal metabolome together with the gut microbiome were performed to describe potential interactions with quantitative functional annotation. In order to eliminate the differences brought by factors of gender and living environment, 80 female adults aged 20 to 48 were recruited in the universities in Beijing, China. Quantitative Insights Into Microbial Ecology (QIIME) analysis and Ingenuity Pathway Analysis (IPA) were applied to screen differential data between groups from gut microbiota and fecal metabolites. Furthermore, weighted gene correlation network analysis (WGCNA) was employed as the bioinformatics analysis tool for describing the correlations between gut microbiota and fecal metabolites. Moreover, participants were further subdivided by the vegetarian diet duration for analysis. RESULTS GPCR-mediated integration of enteroendocrine signaling was predicted to be one of the regulatory mechanisms of the vegetarian diet. Intriguingly, changes in the gut environment which occurred along with the vegetarian diet showed attenuated trend as the duration increased. A similar trend of returning to "baseline" after a 10-year vegetarian diet was detected in both gut microbiota and fecal metabolome. CONCLUSIONS The vegetarian diet is beneficial more than harmful to women. Gut microbiota play roles in the ability of the human body to adapt to external changes.
Collapse
Affiliation(s)
- Xinqi Deng
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Jiangtao Si
- Special Treatment Center, Wang Jing Hospital of Chinese Academy of Traditional Chinese Medicine, Beijing, China
| | - Yonglong Qu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Li Jie
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yuansong He
- Sichuan Vocational College of Nursing, Chengdu, China
| | - Chunguo Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| | - Yuping Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
17
|
Lievens E, Van Vossel K, Van de Casteele F, Baguet A, Derave W. Sex-specific maturation of muscle metabolites carnosine, creatine, and carnitine over puberty: a longitudinal follow-up study. J Appl Physiol (1985) 2021; 131:1241-1250. [PMID: 34473575 DOI: 10.1152/japplphysiol.00380.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Due to the invasiveness of a muscle biopsy, there is fragmentary information on the existence and possible origin of a sexual dimorphism in the skeletal muscle concentrations of the energy delivery-related metabolites carnosine, creatine, and carnitine. As these metabolites can be noninvasively monitored by proton magnetic resonance spectroscopy, this technique offers the possibility to investigate if sexual dimorphisms are present in an adult reference population and if these dimorphisms originated during puberty using a longitudinal design. Concentrations of carnosine, creatine, and carnitine were examined using proton magnetic resonance spectroscopy in the soleus and gastrocnemius muscles of an adult reference population of female (n = 50) and male adults (n = 50). For the longitudinal follow-up over puberty, 29 boys and 28 girls were scanned prepuberty. Six years later, 24 boys and 24 girls were rescanned postpuberty. A sexual dimorphism was present in carnosine and creatine, but not carnitine, in the adult reference population. Carnosine was 28.5% higher in the gastrocnemius (P < 0.001) and carnosine and creatine were respectively 19.9% (P < 0.001) and 18.2% (P < 0.001) higher in the soleus of male when compared with female adults. Through puberty, carnosine increased more in male subjects compared with female subjects, both in the gastrocnemius (+10.43% and -10.83%, respectively; interaction effect: P = 0.002) and in the soleus (+24.30% and +5.49%, respectively; interaction effect: P = 0.012). No significant effect of puberty was found in either creatine (interaction effect: P = 0.307) or carnitine (interaction effect: P = 0.066). A sexual dimorphism in the adult human muscle is present in carnosine and creatine, but not in carnitine.NEW & NOTEWORTHY This is the first study to investigate sexual dimorphisms in skeletal muscle carnosine, creatine, and carnitine concentrations in a substantial adult reference population (n = 100). A sexual dimorphism is present in both carnosine and creatine at adult age. The origin of the sexual dimorphisms is investigated using a longitudinal design over puberty in 24 males and 24 females. The sexual dimorphism in carnosine originated partly during puberty for carnosine, but not for creatine.
Collapse
Affiliation(s)
- Eline Lievens
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Kim Van Vossel
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | | | - Audrey Baguet
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Wim Derave
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
18
|
Ostojic SM, Korovljev D, Stajer V. Dietary intake of creatine and risk of medical conditions in U.S. older men and women: Data from the 2017-2018 National Health and Nutrition Examination Survey. Food Sci Nutr 2021; 9:5746-5754. [PMID: 34646542 PMCID: PMC8498075 DOI: 10.1002/fsn3.2543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 11/24/2022] Open
Abstract
We examined dietary intake of creatine in U.S. men and women aged 65 years and over, and evaluated the association between creatine intake and risk of self-reported medical conditions, and physical functioning/disability variables using data from the 2017-2018 National Health and Nutrition Examination Survey (NHANES). The NHANES 2017-2018 target population included the noninstitutionalized civilian resident population of the United States aged 65 years and over. Detailed dietary intake data from NHANES elderly were obtained by dietary interview component through a 24-h dietary recall interview, with estimated individual values for total grams of creatine consumed per day for each respondent. A threshold for dietary intake of creatine used to calculate risk between creatine intake and medical conditions was set at 1.00 g/day. The sample population included 1500 participants aged 65 years and older, of which 1221 individuals (627 men and 594 women) provided detailed dietary data via a dietary interview. Creatine intake across all participants was 0.76 ± 0.79 g/day (95% CI from 0.72 to 0.81). As much as 70% of U.S. elderly consume <1.00 g of creatine per day, with about 1 in 5 individuals (19.8%) consume no creatine at all. Elderly with the suboptimal intake of creatine were found to have 2.62 times higher risk of angina pectoris (adjusted OR = 2.62, 95% CI from 1.14 to 6.01, p = .023) and 2.59 times higher risk of liver conditions (adjusted OR = 2.59, 95% CI from 1.23 to 5.48, p = .013), compared with older counterparts who consume ≥1.00 g of creatine per day after controlling for demographic and nutritional variables. The considerable shortage of dietary creatine is associated with an increased risk of heart and liver conditions, which calls for public measures that foster diets rich in creatine-containing foods, and additional research to investigate the role of creatine in age-related diseases.
Collapse
Affiliation(s)
| | | | - Valdemar Stajer
- FSPE Applied Bioenergetics LabUniversity of Novi SadNovi SadSerbia
| |
Collapse
|
19
|
De Brandt J, Burtin C, Pomiès P, Vandenabeele F, Verboven K, Aumann J, Blancquaert L, Everaert I, Van Ryckeghem L, Cops J, Hayot M, Spruit MA, Derave W. Carnosine, oxidative and carbonyl stress, antioxidants and muscle fiber characteristics of quadriceps muscle of patients with COPD. J Appl Physiol (1985) 2021; 131:1230-1240. [PMID: 34323590 DOI: 10.1152/japplphysiol.00200.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Oxidative/carbonyl stress is elevated in lower-limb muscles of patients with Chronic Obstructive Pulmonary Disease (COPD). Carnosine is a skeletal muscle antioxidant particularly present in fast-twitch fibers. AIMS To compare muscle carnosine, oxidative/carbonyl stress, antioxidants and fiber characteristics between patients with COPD and healthy controls (HCs), and between patients after stratification for airflow limitation (mild/moderate vs. severe/very-severe). To investigate correlates of carnosine in patients with COPD. METHODS A vastus lateralis muscle biopsy was obtained from 40 patients with stable COPD and 20 age/sex matched HCs. Carnosine, oxidative/carbonyl stress, antioxidants, fiber characteristics, quadriceps strength and endurance (QE), VO2peak (incremental cycle test) and physical activity (PA) were determined. RESULTS Patients with COPD had a similar carnosine concentration (4.16 mmol/kg wet weight (WW) (SD 1.93)) to HCs (4.64 mmol/kgWW (SD 1.71)) and significantly higher percentage of fast-twitch fibers and lower QE, VO2peak and PA vs. HCs. Patients with severe/very-severe COPD had a 30% lower carnosine concentration (3.24 mmol/kgWW (SD 1.79); n=15) vs. patients with mild/moderate COPD (4.71 mmol/kgWW (SD 1.83); n=25; P=0.02) and significantly lower VO2peak and PA vs. patients with mild/moderate COPD. Carnosine correlated significantly with QE (rs=0.427), VO2peak (rs=0.334), PA (rs=0.379) and lung function parameters in patients with COPD. CONCLUSION Despite having the highest proportion of fast-twitch fibers, patients with severe/very-severe COPD displayed a 30% lower muscle carnosine concentration compared to patients with mild/moderate COPD. As no oxidative/carbonyl stress markers, nor antioxidants were affected, the observed carnosine deficiency is thought to be a possible first sign of muscle redox balance abnormalities.
Collapse
Affiliation(s)
- Jana De Brandt
- Hasselt University, Faculty of Rehabilitation Sciences, REVAL - Rehabilitation Research Center, Diepenbeek, Belgium.,Hasselt University, BIOMED - Biomedical Research Institute, Diepenbeek, Belgium
| | - Chris Burtin
- Hasselt University, Faculty of Rehabilitation Sciences, REVAL - Rehabilitation Research Center, Diepenbeek, Belgium.,Hasselt University, BIOMED - Biomedical Research Institute, Diepenbeek, Belgium
| | - Pascal Pomiès
- PhyMedExp, University of Montpellier - INSERM - CNRS - CHRU Montpellier, Montpellier, France
| | - Frank Vandenabeele
- Hasselt University, Faculty of Rehabilitation Sciences, REVAL - Rehabilitation Research Center, Diepenbeek, Belgium
| | - Kenneth Verboven
- Hasselt University, Faculty of Rehabilitation Sciences, REVAL - Rehabilitation Research Center, Diepenbeek, Belgium.,Hasselt University, BIOMED - Biomedical Research Institute, Diepenbeek, Belgium
| | - Joseph Aumann
- Department of Respiratory Medicine, Jessa Hospital, Hasselt, Belgium
| | - Laura Blancquaert
- Ghent University, Department of Movement and Sports Sciences, Ghent, Belgium
| | - Inge Everaert
- Ghent University, Department of Movement and Sports Sciences, Ghent, Belgium
| | - Lisa Van Ryckeghem
- Hasselt University, Faculty of Rehabilitation Sciences, REVAL - Rehabilitation Research Center, Diepenbeek, Belgium.,Hasselt University, BIOMED - Biomedical Research Institute, Diepenbeek, Belgium
| | - Jirka Cops
- Hasselt University, Faculty of Rehabilitation Sciences, REVAL - Rehabilitation Research Center, Diepenbeek, Belgium.,Hasselt University, BIOMED - Biomedical Research Institute, Diepenbeek, Belgium
| | - Maurice Hayot
- PhyMedExp, University of Montpellier - INSERM - CNRS - CHRU Montpellier, Montpellier, France
| | - Martijn A Spruit
- CIRO, Department of Research and Development, Horn, The Netherlands.,Maastricht University Medical Centre, Department of Respiratory Medicine, Faculty of Health, Medicine and Life Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht, The Netherlands
| | - Wim Derave
- Ghent University, Department of Movement and Sports Sciences, Ghent, Belgium
| |
Collapse
|
20
|
Lievens E, Van Vossel K, Van de Casteele F, Krššák M, Murdoch JB, Befroy DE, Derave W. CORP: quantification of human skeletal muscle carnosine concentration by proton magnetic resonance spectroscopy. J Appl Physiol (1985) 2021; 131:250-264. [PMID: 33982593 DOI: 10.1152/japplphysiol.00056.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Noninvasive techniques to quantify metabolites in skeletal muscle provide unique insight into human physiology and enable the translation of research into practice. Proton magnetic resonance spectroscopy (1H-MRS) permits the assessment of several abundant muscle metabolites in vivo, including carnosine, a dipeptide composed of the amino acids histidine and beta-alanine. Muscle carnosine loading, accomplished by chronic oral beta-alanine supplementation, improves muscle function and exercise capacity and has pathophysiological relevance in multiple diseases. Moreover, the marked difference in carnosine content between fast-twitch and slow-twitch muscle fibers has rendered carnosine an attractive candidate to estimate human muscle fiber type composition. However, the quantification of carnosine with 1H-MRS requires technical expertise to obtain accurate and reproducible data. In this review, we describe the technical and physiological factors that impact the detection, analysis, and quantification of carnosine in muscle with 1H-MRS. We discuss potential sources of error during the acquisition and preprocessing of the 1H-MRS spectra and present best practices to enable the accurate, reliable, and reproducible application of this technique.
Collapse
Affiliation(s)
- E Lievens
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - K Van Vossel
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - F Van de Casteele
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - M Krššák
- Division of Endocrinology and Metabolism, Department of Internal Medicine III and High Field MR Centre, Department of Biomedical Imaging and Image Guided Therapy, Medical University of Vienna, Vienna, Austria
| | | | | | - W Derave
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
21
|
Creatine Levels in Patients with Phenylketonuria and Mild Hyperphenylalaninemia: A Pilot Study. Life (Basel) 2021; 11:life11050425. [PMID: 34066566 PMCID: PMC8148514 DOI: 10.3390/life11050425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 12/02/2022] Open
Abstract
Background: Creatine (Cr) levels are strongly dependent on diets, including animal-derived proteins. Cr is an important metabolite as it represents a source of stored energy to support physical performance and potentially sustain positive effects such as improving memory or intelligence. This study was planned to assess Cr levels in PKU children adhering to a diet low in phenylalanine (Phe) content and compared with those of children with mild hyperphenylalaninemia (MHP) on a free diet. Methods: This retrospective pilot study analyzed Cr levels from Guthrie cards in 25 PKU and 35 MHP subjects. Anthropomorphic and nutritional data of the study populations were assessed, compared and correlated. Results: Cr levels of PKU subjects were significantly lower than those of MHP subjects and correlated to the low intake of animal proteins. Although no deficiencies in PKU subjects were identified, PKU subjects were found to have a 26-fold higher risk of displaying Cr levels <25° percentile than MHP counterparts. Conclusions: This pilot study suggests that Cr levels might be concerningly low in PKU children adhering to a low-Phe diet. Confirmatory studies are needed in PKU patients of different age groups to assess Cr levels and the potential benefits on physical and intellectual performance of Cr supplementation.
Collapse
|
22
|
Bonilla DA, Kreider RB, Stout JR, Forero DA, Kerksick CM, Roberts MD, Rawson ES. Metabolic Basis of Creatine in Health and Disease: A Bioinformatics-Assisted Review. Nutrients 2021; 13:nu13041238. [PMID: 33918657 PMCID: PMC8070484 DOI: 10.3390/nu13041238] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/01/2021] [Accepted: 04/07/2021] [Indexed: 02/06/2023] Open
Abstract
Creatine (Cr) is a ubiquitous molecule that is synthesized mainly in the liver, kidneys, and pancreas. Most of the Cr pool is found in tissues with high-energy demands. Cr enters target cells through a specific symporter called Na+/Cl−-dependent Cr transporter (CRT). Once within cells, creatine kinase (CK) catalyzes the reversible transphosphorylation reaction between [Mg2+:ATP4−]2− and Cr to produce phosphocreatine (PCr) and [Mg2+:ADP3−]−. We aimed to perform a comprehensive and bioinformatics-assisted review of the most recent research findings regarding Cr metabolism. Specifically, several public databases, repositories, and bioinformatics tools were utilized for this endeavor. Topics of biological complexity ranging from structural biology to cellular dynamics were addressed herein. In this sense, we sought to address certain pre-specified questions including: (i) What happens when creatine is transported into cells? (ii) How is the CK/PCr system involved in cellular bioenergetics? (iii) How is the CK/PCr system compartmentalized throughout the cell? (iv) What is the role of creatine amongst different tissues? and (v) What is the basis of creatine transport? Under the cellular allostasis paradigm, the CK/PCr system is physiologically essential for life (cell survival, growth, proliferation, differentiation, and migration/motility) by providing an evolutionary advantage for rapid, local, and temporal support of energy- and mechanical-dependent processes. Thus, we suggest the CK/PCr system acts as a dynamic biosensor based on chemo-mechanical energy transduction, which might explain why dysregulation in Cr metabolism contributes to a wide range of diseases besides the mitigating effect that Cr supplementation may have in some of these disease states.
Collapse
Affiliation(s)
- Diego A. Bonilla
- Research Division, Dynamical Business & Science Society–DBSS International SAS, Bogotá 110861, Colombia
- Research Group in Biochemistry and Molecular Biology, Universidad Distrital Francisco José de Caldas, Bogotá 110311, Colombia
- Research Group in Physical Activity, Sports and Health Sciences (GICAFS), Universidad de Córdoba, Montería 230002, Colombia
- kDNA Genomics, Joxe Mari Korta Research Center, University of the Basque Country UPV/EHU, 20018 Donostia-San Sebastián, Spain
- Correspondence: ; Tel.: +57-320-335-2050
| | - Richard B. Kreider
- Exercise & Sport Nutrition Laboratory, Human Clinical Research Facility, Texas A&M University, College Station, TX 77843, USA;
| | - Jeffrey R. Stout
- Physiology of Work and Exercise Response (POWER) Laboratory, Institute of Exercise Physiology and Rehabilitation Science, University of Central Florida, Orlando, FL 32816, USA;
| | - Diego A. Forero
- Professional Program in Sport Training, School of Health and Sport Sciences, Fundación Universitaria del Área Andina, Bogotá 111221, Colombia;
| | - Chad M. Kerksick
- Exercise and Performance Nutrition Laboratory, School of Health Sciences, Lindenwood University, Saint Charles, MO 63301, USA;
| | - Michael D. Roberts
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA;
- Edward via College of Osteopathic Medicine, Auburn, AL 36849, USA
| | - Eric S. Rawson
- Department of Health, Nutrition and Exercise Science, Messiah University, Mechanicsburg, PA 17055, USA;
| |
Collapse
|
23
|
Role of Creatine in the Heart: Health and Disease. Nutrients 2021; 13:nu13041215. [PMID: 33917009 PMCID: PMC8067763 DOI: 10.3390/nu13041215] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 12/26/2022] Open
Abstract
Creatine is a key player in heart contraction and energy metabolism. Creatine supplementation (throughout the paper, only supplementation with creatine monohydrate will be reviewed, as this is by far the most used and best-known way of supplementing creatine) increases creatine content even in the normal heart, and it is generally safe. In heart failure, creatine and phosphocreatine decrease because of decreased expression of the creatine transporter, and because phosphocreatine degrades to prevent adenosine triphosphate (ATP) exhaustion. This causes decreased contractility reserve of the myocardium and correlates with left ventricular ejection fraction, and it is a predictor of mortality. Thus, there is a strong rationale to supplement with creatine the failing heart. Pending additional trials, creatine supplementation in heart failure may be useful given data showing its effectiveness (1) against specific parameters of heart failure, and (2) against the decrease in muscle strength and endurance of heart failure patients. In heart ischemia, the majority of trials used phosphocreatine, whose mechanism of action is mostly unrelated to changes in the ergogenic creatine-phosphocreatine system. Nevertheless, preliminary data with creatine supplementation are encouraging, and warrant additional studies. Prevention of cardiac toxicity of the chemotherapy compounds anthracyclines is a novel field where creatine supplementation may also be useful. Creatine effectiveness in this case may be because anthracyclines reduce expression of the creatine transporter, and because of the pleiotropic antioxidant properties of creatine. Moreover, creatine may also reduce concomitant muscle damage by anthracyclines.
Collapse
|
24
|
Pfeiffer A, Tomazini F, Bertuzzi R, Lima-Silva AE. Sprint Interval Exercise Performance in Vegans. J Am Coll Nutr 2021; 41:399-406. [PMID: 33783319 DOI: 10.1080/07315724.2021.1893862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE The impact of a vegan diet on sprint interval exercise performance is unknown. Thus, the purpose of the present study was to compare performance during a sprint interval exercise between omnivores and vegans. METHODS Nine healthy omnivores (4 men and 5 women) and nine healthy vegans (4 men and 5 women), with similar levels of daily physical activity, performed four bouts (5-min rest between bouts) of a 30-s all-out sprint exercise on a cycle ergometer. Peak power, mean power, fatigue index, and time to reach maximal power output in each bout were recorded. RESULTS There was a higher peak power in bouts 1 and 2 compared with bouts 3 and 4 (p < 0.02), and a higher mean power in bout 1 compared with bouts 2, 3 and 4 (p < 0.02). However, for all bouts, there were no significant difference between omnivores and vegans in peak power (7.60 ± 1.55 vs. 8.16 ± 1.27, 7.52 ± 1.6 vs 7.61 ± 0.73, 7.00 ± 1.44 vs. 7.00 ± 1.05 and 6.95 ± 1.42 vs. 6.49 ± 0.90 W.kg-1, all p > 0.05) and in mean power (5.35 ± 0.93 vs. 5.69 ± 0.84, 5.10 ± 0.88 vs. 5.21 ± 0.49, 4.79 ± 0.81 vs. 4.79 ± 0.45 and 4.81 ± 0.81 vs. 4.69 ± 0.47 W.kg-1, all p > 0.05). Fatigue index and time to reach maximal power output were not affected by diet or bouts (all p > 0.05). CONCLUSIONS These findings indicate that a vegan diet does not compromise sprint interval exercise performance.
Collapse
Affiliation(s)
- Astrid Pfeiffer
- Human Performance Research Group, Academic Department of Physical Education, Federal University of Technology Paraná, Curitiba, Brazil
| | - Fabiano Tomazini
- Human Performance Research Group, Academic Department of Physical Education, Federal University of Technology Paraná, Curitiba, Brazil.,Department of Physical Education, Federal University of Paraná, Curitiba, Brazil
| | - Romulo Bertuzzi
- Endurance Performance Research Group (GEDAE-USP), University of São Paulo, São Paulo, Brazil
| | - Adriano Eduardo Lima-Silva
- Human Performance Research Group, Academic Department of Physical Education, Federal University of Technology Paraná, Curitiba, Brazil
| |
Collapse
|
25
|
Connell NJ, Doligkeit D, Andriessen C, Kornips-Moonen E, Bruls YMH, Schrauwen-Hinderling VB, van de Weijer T, van Marken-Lichtenbelt WD, Havekes B, Kazak L, Spiegelman BM, Hoeks J, Schrauwen P. No evidence for brown adipose tissue activation after creatine supplementation in adult vegetarians. Nat Metab 2021; 3:107-117. [PMID: 33462512 DOI: 10.1038/s42255-020-00332-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/10/2020] [Indexed: 11/09/2022]
Abstract
Creatine availability in adipose tissue has been shown to have profound effects on thermogenesis and energy balance in mice. However, whether dietary creatine supplementation affects brown adipose tissue (BAT) activation in humans is unclear. In the present study, we report the results of a double-blind, randomized, placebo-controlled, cross-over trial (NCT04086381) in which 14 young, healthy, vegetarian adults, who are characterized by low creatine levels, received 20 g of creatine monohydrate per day or placebo. Participants were eligible if they met the following criteria: male or female, white, aged 18-30 years, consuming a vegetarian diet (≥6 months) and body mass index 20-25 kg m-2. BAT activation after acute cold exposure was determined by calculating standard uptake values (SUVs) acquired by [18F]fluorodeoxyglucose positron emission tomography-magnetic resonance imaging. BAT volume (-31.32 (19.32) SUV (95% confidence interval (CI) -73.06, 10.42; P = 0.129)), SUVmean (-0.34 (0.29) SUV (95% CI -0.97, 0.28; P = 0.254)) and SUVmax (-2.49 (2.64) SUV (95% CI -8.20, 3.21; P = 0.362)) following acute cold exposure were similar between placebo and creatine supplementation. No side effects of creatine supplementation were reported; one participant experienced bowel complaints during placebo, which resolved without intervention. Our data show that creatine monohydrate supplementation in young, healthy, lean, vegetarian adults does not enhance BAT activation after acute cold exposure.
Collapse
Affiliation(s)
- Niels J Connell
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Daniel Doligkeit
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Charlotte Andriessen
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Esther Kornips-Moonen
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Yvonne M H Bruls
- Department of Radiology and Nuclear Medicine, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Vera B Schrauwen-Hinderling
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
- Department of Radiology and Nuclear Medicine, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Tineke van de Weijer
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
- Department of Radiology and Nuclear Medicine, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Wouter D van Marken-Lichtenbelt
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Bas Havekes
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
- Division of Endocrinology, Department of Internal Medicine, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Lawrence Kazak
- Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Bruce M Spiegelman
- Department of Cell Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Joris Hoeks
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Patrick Schrauwen
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
26
|
Kirwan R, McCullough D, Butler T, Perez de Heredia F, Davies IG, Stewart C. Sarcopenia during COVID-19 lockdown restrictions: long-term health effects of short-term muscle loss. GeroScience 2020; 42:1547-1578. [PMID: 33001410 PMCID: PMC7528158 DOI: 10.1007/s11357-020-00272-3] [Citation(s) in RCA: 178] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/16/2020] [Indexed: 12/16/2022] Open
Abstract
The COVID-19 pandemic is an extraordinary global emergency that has led to the implementation of unprecedented measures in order to stem the spread of the infection. Internationally, governments are enforcing measures such as travel bans, quarantine, isolation, and social distancing leading to an extended period of time at home. This has resulted in reductions in physical activity and changes in dietary intakes that have the potential to accelerate sarcopenia, a deterioration of muscle mass and function (more likely in older populations), as well as increases in body fat. These changes in body composition are associated with a number of chronic, lifestyle diseases including cardiovascular disease (CVD), diabetes, osteoporosis, frailty, cognitive decline, and depression. Furthermore, CVD, diabetes, and elevated body fat are associated with greater risk of COVID-19 infection and more severe symptomology, underscoring the importance of avoiding the development of such morbidities. Here we review mechanisms of sarcopenia and their relation to the current data on the effects of COVID-19 confinement on physical activity, dietary habits, sleep, and stress as well as extended bed rest due to COVID-19 hospitalization. The potential of these factors to lead to an increased likelihood of muscle loss and chronic disease will be discussed. By offering a number of home-based strategies including resistance exercise, higher protein intakes and supplementation, we can potentially guide public health authorities to avoid a lifestyle disease and rehabilitation crisis post-COVID-19. Such strategies may also serve as useful preventative measures for reducing the likelihood of sarcopenia in general and in the event of future periods of isolation.
Collapse
Affiliation(s)
- Richard Kirwan
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK.
| | - Deaglan McCullough
- Research Institute of Sport and Exercise Science, Liverpool John Moores University, Liverpool, UK
| | - Tom Butler
- Department of Clinical Sciences and Nutrition, University of Chester, Chester, UK.
| | - Fatima Perez de Heredia
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK
| | - Ian G Davies
- Research Institute of Sport and Exercise Science, Liverpool John Moores University, Liverpool, UK
| | - Claire Stewart
- Research Institute of Sport and Exercise Science, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
27
|
|
28
|
Ostojic SM. Eat less meat: Fortifying food with creatine to tackle climate change. Clin Nutr 2020; 39:2320. [PMID: 32540181 DOI: 10.1016/j.clnu.2020.05.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 05/21/2020] [Indexed: 10/24/2022]
Affiliation(s)
- Sergej M Ostojic
- FSPE Applied Bioenergetics Lab, University of Novi Sad, Novi Sad, Serbia; University of Pecs, Pecs, Hungary.
| |
Collapse
|
29
|
Hernández‐Alonso P, Becerra‐Tomás N, Papandreou C, Bulló M, Guasch‐Ferré M, Toledo E, Ruiz‐Canela M, Clish CB, Corella D, Dennis C, Deik A, Wang DD, Razquin C, Drouin‐Chartier J, Estruch R, Ros E, Fitó M, Arós F, Fiol M, Serra‐Majem L, Liang L, Martínez‐González MA, Hu FB, Salas‐Salvadó J. Plasma Metabolomics Profiles are Associated with the Amount and Source of Protein Intake: A Metabolomics Approach within the PREDIMED Study. Mol Nutr Food Res 2020; 64:e2000178. [PMID: 32378786 DOI: 10.1002/mnfr.202000178] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/15/2020] [Indexed: 01/24/2023]
Affiliation(s)
- Pablo Hernández‐Alonso
- Universitat Rovira i VirgiliDepartament de Bioquímica i Biotecnologia, Unitat de Nutrició Humana Hospital Universitari San Joan de Reus Reus 43201 Spain
- Institut d'Investigació Pere Virgili (IISPV) Reus 43003 Spain
- Consorcio CIBER, M. P. Fisiopatología de la Obesidad y Nutrición (CIBERObn)Instituto de Salud Carlos III (ISCIII) Madrid 28029 Spain
- Unidad de Gestión Clínica de Endocrinología y Nutrición del Hospital Virgen de la VictoriaInstituto de Investigación Biomédica de Málaga (IBIMA) Málaga 29010 Spain
| | - Nerea Becerra‐Tomás
- Universitat Rovira i VirgiliDepartament de Bioquímica i Biotecnologia, Unitat de Nutrició Humana Hospital Universitari San Joan de Reus Reus 43201 Spain
- Institut d'Investigació Pere Virgili (IISPV) Reus 43003 Spain
- Consorcio CIBER, M. P. Fisiopatología de la Obesidad y Nutrición (CIBERObn)Instituto de Salud Carlos III (ISCIII) Madrid 28029 Spain
| | - Christopher Papandreou
- Universitat Rovira i VirgiliDepartament de Bioquímica i Biotecnologia, Unitat de Nutrició Humana Hospital Universitari San Joan de Reus Reus 43201 Spain
- Institut d'Investigació Pere Virgili (IISPV) Reus 43003 Spain
- Consorcio CIBER, M. P. Fisiopatología de la Obesidad y Nutrición (CIBERObn)Instituto de Salud Carlos III (ISCIII) Madrid 28029 Spain
| | - Mònica Bulló
- Universitat Rovira i VirgiliDepartament de Bioquímica i Biotecnologia, Unitat de Nutrició Humana Hospital Universitari San Joan de Reus Reus 43201 Spain
- Institut d'Investigació Pere Virgili (IISPV) Reus 43003 Spain
- Consorcio CIBER, M. P. Fisiopatología de la Obesidad y Nutrición (CIBERObn)Instituto de Salud Carlos III (ISCIII) Madrid 28029 Spain
| | - Marta Guasch‐Ferré
- Universitat Rovira i VirgiliDepartament de Bioquímica i Biotecnologia, Unitat de Nutrició Humana Hospital Universitari San Joan de Reus Reus 43201 Spain
- Consorcio CIBER, M. P. Fisiopatología de la Obesidad y Nutrición (CIBERObn)Instituto de Salud Carlos III (ISCIII) Madrid 28029 Spain
- Department of NutritionHarvard T. H. Chan School of Public Health Boston MA 02115 USA
| | - Estefanía Toledo
- Consorcio CIBER, M. P. Fisiopatología de la Obesidad y Nutrición (CIBERObn)Instituto de Salud Carlos III (ISCIII) Madrid 28029 Spain
- University of NavarraDepartment of Preventive Medicine and Public Health Pamplona 31008 Spain
- Navarra Institute for Health Research (IdisNA) Pamplona Navarra 31008 Spain
| | - Miguel Ruiz‐Canela
- Consorcio CIBER, M. P. Fisiopatología de la Obesidad y Nutrición (CIBERObn)Instituto de Salud Carlos III (ISCIII) Madrid 28029 Spain
- University of NavarraDepartment of Preventive Medicine and Public Health Pamplona 31008 Spain
- Navarra Institute for Health Research (IdisNA) Pamplona Navarra 31008 Spain
| | - Clary B. Clish
- Broad Institute of MIT and Harvard University Cambridge MA 02142 USA
| | - Dolores Corella
- Consorcio CIBER, M. P. Fisiopatología de la Obesidad y Nutrición (CIBERObn)Instituto de Salud Carlos III (ISCIII) Madrid 28029 Spain
- Department of Preventive MedicineUniversity of Valencia Valencia 46020 Spain
| | - Courtney Dennis
- Broad Institute of MIT and Harvard University Cambridge MA 02142 USA
| | - Amy Deik
- Broad Institute of MIT and Harvard University Cambridge MA 02142 USA
| | - Dong D. Wang
- Department of NutritionHarvard T. H. Chan School of Public Health Boston MA 02115 USA
| | - Cristina Razquin
- Consorcio CIBER, M. P. Fisiopatología de la Obesidad y Nutrición (CIBERObn)Instituto de Salud Carlos III (ISCIII) Madrid 28029 Spain
- University of NavarraDepartment of Preventive Medicine and Public Health Pamplona 31008 Spain
- Navarra Institute for Health Research (IdisNA) Pamplona Navarra 31008 Spain
| | - Jean‐Philippe Drouin‐Chartier
- Department of NutritionHarvard T. H. Chan School of Public Health Boston MA 02115 USA
- Centre Nutrition, Santé et Société (NUTRISS), Institut sur la Nutrition et les Aliments Fonctionnels (INAF)Université Laval Québec G1V 0A6 Canada
- Faculté de PharmacieUniversité Laval Québec G1V 0A6 Canada
| | - Ramon Estruch
- Consorcio CIBER, M. P. Fisiopatología de la Obesidad y Nutrición (CIBERObn)Instituto de Salud Carlos III (ISCIII) Madrid 28029 Spain
- Department of Internal MedicineDepartment of Endocrinology and Nutrition Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Hospital ClinicUniversity of Barcelona Barcelona 08036 Spain
| | - Emilio Ros
- Consorcio CIBER, M. P. Fisiopatología de la Obesidad y Nutrición (CIBERObn)Instituto de Salud Carlos III (ISCIII) Madrid 28029 Spain
- Lipid Clinic, Department of Endocrinology and Nutrition Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Hospital ClinicUniversity of Barcelona Barcelona 08036 Spain
| | - Montserrat Fitó
- Consorcio CIBER, M. P. Fisiopatología de la Obesidad y Nutrición (CIBERObn)Instituto de Salud Carlos III (ISCIII) Madrid 28029 Spain
- Cardiovascular and Nutrition Research GroupInstitut de Recerca Hospital del Mar Barcelona 08003 Spain
| | - Fernando Arós
- Consorcio CIBER, M. P. Fisiopatología de la Obesidad y Nutrición (CIBERObn)Instituto de Salud Carlos III (ISCIII) Madrid 28029 Spain
- Department of CardiologyUniversity Hospital of Alava Vitoria 01009 Spain
| | - Miquel Fiol
- Consorcio CIBER, M. P. Fisiopatología de la Obesidad y Nutrición (CIBERObn)Instituto de Salud Carlos III (ISCIII) Madrid 28029 Spain
- Institute of Health Sciences IUNICSUniversity of Balearic Islands and Hospital Son Espases Palma de Mallorca 07122 Spain
| | - Lluís Serra‐Majem
- Consorcio CIBER, M. P. Fisiopatología de la Obesidad y Nutrición (CIBERObn)Instituto de Salud Carlos III (ISCIII) Madrid 28029 Spain
- Research Institute of Biomedical and Health Sciences IUIBSUniversity of Las Palmas de Gran Canaria Las Palmas 35001 Spain
| | - Liming Liang
- Departments of Epidemiology and StatisticsHarvard T. H. Chan School of Public Health Boston MA 02115 USA
| | - Miguel A Martínez‐González
- Consorcio CIBER, M. P. Fisiopatología de la Obesidad y Nutrición (CIBERObn)Instituto de Salud Carlos III (ISCIII) Madrid 28029 Spain
- University of NavarraDepartment of Preventive Medicine and Public Health Pamplona 31008 Spain
- Navarra Institute for Health Research (IdisNA) Pamplona Navarra 31008 Spain
- Department of NutritionHarvard T. H. Chan School of Public Health Boston MA 02115 USA
| | - Frank B Hu
- Broad Institute of MIT and Harvard University Cambridge MA 02142 USA
- Departments of Epidemiology and StatisticsHarvard T. H. Chan School of Public Health Boston MA 02115 USA
- Channing Division for Network Medicine, Department of MedicineBrigham and Women's Hospital and Harvard Medical School Boston MA 02115 USA
| | - Jordi Salas‐Salvadó
- Universitat Rovira i VirgiliDepartament de Bioquímica i Biotecnologia, Unitat de Nutrició Humana Hospital Universitari San Joan de Reus Reus 43201 Spain
- Institut d'Investigació Pere Virgili (IISPV) Reus 43003 Spain
- Consorcio CIBER, M. P. Fisiopatología de la Obesidad y Nutrición (CIBERObn)Instituto de Salud Carlos III (ISCIII) Madrid 28029 Spain
| |
Collapse
|
30
|
Kaviani M, Shaw K, Chilibeck PD. Benefits of Creatine Supplementation for Vegetarians Compared to Omnivorous Athletes: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17093041. [PMID: 32349356 PMCID: PMC7246861 DOI: 10.3390/ijerph17093041] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 04/20/2020] [Accepted: 04/24/2020] [Indexed: 12/16/2022]
Abstract
Background: Creatine monohydrate is a nutritional supplement often consumed by athletes in anaerobic sports. Creatine is naturally found in most meat products; therefore, vegetarians have reduced creatine stores and may benefit from supplementation. Objective: to determine the effects of creatine supplementation on vegetarians. Data sources: PubMed and SPORTDiscus. Eligibility criteria: Randomized controlled trials (parallel group, cross-over studies) or prospective studies. Participants: Vegetarians. Intervention: Creatine supplementation. Study appraisal and synthesis: A total of 64 records were identified, and eleven full-text articles (covering nine studies) were included in this systematic review. Results: Creatine supplementation in vegetarians increased total creatine, creatine, and phosphocreatine concentrations in vastus lateralis and gastrocnemius muscle, plasma, and red blood cells, often to levels greater than omnivores. Creatine supplementation had no effect on brain levels of phosphocreatine. Creatine supplementation increased lean tissue mass, type II fiber area, insulin-like growth factor-1, muscular strength, muscular endurance, Wingate mean power output, and brain function (memory and intelligence) in vegetarian participants. Studies were mixed on whether creatine supplementation improved exercise performance in vegetarians to a greater extent compared to omnivores. Limitations: Studies that were reviewed had moderate–high risk of bias. Conclusions: Overall, it appears vegetarian athletes are likely to benefit from creatine supplementation.
Collapse
Affiliation(s)
- Mojtaba Kaviani
- School of Nutrition and Dietetics, Faculty of Pure & Applied Science, Acadia University, Wolfville, NB B4P 2R6, Canada
- Correspondence: (M.K.); (P.D.C.); Tel.: +1-902-585-1884 (M.K.); +1-306-966-1072 (P.D.C.)
| | - Keely Shaw
- College of Kinesiology, University of Saskatchewan, 87 Campus Dr, Saskatoon, SK S7N 5B2, Canada;
| | - Philip D. Chilibeck
- College of Kinesiology, University of Saskatchewan, 87 Campus Dr, Saskatoon, SK S7N 5B2, Canada;
- Correspondence: (M.K.); (P.D.C.); Tel.: +1-902-585-1884 (M.K.); +1-306-966-1072 (P.D.C.)
| |
Collapse
|
31
|
Perim P, Marticorena FM, Ribeiro F, Barreto G, Gobbi N, Kerksick C, Dolan E, Saunders B. Can the Skeletal Muscle Carnosine Response to Beta-Alanine Supplementation Be Optimized? Front Nutr 2019; 6:135. [PMID: 31508423 PMCID: PMC6718727 DOI: 10.3389/fnut.2019.00135] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/09/2019] [Indexed: 12/14/2022] Open
Abstract
Carnosine is an abundant histidine-containing dipeptide in human skeletal muscle and formed by beta-alanine and L-histidine. It performs various physiological roles during exercise and has attracted strong interest in recent years with numerous investigations focused on increasing its intramuscular content to optimize its potential ergogenic benefits. Oral beta-alanine ingestion increases muscle carnosine content although large variation in response to supplementation exists and the amount of ingested beta-alanine converted into muscle carnosine appears to be low. Understanding of carnosine and beta-alanine metabolism and the factors that influence muscle carnosine synthesis with supplementation may provide insight into how beta-alanine supplementation may be optimized. Herein we discuss modifiable factors that may further enhance the increase of muscle carnosine in response to beta-alanine supplementation including, (i) dose; (ii) duration; (iii) beta-alanine formulation; (iv) dietary influences; (v) exercise; and (vi) co-supplementation with other substances. The aim of this narrative review is to outline the processes involved in muscle carnosine metabolism, discuss theoretical and mechanistic modifiable factors which may optimize the muscle carnosine response to beta-alanine supplementation and to make recommendations to guide future research.
Collapse
Affiliation(s)
- Pedro Perim
- Applied Physiology and Nutrition Research Group, Rheumatology Division, Faculdade de Medicina FMUSP, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Felipe Miguel Marticorena
- Applied Physiology and Nutrition Research Group, Rheumatology Division, Faculdade de Medicina FMUSP, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Felipe Ribeiro
- Applied Physiology and Nutrition Research Group, Rheumatology Division, Faculdade de Medicina FMUSP, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Gabriel Barreto
- Applied Physiology and Nutrition Research Group, Rheumatology Division, Faculdade de Medicina FMUSP, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Nathan Gobbi
- Applied Physiology and Nutrition Research Group, Rheumatology Division, Faculdade de Medicina FMUSP, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Chad Kerksick
- Exercise and Performance Nutrition Laboratory, Lindenwood University, St. Charles, MO, United States
| | - Eimear Dolan
- Applied Physiology and Nutrition Research Group, Rheumatology Division, Faculdade de Medicina FMUSP, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Bryan Saunders
- Applied Physiology and Nutrition Research Group, Rheumatology Division, Faculdade de Medicina FMUSP, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil.,Institute of Orthopaedics and Traumatology, Faculty of Medicine FMUSP, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
32
|
Lin TJ, Tang SC, Liao PY, Dongoran RA, Yang JH, Liu CH. A comparison of L-carnitine and several cardiovascular-related biomarkers between healthy vegetarians and omnivores. Nutrition 2019; 66:29-37. [PMID: 31202134 DOI: 10.1016/j.nut.2019.03.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/08/2019] [Accepted: 03/17/2019] [Indexed: 11/16/2022]
Abstract
OBJECTIVE A plant-based diet has been associated with a reduced risk of cardiovascular (CV) diseases. This study aimed to determine the levels and correlations of CV-related biomarkers and the beneficial role of dietary habits. METHODS A total of 63 healthy vegetarians (n = 32) and omnivores (n = 31) were recruited. The baseline characteristics were recorded and measured (including lipid profiles, blood glucose, etc.). Liquid chromatography-mass spectrometry method was developed for the simultaneous determination of seven circulating CV-related biomarkers. RESULTS L-carnitine (L-Car), L-methionine, and ascorbic acid (AA) were significantly higher in vegetarians than in omnivores. In the vegetarians, L-Car had a negative correlation with triacylglycerols (P = 0.042) and blood glucose (P = 0.048) and a positive correlation with high-density lipoprotein cholesterol (P = 0.049). L-Car was also positively correlated with L-lysine (P = 0.009), L-methionine (P = 0.006), and AA (P = 0.035). The vegetarians' AA also had a negative correlation with L-homocysteine (P = 0.028). In the omnivores, L-Car was negatively correlated with total cholesterol (P = 0.008), low-density lipoprotein cholesterol (P = 0.004), and high-density lipoprotein cholesterol (P = 0.038). Omnivores' body mass index was positively correlated with L-homocysteine (P = 0.033), and age was positively correlated with trimethylamine N-oxide (P < 0.001) and blood glucose (P = 0.007), but not in vegetarians. CONCLUSIONS Our results suggest that vegetarians have an elevated level of L-Car, which might be associated with endogenous biosynthesis and diet composition. Circulating L-Car might play an important role in CV protection, especially in vegetarians.
Collapse
Affiliation(s)
- Tsung-Jen Lin
- Department of Medicine, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Sheau-Chung Tang
- Department of Nursing, National Taichung University of Science and Technology, Taichung, Taiwan; Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Pei-Yun Liao
- Department of Dermatology, Buddhist Tzu Chi General Hospital, Hualien, Taiwan; Department of Research, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | - Rachmad Anres Dongoran
- Department of Medicine, School of Medicine, Tzu Chi University, Hualien, Taiwan; National Agency of Drug and Food Control Republic of Indonesia, Jambi, Indonesia
| | - Jen-Hung Yang
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, Taiwan; Department of Dermatology, Buddhist Tzu Chi General Hospital, Hualien, Taiwan; Institute of Medicine, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Chin-Hung Liu
- Department of Medicine, School of Medicine, Tzu Chi University, Hualien, Taiwan; Department of Pharmacology, School of Medicine, Tzu Chi University, Hualien, Taiwan.
| |
Collapse
|
33
|
MATTHEWS JOSEPHJ, ARTIOLI GUILHERMEG, TURNER MARKD, SALE CRAIG. The Physiological Roles of Carnosine and β-Alanine in Exercising Human Skeletal Muscle. Med Sci Sports Exerc 2019; 51:2098-2108. [DOI: 10.1249/mss.0000000000002033] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
34
|
Balestrino M, Adriano E. Beyond sports: Efficacy and safety of creatine supplementation in pathological or paraphysiological conditions of brain and muscle. Med Res Rev 2019; 39:2427-2459. [PMID: 31012130 DOI: 10.1002/med.21590] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 03/26/2019] [Accepted: 04/02/2019] [Indexed: 01/16/2023]
Abstract
Creatine is pivotal in energy metabolism of muscle and brain cells, both in physiological and in pathological conditions. Additionally, creatine facilitates the differentiation of muscle and neuronal cells. Evidence of effectiveness of creatine supplementation in improving several clinical conditions is now substantial, and we review it in this paper. In hereditary diseases where its synthesis is impaired, creatine has a disease-modifying capacity, especially when started soon after birth. Strong evidence, including a Cochrane meta-analysis, shows that it improves muscular strength and general well-being in muscular dystrophies. Significant evidence exists also of its effectiveness in secondary prevention of statin myopathy and of treatment-resistant depression in women. Vegetarians and vegans do not consume any dietary creatine and must synthesize all they need, spending most of their methylation capacity. Nevertheless, they have a lower muscular concentration of creatine. Creatine supplementation has proved effective in increasing muscular and neuropsychological performance in vegetarians or vegans and should, therefore, be recommended especially in those of them who are athletes, heavy-duty laborers or who undergo intense mental effort. Convincing evidence also exists of creatine effectiveness in muscular atrophy and sarcopenia in the elderly, and in brain energy shortage (mental fatigue, sleep deprivation, environmental hypoxia as in mountain climbing, and advanced age). Furthermore, we review more randomized, placebo-controlled trials showing that creatine supplementation is safe up to 20 g/d, with a possible caveat only in people with kidney disease. We trust that the evidence we review will be translated into clinical practice and will spur more research on these subjects.
Collapse
Affiliation(s)
- Maurizio Balestrino
- Dipartimento di Neuroscienze, Riabilitazione, Oftalmologia, Genetica e Scienze Materno-Infantili (DINOGMI), University of Genova, Genova, Italy.,Clinica Neurologica, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Enrico Adriano
- Dipartimento di Neuroscienze, Riabilitazione, Oftalmologia, Genetica e Scienze Materno-Infantili (DINOGMI), University of Genova, Genova, Italy
| |
Collapse
|
35
|
Pochini L, Galluccio M, Scalise M, Console L, Indiveri C. OCTN: A Small Transporter Subfamily with Great Relevance to Human Pathophysiology, Drug Discovery, and Diagnostics. SLAS DISCOVERY 2018; 24:89-110. [PMID: 30523710 DOI: 10.1177/2472555218812821] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OCTN is a small subfamily of membrane transport proteins that belongs to the larger SLC22 family. Two of the three members of the subfamily, namely, OCTN2 and OCTN1, are present in humans. OCTN2 plays a crucial role in the absorption of carnitine from diet and in its distribution to tissues, as demonstrated by the occurrence of severe pathologies caused by malfunctioning or altered expression of this transporter. These findings suggest avoiding a strict vegetarian diet during pregnancy and in childhood. Other roles of OCTN2 are related to the traffic of carnitine derivatives in many tissues. The role of OCTN1 is still unclear, despite the identification of some substrates such as ergothioneine, acetylcholine, and choline. Plausibly, the transporter acts on the control of inflammation and oxidative stress, even though knockout mice do not display phenotypes. A clear role of both transporters has been revealed in drug interaction and delivery. The polyspecificity of the OCTNs is at the base of the interactions with drugs. Interestingly, OCTN2 has been recently exploited in the prodrug approach and in diagnostics. A promising application derives from the localization of OCTN2 in exosomes that represent a noninvasive diagnostic tool.
Collapse
Affiliation(s)
- Lorena Pochini
- 1 Department DiBEST (Biologia, Ecologia, Scienze della Terra), Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy
| | - Michele Galluccio
- 1 Department DiBEST (Biologia, Ecologia, Scienze della Terra), Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy
| | - Mariafrancesca Scalise
- 1 Department DiBEST (Biologia, Ecologia, Scienze della Terra), Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy
| | - Lara Console
- 1 Department DiBEST (Biologia, Ecologia, Scienze della Terra), Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy
| | - Cesare Indiveri
- 1 Department DiBEST (Biologia, Ecologia, Scienze della Terra), Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy.,2 CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnology, Bari, Italy
| |
Collapse
|
36
|
Lynch H, Johnston C, Wharton C. Plant-Based Diets: Considerations for Environmental Impact, Protein Quality, and Exercise Performance. Nutrients 2018; 10:E1841. [PMID: 30513704 PMCID: PMC6316289 DOI: 10.3390/nu10121841] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/23/2018] [Accepted: 11/27/2018] [Indexed: 12/19/2022] Open
Abstract
Plant-based diets provide well-established physical and environmental health benefits. These benefits stem in part from the degree of restriction of animal-derived foods. Historically, meat and other animal-derived proteins have been viewed as an integral component of athletes' diets, leading some to question the adequacy of vegetarian or vegan diets for supporting athletic performance. The purpose of this review is to examine the impact of plant-based diets on human physical health, environmental sustainability, and exercise performance capacity. Based on currently available literature, it is unlikely that plant-based diets provide advantages, but do not suffer from disadvantages, compared to omnivorous diets for strength, anaerobic, or aerobic exercise performance. However, plant-based diets typically reduce the risk of developing numerous chronic diseases over the lifespan and require fewer natural resources for production compared to meat-containing diets. As such, plant-based diets appear to be viable options for adequately supporting athletic performance while concurrently contributing to overall physical and environmental health. Given the sparse literature comparing omnivore, vegetarian, and vegan athletes, particularly at the elite level, further research is warranted to ascertain differences that might appear at the highest levels of training and athletic performance.
Collapse
Affiliation(s)
- Heidi Lynch
- Point Loma Nazarene University, San Diego, CA 92106, USA.
| | | | | |
Collapse
|
37
|
A kinetic model of carnosine synthesis in human skeletal muscle. Amino Acids 2018; 51:115-121. [DOI: 10.1007/s00726-018-2646-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 08/27/2018] [Indexed: 11/25/2022]
|