1
|
Bečeheli I, Horvatiček M, Perić M, Nikolić B, Holuka C, Klasić M, Ivanišević M, Starčević M, Desoye G, Hranilović D, Turner JD, Štefulj J. Methylation of serotonin regulating genes in cord blood cells: association with maternal metabolic parameters and correlation with methylation in peripheral blood cells during childhood and adolescence. Clin Epigenetics 2024; 16:4. [PMID: 38172913 PMCID: PMC10765867 DOI: 10.1186/s13148-023-01610-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Serotonin (5-hydroxytryptamine, 5-HT) signaling is involved in neurodevelopment, mood regulation, energy metabolism, and other physiological processes. DNA methylation plays a significant role in modulating the expression of genes responsible for maintaining 5-HT balance, such as 5-HT transporter (SLC6A4), monoamine oxidase A (MAOA), and 5-HT receptor type 2A (HTR2A). Maternal metabolic health can influence long-term outcomes in offspring, with DNA methylation mediating these effects. We investigated associations between maternal metabolic parameters-pre-pregnancy body mass index (pBMI), gestational weight gain (GWG), and glucose tolerance status (GTS), i.e., gestational diabetes mellitus (GDM) versus normal glucose tolerance (NGT)-and cord blood methylation of SLC6A4, MAOA, and HTR2A in participants from our PlaNS birth cohort. CpG sites (15, 9, and 2 in each gene, respectively) were selected based on literature and in silico data. Methylation levels were quantified by bisulfite pyrosequencing. We also examined the stability of methylation patterns in these genes in circulating blood cells from birth to adolescence using longitudinal DNA methylation data from the ARIES database. RESULTS None of the 203 PlaNS mothers included in this study had preexisting diabetes, 99 were diagnosed with GDM, and 104 had NGT; all neonates were born at full term by planned Cesarean section. Methylation at most CpG sites differed between male and female newborns. SLC6A4 methylation correlated inversely with maternal pBMI and GWG, while methylation at HTR2A site -1665 correlated positively with GWG. None of the maternal metabolic parameters statistically associated with MAOA methylation. DNA methylation data in cord blood and peripheral blood at ages 7 and 15 years were available for 808 participants from the ARIES database; 4 CpG sites (2 in SLC6A4 and 2 in HTR2A) overlapped between the PlaNS and ARIES cohorts. A positive correlation between methylation levels in cord blood and peripheral blood at 7 and 15 years of age was observed for both SLC6A4 and HTR2A CpG sites. CONCLUSIONS Methylation of 5-HT regulating genes in cord blood cells is influenced by neonatal sex, with maternal metabolism playing an additional role. Inter-individual variations present in circulating blood cells at birth are still pronounced in childhood and adolescence.
Collapse
Affiliation(s)
- Ivona Bečeheli
- Division of Molecular Biology, Ruđer Bošković Institute, 10000, Zagreb, Croatia
| | - Marina Horvatiček
- Division of Molecular Biology, Ruđer Bošković Institute, 10000, Zagreb, Croatia
| | - Maja Perić
- Division of Molecular Biology, Ruđer Bošković Institute, 10000, Zagreb, Croatia
| | - Barbara Nikolić
- Department of Biology, Faculty of Science, University of Zagreb, 10000, Zagreb, Croatia
| | - Cyrielle Holuka
- Department of Infection and Immunity, Luxembourg Institute of Health, 4354, Esch-sur-Alzette, Luxembourg
- Faculty of Science, University of Luxembourg, 4365, Belval, Luxembourg
| | - Marija Klasić
- Department of Biology, Faculty of Science, University of Zagreb, 10000, Zagreb, Croatia
| | - Marina Ivanišević
- Department of Obstetrics and Gynecology, University Hospital Centre Zagreb, 10000, Zagreb, Croatia
| | - Mirta Starčević
- Department of Neonatology, University Hospital Centre Zagreb, 10000, Zagreb, Croatia
| | - Gernot Desoye
- Department of Obstetrics and Gynecology, Medical University of Graz, 8036, Graz, Austria
| | - Dubravka Hranilović
- Department of Biology, Faculty of Science, University of Zagreb, 10000, Zagreb, Croatia
| | - Jonathan D Turner
- Department of Infection and Immunity, Luxembourg Institute of Health, 4354, Esch-sur-Alzette, Luxembourg
| | - Jasminka Štefulj
- Division of Molecular Biology, Ruđer Bošković Institute, 10000, Zagreb, Croatia.
- University Department of Psychology, Catholic University of Croatia, 10000, Zagreb, Croatia.
| |
Collapse
|
2
|
Mohammadi AH, Karimian M, Mirzaei H, Milajerdi A. Epigenetic modifications and obsessive-compulsive disorder: what do we know? Brain Struct Funct 2023:10.1007/s00429-023-02649-4. [PMID: 37204485 DOI: 10.1007/s00429-023-02649-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/21/2023] [Indexed: 05/20/2023]
Abstract
Obsessive-Compulsive Disorder (OCD) is a chronic, severe disabling neuropsychiatric disorder whose pathophysiology is not yet well defined. Generally, the symptom onset occurs during pre-adult life and affects subjects in different life aspects, including professional and social relationships. Although robust evidence indicates the presence of genetic factors in the etiopathology of OCD, the entirely mechanisms are not totally clarified. Thus, the possible interactions between genes and environmental risk factors mediated by epigenetic mechanisms should be sought. Therefore, we provide a review of genetic and epigenetic mechanisms related to OCD with a deep focus on the regulation of critical genes of the central nervous system seeking possible potential biomarkers.
Collapse
Affiliation(s)
- Amir Hossein Mohammadi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran.
| | - Mohammad Karimian
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Milajerdi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
3
|
Li X, Xiao Z, Pu W, Jiang Z, Wang S, Zhang Y. Network pharmacology, molecular docking, and experimental validation to explore the potential mechanism of Long Mu Qing Xin mixture for the treatment of attention deficit hyperactivity disorder. Front Pharmacol 2023; 14:1144907. [PMID: 37007045 PMCID: PMC10063801 DOI: 10.3389/fphar.2023.1144907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/01/2023] [Indexed: 03/19/2023] Open
Abstract
Background: Long Mu Qing Xin Mixture (LMQXM) has shown potentially positive effects in alleviating attention deficit hyperactivity disorder (ADHD); however, the action mechanism is still not fully understood. This study aimed to predict the potential mechanism of LMQXM for ADHD using network pharmacology and molecular docking, which were then validated using animal experiments.Methods: Network pharmacology and molecular docking techniques were used to predict the core targets and potential pathways of LMQXMQ for ADHD, and KEGG pathway enrichment analysis revealed the potential significance of dopamine (DA) and cyclic adenosine monophosphate (cAMP) signaling pathways. To verify the hypothesis, we conducted an animal experiment. In the animal experiment, the young spontaneously hypertensive rats (SHRs) were randomly divided into the model group (SHR), the methylphenidate hydrochloride group (MPH, 4.22 mg/kg), and 3 LMQXM groups (low-dose (LD) group, 5.28 ml/kg; medium-dose (MD) group, 10.56 ml/kg; and high-dose (HD) group, 21.12 ml/kg), and administered by gavage for 4 weeks; the WKY rats were set as the control group. The open field test and Morris water maze test were used to evaluate the behavioral performance of rats, high performance liquid chromatography mass spectrometry (LC-MS) was used to analyze DA levels in the prefrontal cortex (PFC) and striatum of rats, ELISA was used to detect cAMP concentrations in the PFC and striatum, and immunohistochemistry and qPCR were used to analyze positive cell expression and mRNA expression for indicators related to DA and cAMP pathways.Results: The results showed that beta-sitosterol, stigmasterol, rhynchophylline, baicalein, and formononetin might be key components of LMQXM for ADHD and that these components bind well to the core targets, DA receptors (DRD1 and DRD2). Furthermore, LMQXM might act through the DA and cAMP signaling pathways. In the animal experiment, we found that MPH and LMQXM-MD controlled hyperactivity and improved learning and memory in SHRs, while LMQXM-HD only controlled hyperactivity in SHRs; meanwhile, MPH and LMQXM-MD upregulated DA and cAMP levels, mean optical density (MOD) of cAMP, and MOD and mRNA expression of DRD1 and PKA in the prefrontal cortex (PFC) and striatum of SHRs, while LMQXM-LD and LMQXM-HD upregulated DA and cAMP levels in the striatum, MOD of cAMP in the PFC, and mRNA expression of PKA in the PFC. However, we did not find a significant regulatory effect of LMQXM on DRD2.Conclusion: To sum up, this study demonstrated that LMQXM may increase DA levels mainly by activating the cAMP/PKA signaling pathway through DRD1, thereby controlling the behavioral disorders of SHRs, which is most effective at moderate doses, and this may be a key mechanism for LMQXM in the treatment of ADHD.
Collapse
Affiliation(s)
- Xuejun Li
- Pediatrics, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Longhua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhen Xiao
- Pediatrics, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Zhen Xiao, ; Zhiyan Jiang,
| | - Wenyan Pu
- Pediatrics, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Longhua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhiyan Jiang
- Pediatrics, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Zhen Xiao, ; Zhiyan Jiang,
| | - Shumin Wang
- Pediatrics, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Longhua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yixing Zhang
- Pediatrics, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Longhua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
4
|
Choi YJ, Cho J, Hong YC, Lee DW, Moon S, Park SJ, Lee KS, Shin CH, Lee YA, Kim BN, Kaminsky Z, Kim JI, Lim YH. DNA methylation is associated with prenatal exposure to sulfur dioxide and childhood attention-deficit hyperactivity disorder symptoms. Sci Rep 2023; 13:3501. [PMID: 36859453 PMCID: PMC9977725 DOI: 10.1038/s41598-023-29843-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 02/10/2023] [Indexed: 03/03/2023] Open
Abstract
Epigenetic influence plays a role in the association between exposure to air pollution and attention deficit hyperactivity disorder (ADHD); however, research regarding sulfur dioxide (SO2) is scarce. Herein, we investigate the associations between prenatal SO2 exposure and ADHD rating scale (ARS) at ages 4, 6 and 8 years repeatedly in a mother-child cohort (n = 329). Whole blood samples were obtained at ages 2 and 6 years, and genome-wide DNA methylation (DNAm) was analyzed for 51 children using the Illumina Infinium HumanMethylation BeadChip. We analyzed the associations between prenatal SO2 exposure and DNAm levels at ages 2 and 6, and further investigated the association between the DNAm and ARS at ages 4, 6 and 8. Prenatal SO2 exposure was associated with ADHD symptoms. From candidate gene analysis, DNAm levels at the 6 CpGs at age 2 were associated with prenatal SO2 exposure levels. Of the 6 CpGs, cg07583420 (INS-IGF2) was persistently linked with ARS at ages 4, 6 and 8. Epigenome-wide analysis showed that DNAm at 6733 CpG sites were associated with prenatal SO2 exposure, of which 58 CpGs involved in Notch signalling pathway were further associated with ARS at age 4, 6 and 8 years, persistently. DNAm at age 6 was not associated with prenatal SO2 exposure. Changes in DNAm levels associated with prenatal SO2 exposure during early childhood are associated with increases in ARS in later childhood.
Collapse
Affiliation(s)
- Yoon-Jung Choi
- National Cancer Center Graduate School of Cancer Science and Policy, Goyang, Republic of Korea.,Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.,Environmental Health Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jinwoo Cho
- Department of Statistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yun-Chul Hong
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.,Environmental Health Center, Seoul National University College of Medicine, Seoul, Republic of Korea.,Institute of Environmental Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Dong-Wook Lee
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.,Environmental Health Center, Seoul National University College of Medicine, Seoul, Republic of Korea.,Public Healthcare Center, Seoul National University Hospital, Seoul, Republic of Korea
| | - Sungji Moon
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Soo Jin Park
- Department of Surgery, Wonkwang University Sanbon Hospital, Gunpo, Republic of Korea
| | - Kyung-Shin Lee
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.,Environmental Health Center, Seoul National University College of Medicine, Seoul, Republic of Korea.,Public Health Research Institute, National Medical Center, Seoul, Republic of Korea
| | - Choong Ho Shin
- Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Children's Hospital, Seoul, Republic of Korea
| | - Young Ah Lee
- Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Children's Hospital, Seoul, Republic of Korea
| | - Bung-Nyun Kim
- Division of Children and Adolescent Psychiatry, Department of Psychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Zachary Kaminsky
- Institute of Mental Health Research, University of Ottawa, Ottawa, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada.,Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Johanna Inhyang Kim
- Department of Psychiatry, Hanyang University Medical Center, 222-1 Wangsimni-Ro, Seongdong-Gu, Seoul, 04763, Republic of Korea.
| | - Youn-Hee Lim
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea. .,Section of Environmental Epidemiology, Department of Public Health, University of Copenhagen, Østerster Farimagsgade 5, 1014, København K, Copenhagen, Denmark.
| |
Collapse
|
5
|
He Q, Lian C, Peng S, Chen H, Kang Q, Chen J. Hypermethylation of the serotonin transporter gene and paternal parenting styles in untreated anorexia nervosa patients: A pilot study. Heliyon 2023; 9:e12635. [PMID: 36747546 PMCID: PMC9898629 DOI: 10.1016/j.heliyon.2022.e12635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 10/28/2022] [Accepted: 12/19/2022] [Indexed: 01/13/2023] Open
Abstract
Purpose It has been reported that serotonergic systems and parenting styles are involved in the pathogenesis of anorexia nervosa (AN). The present study made attempts to examine the DNA methylation profiles in the promoter region of serotonin transporter (5-HTT) encoding gene SLC6A4, and explore the association between the methylation level and severity of symptoms, 5-HTT linked polymorphic region (5-HTTLPR) genotypes and parenting styles in untreated Chinese Han AN patients. Methods Ninety-one untreated female AN patients (ANs) and eighty-seven matched healthy controls (HCs) were analyzed for DNA methylation status at CpG islands in the promoter region of SLC6A4 using MassARRY EpiTYPER, and genotypes of 5-HTTLPR using PCR-RFLP. The severity of eating disorder (ED) symptoms was evaluated by body mass index (BMI) and Questionnaire Version of the Eating Disorders Examination (EDE-Q 6.0), and part of participants were assessed parenting styles using the short Chinese Egna Minnen av Barndoms Uppfostra (s-EMBU-C). Results ANs had greater methylation levels at CpG26.27.28, CpG 31.32, and CpG 37 than HCs (P = 0.039, 0.042, 0.018 respectively). A positive association of methylation level at CpG26.27.28 with ED symptoms detected by EDEQ-6.0 was discovered in AN group (r = 0.216, P = 0.047). Methylation level at CpG26.27.28 was showed to be or tend to be positively correlated with the parenting styles of paternal rejection (r = 0.425, P = 0.038) and paternal overprotection (r = 0.362, P = 0.062) in ANs. No significant differences were found in SLC6A4 promoter region methylation levels among 5-HTTLPR genotypes in our samples (P > 0.05) and no interaction effect between 5-HTTLPR genotypes and parenting styles on SLC6A4 promoter region methylation was observed (P > 0.05). Conclusions This study suggested that hypermethylation of SLC6A4 promoter region may be implicated in the pathological mechanisms of untreated Chinese Han female ANs, which is possibly associated with poor parenting styles. This finding may provide a direction for the epigenetic and family treatments for ANs and further investigation with larger samples is warranted.
Collapse
|
6
|
Kouter K, Zupanc T, Videtič Paska A. Targeted sequencing approach: Comprehensive analysis of DNA methylation and gene expression across blood and brain regions in suicide victims. World J Biol Psychiatry 2023; 24:12-23. [PMID: 35200087 DOI: 10.1080/15622975.2022.2046291] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVES Epigenetic mechanisms are involved in regulation of many pathologies, including suicidal behaviour. However, the factors through which epigenetics affect suicidal behaviour are not fully understood. METHODS We analysed DNA methylation of eight neuropsychiatric genes (NR3C1, SLC6A4, HTR1A, TPH2, SKA2, MAOA, GABRA1, and NRIP3) in brain regions (hippocampus, insula, amygdala, Brodmann area 46) and blood of 25 male suicide victims and 28 male control subjects, using bisulphite next-generation sequencing. RESULTS Comparing mean methylation values, notable changes were observed in NR3C1 (insula p-value = 0.05), HTR1A (insula p-value < 0.001, blood p-value = 0.001), SKA2 (insula p-value = 0.03, blood p-value = 0.016), MAOA (blood p-value < 0.001), GABRA1 (insula p-value = 0.05, blood p-value = 0.024) and NRIP3 (hippocampus p-value = 0.001, insula p-value = 0.002, amygdala p-value = 0.014). Comparing methylation pattern between blood and brain, similarity was observed between blood and insula for HTR1A. Gene expression analysis in hippocampus revealed changes in expression of NR3C1 (p-value = 0.049), SLC6A4 (p-value = 0.017) and HTR1A (p-value = 0.053). CONCLUSIONS Results provide an insight into the altered state of DNA methylation in suicidal behaviour. Epigenetic differences could therefore affect suicidal behaviour in both previously known and in novel neuropsychiatric candidate genes.
Collapse
Affiliation(s)
- Katarina Kouter
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tomaž Zupanc
- Institute of Forensic Medicine, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Alja Videtič Paska
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
7
|
Azar N, Booij L. DNA methylation as a mediator in the association between prenatal maternal stress and child mental health outcomes: Current state of knowledge. J Affect Disord 2022; 319:142-163. [PMID: 36113690 DOI: 10.1016/j.jad.2022.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 10/14/2022]
Abstract
BACKGROUND Prenatal maternal stress is increasingly recognized as a risk factor for offspring mental health challenges. DNA methylation may be a mechanism, but few studies directly tested mediation. These few integrative studies are reviewed along with studies from three research areas: prenatal maternal stress and child mental health, prenatal maternal stress and child DNA methylation, and child mental health and DNA methylation. METHODS We conducted a narrative review of articles in each research area and the few published integrative studies to evaluate the state of knowledge. RESULTS Prenatal maternal stress was related to greater offspring internalizing and externalizing symptoms and to greater offspring peripheral DNA methylation of the NR3C1 gene. Youth mental health problems were also related to NR3C1 hypermethylation while epigenome-wide studies identified genes involved in nervous system development. Integrative studies focused on infant outcomes and did not detect significant mediation by DNA methylation though methodological considerations may partially explain these null results. LIMITATIONS Operationalization of prenatal maternal stress and child mental health varied greatly. The few published integrative studies did not report conclusive evidence of mediation by DNA methylation. CONCLUSIONS DNA methylation likely mediates the association between prenatal maternal stress and child mental health. This conclusion still needs to be tested in a larger number of integrative studies. Key empirical and statistical considerations for future research are discussed. Understanding the consequences of prenatal maternal stress and its pathways of influence will help prevention and intervention efforts and ultimately promote well-being for both mothers and children.
Collapse
Affiliation(s)
- Naomi Azar
- Department of Psychology, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec H4B 1R6, Canada; Sainte-Justine University Hospital Research Center, 3175 chemin de la Côte-Sainte-Catherine, Montreal, Quebec H3T 1C5, Canada
| | - Linda Booij
- Department of Psychology, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec H4B 1R6, Canada; Sainte-Justine University Hospital Research Center, 3175 chemin de la Côte-Sainte-Catherine, Montreal, Quebec H3T 1C5, Canada; Department of Psychiatry and Addictology, Faculty of Medicine, Pavillon Roger-Gaudry, Université de Montréal, P.O. Box 6128, succursale Centre-ville, Montréal, Québec H3C 3J7, Canada.
| |
Collapse
|
8
|
Park EJ, Park YM, Lee SH, Kim B. The Loudness Dependence of Auditory Evoked Potentials is associated with the Symptom Severity and Treatment in Boys with Attention Deficit Hyperactivity Disorder. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2022; 20:514-525. [PMID: 35879036 PMCID: PMC9329111 DOI: 10.9758/cpn.2022.20.3.514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 01/20/2022] [Accepted: 02/02/2022] [Indexed: 11/18/2022]
Abstract
Objective Methods Results Conclusion
Collapse
Affiliation(s)
- Eun Jin Park
- Department of Psychiatry, Inje University Ilsan Paik Hospital, Goyang, Korea
| | - Young-Min Park
- Department of Psychiatry, Inje University Ilsan Paik Hospital, Goyang, Korea
| | - Seung-Hwan Lee
- Department of Psychiatry, Inje University Ilsan Paik Hospital, Goyang, Korea
| | - Bongseog Kim
- Department of Psychiatry, Inje University Sanggye Paik Hospital, Seoul, Korea
| |
Collapse
|
9
|
Silk T, Dipnall L, Wong YT, Craig JM. Epigenetics and ADHD. Curr Top Behav Neurosci 2022; 57:269-289. [PMID: 35505060 DOI: 10.1007/7854_2022_339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
There is robust evidence of genetic susceptibility to Attention-Deficit Hyperactivity Disorder (ADHD); however, there still remains significant variability that is not attributable to genetic factors. The emerging field of epigenetics is beginning to reveal how genotypic expression can be mediated by an array of variables including external environmental exposure, inter-individual developmental variation, and by the genome itself. Epigenetic modification plays a central role in neurobiological and developmental processes, and disturbances to these processes can have implications for a range of mental health problems. Although the field is still in its early days, this chapter will discuss the current standing of epigenetic research into ADHD. Firstly, key relevant epigenetic processes will be discussed. This will be followed by an overview of the key findings to date investigating the role of epigenetics in ADHD. Human studies have included the theory-driven approach of candidate-gene studies (CGS), as well as the increasingly popular exploratory approach of epigenome-wide association studies (EWAS). Overall, the findings are heterogeneous. However, it is possible that with more longitudinal studies and better characterised cohorts, both predictive and protective links between epigenetic processes and ADHD will be revealed.
Collapse
Affiliation(s)
- Timothy Silk
- Centre for Social and Early Emotional Development and School of Psychology, Deakin University, Geelong, VIC, Australia. .,Murdoch Children's Research Institute, Parkville, VIC, Australia.
| | - Lillian Dipnall
- Centre for Social and Early Emotional Development and School of Psychology, Deakin University, Geelong, VIC, Australia
| | - Yen Ting Wong
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Jeffrey M Craig
- Murdoch Children's Research Institute, Parkville, VIC, Australia.,Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
10
|
Kian N, Samieefar N, Rezaei N. Prenatal risk factors and genetic causes of ADHD in children. World J Pediatr 2022; 18:308-319. [PMID: 35235183 DOI: 10.1007/s12519-022-00524-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 02/07/2022] [Indexed: 12/18/2022]
Abstract
BACKGROUND Attention deficit/hyperactivity disorder (ADHD) is a common disease among children; it affected 5-7% of the population in 2015. ADHD is a multifactorial disease, and its etiology is still not clearly understood. DATA SOURCES This narrative review has been done by searching the PubMed and Embase databases using attention deficit/hyperactivity disorder, ADHD, risk factors; genetics; pediatrics; psychiatrics as keywords. RESULTS ADHD is considered to be a hereditary disorder in which genes play the fundamental role in the pathogenesis; however, findings from genetic-environmental studies support the hypothesis that genetic factors can exert effects on an individual's condition by determining his/her responses to environmental exposures, especially those during the prenatal stage. CONCLUSION ADHD is considered as a hereditary disorder in which genes and prenatal risk factors play fundamental roles in the pathogenesis.
Collapse
Affiliation(s)
- Naghmeh Kian
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,USERN Office, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Noosha Samieefar
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,USERN Office, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Tehran, Iran. .,Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Fujisawa TX, Nishitani S, Makita K, Yao A, Takiguchi S, Hamamura S, Shimada K, Okazawa H, Matsuzaki H, Tomoda A. Association of Epigenetic Differences Screened in a Few Cases of Monozygotic Twins Discordant for Attention-Deficit Hyperactivity Disorder With Brain Structures. Front Neurosci 2022; 15:799761. [PMID: 35145374 PMCID: PMC8823258 DOI: 10.3389/fnins.2021.799761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/16/2021] [Indexed: 11/13/2022] Open
Abstract
The present study examined the relationship between DNA methylation differences and variations in brain structures involved in the development of attention-deficit hyperactivity disorder (ADHD). First, we used monozygotic (MZ) twins discordant (2 pairs of 4 individuals, 2 boys, mean age 12.5 years) for ADHD to identify candidate DNA methylation sites involved in the development of ADHD. Next, we tried to replicate these candidates in a case-control study (ADHD: N = 18, 15 boys, mean age 10.0 years; Controls: N = 62, 40 boys, mean age 13.9 years). Finally, we examined how methylation rates at those sites relate to the degree of local structural alterations where significant differences were observed between cases and controls. As a result, we identified 61 candidate DNA methylation sites involved in ADHD development in two pairs of discordant MZ twins, among which elevated methylation at a site in the sortilin-related Vps10p domain containing receptor 2 (SorCS2) gene was replicated in the case-control study. We also observed that the ADHD group had significantly reduced gray matter volume (GMV) in the precentral and posterior orbital gyri compared to the control group and that this volume reduction was positively associated with SorCS2 methylation. Furthermore, the reduced GMV regions in children with ADHD are involved in language processing and emotional control, while SorCS2 methylation is also negatively associated with emotional behavioral problems in children. These results indicate that SorCS2 methylation might mediate a reduced GMV in the precentral and posterior orbital gyri and therefore influence the pathology of children with ADHD.
Collapse
Affiliation(s)
- Takashi X. Fujisawa
- Research Center for Child Mental Development, University of Fukui, Fukui, Japan
- Division of Developmental Higher Brain Functions, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Osaka, Japan
- *Correspondence: Takashi X. Fujisawa,
| | - Shota Nishitani
- Research Center for Child Mental Development, University of Fukui, Fukui, Japan
- Division of Developmental Higher Brain Functions, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Osaka, Japan
| | - Kai Makita
- Research Center for Child Mental Development, University of Fukui, Fukui, Japan
| | - Akiko Yao
- Research Center for Child Mental Development, University of Fukui, Fukui, Japan
- Division of Developmental Higher Brain Functions, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Osaka, Japan
| | - Shinichiro Takiguchi
- Department of Child and Adolescent Psychological Medicine, University of Fukui Hospital, Fukui, Japan
| | - Shoko Hamamura
- Division of Developmental Higher Brain Functions, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Osaka, Japan
- Department of Child and Adolescent Psychological Medicine, University of Fukui Hospital, Fukui, Japan
| | - Koji Shimada
- Research Center for Child Mental Development, University of Fukui, Fukui, Japan
- Division of Developmental Higher Brain Functions, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Osaka, Japan
- Biomedical Imaging Research Center, University of Fukui, Fukui, Japan
| | - Hidehiko Okazawa
- Research Center for Child Mental Development, University of Fukui, Fukui, Japan
- Division of Developmental Higher Brain Functions, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Osaka, Japan
- Biomedical Imaging Research Center, University of Fukui, Fukui, Japan
| | - Hideo Matsuzaki
- Research Center for Child Mental Development, University of Fukui, Fukui, Japan
- Division of Developmental Higher Brain Functions, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Osaka, Japan
- Department of Child and Adolescent Psychological Medicine, University of Fukui Hospital, Fukui, Japan
| | - Akemi Tomoda
- Research Center for Child Mental Development, University of Fukui, Fukui, Japan
- Division of Developmental Higher Brain Functions, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Osaka, Japan
- Department of Child and Adolescent Psychological Medicine, University of Fukui Hospital, Fukui, Japan
- *Correspondence: Takashi X. Fujisawa,
| |
Collapse
|
12
|
Current Understanding of the Genetics of Tourette Syndrome. Biomed J 2022; 45:271-279. [PMID: 35042017 PMCID: PMC9250083 DOI: 10.1016/j.bj.2022.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/09/2022] [Accepted: 01/10/2022] [Indexed: 12/13/2022] Open
Abstract
Gilles de la Tourette syndrome (TS) is a common, childhood-onset psychiatric disorder characterized by persistent motor and vocal tics. It is a heterogeneous disorder in which the phenotypic expression may be affected by environmental factors, such as immune responses. Furthermore, several studies have shown that genetic factors play a vital role in the etiology of TS, as well as its comorbidity with other disorders, including attention deficit hyperactivity disorder, obsessive-compulsive disorder, and autism spectrum disorder. TS has a complex inheritance pattern and, according to various genetic studies, several genes and loci have been correlated with TS. Genome-wide linkage studies have identified Slit and Trk-like 1 (SLITRK1) and histidine decarboxylase (HDC) genes, and candidate gene association studies have extensively investigated the dopamine and serotonin system genes, but there have been no consistent results. Moreover, genome-wide association studies have implicated several genetic loci; however, larger study cohorts are needed to confirm this. Copy number variations, which are polymorphisms in the number of gene copies due to chromosomal deletions or duplications, are considered another significant source of mutations in TS. In the last decade, whole genome/exome sequencing has identified several novel genetic mutations in patients with TS. In conclusion, more studies are needed to reveal the exact mechanisms of underlying TS, which may help to provide more information on the prognosis and therapeutic plans for TS.
Collapse
|
13
|
Yeh TC, Bai YM, Hsu JW, Huang KL, Tsai SJ, Chu HT, Liang CS, Chen MH. Bipolar women's antepartum psychotropic exposure and offspring risk of attention-deficit/hyperactivity disorder and autism spectrum disorder. J Affect Disord 2021; 295:1407-1414. [PMID: 34565590 DOI: 10.1016/j.jad.2021.09.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 08/23/2021] [Accepted: 09/12/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Women with bipolar disorder (BD) may continue psychotropics during pregnancy. The association of exposure to antidepressant, antipsychotics, and mood stabilizers with offspring risks of attention-deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) remains unexplored in mothers with BD. METHODS A total of 5669 pregnant women with BD and 5669 psychiatrically healthy controls were identified between 2002 and 2011 from the Taiwan Longitudinal Health Insurance Database. We analyzed the odds ratios (ORs) of psychotropic types and exposure periods (3 months before pregnancy [3MbPreg] and first, second, and third trimesters [T1, T2, T3, respectively]) on the risk of ADHD and ASD by using adjusted logistic regression analyses. RESULTS Antidepressant exposure during 3MbPreg (OR=2.15, 95% CI=1.45-3.20), T1 (OR=2.62, 95% CI=1.68-4.09), T2 (OR=2.33, 95% CI=1.18-4.63), and T3 (OR=2.33, 95% CI=1.67-6.61) was associated with increased offspring risk of ADHD, particularly for selective serotonin reuptake inhibitor and serotonin norepinephrine reuptake inhibitor. Mood stabilizer exposure during 3MbPreg increased the risks of ADHD (OR=2.39, 95% CI=1.45-3.95) and ASD (OR=3.89, 95% CI=1.30-11.65); a higher ADHD risk was associated with valproic acid (OR=2.43, 95% CI=1.32-4.47) and lamotrigine exposure (OR=8.24, 95% CI = 1.49-45.67); ASD risk was higher for lithium exposure (OR=6.75, 95% CI=1.41-32.28). LIMITATION In claims-data analyses, several clinical parameters or potential confounders may be incompletely captured. CONCLUSIONS Antidepressants were associated with higher offspring risk of ADHD over all gestation periods among mothers with BD than psychiatrically healthy controls, while mood stabilizers were associated with higher risk of ADHD and ASD during 3MbPreg.
Collapse
Affiliation(s)
- Ta-Chuan Yeh
- Department of Psychiatry, Tri-Service General Hospital; School of Medicine, National Defense Medical Center, Taipei, Taiwan; Department of Psychiatry, Penghu Branch, Tri-Service General Hospital, Penghu, Taiwan; Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ya-Mei Bai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Psychiatry, College of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Ju-Wei Hsu
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Psychiatry, College of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Kai-Ling Huang
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Psychiatry, College of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Psychiatry, College of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Hsuan-Te Chu
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Psychiatry, Beitou Branch, Tri-Service General Hospital; School of Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Chih-Sung Liang
- Department of Psychiatry, Beitou Branch, Tri-Service General Hospital; School of Medicine, National Defense Medical Center, Taipei, Taiwan; Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.
| | - Mu-Hong Chen
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan.
| |
Collapse
|
14
|
Shirvani-Farsani Z, Maloum Z, Bagheri-Hosseinabadi Z, Vilor-Tejedor N, Sadeghi I. DNA methylation signature as a biomarker of major neuropsychiatric disorders. J Psychiatr Res 2021; 141:34-49. [PMID: 34171761 DOI: 10.1016/j.jpsychires.2021.06.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/27/2021] [Accepted: 06/09/2021] [Indexed: 02/07/2023]
Abstract
DNA methylation is a broadly-investigated epigenetic modification that has been considered as a heritable and reversible change. Previous findings have indicated that DNA methylation regulates gene expression in the central nervous system (CNS). Also, disturbance of DNA methylation patterns has been associated with destructive consequences that lead to human brain diseases such as neuropsychiatric disorders (NPDs). In this review, we comprehensively discuss the mechanism and function of DNA methylation and its most recent associations with the pathology of NPDs-including major depressive disorder (MDD), schizophrenia (SZ), autism spectrum disorder (ASD), bipolar disorder (BD), and attention/deficit hyperactivity disorder (ADHD). We also discuss how heterogeneous findings demand further investigations. Finally, based on the recent studies we conclude that DNA methylation status may have implications in clinical diagnostics and therapeutics as a potential epigenetic biomarker of NPDs.
Collapse
Affiliation(s)
- Zeinab Shirvani-Farsani
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University G.C., Tehran, IR, Iran.
| | - Zahra Maloum
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University G.C., Tehran, IR, Iran.
| | - Zahra Bagheri-Hosseinabadi
- Department of Clinical Biochemistry, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| | - Natalia Vilor-Tejedor
- BarcelonaBeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Carrer Wellington 30, 08005, Barcelona, Spain; Center for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain; Erasmus University Medical Center, Department of Clinical Genetics, Rotterdam, the Netherlands; Pompeu Fabra University, Barcelona, Spain.
| | - Iman Sadeghi
- BarcelonaBeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Carrer Wellington 30, 08005, Barcelona, Spain; Center for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain.
| |
Collapse
|
15
|
Genetic variations influence brain changes in patients with attention-deficit hyperactivity disorder. Transl Psychiatry 2021; 11:349. [PMID: 34091591 PMCID: PMC8179928 DOI: 10.1038/s41398-021-01473-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 05/04/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022] Open
Abstract
Attention-deficit hyperactivity disorder (ADHD) is a neurological and neurodevelopmental childhood-onset disorder characterized by a persistent pattern of inattentiveness, impulsiveness, restlessness, and hyperactivity. These symptoms may continue in 55-66% of cases from childhood into adulthood. Even though the precise etiology of ADHD is not fully understood, it is considered as a multifactorial and heterogeneous disorder with several contributing factors such as heritability, auxiliary to neurodevelopmental issues, severe brain injuries, neuroinflammation, consanguineous marriages, premature birth, and exposure to environmental toxins. Neuroimaging and neurodevelopmental assessments may help to explore the possible role of genetic variations on ADHD neuropsychobiology. Multiple genetic studies have observed a strong genetic association with various aspects of neuropsychobiological functions, including neural abnormalities and delayed neurodevelopment in ADHD. The advancement in neuroimaging and molecular genomics offers the opportunity to analyze the impact of genetic variations alongside its dysregulated pathways on structural and functional derived brain imaging phenotypes in various neurological and psychiatric disorders, including ADHD. Recently, neuroimaging genomic studies observed a significant association of brain imaging phenotypes with genetic susceptibility in ADHD. Integrating the neuroimaging-derived phenotypes with genomics deciphers various neurobiological pathways that can be leveraged for the development of novel clinical biomarkers, new treatment modalities as well as therapeutic interventions for ADHD patients. In this review, we discuss the neurobiology of ADHD with particular emphasis on structural and functional changes in the ADHD brain and their interactions with complex genomic variations utilizing imaging genetics methodologies. We also highlight the genetic variants supposedly allied with the development of ADHD and how these, in turn, may affect the brain circuit function and related behaviors. In addition to reviewing imaging genetic studies, we also examine the need for complementary approaches at various levels of biological complexity and emphasize the importance of combining and integrating results to explore biological pathways involved in ADHD disorder. These approaches include animal models, computational biology, bioinformatics analyses, and multimodal imaging genetics studies.
Collapse
|
16
|
DNA Methylation in LIME1 and SPTBN2 Genes Is Associated with Attention Deficit in Children. CHILDREN-BASEL 2021; 8:children8020092. [PMID: 33572947 PMCID: PMC7912017 DOI: 10.3390/children8020092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/13/2021] [Accepted: 01/26/2021] [Indexed: 12/15/2022]
Abstract
DNA methylation levels are associated with neurodevelopment. Attention-deficit/hyperactivity disorder (ADHD), characterized by attention deficits, is a common neurodevelopmental disorder. We used methylation microarray and pyrosequencing to detect peripheral blood DNA methylation markers of ADHD. DNA methylation profiling data from the microarray assays identified potential differentially methylated CpG sites between 12 ADHD patients and 9 controls. Five candidate CpG sites (cg00446123, cg20513976, cg07922513, cg17096979, and cg02506324) in four genes (LIME1, KCNAB2, CAPN9, and SPTBN2) were further examined with pyrosequencing. The attention of patients were tested using the Conners’ Continuous Performance Test (CPT). In total, 126 ADHD patients with a mean age of 9.2 years (78.6% males) and 72 healthy control subjects with a mean age of 9.3 years (62.5% males) were recruited. When all participants were categorized by their CPT performance, the DNA methylation levels in LIME1 (cg00446123 and cg20513976) were found to be significantly higher and those in SPTBN2 (cg02506324) were significantly lower in children with worse CPT performance. Therefore, DNA methylation of two CpG sites in LIME1 and one CpG site in SPTBN2 is associated with attention deficits in children. DNA methylation biomarkers may assist in identifying attention deficits of children in clinical settings.
Collapse
|
17
|
Hildonen M, Levy AM, Dahl C, Bjerregaard VA, Birk Møller L, Guldberg P, Debes NM, Tümer Z. Elevated Expression of SLC6A4 Encoding the Serotonin Transporter (SERT) in Gilles de la Tourette Syndrome. Genes (Basel) 2021; 12:86. [PMID: 33445578 PMCID: PMC7827645 DOI: 10.3390/genes12010086] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/08/2021] [Accepted: 01/09/2021] [Indexed: 01/02/2023] Open
Abstract
Gilles de la Tourette syndrome (GTS) is a complex neurodevelopmental disorder characterized by motor and vocal tics. Most of the GTS individuals have comorbid diagnoses, of which obsessive-compulsive disorder (OCD) and attention deficit-hyperactivity disorder (ADHD) are the most common. Several neurotransmitter systems have been implicated in disease pathogenesis, and amongst these, the dopaminergic and the serotonergic pathways are the most widely studied. In this study, we aimed to investigate whether the serotonin transporter (SERT) gene (SLC6A4) was differentially expressed among GTS individuals compared to healthy controls, and whether DNA variants (the SERT-linked polymorphic region 5-HTTLPR, together with the associated rs25531 and rs25532 variants, and the rare Ile425Val variant) or promoter methylation of SLC6A4 were associated with gene expression levels or with the presence of OCD as comorbidity. We observed that SLC6A4 expression is upregulated in GTS individuals compared to controls. Although no specific genotype, allele or haplotype was overrepresented in GTS individuals compared to controls, we observed that the LAC/LAC genotype of the 5-HTTLPR/rs25531/rs25532 three-locus haplotype was associated with higher SLC6A4 mRNA expression levels in GTS individuals, but not in the control group.
Collapse
Affiliation(s)
- Mathis Hildonen
- Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, 2600 Glostrup, Denmark; (M.H.); (A.M.L.); (V.A.B.); (L.B.M.)
| | - Amanda M. Levy
- Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, 2600 Glostrup, Denmark; (M.H.); (A.M.L.); (V.A.B.); (L.B.M.)
| | - Christina Dahl
- Danish Cancer Society Research Center, 2100 Copenhagen, Denmark; (C.D.); (P.G.)
| | - Victoria A. Bjerregaard
- Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, 2600 Glostrup, Denmark; (M.H.); (A.M.L.); (V.A.B.); (L.B.M.)
| | - Lisbeth Birk Møller
- Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, 2600 Glostrup, Denmark; (M.H.); (A.M.L.); (V.A.B.); (L.B.M.)
- Institute for Nature, Systems and Models, Roskilde University Center, 4000 Roskilde, Denmark
| | - Per Guldberg
- Danish Cancer Society Research Center, 2100 Copenhagen, Denmark; (C.D.); (P.G.)
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
| | - Nanette M. Debes
- Tourette Clinics, Department of Paediatrics, Copenhagen University Hospital, 2730 Herlev, Denmark;
| | - Zeynep Tümer
- Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, 2600 Glostrup, Denmark; (M.H.); (A.M.L.); (V.A.B.); (L.B.M.)
- Deparment of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2020 Copenhagen, Denmark
| |
Collapse
|
18
|
Rovira P, Sánchez-Mora C, Pagerols M, Richarte V, Corrales M, Fadeuilhe C, Vilar-Ribó L, Arribas L, Shireby G, Hannon E, Mill J, Casas M, Ramos-Quiroga JA, Soler Artigas M, Ribasés M. Epigenome-wide association study of attention-deficit/hyperactivity disorder in adults. Transl Psychiatry 2020; 10:199. [PMID: 32561708 PMCID: PMC7305172 DOI: 10.1038/s41398-020-0860-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 05/05/2020] [Accepted: 05/15/2020] [Indexed: 12/16/2022] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a highly heritable neurodevelopmental disorder that often persists into adulthood. There is growing evidence that epigenetic dysregulation participates in ADHD. Given that only a limited number of epigenome-wide association studies (EWASs) of ADHD have been conducted so far and they have mainly focused on pediatric and population-based samples, we performed an EWAS in a clinical sample of adults with ADHD. We report one CpG site and four regions differentially methylated between patients and controls, which are located in or near genes previously involved in autoimmune diseases, cancer or neuroticism. Our sensitivity analyses indicate that smoking status is not responsible for these results and that polygenic risk burden for ADHD does not greatly impact the signatures identified. Additionally, we show an overlap of our EWAS findings with genetic signatures previously described for ADHD and with epigenetic signatures for smoking behavior and maternal smoking. These findings support a role of DNA methylation in ADHD and emphasize the need for additional efforts in larger samples to clarify the role of epigenetic mechanisms on ADHD across the lifespan.
Collapse
Affiliation(s)
- Paula Rovira
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Cristina Sánchez-Mora
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Genetics, Microbiology, and Statistics, Faculty of Biology, University of Barcelona, Catalonia, Spain
| | - Mireia Pagerols
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Vanesa Richarte
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Montserrat Corrales
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Christian Fadeuilhe
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Laura Vilar-Ribó
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Lorena Arribas
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Gemma Shireby
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Eilis Hannon
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Jonathan Mill
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Miquel Casas
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Josep Antoni Ramos-Quiroga
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - María Soler Artigas
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain.
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain.
- Department of Genetics, Microbiology, and Statistics, Faculty of Biology, University of Barcelona, Catalonia, Spain.
| | - Marta Ribasés
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain.
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain.
- Department of Genetics, Microbiology, and Statistics, Faculty of Biology, University of Barcelona, Catalonia, Spain.
| |
Collapse
|
19
|
Wheater ENW, Stoye DQ, Cox SR, Wardlaw JM, Drake AJ, Bastin ME, Boardman JP. DNA methylation and brain structure and function across the life course: A systematic review. Neurosci Biobehav Rev 2020; 113:133-156. [PMID: 32151655 PMCID: PMC7237884 DOI: 10.1016/j.neubiorev.2020.03.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 03/03/2020] [Accepted: 03/05/2020] [Indexed: 01/01/2023]
Abstract
MRI has enhanced our capacity to understand variations in brain structure and function conferred by the genome. We identified 60 studies that report associations between DNA methylation (DNAm) and human brain structure/function. Forty-three studies measured candidate loci DNAm; seventeen measured epigenome-wide DNAm. MRI features included region-of-interest and whole-brain structural, diffusion and functional imaging features. The studies report DNAm-MRI associations for: neurodevelopment and neurodevelopmental disorders; major depression and suicidality; alcohol use disorder; schizophrenia and psychosis; ageing, stroke, ataxia and neurodegeneration; post-traumatic stress disorder; and socio-emotional processing. Consistency between MRI features and differential DNAm is modest. Sources of bias: variable inclusion of comparator groups; different surrogate tissues used; variation in DNAm measurement methods; lack of control for genotype and cell-type composition; and variations in image processing. Knowledge of MRI features associated with differential DNAm may improve understanding of the role of DNAm in brain health and disease, but caution is required because conventions for linking DNAm and MRI data are not established, and clinical and methodological heterogeneity in existing literature is substantial.
Collapse
Affiliation(s)
- Emily N W Wheater
- Medical Research Council Centre for Reproductive Health, University of Edinburgh, United Kingdom
| | - David Q Stoye
- Medical Research Council Centre for Reproductive Health, University of Edinburgh, United Kingdom
| | - Simon R Cox
- Department of Psychology, University of Edinburgh, United Kingdom
| | - Joanna M Wardlaw
- Centre for Clinical Brain Sciences, University of Edinburgh, United Kingdom
| | - Amanda J Drake
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, United Kingdom
| | - Mark E Bastin
- Centre for Clinical Brain Sciences, University of Edinburgh, United Kingdom
| | - James P Boardman
- Medical Research Council Centre for Reproductive Health, University of Edinburgh, United Kingdom; Centre for Clinical Brain Sciences, University of Edinburgh, United Kingdom.
| |
Collapse
|
20
|
de Lima RMS, Barth B, Arcego DM, de Mendonça Filho EJ, Clappison A, Patel S, Wang Z, Pokhvisneva I, Sassi RB, Hall GBC, Kobor MS, O'Donnell KJ, Bittencourt APSDV, Meaney MJ, Dalmaz C, Silveira PP. Amygdala 5-HTT Gene Network Moderates the Effects of Postnatal Adversity on Attention Problems: Anatomo-Functional Correlation and Epigenetic Changes. Front Neurosci 2020; 14:198. [PMID: 32256307 PMCID: PMC7093057 DOI: 10.3389/fnins.2020.00198] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 02/24/2020] [Indexed: 12/20/2022] Open
Abstract
Variations in serotoninergic signaling have been related to behavioral outcomes. Alterations in the genome, such as DNA methylation and histone modifications, are affected by serotonin neurotransmission. The amygdala is an important brain region involved in emotional responses and impulsivity, which receives serotoninergic input. In addition, studies suggest that the serotonin transporter gene network may interact with the environment and influence the risk for psychiatric disorders. We propose to investigate whether/how interactions between the exposure to early life adversity and serotonin transporter gene network in the amygdala associate with behavioral disorders. We constructed a co-expression-based polygenic risk score (ePRS) reflecting variations in the function of the serotonin transporter gene network in the amygdala and investigated its interaction with postnatal adversity on attention problems in two independent cohorts from Canada and Singapore. We also described how interactions between ePRS-5-HTT and postnatal adversity exposure predict brain gray matter density and variation in DNA methylation across the genome. We observed that the expression-based polygenic risk score, reflecting the function of the amygdala 5-HTT gene network, interacts with postnatal adversity, to predict attention and hyperactivity problems across both cohorts. Also, both postnatal adversity score and amygdala ePRS-5-HTT score, as well as their interaction, were observed to be associated with variation in DNA methylation across the genome. Variations in gray matter density in brain regions linked to attentional processes were also correlated to our ePRS score. These results confirm that the amygdala 5-HTT gene network is strongly associated with ADHD-related behaviors, brain cortical density, and epigenetic changes in the context of adversity in young children.
Collapse
Affiliation(s)
- Randriely Merscher Sobreira de Lima
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Barbara Barth
- Integrated Program in Neuroscience (IPN), McGill University, Montreal, QC, Canada
| | - Danusa Mar Arcego
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Euclides José de Mendonça Filho
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada.,Programa de Pós-Graduação em Psicologia, Instituto de Psicologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Andrew Clappison
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Hospital Research Centre, McGill University, Montreal, QC, Canada
| | - Sachin Patel
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Hospital Research Centre, McGill University, Montreal, QC, Canada
| | - Zihan Wang
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Hospital Research Centre, McGill University, Montreal, QC, Canada
| | - Irina Pokhvisneva
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Hospital Research Centre, McGill University, Montreal, QC, Canada
| | - Roberto Britto Sassi
- Mood Disorders Program, Department of Psychiatry & Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Geoffrey B C Hall
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada
| | - Michael S Kobor
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, Department of Medical Genetics, The University of British Columbia, Vancouver, BC, Canada
| | - Kieran J O'Donnell
- Integrated Program in Neuroscience (IPN), McGill University, Montreal, QC, Canada.,Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada.,Ludmer Centre for Neuroinformatics and Mental Health, Douglas Hospital Research Centre, McGill University, Montreal, QC, Canada
| | | | - Michael J Meaney
- Integrated Program in Neuroscience (IPN), McGill University, Montreal, QC, Canada.,Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada.,Ludmer Centre for Neuroinformatics and Mental Health, Douglas Hospital Research Centre, McGill University, Montreal, QC, Canada.,Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Carla Dalmaz
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Patrícia Pelufo Silveira
- Integrated Program in Neuroscience (IPN), McGill University, Montreal, QC, Canada.,Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada.,Ludmer Centre for Neuroinformatics and Mental Health, Douglas Hospital Research Centre, McGill University, Montreal, QC, Canada
| |
Collapse
|
21
|
Stewart RM, Wong JWY, Mahfouda S, Morandini HAE, Rao P, Runions KC, Zepf FD. Acute Tryptophan Depletion Moja-De: A Method to Study Central Nervous Serotonin Function in Children and Adolescents. Front Psychiatry 2020; 10:1007. [PMID: 32210845 PMCID: PMC7067742 DOI: 10.3389/fpsyt.2019.01007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 12/20/2019] [Indexed: 11/13/2022] Open
Abstract
Serotonin (5-HT) is widely implicated as a key neurotransmitter relevant to a range of psychiatric disorders and psychological processes. The role of central nervous 5-HT function underlying these processes can be examined through serotonergic challenge methodologies. Acute tryptophan depletion (ATD) is a key challenge method whereby a diminished dietary intake of tryptophan-the amino acid precursor to brain 5-HT synthesis-results in temporary diminished central nervous 5-HT synthesis. While this particular methodology has been used in adult populations, it was only recently that modifications were made to enable the use of ATD in child and adolescent populations. Additionally, the Moja-De modification of the ATD challenge methodology has demonstrated benefits over other ATD techniques used previously. The aim of this protocol paper is to describe the ATD Moja-De methodology in detail, its benefits, as well as studies that have been conducted to validate the procedure in child and adolescent samples. The ATD Moja-De protocol provides a potential methodology for investigating the role of central nervous 5-HT via manipulation of brain tryptophan availability in human psychopathology from a developmental viewpoint.
Collapse
Affiliation(s)
- Richard M. Stewart
- Centre & Discipline of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Janice W. Y. Wong
- Centre & Discipline of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, WA, Australia
- Brain and Behaviour, Telethon Kids Institute, Perth, WA, Australia
- Specialised Child and Adolescent Mental Health Services, Department of Health, Perth, WA, Australia
| | - Simone Mahfouda
- Centre & Discipline of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, WA, Australia
- Brain and Behaviour, Telethon Kids Institute, Perth, WA, Australia
- School of Psychological Sciences, Faculty of Science, The University of Western Australia, Perth, WA, Australia
| | - Hugo A. E. Morandini
- Centre & Discipline of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Pradeep Rao
- Centre & Discipline of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, WA, Australia
- Community Child and Adolescent Mental Health Services, Department of Health, Perth, WA, Australia
| | - Kevin C. Runions
- Centre & Discipline of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, WA, Australia
- Brain and Behaviour, Telethon Kids Institute, Perth, WA, Australia
- Community Child and Adolescent Mental Health Services, Department of Health, Perth, WA, Australia
| | - Florian D. Zepf
- Centre & Discipline of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, WA, Australia
- Brain and Behaviour, Telethon Kids Institute, Perth, WA, Australia
- Department of Child and Adolescent Psychiatry, Psychosomatic Medicine and Psychotherapy, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
22
|
Zhang W, Ham J, Li Q, Deyssenroth MA, Lambertini L, Huang Y, Tsuchiya KJ, Chen J, Nomura Y. Moderate prenatal stress may buffer the impact of Superstorm Sandy on placental genes: Stress in Pregnancy (SIP) Study. PLoS One 2020; 15:e0226605. [PMID: 31995614 PMCID: PMC6988921 DOI: 10.1371/journal.pone.0226605] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 11/29/2019] [Indexed: 12/26/2022] Open
Abstract
The placenta plays a central role in the epigenetic programming of neurodevelopment by prenatal stress (PS), but this pathway is not fully understood. It difficult to study in humans because the conditions for intense, traumatic PS are almost impossible to create ethically. This study was able to capitalize on a 2012 disaster that hit New York, Superstorm Sandy, to examine the impact of traumatic stress on placental gene expression while also examining normative PS, and compare the two. Of the 303 expectant mothers participating in the Stress in Pregnancy Study, 95 women were pregnant when Superstorm Sandy struck. During their pregnancy, participants completed self-report measures of PS and distress that were combined, using latent profile analysis, into one global indicator of normative PS. Placental tissue was collected at delivery and frozen for storage. RNA expression was assessed for 40 placental genes known to associate with the stress response system and neurodevelopment in offspring. Results showed that normative PS increased expression of just MECP2, HSD11B2, and ZNF507, whereas Superstorm Sandy PS decreased expression of CDKL5, CFL1, DYRK1A, HSD11B2, MAOA, MAOB, NCOR1, and ZNF507. Interaction analyses indicated that Superstorm Sandy PS was associated with decreased gene expression for the low and high PS group for CFL1, DYRK1A, HSD11B2, MAOA, and NCOR1 and increased expression for the moderate PS group for FOXP1, NR3C1, and NR3C2. This study supports the idea that a moderate amount of normative PS may buffer the impact of traumatic PS, in this case caused by Superstorm Sandy, on placental gene expression, which suggests that the placenta itself mirrors the organism's ability to develop an epigenetic resilience to, and inoculation from, stress.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Psychology, Queens College, CUNY, New York, NY, United States of America
- Department of Psychology, New Jersey City University, Jersey City, NJ, United States of America
| | - Jacob Ham
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Qian Li
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Maya A. Deyssenroth
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Luca Lambertini
- Department of Medicine, Endocrinology, Diabetes and Bone Disease, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
- Department of Obstetrics, Gynecology and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Yonglin Huang
- Department of Psychology, Queens College, CUNY, New York, NY, United States of America
- Department of Psychology, The Graduate Center, CUNY, New York, NY, United States of America
| | - Kenji J. Tsuchiya
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Jia Chen
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Yoko Nomura
- Department of Psychology, Queens College, CUNY, New York, NY, United States of America
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
- Department of Psychology, The Graduate Center, CUNY, New York, NY, United States of America
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, Shizuoka, Japan
| |
Collapse
|
23
|
Mooney MA, Ryabinin P, Wilmot B, Bhatt P, Mill J, Nigg JT. Large epigenome-wide association study of childhood ADHD identifies peripheral DNA methylation associated with disease and polygenic risk burden. Transl Psychiatry 2020; 10:8. [PMID: 32066674 PMCID: PMC7026179 DOI: 10.1038/s41398-020-0710-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/09/2019] [Accepted: 12/20/2019] [Indexed: 12/17/2022] Open
Abstract
Epigenetic variation in peripheral tissues is being widely studied as a molecular biomarker of complex disease and disease-related exposures. To date, few studies have examined differences in DNA methylation associated with attention-deficit hyperactivity disorder (ADHD). In this study, we profiled genetic and methylomic variation across the genome in saliva samples from children (age 7-12 years) with clinically established ADHD (N = 391) and nonpsychiatric controls (N = 213). We tested for differentially methylated positions (DMPs) associated with both ADHD diagnosis and ADHD polygenic risk score, by using linear regression models including smoking, medication effects, and other potential confounders in our statistical models. Our results support previously reported associations between ADHD and DNA methylation levels at sites annotated to VIPR2, and identify several novel disease-associated DMPs (p < 1e-5), although none of them were genome-wide significant. The two top-ranked, ADHD-associated DMPs (cg17478313 annotated to SLC7A8 and cg21609804 annotated to MARK2) are also significantly associated with nearby SNPs (p = 1.2e-46 and p = 2.07e-59), providing evidence that disease-associated DMPs are under genetic control. We also report a genome-wide significant association between ADHD polygenic risk and variable DNA methylation at a site annotated to the promoter of GART and SON (p = 6.71E-8). Finally, we show that ADHD-associated SNPs colocalize with SNPs associated with methylation levels in saliva. This is the first large-scale study of DNA methylation in children with ADHD. Our results represent novel epigenetic biomarkers for ADHD that may be useful for patient stratification, reinforce the importance of genetic effects on DNA methylation, and provide plausible molecular mechanisms for ADHD risk variants.
Collapse
Affiliation(s)
- Michael A. Mooney
- grid.5288.70000 0000 9758 5690Division of Bioinformatics & Computational Biology, Department of Medical Informatics & Clinical Epidemiology, Oregon Health & Science University, Portland, OR USA ,grid.5288.70000 0000 9758 5690OHSU Knight Cancer Institute, Portland, OR USA
| | - Peter Ryabinin
- grid.5288.70000 0000 9758 5690Oregon Clinical and Translational Research Institute, Portland, OR USA
| | - Beth Wilmot
- grid.5288.70000 0000 9758 5690Division of Bioinformatics & Computational Biology, Department of Medical Informatics & Clinical Epidemiology, Oregon Health & Science University, Portland, OR USA ,grid.5288.70000 0000 9758 5690Oregon Clinical and Translational Research Institute, Portland, OR USA
| | - Priya Bhatt
- grid.5288.70000 0000 9758 5690Division of Psychology, Department of Psychiatry, Oregon Health & Science University, Portland, OR USA
| | - Jonathan Mill
- grid.8391.30000 0004 1936 8024University of Exeter Medical School, Exeter University, Exeter, UK
| | - Joel T. Nigg
- grid.5288.70000 0000 9758 5690Division of Psychology, Department of Psychiatry, Oregon Health & Science University, Portland, OR USA ,grid.5288.70000 0000 9758 5690Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR USA
| |
Collapse
|
24
|
van Dongen J, Zilhão NR, Sugden K, Hannon EJ, Mill J, Caspi A, Agnew-Blais J, Arseneault L, Corcoran DL, Moffitt TE, Poulton R, Franke B, Boomsma DI. Epigenome-wide Association Study of Attention-Deficit/Hyperactivity Disorder Symptoms in Adults. Biol Psychiatry 2019; 86:599-607. [PMID: 31003786 PMCID: PMC6717697 DOI: 10.1016/j.biopsych.2019.02.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 02/07/2019] [Accepted: 02/08/2019] [Indexed: 11/29/2022]
Abstract
BACKGROUND Previous studies have reported associations between attention-deficit/hyperactivity disorder symptoms and DNA methylation in children. We report the first epigenome-wide association study meta-analysis of adult attention-deficit/hyperactivity disorder symptoms, based on peripheral blood DNA methylation (Infinium HumanMethylation450K array) in three population-based adult cohorts. METHODS An epigenome-wide association study was performed in the Netherlands Twin Register (N = 2258, mean age 37 years), Dunedin Multidisciplinary Health and Development Study (N = 800, age 38 years), and Environmental Risk Longitudinal Twin Study (N = 1631, age 18 years), and results were combined through meta-analysis (total sample size N = 4689). Region-based analyses accounting for the correlation between nearby methylation sites were also performed. RESULTS One epigenome-wide significant differentially methylated position was detected in the Dunedin study, but meta-analysis did not detect differentially methylated positions that were robustly associated across cohorts. In region-based analyses, six significant differentially methylation regions (DMRs) were identified in the Netherlands Twin Register, 19 in the Dunedin study, and none in the Environmental Risk Longitudinal Twin Study. Of these DMRs, 92% were associated with methylation quantitative trait loci, and 68% showed moderate to large blood-brain correlations for DNA methylation levels. DMRs included six nonoverlapping DMRs (three in the Netherlands Twin Register, three in the Dunedin study) in the major histocompatibility complex, which were associated with expression of genes in the major histocompatibility complex, including C4A and C4B, previously implicated in schizophrenia. CONCLUSIONS Our findings point at new candidate loci involved in immune and neuronal functions that await further replication. Our work also illustrates the need for further research to examine to what extent epigenetic associations with psychiatric traits depend on characteristics such as age, comorbidities, exposures, and genetic background.
Collapse
Affiliation(s)
- Jenny van Dongen
- Department of Biological Psychology, Amsterdam Public Health Research Institute, Vrije Universiteit Amsterdam, Amsterdam.
| | - Nuno R Zilhão
- Department of Biological Psychology, Amsterdam Public Health Research Institute, Vrije Universiteit Amsterdam, Amsterdam
| | - Karen Sugden
- Department of Psychology and Neuroscience, Duke University, Durham, North Carolina; Center for Genomic and Computational Biology, Duke University, Durham, North Carolina
| | - Eilis J Hannon
- University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Jonathan Mill
- University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Avshalom Caspi
- Department of Psychology and Neuroscience, Duke University, Durham, North Carolina; Center for Genomic and Computational Biology, Duke University, Durham, North Carolina; Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Jessica Agnew-Blais
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Louise Arseneault
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - David L Corcoran
- Center for Genomic and Computational Biology, Duke University, Durham, North Carolina
| | - Terrie E Moffitt
- Department of Psychology and Neuroscience, Duke University, Durham, North Carolina; Center for Genomic and Computational Biology, Duke University, Durham, North Carolina; Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Richie Poulton
- Dunedin Multidisciplinary Health and Development Research Unit, Department of Psychology, University of Otago, Dunedin, New Zealand
| | - Barbara Franke
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dorret I Boomsma
- Department of Biological Psychology, Amsterdam Public Health Research Institute, Vrije Universiteit Amsterdam, Amsterdam
| |
Collapse
|
25
|
Timothy A, Benegal V, Shankarappa B, Saxena S, Jain S, Purushottam M. Influence of early adversity on cortisol reactivity, SLC6A4 methylation and externalizing behavior in children of alcoholics. Prog Neuropsychopharmacol Biol Psychiatry 2019; 94:109649. [PMID: 31082414 DOI: 10.1016/j.pnpbp.2019.109649] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 04/29/2019] [Accepted: 05/09/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Children of parents with alcoholism face considerable stress, and often have externalizing behaviors. Early adversity is known to affect DNA methylation and the functioning of the HPA axis. We investigated the association of early adversity with cortisol reactivity, 5HTTLPR genotype, site specific DNA methylation in the SLC6A4 gene and externalizing behavior in children of alcoholics (COA), and a matched sample of control children. METHODS We examined children of alcoholics (N = 50) and age matched control children (N = 50) for exposure to early adversity (both prenatal and postnatal), assessed their salivary cortisol reactivity and evaluated their levels of emotional and behavioral difficulty in terms of externalizing and internalizing behavior. Site-specific DNA methylation at a previously characterized SLC6A4 region was determined in salivary DNA using pyrosequencing. The 5HTTLPR region of the SLC6A4 gene was also genotyped. RESULTS COA had significantly higher experience of early adversity than control children. Cortisol reactivity was reduced in COA, and negatively correlated with early adversity. Both early adversity and cortisol reactivity correlated with externalizing behavior. SLC6A4 methylation was higher in COA, and correlated with early adversity. SLC6A4 genotype did not show association with any of the variables. CONCLUSION Our study provides further evidence that early adversity is associated with blunted cortisol reactivity, increased site-specific CpG DNA methylation at the SLC6A4 gene, and high externalizing behavior.
Collapse
Affiliation(s)
- Anurag Timothy
- Centre for Addiction Medicine, National Institute of Mental Health and Neurosciences, Bangalore 560029, India; Department of Psychiatry, Base Hospital Delhi Cantt, New Delhi 110010, India
| | - Vivek Benegal
- Centre for Addiction Medicine, National Institute of Mental Health and Neurosciences, Bangalore 560029, India
| | - Bhagyalakshmi Shankarappa
- Molecular Genetics Lab, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore 560029, India; St Johns Medical College Hospital, Bangalore, India
| | - Sachin Saxena
- Department of Psychiatry, Base Hospital Delhi Cantt, New Delhi 110010, India
| | - Sanjeev Jain
- Molecular Genetics Lab, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore 560029, India
| | - Meera Purushottam
- Molecular Genetics Lab, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore 560029, India.
| |
Collapse
|
26
|
Genetic risk factors and gene–environment interactions in adult and childhood attention-deficit/hyperactivity disorder. Psychiatr Genet 2019; 29:63-78. [DOI: 10.1097/ypg.0000000000000220] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
27
|
Mustafin RN, Enikeeva RF, Malykh SB, Valinurov RG, Khusnutdinova EK. [Genetics and epigenetics of attention deficit hyperactivity disorder]. Zh Nevrol Psikhiatr Im S S Korsakova 2019; 118:106-110. [PMID: 30335081 DOI: 10.17116/jnevro2018118091106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Molecular genetic studies of attention deficit hyperactivity disorder (ADHD) have demonstrated the involvement of multiple genes in the etiology of ADHD. A polygenic hypothesis of the etiopathogenesis was formulated without clear knowledge of common mechanisms of ADHD development. Twin, family and adoption studies have established the heritability of 70-80% for ADHD. Association studies have shown the relationship between ADHD and genes of dopaminergic (DRD4, DRD5, SLC6A3), serotoninergic (HTR1B, 5-HTTLPR), glutamatergic (mGluR, NDRG2) systems, metabolic pathways (SLC2A3, SLC6A4, CDH13, CFOD1, GFOD1), membrane proteins (KChIP1, ITGA1, SNAP-25) as well as tumour-suppressor (NDRG2, NF1) and cytokine genes. The marked comorbidity of ADHD with other psychiatric disorders and shared genetic risk factors were determined. Studies of a role of copy number variations (CNVs) provided more promising evidence that suggested the possible involvement of retroelements as the unifying factors of disease etiopathogenesis. Transposons, which are sensitive to stress, may cause CNVs and are key regulators of brain development and functioning. The dysregulation of transposons is thought to be important in changes in tuning of gene regulatory pathways and epigenetic regulation of neurons in ADHD that may be a common principle underlying the heterogeneous nature of ADHD. Research on noncoding RNAs will help to confirm the hypothesis and develop diagnostic algorithms of examination of ADHD patients as an important step in the implementation of personalized medicine in psychiatry.
Collapse
Affiliation(s)
| | - R F Enikeeva
- Bashkir State University, Ufa, Russia; Institute of Biochemistry and Genetics of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russia
| | - S B Malykh
- Psychological Institute of Russian Academy of Education, Moscow, Russia
| | | | - E K Khusnutdinova
- Bashkir State University, Ufa, Russia; Institute of Biochemistry and Genetics of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russia
| |
Collapse
|
28
|
Vogt BA. Cingulate impairments in ADHD: Comorbidities, connections, and treatment. HANDBOOK OF CLINICAL NEUROLOGY 2019; 166:297-314. [PMID: 31731917 DOI: 10.1016/b978-0-444-64196-0.00016-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The entire cingulate cortex is engaged in the structure/function abnormalities found in attention-deficit/hyperactivity disorder (ADHD). In ADHD, which is the most common developmental disease, impaired impulse control and cognition often trace to anterior midcingulate cortex (aMCC) in Go/No-go tests, decoding and reading, the Stroop Color and Word Test, and the Wisconsin Card Sorting Test (WCST), with volume deficits in anterior cingulate cortex (ACC) and posterior midcingulate cortex (pMCC). Volumes in pMCC correlate positively with the WCST and negatively with total and nonperseverative errors on the WCST. Activation and connectivity on N-back tests show connections for high and low spatial working memory, but patients have increased activation in PCC and decreased connectivity between MCC and PCC for high load. Students struggle in class due to malfunctioning aMCC, pregenual anterior cingulate cortex (pACC), and dorsal posterior cingulate cortex (dPCC), and to core deficits in response/task switching in aMCC. Gene mutations are found in the DA transporter and DA4 and DA5 receptors. Methylphenidate decreases hyperactivity in aMCC. The DA system is controlled by cholinergic receptors in the daMCC and genetics show nAChR mutations in alpha 3, 4, and 7 receptors. At 25 years, a modified Eriksen flanker/No-go task and voxel-based morphometry (VBM) show prenatal smoking, lifetime smoking at 13 years, and novelty seeking. Prenatal exposure to nicotine exhibits weaker responses in aMCC during cognitive tasks for hyperactivity/impulsiveness but not inattention. AZD1446 (ɑ4β2 nAChR agonist) improves the Groton Maze task due to high nAChR in dPCC/RSC engaged in spatial orientation. Environmental factors associated with childhood ADHD relate to pesticides, organochlorine, and air pollutants. Network connection segregation shows increased amygdala local nodal, but decreased ACC and PCC connections, reflecting emphasis on local periamygdala connections at the expense of cortical connections. Thus, ADHD children/adolescents respond impulsively to the significance of stimuli without having cortical inhibition. Finally, controls show negative relationships between aMCC and the default mode network, and ADHD compromises this relationship, showing decreased connectivity between ACC and precuneus/PCC.
Collapse
Affiliation(s)
- Brent A Vogt
- Cingulum Neurosciences Institute, Manlius, NY, United States; Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, United States.
| |
Collapse
|
29
|
Palumbo S, Mariotti V, Iofrida C, Pellegrini S. Genes and Aggressive Behavior: Epigenetic Mechanisms Underlying Individual Susceptibility to Aversive Environments. Front Behav Neurosci 2018; 12:117. [PMID: 29950977 PMCID: PMC6008527 DOI: 10.3389/fnbeh.2018.00117] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 05/28/2018] [Indexed: 12/14/2022] Open
Abstract
Over the last two decades, the study of the relationship between nature and nurture in shaping human behavior has encountered a renewed interest. Behavioral genetics showed that distinct polymorphisms of genes that code for proteins that control neurotransmitter metabolic and synaptic function are associated with individual vulnerability to aversive experiences, such as stressful and traumatic life events, and may result in an increased risk of developing psychopathologies associated with violence. On the other hand, recent studies indicate that experiencing aversive events modulates gene expression by introducing stable changes to DNA without modifying its sequence, a mechanism known as “epigenetics”. For example, experiencing adversities during periods of maximal sensitivity to the environment, such as prenatal life, infancy and early adolescence, may introduce lasting epigenetic marks in genes that affect maturational processes in brain, thus favoring the emergence of dysfunctional behaviors, including exaggerate aggression in adulthood. The present review discusses data from recent research, both in humans and animals, concerning the epigenetic regulation of four genes belonging to the neuroendocrine, serotonergic and oxytocinergic pathways—Nuclear receptor subfamily 3-group C-member 1 (NR3C1), oxytocin receptor (OXTR), solute carrier-family 6 member 4 (SLC6A4) and monoamine oxidase A (MAOA)—and their role in modulating vulnerability to proactive and reactive aggressive behavior. Behavioral genetics and epigenetics are shedding a new light on the fine interaction between genes and environment, by providing a novel tool to understand the molecular events that underlie aggression. Overall, the findings from these studies carry important implications not only for neuroscience, but also for social sciences, including ethics, philosophy and law.
Collapse
Affiliation(s)
- Sara Palumbo
- Department of Surgical, Medical, Molecular Pathology and Critical Care, University of Pisa, Pisa, Italy
| | - Veronica Mariotti
- Department of Experimental and Clinical Medicine, University of Pisa, Pisa, Italy
| | | | - Silvia Pellegrini
- Department of Experimental and Clinical Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
30
|
Barker ED, Walton E, Cecil CAM. Annual Research Review: DNA methylation as a mediator in the association between risk exposure and child and adolescent psychopathology. J Child Psychol Psychiatry 2018; 59:303-322. [PMID: 28736860 DOI: 10.1111/jcpp.12782] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/17/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND DNA methylation (DNAm) is a potential mechanism for propagating the effects of environmental exposures on child and adolescent mental health. In recent years, this field has experienced steady growth. METHODS We provide a strategic review of the current child and adolescent literature to evaluate evidence for a mediating role of DNAm in the link between environmental risks and psychopathological outcomes, with a focus on internalising and externalising difficulties. RESULTS Based on the studies presented, we conclude that there is preliminary evidence to support that (a) environmental factors, such as diet, neurotoxic exposures and stress, influence offspring DNAm, and that (b) variability in DNAm, in turn, is associated with child and adolescent psychopathology. Overall, very few studies have examined DNAm in relation to both exposures and outcomes, and almost all analyses have been correlational in nature. CONCLUSIONS DNAm holds potential as a biomarker indexing both environmental risk exposure and vulnerability for child psychopathology. However, the extent to which it may represent a causal mediator is not clear. In future, collection of prospective risk exposure, DNAm and outcomes - as well as functional characterisation of epigenetic findings - will assist in determining the role of DNAm in the link between risk exposure and psychopathology.
Collapse
Affiliation(s)
- Edward D Barker
- Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Esther Walton
- Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Charlotte A M Cecil
- Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
31
|
Faraone SV. The pharmacology of amphetamine and methylphenidate: Relevance to the neurobiology of attention-deficit/hyperactivity disorder and other psychiatric comorbidities. Neurosci Biobehav Rev 2018; 87:255-270. [PMID: 29428394 DOI: 10.1016/j.neubiorev.2018.02.001] [Citation(s) in RCA: 311] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/25/2018] [Accepted: 02/05/2018] [Indexed: 12/20/2022]
Abstract
Psychostimulants, including amphetamines and methylphenidate, are first-line pharmacotherapies for individuals with attention-deficit/hyperactivity disorder (ADHD). This review aims to educate physicians regarding differences in pharmacology and mechanisms of action between amphetamine and methylphenidate, thus enhancing physician understanding of psychostimulants and their use in managing individuals with ADHD who may have comorbid psychiatric conditions. A systematic literature review of PubMed was conducted in April 2017, focusing on cellular- and brain system-level effects of amphetamine and methylphenidate. The primary pharmacologic effect of both amphetamine and methylphenidate is to increase central dopamine and norepinephrine activity, which impacts executive and attentional function. Amphetamine actions include dopamine and norepinephrine transporter inhibition, vesicular monoamine transporter 2 (VMAT-2) inhibition, and monoamine oxidase activity inhibition. Methylphenidate actions include dopamine and norepinephrine transporter inhibition, agonist activity at the serotonin type 1A receptor, and redistribution of the VMAT-2. There is also evidence for interactions with glutamate and opioid systems. Clinical implications of these actions in individuals with ADHD with comorbid depression, anxiety, substance use disorder, and sleep disturbances are discussed.
Collapse
Affiliation(s)
- Stephen V Faraone
- Departments of Psychiatry and of Neuroscience and Physiology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States; K.G. Jebsen Centre for Research on Neuropsychiatric Disorders, University of Bergen, Bergen, Norway.
| |
Collapse
|
32
|
Gervin K, Nordeng H, Ystrom E, Reichborn-Kjennerud T, Lyle R. Long-term prenatal exposure to paracetamol is associated with DNA methylation differences in children diagnosed with ADHD. Clin Epigenetics 2017; 9:77. [PMID: 28785368 PMCID: PMC5540511 DOI: 10.1186/s13148-017-0376-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 07/21/2017] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Epidemiological studies have shown that long-term exposure to paracetamol during pregnancy is associated with attention-deficit/hyperactivity disorder (ADHD). The mechanism by which paracetamol may modulate the increased risk of developing ADHD is currently unknown. We have conducted an epigenome-wide association study (n = 384 cord blood samples) and investigated whether prenatal exposure to paracetamol is associated with DNA methylation in children diagnosed with ADHD. RESULTS Analyses identified significant differences in DNA methylation (n = 6211 CpGs) associated with prenatal exposure to paracetamol for more than 20 days in children diagnosed with ADHD compared to controls. In addition, these samples were differentially methylated compared to samples with ADHD exposed to paracetamol for less than 20 days (n = 2089 CpGs) and not exposed to paracetamol (n = 193 CpGs). Interestingly, several of the top genes ranked according to significance and effect size have been linked to ADHD, neural development, and neurotransmission. Gene ontology analysis revealed enrichment of pathways involved in oxidative stress, neurological processes, and the olfactory sensory system, which have previously been implicated in the etiology of ADHD. CONCLUSIONS These initial findings suggest that in individuals susceptible to ADHD, prenatal long-term exposure to paracetamol is associated with DNA methylation differences compared to controls.
Collapse
Affiliation(s)
- Kristina Gervin
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Pharmacoepidemiology and Drug Safety Research Group, Department of Pharmacy, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Hedvig Nordeng
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Pharmacoepidemiology and Drug Safety Research Group, Department of Pharmacy, School of Pharmacy, University of Oslo, Oslo, Norway
- Department of Child Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Eivind Ystrom
- Department of Child Health, Norwegian Institute of Public Health, Oslo, Norway
- Department of Mental Disorders, Norwegian Institute of Public Health, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Ted Reichborn-Kjennerud
- Department of Child Health, Norwegian Institute of Public Health, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Robert Lyle
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
33
|
Heinrich H, Grunitz J, Stonawski V, Frey S, Wahl S, Albrecht B, Goecke TW, Beckmann MW, Kornhuber J, Fasching PA, Moll GH, Eichler A. Attention, cognitive control and motivation in ADHD: Linking event-related brain potentials and DNA methylation patterns in boys at early school age. Sci Rep 2017. [PMID: 28630479 PMCID: PMC5476641 DOI: 10.1038/s41598-017-03326-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
In order to better understand the underpinnings of attention-deficit/hyperactivity disorder (ADHD), we targeted the relationship of attentional, cognitive control and motivational processes with DNA methylation patterns of 60 candidate genes in boys at early school age. Participants (6 to 8 years; N = 82) were selected from a German longitudinal cohort (FRANCES). ADHD-related behaviour was assessed via maternal ratings. Performance and event-related potential measures (inter alia Cue-P3 and Nogo-P3), which were recorded in a motivational go/nogo task, indicated diminished attentional orienting, reduced inhibitory response control and a larger motivational effect on performance in ADHD already at this relatively young age. Methylation patterns were analysed in buccal cell DNA with the Illumina HumanMethylation 450K array. For CpG sites at genes of the dopaminergic (COMT, ANKK1) and the neurotrophic (BDNF, NGFR) system, associations with the Nogo-P3 as well as ADHD symptom severity were found suggesting that these systems are involved in response control deficits in ADHD. Methylation effects related to both functional aspects and ADHD behaviour were also observed for DPP10 and TPH2. Epigenetic mechanisms may play a role in ADHD-associated deficits but findings need to be replicated in larger samples and are limited by the fact that only peripheral methylation could be considered.
Collapse
Affiliation(s)
- Hartmut Heinrich
- Dept. of Child & Adolescent Mental Health, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany. .,kbo-Heckscher-Klinikum, München, Germany.
| | - Juliane Grunitz
- Dept. of Child & Adolescent Mental Health, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Valeska Stonawski
- Dept. of Child & Adolescent Mental Health, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Stefan Frey
- Dept. of Child & Adolescent Mental Health, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Simone Wahl
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.,Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Björn Albrecht
- Dept. of Child and Adolescent Psychiatry, University Medical Center Göttingen, Göttingen, Germany
| | - Tamme W Goecke
- Dept. of Obstetrics and Gynecology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany.,Dept. of Obstetrics and Gynecology, Medical Faculty, RWTH Aachen, Aachen, Germany
| | - Matthias W Beckmann
- Dept. of Obstetrics and Gynecology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Johannes Kornhuber
- Dept. of Psychiatry and Psychotherapy, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Peter A Fasching
- Dept. of Obstetrics and Gynecology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Gunther H Moll
- Dept. of Child & Adolescent Mental Health, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Anna Eichler
- Dept. of Child & Adolescent Mental Health, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
34
|
Rojas-Mayorquín AE, Padilla-Velarde E, Ortuño-Sahagún D. Prenatal Alcohol Exposure in Rodents As a Promising Model for the Study of ADHD Molecular Basis. Front Neurosci 2016; 10:565. [PMID: 28018163 PMCID: PMC5156702 DOI: 10.3389/fnins.2016.00565] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 11/23/2016] [Indexed: 12/17/2022] Open
Abstract
A physiological parallelism, or even a causal effect relationship, can be deducted from the analysis of the main characteristics of the “Alcohol Related Neurodevelopmental Disorders” (ARND), derived from prenatal alcohol exposure (PAE), and the behavioral performance in the Attention-deficit/hyperactivity disorder (ADHD). These two clinically distinct disease entities, exhibits many common features. They affect neurological shared pathways, and also related neurotransmitter systems. We briefly review here these parallelisms, with their common and uncommon characteristics, and with an emphasis in the subjacent molecular mechanisms of the behavioral manifestations, that lead us to propose that PAE in rats can be considered as a suitable model for the study of ADHD.
Collapse
Affiliation(s)
- Argelia E Rojas-Mayorquín
- Departamento de Ciencias Ambientales, Centro Universitario de Ciencias Biológicas y Agropecuarias, Instituto de Neurociencias, Universidad de Guadalajara Guadalajara, Mexico
| | - Edgar Padilla-Velarde
- Departamento de Ciencias Ambientales, Centro Universitario de Ciencias Biológicas y Agropecuarias, Instituto de Neurociencias, Universidad de Guadalajara Guadalajara, Mexico
| | - Daniel Ortuño-Sahagún
- Departamento de Biología Molecular y Genómica, Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara Guadalajara, Mexico
| |
Collapse
|