1
|
Weber AJ, Moser C, Martini MA, Laß FJ, Bleher K, Muhle-Goll C, Niemeyer CM, Rabe KS. Improving the Long-term Enantioselectivity of a Silicon-Carbon Bond-Forming Enzyme. Chemistry 2025; 31:e202404688. [PMID: 39876675 DOI: 10.1002/chem.202404688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/20/2025] [Accepted: 01/27/2025] [Indexed: 01/30/2025]
Abstract
Enantioselectivity is a key advantage of enzymatic catalysis. Understanding the most important factors influencing enantioselectivity necessitates thorough investigation for each specific enzyme. In this study, we explore various approaches to optimize reaction conditions for organosilicon production using an immobilized Cytochrome C recently tailored via directed evolution. Over extended reactions, this enzyme experiences a loss of enantioselectivity. Mass spectrometry (MS) revealed covalent modifications on the enzyme, but mutating the respective amino acids did not restore enantioselectivity. Nuclear magnetic resonance (NMR), along with a detailed comparison of the influence of reaction components such as cosolvents and reducing agents, indicated significant conformational changes in the presence of the diazo ester substrate. Additionally, we identified sodium ascorbate as a suitable and milder reducing agent compared to the previously used sodium dithionite, ensuring anaerobic conditions for silicon-carbon bond formation. Ultimately, maintaining a high enzyme-to-substrate ratio in the reaction was found to be crucial for achieving high enantiomeric purity of the organosilicon product over four days in sequential, repetitive batch reactions, thus improving the previously established reaction system. The methods and findings presented here are particularly valuable for addressing enantioselectivity issues in other enzymes that operate with diazo compounds as the substrates in carbene-transfer reactions.
Collapse
Affiliation(s)
- Annika J Weber
- Institute for Biological Interfaces 1 (IBG-1), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Celine Moser
- Institute for Biological Interfaces 4 (IBG-4), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Maria Alessandra Martini
- Institute for Biological Interfaces 1 (IBG-1), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Franziska J Laß
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Katharina Bleher
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Claudia Muhle-Goll
- Institute for Biological Interfaces 4 (IBG-4), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Christof M Niemeyer
- Institute for Biological Interfaces 1 (IBG-1), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Kersten S Rabe
- Institute for Biological Interfaces 1 (IBG-1), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
2
|
Fu W, Murcek K, Chen J, Liu A, Zhao Y, Liu P, Yang Y. Catalytic Enantioselective Smiles Rearrangement Enabled by the Directed Evolution of P450 Radical Aryl Migratases. J Am Chem Soc 2025. [PMID: 40167238 DOI: 10.1021/jacs.5c01179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Despite its synthetic potential, catalytic enantioselective Smiles rearrangement has remained elusive. Through the directed evolution of P450 radical aryl migratases (P450Smiles's), we describe the first example of catalytic enantioselective Smiles rearrangement. A range of racemic N-arylsulfonyl-α-chloroamides could be transformed by P450Smiles in an enantioconvergent manner, affording acyclic amide products possessing an all-carbon quaternary stereocenter with excellent chemo- and enantioselectivity. Both electron-rich and electron-deficient substituents were compatible with the migrating aryl group, demonstrating this P450-catalyzed Smiles rearrangement is insensitive to the electronic properties of the migrating group. Importantly, our evolved P450 variants were capable of overriding the innate cyclization activity of the N-alkyl amidyl radical intermediate, allowing the chemoselective reductive formation of acyclic products. Classical molecular dynamics (MD) simulations revealed this unusual enzyme-controlled chemoselectivity stems from the restricted conformation of the amidyl radical within the enzyme active site, disfavoring the cyclization pathway. This new-to-nature biocatalytic asymmetric Smiles rearrangement showcases the synthetic potential of enzymatic chemo- and enantioselectivity control over highly reactive radical intermediates eluding small-molecule catalysts.
Collapse
Affiliation(s)
- Wenzhen Fu
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Katherina Murcek
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Jasper Chen
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - An Liu
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Yunlong Zhao
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Yang Yang
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
- Biomolecular Science and Engineering (BMSE) Program, University of California Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
3
|
Bertus P, Caillé J. Advances in the Synthesis of Cyclopropylamines. Chem Rev 2025; 125:3242-3377. [PMID: 40048498 DOI: 10.1021/acs.chemrev.4c00674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Cyclopropylamines are an important subclass of substituted cyclopropanes that combine the unique electronic and steric properties of cyclopropanes with the presence of a donor nitrogen atom. In addition to their presence in a diverse array of biologically active compounds, cyclopropylamines are utilized as important synthetic intermediates, particularly in ring-opening or cycloaddition reactions. Consequently, the synthesis of these compounds has constituted a significant research topic, as evidenced by the abundant published synthetic methods. In addition to the widely used Curtius rearrangement, classical cyclopropanation methods have been adapted to integrate a nitrogen function (Simmons-Smith reaction, metal-catalyzed reaction of diazo compounds on olefins, Michael-initiated ring-closure reactions) with significant advances in enantioselective synthesis. More recently, specific methods have been developed for the preparation of the aminocyclopropane moiety (Kulinkovich reactions applied to amides and nitriles, addition to cyclopropenes, metal-catalyzed reactions involving C-H functionalization, ...). The topic of this review is to present the different methods for the preparation of cyclopropylamine derivatives, with the aim of covering the methodological advances as best as possible, highlighting their scope, their stereochemical aspects and future trends.
Collapse
Affiliation(s)
- Philippe Bertus
- Institut des Molécules et Matériaux du Mans, IMMM, CNRS UMR 6283, Le Mans Université, 72000 Le Mans, France
| | - Julien Caillé
- Institut de Chimie Organique et Analytique, ICOA, CNRS UMR 7311, University of Orléans, 45100 Orléans, France
| |
Collapse
|
4
|
Kakumu Y, Chaudhri AA, Helfrich EJN. The role and mechanisms of canonical and non-canonical tailoring enzymes in bacterial terpenoid biosynthesis. Nat Prod Rep 2025; 42:501-539. [PMID: 39895377 DOI: 10.1039/d4np00048j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Covering: up to April 2024Terpenoids represent the largest and structurally most diverse class of natural products. According to textbook knowledge, this diversity arises from a two-step biosynthetic process: first, terpene cyclases generate a vast array of mono- and polycyclic hydrocarbon scaffolds with multiple stereocenters from a limited set of achiral precursors, a process extensively studied over the past two decades. Subsequently, tailoring enzymes further modify these complex scaffolds through regio- and stereocontrolled oxidation and other functionalization reactions, a topic of increasing interest in recent years. The resulting highly functionalized terpenoids exhibit a broad spectrum of unique biological activities, making them promising candidates for drug development. Recent advances in genome sequencing technologies along with the development and application of sophisticated genome mining tools have revealed bacteria as a largely untapped resource for the discovery of complex terpenoids. Functional characterization of a limited number of bacterial terpenoid biosynthetic pathways, combined with in-depth mechanistic studies of key enzymes, has begun to reveal the versatility of bacterial enzymatic processes involved in terpenoid modification. In this review, we examine the various tailoring reactions leading to complex bacterial terpenoids. We first discuss canonical terpene-modifying enzymes, that catalyze the functionalization of unactivated C-H bonds, incorporation of diverse functional groups, and oxidative and non-oxidative rearrangements. We then explore non-canonical terpene-modifying enzymes that facilitate oxidative rearrangement, cyclization, isomerization, and dimerization reactions. The increasing number of characterized tailoring enzymes that participate in terpene hydrocarbon scaffold fomation, rather than merely decorating pre-formed scaffolds suggests that a re-evaluation of the traditional two-phase model for terpenoid biosynthesis might be warranted. Finally, we address the potential and challenges of mining bacterial genomes to identify terpene biosynthetic gene clusters and expand the bacterial terpene biosynthetic and chemical space.
Collapse
Affiliation(s)
- Yuya Kakumu
- Institute for Molecular Bio Science, Goethe University Frankfurt, Max-von-Laue Strasse 9, 60438 Frankfurt am Main, Germany.
- LOEWE Center for Translational Biodiversity Genomics (TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| | - Ayesha Ahmed Chaudhri
- Institute for Molecular Bio Science, Goethe University Frankfurt, Max-von-Laue Strasse 9, 60438 Frankfurt am Main, Germany.
- LOEWE Center for Translational Biodiversity Genomics (TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| | - Eric J N Helfrich
- Institute for Molecular Bio Science, Goethe University Frankfurt, Max-von-Laue Strasse 9, 60438 Frankfurt am Main, Germany.
- LOEWE Center for Translational Biodiversity Genomics (TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
- Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| |
Collapse
|
5
|
Fan FX, Xu H, Tang SX, Dang Y, Wang F. Iron-catalysed stereoselective NH transfer enables dynamic kinetic resolution of sulfoxides. Nat Commun 2025; 16:1471. [PMID: 39922827 PMCID: PMC11807215 DOI: 10.1038/s41467-025-56860-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 01/27/2025] [Indexed: 02/10/2025] Open
Abstract
Transition metal-catalysed asymmetric nitrene transfer provides a powerful means to access various bioactive N-containing compounds as single enantiomers. However, enantioselective NH transfer that allows concise assembly of unprotected enantioenriched amines remains an enduring challenge. We report here an iron-catalysed stereoselective NH imidation of sulfoxide, which is integrated with photocatalytic racemisation of sulfoxide, enabling a dynamic kinetic resolution (DKR) strategy for direct and asymmetric synthesis of NH-sulfoximines. This approach is distinct from the existing methods by avoiding protecting group manipulations and/or the use of chiral substrates. Computational studies on the NH imidation reaction suggest the involvement of an iron-aminyl radical intermediate, and its reaction with sulfoxide proceeds through a synchronous nucleophilic addition of sulfoxide to nitrogen center and ligand-to-metal single electron transfer process to form the N-S bond. In addition, the stereoselectivity is primarily dictated by the difference in dispersion interactions of the transition states.
Collapse
Affiliation(s)
- Fang-Xu Fan
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Hui Xu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin, 300072, China
| | - Shi-Xiong Tang
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yanfeng Dang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin, 300072, China.
| | - Fei Wang
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
6
|
Fittolani G, Kutateladze DA, Loas A, Buchwald SL, Pentelute BL. Automated Flow Synthesis of Artificial Heme Enzymes for Enantiodivergent Biocatalysis. J Am Chem Soc 2025; 147:4188-4197. [PMID: 39840443 PMCID: PMC11912879 DOI: 10.1021/jacs.4c13832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
The remarkable efficiency with which enzymes catalyze small-molecule reactions has driven their widespread application in organic chemistry. Here, we employ automated fast-flow solid-phase synthesis to access catalytically active full-length enzymes without restrictions on the number and structure of noncanonical amino acids incorporated. We demonstrate the total syntheses of iron-dependent Bacillus subtilis myoglobin (BsMb) and sperm whale myoglobin (SwMb). The synthetic enzymes displayed excellent enantioselectivity and yield in carbene transfer reactions. Absolute control over enantioselectivity in styrene cyclopropanation was achieved using synthetic L- and D-BsMb mutants, which delivered each enantiomer of cyclopropane product in identical and opposite enantiomeric enrichment. BsMb mutants outfitted with noncanonical amino acids were used to facilitate detailed structure-activity relationship studies, revealing a previously unrecognized hydrogen-bonding interaction as the primary driver of enantioselectivity in styrene cyclopropanation. We anticipate that our approach will advance biocatalysis by providing reliable and rapid access to fully synthetic enzymes possessing noncanonical amino acids.
Collapse
Affiliation(s)
- Giulio Fittolani
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Dennis A Kutateladze
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Andrei Loas
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Stephen L Buchwald
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Bradley L Pentelute
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, Massachusetts 02142, United States
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
7
|
Cheng L, Bo Z, Krohn-Hansen B, Yang Y. Directed Evolution and Unusual Protonation Mechanism of Pyridoxal Radical C-C Coupling Enzymes for the Enantiodivergent Photobiocatalytic Synthesis of Noncanonical Amino Acids. J Am Chem Soc 2025; 147:4602-4612. [PMID: 39849356 DOI: 10.1021/jacs.4c16716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Visible light-driven pyridoxal radical biocatalysis has emerged as a new strategy for the stereoselective synthesis of valuable noncanonical amino acids in a protecting-group-free fashion. In our previously developed dehydroxylative C-C coupling using engineered PLP-dependent tryptophan synthases, an enzyme-controlled unusual α-stereochemistry reversal and pH-controlled enantiopreference were observed. Herein, through high-throughput photobiocatalysis, we evolved a set of stereochemically complementary PLP radical enzymes, allowing the synthesis of both l- and d-amino acids with enhanced enantiocontrol across a broad pH window. These newly engineered l- and d-amino acid synthases permitted the use of a broad range of organoboron substrates, including boronates, trifluoroborates, and boronic acids, with excellent efficiency. Mechanistic studies unveiled unexpected PLP racemase activity with our earlier PLP enzyme variants. This promiscuous racemase activity was abolished in our evolved amino acid synthases, shedding light on the origin of enhanced enantiocontrol. Further mechanistic investigations suggest a switch of proton donor to account for the stereoinvertive formation of d-amino acids, highlighting an unusual stereoinversion mechanism that is rare in conventional two-electron PLP enzymology.
Collapse
Affiliation(s)
- Lei Cheng
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Zhiyu Bo
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Benjamin Krohn-Hansen
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Yang Yang
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
- Biomolecular Science and Engineering Program, University of California Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
8
|
Chiang CY, Ohashi M, Le J, Chen PP, Zhou Q, Qu S, Bat-Erdene U, Hematian S, Rodriguez JA, Houk KN, Guo Y, Loo JA, Tang Y. Copper-dependent halogenase catalyses unactivated C-H bond functionalization. Nature 2025; 638:126-132. [PMID: 39880944 DOI: 10.1038/s41586-024-08362-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 11/07/2024] [Indexed: 01/31/2025]
Abstract
Carbon-hydrogen (C-H) bonds are the foundation of essentially every organic molecule, making them an ideal place to do chemical synthesis. The key challenge is achieving selectivity for one particular C(sp3)-H bond1-3. In recent years, metalloenzymes have been found to perform C(sp3)-H bond functionalization4,5. Despite substantial progresses in the past two decades6,7, enzymatic halogenation and pseudohalogenation of unactivated C(sp3)-H-providing a functional handle for further modification-have been achieved with only non-haem iron/α-ketoglutarate-dependent halogenases, and are therefore limited by the chemistry possible with these enzymes8. Here we report the discovery and characterization of a previously unknown halogenase ApnU, part of a protein family containing domain of unknown function 3328 (DUF3328). ApnU uses copper in its active site to catalyse iterative chlorinations on multiple unactivated C(sp3)-H bonds. By taking advantage of the softer copper centre, we demonstrate that ApnU can catalyse unprecedented enzymatic C(sp3)-H bond functionalization such as iodination and thiocyanation. Using biochemical characterization and proteomics analysis, we identified the functional oligomeric state of ApnU as a covalently linked homodimer, which contains three essential pairs-one interchain and two intrachain-of disulfide bonds. The metal-coordination active site in ApnU consists of binuclear type II copper centres, as revealed by electron paramagnetic resonance spectroscopy. This discovery expands the enzymatic capability of C(sp3)-H halogenases and provides a foundational understanding of this family of binuclear copper-dependent oxidative enzymes.
Collapse
Affiliation(s)
- Chen-Yu Chiang
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Masao Ohashi
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Jessie Le
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Pan-Pan Chen
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Qingyang Zhou
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Songrong Qu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Undramaa Bat-Erdene
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Shabnam Hematian
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Jose A Rodriguez
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - K N Houk
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yisong Guo
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Joseph A Loo
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
9
|
Hua X, Wang YF, Jin X, Yu HY, Wang HH, Chen YZ, Wan NW. Biocatalytic enantioselective formation and ring-opening of oxetanes. Nat Commun 2025; 16:1170. [PMID: 39885154 PMCID: PMC11782660 DOI: 10.1038/s41467-025-56463-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 01/21/2025] [Indexed: 02/01/2025] Open
Abstract
Although biocatalysis offers complementary or alternative approaches to traditional synthetic methods, the limited range of available enzymatic reactions currently poses challenges in synthesizing a diverse array of desired compounds. Consequently, there is a significant demand for developing novel biocatalytic processes to enable reactions that were previously unattainable. Herein, we report the discovery and subsequent protein engineering of a unique halohydrin dehalogenase to develop a biocatalytic platform for enantioselective formation and ring-opening of oxetanes. This biocatalytic platform, exhibiting high efficiency, excellent enantioselectivity, and broad scopes, facilitates the preparative-scale synthesis of chiral oxetanes and a variety of chiral γ-substituted alcohols. Additionally, both the enantioselective oxetane formation and ring-opening processes are proven scalable for large-scale transformations at high substrate concentrations, and can be integrated efficiently in a one-pot, one-catalyst cascade system. This work expands the enzymatic toolbox for non-natural reactions and will promote further exploration of the catalytic repertoire of halohydrin dehalogenases in synthetic and pharmaceutical chemistry.
Collapse
Affiliation(s)
- Xia Hua
- School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
| | - Yuan-Fei Wang
- School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
| | - Xiao Jin
- School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
| | - Hong-Yin Yu
- School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
| | - Hui-Hui Wang
- School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
| | - Yong-Zheng Chen
- School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
| | - Nan-Wei Wan
- School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China.
| |
Collapse
|
10
|
Oh J, Zheng SL, Carsch KM, Latendresse TP, Casaday CE, Campbell BM, Betley TA. An Open-Shell Fe IV Nitrido. J Am Chem Soc 2025; 147:3174-3184. [PMID: 39829124 DOI: 10.1021/jacs.4c12588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
We report the photogeneration and characterization of an open-shell, terminal iron nitrido (EmL)Fe(N) using a sterically encumbered dipyrrin ligand environment. The Fe-N distance in the solid-state, zero-field 57Fe Mössbauer spectrum, and computational analysis are consistent with a triplet electronic ground state of the iron nitrido. Notably, the attenuation of Fe-N multiple bond character through occupying π*Fe-N enables (i) primary C(sp3)-H amination, (ii) H2 cleavage, (iii) aromatic C-C cleavage, and (iv) photocatalytic N-atom transfer reactivity. These modes of reactivity have not previously been observed in low-spin Fe(N) analogues.
Collapse
Affiliation(s)
- Jeewhan Oh
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Shao-Liang Zheng
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Kurtis M Carsch
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Trevor P Latendresse
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Claire E Casaday
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Brandon M Campbell
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Theodore A Betley
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
11
|
Kawai S, Ning J, Katsuyama Y, Ohnishi Y. Production of Phenyldiazene Derivatives Using the Biosynthetic Pathway of an Aromatic Diazo Group-Containing Natural Product from an Actinomycete. Chembiochem 2025; 26:e202400687. [PMID: 39420540 PMCID: PMC11727004 DOI: 10.1002/cbic.202400687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/19/2024]
Abstract
The diazo group is an important functional group in organic synthesis because it confers high reactivity to the compounds and has been applied in various chemical reactions, such as the Sandmeyer reaction, Wolff rearrangement, cyclopropanation, and C-N bond formation with active methylene compounds. Previously, we revealed that 3-diazoavenalumic acid (3-DAA), which is potentially produced by several actinomycete species and contains an aromatic diazo group, is a biosynthetic intermediate of avenalumic acid. In this study, we aimed to construct a production system for phenyldiazene derivatives by adding several active methylene compounds to the culture of a 3-DAA-producing recombinant actinomycete. First, acetoacetanilide and its derivatives, which have an active methylene and are raw materials for arylide yellow dyes, were individually added to the culture of a 3-DAA-producing actinomycete. When their metabolites were analyzed, each expected compound with a phenyldiazenyl moiety was detected in the culture extract. Moreover, we established a one-pot in vitro enzymatic production system for the same phenyldiazene derivatives using a highly reactive diazotase, CmaA6. These results showed that the diazo group of natural products is an attractive tool for expanding the structural diversity of natural products both in vivo and in vitro.
Collapse
Affiliation(s)
- Seiji Kawai
- Department of BiotechnologyGraduate School of Agricultural and Life SciencesThe University of Tokyo, 1–1-1 Yayoi, Bunkyo-kuTokyo113-8657Japan
| | - Jiayu Ning
- Department of BiotechnologyGraduate School of Agricultural and Life SciencesThe University of Tokyo, 1–1-1 Yayoi, Bunkyo-kuTokyo113-8657Japan
| | - Yohei Katsuyama
- Department of BiotechnologyGraduate School of Agricultural and Life SciencesThe University of Tokyo, 1–1-1 Yayoi, Bunkyo-kuTokyo113-8657Japan
- Collaborative Research Institute for Innovative MicrobiologyThe University of Tokyo, Bunkyo-kuTokyo113-8657Japan
| | - Yasuo Ohnishi
- Department of BiotechnologyGraduate School of Agricultural and Life SciencesThe University of Tokyo, 1–1-1 Yayoi, Bunkyo-kuTokyo113-8657Japan
- Collaborative Research Institute for Innovative MicrobiologyThe University of Tokyo, Bunkyo-kuTokyo113-8657Japan
| |
Collapse
|
12
|
Wang H, Yang Y, Abe I. Modifications of Prenyl Side Chains in Natural Product Biosynthesis. Angew Chem Int Ed Engl 2024; 63:e202415279. [PMID: 39363683 DOI: 10.1002/anie.202415279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/01/2024] [Accepted: 10/01/2024] [Indexed: 10/05/2024]
Abstract
In recent years, there has been a growing interest in understanding the enzymatic machinery responsible for the modifications of prenyl side chains and elucidating their roles in natural product biosynthesis. This interest stems from the pivotal role such modifications play in shaping the structural and functional diversity of natural products, as well as from their potential applications to synthetic biology and drug discovery. In addition to contributing to the diversity and complexity of natural products, unique modifications of prenyl side chains are represented by several novel biosynthetic mechanisms. Representative unique examples of epoxidation, dehydrogenation, oxidation of methyl groups to carboxyl groups, unusual C-C bond cleavage and oxidative cyclization are summarized and discussed. By revealing the intriguing chemistry and enzymology behind these transformations, this comprehensive and comparative review will guide future efforts in the discovery, characterization and application of modifications of prenyl side chains in natural product biosynthesis.
Collapse
Affiliation(s)
- Huibin Wang
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yi Yang
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|
13
|
Liu P, Jin Q, Li X, Zhang R, Yuan H, Liu C, Wang P. Directed evolution and metabolic engineering generate an Escherichia coli cell factory for de novo production of 4-hydroxymandelate. BIORESOURCE TECHNOLOGY 2024; 413:131497. [PMID: 39299347 DOI: 10.1016/j.biortech.2024.131497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/14/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
4-hydroxymandelate is a high-value aromatic compound used in the medicine, cosmetics, food, and chemical industry. However, existing natural extraction and chemical synthesis methods are costly and lead to environmental pollution. This study employed metabolic engineering and directed evolution strategies for de novo 4-hydroxymandelate biosynthesis. Two key challenges were addressed: insufficient precursor supply and limited activity of crucial enzymes. Through gene overexpression and multi-level gene interference using CRISPRi, An Escherichia coli chassis capable of producing the key precursor 4-hydroxyphenylpyruvate and the titer reached 5.05 mM (0.91 g/L). A mutant clone was obtained, HmaSV152G, which showed a 5.13-fold improvement in the catalytic rate. During fermentation, a high production of 194.87 mM (32.768 g/L) 4-hydroxymandelate was achieved in 76 h with a batch supply of glucose in a 5-L bioreactor. This study demonstrated the great potential of biosensors in protein engineering and provides a reference for large-scale production of other high-value aromatic compounds.
Collapse
Affiliation(s)
- Peipei Liu
- School of Life Science, Northeast Forestry University, Harbin 150040, Heilongjiang, China; Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin 150040, Heilongjiang, China
| | - Qianwen Jin
- School of Life Science, Northeast Forestry University, Harbin 150040, Heilongjiang, China
| | - Xuanye Li
- School of Life Science, Northeast Forestry University, Harbin 150040, Heilongjiang, China
| | - Ruilin Zhang
- School of Life Science, Northeast Forestry University, Harbin 150040, Heilongjiang, China
| | - Haiming Yuan
- School of Life Science, Northeast Forestry University, Harbin 150040, Heilongjiang, China
| | - Chengwei Liu
- School of Life Science, Northeast Forestry University, Harbin 150040, Heilongjiang, China; Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin 150040, Heilongjiang, China.
| | - Pengchao Wang
- School of Life Science, Northeast Forestry University, Harbin 150040, Heilongjiang, China; Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin 150040, Heilongjiang, China.
| |
Collapse
|
14
|
Fu W, Fu Y, Zhao Y, Wang H, Liu P, Yang Y. A metalloenzyme platform for catalytic asymmetric radical dearomatization. Nat Chem 2024; 16:1999-2008. [PMID: 39198700 PMCID: PMC11840339 DOI: 10.1038/s41557-024-01608-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 07/17/2024] [Indexed: 09/01/2024]
Abstract
Catalytic asymmetric dearomatization represents a powerful means to convert flat aromatic compounds into stereochemically well-defined three-dimensional molecular scaffolds. Using new-to-nature metalloredox biocatalysis, we describe an enzymatic strategy for catalytic asymmetric dearomatization via a challenging radical mechanism that has eluded small-molecule catalysts. Enabled by directed evolution, new-to-nature radical dearomatases P450rad1-P450rad5 facilitated asymmetric dearomatization of a broad spectrum of aromatic substrates, including indoles, pyrroles and phenols, allowing both enantioconvergent and enantiodivergent radical dearomatization reactions to be accomplished with excellent enzymatic control. Computational studies revealed the importance of additional hydrogen bonding interactions between the engineered metalloenzyme and the reactive intermediate in enhancing enzymatic activity and enantiocontrol. Furthermore, designer non-ionic surfactants were found to significantly accelerate this biotransformation, providing an alternative means to promote otherwise sluggish new-to-nature biotransformations. Together, this evolvable metalloenzyme platform opens up new avenues to advance challenging catalytic asymmetric dearomatization processes involving free radical intermediates.
Collapse
Affiliation(s)
- Wenzhen Fu
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, USA
| | - Yue Fu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yunlong Zhao
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, USA
| | - Huanan Wang
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, USA
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Yang Yang
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, USA.
- Biomolecular Science and Engineering (BMSE) Program, University of California, Santa Barbara, CA, USA.
| |
Collapse
|
15
|
Wang H, Gao B, Cheng H, Cao S, Ma X, Chen Y, Ye Y. Unmasking the reverse catalytic activity of 'ene'-reductases for asymmetric carbonyl desaturation. Nat Chem 2024:10.1038/s41557-024-01671-1. [PMID: 39592841 DOI: 10.1038/s41557-024-01671-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/10/2024] [Indexed: 11/28/2024]
Abstract
Carbonyl desaturation is a fundamental reaction widely practised in organic synthesis. While numerous methods have been developed to expand the scope of this important transformation, most of them necessitate multi-step protocols or suffer from the use of high loadings of metal or strong oxidizing conditions. Moreover, approaches that can achieve precise stereochemical control of the desaturation process are extremely rare. Here we report a biocatalytic platform for desymmetrizing desaturation of cyclohexanones to generate diverse cyclohexenones bearing a remote quaternary stereogenic centre, by reengineering 'ene'-reductases to efficiently mediate dehydrogenation, the reverse process of their native activity. This 'ene'-reductase-based desaturation system operates under mild conditions with air as the terminal oxidant, tolerates oxidation-sensitive or metal-incompatible functional groups and, more importantly, exhibits unparalleled stereoselectivity compared with those achieved with small-molecule catalysts. Mechanistic investigations suggest that the reaction proceeded through α-deprotonation followed by a rate-determining β-hydride transfer.
Collapse
Affiliation(s)
- Hui Wang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, China
| | - Bin Gao
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, China
| | - Heli Cheng
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, China
| | - Shixuan Cao
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, China
| | - Xinyi Ma
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, China
| | - Yinjuan Chen
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Instrumentation and Service Center for Molecular Sciences, Westlake University, Hangzhou, China
| | - Yuxuan Ye
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, China.
| |
Collapse
|
16
|
Pujol M, Degeilh L, Sauty de Chalon T, Réglier M, Simaan AJ, Decroos C. Repurposing myoglobin into a carbene transferase for a [2,3]-sigmatropic Sommelet-Hauser rearrangement. J Inorg Biochem 2024; 260:112688. [PMID: 39111220 DOI: 10.1016/j.jinorgbio.2024.112688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 09/03/2024]
Abstract
New-to-Nature biocatalysis has emerged as a promising tool in organic synthesis thanks to progress in protein engineering. Notably, hemeproteins have been evolved into robust catalysts for carbene and nitrene transfers and related sigmatropic rearrangements. In this work, we report the first example of a [2,3]-sigmatropic Sommelet-Hauser rearrangement initiated by a carbene transfer of the sperm whale myoglobin mutant L29S,H64V,V68F that was previously reported to catalyze the mechanistically similar [2,3]-sigmatropic Doyle-Kirmse rearrangement. This repurposed heme enzyme catalyzes the Sommelet-Hauser rearrangement between ethyl diazoacetate and benzyl thioethers bearing strong electron-withdrawing substituents with good yields and enantiomeric excess. Optimized catalytic conditions in the absence of any reductant led to an increased asymmetric induction with up to 59% enantiomeric excess. This myoglobin mutant is therefore one of the few catalysts for the asymmetric Sommelet-Hauser rearrangement. This work broadens the scope of abiological reactions catalyzed by iron-carbene transferases with a new example of asymmetric sigmatropic rearrangement.
Collapse
Affiliation(s)
- Manon Pujol
- Aix Marseille Univ, CNRS, Centrale Méditerranée, iSm2, Marseille, France
| | - Lison Degeilh
- Aix Marseille Univ, CNRS, Centrale Méditerranée, iSm2, Marseille, France
| | | | - Marius Réglier
- Aix Marseille Univ, CNRS, Centrale Méditerranée, iSm2, Marseille, France
| | - A Jalila Simaan
- Aix Marseille Univ, CNRS, Centrale Méditerranée, iSm2, Marseille, France
| | - Christophe Decroos
- Aix Marseille Univ, CNRS, Centrale Méditerranée, iSm2, Marseille, France; Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Integrated Structural Biology, Illkirch, France.
| |
Collapse
|
17
|
Alfonzo E, Hanley D, Li ZQ, Sicinski KM, Gao S, Arnold FH. Biocatalytic Synthesis of α-Amino Esters via Nitrene C-H Insertion. J Am Chem Soc 2024; 146:27267-27273. [PMID: 39331495 PMCID: PMC11575701 DOI: 10.1021/jacs.4c09989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2024]
Abstract
α-Amino esters are precursors to noncanonical amino acids used in developing small-molecule therapeutics, biologics, and tools in chemical biology. α-C-H amination of abundant and inexpensive carboxylic acid esters through nitrene transfer presents a direct approach to α-amino esters. Methods for nitrene-mediated amination of the protic α-C-H bonds in carboxylic acid esters, however, are underdeveloped. This gap arises because hydrogen atom abstraction (HAA) of protic C-H bonds by electrophilic metal-nitrenoids is slow: metal-nitrenoids preferentially react with polarity-matched, hydridic C-H bonds, even when weaker protic C-H bonds are present. This study describes the discovery and evolution of highly stable protoglobin nitrene transferases that catalyze the enantioselective intermolecular amination of the α-C-H bonds in carboxylic acid esters. We developed a high-throughput assay to evaluate the activity and enantioselectivity of mutant enzymes together with their sequences using the Every Variant Sequencing (evSeq) method. The assay enabled the identification of enantiodivergent enzymes that function at ambient conditions in Escherichia coli whole cells and whose activities can be enhanced by directed evolution for the amination of a range of substrates.
Collapse
Affiliation(s)
- Edwin Alfonzo
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Deirdre Hanley
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Zi-Qi Li
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Kathleen M. Sicinski
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Shilong Gao
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Frances H. Arnold
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
18
|
Mou SB, Chen KY, Kunthic T, Xiang Z. Design and Evolution of an Artificial Friedel-Crafts Alkylation Enzyme Featuring an Organoboronic Acid Residue. J Am Chem Soc 2024; 146:26676-26686. [PMID: 39190546 DOI: 10.1021/jacs.4c03795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Creating artificial enzymes by the genetic incorporation of noncanonical amino acids with catalytic side chains would expand the enzyme chemistries that have not been discovered in nature. Here, we report the design of an artificial enzyme that uses p-boronophenylalanine as the catalytic residue. The artificial enzyme catalyzes Michael-type Friedel-Crafts alkylation through covalent activation. The designer enzyme was further engineered to afford high yields with excellent enantioselectivities. We next developed a practical method for preparative-scale reactions by whole-cell catalysis. This enzymatic C-C bond formation reaction was combined with palladium-catalyzed dearomative arylation to achieve the efficient synthesis of spiroindolenine compounds.
Collapse
Affiliation(s)
- Shu-Bin Mou
- State Key Laboratory of Chemical Oncogenomics, Shenzhen Key Laboratory of Chemical Genomics, AI for Science (AI4S) Preferred Program, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China
| | - Kai-Yue Chen
- State Key Laboratory of Chemical Oncogenomics, Shenzhen Key Laboratory of Chemical Genomics, AI for Science (AI4S) Preferred Program, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China
| | - Thittaya Kunthic
- State Key Laboratory of Chemical Oncogenomics, Shenzhen Key Laboratory of Chemical Genomics, AI for Science (AI4S) Preferred Program, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China
| | - Zheng Xiang
- State Key Laboratory of Chemical Oncogenomics, Shenzhen Key Laboratory of Chemical Genomics, AI for Science (AI4S) Preferred Program, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Gaoke Innovation Center, Guangqiao Road, Guangming District, Shenzhen 518132, P. R. China
| |
Collapse
|
19
|
Bruffy SK, Meza A, Soler J, Doyon TJ, Young SH, Lim J, Huseth KG, Willoughby PH, Garcia-Borràs M, Buller AR. Biocatalytic asymmetric aldol addition into unactivated ketones. Nat Chem 2024:10.1038/s41557-024-01647-1. [PMID: 39333392 DOI: 10.1038/s41557-024-01647-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 08/29/2024] [Indexed: 09/29/2024]
Abstract
Enzymes are renowned for their catalytic efficiency and selectivity, but many classical transformations in organic synthesis have no biocatalytic counterpart. Aldolases are prodigious C-C bond-forming enzymes, but their reactivity has only been extended past activated carbonyl electrophiles in special cases. To probe the mechanistic origins of this limitation, we use a pair of aldolases whose activity is dependent on pyridoxal phosphate. Our results reveal how aldolases are limited by kinetically favourable proton transfer with solvent, which undermines aldol addition into ketones. We show how a transaldolase can circumvent this limitation, enabling efficient addition into unactivated ketones. The resulting products are highly sought non-canonical amino acids with side chains that contain chiral tertiary alcohols. Mechanistic analysis reveals that transaldolase activity is an intrinsic feature of pyridoxal phosphate chemistry and identifies principles for extending aldolase catalysis beyond its previous limits to enable convergent, enantioselective C-C bond formation from simple starting materials.
Collapse
Affiliation(s)
- Samantha K Bruffy
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Anthony Meza
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Jordi Soler
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Girona, Spain
| | - Tyler J Doyon
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Seth H Young
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Jooyeon Lim
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Kathryn G Huseth
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Patrick H Willoughby
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Chemistry, Ripon College, Ripon, WI, USA
| | - Marc Garcia-Borràs
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Girona, Spain.
| | - Andrew R Buller
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
20
|
Dong R, Lou X, Chen Z. Fabrication of bio-abiotic hybrid living hydrogel for bifunctional electrochemical conversion. Biosens Bioelectron 2024; 260:116462. [PMID: 38833834 DOI: 10.1016/j.bios.2024.116462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/21/2024] [Accepted: 06/01/2024] [Indexed: 06/06/2024]
Abstract
Design and intelligent use renewable natural bioenergy is an important challenge. Electric microorganism-based materials are being serve as an important part of bioenergy devices for energy release and collection, calling for suitable skeleton materials to anchor live microbes. Herein we verified the feasibility of constructing bio-abiotic hybrid living materials based on the combination of gelatin, Li-ions and exoelectrogenic bacteria Shewanella oneidensis manganese-reducing-1 (MR-1). The gelatin-based mesh contains abundant pores, allowing microbes to dock and small molecules to diffuse. The hybrid materials hold plentiful electronegative groups, which effectively anchor Li-ions and facilitate their transition. Moreover, the electrochemical characteristics of the materials can be modulated through changing the ratios of gelatin, bacteria and Li-ions. Based on the gelatin-Li-ion-microorganism hybrid materials, a bifunctional device was fabricated, which could play dual roles alternatively, generation of electricity as a microbial fuel cell and energy storage as a pseudocapacitor. The capacitance and the maximum voltage output of the device reaches 68 F g-1 and 0.67 V, respectively. This system is a new platform and fresh start to fabricate bio-abiotic living materials for microbial electron storage and transfer. We expect the setup will extend to other living systems and devices for synthetic biological energy conversion.
Collapse
Affiliation(s)
- Rongyao Dong
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, PR China; PPG Global Coatings Inovation Center, No.69, 7th Street, Binhai District, Tianjin, 300457, PR China
| | - Xiya Lou
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, PR China
| | - Zhijun Chen
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, PR China.
| |
Collapse
|
21
|
Hilvert D. Spiers Memorial Lecture: Engineering biocatalysts. Faraday Discuss 2024; 252:9-28. [PMID: 39046423 PMCID: PMC11389855 DOI: 10.1039/d4fd00139g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 07/25/2024]
Abstract
Enzymes are being engineered to catalyze chemical reactions for many practical applications in chemistry and biotechnology. The approaches used are surveyed in this short review, emphasizing methods for accessing reactivities not expressed by native protein scaffolds. The successful generation of completely de novo enzymes that rival the rates and selectivities of their natural counterparts highlights the potential role that designer enzymes may play in the coming years in research, industry, and medicine. Some challenges that need to be addressed to realize this ambitious dream are considered together with possible solutions.
Collapse
Affiliation(s)
- Donald Hilvert
- Laboratory of Organic Chemistry, ETH Zürich, 8093 Zürich, Switzerland.
| |
Collapse
|
22
|
Yu K, Ward TR. C-H functionalization reactions catalyzed by artificial metalloenzymes. J Inorg Biochem 2024; 258:112621. [PMID: 38852295 DOI: 10.1016/j.jinorgbio.2024.112621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 06/11/2024]
Abstract
CH functionalization, a promising frontier in modern organic chemistry, facilitates the direct conversion of inert CH bonds into many valuable functional groups. Despite its merits, traditional homogeneous catalysis, often faces challenges in efficiency, selectivity, and sustainability towards this transformation. In this context, artificial metalloenzymes (ArMs), resulting from the incorporation of a catalytically-competent metal cofactor within an evolvable protein scaffold, bridges the gap between the efficiency of enzymatic transformations and the versatility of transition metal catalysis. Accordingly, ArMs have emerged as attractive tools for various challenging catalytic transformations. Additionally, the coming of age of directed evolution has unlocked unprecedented avenues for optimizing enzymatic catalysis. Taking advantage of their genetically-encoded protein scaffold, ArMs have been evolved to catalyze various CH functionalization reactions. This review delves into the recent developments of ArM-catalyzed CH functionalization reactions, highlighting the benefits of engineering the second coordination sphere around a metal cofactor within a host protein.
Collapse
Affiliation(s)
- Kun Yu
- Department of Chemistry, University of Basel, Mattenstrasse 22, Basel CH-4058, Switzerland
| | - Thomas R Ward
- Department of Chemistry, University of Basel, Mattenstrasse 22, Basel CH-4058, Switzerland.
| |
Collapse
|
23
|
Sun Y, Tang Y, Zhou J, Guo B, Yuan F, Yao B, Yu Y, Li C. Computational design of myoglobin-based carbene transferases for monoterpene derivatization. Biochem Biophys Res Commun 2024; 722:150160. [PMID: 38795453 DOI: 10.1016/j.bbrc.2024.150160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 05/28/2024]
Abstract
Carbene transfer reactions have emerged as pivotal methodologies for the synthesis of complex molecular architectures. Heme protein-catalyzed carbene transfer reactions have shown promising results on model compounds. However, their limited substrate scope has hindered their application in natural product functionalization. Building upon the foundation of previously published work on a carbene transferase-myoglobin variant, this study employs computer-aided protein engineering to design myoglobin variants, using either docking or the deep learning-based LigandMPNN method. These variants were utilized as catalysts in carbene transfer reactions with a selection of monoterpene substrates featuring C-C double bonds, leading to seven target products. This cost-effective methodology broadens the substrate scope for heme protein-catalyzed reactions, thereby opening novel pathways for research in heme protein functionalities and offering fresh perspectives in the synthesis of bioactive molecules.
Collapse
Affiliation(s)
- Yiyang Sun
- MIIT Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488 China
| | - Yinian Tang
- MIIT Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488 China
| | - Jing Zhou
- MIIT Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488 China
| | - Bingchen Guo
- MIIT Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488 China
| | - Feiyan Yuan
- MIIT Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488 China.
| | - Bo Yao
- MIIT Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488 China
| | - Yang Yu
- MIIT Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488 China.
| | - Chun Li
- MOE Key Laboratory for Industrial Biocatalysis, Department of Chemical Engineering, Tsinghua University, Beijing, China.
| |
Collapse
|
24
|
Ahmed H, Ghosh B, Breitenlechner S, Feßner M, Merten C, Bach T. Intermolecular Enantioselective Amination Reactions Mediated by Visible Light and a Chiral Iron Porphyrin Complex. Angew Chem Int Ed Engl 2024; 63:e202407003. [PMID: 38695376 DOI: 10.1002/anie.202407003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Indexed: 06/15/2024]
Abstract
In the presence of 1 mol % of a chiral iron porphyrin catalyst, various 3-arylmethyl-substituted 2-quinolones and 2-pyridones underwent an enantioselective amination reaction (20 examples; 93-99 % ee). The substrates were used as the limiting reagents, and fluorinated aryl azides (1.5 equivalents) served as nitrene precursors. The reaction is triggered by visible light which allows a facile dediazotation at ambient temperature. The selectivity of the reaction is governed by a two-point hydrogen bond interaction between the ligand of the iron catalyst and the substrate. Hydrogen bonding directs the amination to a specific hydrogen atom within the substrate that is displaced by the nitrogen substituent either in a concerted fashion or by a rebound mechanism.
Collapse
Affiliation(s)
- Hussayn Ahmed
- Technische Universität München, School of Natural Sciences, Department of Chemistry and Catalysis Research Center, Lichtenbergstraße 4, 85747, Garching, Germany
| | - Biki Ghosh
- Technische Universität München, School of Natural Sciences, Department of Chemistry and Catalysis Research Center, Lichtenbergstraße 4, 85747, Garching, Germany
| | - Stefan Breitenlechner
- Technische Universität München, School of Natural Sciences, Department of Chemistry and Catalysis Research Center, Lichtenbergstraße 4, 85747, Garching, Germany
| | - Malte Feßner
- Ruhr-Universität Bochum, Faculty for Chemistry and Biochemistry, Universitätsstraße 150, D-44801, Bochum
| | - Christian Merten
- Ruhr-Universität Bochum, Faculty for Chemistry and Biochemistry, Universitätsstraße 150, D-44801, Bochum
| | - Thorsten Bach
- Technische Universität München, School of Natural Sciences, Department of Chemistry and Catalysis Research Center, Lichtenbergstraße 4, 85747, Garching, Germany
| |
Collapse
|
25
|
Zhu Z, Hu Q, Fu Y, Tong Y, Zhou Z. Design and Evolution of an Enzyme for the Asymmetric Michael Addition of Cyclic Ketones to Nitroolefins by Enamine Catalysis. Angew Chem Int Ed Engl 2024; 63:e202404312. [PMID: 38783596 DOI: 10.1002/anie.202404312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/01/2024] [Accepted: 05/23/2024] [Indexed: 05/25/2024]
Abstract
Consistent introduction of novel enzymes is required for developing efficient biocatalysts for challenging biotransformations. Absorbing catalytic modes from organocatalysis may be fruitful for designing new-to-nature enzymes with novel functions. Herein we report a newly designed artificial enzyme harboring a catalytic pyrrolidine residue that catalyzes the asymmetric Michael addition of cyclic ketones to nitroolefins through enamine activation with high efficiency. Diverse chiral γ-nitro cyclic ketones with two stereocenters were efficiently prepared with excellent stereoselectivity (up to 97 % e.e., >20 : 1 d.r.) and good yield (up to 86 %). This work provides an efficient biocatalytic strategy for cyclic ketone functionalization, and highlights the usefulness of artificial enzymes for extending biocatalysis to further non-natural reactions.
Collapse
Affiliation(s)
- Zhixi Zhu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Qinru Hu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Yi Fu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Yingjia Tong
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Zhi Zhou
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
26
|
Cano-Prieto C, Undabarrena A, de Carvalho AC, Keasling JD, Cruz-Morales P. Triumphs and Challenges of Natural Product Discovery in the Postgenomic Era. Annu Rev Biochem 2024; 93:411-445. [PMID: 38639989 DOI: 10.1146/annurev-biochem-032620-104731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Natural products have played significant roles as medicine and food throughout human history. Here, we first provide a brief historical overview of natural products, their classification and biosynthetic origins, and the microbiological and genetic methods used for their discovery. We also describe and discuss the technologies that revolutionized the field, which transitioned from classic genetics to genome-centric discovery approximately two decades ago. We then highlight the most recent advancements and approaches in the current postgenomic era, in which genome mining is a standard operation and high-throughput analytical methods allow parallel discovery of genes and molecules at an unprecedented pace. Finally, we discuss the new challenges faced by the field of natural products and the future of systematic heterologous expression and strain-independent discovery, which promises to deliver more molecules in vials than ever before.
Collapse
Affiliation(s)
- Carolina Cano-Prieto
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark;
| | - Agustina Undabarrena
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark;
| | - Ana Calheiros de Carvalho
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark;
| | - Jay D Keasling
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Center for Synthetic Biochemistry, Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, China
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, California, USA
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark;
- Department of Bioengineering, University of California, Berkeley, California, USA
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California, USA
| | - Pablo Cruz-Morales
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark;
| |
Collapse
|
27
|
Ding K, Chin M, Zhao Y, Huang W, Mai BK, Wang H, Liu P, Yang Y, Luo Y. Machine learning-guided co-optimization of fitness and diversity facilitates combinatorial library design in enzyme engineering. Nat Commun 2024; 15:6392. [PMID: 39080249 PMCID: PMC11289365 DOI: 10.1038/s41467-024-50698-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/19/2024] [Indexed: 08/02/2024] Open
Abstract
The effective design of combinatorial libraries to balance fitness and diversity facilitates the engineering of useful enzyme functions, particularly those that are poorly characterized or unknown in biology. We introduce MODIFY, a machine learning (ML) algorithm that learns from natural protein sequences to infer evolutionarily plausible mutations and predict enzyme fitness. MODIFY co-optimizes predicted fitness and sequence diversity of starting libraries, prioritizing high-fitness variants while ensuring broad sequence coverage. In silico evaluation shows that MODIFY outperforms state-of-the-art unsupervised methods in zero-shot fitness prediction and enables ML-guided directed evolution with enhanced efficiency. Using MODIFY, we engineer generalist biocatalysts derived from a thermostable cytochrome c to achieve enantioselective C-B and C-Si bond formation via a new-to-nature carbene transfer mechanism, leading to biocatalysts six mutations away from previously developed enzymes while exhibiting superior or comparable activities. These results demonstrate MODIFY's potential in solving challenging enzyme engineering problems beyond the reach of classic directed evolution.
Collapse
Affiliation(s)
- Kerr Ding
- School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Michael Chin
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | - Yunlong Zhao
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | - Wei Huang
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | - Binh Khanh Mai
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Huanan Wang
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| | - Yang Yang
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA.
- Biomolecular Science and Engineering (BMSE) Program, University of California, Santa Barbara, CA, 93106, USA.
| | - Yunan Luo
- School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
28
|
Wang Q, Liu X, Zhang H, Chu H, Shi C, Zhang L, Bai J, Liu P, Li J, Zhu X, Liu Y, Chen Z, Huang R, Chang H, Liu T, Chang Z, Cheng J, Jiang H. Cytochrome P450 Enzyme Design by Constraining the Catalytic Pocket in a Diffusion Model. RESEARCH (WASHINGTON, D.C.) 2024; 7:0413. [PMID: 38979516 PMCID: PMC11227911 DOI: 10.34133/research.0413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/27/2024] [Indexed: 07/10/2024]
Abstract
Although cytochrome P450 enzymes are the most versatile biocatalysts in nature, there is insufficient comprehension of the molecular mechanism underlying their functional innovation process. Here, by combining ancestral sequence reconstruction, reverse mutation assay, and progressive forward accumulation, we identified 5 founder residues in the catalytic pocket of flavone 6-hydroxylase (F6H) and proposed a "3-point fixation" model to elucidate the functional innovation mechanisms of P450s in nature. According to this design principle of catalytic pocket, we further developed a de novo diffusion model (P450Diffusion) to generate artificial P450s. Ultimately, among the 17 non-natural P450s we generated, 10 designs exhibited significant F6H activity and 6 exhibited a 1.3- to 3.5-fold increase in catalytic capacity compared to the natural CYP706X1. This work not only explores the design principle of catalytic pockets of P450s, but also provides an insight into the artificial design of P450 enzymes with desired functions.
Collapse
Affiliation(s)
- Qian Wang
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology,
Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Xiaonan Liu
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology,
Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Hejian Zhang
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology,
Chinese Academy of Sciences, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
- College of Biotechnology,
Tianjin University of Science and Technology, Tianjin 300457, China
| | - Huanyu Chu
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology,
Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Shi
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences,
Peking University, Beijing 100191, China
| | - Lei Zhang
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology,
Chinese Academy of Sciences, Tianjin 300308, China
- College of Life Science and Technology,
Wuhan Polytechnic University, Wuhan, Hubei 430023, China
| | - Jie Bai
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology,
Chinese Academy of Sciences, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Pi Liu
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology,
Chinese Academy of Sciences, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Jing Li
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology,
Chinese Academy of Sciences, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry,
Nankai University, Tianjin 300071, China
- College of Life Science,
Nankai University, Tianjin 300071, China
| | - Xiaoxi Zhu
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology,
Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Yuwan Liu
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology,
Chinese Academy of Sciences, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Zhangxin Chen
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences,
Peking University, Beijing 100191, China
| | - Rong Huang
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology,
Chinese Academy of Sciences, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Hong Chang
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology,
Chinese Academy of Sciences, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Tian Liu
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology,
Chinese Academy of Sciences, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Zhenzhan Chang
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences,
Peking University, Beijing 100191, China
| | - Jian Cheng
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology,
Chinese Academy of Sciences, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Huifeng Jiang
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology,
Chinese Academy of Sciences, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| |
Collapse
|
29
|
Guan A, He Z, Wang X, Jia ZJ, Qin J. Engineering the next-generation synthetic cell factory driven by protein engineering. Biotechnol Adv 2024; 73:108366. [PMID: 38663492 DOI: 10.1016/j.biotechadv.2024.108366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/21/2024] [Accepted: 04/22/2024] [Indexed: 05/09/2024]
Abstract
Synthetic cell factory offers substantial advantages in economically efficient production of biofuels, chemicals, and pharmaceutical compounds. However, to create a high-performance synthetic cell factory, precise regulation of cellular material and energy flux is essential. In this context, protein components including enzymes, transcription factor-based biosensors and transporters play pivotal roles. Protein engineering aims to create novel protein variants with desired properties by modifying or designing protein sequences. This review focuses on summarizing the latest advancements of protein engineering in optimizing various aspects of synthetic cell factory, including: enhancing enzyme activity to eliminate production bottlenecks, altering enzyme selectivity to steer metabolic pathways towards desired products, modifying enzyme promiscuity to explore innovative routes, and improving the efficiency of transporters. Furthermore, the utilization of protein engineering to modify protein-based biosensors accelerates evolutionary process and optimizes the regulation of metabolic pathways. The remaining challenges and future opportunities in this field are also discussed.
Collapse
Affiliation(s)
- Ailin Guan
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Zixi He
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Xin Wang
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhi-Jun Jia
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jiufu Qin
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
30
|
Jain S, Ospina F, Hammer SC. A New Age of Biocatalysis Enabled by Generic Activation Modes. JACS AU 2024; 4:2068-2080. [PMID: 38938808 PMCID: PMC11200230 DOI: 10.1021/jacsau.4c00247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 06/29/2024]
Abstract
Biocatalysis is currently undergoing a profound transformation. The field moves from relying on nature's chemical logic to a discipline that exploits generic activation modes, allowing for novel biocatalytic reactions and, in many instances, entirely new chemistry. Generic activation modes enable a wide range of reaction types and played a pivotal role in advancing the fields of organo- and photocatalysis. This perspective aims to summarize the principal activation modes harnessed in enzymes to develop new biocatalysts. Although extensively researched in the past, the highlighted activation modes, when applied within enzyme active sites, facilitate chemical transformations that have largely eluded efficient and selective catalysis. This advance is attributed to multiple tunable interactions in the substrate binding pocket that precisely control competing reaction pathways and transition states. We will highlight cases of new synthetic methodologies achieved by engineered enzymes and will provide insights into potential future developments in this rapidly evolving field.
Collapse
Affiliation(s)
| | | | - Stephan C. Hammer
- Research Group for Organic Chemistry
and Biocatalysis, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| |
Collapse
|
31
|
Sheng J, Li Z, Koh KKY, Shi Q, Foo A, Tan PML, Kha TK, Wang X, Fang L, Zhu RY. Merging DNA Repair with Bioorthogonal Conjugation Enables Accessible and Versatile Asymmetric DNA Catalysis. J Am Chem Soc 2024. [PMID: 38860598 DOI: 10.1021/jacs.4c03210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Optimizing catalysts through high-throughput screening for asymmetric catalysis is challenging due to the difficulty associated with assembling a library of catalyst analogues in a timely fashion. Here, we repurpose DNA excision repair and integrate it with bioorthogonal conjugation to construct a diverse array of DNA hybrid catalysts for highly accessible and high-throughput asymmetric DNA catalysis, enabling a dramatically expedited catalyst optimization process, superior reactivity and selectivity, as well as the first atroposelective DNA catalysis. The bioorthogonality of this conjugation strategy ensures exceptional tolerance toward diverse functional groups, thereby facilitating the facile construction of 44 DNA hybrid catalysts bearing various unprotected functional groups. This unique feature holds the potential to enable catalytic modalities in asymmetric DNA catalysis that were previously deemed unattainable.
Collapse
Affiliation(s)
- Jie Sheng
- Department of Chemistry, National University of Singapore, Singapore 117544, Singapore
| | - Zhaoyang Li
- Department of Chemistry, National University of Singapore, Singapore 117544, Singapore
| | - Kelly Kar Yun Koh
- Department of Chemistry, National University of Singapore, Singapore 117544, Singapore
| | - Qi Shi
- Department of Chemistry, National University of Singapore, Singapore 117544, Singapore
| | - Angel Foo
- Department of Chemistry, National University of Singapore, Singapore 117544, Singapore
| | | | - Tuan-Khoa Kha
- Department of Chemistry, National University of Singapore, Singapore 117544, Singapore
| | - Xujie Wang
- Department of Chemistry, National University of Singapore, Singapore 117544, Singapore
| | - Leonard Fang
- Department of Chemistry, National University of Singapore, Singapore 117544, Singapore
| | - Ru-Yi Zhu
- Department of Chemistry, National University of Singapore, Singapore 117544, Singapore
| |
Collapse
|
32
|
Wang G, Yuan JL, Zhou R, Zou HB. Iron(II) Phthalocyanine-Catalyzed Homodimerization and Tandem Diamination of Diazo Compounds with Primary Amines: Access to Construct Substituted 2,3-Diaminosuccinonitriles in One-Pot. J Org Chem 2024. [PMID: 38783702 DOI: 10.1021/acs.joc.4c00376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
We herein first report the homodimerization and tandem diamination of diazo compounds with primary amines catalyzed by the iron(II) phthalocyanine (PcFe(II)), which can construct one C-C bond and two C-N bonds within 20 min in one-pot. Compared to the traditional metal-catalyzed N-H insertion reaction between amines with diazo reagents, the developed reaction almost does not generate the N-H insertion product, but the homodimerization/tandem diamination product. The proposed mechanism studies indicate that primary amines play a crucial role in the homocoupling of diazo compounds via dimerization of iron(III)-acetonitrile radical generated from the reaction between diazoacetonitrile with PcFe(II) coordinated by bis(amines); the β-hydride elimination is involved, and then, the attack of primary amines toward the carbon atoms on the formed C-C bond is followed. Moreover, this novel reaction can be used to effectively prepare substituted 2,3-diaminosuccinonitriles with high yields and even up to >99:1 d.r., encouragingly these products contain both 1,2-diamines and succinonitrile motifs, which are two classes of important organic compounds with significant applications in many yields. This reaction is also suitable for the gram-scale preparation of 2,3-bis(phenylamino)succinonitrile (2a) with a yield of 84%. Therefore, the developed reaction represents a new type of transformation.
Collapse
Affiliation(s)
- Gang Wang
- Department of Chemistry & Bioengineering, Yichun Key Laboratory of Applied Chemistry, Key Laboratory of Jiangxi University for Applied Chemistry & Chemical Biology, Yichun University, Yichun 336000, China
| | - Jia-Li Yuan
- Department of Chemistry & Bioengineering, Yichun Key Laboratory of Applied Chemistry, Key Laboratory of Jiangxi University for Applied Chemistry & Chemical Biology, Yichun University, Yichun 336000, China
| | - Rong Zhou
- Department of Chemistry & Bioengineering, Yichun Key Laboratory of Applied Chemistry, Key Laboratory of Jiangxi University for Applied Chemistry & Chemical Biology, Yichun University, Yichun 336000, China
| | - Huai-Bo Zou
- Department of Chemistry & Bioengineering, Yichun Key Laboratory of Applied Chemistry, Key Laboratory of Jiangxi University for Applied Chemistry & Chemical Biology, Yichun University, Yichun 336000, China
| |
Collapse
|
33
|
He Q, Zhang Q, Rolka AB, Suero MG. Alkoxy Diazomethylation of Alkenes by Photoredox-Catalyzed Oxidative Radical-Polar Crossover. J Am Chem Soc 2024; 146:12294-12299. [PMID: 38663863 PMCID: PMC11082901 DOI: 10.1021/jacs.4c00867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 05/09/2024]
Abstract
Herein, we present the discovery and development of the first photoredox-catalyzed alkoxy diazomethylation of alkenes with hypervalent iodine reagents and alcohols. This multicomponent process represents a new disconnection approach to diazo compounds and is featured by a broad scope, mild reaction conditions, and excellent selectivity. Key to the process was the generation of diazomethyl radicals, which engaged alkenes and alcohols in an inter- and intramolecular fashion by a photoredox-catalyzed oxidative radical-polar crossover leading to unexplored β-alkoxydiazo compounds. The synthetic utility of such diazo compounds was demonstrated with a series of transformations involving C-H, N-H, and O-H insertions as well as in the construction of complex sp3-rich heterocycles.
Collapse
Affiliation(s)
- Qiyuan He
- Institute
of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona
Institute of Science and Technology, Països Catalans 16, 43007 Tarragona, Spain
| | - Quan Zhang
- Institute
of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona
Institute of Science and Technology, Països Catalans 16, 43007 Tarragona, Spain
- Departament
de Química Analítica i Química Orgánica, Universitat Rovira i Virgili, Calle Marcel·lí Domingo 1, 43007 Tarragona, Spain
| | - Alessa B. Rolka
- Institute
of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona
Institute of Science and Technology, Països Catalans 16, 43007 Tarragona, Spain
| | - Marcos G. Suero
- Institute
of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona
Institute of Science and Technology, Països Catalans 16, 43007 Tarragona, Spain
- ICREA,
Pg. Lluis Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
34
|
Wang H, Abe I. Recent developments in the enzymatic modifications of steroid scaffolds. Org Biomol Chem 2024; 22:3559-3583. [PMID: 38639195 DOI: 10.1039/d4ob00327f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Steroids are an important family of bioactive compounds. Steroid drugs are renowned for their multifaceted pharmacological activities and are the second-largest category in the global pharmaceutical market. Recent developments in biocatalysis and biosynthesis have led to the increased use of enzymes to enhance the selectivity, efficiency, and sustainability for diverse modifications of steroids. This review discusses the advancements achieved over the past five years in the enzymatic modifications of steroid scaffolds, focusing on enzymatic hydroxylation, reduction, dehydrogenation, cascade reactions, and other modifications for future research on the synthesis of novel steroid compounds and related drugs, and new therapeutic possibilities.
Collapse
Affiliation(s)
- Huibin Wang
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
35
|
Mao R, Gao S, Qin ZY, Rogge T, Wu SJ, Li ZQ, Das A, Houk KN, Arnold FH. Biocatalytic, Enantioenriched Primary Amination of Tertiary C-H Bonds. Nat Catal 2024; 7:585-592. [PMID: 39006156 PMCID: PMC11238567 DOI: 10.1038/s41929-024-01149-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 03/15/2024] [Indexed: 07/16/2024]
Abstract
Intermolecular functionalization of tertiary C-H bonds to construct fully substituted stereogenic carbon centers represents a formidable challenge: without the assistance of directing groups, state-of-the-art catalysts struggle to introduce chirality to racemic tertiary sp 3 -carbon centers. Direct asymmetric functionalization of such centers is a worthy reactivity and selectivity goal for modern biocatalysis. Here we present an engineered nitrene transferase (P411-TEA-5274), derived from a bacterial cytochrome P450, that is capable of aminating tertiary C-H bonds to provide chiral α-tertiary primary amines with high efficiency (up to 2300 total turnovers) and selectivity (up to >99% enantiomeric excess (e.e.)). The construction of fully substituted stereocenters with methyl and ethyl groups underscores the enzyme's remarkable selectivity. A comprehensive substrate scope study demonstrates the biocatalyst's compatibility with diverse functional groups and tertiary C-H bonds. Mechanistic studies elucidate how active-site residues distinguish between the enantiomers and enable the enzyme to perform this transformation with excellent enantioselectivity.
Collapse
Affiliation(s)
- Runze Mao
- Division of Chemistry and Chemical Engineering, California Institute of Technology Pasadena, California 91125, United States
| | - Shilong Gao
- Division of Chemistry and Chemical Engineering, California Institute of Technology Pasadena, California 91125, United States
| | - Zi-Yang Qin
- Division of Chemistry and Chemical Engineering, California Institute of Technology Pasadena, California 91125, United States
| | - Torben Rogge
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Sophia J. Wu
- Division of Chemistry and Chemical Engineering, California Institute of Technology Pasadena, California 91125, United States
| | - Zi-Qi Li
- Division of Chemistry and Chemical Engineering, California Institute of Technology Pasadena, California 91125, United States
| | - Anuvab Das
- Division of Chemistry and Chemical Engineering, California Institute of Technology Pasadena, California 91125, United States
| | - K. N. Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Frances H. Arnold
- Division of Chemistry and Chemical Engineering, California Institute of Technology Pasadena, California 91125, United States
| |
Collapse
|
36
|
Fansher D, Besna JN, Fendri A, Pelletier JN. Choose Your Own Adventure: A Comprehensive Database of Reactions Catalyzed by Cytochrome P450 BM3 Variants. ACS Catal 2024; 14:5560-5592. [PMID: 38660610 PMCID: PMC11036407 DOI: 10.1021/acscatal.4c00086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 04/26/2024]
Abstract
Cytochrome P450 BM3 monooxygenase is the topic of extensive research as many researchers have evolved this enzyme to generate a variety of products. However, the abundance of information on increasingly diversified variants of P450 BM3 that catalyze a broad array of chemistry is not in a format that enables easy extraction and interpretation. We present a database that categorizes variants by their catalyzed reactions and includes details about substrates to provide reaction context. This database of >1500 P450 BM3 variants is downloadable and machine-readable and includes instructions to maximize ease of gathering information. The database allows rapid identification of commonly reported substitutions, aiding researchers who are unfamiliar with the enzyme in identifying starting points for enzyme engineering. For those actively engaged in engineering P450 BM3, the database, along with this review, provides a powerful and user-friendly platform to understand, predict, and identify the attributes of P450 BM3 variants, encouraging the further engineering of this enzyme.
Collapse
Affiliation(s)
- Douglas
J. Fansher
- Chemistry
Department, Université de Montréal, Montreal, QC, Canada H2V 0B3
- PROTEO,
The Québec Network for Research on Protein Function, Engineering,
and Applications, 201
Av. du Président-Kennedy, Montréal, QC, Canada H2X 3Y7
- CGCC,
Center in Green Chemistry and Catalysis, Montreal, QC, Canada H2V 0B3
| | - Jonathan N. Besna
- PROTEO,
The Québec Network for Research on Protein Function, Engineering,
and Applications, 201
Av. du Président-Kennedy, Montréal, QC, Canada H2X 3Y7
- CGCC,
Center in Green Chemistry and Catalysis, Montreal, QC, Canada H2V 0B3
- Department
of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC, Canada H3T 1J4
| | - Ali Fendri
- Chemistry
Department, Université de Montréal, Montreal, QC, Canada H2V 0B3
- PROTEO,
The Québec Network for Research on Protein Function, Engineering,
and Applications, 201
Av. du Président-Kennedy, Montréal, QC, Canada H2X 3Y7
- CGCC,
Center in Green Chemistry and Catalysis, Montreal, QC, Canada H2V 0B3
| | - Joelle N. Pelletier
- Chemistry
Department, Université de Montréal, Montreal, QC, Canada H2V 0B3
- PROTEO,
The Québec Network for Research on Protein Function, Engineering,
and Applications, 201
Av. du Président-Kennedy, Montréal, QC, Canada H2X 3Y7
- CGCC,
Center in Green Chemistry and Catalysis, Montreal, QC, Canada H2V 0B3
- Department
of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC, Canada H3T 1J4
| |
Collapse
|
37
|
Sahoo S, Harfmann B, Bhatia H, Singh H, Balijapelly S, Choudhury A, Stavropoulos P. A Comparative Study of Cationic Copper(I) Reagents Supported by Bipodal Tetramethylguanidinyl-Containing Ligands as Nitrene-Transfer Catalysts. ACS OMEGA 2024; 9:15697-15708. [PMID: 38585072 PMCID: PMC10993379 DOI: 10.1021/acsomega.4c00909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/02/2024] [Accepted: 03/07/2024] [Indexed: 04/09/2024]
Abstract
The bipodal compounds [(TMG2biphenN-R)CuI-NCMe](PF6) (R = Me, Ar (4-CF3Ph-)) and [(TMG2biphenN-Me)CuI-I] have been synthesized with ligands that feature a diarylmethyl- and triaryl-amine framework and superbasic tetramethylguanidinyl residues (TMG). The cationic Cu(I) sites mediate catalytic nitrene-transfer reactions between the imidoiodinane PhI = NTs (Ts = tosyl) and a panel of styrenes in MeCN, to afford aziridines, demonstrating comparable reactivity profiles. The copper reagents have been further explored to execute C-H amination reactions with a variety of aliphatic and aromatic hydrocarbons and two distinct nitrene sources PhI = NTs and PhI = NTces (Tces = 2,2,2-trichloroethylsulfamate) in benzene/HFIP (10:2 v/v). Good yields have been obtained for sec-benzylic and tert-C-H bonds of various substrates, especially with the more electron-deficient catalyst [(TMG2biphenN-Ar)CuI-NCMe](PF6). In conjunction with earlier studies, the order of reactivity of these bipodal cationic reagents as a function of the metal employed is established as Cu > Fe > Co ≥ Mn. However, as opposed to the base-metal analogues, the bipodal Cu reagents are less reactive than a similar tripodal Cu catalyst. The observed fluorophilicity of the bipodal Cu compounds may provide a deactivation pathway.
Collapse
Affiliation(s)
- Suraj
Kumar Sahoo
- Department
of Chemistry, Missouri University of Science
and Technology, Rolla, Missouri 65409, United States
| | - Brent Harfmann
- Department
of Chemistry, Missouri University of Science
and Technology, Rolla, Missouri 65409, United States
| | - Himanshu Bhatia
- Department
of Chemistry, Missouri University of Science
and Technology, Rolla, Missouri 65409, United States
| | - Harish Singh
- Department
of Chemistry, Missouri University of Science
and Technology, Rolla, Missouri 65409, United States
| | - Srikanth Balijapelly
- Department
of Chemistry, Missouri University of Science
and Technology, Rolla, Missouri 65409, United States
| | - Amitava Choudhury
- Department
of Chemistry, Missouri University of Science
and Technology, Rolla, Missouri 65409, United States
| | - Pericles Stavropoulos
- Department
of Chemistry, Missouri University of Science
and Technology, Rolla, Missouri 65409, United States
| |
Collapse
|
38
|
Ma B, Niu J, Zhu H, Chi H, Lu Z, Lu F, Zhu P. Engineering substrate specificity of quinone-dependent dehydrogenases for efficient oxidation of deoxynivalenol to 3-keto-deoxynivalenol. Int J Biol Macromol 2024; 264:130484. [PMID: 38431002 DOI: 10.1016/j.ijbiomac.2024.130484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
The oxidative reaction of Fusarium mycotoxin deoxynivalenol (DON) using the dehydrogenase is a desirable strategy and environmentally friendly to mitigate its toxicity. However, a critical issue for these dehydrogenases shows widespread substrate promiscuity. In this study, we conducted pocket reshaping of Devosia strain A6-243 pyrroloquinoline quinone (PQQ)-dependent dehydrogenase (DADH) on the basis of protein structure and kinetic analysis of substrate libraries to improve preference for particular substrate DON (10a). The variant presented an increased preference for substrate 10a and enhanced catalytic efficiency. A 4.7-fold increase in preference for substrate 10a was observed. Kinetic profiling and molecular dynamics (MD) simulations provided insights into the enhanced substrate specificity and activity. Moreover, the variant exhibited stronger conversion of substrate 10a to 3-keto-DON compared to the wild DADH. Overall, this study provides a feasible protocol for the redesign of PQQ-dependent dehydrogenases with favourable substrate specificity and catalytic activity, which is desperately needed for DON antidote development.
Collapse
Affiliation(s)
- Bin Ma
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiafeng Niu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hao Zhu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Huibing Chi
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Fengxia Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Ping Zhu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
39
|
Mou K, Guo Y, Xu W, Li D, Wang Z, Wu Q. Stereodivergent Protein Engineering of Fatty Acid Photodecarboxylase for Light-Driven Kinetic Resolution of Sec-Alcohol Oxalates. Angew Chem Int Ed Engl 2024; 63:e202318374. [PMID: 38195798 DOI: 10.1002/anie.202318374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 01/11/2024]
Abstract
Stereodivergent engineering of one enzyme to create stereocomplementary variants for synthesizing optically pure molecules with tailor-made (R) or (S) configurations on an optional basis is highly desirable and challenging. This study aimed to engineer fatty acid photodecarboxylase from Chlorella variabilis (CvFAP) using the focused rational iterative site-specific mutagenesis (FRISM) strategy to obtain two highly stereocomplementary variants with excellent selectivity (both giving products with up to 99 % e.e.). These variants were used for the CvFAP-catalyzed light-driven kinetic resolution of oxalates or oxamic acids prepared from the corresponding sec-alcohols or amines, providing a new biotransformation process for preparing chiral sec-alcohols and amines. Molecular dynamics simulation, kinetic data and transient spectra revealed the source of selectivity. This study represents the first example of the kinetic resolution of sec-alcohols or amines catalyzed by a pair of stereocomplementary CvFAPs.
Collapse
Affiliation(s)
- Kaihao Mou
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zijingang Campus, Zhejiang University, Hangzhou, 310058, China
| | - Yue Guo
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zijingang Campus, Zhejiang University, Hangzhou, 310058, China
| | - Weihua Xu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zijingang Campus, Zhejiang University, Hangzhou, 310058, China
| | - Danyang Li
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zijingang Campus, Zhejiang University, Hangzhou, 310058, China
| | - Zhiguo Wang
- Institute of Aging Research, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Qi Wu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zijingang Campus, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
40
|
Wan Y, Adda AK, Qian J, Vaccaro DA, He P, Li G, Norton JR. Hydrogen Atom Transfer (HAT)-Mediated Remote Desaturation Enabled by Fe/Cr-H Cooperative Catalysis. J Am Chem Soc 2024; 146:4795-4802. [PMID: 38329998 DOI: 10.1021/jacs.3c13085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
An iron/chromium system (Fe(OAc)2, CpCr(CO)3H) catalyzes the preparation of β,γ- or γ,δ-unsaturated amides from 1,4,2-dioxazol-5-ones. An acyl nitrenoid iron complex seems likely to be responsible for C-H activation. A cascade of three H• transfer steps appears to be involved: (i) the abstraction of H• from a remote C-H bond by the nitrenoid N, (ii) the transfer of H• from Cr to N, and (iii) the abstraction of H• from a radical substituent by the Cr•. The observed kinetic isotope effects are consistent with the proposed mechanism if nitrenoid formation is the rate-determining step. The Fe/Cr catalysts can also desaturate substituted 1,4,2-dioxazol-5-ones to 3,5-dienamides.
Collapse
Affiliation(s)
- Yanjun Wan
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
- Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, Utah 84322, United States
| | - Augustine K Adda
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - Jin Qian
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - David A Vaccaro
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - Peixian He
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - Gang Li
- Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, Utah 84322, United States
| | - Jack R Norton
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| |
Collapse
|
41
|
Rogge T, Zhou Q, Porter NJ, Arnold FH, Houk KN. Iron Heme Enzyme-Catalyzed Cyclopropanations with Diazirines as Carbene Precursors: Computational Explorations of Diazirine Activation and Cyclopropanation Mechanism. J Am Chem Soc 2024; 146:2959-2966. [PMID: 38270588 DOI: 10.1021/jacs.3c06030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
The mechanism of cyclopropanations with diazirines as air-stable and user-friendly alternatives to commonly employed diazo compounds within iron heme enzyme-catalyzed carbene transfer reactions has been studied by means of density functional theory (DFT) calculations of model systems, quantum mechanics/molecular mechanics (QM/MM) calculations, and molecular dynamics (MD) simulations of the iron carbene and the cyclopropanation transition state in the enzyme active site. The reaction is initiated by a direct diazirine-diazo isomerization occurring in the active site of the enzyme. In contrast, an isomerization mechanism proceeding via the formation of a free carbene intermediate in lieu of a direct, one-step isomerization process was observed for model systems. Subsequent reaction with benzyl acrylate takes place through stepwise C-C bond formation via a diradical intermediate, delivering the cyclopropane product. The origin of the observed diastereo- and enantioselectivity in the enzyme was investigated through MD simulations, which indicate a preferred formation of the cis-cyclopropane by steric control.
Collapse
Affiliation(s)
- Torben Rogge
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| | - Qingyang Zhou
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| | - Nicholas J Porter
- Division of Chemistry and Chemical Engineering, Division of Biology and Bioengineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Frances H Arnold
- Division of Chemistry and Chemical Engineering, Division of Biology and Bioengineering, California Institute of Technology, Pasadena, California 91125, United States
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| |
Collapse
|
42
|
Notin P, Rollins N, Gal Y, Sander C, Marks D. Machine learning for functional protein design. Nat Biotechnol 2024; 42:216-228. [PMID: 38361074 DOI: 10.1038/s41587-024-02127-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 01/05/2024] [Indexed: 02/17/2024]
Abstract
Recent breakthroughs in AI coupled with the rapid accumulation of protein sequence and structure data have radically transformed computational protein design. New methods promise to escape the constraints of natural and laboratory evolution, accelerating the generation of proteins for applications in biotechnology and medicine. To make sense of the exploding diversity of machine learning approaches, we introduce a unifying framework that classifies models on the basis of their use of three core data modalities: sequences, structures and functional labels. We discuss the new capabilities and outstanding challenges for the practical design of enzymes, antibodies, vaccines, nanomachines and more. We then highlight trends shaping the future of this field, from large-scale assays to more robust benchmarks, multimodal foundation models, enhanced sampling strategies and laboratory automation.
Collapse
Affiliation(s)
- Pascal Notin
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
- Department of Computer Science, University of Oxford, Oxford, UK.
| | | | - Yarin Gal
- Department of Computer Science, University of Oxford, Oxford, UK
| | - Chris Sander
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Debora Marks
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| |
Collapse
|
43
|
Mao R, Taylor DM, Wackelin DJ, Wu SJ, Sicinski KM, Arnold FH. Biocatalytic, Stereoconvergent Alkylation of ( Z/E)-Trisubstituted Silyl Enol Ethers. NATURE SYNTHESIS 2024; 3:256-264. [PMID: 39130128 PMCID: PMC11309014 DOI: 10.1038/s44160-023-00431-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 10/04/2023] [Indexed: 08/13/2024]
Abstract
Alkene functionalization has garnered significant attention due to the versatile reactivity of C=C bonds. A major challenge is the selective conversion of isomeric alkenes into chiral products. Researchers have devised various biocatalytic strategies to transform isomeric alkenes into stereopure compounds; while selective, the enzymes often specifically convert one alkene isomer, thereby diminishing overall yield. To increase the overall yield, scientists have introduced additional driving forces to interconvert alkene isomers. This improves the yield of biocatalytic alkene functionalization at the cost of increased energy consumption and chemical waste. Developing a stereoconvergent enzyme for alkene functionalization offers an ideal solution, although such catalysts are rarely reported. Here we present engineered hemoproteins derived from a bacterial cytochrome P450 that efficiently catalyze the stereoconvergent α-carbonyl alkylation of isomeric silyl enol ethers, producing stereopure products. Through screening and directed evolution, we generated P450BM3 variant SCA-G2, which catalyzes stereoconvergent carbene transfer in E. coli, with high efficiency and stereoselectivity toward various Z/E mixtures of silyl enol ethers. In contrast to established stereospecific transformations that leave one isomer unreacted, SCA-G2 converts both isomers to a stereopure product. This biocatalytic approach simplifies the synthesis of chiral α-branched ketones by eliminating the need for stoichiometric chiral auxiliaries, strongly basic alkali-metal enolates, and harsh conditions, delivering products with high efficiency and excellent chemo- and stereoselectivities.
Collapse
Affiliation(s)
| | | | | | - Sophia J. Wu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, 91125, United States
| | - Kathleen M. Sicinski
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, 91125, United States
| | - Frances H. Arnold
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, 91125, United States
| |
Collapse
|
44
|
Wackelin DJ, Mao R, Sicinski KM, Zhao Y, Das A, Chen K, Arnold FH. Enzymatic Assembly of Diverse Lactone Structures: An Intramolecular C-H Functionalization Strategy. J Am Chem Soc 2024; 146:1580-1587. [PMID: 38166100 PMCID: PMC11290351 DOI: 10.1021/jacs.3c11722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Lactones are cyclic esters with extensive applications in materials science, medicinal chemistry, and the food and perfume industries. Nature's strategy for the synthesis of many lactones found in natural products always relies on a single type of retrosynthetic strategy, a C-O bond disconnection. Here, we describe a set of laboratory-engineered enzymes that use a new-to-nature C-C bond-forming strategy to assemble diverse lactone structures. These engineered "carbene transferases" catalyze intramolecular carbene insertions into benzylic or allylic C-H bonds, which allow for the synthesis of lactones with different ring sizes and ring scaffolds from simple starting materials. Starting from a serine-ligated cytochrome P450 variant previously engineered for other carbene-transfer activities, directed evolution generated a variant P411-LAS-5247, which exhibits a high activity for constructing a five-membered ε-lactone, lactam, and cyclic ketone products (up to 5600 total turnovers (TTN) and >99% enantiomeric excess (ee)). Further engineering led to variants P411-LAS-5249 and P411-LAS-5264, which deliver six-membered δ-lactones and seven-membered ε-lactones, respectively, overcoming the thermodynamically unfavorable ring strain associated with these products compared to the γ-lactones. This new carbene-transfer activity was further extended to the synthesis of complex lactone scaffolds based on fused, bridged, and spiro rings. The enzymatic platform developed here complements natural biosynthetic strategies for lactone assembly and expands the structural diversity of lactones accessible through C-H functionalization.
Collapse
Affiliation(s)
- Daniel J. Wackelin
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Runze Mao
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Kathleen M. Sicinski
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Yutao Zhao
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
- Present address: Department of Chemistry, The University of Chicago, Chicago, IL 60637, United States
| | - Anuvab Das
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Kai Chen
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
- Present address: Innovative Genomics Institute, University of California, Berkeley, CA 94720, United States
| | - Frances H. Arnold
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
45
|
Guan A, Hou Y, Yang R, Qin J. Enzyme engineering for functional lipids synthesis: recent advance and perspective. BIORESOUR BIOPROCESS 2024; 11:1. [PMID: 38647956 PMCID: PMC10992173 DOI: 10.1186/s40643-023-00723-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/24/2023] [Indexed: 04/25/2024] Open
Abstract
Functional lipids, primarily derived through the modification of natural lipids by various processes, are widely acknowledged for their potential to impart health benefits. In contrast to chemical methods for lipid modification, enzymatic catalysis offers distinct advantages, including high selectivity, mild operating conditions, and reduced byproduct formation. Nevertheless, enzymes face challenges in industrial applications, such as low activity, stability, and undesired selectivity. To address these challenges, protein engineering techniques have been implemented to enhance enzyme performance in functional lipid synthesis. This article aims to review recent advances in protein engineering, encompassing approaches from directed evolution to rational design, with the goal of improving the properties of lipid-modifying enzymes. Furthermore, the article explores the future prospects and challenges associated with enzyme-catalyzed functional lipid synthesis.
Collapse
Affiliation(s)
- Ailin Guan
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Yue Hou
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Run Yang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Jiufu Qin
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
46
|
Xu Y, Chen H, Yu L, Peng X, Zhang J, Xing Z, Bao Y, Liu A, Zhao Y, Tian C, Liang Y, Huang X. A light-driven enzymatic enantioselective radical acylation. Nature 2024; 625:74-78. [PMID: 38110574 DOI: 10.1038/s41586-023-06822-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/01/2023] [Indexed: 12/20/2023]
Abstract
Enzymes are recognized as exceptional catalysts for achieving high stereoselectivities1-3, but their ability to control the reactivity and stereoinduction of free radicals lags behind that of chemical catalysts4. Thiamine diphosphate (ThDP)-dependent enzymes5 are well-characterized systems that inspired the development of N-heterocyclic carbenes (NHCs)6-8 but have not yet been proved viable in asymmetric radical transformations. There is a lack of a biocompatible and general radical-generation mechanism, as nature prefers to avoid radicals that may be harmful to biological systems9. Here we repurpose a ThDP-dependent lyase as a stereoselective radical acyl transferase (RAT) through protein engineering and combination with organophotoredox catalysis10. Enzyme-bound ThDP-derived ketyl radicals are selectively generated through single-electron oxidation by a photoexcited organic dye and then cross-coupled with prochiral alkyl radicals with high enantioselectivity. Diverse chiral ketones are prepared from aldehydes and redox-active esters (35 examples, up to 97% enantiomeric excess (e.e.)) by this method. Mechanistic studies reveal that this previously elusive dual-enzyme catalysis/photocatalysis directs radicals with the unique ThDP cofactor and evolvable active site. This work not only expands the repertoire of biocatalysis but also provides a unique strategy for controlling radicals with enzymes, complementing existing chemical tools.
Collapse
Affiliation(s)
- Yuanyuan Xu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Hongwei Chen
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Lu Yu
- The Anhui Provincial Key Laboratory of High Magnetic Resonance Image, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, China
| | - Xichao Peng
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Jiawei Zhang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Zhongqiu Xing
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Yuyan Bao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Aokun Liu
- The Anhui Provincial Key Laboratory of High Magnetic Resonance Image, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Changlin Tian
- The Anhui Provincial Key Laboratory of High Magnetic Resonance Image, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, China.
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Joint Center for Biological Analytical Chemistry, Anhui Engineering Laboratory of Peptide Drug, Anhui Laboratory of Advanced Photonic Science and Technology, University of Science and Technology of China, Hefei, China.
| | - Yong Liang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, China.
| | - Xiaoqiang Huang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
| |
Collapse
|
47
|
Qin ZY, Gao S, Zou Y, Liu Z, Wang JB, Houk KN, Arnold FH. Biocatalytic Construction of Chiral Pyrrolidines and Indolines via Intramolecular C(sp 3)-H Amination. ACS CENTRAL SCIENCE 2023; 9:2333-2338. [PMID: 38161360 PMCID: PMC10755850 DOI: 10.1021/acscentsci.3c00516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 01/03/2024]
Abstract
Nature harnesses exquisite enzymatic cascades to construct N-heterocycles and further uses these building blocks to assemble the molecules of life. Here we report an enzymatic platform to construct important chiral N-heterocyclic products, pyrrolidines and indolines, via abiological intramolecular C(sp3)-H amination of organic azides. Directed evolution of cytochrome P411 (a P450 enzyme with serine as the heme-ligating residue) yielded variant P411-PYS-5149, capable of catalyzing the insertion of alkyl nitrene into C(sp3)-H bonds to build pyrrolidine derivatives with good enantioselectivity and catalytic efficiency. Further evolution of activity on aryl azide substrates yielded variant P411-INS-5151 that catalyzes intramolecular C(sp3)-H amination to afford chiral indolines. In addition, we show that these enzymatic aminations can be coupled with a P411-based carbene transferase or a tryptophan synthase to generate an α-amino lactone or a noncanonical amino acid, respectively, underscoring the power of new-to-nature biocatalysis in complexity-building chemical synthesis.
Collapse
Affiliation(s)
- Zi-Yang Qin
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Shilong Gao
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Yike Zou
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, California 90095, United States
| | - Zhen Liu
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - James B. Wang
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Kendall N. Houk
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, California 90095, United States
| | - Frances H. Arnold
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
48
|
Mahajan M, Mondal B. How Axial Coordination Regulates the Electronic Structure and C-H Amination Reactivity of Fe-Porphyrin-Nitrene? JACS AU 2023; 3:3494-3505. [PMID: 38155653 PMCID: PMC10751768 DOI: 10.1021/jacsau.3c00670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/30/2023]
Abstract
Detailed electronic structure and its correlation with the intramolecular C-H amination reactivity of Fe-porphyrin-nitrene intermediates bearing different "axial" coordination have been investigated using multiconfigurational complete active space self-consistent field (CASSCF), N-electron valence perturbation theory (NEVPT2), and hybrid density functional theory (DFT-B3LYP) calculations. Three types of "axial" coordination, -OMe/-O(H)Me (1-Sul/2-Sul), -SMe/-S(H)Me (3-Sul/4-Sul), and -NMeIm (MeIm = 3-methyl-imidazole) (5-Sul) mimicking serine, cysteine, and histidine, respectively, along with no axial coordination (6-Sul) have been considered to decipher how the "axial" coordination of different strengths regulates the electronic integrity of the Fe-N core and nitrene-transfer reactivity of Fe-porphyrin-nitrene intermediates. CASSCF-based natural orbitals reveal two distinct classes of electronic structures: Fe-nitrenes (1-Sul and 3-Sul) with relatively stronger axial coordination (-OMe and -SMe) display "imidyl" nature and those (2-Sul, 4-Sul, and 6-Sul) with weaker axial coordination (-O(H)Me, -S(H)Me and no axial coordination) exhibit "imido-like" character. A borderline between the two classes is also observed with NMeIm axial coordination (5-Sul). Axial coordination of different strengths not only regulates the electronic structure but also modulates the Fe-3d orbital energies, as revealed through the d-d transition energies obtained by CASSCF/NEVPT2 calculations. The relatively lower energy of Fe-3dz2 orbital allows easy access to low-lying high-spin quintet states in the cases of weaker "axial" coordination (2-Sul, 4-Sul, and 6-Sul), and the associated hydrogen atom transfer (HAT) reactivity appears to involve two-state triplet-quintet reactivity through minimum energy crossing point (3,5MECP) between the spin states. In stark contrast, Fe-nitrenes with relatively stronger "axial" coordination (1-Sul and 3-Sul) undergo triplet-only HAT reactivity. Overall, this in-depth electronic structure investigation and HAT reactivity evaluation reveal that the weaker axial coordination in Fe-porphyrin-nitrene complexes (2-Sul, 4-Sul, and 6-Sul) can promote more efficient C-H oxidation through the quintet spin state.
Collapse
Affiliation(s)
- Mayank Mahajan
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh 175075, India
| | - Bhaskar Mondal
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh 175075, India
| |
Collapse
|
49
|
Qin X, Jiang Y, Yao F, Chen J, Kong F, Zhao P, Jin L, Cong Z. Anchoring a Structurally Editable Proximal Cofactor-like Module to Construct an Artificial Dual-center Peroxygenase. Angew Chem Int Ed Engl 2023; 62:e202311259. [PMID: 37713467 DOI: 10.1002/anie.202311259] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/07/2023] [Accepted: 09/15/2023] [Indexed: 09/17/2023]
Abstract
A recent novel strategy for constructing artificial metalloenzymes (ArMs) that target new-to-nature functions uses dual-functional small molecules (DFSMs) with catalytic and anchoring groups for converting P450BM3 monooxygenase into a peroxygenase. However, this process requires excess DFSMs (1000 equivalent of P450) owing to their low binding affinity for P450, thus severely limiting its practical application. Herein, structural optimization of the DFSM-anchoring group considerably enhanced their binding affinity by three orders of magnitude (Kd ≈10-8 M), thus approximating native cofactors, such as FMN or FAD in flavoenzymes. An artificial cofactor-driven peroxygenase was thus constructed. The co-crystal structure of P450BM3 bound to a DFSM clearly revealed a precatalytic state in which the DFSM participates in H2 O2 activation, thus facilitating peroxygenase activity. Moreover, the increased binding affinity substantially decreases the DFSM load to as low as 2 equivalents of P450, while maintaining increased activity. Furthermore, replacement of catalytic groups showed disparate selectivity and activity for various substrates. This study provides an unprecedented approach for assembling ArMs by binding editable organic cofactors as a co-catalytic center, thereby increasing the catalytic promiscuity of P450 enzymes.
Collapse
Affiliation(s)
- Xiangquan Qin
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Department of Chemistry, Yanbian University, Yanji, 133002, China
| | - Yiping Jiang
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, Shandong, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, 266101, China
| | - Fuquan Yao
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Jie Chen
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, Shandong, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, 266101, China
| | - Fanhui Kong
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Panxia Zhao
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Longyi Jin
- Department of Chemistry, Yanbian University, Yanji, 133002, China
| | - Zhiqi Cong
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, Shandong, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, 266101, China
| |
Collapse
|
50
|
Grandi E, Feyza Özgen F, Schmidt S, Poelarends GJ. Enzymatic Oxy- and Amino-Functionalization in Biocatalytic Cascade Synthesis: Recent Advances and Future Perspectives. Angew Chem Int Ed Engl 2023; 62:e202309012. [PMID: 37639631 DOI: 10.1002/anie.202309012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 08/31/2023]
Abstract
Biocatalytic cascades are a powerful tool for building complex molecules containing oxygen and nitrogen functionalities. Moreover, the combination of multiple enzymes in one pot offers the possibility to minimize downstream processing and waste production. In this review, we illustrate various recent efforts in the development of multi-step syntheses involving C-O and C-N bond-forming enzymes to produce high value-added compounds, such as pharmaceuticals and polymer precursors. Both in vitro and in vivo examples are discussed, revealing the respective advantages and drawbacks. The use of engineered enzymes to boost the cascades outcome is also addressed and current co-substrate and cofactor recycling strategies are presented, highlighting the importance of atom economy. Finally, tools to overcome current challenges for multi-enzymatic oxy- and amino-functionalization reactions are discussed, including flow systems with immobilized biocatalysts and cascades in confined nanomaterials.
Collapse
Affiliation(s)
- Eleonora Grandi
- Department of Chemical and Pharmaceutical Biology, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Fatma Feyza Özgen
- Department of Chemical and Pharmaceutical Biology, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Sandy Schmidt
- Department of Chemical and Pharmaceutical Biology, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Gerrit J Poelarends
- Department of Chemical and Pharmaceutical Biology, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| |
Collapse
|