1
|
Dettoto C, Maccantelli A, Barbieri MV, Baini M, Fernández-Arribas J, Panti C, Giani D, Galli M, Eljarrat E, Fossi MC. Plasticizers levels in four fish species from the Ligurian Sea and Central Adriatic Sea (Mediterranean Sea) and potential risk for human consumption. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176442. [PMID: 39317248 DOI: 10.1016/j.scitotenv.2024.176442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024]
Abstract
Plastic materials contain additives such as plasticizers and flame retardants, which are not covalently bound to plastic polymers and can therefore be unintentionally released into the marine environment. This study investigated three families of compounds, phthalates (PAEs), organophosphate esters (OPEs), and non-phthalate plasticizers (NPPs) currently used as plastic additives, in 48 muscle samples of bogue (Boops boops), European hake (Merluccius merluccius), red mullet (Mullus barbatus), and European pilchard (Sardina pilchardus) sampled in the Central Adriatic and the Ligurian Seas. The additional goal of this study is to assess the potential risk to human health from fish consumption with the objective of determining whether the detected levels might potentially pose a concern. PAEs represent the majority of the plastic additives detected in the selected species, with ubiquitous distribution across the study areas, whereas for OPEs and NPPs, there is a more pronounced difference between the two study areas, suggesting that these compounds may represent different exposure levels in the two seas. Among PAEs, bis(2-ethylhexyl) phthalate (DEHP), dibutyl phthalate (DBP), and diisobutyl phthalate (DIBP) were the most abundant compounds, reaching levels up to 455 ng/g ww. OPEs were detected at higher concentrations in samples from the Ligurian Sea, and triethyl phosphate (TEP) was the most abundant compound. Among the NPPs, acetyl tributyl citrate (ATBC) was most frequently detected. From the results obtained, fish consumption may not pose a risk to human health (Hazard Quotient<1) but needs to be considered in future studies. Given the limited number of studies on PAEs, OPEs and NPPs in the Mediterranean Sea, further research is necessary to understand their potential bioaccumulation in marine organisms.
Collapse
Affiliation(s)
- Chiara Dettoto
- Department of Physical Science, Earth and Environment, University of Siena, Siena, Italy
| | - Andrea Maccantelli
- Department of Physical Science, Earth and Environment, University of Siena, Siena, Italy; National Biodiversity Future Center, Palermo, Italy
| | - Maria Vittoria Barbieri
- Environmental and Water Chemistry for Human Health group (ONHEALTH), Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain
| | - Matteo Baini
- Department of Physical Science, Earth and Environment, University of Siena, Siena, Italy; National Biodiversity Future Center, Palermo, Italy.
| | - Julio Fernández-Arribas
- Environmental and Water Chemistry for Human Health group (ONHEALTH), Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain
| | - Cristina Panti
- Department of Physical Science, Earth and Environment, University of Siena, Siena, Italy; National Biodiversity Future Center, Palermo, Italy
| | - Dario Giani
- Department of Physical Science, Earth and Environment, University of Siena, Siena, Italy
| | - Matteo Galli
- Department of Physical Science, Earth and Environment, University of Siena, Siena, Italy
| | - Ethel Eljarrat
- Environmental and Water Chemistry for Human Health group (ONHEALTH), Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain
| | - Maria Cristina Fossi
- Department of Physical Science, Earth and Environment, University of Siena, Siena, Italy; National Biodiversity Future Center, Palermo, Italy
| |
Collapse
|
2
|
Yu D, Guo X, Wang A, Wu Z, Shi J. Simulation and parameter determination of the net sorption of phenanthrene by sediment particles. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116440. [PMID: 38733806 DOI: 10.1016/j.ecoenv.2024.116440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/16/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024]
Abstract
The distribution of polycyclic aromatic hydrocarbons (PAHs) in the ocean is affected by the sorption-desorption process of sediment particles. This process is determined by the concentration of PAHs in seawater, water temperature, and organic matter content of sediment particles. Quantitative relationships between the net sorption rates (=the difference of sorption and desorption rates) and these factors have not been established yet and used in PAH transport models. In this study, phenanthrene was chosen as the representative of PAHs. Three groups of experimental data were collected to address the dependence of the net sorption processes on the initial concentration, water temperature, and organic carbon content representing organic matter content. One-site and two-compartment mass-transfer models were tested to represent the experimental data using various parameters. The results showed that the two-compartment mass-transfer model performed better than the one-site mass-transfer model. The parameters of the two-compartment mass-transfer model include the sorption rate coefficients kafand kas (L g-1 min-1), and the desorption rate coefficients kdf and kds (min-1). The parameters at different temperatures and organic carbon contents were obtained by numerical simulations. Linear relationships were obtained between the parameters and water temperature, as well as organic carbon content. kaf, kas and kdf decreased linearly, while kds increased linearly with temperature. kaf, kas and kdf increased linearly, while kds decreased linearly with organic carbon content. The r2 values between the simulation results based on the relationships and the experimental results reached 0.96-0.99, which supports the application of the model to simulate sorption-desorption processes at different water temperatures and organic carbon contents in a realistic ocean.
Collapse
Affiliation(s)
- Donglin Yu
- Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, 238 Songling Road, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Sciences, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xinyu Guo
- Center for Marine Environmental Studies, Ehime University2-5 Bunkyo-cho, Matsuyama 790-8577,Japan
| | - Aobo Wang
- School of Hydraulic Engineering, Ludong University, Yantai, Shandong 264025, China
| | - Zhaosen Wu
- Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, 238 Songling Road, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Sciences, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Jie Shi
- Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, 238 Songling Road, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Sciences, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
3
|
Schweizer S, Halder K, Schäfer A, Hauns J, Marsili L, Mazzariol S, Fossi MC, Muñoz-Arnanz J, Jiménez B, Vetter W. High Amounts of Halogenated Natural Products in Sperm Whales ( Physeter macrocephalus) from Two Italian Regions in the Mediterranean Sea. ENVIRONMENT & HEALTH (WASHINGTON, D.C.) 2024; 2:233-242. [PMID: 38660428 PMCID: PMC11036390 DOI: 10.1021/envhealth.3c00182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/27/2024] [Accepted: 02/04/2024] [Indexed: 04/26/2024]
Abstract
Halogenated natural products (HNPs) are considered to be emerging contaminants whose environmental distribution and fate are only incompletely known. Therefore, several persistent and bioaccumulative HNP groups, together with man-made polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs), were quantified in the blubber of nine sperm whales (Physeter macrocephalus) stranded on the coast of the Mediterranean Sea in Italy. The naturally occurring polybrominated hexahydroxanthene derivatives (PBHDs; sum of TetraBHD and TriBHD) were the most prominent substance class with up to 77,000 ng/g blubber. The mean PBHD content (35,800 ng/g blubber) even exceeded the one of PCBs (28,400 ng/g blubber), although the region is known to be highly contaminated with man-made contaminants. Based on mean values, Q1 ∼ PBDEs > MeO-BDEs ∼ 2,2'-diMeO-BB 80 and several other HNPs followed with decreasing amounts. All blubber samples contained an abundant compound whose molecular formula (C16H19Br3O2) was verified using high-resolution mass spectrometry. The only plausible matching isomer was (2S,4'S,9R,9'S)-2,7-dibromo-4'-bromomethyl-1,1-dimethyl-2,3,4,4',9,9'-9,9'-hexahydro-1H-xanthen-9-ol (OH-TriBHD), a hydroxylated secondary metabolite previously detected together with TriBHD and TetraBHD in a sponge known to be a natural producer of PBHDs. The estimated mean amount of the presumed OH-TriBHD was 3000 ng/g blubber, which is unexpectedly high for hydroxylated compounds in the lipids of marine mammals.
Collapse
Affiliation(s)
- Sina Schweizer
- Institute of Food Chemistry, Department of Food Chemistry (170b), University of Hohenheim, 70599 Stuttgart, Germany
| | - Kristin Halder
- Institute of Food Chemistry, Department of Food Chemistry (170b), University of Hohenheim, 70599 Stuttgart, Germany
| | - Annika Schäfer
- Institute of Food Chemistry, Department of Food Chemistry (170b), University of Hohenheim, 70599 Stuttgart, Germany
| | - Jakob Hauns
- European Union Reference Laboratory (EURL) for Halogenated POPs in Feed and Food, 79114 Freiburg, Germany
| | - Letizia Marsili
- Department of Environmental, Earth and Physical Sciences, University of Siena, 53100 Siena, Italy
| | - Sandro Mazzariol
- Department of Public Health, Comparative Pathology and Veterinary Hygiene, University of Padova, 35020 Legnaro, Italy
| | - Maria Cristina Fossi
- Department of Environmental, Earth and Physical Sciences, University of Siena, 53100 Siena, Italy
| | - Juan Muñoz-Arnanz
- Department of Instrumental Analysis and Environmental Chemistry, Institute of Organic Chemistry (IQOG-CSIC), 28006 Madrid, Spain
| | - Begoña Jiménez
- Department of Instrumental Analysis and Environmental Chemistry, Institute of Organic Chemistry (IQOG-CSIC), 28006 Madrid, Spain
| | - Walter Vetter
- Institute of Food Chemistry, Department of Food Chemistry (170b), University of Hohenheim, 70599 Stuttgart, Germany
| |
Collapse
|
4
|
Taylor MD, Langdon KA, Smith JA, Stevenson G, Edge K. Polychlorinated dibenzodioxins/furans and dioxin-like polychlorinated biphenyls in fish and crustaceans of a recreationally fished estuary, following targeted remediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171089. [PMID: 38387567 DOI: 10.1016/j.scitotenv.2024.171089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/24/2024] [Accepted: 02/17/2024] [Indexed: 02/24/2024]
Abstract
Polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs) and dioxin-like polychlorinated biphenyls (dl-PCBs) are a suite of harmful chemicals (hereafter collectively referred to as 'dioxins'), and their emission into aquatic habitats leads to persistent contamination of sediments, aquatic food-webs, and seafoods. Quantifying contaminant levels in seafood species is important for the ongoing management of exposure risk by fishers, particularly after any remediation actions. We present dioxin concentrations in four seafood species (Yellowfin Bream Acanthopagrus australis, Sea Mullet Mugil cephalus, Eastern School Prawn Metapenaeus macleayi, and Eastern King Prawn Penaeus plebejus) in a recreationally fished estuary, in relation to a contaminated site that has undergone a remediation process, partially removing contaminated sediments (Homebush Bay, Port Jackson, New South Wales, Australia). Dioxin concentrations in these species were measured before (2005/6) and after (2015/16) remediation at a range of locations in and around the remediated site. Dioxin concentrations and congener profiles differed substantially among taxa, and concentrations were frequently higher than Australian screening criteria. The two prawn species showed evidence of a decline in dioxin concentrations after remediation, but the fish species only showed a declining dioxin concentration with distance from the contaminated site (not between periods). There were some minor changes in the congener profile for some species following remediation. While there was evidence for greatly reduced dioxin concentrations in prawn species following remediation, the complex patterns for fish were likely affected by environmental changes, species-specific and temporal changes in lipid content, and animal movement patterns. Future monitoring may aid interpretation of the patterns and modelling of exposure risk associated with seafood consumption into the future.
Collapse
Affiliation(s)
- Matthew D Taylor
- Port Stephens Fisheries Institute, New South Wales Department of Primary Industries, Locked Bag 1, Nelson Bay, New South Wales 2315, Australia; School of Environmental and Life Sciences, University of Newcastle, New South Wales 2308, Australia; The University of Queensland, Queensland Alliance for Environmental Health Sciences, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia.
| | - Kate A Langdon
- Environment Protection Science, New South Wales Department of Planning and Environment, 480 Weeroona Road, Lidcombe, New South Wales 2141, Australia
| | - James A Smith
- Port Stephens Fisheries Institute, New South Wales Department of Primary Industries, Locked Bag 1, Nelson Bay, New South Wales 2315, Australia
| | - Gavin Stevenson
- National Measurement Institute, Department of Industry, Science and Resources, 105 Delhi Road, Sydney, New South Wales 2113, Australia
| | - Katelyn Edge
- Environment Protection Science, New South Wales Department of Planning and Environment, 480 Weeroona Road, Lidcombe, New South Wales 2141, Australia
| |
Collapse
|
5
|
Wei LN, Wu NN, Xu R, Liu S, Li HX, Lin L, Hou R, Xu XR, Zhao JL, Ying GG. First Evidence of the Bioaccumulation and Trophic Transfer of Tire Additives and Their Transformation Products in an Estuarine Food Web. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6370-6380. [PMID: 38497719 DOI: 10.1021/acs.est.3c10248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The discovery of the significant lethal impacts of the tire additive transformation product N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine quinone (6PPD-Q) on coho salmon has garnered global attention. However, the bioaccumulation and trophic transfer of tire additives and their transformation products (TATPs) within food webs remain obscure. This study first characterized the levels and compositions of 15 TATPs in the Pearl River Estuary, estimated their bioaccumulation and trophic transfer potential in 21 estuarine species, and identified priority contaminants. Our observations indicated that TATPs were prevalent in the estuarine environment. Eight, six, seven, and 10 TATPs were first quantified in the shrimp, sea cucumber, snail, and fish samples, with total mean levels of 45, 56, 64, and 67 ng/g (wet weight), respectively. N,N'-Diphenyl-p-phenylenediamine (DPPD) and N,N'-bis(2-methylphenyl)-1,4-benzenediamine (DTPD) exhibited high bioaccumulation. Significant biodilution was only identified for benzothiazole, while DPPD and DTPD displayed biomagnification trends based on Monte Carlo simulations. The mechanisms of bioaccumulation and trophodynamics of TATPs could be explained by their chemical hydrophobicity, molecular mass, and metabolic rates. Based on a multicriteria scoring technique, DPPD, DTPD, and 6PPD-Q were characterized as priority contaminants. This work emphasizes the importance of biomonitoring, particularly for specific hydrophobic tire additives.
Collapse
Affiliation(s)
- Li-Ni Wei
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Nian-Nian Wu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ru Xu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shan Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Heng-Xiang Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Lang Lin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Rui Hou
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Xiang-Rong Xu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Jian-Liang Zhao
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Guang-Guo Ying
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
6
|
Liu B, Lv L, Ding L, Gao L, Li J, Ma X, Yu Y. Comparison of phthalate esters (PAEs) in freshwater and marine food webs: Occurrence, bioaccumulation, and trophodynamics. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133534. [PMID: 38241835 DOI: 10.1016/j.jhazmat.2024.133534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/11/2024] [Accepted: 01/13/2024] [Indexed: 01/21/2024]
Abstract
Phthalate esters (PAEs) have received widespread attentions due to their ubiquity in various kinds of matrices and potential biotoxicity. This study systematically compared the concentrations, bioaccumulation, trophodynamics and health risk of PAEs in 25 species (n = 225) collected from a marine (Bohai Bay, BHB) and freshwater environment (Songhua River, SHR), China. Results showed that di-(2-ethylhexyl) phthalate and di-n-butyl phthalate were the predominant PAEs in the organisms from the two aquatic environments. The total concentrations of 6 PAEs in algae and fish from SHR were significantly higher than those from BHB. Two food webs were constructed in BHB and SHR based on the abundance of 15N in the organisms. All the PAEs except dimethyl phthalate exhibited trophic dilution with the trophic magnification factors less than 1. Moreover, an obvious biodilution of PAEs was observed in marine food web compared to freshwater food web. A low health risk of PAEs was found in organisms from both BHB and SHR. However, di-(2-ethylhexyl) phthalate exhibited a potential carcinogenic risk by consumption of some benthos in BHB and fish in SHR. This study provides a valuable perspective for understanding the trophodynamics and health risk of PAEs in marine and freshwater environments.
Collapse
Affiliation(s)
- Baolin Liu
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Linyang Lv
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Lingjie Ding
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Lei Gao
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Junjie Li
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Xinyu Ma
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Yong Yu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| |
Collapse
|
7
|
Greco M, Al-Enezi E, Amao A, Francescangeli F, Cavaliere M, Bucci C, Toscanesi M, Trifuoggi M, Pawlowski J, Frontalini F. Deciphering the impact of decabromodiphenyl ether (BDE-209) on benthic foraminiferal communities: Insights from Cell-Tracker Green staining and eDNA metabarcoding. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133652. [PMID: 38309158 DOI: 10.1016/j.jhazmat.2024.133652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/11/2024] [Accepted: 01/26/2024] [Indexed: 02/05/2024]
Abstract
This study investigates the ecotoxicological effects of BDE-209, a persistent organic pollutant (POP) prevalent in Kuwait's coastal-industrial areas, on benthic foraminiferal communities. We conducted a mesocosm experiment in which we exposed benthic foraminiferal communities sampled from the coastal-industrial areas of Kuwait to a gradient of BDE-209 concentrations (0.01 to 20 mg/kg). The impact of exposure was assessed using live-staining and metabarcoding techniques. Despite the significantly different taxonomic compositions detected by the two techniques, our results show that BDE-209 significantly affects foraminiferal communities, with moderately high concentrations leading to reduced α-diversity and considerable taxonomic shifts in both molecular and morphological assemblages. At concentrations of 10 and 20 mg/kg, no living foraminifera were detected after 8 weeks, suggesting a threshold for their survival under BDE-209 exposure. The parallel responses of molecular and morphological communities confirm the reliability of both assessment methods. This study is the first to investigate the reaction of eukaryotic communities, specifically foraminifera, to POPs such as BDE-209, generating valuable insights that have the potential to enhance field studies and aid the refinement of sediment quality guidelines.
Collapse
Affiliation(s)
- Mattia Greco
- Institut de Ciències del Mar, Passeig Marítim de la Barceloneta, 37-49, Barcelona, Spain.
| | - Eqbal Al-Enezi
- Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat 13109, Kuwait.
| | - Abduljamiu Amao
- Center for Integrative Petroleum Research, College of Petroleum Engineering and Geosciences, King Fahd University of Petroleum and Minerals, P.O. Box 5070, 31261 Dhahran, Saudi Arabia.
| | - Fabio Francescangeli
- Department of Geosciences, University of Fribourg, Chemin du Musée 6, 1700 Fribourg/Freiburg, Switzerland.
| | - Marco Cavaliere
- Department of Pure and Applied Sciences, Urbino University, Campus Scientifico, via Ca le Suore 2/4, 61029 Urbino, Italy.
| | - Carla Bucci
- Department of Pure and Applied Sciences, Urbino University, Campus Scientifico, via Ca le Suore 2/4, 61029 Urbino, Italy.
| | - Maria Toscanesi
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, 80126 Naples, Italy.
| | - Marco Trifuoggi
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, 80126 Naples, Italy.
| | - Jan Pawlowski
- ID-Gene ecodiagnostics Ltd, 109 ch. du Pont-du-Centenaire, 1228 Plan-les-Ouates, Switzerland; Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, Sopot 81-712, Poland.
| | - Fabrizio Frontalini
- Department of Pure and Applied Sciences, Urbino University, Campus Scientifico, via Ca le Suore 2/4, 61029 Urbino, Italy.
| |
Collapse
|
8
|
Wu NN, Liu S, Xu R, Huang QY, Pan YF, Li HX, Lin L, Hou R, Cheng YY, Xu XR. New insight into the bioaccumulation and trophic transfer of free and conjugated antibiotics in an estuarine food web based on multimedia fate and model simulation. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133088. [PMID: 38016320 DOI: 10.1016/j.jhazmat.2023.133088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/06/2023] [Accepted: 11/22/2023] [Indexed: 11/30/2023]
Abstract
The substantial utilization of antibiotics causes their "pseudo-persistence" in offshore environments. Published studies on antibiotic surveillance in food webs have primarily emphasized on parent forms; however, the compositions and concentrations of conjugated antibiotics in aquatic organisms remain largely unexplored. This study systematically examined the distribution characteristics and trophodynamics of free antibiotics and their conjugated forms in an estuarine food web. Total antibiotic levels differed insignificantly between the surface and bottom waters. The total mean values of free antibiotics in crabs, fish, shrimps, sea cucumbers, and snails varied from 0.77 to 1.4 ng/g (wet weight). The numbers and values of antibiotics rose in these biological samples after enzymatic hydrolysis. Conjugated antibiotics accounted for 23.8-76.9% of the total antibiotics in the biological samples, revealing that conjugated forms play a non-negligible role in aquatic organisms. More number of antibiotics exhibited bioaccumulation capabilities after enzymatic hydrolysis. In the food web, the free forms of anhydroerythromycin and conjugated forms of trimethoprim and ciprofloxacin underwent trophic dilution, whereas the free forms of trimethoprim and conjugated forms of ofloxacin underwent trophic amplification. The present work provides new insights into the bioaccumulation and trophic transfer of free and conjugated antibiotics in food webs.
Collapse
Affiliation(s)
- Nian-Nian Wu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shan Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| | - Ru Xu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian-Yi Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yun-Feng Pan
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Heng-Xiang Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Lang Lin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Rui Hou
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Yuan-Yue Cheng
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Xiang-Rong Xu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| |
Collapse
|
9
|
Jiang J, Li T, Wang E, Zhang Y, Han J, Tan L, Li X, Fan Y, Wu Y, Chen Q, Jin J. Polybrominated diphenyl ethers in dust, hair and urine: Exposure, excretion. CHEMOSPHERE 2024; 352:141380. [PMID: 38368958 DOI: 10.1016/j.chemosphere.2024.141380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/21/2024] [Accepted: 02/02/2024] [Indexed: 02/20/2024]
Abstract
Polybrominated diphenyl ethers (PBDEs) have been detected in various environmental media and human tissues. PBDEs concentrations in dust from college buildings and homes and in paired hair and urine samples from students were determined. This is of great significance to explore the accumulation and excretion patterns of PBDEs in the human body. The median PBDEs concentrations in the dust (College: 84.59 ng/g; Home: 170.32 ng/g) and hair (undergraduate: 6.16 ng/g; Home: 3.25 ng/g) samples were generally lower than were found in the majority of previous studies. The PBDEs concentrations in the hair and urine samples were subjected to principal component analysis, and the results combined with the PBDEs detection rates confirmed that hair is a useful non-invasive sampling medium for assessing PBDEs exposure and the risks posed. Body mass indices (BMIs) were used to divide students who had not been exposed to large amounts of PBDEs into groups. Body fat percentage is an important factor affecting the accumulation of PBDE in the human body. Environmental factors were found to affect the PBDEs concentrations in the hair and urine samples less for normal-weight students (BMI≤24) than overweight students (BMI>24). Short-term environmental changes to more readily affect the PBDEs concentrations in the tissues of the normal-weight than overweight students. PBDEs with seven or more bromine substituents were found not to be readily excreted in urine. Performing molecular docking simulations of the binding of isomers BDE-99 and BDE-100 to megalin. The binding energy was higher for BDE-100 and megalin than for BDE-99 and megalin, meaning BDE-99 would be more readily excreted than BDE-100.
Collapse
Affiliation(s)
- Junjie Jiang
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Tianwei Li
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Erde Wang
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Yan Zhang
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Jiali Han
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Linli Tan
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Xiang Li
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Yuhao Fan
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Ye Wu
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Qianhui Chen
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Jun Jin
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China; Engineering Research Center of Food Environment and Public Health, Beijing, 100081, China.
| |
Collapse
|
10
|
Silva JGD, Chagas CA, Souza TGDS, Araújo MCD, Araújo LCAD, Santos AMM, Sá RADQCD, Alves RBDO, Rodrigues RHA, Silva HPD, Malafaia G, Bezerra RDS, Oliveira MBMD. Using structural equation modeling to assess the genotoxic and mutagenic effects of heavy metal contamination in the freshwater ecosystems: A study involving Oreochromis niloticus in an urban river. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169529. [PMID: 38160826 DOI: 10.1016/j.scitotenv.2023.169529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 12/06/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
Chemical pollutants represent a leading problem for aquatic ecosystems, as they can induce genetic, biochemical, and physiological changes in the species of these ecosystems, thus compromising their adaptability and survival. The Capibaribe River runs through the state of Pernambuco, located in Northeastern Brazil, and passes through areas of agricultural cultivation, densely populated cities, and industrial centers, primarily textiles. Despite its importance, few ecotoxicological studies have been conducted on its environment, and knowledge about pollution patterns and their effects on its biota is still being determined. The objective of this study was to evaluate the water quality and the damage supposed to be caused by pollutants on the DNA specimens of Nile tilapia (Oreochromis niloticus) obtained from seven strategic points of Capibaribe. Tilapia specimens and water were collected during the rainy and dry seasons from 2015 to 2017. The following characteristics were analyzed: physicochemical (six), metal concentration (seven), local pluviosity, micronuclei, and comet assay. The physicochemical and heavy metal analyses were exploratory, whereas the ecotoxicological analyses were hypothetical. To verify this hypothesis, we compared the groups of fish collected to the results of the micronuclei test and comet assay. We created a Structural Equation Model (SEM) to determine how each metal's micronuclei variables, damage index, pluviosity, and concentration were related. Our results demonstrated that the highest values for markers of genetic damage were detected at points with the highest heavy metal concentrations, especially iron, zinc, manganese, chromium, and cadmium. The SEM demonstrated that metals could explain the findings of the genotoxicity markers. Moreover, other pollutants, such as pesticides, should be considered, mainly where the river passes through rural areas. The results presented here demonstrate that the Capibaribe River has different degrees of contamination and confirm our hypothesis.
Collapse
Affiliation(s)
- Jordany Gomes da Silva
- Laboratório de Biologia Molecular, Departamento de Bioquímica, Universidade Federal de Pernambuco - UFPE, Recife, PE, Brazil.
| | - Cristiano Aparecido Chagas
- Laboratório de Ciências Morfológicas e Moleculares, Universidade Federal de Pernambuco (UFPE - CAV), Vitória de Santo Antão, Pernambuco, Brazil.
| | | | - Marlyete Chagas de Araújo
- Laboratório de Enzimologia, Departamento de Bioquímica, Universidade Federal de Pernambuco - UFPE, Recife, PE, Brazil
| | | | - André Maurício Melo Santos
- Laboratório de Biodiversidade, Universidade Federal de Pernambuco (UFPE - CAV), Vitória de Santo Antão, PE, Brazil.
| | | | | | - Rosner Henrique Alves Rodrigues
- Instituto para Redução de Riscos e Desastres de Pernambuco -IRRD, Universidade Federal Rural de Pernambuco - UFRPE, Núcleo de Geoprocessamento e Sensoriamento Remoto - GEOSERE, Recife, PE, Brazil
| | - Hernande Pereira da Silva
- Instituto para Redução de Riscos e Desastres - IRRD/UFRPE, Núcleo de Geoprocessamento e Sensoriamento Remoto - GEOSERE/UFRPE, Recife, PE, Brazil.
| | - Guilherme Malafaia
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí Campus, Rodovia Geraldo Silva Nascimento, 2.5 km, Zona Rural, Urutaí, GO, Brazil.
| | - Ranilson de Souza Bezerra
- Universidade Federal de Pernambuco - UFPE, Centro de Biociências, Departamento de Bioquímica, Laboratório de Enzimologia, Cidade Universitária, Recife, PE, Brazil.
| | - Maria Betânia Melo de Oliveira
- Laboratório de Biologia Molecular, Departamento de Bioquímica, Universidade Federal de Pernambuco - UFPE, Recife, PE, Brazil.
| |
Collapse
|
11
|
Boldrocchi G, Villa B, Monticelli D, Spanu D, Magni G, Pachner J, Mastore M, Bettinetti R. Zooplankton as an indicator of the status of contamination of the Mediterranean Sea and temporal trends. MARINE POLLUTION BULLETIN 2023; 197:115732. [PMID: 37913563 DOI: 10.1016/j.marpolbul.2023.115732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 10/11/2023] [Accepted: 10/26/2023] [Indexed: 11/03/2023]
Abstract
Zooplankton has been intensively used as bioindicators of water pollution at global level, however, only few comprehensive studies have been conducted from the Mediterranean Sea and manly dated back to the 1970s. To redress the urgent need for updated data, this study provides information on the presence and levels of contaminants in zooplankton from the Tyrrhenian Sea. Although banned, both PCBs (46.9 ± 37.2 ng g-1) and DDT (8.9 ± 10.7 ng g-1) are still present and widespread, but their contamination appears to be a local problem and to be declining over the past 50 years. Zooplankton accumulates high levels of certain TEs, including Zn (400 ± 388 ppm) and Pb (35.3 ± 45.5 ppm), but shows intermediate concentrations of other TEs, including Cd (1.6 ± 0.9 ppm) and Hg (0.1 ± 0.1 ppm), comparing with both strongly polluted and more pristine marine habitats, which may reflect a general improvement.
Collapse
Affiliation(s)
- G Boldrocchi
- Department of Human Sciences, Innovation and Territory, University of Insubria, Via Valleggio 11, Como, Italy; One Ocean Foundation, Via Gesù 10, 20121 Milan, Italy.
| | - B Villa
- Department of Human Sciences, Innovation and Territory, University of Insubria, Via Valleggio 11, Como, Italy; One Ocean Foundation, Via Gesù 10, 20121 Milan, Italy
| | - D Monticelli
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, Como, Italy
| | - D Spanu
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, Como, Italy
| | - G Magni
- One Ocean Foundation, Via Gesù 10, 20121 Milan, Italy
| | - J Pachner
- One Ocean Foundation, Via Gesù 10, 20121 Milan, Italy
| | - M Mastore
- Department of Theoretical and Applied Sciences, University of Insubria, 21100 Varese, Italy
| | - R Bettinetti
- Department of Human Sciences, Innovation and Territory, University of Insubria, Via Valleggio 11, Como, Italy
| |
Collapse
|
12
|
Xie J, Tu S, Hayat K, Lan R, Chen C, Leng T, Zhang H, Lin T, Liu W. Trophodynamics of halogenated organic pollutants (HOPs) in aquatic food webs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:166426. [PMID: 37598971 DOI: 10.1016/j.scitotenv.2023.166426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
Halogenated organic pollutants (HOPs) represent hazardous and persistent compounds characterized by their capacity to accumulate within organisms and endure in the environment. These substances are frequently transmitted through aquatic food webs, engendering potential hazards to ecosystems and human well-being. The trophodynamics of HOPs in aquatic food webs has garnered worldwide attention within the scientific community. Despite comprehensive research endeavors, the prevailing trajectory of HOPs, whether inclined toward biomagnification or biodilution within global aquatic food webs, remains unresolved. Furthermore, while numerous studies have probed the variables influencing the trophic magnification factor (TMF), the paramount determinant remains elusive. Collating a compendium of pertinent literature encompassing TMFs from the Web of Science between 1994 and 2023, our analysis underscores the disparities in attention accorded to legacy HOPs compared to emerging counterparts. A discernible pattern of biomagnification characterizes the behavior of HOPs within aquatic food webs. Geographically, the northern hemisphere, including Asia, Europe, and North America, has demonstrated greater biomagnification than its southern hemisphere counterparts. Utilizing a boosted regression tree (BRT) approach, we reveal that the food web length and type emerge as pivotal determinants influencing TMFs. This review provides a valuable basis for gauging ecological and health risks, thereby facilitating the formulation of robust standards for managing aquatic environments.
Collapse
Affiliation(s)
- Jingqian Xie
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - Shuyi Tu
- College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Kashif Hayat
- Key Laboratory of Pollution Exposure and Health Intervention, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Ruo Lan
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - Chuchu Chen
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - Tiantian Leng
- College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Hanlin Zhang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - Tian Lin
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China.
| | - Weiping Liu
- Key Laboratory of Pollution Exposure and Health Intervention, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China; MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
13
|
Espinasse B, Pagano M, Basedow SL, Chevalier C, Malengros D, Carlotti F. Water column distribution of zooplanktonic size classes derived from in-situ plankton profilers: Potential use to contextualize contaminant loads in plankton. MARINE POLLUTION BULLETIN 2023; 196:115573. [PMID: 37778243 DOI: 10.1016/j.marpolbul.2023.115573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/31/2023] [Accepted: 09/20/2023] [Indexed: 10/03/2023]
Abstract
Pollution is one of the main anthropogenic threats to marine ecosystems. Studies analysing the accumulation and transfer of contaminants in planktonic food webs tend to rely on samples collected in discrete water bodies. Here, we assessed the representativeness of measurements at the chlorophyll-a maximum layer during the MERITE-HIPPOCAMPE cruise for the entire water column by investigating the vertical distribution of particles and plankton obtained by in-situ optical profilers at nine stations across the Mediterranean Sea. We identified specific conditions where the interpretation of results from contaminant analyses can be improved by detailing plankton size structure and vertical distributions. First, the presence of higher than usual plankton concentrations can result in sampling issues that will affect biomass estimation within each size class and therefore bias our understanding of the contaminant dynamics. Secondly, the presence of an unsampled water layer with high zooplankton biomass might imply non-resolved contaminant pathways along the trophic structure. This study lays the basis for optimizing sampling strategy in contaminant studies.
Collapse
Affiliation(s)
- B Espinasse
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway.
| | - M Pagano
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO UM 110, 13288 Marseille, France
| | - S L Basedow
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - C Chevalier
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO UM 110, 13288 Marseille, France
| | - D Malengros
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO UM 110, 13288 Marseille, France
| | - F Carlotti
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO UM 110, 13288 Marseille, France
| |
Collapse
|
14
|
Chen S, Xin J, Ding Z, Zhao L, Ben S, Zheng R, Li S, Li H, Shao W, Cheng Y, Zhang Z, Du M, Wang M. Construction, evaluation, and AOP framework-based application of the EpPRS as a genetic surrogate for assessing environmental pollutants. ENVIRONMENT INTERNATIONAL 2023; 180:108202. [PMID: 37734146 DOI: 10.1016/j.envint.2023.108202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/01/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023]
Abstract
BACKGROUND Environmental pollutant measurement is essential for accurate health risk assessment. However, the detection of humans' internal exposure to pollutants is cost-intensive and consumes time and energy. Polygenic risk scores (PRSs) have been widely applied in genetic studies of complex trait diseases. It is important to construct a genetically relevant environmental surrogate for pollutant exposure and to explore its utility for disease prediction and risk assessment. OBJECTIVES This study enrolled 714 individuals with complete genomic data and exposomic data on 22 plasma-persistent organic pollutants (POPs). METHODS We first conducted 22 POP genome-wide association studies (GWAS) and constructed the corresponding environmental pollutant-based PRS (EpPRS) by clumping and P value thresholding (C + T), lassosum, and PRS-CS methods. The best-fit EpPRS was chosen by its regression R2. An adverse outcome pathway (AOP) framework was developed to assess the effects of contaminants on candidate diseases. Furthermore, Mendelian randomization (MR) analysis was performed to explore the causal association between POPs and cancer risk. RESULTS The C + T method produced the best-performing EpPRSs for 7 PCBs and 4 PBDEs. EpPRSs replicated the correlations of environmental exposure measurements based on consistent patterns. The diagnostic performance of type 2 diabetes mellitus (T2DM) PRS was improved by the combined model of T2DM-EpPRS of PCB126/BDE153. Finally, the AKT1-mediated AOP framework illustrated that PCB126 and BDE153 may increase the risk of T2DM by decreasing AKT1 phosphorylation through the cGMP-PKG pathway and promoting abnormal glucose homeostasis. MR analysis showed that digestive system tumors, such as colorectal cancer and biliary tract cancer, are more sensitive to POP exposure. CONCLUSIONS EpPRSs can serve as a proxy for assessing pollutant internal exposure. The application of the EpPRS to disease risk assessment can reveal the toxic pathway and mode of action linking exposure and disease in detail, providing a basis for the development of environmental pollutant control strategies.
Collapse
Affiliation(s)
- Silu Chen
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Junyi Xin
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China; Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Zhutao Ding
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Lingyan Zhao
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Shuai Ben
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Rui Zheng
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Shuwei Li
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Huiqin Li
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Wei Shao
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yifei Cheng
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhengdong Zhang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Mulong Du
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Meilin Wang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China; The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China.
| |
Collapse
|
15
|
Guigue C, Tesán-Onrubia JA, Guyomarc'h L, Bănaru D, Carlotti F, Pagano M, Chifflet S, Malengros D, Chouba L, Tronczynski J, Tedetti M. Hydrocarbons in size-fractionated plankton of the Mediterranean Sea (MERITE-HIPPOCAMPE campaign). MARINE POLLUTION BULLETIN 2023; 194:115386. [PMID: 37591021 DOI: 10.1016/j.marpolbul.2023.115386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/19/2023]
Abstract
Aliphatic and polycyclic aromatic hydrocarbons (AHs and PAHs, respectively) were analyzed in the dissolved fraction (<0.7 μm) of surface water and in various particulate/planktonic size fractions (0.7-60, 60-200, 200-500 and 500-1000 μm) collected at the deep chlorophyll maximum, along a North-South transect in the Mediterranean Sea in spring 2019 (MERITE-HIPPOCAMPE campaign). Suspended particulate matter, biomass, total chlorophyll a, particulate organic carbon, C and N isotopic ratios, and lipid biomarkers were also determined to help characterizing the size-fractionated plankton and highlight the potential link with the content in AHs and PAHs in these size fractions. Ʃ28AH concentrations ranged 18-489 ng L-1 for water, 3.9-72 μg g-1 dry weight (dw) for the size fraction 0.7-60 μm, and 3.4-55 μg g-1 dw for the fractions 60-200, 200-500 and 500-1000 μm. AH molecular profiles revealed that they were mainly of biogenic origin. Ʃ14PAH concentrations were 0.9-16 ng L-1 for water, and Ʃ27PAH concentrations were 53-220 ng g-1 dw for the fraction 0.7-60 μm and 35-255 ng g-1 dw for the three higher fractions, phenanthrene being the most abundant compound in planktonic compartment. Two processes were evidenced concerning the PAH patterns, the bioreduction, i.e., the decrease in concentrations from the small size fractions (0.7-60 and 60-200 μm) to the higher ones (200-500 μm and 500-1000 μm), and the biodilution, i.e., the decrease in concentrations in plankton at higher suspended matter or biomass, especially for the 0.7-60 and 60-200-μm size fractions. We estimated the biological pump fluxes of Ʃ27PAHs below 100-m depth in the Western Mediterranean Sea at 15 ± 10 ng m-2 day-1, which is comparable to those previously reported in the South Pacific and Indian Ocean.
Collapse
Affiliation(s)
- Catherine Guigue
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France.
| | | | - Léa Guyomarc'h
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Daniela Bănaru
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - François Carlotti
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Marc Pagano
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Sandrine Chifflet
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Deny Malengros
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Lassaad Chouba
- Institut National des Sciences et Technologies de la Mer (INSTM), 28, rue 2 mars 1934, Salammbô 2025, Tunisia
| | - Jacek Tronczynski
- Ifremer, CCEM Contamination Chimique des Ecosystèmes Marins, F-44311 Nantes, France
| | - Marc Tedetti
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
| |
Collapse
|
16
|
Fierro-González P, Pagano M, Guilloux L, Makhlouf N, Tedetti M, Carlotti F. Zooplankton biomass, size structure, and associated metabolic fluxes with focus on its roles at the chlorophyll maximum layer during the plankton-contaminant MERITE-HIPPOCAMPE cruise. MARINE POLLUTION BULLETIN 2023; 193:115056. [PMID: 37352804 DOI: 10.1016/j.marpolbul.2023.115056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 03/29/2023] [Accepted: 05/09/2023] [Indexed: 06/25/2023]
Abstract
Recent studies have demonstrated that plankton can be a key pathway for the uptake and transfer of contaminants entering the marine environment up to top predators. The plankton-contaminant MERITE-HIPPOCAMPE cruise was devoted to quantifying contaminants in water and the whole plankton size range (10 size fractions) at 10 stations along a north-south transect in the western Mediterranean Sea from the French to the Tunisian coasts through the Provençal and Algerian basins. Pumping and filtering devices and net sampling have been used for collecting very high amounts of small particles and planktonic organisms in the chlorophyll maximum layer (CML). The present paper characterizes the zooplankton components for which the contaminant measurements were carried out. At each station, a horizontal towed Hydro-Bios net with a 60 μm mesh-size net was used to discriminate 5 size-fractions from 60 μm to a few mm. For each size-fraction, one part of the sample was used for dry weight measurements and the other one for estimating the contribution to biomass of detritus, phytoplankton, and among zooplankton of the major taxonomic groups based on the imagery tools ZOOSCAN and FLOWCAM. In each zooplankton size fraction, metabolic rates were calculated from the size spectrum to estimate trophic and excretion fluxes flowing through this fraction. These observations were compared to a similar analysis of tows in the upper layer (vertical) and the surface layer (horizontal). The total sampled biomass concentration at the CML was higher than in the water column (COL) and much higher than at the surface (SURF) in most of the stations, but in the CML and COL a substantial contribution was due to detritus mostly concentrated in the smallest size-fractions (60-200 μm and 200-500 μm). Absolute values of zooplankton biomass show neither a clear spatial pattern nor a significant difference between strata. The CML layer was dominated by copepods similarly to COL and SURF, but presented a higher contribution of nauplii and a near absence of appendicularians. At some stations, crustaceans and gelatinous plankton could be important contributors to CML. The zooplankton biomass composition of the two smallest fractions (<500 μm) was dominated by nauplii, small copepods and, occasionally, by small miscellaneous organisms (mostly pteropodes). In contrast, clear differences between stations appeared for the largest fractions (>500 μm) due to large crustaceans, gelatinous organisms, and chaetognaths. These changes in biomass composition according to size fractions suggest a progressive trophic shift from dominant herbivory in the smallest fractions to more contrasted trophic structure (including carnivory) in the largest fractions. The daily carbon demand and the N and P excretion of zooplankton were on average higher at the CML but with no significant difference with COL. The zooplankton grazing represented 2.7 to 22.7 % of the phytoplankton stock per day, whereas its excretion represented a daily N and P recycling compared to dissolved inorganic nitrogen and phosphorus stocks ranging respectively from 0.2 to 19 % and from 0 to 21 %. This information should help in the interpretation of the content of various contaminants in zooplankton fractions.
Collapse
Affiliation(s)
- Pamela Fierro-González
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO UM 110, 13288 Marseille, France
| | - Marc Pagano
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO UM 110, 13288 Marseille, France
| | - Loïc Guilloux
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO UM 110, 13288 Marseille, France
| | - Nouha Makhlouf
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO UM 110, 13288 Marseille, France; Université de Carthage Faculté des Sciences de Bizerte, Zarzouna 7021, Tunisia
| | - Marc Tedetti
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO UM 110, 13288 Marseille, France
| | - François Carlotti
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO UM 110, 13288 Marseille, France.
| |
Collapse
|
17
|
Ho QT, Frantzen S, Nilsen BM, Nøstbakken OJ, Azad AM, Duinker A, Madsen L, Bank MS. Congener-specific accumulation of persistent organic pollutants in marine fish from the Northeast Atlantic Ocean. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131758. [PMID: 37320901 DOI: 10.1016/j.jhazmat.2023.131758] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/22/2023] [Accepted: 06/01/2023] [Indexed: 06/17/2023]
Abstract
Bioaccumulation of persistent organic pollutants (POPs) in marine fish may pose a health risk to human consumers. Using data from ∼8400 individuals of 15 fish species collected in the North-East Atlantic Ocean (NEAO), we assessed concentrations of individual POP congeners, including dioxins, polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs). POPs analyses were performed with accredited methods using high-resolution gas chromatography/high-resolution mass spectrometry, gas chromatography/tandem mass spectrometry (GC-MS/MS) and GC/MS. The results showed that POPs congener composition profiles were more influenced by fish species than by geography. However, due to long range transport from emissions at lower latitudes, lighter congeners made a larger contribution to the total POPs concentrations in the northernmost areas compared to southern regions. A model was developed to elucidate the relative effects of several factors on POPs concentrations and showed that variation among and within fish species was associated with fat content, fish size, trophic position, and latitude. For the first time, POPs concentrations were shown to increase nonlinearly with fat content, reaching an asymptotic plateau when fat content was > 10%. This study explored detailed POP congener profiles and the factors associated with POPs accumulation in commercially relevant fish harvested from the NEAO.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lise Madsen
- Institute of Marine Research, Bergen, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Michael S Bank
- Institute of Marine Research, Bergen, Norway; University of Massachusetts Amherst, Amherst, MA, USA
| |
Collapse
|
18
|
Liu S, Xu R, Pan YF, Huang QY, Wu NN, Li HX, Lin L, Hou R, Xu XR. Free and conjugated forms of metabolites are indispensable components of steroids: The first evidence from an estuarine food web. WATER RESEARCH 2023; 235:119913. [PMID: 36996753 DOI: 10.1016/j.watres.2023.119913] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Steroids have attracted particular attention as environmental contaminants because of their severe endocrine-disrupting effects. Previous studies have predominantly focused on parent steroids; however, the levels and proportions of the free and conjugated forms of their metabolites remain largely unclear, especially in food webs. Here, we first characterized the free and conjugated forms of parent steroids and their metabolites in 26 species in an estuarine food web. The steroids were dominated by their metabolites in water samples, whereas parent compounds were predominant in sediment samples. The total mean steroid concentrations in the biota samples that underwent non-enzymatic hydrolysis decreased in the following order: crabs (27 ng/g) > fish (5.9 ng/g) > snails (3.4 ng/g) > shrimps and sea cucumbers (1.2 ng/g); and those in the biota samples that underwent enzymatic hydrolysis decreased in the following order: crabs (57 ng/g) > snails (9.2 ng/g) > fish (7.9 ng/g) > shrimps and sea cucumbers (3.5 ng/g). The proportion of metabolites in the enzymatic hydrolysis biota samples was higher (38-79%) than that (2.9-65%) in non-enzymatic ones, indicating that the free and conjugated forms of metabolites in aquatic organisms were not negligible. Most synthetic steroids were either bioaccumulative or highly bioaccumulative. Importantly, in the invertebrate food web, 17α-methyltestosterone was biomagnified, while 17β-boldenone underwent trophic dilution. Although the estuarine water had a median ecological risk level, the health risks via aquatic product consumption were very low. This study provides novel insights into the composition and trophic transfer of steroids in an estuarine food web for the first time and highlights that free and conjugated metabolites should receive more attention, particularly in biota samples.
Collapse
Affiliation(s)
- Shan Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Ru Xu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yun-Feng Pan
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qian-Yi Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nian-Nian Wu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Heng-Xiang Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Lang Lin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Rui Hou
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Xiang-Rong Xu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| |
Collapse
|
19
|
Tedetti M, Tronczynski J, Carlotti F, Pagano M, Ismail SB, Sammari C, Hassen MB, Desboeufs K, Poindron C, Chifflet S, Zouari AB, Abdennadher M, Amri S, Bănaru D, Abdallah LB, Bhairy N, Boudriga I, Bourin A, Brach-Papa C, Briant N, Cabrol L, Chevalier C, Chouba L, Coudray S, Yahia MND, de Garidel-Thoron T, Dufour A, Dutay JC, Espinasse B, Fierro-González P, Fornier M, Garcia N, Giner F, Guigue C, Guilloux L, Hamza A, Heimbürger-Boavida LE, Jacquet S, Knoery J, Lajnef R, Belkahia NM, Malengros D, Martinot PL, Bosse A, Mazur JC, Meddeb M, Misson B, Pringault O, Quéméneur M, Radakovitch O, Raimbault P, Ravel C, Rossi V, Rwawi C, Hlaili AS, Tesán-Onrubia JA, Thomas B, Thyssen M, Zaaboub N, Garnier C. Contamination of planktonic food webs in the Mediterranean Sea: Setting the frame for the MERITE-HIPPOCAMPE oceanographic cruise (spring 2019). MARINE POLLUTION BULLETIN 2023; 189:114765. [PMID: 36898272 DOI: 10.1016/j.marpolbul.2023.114765] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 02/09/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
This paper looks at experiential feedback and the technical and scientific challenges tied to the MERITE-HIPPOCAMPE cruise that took place in the Mediterranean Sea in spring 2019. This cruise proposes an innovative approach to investigate the accumulation and transfer of inorganic and organic contaminants within the planktonic food webs. We present detailed information on how the cruise worked, including 1) the cruise track and sampling stations, 2) the overall strategy, based mainly on the collection of plankton, suspended particles and water at the deep chlorophyll maximum, and the separation of these particles and planktonic organisms into various size fractions, as well as the collection of atmospheric deposition, 3) the operations performed and material used at each station, and 4) the sequence of operations and main parameters analysed. The paper also provides the main environmental conditions that were prevailing during the campaign. Lastly, we present the types of articles produced based on work completed by the cruise that are part of this special issue.
Collapse
Affiliation(s)
- Marc Tedetti
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France.
| | - Jacek Tronczynski
- Ifremer, CCEM Contamination Chimique des Ecosystèmes Marins, F-44311 Nantes, France
| | - François Carlotti
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Marc Pagano
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Sana Ben Ismail
- Institut National des Sciences et Technologies de la Mer (INSTM), 28, rue 2 mars 1934, Salammbô 2025, Tunisia
| | - Cherif Sammari
- Institut National des Sciences et Technologies de la Mer (INSTM), 28, rue 2 mars 1934, Salammbô 2025, Tunisia
| | - Malika Bel Hassen
- Institut National des Sciences et Technologies de la Mer (INSTM), 28, rue 2 mars 1934, Salammbô 2025, Tunisia
| | - Karine Desboeufs
- Université Paris Cité et Université Paris-Est Creteil, CNRS, LISA, F-75013 Paris, France
| | - Charlotte Poindron
- Université Paris Cité et Université Paris-Est Creteil, CNRS, LISA, F-75013 Paris, France
| | - Sandrine Chifflet
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Amel Bellaaj Zouari
- Institut National des Sciences et Technologies de la Mer (INSTM), 28, rue 2 mars 1934, Salammbô 2025, Tunisia
| | - Moufida Abdennadher
- Institut National des Sciences et Technologies de la Mer (INSTM), 28, rue 2 mars 1934, Salammbô 2025, Tunisia
| | - Sirine Amri
- Institut National des Sciences et Technologies de la Mer (INSTM), 28, rue 2 mars 1934, Salammbô 2025, Tunisia
| | - Daniela Bănaru
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Lotfi Ben Abdallah
- Institut National des Sciences et Technologies de la Mer (INSTM), 28, rue 2 mars 1934, Salammbô 2025, Tunisia
| | - Nagib Bhairy
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Ismail Boudriga
- Institut National des Sciences et Technologies de la Mer (INSTM), 28, rue 2 mars 1934, Salammbô 2025, Tunisia
| | - Aude Bourin
- IMT Nord Europe, Institut Mines-Télécom, Univ. Lille, Centre for Energy and Environment, F-59000 Lille, France
| | - Christophe Brach-Papa
- Ifremer, Unité Littoral, Laboratoire Environnement Ressources Provence Azur Corse, Zone portuaire de Brégaillon, CS 20330, 83507 La Seyne-sur-Mer Cedex, France
| | - Nicolas Briant
- Ifremer, CCEM Contamination Chimique des Ecosystèmes Marins, F-44311 Nantes, France
| | - Léa Cabrol
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Cristele Chevalier
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Lassaad Chouba
- Institut National des Sciences et Technologies de la Mer (INSTM), 28, rue 2 mars 1934, Salammbô 2025, Tunisia
| | - Sylvain Coudray
- Ifremer, Unité Littoral, Laboratoire Environnement Ressources Provence Azur Corse, Zone portuaire de Brégaillon, CS 20330, 83507 La Seyne-sur-Mer Cedex, France
| | - Mohamed Nejib Daly Yahia
- Environmental Sciences Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, PO Box 2713, Doha, Qatar
| | | | - Aurélie Dufour
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Jean-Claude Dutay
- Laboratoire des Sciences du Climat et de l'Environnement LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Boris Espinasse
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | | | - Michel Fornier
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Nicole Garcia
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Franck Giner
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SRTE-LRTA, Cadarache, France
| | - Catherine Guigue
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Loïc Guilloux
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Asma Hamza
- Institut National des Sciences et Technologies de la Mer (INSTM), 28, rue 2 mars 1934, Salammbô 2025, Tunisia
| | | | - Stéphanie Jacquet
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Joel Knoery
- Ifremer, CCEM Contamination Chimique des Ecosystèmes Marins, F-44311 Nantes, France
| | - Rim Lajnef
- Institut National des Sciences et Technologies de la Mer (INSTM), 28, rue 2 mars 1934, Salammbô 2025, Tunisia
| | - Nouha Makhlouf Belkahia
- Université de Carthage, Faculté des Sciences de Bizerte, Bizerte, Tunisia; Université de Tunis El Manar, Faculté des Sciences de Tunis, Laboratoire des Sciences de l'Environnement, Biologie et Physiologie des Organismes Aquatiques LR18ES41, Tunis, Tunisia
| | - Deny Malengros
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Pauline L Martinot
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Anthony Bosse
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Jean-Charles Mazur
- Aix Marseille Univ., CNRS, IRD, Collège de France, INRAE, CEREGE, 13545 Aix-en-Provence Cedex 4, France
| | - Marouan Meddeb
- Université de Tunis El Manar, Faculté des Sciences de Tunis, Laboratoire des Sciences de l'Environnement, Biologie et Physiologie des Organismes Aquatiques LR18ES41, Tunis, Tunisia; Université de Carthage, Faculté des Sciences de Bizerte, Laboratoire de Biologie Végétale et Phytoplanctonologie, Bizerte, Tunisia
| | - Benjamin Misson
- Université de Toulon, Aix Marseille Univ., CNRS, IRD, MIO, Toulon, France
| | - Olivier Pringault
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Marianne Quéméneur
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Olivier Radakovitch
- Aix Marseille Univ., CNRS, IRD, Collège de France, INRAE, CEREGE, 13545 Aix-en-Provence Cedex 4, France; Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SRTE-LRTA, Cadarache, France
| | - Patrick Raimbault
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Christophe Ravel
- Ifremer, Unité Littoral, Laboratoire Environnement Ressources Provence Azur Corse, Zone portuaire de Brégaillon, CS 20330, 83507 La Seyne-sur-Mer Cedex, France
| | - Vincent Rossi
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Chaimaa Rwawi
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Asma Sakka Hlaili
- Université de Tunis El Manar, Faculté des Sciences de Tunis, Laboratoire des Sciences de l'Environnement, Biologie et Physiologie des Organismes Aquatiques LR18ES41, Tunis, Tunisia; Université de Carthage, Faculté des Sciences de Bizerte, Laboratoire de Biologie Végétale et Phytoplanctonologie, Bizerte, Tunisia
| | | | - Bastien Thomas
- Ifremer, CCEM Contamination Chimique des Ecosystèmes Marins, F-44311 Nantes, France
| | - Melilotus Thyssen
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Noureddine Zaaboub
- Institut National des Sciences et Technologies de la Mer (INSTM), 28, rue 2 mars 1934, Salammbô 2025, Tunisia
| | - Cédric Garnier
- Université de Toulon, Aix Marseille Univ., CNRS, IRD, MIO, Toulon, France
| |
Collapse
|
20
|
Lyu L, Fang K, Zhu Z, Li J, Chen Y, Wang L, Mai Z, Li Q, Zhang S. Bioaccumulation of emerging persistent organic pollutants in the deep-sea cold seep ecosystems: Evidence from chlorinated paraffin. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130472. [PMID: 36455324 DOI: 10.1016/j.jhazmat.2022.130472] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/16/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Persistent organic pollutants (POPs) are highly toxic and can accumulate in marine organisms, causing nonnegligible harm to the global marine ecosystem. The Cold seep is an essential marine ecosystem with the critical ecological function of maintaining the deep-sea carbon cycle and buffering global climate change. However, the environmental impact of emerging POPs in the deep-sea cold seep ecosystem is unknown. Here, we investigated the potential pollution of chlorinated paraffins (CPs) and their bioaccumulation in the cold seep ecosystem. High concentrations of CPs were detected in the cold seep ecosystems, where CPs bioaccumulated by the keystone species of deep-sea mussels can be released into the surface sediment and vertically migrate into the deeper sediment. Furthermore, more toxic CPs were accumulated from transforming other CPs in the cold seep ecosystem. Our study provides the first evidence that high concentrations of POPs are bioaccumulated by deep-sea mussels in the cold seep ecosystem, causing adverse ecological effects. The discovery of CPs bioaccumulation in the deep-sea cold seep ecosystem is a crucial mechanism affecting deep-sea carbon transport and cycling. This study has important guiding significance for revealing the deep-sea carbon cycle process, addressing global climate change, and making deep-sea ecological and environmental protection policies.
Collapse
Affiliation(s)
- Lina Lyu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, Guangdong, China
| | - Kejing Fang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, Guangdong, China
| | - Zhenchang Zhu
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Jie Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, Guangdong, China
| | - Yu Chen
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, Guangdong, China
| | - Lin Wang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, Guangdong, China
| | - Zhimao Mai
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, Guangdong, China
| | - Qiqi Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, Guangdong, China
| | - Si Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, Guangdong, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, Guangdong, China.
| |
Collapse
|
21
|
Pajurek M, Mikolajczyk S, Warenik-Bany M. Engine oil from agricultural machinery as a source of PCDD/Fs and PCBs in free-range hens. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:29834-29843. [PMID: 36417073 PMCID: PMC9995527 DOI: 10.1007/s11356-022-24180-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/09/2022] [Indexed: 04/16/2023]
Abstract
Free-range hens spend most of their lives outdoors, resulting in their heavy exposure to environmental pollutants such as polychlorinated dibenzo-p-dioxin, dibenzofurans (PCDD/Fs), dioxin-like polychlorinated biphenyls (DL-PCBs), and non-dioxin-like polychlorinated biphenyls (NDL-PCBs). We present a case of contamination of free-range eggs that is previously unreported in the literature. The aim of our study was a source investigation after finding a high level of PCDD/Fs in samples of eggs from one of the inspected farms. Samples of hens' eggs, muscles, and livers and the feeds and soils were analyzed. The results showed that the soil samples taken from the paddock contained high concentrations of PCDD/Fs and DL-PCBs expressed as toxic equivalents (TEQ) (72.9 ± 18.2 pg WHO-TEQ g-1 dry mas (d.m.)) and a high concentration of NDL-PCBs (207 ± 46.9 ng g-1 d.m.). The investigation found that the cause of the soil contamination was oil leaking from the farm's tractor engine. The oil contained very high concentrations of PCDD/F and DL-PCBs (1013 ± 253 pg WHO-TEQ g-1 oil) and 5644 ng g-1 of NDL-PCBs. The source of the contamination was confirmed by the similarity of the PCDD/F and PCB profiles in the hen eggs and the soil contaminated by engine oil. The dietary intake of toxins resulting from consumption of the eggs is provided. For children, the consumption of contaminated eggs would result in an intake of double the tolerable weekly intake (TWI), while for adults, it would be approx. 60-70% of TWI.
Collapse
Affiliation(s)
- Marek Pajurek
- Radiobiology Department, National Veterinary Research Institute, NRL for Halogenated POPs (PCDD/Fs, PCBs and PBDE) in Food and Feed, 57 Partyzantów Avenue, 24-100, Pulawy, Poland.
| | - Szczepan Mikolajczyk
- Radiobiology Department, National Veterinary Research Institute, NRL for Halogenated POPs (PCDD/Fs, PCBs and PBDE) in Food and Feed, 57 Partyzantów Avenue, 24-100, Pulawy, Poland
| | - Malgorzata Warenik-Bany
- Radiobiology Department, National Veterinary Research Institute, NRL for Halogenated POPs (PCDD/Fs, PCBs and PBDE) in Food and Feed, 57 Partyzantów Avenue, 24-100, Pulawy, Poland
| |
Collapse
|
22
|
Castrec J, Pillet M, Receveur J, Fontaine Q, Le Floch S, Churlaud C, Lejeune P, Gobert S, Thomas H, Marengo M. Active and passive biomonitoring of trace elements, polycyclic aromatic hydrocarbons, and polychlorinated biphenyls in small Mediterranean harbours. MARINE POLLUTION BULLETIN 2023; 187:114578. [PMID: 36645999 DOI: 10.1016/j.marpolbul.2023.114578] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/29/2022] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
Pollution particularly affects coastal ecosystems due to their proximity to anthropic sources. Among those environments, harbours are subjected to marine traffic but also to accidental and chronic pollution. These areas are thus exposed to complex mixtures of contaminants such as trace elements and organic contaminants which can impact marine species, habitats, and ecosystem services. The monitoring of these compounds is thus a crucial issue for assessment of environmental health. In this context, the aim of the present work was to evaluate the chemical contamination of harbours in Corsica (NW Mediterranean) by measuring the bioaccumulation of trace elements, polycyclic aromatic hydrocarbons, and polychlorinated biphenyls in mussels, limpets, and sea cucumbers. The human health risks associated with seafood consumption were also assessed. Results reveal a relatively low contamination in the Corsican harbours studied compared to larger Mediterranean ports and suggest that the potential health risk for consumers eating seafood is low.
Collapse
Affiliation(s)
- Justine Castrec
- Station de Recherches Sous-marines et Océanographiques (STARESO), Punta Revellata, BP33, 20260 Calvi, France.
| | - Marion Pillet
- Station de Recherches Sous-marines et Océanographiques (STARESO), Punta Revellata, BP33, 20260 Calvi, France
| | | | - Quentin Fontaine
- Station de Recherches Sous-marines et Océanographiques (STARESO), Punta Revellata, BP33, 20260 Calvi, France
| | | | - Carine Churlaud
- Littoral Environnement et Sociétés (LIENSs), UMRi 7266, CNRS- La Rochelle Université, 2 rue Olympe de Gouges, F-17042 La Rochelle Cedex 01, France
| | - Pierre Lejeune
- Station de Recherches Sous-marines et Océanographiques (STARESO), Punta Revellata, BP33, 20260 Calvi, France
| | - Sylvie Gobert
- Station de Recherches Sous-marines et Océanographiques (STARESO), Punta Revellata, BP33, 20260 Calvi, France; Université de Liège, Centre MARE, Laboratoire d'Océanologie, Sart Tilman, B6c, 4000 Liège, Belgium
| | - Hélène Thomas
- Littoral Environnement et Sociétés (LIENSs), UMRi 7266, CNRS- La Rochelle Université, 2 rue Olympe de Gouges, F-17042 La Rochelle Cedex 01, France
| | - Michel Marengo
- Station de Recherches Sous-marines et Océanographiques (STARESO), Punta Revellata, BP33, 20260 Calvi, France
| |
Collapse
|
23
|
Chen X, Wang S, Mao X, Xiang X, Ye S, Chen J, Zhu A, Meng Y, Yang X, Peng S, Deng M, Wang X. Adverse health effects of emerging contaminants on inflammatory bowel disease. Front Public Health 2023; 11:1140786. [PMID: 36908414 PMCID: PMC9999012 DOI: 10.3389/fpubh.2023.1140786] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/06/2023] [Indexed: 03/14/2023] Open
Abstract
Inflammatory bowel disease (IBD) is becoming increasingly prevalent with the improvement of people's living standards in recent years, especially in urban areas. The emerging environmental contaminant is a newly-proposed concept in the progress of industrialization and modernization, referring to synthetic chemicals that were not noticed or researched before, which may lead to many chronic diseases, including IBD. The emerging contaminants mainly include microplastics, endocrine-disrupting chemicals, chemical herbicides, heavy metals, and persisting organic pollutants. In this review, we summarize the adverse health effect of these emerging contaminants on humans and their relationships with IBD. Therefore, we can better understand the impact of these new emerging contaminants on IBD, minimize their exposures, and lower the future incidence of IBD.
Collapse
Affiliation(s)
- Xuejie Chen
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, China
| | - Sidan Wang
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, China
| | - Xueyi Mao
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Xin Xiang
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Shuyu Ye
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, China
| | - Jie Chen
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.,Centre for Global Health, Zhejiang University, Hangzhou, China
| | - Angran Zhu
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yifei Meng
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Xiya Yang
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Shuyu Peng
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Minzi Deng
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, China
| | - Xiaoyan Wang
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, China
| |
Collapse
|
24
|
Zhang L, Zhang L, Sun D. Considering zooplankton as a black box in determining PAH concentrations could result in misjudging their bioaccumulation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120672. [PMID: 36395904 DOI: 10.1016/j.envpol.2022.120672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/08/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
Zooplankton play an important role in energy transfer in the marine food web and form the dietary basis for the size of important fish stocks and the maintenance of their resources. Although zooplankton include numerous taxa with significantly different ecological characteristics and the interspecific differences in optimum body size and taxonomic specificity in fish feeding on zooplankton are remarkable, they are always considered as a whole (like a "black box") in current studies about the transport of persistent organic pollutants through the food chain. This approach might result in misjudgment of their bioaccumulation. In this study, the distribution properties of each taxa of zooplankton community were discerned using data from two cruise surveys conducted in the northern South China Sea. Twelve groups of zooplankton were identified, all of which had distinct ecological and functional characteristics. The carbon-based community structure of zooplankton could explain their variability with respect to polycyclic aromatic hydrocarbons (PAHs). Smaller-sized zooplankton (smaller calanoids and cyclopoids) were more likely to accumulate low molecular weight PAHs (LMW-PAHs), while larger-sized zooplankton (larger calanoids) were more likely to accumulate high molecular weight PAHs (HMW-PAHs). The bioaccumulation capacity of the zooplankton community for LMW-PAHs was negatively correlated with the proportion of omnivores and carnivores, while the opposite was true for HMW-PAHs. These results suggested that the effects of complex community structure within plankton communities should be taken into account when assessing the transfer and bioaccumulation effects of PAHs in the marine food chain.
Collapse
Affiliation(s)
- Linjie Zhang
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310000, China; Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Lilan Zhang
- Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Dong Sun
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310000, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519082, China.
| |
Collapse
|
25
|
Mauffret A, Chouvelon T, Wessel N, Cresson P, Bănaru D, Baudrier J, Bustamante P, Chekri R, Jitaru P, Le Loc'h F, Mialet B, Vaccher V, Harmelin-Vivien M. Trace elements, dioxins and PCBs in different fish species and marine regions: Importance of the taxon and regional features. ENVIRONMENTAL RESEARCH 2023; 216:114624. [PMID: 36309213 DOI: 10.1016/j.envres.2022.114624] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/27/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Chemical contaminant concentrations in wild organisms are used to assess environmental status under the European Marine Strategy Framework Directive. However, this approach is challenged by the complex intra- and inter-species variability, and the different regional features. In this study, concentrations in trace elements (As, Cd, Hg and Pb), polychlorinated biphenyls (PCBs), polychlorodibenzo-para-dioxines (PCDDs) and polychlorodibenzofuranes (PCDFs) were monitored in 8 fish species sampled on the continental shelf of three French regions: the Eastern English Channel (EEC) and Bay of Biscay (BoB) in the Northeast Atlantic Ocean, and the Gulf of Lions (GoL) in Western Mediterranean Sea. Our objectives were to identify species or regions more likely to be contaminated and to assess how to take this variability into account in environmental assessment. While concentrations were higher in benthic and demersal piscivores, PCB and PCDD/F concentrations (lipid-weight) were similar in most teleost species. For Cd, Hg and Pb, the trophic group accumulating the highest concentrations depended on the contaminant and region. Concentrations in Hg, PCBs and PCDD/Fs were higher in the EEC and/or GoL than in BoB. Cadmium and Pb concentrations were highest in the BoB. Lipid content accounted for 35%-84% of organic contaminant variability. Lipid normalisation was employed to enhance robustness in the identification of spatial patterns. Contaminant patterns in chondrichthyans clearly differed from that in teleosts. In addition, trophic levels accounted for ≤1% and ≤33% of the contaminant variability in teleost fishes in the EEC and BoB, respectively. Therefore, developing taxa-specific thresholds might be a more practical way forward for environmental assessment than normalisation to trophic levels.
Collapse
Affiliation(s)
- Aourell Mauffret
- Ifremer, CCEM, Rue de L'île d'Yeu, BP 21105, 44311 Nantes Cedex 03, France.
| | - Tiphaine Chouvelon
- Ifremer, CCEM, Rue de L'île d'Yeu, BP 21105, 44311 Nantes Cedex 03, France; Observatoire Pelagis, UAR 3462 La Rochelle Université/CNRS, 5 Allées de L'Océan, 17000 La Rochelle, France
| | - Nathalie Wessel
- Ifremer, ODE/Vigies, Rue de L'île d'Yeu, BP 21105, 44311 Nantes Cedex 03, France
| | - Pierre Cresson
- Ifremer, Channel and North Sea Fisheries Research Unit, 50 Quai Gambetta, BP 699, 62321 Boulogne sur Mer, France
| | - Daniela Bănaru
- Aix-Marseille Université, Université de Toulon, CNRS, IRD, Mediterranean Institute of Oceanography (MIO), UM110, Marseille, France
| | - Jérôme Baudrier
- Ifremer, Biodivenv, 79 Route de Pointe-Fort, 97 231 Le Robert, France
| | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS, La Rochelle Université, 2 rue Olympe de Gouges 17000 La Rochelle, France; Institut Universitaire de France (IUF), 1 rue Descartes 75005 Paris, France
| | - Rachida Chekri
- Anses, Laboratory for Food Safety, 14 Rue Pierre et Marie Curie, 94700 Maisons-Alfort, France
| | - Petru Jitaru
- Anses, Laboratory for Food Safety, 14 Rue Pierre et Marie Curie, 94700 Maisons-Alfort, France
| | - François Le Loc'h
- University of Brest, CNRS, IRD, Ifremer, LEMAR, 29280 Plouzane, France
| | - Benoit Mialet
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS, La Rochelle Université, 2 rue Olympe de Gouges 17000 La Rochelle, France
| | - Vincent Vaccher
- Oniris, INRAE, UMR 1329, Laboratoire d'Étude des Résidus et Contaminants dans Les Aliments (LABERCA), F-44307, Nantes, France
| | - Mireille Harmelin-Vivien
- Aix-Marseille Université, Université de Toulon, CNRS, IRD, Mediterranean Institute of Oceanography (MIO), UM110, Marseille, France
| |
Collapse
|
26
|
Shi J, Huang L, Sanganyado E, Mo J, Zhao H, Xiang L, Wong MH, Liu W. Spatial distribution and ecological risks of polychlorinated biphenyls in a river basin affected by traditional and emerging electronic waste recycling in South China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 243:114010. [PMID: 36030683 DOI: 10.1016/j.ecoenv.2022.114010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/16/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
With development of e-waste related legislation in China, formal recycling activities are designated in some areas while informal ones are illegally transferred to emerging areas to avoid supervision. However, the resulting environmental impact and ecological risks are not clear. Here, we investigated the discharge of polychlorinated biphenyls (PCBs) to soil and aquatic environments by e-waste recycling activities in the Lian River Basin, China. The study area included a designated industrial park in the traditional e-waste recycling area (Guiyu, known as the world's largest e-waste center), several emerging informal recycling zones, and their surrounding areas and coastal area. A total of 27 PCBs were analyzed, and the highest concentration was found in an emerging site for soil (354 ng g-1) and in a traditional site for sediment (1350 ng g--1) respectively. The pollution levels were significantly higher in both the traditional and emerging recycling areas than in their respective upstream countryside areas (p = 0.0356 and 0.0179, respectively). Source analysis revealed that the traditional and emerging areas had similar PCB sources mainly associated with three PCB technical mixtures manufactured in Japan (KC600) and the USA (Aroclor 1260 and Aroclor 1262). The PCB pollution in their downstream areas including the coastal area was evidently affected by the formal and informal recycling activities through river runoff. The ecological risk assessments showed that PCBs in soils and sediments in the Lian River Basin could cause adverse ecotoxicological consequences to humans and aquatic organisms.
Collapse
Affiliation(s)
- Jingchun Shi
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou, Guangdong 515063, China
| | - Linlin Huang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou, Guangdong 515063, China
| | - Edmond Sanganyado
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou, Guangdong 515063, China; Department of Applied Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK.
| | - Jiezhang Mo
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, Special Administrative Region of China
| | - Hongzhi Zhao
- College of Environmental Science & Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Li Xiang
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Kowloon 999077, Hong Kong, Special Administrative Region of China
| | - Ming Hung Wong
- Consortium on Health, Environment, Education and Research (CHEER), The Education University of Hong Kong, Tai Po, Hong Kong, Special Administrative Region of China
| | - Wenhua Liu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou, Guangdong 515063, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China.
| |
Collapse
|
27
|
Bartalini A, Muñoz-Arnanz J, García-Álvarez N, Fernández A, Jiménez B. Global PBDE contamination in cetaceans. A critical review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119670. [PMID: 35752394 DOI: 10.1016/j.envpol.2022.119670] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/16/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
This review summarizes the most relevant information on PBDEs' occurrence and their impacts in cetaceans at global scale, with special attention on the species with the highest reported levels and therefore the most potentially impacted by the current and continuous release of these substances. This review also emphasizes the anthropogenic and environmental factors that could increase concentrations and associated risks for these species in the next future. High PBDE concentrations above the toxicity threshold and stationary trends have been related to continuous import of PBDE-containing products in cetaceans of Brazil and Australia, where PBDEs have never been produced. Non-decreasing levels documented in cetaceans from the Northwest Pacific Ocean might be linked to the increased e-waste import and ongoing production and use of deca-BDE that is still allowed in China. Moreover, high levels of PBDEs in some endangered species such as beluga whales (Delphinapterus leucas) in St. Lawrence Estuary and Southern Resident killer whales (Orcinus Orca) are influenced by the discharge of contaminated waters deriving from wastewater treatment plants. Climate change related processes such as enhanced long-range transport, re-emissions from secondary sources and shifts in migration habits could lead to greater exposure and accumulation of PBDEs in cetaceans, above all in those species living in the Arctic. In addition, increased rainfall could carry greater amount of contaminants to the marine environment, thereby, enhancing the exposure and accumulation especially for coastal species. Synergic effects of all these factors and ongoing emissions of PBDEs, expected to continue at least until 2050, could increase the degree of exposure and menace for cetacean populations. In this regard, it is necessary to improve current regulations on PBDEs and broader the knowledge about their toxicological effects, in order to assess health risks and support regulatory protection for cetacean species.
Collapse
Affiliation(s)
- Alice Bartalini
- Department of Instrumental Analysis and Environmental Chemistry, Institute of Organic Chemistry (IQOG-CSIC), Juan de la Cierva 3, 28006, Madrid, Spain; Unit of Histology and Pathology, Institute of Animal Health (IUSA), Veterinary School, University of Las Palmas, 35413 Arucas, Las Palmas de Gran Canaria, Spain
| | - Juan Muñoz-Arnanz
- Department of Instrumental Analysis and Environmental Chemistry, Institute of Organic Chemistry (IQOG-CSIC), Juan de la Cierva 3, 28006, Madrid, Spain.
| | - Natalia García-Álvarez
- Unit of Histology and Pathology, Institute of Animal Health (IUSA), Veterinary School, University of Las Palmas, 35413 Arucas, Las Palmas de Gran Canaria, Spain
| | - Antonio Fernández
- Unit of Histology and Pathology, Institute of Animal Health (IUSA), Veterinary School, University of Las Palmas, 35413 Arucas, Las Palmas de Gran Canaria, Spain
| | - Begoña Jiménez
- Department of Instrumental Analysis and Environmental Chemistry, Institute of Organic Chemistry (IQOG-CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| |
Collapse
|
28
|
Guo R, Qi Y, Li B, Wu N, Tian J, Wang Z, Qu R. The environmental fate of biomass associated polybrominated diphenyl ethers. CHEMOSPHERE 2022; 299:134397. [PMID: 35337821 DOI: 10.1016/j.chemosphere.2022.134397] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/18/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
The widespread use of polybrominated diphenyl ethers (PBDEs) inevitably leads to their occurrence in the atmosphere, soil, and sediment. Biomass, especially dry branches and fallen leaves, may act a large reservoir for PBDEs through atmospheric deposition or soil bioaccumulation. Thus, clarifying the sunlight-induced transformation behaviors of PBDEs on biomass is highly significant for our understanding on its natural self-purification process. In this work, the degradation kinetics and mechanisms of two common PBDEs congeners, decabromodiphenyl ether (BDE-209) and 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), on biomass were systematically studied under natural and simulated sunlight irradiation conditions. The highest photodegradation rate constant of BDE-209 and BDE-47 was observed on sour cherry (SC) and zoysia matrella (ZM), respectively, which was related to their larger light receiving area and poor crystallinity. Due to the higher apparent quantum efficiency, BDE-209 degrades faster than BDE-47 (0.063-0.223 vs 0.006-0.026 h-1). The sunlight self-purification cycle of BDE-209 and BDE-47 on biomass were 6 and 14 days, respectively, with the corresponding sunlight contribution in the range of 0.12-0.51 ng mW-1. Products analysis by GC-MS and HPLC-MS/MS revealed that the main reactions involved in the photodegradation of BDE-209 and BDE-47 on biomass were debromination, hydroxylation, cyclization, and C-O bond breaking reaction. Especially, it was firstly proposed that hydroxyl H in lignin from biomass participated in the formation of primary products, which were rationalized by density functional theory (DFT) calculations and control experiments.
Collapse
Affiliation(s)
- Ruixue Guo
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, 210023, PR China
| | - Yumeng Qi
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, 210023, PR China
| | - Beibei Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, 210023, PR China
| | - Nannan Wu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, 210023, PR China
| | - Jie Tian
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, 210023, PR China
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, 210023, PR China.
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, 210023, PR China.
| |
Collapse
|