1
|
Li H, Huo L, Zhang R, Gu X, Chen G, Yuan Y, Tan W, Hui K, Jiang Y. Effect of soil-groundwater system on migration and transformation of organochlorine pesticides: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 290:117564. [PMID: 39700769 DOI: 10.1016/j.ecoenv.2024.117564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 12/01/2024] [Accepted: 12/15/2024] [Indexed: 12/21/2024]
Abstract
Soil is the place where human beings, plants, and animals depend on for their survival and the link between the various ecological layers. Groundwater is an important component of water resources and is one of the most important sources of water for irrigated agriculture, industry, mining and cities because of its stable quantity and quality. Soil and groundwater are important strategic resources highly valued by countries around the world. However, in recent years, the deterioration of the ecological environment of soil-groundwater caused by industrial, domestic, and agricultural pollution sources has continued to threaten human health and ecological security. Among them, organochlorine pesticides (OCPs), as typical organic pollutants, cause very serious pollution of soil and groundwater environment. However, most studies on the pollution of OCPs have focused on the aboveground or surface water environment, and little consideration has been given to the pollution and hazards of OCPs to the deep soil and groundwater environment, especially the effects of different environmental factors on the transport and transformation of OCPs in soil-groundwater. Moreover, in addition to the influence of a single factor on it, the interactions that arise between different factors cannot be ignored. This paper focuses on two major sources of OCPs in soil and groundwater environments, compiles and summarizes the effects of environmental factors such as pH, microbial communities and enzyme activities on the transport and transformation of OCPs in soil and groundwater systems, discusses the synergistic effects of individual environmental factors and others, and comprehensively analyses the effects of synergistic effects of various environmental factors on the transport and transformation of OCPs. In the context of ecological civilization construction, it provides the scientific basis and theoretical foundation for the prevention and treatment of OCPs-contaminated soil and groundwater, and puts forward new ideas and suggestions for the research and development of green, eco-friendly remediation and treatment technologies for OCPs-contaminated sites.
Collapse
Affiliation(s)
- Haohao Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Xi'an Key Laboratory of Low-carbon Utilization for High-carbon Resources, Xi'an Shiyou University, Xi'an 710065, China
| | - Lin Huo
- Swiss Federal Institute of Technology (ETH) Zurich, Universitaetstrasse 16, Zurich 8092, Switzerland
| | - Rui Zhang
- Guizhou Shale Gas Exploration and Development Co., Zunyi, Guizhou 563499, China
| | - Xuefan Gu
- Xi'an Key Laboratory of Low-carbon Utilization for High-carbon Resources, Xi'an Shiyou University, Xi'an 710065, China
| | - Gang Chen
- Xi'an Key Laboratory of Low-carbon Utilization for High-carbon Resources, Xi'an Shiyou University, Xi'an 710065, China
| | - Ying Yuan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Xi'an Key Laboratory of Low-carbon Utilization for High-carbon Resources, Xi'an Shiyou University, Xi'an 710065, China
| | - Wenbing Tan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Xi'an Key Laboratory of Low-carbon Utilization for High-carbon Resources, Xi'an Shiyou University, Xi'an 710065, China
| | - Kunlong Hui
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Xi'an Key Laboratory of Low-carbon Utilization for High-carbon Resources, Xi'an Shiyou University, Xi'an 710065, China.
| | - Yu Jiang
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
2
|
Cui M, Xu D, Liu X, Lai X, Zhang M, Gao B. Influence of spectral and molecular composition of dissolved organic matter on labile Cd mobility in riparian soils in the Three Gorges Reservoir, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176736. [PMID: 39378949 DOI: 10.1016/j.scitotenv.2024.176736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/29/2024] [Accepted: 10/02/2024] [Indexed: 10/10/2024]
Abstract
The periodic anti-seasonal inundation of the Three Gorges Reservoir (TGR) leads to changes in the molecular composition of dissolved organic matter (DOM) in riparian soils, further impacting the geochemical processes and ecological risk of heavy metals. However, the intrinsic driving mechanisms of DOM influencing the cadmium (Cd), a major pollutant in riparian soils in TGR, at the molecular level remain unclear. In this study, the DOM molecular composition, labile Cd in riparian soils and the key driving mechanism before and after flooding were explored using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), the diffusive gradients in thin films (DGT) and partial least squares path modeling (PLS-PM). A spectral analysis revealed that after flooding, the relative abundance of terrestrial humic-like substances decreased whereas that of microbial humic-like substances increased. Furthermore, FT-ICR MS analysis revealed that the relative abundance of lignin, the main molecular components of DOM in riparian soils, increased after flooding. The linkage of DOM with the concentration and kinetic processes of labile Cd indicated that the higher aromaticity and unsaturation, larger molecular weight, and higher humification level of DOM promoted the mobility of labile Cd from the soil solid phase to the liquid phase. In particular, our findings indicated that at the molecular level, the most significant factor influencing the mobility of labile Cd was lignin, which was primarily governed by the complexation of lignin with labile Cd. The complexation mechanism between lignin and labile Cd resulted in increased ecotoxicological risk of labile Cd after flooding, while the overall ecotoxicological risk was low in riparian soils in TGR. This study provides better insight into the geochemical cycling and fate of toxic elements in reservoir ecosystems under the change of hydrological regime.
Collapse
Affiliation(s)
- Meng Cui
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China; Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Dongyu Xu
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China; Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing 100038, China.
| | - Xiaobo Liu
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China; Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Xianqiang Lai
- Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Moli Zhang
- Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Bo Gao
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China; Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| |
Collapse
|
3
|
Cheng Z, Hu Q, Guo H, Ma Q, Zhou J, Wang T, Zhu L. Long-term straw return enhanced the chlorine reactivity of soil DOM: Highlighting the molecular-level activity and transformation trade-offs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175485. [PMID: 39147061 DOI: 10.1016/j.scitotenv.2024.175485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/11/2024] [Accepted: 08/11/2024] [Indexed: 08/17/2024]
Abstract
Chemical properties and molecular diversity of dissolved organic matter (DOM) in agricultural soils are important for soil carbon dynamics and chlorine activity. Yet the chlorine reactivity of soil DOM at the molecular level under agricultural management practices remains unidentified. Here, we investigated the chlorine reactivity of soil DOM under long-term straw return and the molecular activities and transformations during chlorination. The 9-year straw return enhanced the chlorine reactivity of soil DOM, leading to increases in the production of traditional disinfection byproducts (DBPs) and decreases in the formation of emerging high molecular weight DBPs. C17HnOmCl1-2 and C22HnNmOzCl were the highest relative abundances of emerging DBPs. The emerging DBPs were primarily generated through chlorine substitution reactions, with their precursors exhibiting higher H/Cwa (1.47) and O/Cwa (0.41) ratios under straw return. The molecular transformation ability and inactive molecules of soil DOM under long-term straw return were reduced after chlorination, resulting in increased DOM instability. Chlorination led to a shift in the thermodynamic processes of soil DOM molecules from thermodynamically limited to thermodynamically favorable processes, and lignin-like compounds displayed higher potentials for transformation into protein/amino sugar-like compounds. C19H26O6 was identified as a sensitive formula for tracing chlorine reactivity under straw return, and a network illustrating the generation of DBPs from C19H26O6 was established. Overall, these results highlighted the strong chlorine reactivity of soil DOM under long-term straw return.
Collapse
Affiliation(s)
- Zhen Cheng
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Qian Hu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - He Guo
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Qiuling Ma
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Jian Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Tiecheng Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China.
| | - Lingyan Zhu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China; College of Environmental Science and Engineering, Nankai University, Tianjin, 300385, China.
| |
Collapse
|
4
|
Underwood TR, Bourg IC, Rosso KM. Mineral-associated organic matter is heterogeneous and structured by hydrophobic, charged, and polar interactions. Proc Natl Acad Sci U S A 2024; 121:e2413216121. [PMID: 39514311 PMCID: PMC11573572 DOI: 10.1073/pnas.2413216121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/22/2024] [Indexed: 11/16/2024] Open
Abstract
The formation of mineral-associated organic matter (MAOM) is a key phenomenon that may explain the slow turnover rates of carbon in soil organic matter (SOM). Despite this, important details pertaining to the structure and dynamics of MAOM remain unknown. In the present study, we use replica-exchange molecular dynamics simulations to gain insight into the structure of MAOM on the surface of prototypical phyllosilicate clay and Fe-oxide minerals, montmorillonite and goethite, fine-grained minerals that strongly impact soil carbon dynamics in temperate and tropical regions, respectively. We examine the impact of aqueous chemistry through the presence of either Na[Formula: see text] or Ca[Formula: see text] charge balancing counterions. Our results are consistent with the hypothesized multilayer sorption ("onion-skin") model of MAOM and help to explain previous observations regarding the patchy distribution of SOM on mineral surfaces. In particular, the SOM coatings are partial and laterally heterogeneous, and water retains extensive access to mineral surfaces even when significant SOM sorption occurs. Low molecular weight neutral SOM molecules ([Formula: see text]200 Da) infrequently interact with the mineral surfaces nor their sorbed organic matter coatings and are increasingly labile with decreasing molecular weight. This observation is inconsistent with a central feature of the predominant soil continuum model of SOM and suggests that further iterations of the conceptual model may be required.
Collapse
Affiliation(s)
- Thomas R Underwood
- Physical and Chemical Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352
- Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08544
| | - Ian C Bourg
- Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08544
- High Meadows Environmental Institute, Princeton University, Princeton, NJ 08544
| | - Kevin M Rosso
- Physical and Chemical Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352
| |
Collapse
|
5
|
Robles-Lecompte A, Cheng J, McKenna AM, Chang NB. Linking pattern shifts of dissolved organic nitrogen fractional removal with microbial species richness in a cascade upflow biofiltration process. WATER RESEARCH 2024; 264:122130. [PMID: 39146847 DOI: 10.1016/j.watres.2024.122130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 07/16/2024] [Accepted: 07/20/2024] [Indexed: 08/17/2024]
Abstract
Nutrient pollution has become an important issue to solve in stormwater runoff due to the fast population growth and urbanization that impacts water quality and triggers harmful algal blooms. There is an acute need to link the dissolved organic nitrogen (DON) decomposition with the coupled nitrification and denitrification pathways to realize the pattern shifts in the nitrogen cycle. This paper presented a lab-scale cascade upflow biofiltration system for comparison of nitrate and phosphate removal from stormwater matrices through two specialty adsorbents at three influent conditions. The two specialty adsorbents are denoted as biochar iron and perlite integrated green environmental media (BIPGEM) and zero-valent iron and perlite-based green environmental media (ZIPGEM). An initial condition with stormwater runoff, a second condition with spiked nitrate, and a third condition with spiked nitrate and phosphate were used in this study. To differentiate nitrifier and denitrifier population dynamics associated with the decomposition of DON, integrative analysis of quantitative polymerase chain reaction (qPCR) and 21 tesla Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) were performed in association with nitrate removal efficiencies for both media with or without the presence of phosphate. While the qPCR may detect one gene for a single microbe or pathogen and realize the microbial population dynamics in the bioreactors, the 21 T FT-ICR MS can separate and assign elemental compositions to identify organic compounds of DON. Results indicated that ZIPGEM obtained a higher potential for nutrient removal than BIPGEM when the influent was spiked with nitrate and phosphate simultaneously. The sustainable, scalable, and adaptable upflow bioreactors operated in sequence (in a cascade mode) can be expanded flexibly on an as-needed basis to meet the local water quality standards showing process reliability, resilience, and sustainability simultaneously.
Collapse
Affiliation(s)
- Alejandra Robles-Lecompte
- Department of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, FL, USA
| | - Jinxiang Cheng
- Department of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, FL, USA
| | - Amy M McKenna
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA; Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA
| | - Ni-Bin Chang
- Department of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, FL, USA.
| |
Collapse
|
6
|
Timilsina A, Lokesh S, Shahriar A, Numan T, Schramm T, Stincone P, Nyarko LK, Dewey C, Boiteau R, Petras D, Yang Y. Identifying Quinones in Complex Aqueous Environmental Media (Biochar Extracts) through Tagging with Cysteine and Cysteine-Contained Peptides and High Resolution Mass Spectrometry Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:16432-16443. [PMID: 39226134 DOI: 10.1021/acs.est.4c04049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Quinones are among the most important components in natural organic matter (NOM) for redox reactions; however, no quinones in complex environmental media have been identified. To aid the identification of quinone-containing molecules in ultracomplex environmental samples, we developed a chemical tagging method that makes use of a Michael addition reaction between quinones and thiols (-SH) in cysteine (Cys) and cysteine-contained peptides (CCP). After the tagging, candidates of quinones in representative aqueous environmental samples (water extractions of biochar) were identified through high-resolution mass spectrometry (HRMS) analysis. The MS and UV spectra analysis showed rapid reactions between Cys/CCP and model quinones with β-carbon from the same benzene ring available for Michael addition. The tagging efficiency was not influenced by other co-occurring nonquinone representative compounds, including caffeic acid, cinnamic acid, and coumaric acid. Cys and CCP were used to tag quinones in water extractions of biochars, and possible candidates of quinones (20 and 53 based on tagging with Cys and CCP, respectively) were identified based on the HRMS features for products of reactions with Cys/CCP. This study has successfully demonstrated that such a Michael addition reaction can be used to tag quinones in complex environmental media and potentially determine their identities. The method will enable an in-depth understanding of the redox chemistry of NOM and its critical chemical compositions and structures.
Collapse
Affiliation(s)
- Anil Timilsina
- Department of Civil and Environmental Engineering, University of Nevada, Reno, 1644 N. Virgina Street, Reno, Nevada 89523, United States
| | - Srinidhi Lokesh
- Department of Civil and Environmental Engineering, University of Nevada, Reno, 1644 N. Virgina Street, Reno, Nevada 89523, United States
| | - Abrar Shahriar
- Department of Civil and Environmental Engineering, University of Nevada, Reno, 1644 N. Virgina Street, Reno, Nevada 89523, United States
| | - Travis Numan
- Department of Civil and Environmental Engineering, University of Nevada, Reno, 1644 N. Virgina Street, Reno, Nevada 89523, United States
| | - Tilman Schramm
- CMFI Cluster of Excellence, University of Tuebingen, Auf der Morgenstelle 24, 72076 Tuebingen, Germany
- Department of Biochemistry, University of California Riverside, 169 Aberdeen Dr, Riverside, California 92507, United States
| | - Paolo Stincone
- CMFI Cluster of Excellence, University of Tuebingen, Auf der Morgenstelle 24, 72076 Tuebingen, Germany
| | - Laurinda Korang Nyarko
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, 1500 SW Jefferson Way, Corvallis, Oregon 97331, United States
| | - Christian Dewey
- Department of Chemistry, University of Minnesota, 207 Pleasant Street Se, Minneapolis, Minnesota 55455, United States
| | - Rene Boiteau
- Department of Chemistry, University of Minnesota, 207 Pleasant Street Se, Minneapolis, Minnesota 55455, United States
| | - Daniel Petras
- CMFI Cluster of Excellence, University of Tuebingen, Auf der Morgenstelle 24, 72076 Tuebingen, Germany
- Department of Biochemistry, University of California Riverside, 169 Aberdeen Dr, Riverside, California 92507, United States
| | - Yu Yang
- Department of Civil and Environmental Engineering, University of Nevada, Reno, 1644 N. Virgina Street, Reno, Nevada 89523, United States
| |
Collapse
|
7
|
Maqbool T, Chen H, Wang Q, McKenna AM, Jiang D. Transformation of sedimentary dissolved organic matter in electrokinetic remediation catalogued by FT-ICR mass spectrometry. WATER RESEARCH 2024; 262:122094. [PMID: 39083902 DOI: 10.1016/j.watres.2024.122094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/27/2024] [Accepted: 07/12/2024] [Indexed: 08/02/2024]
Abstract
In electrokinetic remediation (EKR), the sedimentary dissolved organic matter (DOM) could impede remediation by scavenging reactive species and generating unintended byproducts. Yet its transformation and mechanisms remained largely unknown. This study conducted molecular-level characterization of the water-extractable DOM (WEOM) in EKR using negative-ion electrospray ionization coupled to 21 tesla Fourier transform ion cyclotron resonance mass spectrometry (21 T FT-ICR MS). The results suggested that ∼55 % of the ∼7,000 WEOM compounds identified were reactive, and EKR lowered their diversity, molecular weight distribution, and double-bond equivalent (DBE) through a combination of electrochemical and microbial redox reactions. Heteroatom-containing WEOM (CHON and CHOS) were abundant (∼ 35% of the total WEOM), with CHOS generally being more reactive than CHON. Low electric potential (1 V/cm) promoted the growth of dealkylation and desulfurization bacteria, and led to anodic CO2 mineralization, anodic cleavage of -SO and -SO3, and cathodic cleavage of -SH2; high electric potential (2 V/cm) only enriched desulfurization bacteria, and differently, led to anodic oxygenation and cathodic hydrogenation of unsaturated and phenolic compounds, in addition to cathodic cleavage of -SH2. The long-term impact of these changes on soil quality and nitrogen-sulfur-carbon flux may be need to studied to identify unknown risks and new applications of EKR.
Collapse
Affiliation(s)
- Tahir Maqbool
- Department of Civil, Construction, and Environmental Engineering, The University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Huan Chen
- National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Dr., Tallahassee, FL, 32310-4005, USA
| | - Qingshi Wang
- Department of Civil, Construction, and Environmental Engineering, The University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Amy M McKenna
- National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Dr., Tallahassee, FL, 32310-4005, USA; Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Daqian Jiang
- Department of Civil, Construction, and Environmental Engineering, The University of Alabama, Tuscaloosa, AL, 35487, USA.
| |
Collapse
|
8
|
Yuan D, Qi Y, Ma C, Fu P, Volmer DA. Selective molecular characterization of organic aerosols using in situ laser desorption ionization mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9847. [PMID: 38890224 DOI: 10.1002/rcm.9847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/20/2024]
Abstract
RATIONALE The sources and chemical compositions of organic aerosol (OA) exert a significant influence on both regional and global atmospheric conditions, thereby having far-reaching implications on environmental chemistry. However, existing mass spectrometry (MS) methods have limitations in characterizing the detailed composition of OA due to selective ionization as well as fractionation during cold-water extraction and solid-phase extraction (SPE). METHODS A comprehensive MS study was conducted using aerosol samples collected on dusty, clean, and polluted days. To supplement the data obtained from electrospray ionization (ESI), a strategy for analyzing OAs collected using the quartz fiber filter directly utilizing laser desorption ionization (LDI) was employed. Additionally, the ESI method was conducted to explore suitable approaches for determining various OA compositions from samples collected on dusty, clean, and polluted days. RESULTS In situ LDI has the advantages of significantly reducing the sample volume, simplifying sample preparation, and overcoming the problem of overestimating sulfur-containing compounds usually encountered in ESI. It is suitable for the characterization of highly unsaturated and hydrophobic aerosols, such as brown carbon-type compounds with low volatility and high stability, which is supplementary to ESI. CONCLUSIONS Compared with other ionization methods, in situ LDI helps provide a complementary description of the molecular compositions of OAs, especially for analyzing OAs in polluted day samples. This method may contribute to a more comprehensive MS analysis of the elusive compositions and sources of OA in the atmosphere.
Collapse
Affiliation(s)
- Daohe Yuan
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, China
| | - Yulin Qi
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, China
- Tianjin Bohai Rim Coastal Earth Critical Zone National Observation and Research Station, Tianjin University, Tianjin, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, China
| | - Chao Ma
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, China
| | - Pingqing Fu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, China
- Tianjin Bohai Rim Coastal Earth Critical Zone National Observation and Research Station, Tianjin University, Tianjin, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, China
| | - Dietrich A Volmer
- Bioanalytical Chemistry, Department of Chemistry, Humboldt University Berlin, Berlin, Germany
| |
Collapse
|
9
|
Shahriar A, Lokesh S, Timilsina A, Numan T, Schramm T, Stincone P, Nyarko L, Dewey C, Petras D, Boiteau R, Yang Y. High-Resolution Tandem Mass Spectrometry-Based Analysis of Model Lignin-Iron Complexes: Novel Pipeline and Complex Structures. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39116213 DOI: 10.1021/acs.est.4c03608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Understanding the chemical nature of soil organic carbon (SOC) with great potential to bind iron (Fe) minerals is critical for predicting the stability of SOC. Organic ligands of Fe are among the top candidates for SOCs able to strongly sorb on Fe minerals, but most of them are still molecularly uncharacterized. To shed insights into the chemical nature of organic ligands in soil and their fate, this study developed a protocol for identifying organic ligands using ultrahigh-performance liquid chromatography-high-resolution tandem mass spectrometry (UHPLC-HRMS/MS) and metabolomic tools. The protocol was used for investigating the Fe complexes formed by model compounds of lignin-derived organic ligands, namely, caffeic acid (CA), p-coumaric acid (CMA), vanillin (VNL), and cinnamic acid (CNA). Isotopologue analysis of 54/56Fe was used to screen out the potential UHPLC-HRMS (m/z) features for complexes formed between organic ligands and Fe, with multiple features captured for CA, CMA, VNL, and CNA when 35/37Cl isotopologue analysis was used as supplementary evidence for the complexes with Cl. MS/MS spectra, fragment analysis, and structure prediction with SIRIUS were used to annotate the structures of mono/bidentate mono/biligand complexes. The analysis determined the structures of monodentate and bidentate complexes of FeLxCly (L: organic ligand, x = 1-4, y = 0-3) formed by model compounds. The protocol developed in this study can be used to identify unknown organic ligands occurring in complex environmental samples and shed light on the molecular-level processes governing the stability of the SOC.
Collapse
Affiliation(s)
- Abrar Shahriar
- Department of Civil and Environmental Engineering, University of Nevada, Reno, 1664 N Virginia St, Reno, Nevada 89557, United States
- Nuclear and Chemical Sciences Division, Physical and Life Sciences, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Srinidhi Lokesh
- Department of Civil and Environmental Engineering, University of Nevada, Reno, 1664 N Virginia St, Reno, Nevada 89557, United States
| | - Anil Timilsina
- Department of Civil and Environmental Engineering, University of Nevada, Reno, 1664 N Virginia St, Reno, Nevada 89557, United States
| | - Travis Numan
- Department of Civil and Environmental Engineering, University of Nevada, Reno, 1664 N Virginia St, Reno, Nevada 89557, United States
| | - Tilman Schramm
- CMFI Cluster of Excellence, University of Tuebingen, Auf der Morgenstelle 24, 72076 Tuebingen, Germany
- Department of Biochemistry, University of California Riverside, Riverside, California 92521, United States
| | - Paolo Stincone
- CMFI Cluster of Excellence, University of Tuebingen, Auf der Morgenstelle 24, 72076 Tuebingen, Germany
| | - Laurinda Nyarko
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon 97331, United States
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Christian Dewey
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon 97331, United States
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Daniel Petras
- CMFI Cluster of Excellence, University of Tuebingen, Auf der Morgenstelle 24, 72076 Tuebingen, Germany
- Department of Biochemistry, University of California Riverside, Riverside, California 92521, United States
| | - Rene Boiteau
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon 97331, United States
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Yu Yang
- Department of Civil and Environmental Engineering, University of Nevada, Reno, 1664 N Virginia St, Reno, Nevada 89557, United States
| |
Collapse
|
10
|
Zhou P, Tian L, Graham N, Song S, Zhao R, Siddique MS, Hu Y, Cao X, Lu Y, Elimelech M, Yu W. Spatial patterns and environmental functions of dissolved organic matter in grassland soils of China. Nat Commun 2024; 15:6356. [PMID: 39069514 PMCID: PMC11284229 DOI: 10.1038/s41467-024-50745-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 07/19/2024] [Indexed: 07/30/2024] Open
Abstract
Soil dissolved organic matter (DOM) is crucial to atmospheric, terrestrial and aquatic environments as well as human life. Here, by characterizing DOM from 89 grassland soils throughout China, we reveal the spatial association between DOM geochemistry in the dry season vs annual ecosystem exchange and cancer cases. The humic-like and high molecular weight (3.4-25 kDa) fractions with lower biodegradability, decline from the northern to the southern regions of China, and are correlated with lower soil respiration and net ecosystem productivity at the continental scale. The <1.2 kDa and proteinaceous fractions could serve as a geographical indicator of nasopharyngeal cancer incidence and mortality, while the 3.4-25 kDa and humified fractions are potentially associated with pancreatic cancer cases (P < 0.05). Our findings highlight that exploiting the environmental functions of soil DOM and mitigating the negative impacts are necessary, and require actions tailored to local soil DOM conditions.
Collapse
Affiliation(s)
- Peng Zhou
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Long Tian
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nigel Graham
- Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Shian Song
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Renzun Zhao
- Department of Civil, Architectural and Environmental Engineering, North Carolina Agricultural and Technical State University, Greensboro, North Carolina, USA
| | - Muhammad Saboor Siddique
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Hu
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Xianyong Cao
- Group of Alpine Paleoecology and Human Adaptation (ALPHA), State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yonglong Lu
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian, 361102, China.
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, 06520-8286, USA.
| | - Wenzheng Yu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
11
|
DiDonato N, Rivas-Ubach A, Kew W, Sokol NW, Clendinen CS, Kyle JE, Martínez CE, Foley MM, Tolić N, Pett-Ridge J, Paša-Tolić L. Improved Characterization of Soil Organic Matter by Integrating FT-ICR MS, Liquid Chromatography Tandem Mass Spectrometry, and Molecular Networking: A Case Study of Root Litter Decay under Drought Conditions. Anal Chem 2024; 96:11699-11706. [PMID: 38991201 DOI: 10.1021/acs.analchem.4c00184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Understanding of how soil organic matter (SOM) chemistry is altered in a changing climate has advanced considerably; however, most SOM components remain unidentified, impeding the ability to characterize a major fraction of organic matter and predict what types of molecules, and from which sources, will persist in soil. We present a novel approach to better characterize SOM extracts by integrating information from three types of analyses, and we deploy this method to characterize decaying root-detritus soil microcosms subjected to either drought or normal conditions. To observe broad differences in composition, we employed direct infusion Fourier-transform ion cyclotron resonance mass spectrometry (DI-FT-ICR MS). We complemented this with liquid chromatography tandem mass spectrometry (LC-MS/MS) to identify components by library matching. Since libraries contain only a small fraction of SOM components, we also used fragment spectral cosine similarity scores to relate unknowns and library matches through molecular networks. This integrated approach allowed us to corroborate DI-FT-ICR MS molecular formulas using library matches, which included fungal metabolites and related polyphenolic compounds. We also inferred structures of unknowns from molecular networks and improved LC-MS/MS annotation rates from ∼5 to 35% by considering DI-FT-ICR MS molecular formula assignments. Under drought conditions, we found greater relative amounts of lignin-like vs condensed aromatic polyphenol formulas and lower average nominal oxidation state of carbon, suggesting reduced decomposition of SOM and/or microbes under stress. Our integrated approach provides a framework for enhanced annotation of SOM components that is more comprehensive than performing individual data analyses in parallel.
Collapse
Affiliation(s)
- Nicole DiDonato
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Albert Rivas-Ubach
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - William Kew
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Noah W Sokol
- Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Chaevien S Clendinen
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Jennifer E Kyle
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | | | - Megan M Foley
- Northern Arizona University, Flagstaff, Arizona 86011, United States
| | - Nikola Tolić
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Jennifer Pett-Ridge
- Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Ljiljana Paša-Tolić
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
12
|
Mo X, Du P, Chan TWD, Shaw PC, Chow ATS. Fostering Adequate Data Reporting of Fourier Transform Ion Cyclotron Resonance Mass Spectrometry-Based Environmental Studies. ACS ES&T WATER 2024; 4:2779-2781. [PMID: 39021581 PMCID: PMC11249965 DOI: 10.1021/acsestwater.4c00431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 07/20/2024]
Affiliation(s)
- Xiaohan Mo
- Earth
and Environmental Sciences Programme, The
Chinese University of Hong Kong, Shatin 999077, Hong
Kong SAR, China
| | - Penghui Du
- Earth
and Environmental Sciences Programme, The
Chinese University of Hong Kong, Shatin 999077, Hong
Kong SAR, China
| | - T.-W. Dominic Chan
- Department
of Chemistry, The Chinese University of
Hong Kong, Shatin 999077, Hong Kong SAR, China
| | - Pang Chui Shaw
- School
of Life Sciences, The Chinese University
of Hong Kong, Shatin 999077, Hong Kong SAR, China
- Li Dak
Sum Yip Yio Chin R&D Centre for Chinese Medicine, The Chinese University of Hong Kong, Shatin 999077, Hong
Kong SAR, China
| | - Alex Tat-Shing Chow
- Earth
and Environmental Sciences Programme, The
Chinese University of Hong Kong, Shatin 999077, Hong
Kong SAR, China
| |
Collapse
|
13
|
Wang Q, Li X, Zhou K, Li Y, Wang Y, Zhang G, Guo H, Zhou J, Wang T. Mechanisms of conjugative transfer of antibiotic resistance genes induced by extracellular polymeric substances: Insights into molecular diversities and electron transfer properties. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135181. [PMID: 39003806 DOI: 10.1016/j.jhazmat.2024.135181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 06/29/2024] [Accepted: 07/10/2024] [Indexed: 07/16/2024]
Abstract
Dissemination of antibiotic resistance genes (ARGs) has become a critical threat to public health. Activated sludge, rich in extracellular polymeric substances (EPS), is an important pool of ARGs. In this study, mechanisms of conjugation transfer of ARGs induced by EPS, including tightly bound EPS (TBEPS), soluble EPS (SEPS), and loosely bound EPS (LBEPS), were explored in terms of molecular diversities and electron transfer properties of EPS. Conjugation transfer frequency was increased by 9.98-folds (SEPS), 4.21-folds (LBEPS), and 15.75-folds (TBEPS) versus the control, respectively. Conjugation-related core genes involving SOS responses (9 genes), membrane permeability (18 genes), intercellular contact (17 genes), and energy metabolism pathways (13 genes) were all upregulated, especially in the presence of TBEPS. Carbohydrates and aliphatic substances in SEPS and LBEPS were contributors to ARG transfer, via influencing reactive oxygen species (ROS) formation (SEPS) and ROS and adenosine triphosphate (ATP) production (LBEPS). TBEPS had the highest redox potential and greatest lability and facilitated electron transfer and alternated respiration between cells, thus promoting ARG transfer by producing ATP. Generally, the chemical molecular characteristics and redox properties of EPS facilitated ARG transfer mainly by influencing lipid peroxidation and ATP, respectively.
Collapse
Affiliation(s)
- Qi Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Xiao Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Keying Zhou
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Yutong Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Yanjie Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Guodong Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - He Guo
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Jian Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Tiecheng Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
14
|
Qiu J, Lü F, Li X, Zhang H, Xu B, He PJ. Regular Tetrahedron Model for the Assessment of High-Resolution Mass Spectrometry Data of Four-Way Fractionated Dissolved Organic Matter. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11685-11694. [PMID: 38905014 DOI: 10.1021/acs.est.4c01936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
A regular tetrahedron model was established to pierce the fractionation of dissolved organic matter (DOM) among quaternary components by using high-resolution mass spectrometry. The model can stereoscopically visualize molecular formulas of DOM to show the preference to each component according to the position in a regular tetrahedron. A classification method was subsequently developed to divide molecular formulas into 15 categories related to fractionation ratios, the relative change of which was demonstrated to be convergent with the uncertainty of mass peak area. The practicality of the regular tetrahedron model was verified by seven kinds of sludge from waste leachate treatment and sewage wastewater treatment plants by using stratification of extracellular polymeric substances coupled with Orbitrap MS as an example, presenting the DOM chemodiversity in stratified sludge flocs. Sensitivity analysis proved that classification results were relatively stable with the perturbation of four model parameters. Multinomial logistic regression analysis could further help identify the effect of molecular properties on the fractionation of DOM based on the classification results of the regular tetrahedron model. This model offers a methodology for the assessment of specificity of sequential extraction on DOM from solid or semisolid components and simplifies the complex mathematical expression of fractionation coefficients for quaternary components.
Collapse
Affiliation(s)
- Junjie Qiu
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, PR China
| | - Fan Lü
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, PR China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Xiao Li
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, PR China
| | - Hua Zhang
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, PR China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Bin Xu
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, PR China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Pin-Jing He
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, PR China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| |
Collapse
|
15
|
Yan Z, Lv J, Yi Y, Ma X, Zhang G, Wang S, Zeng X, Jia Y. Molecular composition and characteristics of Sediment-adsorbed Dissolved Organic Matter (SDOM) along the coast of China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172134. [PMID: 38583612 DOI: 10.1016/j.scitotenv.2024.172134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/14/2024] [Accepted: 03/29/2024] [Indexed: 04/09/2024]
Abstract
Sediment-adsorbed Dissolved Organic Matter (SDOM) in coast plays a crucial role in the terrestrial and marine carbon cycle processes of the global environment. However, understanding the transport dynamics of SDOM along the coast of China, particularly its interactions with sediments, remains elusive. In this study, we analyzed the δ13C and δ15N stable isotopic compositions, as well as the molecular characteristics of SDOM collected from coastal areas spanning the Bohai Sea (BS), Yellow Sea (YS), East China Sea (ECS), and South China Sea (SCS), by using isotope ratio mass spectrometry and Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS). We identified the predominant sources of carbon and nitrogen in coastal sediments, revealing terrigenous origins for most C and N, while anthropogenic sources dominated in the SCS. Spatial variations in SDOM chemodiversity were observed, with diverse molecular components influenced by distinct environmental factors and sediment sources. Notably, lignins and saturated compounds (such as proteins/amino sugars) were the predominant molecular compounds detected in coastal SDOM. Through Mantel tests and Spearman's correlation analysis, we elucidated the significant influence of spatial environmental factors (temperature, DO, salinity, and depth) and sediment sources on SDOM molecular chemodiversity. These findings contribute to a more comprehensive understanding of the carbon cycle dynamics along the Chinese coast.
Collapse
Affiliation(s)
- Zelong Yan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jitao Lv
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanbi Yi
- Department of Ocean Science and the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, Hong Kong SAR 00852, China
| | - Xu Ma
- College of Environment and Resources, Dalian Minzu University, Dalian, Liaoning 116600, China
| | - Guoqing Zhang
- Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, School of Environment, Henan Normal University, Xinxiang 453007, China
| | - Shaofeng Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Xiangfeng Zeng
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
| | - Yongfeng Jia
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| |
Collapse
|
16
|
Song Y, Yao S, Li X, Wang T, Jiang X, Bolan N, Warren CR, Northen TR, Chang SX. Soil metabolomics: Deciphering underground metabolic webs in terrestrial ecosystems. ECO-ENVIRONMENT & HEALTH 2024; 3:227-237. [PMID: 38680731 PMCID: PMC11047296 DOI: 10.1016/j.eehl.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/05/2024] [Accepted: 03/04/2024] [Indexed: 05/01/2024]
Abstract
Soil metabolomics is an emerging approach for profiling diverse small molecule metabolites, i.e., metabolomes, in the soil. Soil metabolites, including fatty acids, amino acids, lipids, organic acids, sugars, and volatile organic compounds, often contain essential nutrients such as nitrogen, phosphorus, and sulfur and are directly linked to soil biogeochemical cycles driven by soil microorganisms. This paper presents an overview of methods for analyzing soil metabolites and the state-of-the-art of soil metabolomics in relation to soil nutrient cycling. We describe important applications of metabolomics in studying soil carbon cycling and sequestration, and the response of soil organic pools to changing environmental conditions. This includes using metabolomics to provide new insights into the close relationships between soil microbiome and metabolome, as well as responses of soil metabolome to plant and environmental stresses such as soil contamination. We also highlight the advantage of using soil metabolomics to study the biogeochemical cycles of elements and suggest that future research needs to better understand factors driving soil function and health.
Collapse
Affiliation(s)
- Yang Song
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shi Yao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaona Li
- School of Environment and Ecology, Jiangnan University, Wuxi 225127, China
| | - Tao Wang
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610299, China
| | - Xin Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nanthi Bolan
- School of Agriculture and Environment, The University of Western Australia, Nedland, WA-6009, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Nedland, WA-6009, Australia
- Healthy Environments and Lives (HEAL) National Research Network, Australia
| | - Charles R. Warren
- School of Life and Environmental Sciences, University of Sydney, Heydon-Laurence Building A08, NSW 2006, Australia
| | - Trent R. Northen
- Environmental Genomics and System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, USA
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Scott X. Chang
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta T6G 2E3, Canada
| |
Collapse
|
17
|
Zhang P, Zhang H, Li Y, Zhang J, Ma C, Weng N, Gao X, Wu F, Huo S. Strong associations between dissolved organic matter and microbial communities in the sediments of Qinghai-Tibetan Plateau lakes depend on salinity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171857. [PMID: 38521264 DOI: 10.1016/j.scitotenv.2024.171857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/01/2024] [Accepted: 03/19/2024] [Indexed: 03/25/2024]
Abstract
In aquatic ecosystems, dissolved organic matter (DOM) plays a vital role in microbial communities and the biogeochemical cycling of elements. However, little is known about the associations between DOM and microbial communities in lake sediments. This study investigated the composition of water-extractable organic matter and microbial communities in surface sediments of lakes with different salinities on the Qinghai-Tibet Plateau. Ultrahigh-resolution mass spectrometry and high-throughput microbial sequencing techniques were employed to assess the associations between molecular diversity and microbial diversity and the effects of salinity in 19 lakes spanning a salinity range from 0.22 ‰ to 341.87 ‰. Our results show that increasing salinity of lake water led to higher molecular diversity of DOM in surface sediments. High-salinity lakes exhibited distinct DOM characteristics, such as lower aromaticity, smaller molecular weight, and higher oxidation degree, compared to freshwater lakes. The complexity of the microbial network composition of sediments first increased and then decreased with the increase of salinity. Moreover, as salinity increases, the dominant species transitioned from Gammaproteobacteria to Bacteroidia, and this transition was accompanied by a decrease in microbial diversity and an increase in molecular diversity. Microbial factors accounted for 34.68 % of the variation in the molecular composition of DOM. Overall, this study emphasizes the significant effects of salinity on both molecular and microbial diversity in lake sediments. Furthermore, our findings underscore the importance of microbes in controlling the range of organic compounds present in lakes and deepen our knowledge of the biogeochemical cycling of DOM.
Collapse
Affiliation(s)
- Peilian Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Hanxiao Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Yi Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jingtian Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Chunzi Ma
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Nanyan Weng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xing Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Shouliang Huo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
18
|
Potemkin AA, Proskurnin MA, Volkov DS. Noise Filtering Algorithm Using Gaussian Mixture Models for High-Resolution Mass Spectra of Natural Organic Matter. Anal Chem 2024; 96:5455-5461. [PMID: 38530650 DOI: 10.1021/acs.analchem.3c05453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
High-resolution mass spectra of natural organic matter (NOM) contain a large number of noise signals. These signals interfere with the correct molecular composition estimation during nontargeted analysis because formula-assignment programs find empirical formulas for such peaks as well. Previously proposed noise filtering methods that utilize the profile of the intensity distribution of mass spectrum peaks rely on a histogram to calculate the intensity threshold value. However, the histogram profile can vary depending on the user settings. In addition, these algorithms are not automated, so they are handled manually. To overcome the mentioned drawbacks, we propose a new algorithm for noise filtering in mass spectra. This filter is based on Gaussian Mixture Models (GMMs), a machine learning method to find the intensity threshold value. The algorithm is completely data-driven and eliminates the need to work with a histogram. It has no customizable parameters and automatically determines the noise level for each individual mass spectrum. The algorithm performance was tested on mass spectra of natural organic matter obtained by averaging a different number of microscans (transients), and the results were compared with other noise filters proposed in the literature. Finally, the effect of this noise filtering approach on the fraction of peaks with assigned formulas was investigated. It was shown that there is always an increase in the identification rate, but the magnitude of the effect changes with the number of microscans averaged. The increase can be as high as 15%.
Collapse
Affiliation(s)
- Alexander A Potemkin
- Chemistry Department of M.V. Lomonosov Moscow State University, Leninskie Gory, 1-3, GSP-1, Moscow 119991, Russia
| | - Mikhail A Proskurnin
- Chemistry Department of M.V. Lomonosov Moscow State University, Leninskie Gory, 1-3, GSP-1, Moscow 119991, Russia
| | - Dmitry S Volkov
- Chemistry Department of M.V. Lomonosov Moscow State University, Leninskie Gory, 1-3, GSP-1, Moscow 119991, Russia
| |
Collapse
|
19
|
Zhang Z, Miller LM, He H, Nadagouda MN, Borch T, O'Shea KE, Dionysiou DD. Molecular insights into the bonding mechanisms between selenium and dissolved organic matter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:169429. [PMID: 38123086 DOI: 10.1016/j.scitotenv.2023.169429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Natural organic matter (NOM) plays a critical role in the mobilization and bioavailability of metals and metalloids in the aquatic environment. Selenium (Se), an environmental contaminant of aquatic systems, has drawn increasing attention over the years. While Se is a vital micronutrient to human beings, animals and plants, excess Se intake may pose serious long-term risks. However, the interaction between Se and dissolved organic matter (DOM) remains relatively unexplored, especially the reaction mechanisms and interactions of specific NOM components of certain molecular weight and the corresponding functional group change. Herein, we report an investigation on the interactions between Se and DOM by focusing on the mass distribution profile change of operationally defined molecular weight fractions of humic acid (HA) and fulvic acid (FA). The results showed that across all molecular weights studied, HA fractions were more prone to enhanced aggregation upon introduction of Se into the system. For FA, the presence of Se species results in aggregation, dissociation, and redox reactions with the first two being the major mechanisms. Total organic carbon analysis (TOC), UV-vis spectroscopy (UV-vis), and Orbitrap MS data showed that [10, 30] kDa MW fraction had the largest aromatic decrease (CRAM-like, lignin-like and tannin-like) upon addition of SeO2 via dissociation as the dominant mechanism. Fourier transform infrared spectroscopy (FT-IR) revealed that Se based bridging or chelation of functional groups from individual DOM components through hydrogen bonding in the form of SeO⋯H and possibly Se⋯H and/or attractive electrostatic interactions lead to aggregated DOM1⋯Se⋯DOM2. It was concluded from two-dimensional correlation analyses of excitation emission matrix (EEM) and FT-IR that the preferred Se-binding follows lipid ➔ peptide ➔ tannin ➔ aromatic functionalities. These results provide new understanding of Se interactions with various NOM components in aquatic environments and provide insight for Se assessing health risk and/or treatment of Se contaminated water.
Collapse
Affiliation(s)
- Zhe Zhang
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering (DCEE), University of Cincinnati, OH 45221, USA
| | - Lance M Miller
- Department of Chemical Engineering, Purdue University, IN 47907, USA
| | - Huan He
- Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Mallikarjuna N Nadagouda
- The U.S. Environmental Protection Agency, ORD, CESER, WID, CMTB, 26 W. Martin Luther King Jr. Drive, Cincinnati, OH 45268, USA
| | - Thomas Borch
- Department of Soil and Crop Sciences and Department of Chemistry, Colorado State University, 1170 Campus Delivery, Fort Collins, CO 80523, USA
| | - Kevin E O'Shea
- Department of Chemistry and Biochemistry, Florida International University, University Park, Miami, FL 33199, USA.
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering (DCEE), University of Cincinnati, OH 45221, USA.
| |
Collapse
|
20
|
VanderRoest JP, Fowler JA, Rhoades CC, Roth HK, Broeckling CD, Fegel TS, McKenna AM, Bechtold EK, Boot CM, Wilkins MJ, Borch T. Fire Impacts on the Soil Metabolome and Organic Matter Biodegradability. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4167-4180. [PMID: 38385432 DOI: 10.1021/acs.est.3c09797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Global wildfire activity has increased since the 1970s and is projected to intensify throughout the 21st century. Wildfires change the composition and biodegradability of soil organic matter (SOM) which contains nutrients that fuel microbial metabolism. Though persistent forms of SOM often increase postfire, the response of more biodegradable SOM remains unclear. Here we simulated severe wildfires through a controlled "pyrocosm" approach to identify biodegradable sources of SOM and characterize the soil metabolome immediately postfire. Using microbial amplicon (16S/ITS) sequencing and gas chromatography-mass spectrometry, heterotrophic microbes (Actinobacteria, Firmicutes, and Protobacteria) and specific metabolites (glycine, protocatechuate, citric cycle intermediates) were enriched in burned soils, indicating that burned soils contain a variety of substrates that support microbial metabolism. Molecular formulas assigned by 21 T Fourier transform ion cyclotron resonance mass spectrometry showed that SOM in burned soil was lower in molecular weight and featured 20 to 43% more nitrogen-containing molecular formulas than unburned soil. We also measured higher water extractable organic carbon concentrations and higher CO2 efflux in burned soils. The observed enrichment of biodegradable SOM and microbial heterotrophs demonstrates the resilience of these soils to severe burning, providing important implications for postfire soil microbial and plant recolonization and ecosystem recovery.
Collapse
Affiliation(s)
- Jacob P VanderRoest
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80521, United States
| | - Julie A Fowler
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado 80521, United States
| | - Charles C Rhoades
- Rocky Mountain Research Station, U.S. Forest Service, Fort Collins, Colorado 80526, United States
| | - Holly K Roth
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado 80521, United States
| | - Corey D Broeckling
- Bioanalysis and Omics Center, Analytical Resources Core, Colorado State University, Fort Collins, 80521, United States
| | - Timothy S Fegel
- Rocky Mountain Research Station, U.S. Forest Service, Fort Collins, Colorado 80526, United States
| | - Amy M McKenna
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado 80521, United States
- National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Dr., Tallahassee, Florida 32310, United States
| | - Emily K Bechtold
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado 80521, United States
| | - Claudia M Boot
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80521, United States
| | - Michael J Wilkins
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado 80521, United States
| | - Thomas Borch
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80521, United States
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado 80521, United States
| |
Collapse
|
21
|
Zhang J, Hou X, Zhang K, Deng Y, Xiao Q, Gao Y, Zhou X, Yan B. Deciphering fluorescent and molecular fingerprint of dissolved organic matter leached from microplastics in water. WATER RESEARCH 2024; 250:121047. [PMID: 38154343 DOI: 10.1016/j.watres.2023.121047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 12/30/2023]
Abstract
Despite extensive research into the presence and behavior of microplastics (MPs) in the environment, limited attention has been given to the investigation of the characteristics of dissolved organic matter (DOM) that leaches from MPs (MPs-DOM). Herein, two frequently encountered plastic particles in aquatic environments, specifically polyethylene terephthalate (PET)- and polyethylene (PE)-MPs, were subjected to leaching in the aquatic settings for seven days, both in the absence of light and under UV irradiation. Measurements of dissolved organic carbon (DOC) indicated that UV exposure enhanced the liberation of DOM from PET-MPs, while PE-MPs did not exhibit such leaching. After UV treatment for seven days, the DOM released from PET-MPs increased by 25 times, while that from PE-MPs remained almost unchanged. Then, the molecular diversity and the evolving formation of DOM originating from different MPs were comprehensively analyzed with fluorescence excitation-emission matrix (EEM) and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). Specifically, both PET- and PE-DOM exhibited three fluorescence signatures, with the predominant C1 (tryptophan-like) component showing a decline in PET-DOM and a rise in PE-DOM during aging. The FT-ICR-MS analysis unveiled that PET-DOM grew more recalcitrant under UV exposure, while PE-DOM became increasingly labile. In brief, UV irradiation influences MPs-DOM release and transformation differently, depending on the plastic composition. This highlights the significance of exploring MPs-DOM transformation in securing environmental safety.
Collapse
Affiliation(s)
- Jie Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xianfeng Hou
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Kena Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Youwei Deng
- Institute of Environmental Research at the Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Quanzhi Xiao
- Institute of Environmental Research at the Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Yan Gao
- Institute of Environmental Research at the Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Xiaoxia Zhou
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| | - Bing Yan
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Institute of Environmental Research at the Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
22
|
Boiteau RM, Corilo YE, Kew WR, Dewey C, Alvarez Rodriguez MC, Carlson CA, Conway TM. Relating Molecular Properties to the Persistence of Marine Dissolved Organic Matter with Liquid Chromatography-Ultrahigh-Resolution Mass Spectrometry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 38335252 DOI: 10.1021/acs.est.3c08245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Marine dissolved organic matter (DOM) contains a complex mixture of small molecules that eludes rapid biological degradation. Spatial and temporal variations in the abundance of DOM reflect the existence of fractions that are removed from the ocean over different time scales, ranging from seconds to millennia. However, it remains unknown whether the intrinsic chemical properties of these organic components relate to their persistence. Here, we elucidate and compare the molecular compositions of distinct DOM fractions with different lability along a water column in the North Atlantic Gyre. Our analysis utilized ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry at 21 T coupled to liquid chromatography and a novel data pipeline developed in CoreMS that generates molecular formula assignments and metrics of isomeric complexity. Clustering analysis binned 14 857 distinct molecular components into groups that correspond to the depth distribution of semilabile, semirefractory, and refractory fractions of DOM. The more labile fractions were concentrated near the ocean surface and contained more aliphatic, hydrophobic, and reduced molecules than the refractory fraction, which occurred uniformly throughout the water column. These findings suggest that processes that selectively remove hydrophobic compounds, such as aggregation and particle sorption, contribute to variable removal rates of marine DOM.
Collapse
Affiliation(s)
- Rene M Boiteau
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis Oregon 97330, United States
- Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Yuri E Corilo
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 02543, United States
| | - William R Kew
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 02543, United States
| | - Christian Dewey
- Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, Minnesota 55455, United States
| | | | - Craig A Carlson
- Department of Ecology, Evolution, and Marine Biology, Marine Science Institute, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Tim M Conway
- College of Marine Science, University of South Florida, St. Petersburg, Florida 33712, United States
| |
Collapse
|
23
|
Xue Q, Jiao Z, Liu X, Pan W, Fu J, Zhang A. Dynamic Behavior and Interaction Mechanism of Soil Organic Matter in Water Systems: A Coarse-Grained Molecular Dynamics Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1531-1540. [PMID: 38118063 DOI: 10.1021/acs.est.3c05966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Investigating soil organic matter's (SOM) microscale assembly and functionality is challenging due to its complexity. This study constructs comparatively realistic SOM models, including diverse components such as Leonardite humic acid (LHA), lipids, peptides, carbohydrates, and lignin, to unveil their spontaneous self-assembly behavior at the mesoscopic scale through microsecond coarse-grained molecular dynamics simulations. We discovered an ordered SOM aggregation creating a layered phase from its hydrophobic core to the aqueous phase, resulting in an increasing O/C ratio and declining structural amphiphilicity. Notably, the amphiphilic lipids formed a bilayer membrane, partnering with lignin to constitute SOM's hydrophobic core. LHA, despite forming a layer, was embedded within this structure. The formation of such complex architectures was driven by nonbonded interactions between components. Our analysis revealed component-dependent diffusion effects within the SOM system. Lipids, peptides, and lignin showed inhibitory effects on self-diffusion, while carbohydrates facilitated diffusion. This study offers novel insights into the dynamic behavior and assembly of SOM components, introducing an effective approach for studying dynamic SOM mechanisms in aquatic environments.
Collapse
Affiliation(s)
- Qiao Xue
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Zhiyue Jiao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xian Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Wenxiao Pan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Jianjie Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, P. R. China
| | - Aiqian Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, P. R. China
| |
Collapse
|
24
|
Champiny RE, Bacon AR, Brush ID, McKenna AM, Colopietro DJ, Lin Y. Unraveling the persistence of deep podzolized carbon: Insights from organic matter characterization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167382. [PMID: 37774867 DOI: 10.1016/j.scitotenv.2023.167382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/14/2023] [Accepted: 09/24/2023] [Indexed: 10/01/2023]
Abstract
Over a billion tons of terrestrial carbon (C) is stored in deep soils from the Southeastern Coastal Plain of the United States. While the size and extent of this pool, known as deep podzolized carbon (DPC), have been reported in recent studies, the stabilization mechanisms responsible for its persistence are unclear. The main hypothesis of DPC stabilization is that hydrology, specifically water table fluctuations in the phreatic zone, slow microbial degradation and promote C accumulation. This accounts for the characteristic properties and distribution of DPC and provides a mechanistic distinction between DPC and shallow podzolized C in the region's soils, however it has yet to be tested. We characterized the organic matter composition of the bulk and dissolved fractions of DPC using elemental analysis, solvent extraction, infrared spectroscopy, and high-resolution mass spectrometry. Consistent with past work, the majority of DPC organic matter was extractable by sodium pyrophosphate solution; the influence of metal association was also observable in the water extractable fraction of DPC with large species being preferentially removed and a low compound diversity compared to those from other horizons overlying DPC. Only water extractable species with low molecular mass (m/z < 375 Da) showed significant change in average nominal oxidation state of carbon (NOSC) values, indicative of oxygen-limitation influence on the processing of these species. Infrared spectroscopy revealed an increase in abundance of aliphatic (C-H:C-O) bonds relative to polysaccharide bonds with depth whereas aromatic (C=C:C-O) bonds decreased with depth in DPC relative to other subsurface horizons. Our work shows that DPC is significantly more refractory than overlying surface soil C, and yet slightly more labile than the subsoils above DPC. Together our results suggest that the maintenance of low redox conditions via persistent water saturation contributes to the stabilization and persistence of DPC.
Collapse
Affiliation(s)
- Ryan E Champiny
- Department of Soil, Water, and Ecosystem Science, University of Florida, Gainesville, FL 32611, USA.
| | - Allan R Bacon
- Department of Soil, Water, and Ecosystem Science, University of Florida, Gainesville, FL 32611, USA
| | - Isabella D Brush
- Department of Soil, Water, and Ecosystem Science, University of Florida, Gainesville, FL 32611, USA
| | - Amy M McKenna
- National Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA; Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Daniel J Colopietro
- Department of Soil, Water, and Ecosystem Science, University of Florida, Gainesville, FL 32611, USA
| | - Yang Lin
- Department of Soil, Water, and Ecosystem Science, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
25
|
Wang CQ, Yao B, Wei JA, Gao XY, Zhang DY, Pan XL. Mechanisms for enhanced lignin humification with reduced organic matter loss by goethite in biogas residue composting. BIORESOURCE TECHNOLOGY 2023; 389:129795. [PMID: 37783240 DOI: 10.1016/j.biortech.2023.129795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/29/2023] [Accepted: 09/18/2023] [Indexed: 10/04/2023]
Abstract
In this study, effects of three iron (oxyhydr)oxides on the biogas residue composting, i.e., composting with goethite (CFe1), hematite (CFe2) or magnetite (CFe3), were investigated. Results showed that composting performance of CFe1 was much better than those of CFe2 and CFe3. Addition of goethite increased temperature of CFe1 and enhanced lignin humification. More than 31.49% of Fe(III) in goethite was reduced to amorphous Fe(II) during the composting, suggesting that goethite worked as electron acceptor for microbial metabolism and heat generation. The functional bacteria Chloroflexi and Actinobacteria, and genes encoding key enzymes (AA1 family), which play essential roles in humification of lignin, were enriched in CFe1. Besides, goethite reduced 10.96% organic matter (OM) loss probably by increasing the molecular size and aggregation of OM for its protection during the composting. This study shows that adding goethite is an efficient strategy to enhancing the humification of lignin-rich biowaste.
Collapse
Affiliation(s)
- Cai-Qin Wang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Hangzhou 310014, China; Mizuda Group Co. LTD, Huzhou 313000, China
| | - Bing Yao
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Hangzhou 310014, China
| | - Ji-An Wei
- Mizuda Group Co. LTD, Huzhou 313000, China
| | - Xin-Yi Gao
- Mizuda Group Co. LTD, Huzhou 313000, China
| | - Dao-Yong Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Hangzhou 310014, China.
| | - Xiang-Liang Pan
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Hangzhou 310014, China
| |
Collapse
|
26
|
Bansal S, Creed IF, Tangen BA, Bridgham SD, Desai AR, Krauss KW, Neubauer SC, Noe GB, Rosenberry DO, Trettin C, Wickland KP, Allen ST, Arias-Ortiz A, Armitage AR, Baldocchi D, Banerjee K, Bastviken D, Berg P, Bogard MJ, Chow AT, Conner WH, Craft C, Creamer C, DelSontro T, Duberstein JA, Eagle M, Fennessy MS, Finkelstein SA, Göckede M, Grunwald S, Halabisky M, Herbert E, Jahangir MMR, Johnson OF, Jones MC, Kelleway JJ, Knox S, Kroeger KD, Kuehn KA, Lobb D, Loder AL, Ma S, Maher DT, McNicol G, Meier J, Middleton BA, Mills C, Mistry P, Mitra A, Mobilian C, Nahlik AM, Newman S, O’Connell JL, Oikawa P, van der Burg MP, Schutte CA, Song C, Stagg CL, Turner J, Vargas R, Waldrop MP, Wallin MB, Wang ZA, Ward EJ, Willard DA, Yarwood S, Zhu X. Practical Guide to Measuring Wetland Carbon Pools and Fluxes. WETLANDS (WILMINGTON, N.C.) 2023; 43:105. [PMID: 38037553 PMCID: PMC10684704 DOI: 10.1007/s13157-023-01722-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/24/2023] [Indexed: 12/02/2023]
Abstract
Wetlands cover a small portion of the world, but have disproportionate influence on global carbon (C) sequestration, carbon dioxide and methane emissions, and aquatic C fluxes. However, the underlying biogeochemical processes that affect wetland C pools and fluxes are complex and dynamic, making measurements of wetland C challenging. Over decades of research, many observational, experimental, and analytical approaches have been developed to understand and quantify pools and fluxes of wetland C. Sampling approaches range in their representation of wetland C from short to long timeframes and local to landscape spatial scales. This review summarizes common and cutting-edge methodological approaches for quantifying wetland C pools and fluxes. We first define each of the major C pools and fluxes and provide rationale for their importance to wetland C dynamics. For each approach, we clarify what component of wetland C is measured and its spatial and temporal representativeness and constraints. We describe practical considerations for each approach, such as where and when an approach is typically used, who can conduct the measurements (expertise, training requirements), and how approaches are conducted, including considerations on equipment complexity and costs. Finally, we review key covariates and ancillary measurements that enhance the interpretation of findings and facilitate model development. The protocols that we describe to measure soil, water, vegetation, and gases are also relevant for related disciplines such as ecology. Improved quality and consistency of data collection and reporting across studies will help reduce global uncertainties and develop management strategies to use wetlands as nature-based climate solutions. Supplementary Information The online version contains supplementary material available at 10.1007/s13157-023-01722-2.
Collapse
Affiliation(s)
- Sheel Bansal
- U.S. Geological Survey, Northern Prairie Wildlife Research Center, Jamestown, ND USA
| | - Irena F. Creed
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON Canada
| | - Brian A. Tangen
- U.S. Geological Survey, Northern Prairie Wildlife Research Center, Jamestown, ND USA
| | - Scott D. Bridgham
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR USA
| | - Ankur R. Desai
- Department of Atmospheric and Oceanic Sciences, University of Wisconsin-Madison, Madison, WI USA
| | - Ken W. Krauss
- U.S. Geological Survey, Wetland and Aquatic Research Center, Lafayette, LA USA
| | - Scott C. Neubauer
- Department of Biology, Virginia Commonwealth University, Richmond, VA USA
| | - Gregory B. Noe
- U.S. Geological Survey, Florence Bascom Geoscience Center, Reston, VA USA
| | | | - Carl Trettin
- U.S. Forest Service, Pacific Southwest Research Station, Davis, CA USA
| | - Kimberly P. Wickland
- U.S. Geological Survey, Geosciences and Environmental Change Science Center, Denver, CO USA
| | - Scott T. Allen
- Department of Natural Resources and Environmental Science, University of Nevada, Reno, Reno, NV USA
| | - Ariane Arias-Ortiz
- Ecosystem Science Division, Department of Environmental Science, Policy and Management, University of California, Berkeley, CA USA
| | - Anna R. Armitage
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX USA
| | - Dennis Baldocchi
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA USA
| | - Kakoli Banerjee
- Department of Biodiversity and Conservation of Natural Resources, Central University of Odisha, Koraput, Odisha India
| | - David Bastviken
- Department of Thematic Studies – Environmental Change, Linköping University, Linköping, Sweden
| | - Peter Berg
- Department of Environmental Sciences, University of Virginia, Charlottesville, VA USA
| | - Matthew J. Bogard
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB Canada
| | - Alex T. Chow
- Earth and Environmental Sciences Programme, The Chinese University of Hong Kong, Shatin, Hong Kong SAR China
| | - William H. Conner
- Baruch Institute of Coastal Ecology and Forest Science, Clemson University, Georgetown, SC USA
| | - Christopher Craft
- O’Neill School of Public and Environmental Affairs, Indiana University, Bloomington, IN USA
| | - Courtney Creamer
- U.S. Geological Survey, Geology, Minerals, Energy and Geophysics Science Center, Menlo Park, CA USA
| | - Tonya DelSontro
- Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, ON Canada
| | - Jamie A. Duberstein
- Baruch Institute of Coastal Ecology and Forest Science, Clemson University, Georgetown, SC USA
| | - Meagan Eagle
- U.S. Geological Survey, Woods Hole Coastal & Marine Science Center, Woods Hole, MA USA
| | | | | | - Mathias Göckede
- Department for Biogeochemical Signals, Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Sabine Grunwald
- Soil, Water and Ecosystem Sciences Department, University of Florida, Gainesville, FL USA
| | - Meghan Halabisky
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA USA
| | | | | | - Olivia F. Johnson
- U.S. Geological Survey, Northern Prairie Wildlife Research Center, Jamestown, ND USA
- Departments of Biology and Environmental Studies, Kent State University, Kent, OH USA
| | - Miriam C. Jones
- U.S. Geological Survey, Florence Bascom Geoscience Center, Reston, VA USA
| | - Jeffrey J. Kelleway
- School of Earth, Atmospheric and Life Sciences and Environmental Futures Research Centre, University of Wollongong, Wollongong, NSW Australia
| | - Sara Knox
- Department of Geography, McGill University, Montreal, Canada
| | - Kevin D. Kroeger
- U.S. Geological Survey, Woods Hole Coastal & Marine Science Center, Woods Hole, MA USA
| | - Kevin A. Kuehn
- School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS USA
| | - David Lobb
- Department of Soil Science, University of Manitoba, Winnipeg, MB Canada
| | - Amanda L. Loder
- Department of Geography, University of Toronto, Toronto, ON Canada
| | - Shizhou Ma
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK Canada
| | - Damien T. Maher
- Faculty of Science and Engineering, Southern Cross University, Lismore, NSW Australia
| | - Gavin McNicol
- Department of Earth and Environmental Sciences, University of Illinois Chicago, Chicago, IL USA
| | - Jacob Meier
- U.S. Geological Survey, Northern Prairie Wildlife Research Center, Jamestown, ND USA
| | - Beth A. Middleton
- U.S. Geological Survey, Wetland and Aquatic Research Center, Lafayette, LA USA
| | - Christopher Mills
- U.S. Geological Survey, Geology, Geophysics, and Geochemistry Science Center, Denver, CO USA
| | - Purbasha Mistry
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK Canada
| | - Abhijit Mitra
- Department of Marine Science, University of Calcutta, Kolkata, West Bengal India
| | - Courtney Mobilian
- O’Neill School of Public and Environmental Affairs, Indiana University, Bloomington, IN USA
| | - Amanda M. Nahlik
- Office of Research and Development, Center for Public Health and Environmental Assessments, Pacific Ecological Systems Division, U.S. Environmental Protection Agency, Corvallis, OR USA
| | - Sue Newman
- South Florida Water Management District, Everglades Systems Assessment Section, West Palm Beach, FL USA
| | - Jessica L. O’Connell
- Department of Ecosystem Science and Sustainability, Colorado State University, Fort Collins, CO USA
| | - Patty Oikawa
- Department of Earth and Environmental Sciences, California State University, East Bay, Hayward, CA USA
| | - Max Post van der Burg
- U.S. Geological Survey, Northern Prairie Wildlife Research Center, Jamestown, ND USA
| | - Charles A. Schutte
- Department of Environmental Science, Rowan University, Glassboro, NJ USA
| | - Changchun Song
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Camille L. Stagg
- U.S. Geological Survey, Wetland and Aquatic Research Center, Lafayette, LA USA
| | - Jessica Turner
- Freshwater and Marine Science, University of Wisconsin-Madison, Madison, WI USA
| | - Rodrigo Vargas
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE USA
| | - Mark P. Waldrop
- U.S. Geological Survey, Geology, Minerals, Energy and Geophysics Science Center, Menlo Park, CA USA
| | - Marcus B. Wallin
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Zhaohui Aleck Wang
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA USA
| | - Eric J. Ward
- U.S. Geological Survey, Wetland and Aquatic Research Center, Lafayette, LA USA
| | - Debra A. Willard
- U.S. Geological Survey, Florence Bascom Geoscience Center, Reston, VA USA
| | - Stephanie Yarwood
- Environmental Science and Technology, University of Maryland, College Park, MD USA
| | - Xiaoyan Zhu
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, China
| |
Collapse
|
27
|
Hildebrand GA, Honeker LK, Freire-Zapata V, Ayala-Ortiz C, Rajakaruna S, Fudyma J, Daber LE, AminiTabrizi R, Chu RL, Toyoda J, Flowers SE, Hoyt DW, Hamdan R, Gil-Loaiza J, Shi L, Dippold MA, Ladd SN, Werner C, Meredith LK, Tfaily MM. Uncovering the dominant role of root metabolism in shaping rhizosphere metabolome under drought in tropical rainforest plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165689. [PMID: 37481084 DOI: 10.1016/j.scitotenv.2023.165689] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/29/2023] [Accepted: 07/19/2023] [Indexed: 07/24/2023]
Abstract
Plant-soil-microbe interactions are crucial for driving rhizosphere processes that contribute to metabolite turnover and nutrient cycling. With the increasing frequency and severity of water scarcity due to climate warming, understanding how plant-mediated processes, such as root exudation, influence soil organic matter turnover in the rhizosphere is essential. In this study, we used 16S rRNA gene amplicon sequencing, rhizosphere metabolomics, and position-specific 13C-pyruvate labeling to examine the effects of three different plant species (Piper auritum, Hibiscus rosa sinensis, and Clitoria fairchildiana) and their associated microbial communities on soil organic carbon turnover in the rhizosphere. Our findings indicate that in these tropical plants, the rhizosphere metabolome is primarily shaped by the response of roots to drought rather than direct shifts in the rhizosphere bacterial community composition. Specifically, the reduced exudation of plant roots had a notable effect on the metabolome of the rhizosphere of P. auritum, with less reliance on neighboring microbes. Contrary to P. auritum, H. rosa sinensis and C. fairchildiana experienced changes in their exudate composition during drought, causing alterations to the bacterial communities in the rhizosphere. This, in turn, had a collective impact on the rhizosphere's metabolome. Furthermore, the exclusion of phylogenetically distant microbes from the rhizosphere led to shifts in its metabolome. Additionally, C. fairchildiana appeared to be associated with only a subset of symbiotic bacteria under drought conditions. These results indicate that plant species-specific microbial interactions systematically change with the root metabolome. As roots respond to drought, their associated microbial communities adapt, potentially reinforcing the drought tolerance strategies of plant roots. These findings have significant implications for maintaining plant health and preference during drought stress and improving plant performance under climate change.
Collapse
Affiliation(s)
- Gina A Hildebrand
- Department of Environmental Science, University of Arizona, 1177 E 4th St., AZ 85721, USA
| | - Linnea K Honeker
- BIO5 Institute, The University of Arizona, 1657 E Helen St., Tucson, AZ 85719, USA; School of Natural Resources and the Environment, University of Arizona, 1064 E Lowell St., Tucson, AZ 85721, USA
| | - Viviana Freire-Zapata
- Department of Environmental Science, University of Arizona, 1177 E 4th St., AZ 85721, USA
| | - Christian Ayala-Ortiz
- Department of Environmental Science, University of Arizona, 1177 E 4th St., AZ 85721, USA
| | - Sumudu Rajakaruna
- Department of Environmental Science, University of Arizona, 1177 E 4th St., AZ 85721, USA
| | - Jane Fudyma
- Department of Environmental Science, University of Arizona, 1177 E 4th St., AZ 85721, USA; Department of Plant Pathology, University of California, Davis, One Shields Avenue, Davis, CA 95816, USA
| | - L Erik Daber
- Georges-Köhler-Allee 53/54, University of Freiburg, 79110 Freiburg, Germany
| | - Roya AminiTabrizi
- Department of Environmental Science, University of Arizona, 1177 E 4th St., AZ 85721, USA
| | - Rosalie L Chu
- Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99354, USA
| | - Jason Toyoda
- Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99354, USA
| | - Sarah E Flowers
- Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99354, USA
| | - David W Hoyt
- Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99354, USA
| | - Rasha Hamdan
- Department of Chemistry and Biochemistry, Lebanese University, Beirut, Lebanon
| | - Juliana Gil-Loaiza
- School of Natural Resources and the Environment, University of Arizona, 1064 E Lowell St., Tucson, AZ 85721, USA
| | - Lingling Shi
- Geo-Biosphere Interactions, Department of Geosciences, University of Tuebingen, Schnarrenbergstrasse 94-96, 72076 Tuebingen, Germany
| | - Michaela A Dippold
- Geo-Biosphere Interactions, Department of Geosciences, University of Tuebingen, Schnarrenbergstrasse 94-96, 72076 Tuebingen, Germany
| | - S Nemiah Ladd
- Georges-Köhler-Allee 53/54, University of Freiburg, 79110 Freiburg, Germany; Department of Environmental Science, University of Basel, Bernoullistrasse 30/32, 4056 Basel, Switzerland
| | - Christiane Werner
- Georges-Köhler-Allee 53/54, University of Freiburg, 79110 Freiburg, Germany
| | - Laura K Meredith
- BIO5 Institute, The University of Arizona, 1657 E Helen St., Tucson, AZ 85719, USA; School of Natural Resources and the Environment, University of Arizona, 1064 E Lowell St., Tucson, AZ 85721, USA; Biosphere 2, University of Arizona, 32540 S Biosphere Rd, Oracle, AZ 85739, USA
| | - Malak M Tfaily
- Department of Environmental Science, University of Arizona, 1177 E 4th St., AZ 85721, USA; BIO5 Institute, The University of Arizona, 1657 E Helen St., Tucson, AZ 85719, USA; Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99354, USA.
| |
Collapse
|
28
|
Wang T, Kalalian C, Fillion D, Perrier S, Chen J, Domine F, Zhang L, George C. Sunlight Induces the Production of Atmospheric Volatile Organic Compounds (VOCs) from Thermokarst Ponds. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:17363-17373. [PMID: 37903215 DOI: 10.1021/acs.est.3c03303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Ground subsidence caused by permafrost thawing causes the formation of thermokarst ponds, where organic compounds from eroding permafrost accumulate. We photolyzed water samples from two such ponds in Northern Quebec and discovered the emission of volatile organic compounds (VOCs) using mass spectrometry. One pond near peat-covered permafrost mounds was organic-rich, while the other near sandy mounds was organic-poor. Compounds up to C10 were detected, comprising the atoms of O, N, and S. The main compounds were methanol, acetaldehyde, and acetone. Hourly VOC fluxes under actinic fluxes similar to local solar fluxes might reach up to 1.7 nmol C m-2 s-1. Unexpectedly, the fluxes of VOCs from the organic-poor pond were greater than those from the organic-rich pond. We suggest that different segregations of organics at the air/water interface may partly explain this observation. This study indicates that sunlit thermokarst ponds are a significant source of atmospheric VOCs, which may affect the environment and climate via ozone and aerosol formation. Further work is required for understanding the relationship between the pond's organic composition and VOC emission fluxes.
Collapse
Affiliation(s)
- Tao Wang
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, 69626 Villeurbanne, France
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China
| | - Carmen Kalalian
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, 69626 Villeurbanne, France
| | - Daniel Fillion
- Takuvik Joint International Laboratory, Université Laval (Canada) and CNRS-INSU (France), Pavillon Alexandre-Vachon, Québec G1V 0A6, Canada
- Centre d'Études Nordiques, Université Laval, Pavillon Abitibi-Price, Québec G1 V 0A6, Canada
- Department of Chemistry, Université Laval, Pavillon Alexandre-Vachon, Québec G1 V 0A6, Canada
| | - Sébastien Perrier
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, 69626 Villeurbanne, France
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China
| | - Florent Domine
- Takuvik Joint International Laboratory, Université Laval (Canada) and CNRS-INSU (France), Pavillon Alexandre-Vachon, Québec G1V 0A6, Canada
- Centre d'Études Nordiques, Université Laval, Pavillon Abitibi-Price, Québec G1 V 0A6, Canada
- Department of Chemistry, Université Laval, Pavillon Alexandre-Vachon, Québec G1 V 0A6, Canada
| | - Liwu Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China
| | - Christian George
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, 69626 Villeurbanne, France
| |
Collapse
|
29
|
Wu S, Fujii M, Yang X, Fu QL. Characterization of halogenated organic compounds by the Fourier transform ion cyclotron resonance mass spectrometry: A critical review. WATER RESEARCH 2023; 246:120694. [PMID: 37832250 DOI: 10.1016/j.watres.2023.120694] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/26/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023]
Abstract
Halogenated organic compounds (HOCs), widely present in various environments, are generally formed by natural processes (e.g., photochemical halogenation) and anthropogenic activities (e.g., water disinfection and anthropogenic discharge of HOCs), posing health and environmental risks. Therefore, in-depth knowledge of the molecular composition, transformation, and fate of HOCs is crucial to regulate and reduce their formation. Because of the extremely complex nature of HOCs and their precursors, the molecular composition of HOCs remains largely unknown. The Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) offers the most powerful resolution and mass accuracy for the simultaneous molecular-level characterization of HOCs and their precursors. However, there is still a paucity of reviews regarding the comprehensive characterization of HOCs by FT-ICR MS. Based on the FT-ICR MS, the formation mechanism, sample pretreatment, and analysis methods were summarized for two typical HOCs classes, namely halogenated disinfection byproducts and per- and polyfluoroalkyl substances in this review. Moreover, we have highlighted data analysis methods and some typical applications of HOCs using FT-ICR MS and proposed suggestions for current issues. This review will deepen our understanding of the chemical characterization of HOCs and their formation mechanisms and transformation at the molecular level in aquatic systems, facilitating the application of the state-of-the-art FT-ICR MS in environmental and geochemical research.
Collapse
Affiliation(s)
- Shixi Wu
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Manabu Fujii
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-Ku, Tokyo 152-8550, Japan
| | - Xin Yang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Qing-Long Fu
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China.
| |
Collapse
|
30
|
Wang S, Heal KV, Zhang Q, Yu Y, Tigabu M, Huang S, Zhou C. Soil microbial community, dissolved organic matter and nutrient cycling interactions change along an elevation gradient in subtropical China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118793. [PMID: 37619380 DOI: 10.1016/j.jenvman.2023.118793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 07/27/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023]
Abstract
To identify possible dominating processes involved in soil microbial community assembly, dissolved organic matter (DOM) and multi-nutrient cycling (MNC) interactions and contribute to understanding of climate change effects on these important cycles, we investigated the interaction of soil chemistry, DOM components and microbial communities in five vegetation zones - ranging from evergreen broad-leaved forest to alpine meadow - along an elevation gradient of 290-1960 m in the Wuyi Mountains, Fujian Province, China. Soil DOM composition and microbial community assembly were characterized using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) and Illumina MiSeq high-throughput sequencing, respectively. Sloan's neutral model and the modified stochasticity ratio were used to infer community assembly processes. Key microbial drivers of the soil MNC index were identified from partial least squares path models. Our results showed that soil DOM composition is closely related to the vegetation types along an elevation gradient, the structure and composition of the microbial community, and soil nutrient status. Overall, values of the double bond equivalent (DBE), modified aromaticity index (AImod) increased, and H/C ratio and molecular lability boundary (MLBL) percentage decreased with elevation. Lignins/CRAM-like structures compounds dominated soil DOM in each vegetation type and its relative abundance decreased with elevation. Aliphatic/protein and lipids components also decreased, but the relative abundance of aromatic structures and tannin increased with elevation. The alpha diversity index of soil bacteria gradually decreased with elevation, with deterministic processes dominating the microbial community assembly in the highest elevation zone. Bacterial communities were conducive to the decomposition of labile degradable DOM compounds (H/C ≥ 1.5) at low elevation. In the cooler and wetter conditions at higher-elevation sites the relative abundance of potentially resistant soil DOM components (H/C < 1.5) gradually increased. Microbial community diversity and composition were important predictors of potential soil nutrient cycling. Although higher elevation sites have higher nutrient cycling potential, soil DOM was assessed to be a more stable carbon store, with apparent lower lability and bioavailability than at lower elevation sites. Overall, this study increases understanding of the potential linkage between soil microbial community, multiple nutrient cycling and DOM fate in subtropical mountain ecosystems that can help predict the effect of climate change on soil carbon sequestration and thus inform ecosystem management.
Collapse
Affiliation(s)
- Shuzhen Wang
- Co-Innovation Center for Sustainable Forestry in Southern China of Jiangsu Province, Key Laboratory of Soil and Water Conservation and Ecological Restoration of Jiangsu Province, Nanjing Forestry University, Nanjing, 210037, China; Forestry College, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian Province, China
| | - Kate V Heal
- School of GeoSciences, The University of Edinburgh, Crew Building, Alexander Crum Brown Road, Edinburgh, EH9 3FF, UK
| | - Qin Zhang
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian Province, China
| | - Yuanchun Yu
- Co-Innovation Center for Sustainable Forestry in Southern China of Jiangsu Province, Key Laboratory of Soil and Water Conservation and Ecological Restoration of Jiangsu Province, Nanjing Forestry University, Nanjing, 210037, China
| | - Mulualem Tigabu
- Swedish University of Agricultural Sciences, Faculty of Forest Science, Southern Swedish Forest Research Centre, P.O. Box 190, SE-234 22, Lomma, Sweden
| | - Shide Huang
- National Observation and Research Station of Fujian Wuyishan Forest Ecosystem, Wuyishan, 354315, Fujian Province, China
| | - Chuifan Zhou
- Co-Innovation Center for Sustainable Forestry in Southern China of Jiangsu Province, Key Laboratory of Soil and Water Conservation and Ecological Restoration of Jiangsu Province, Nanjing Forestry University, Nanjing, 210037, China; Forestry College, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian Province, China.
| |
Collapse
|
31
|
Jiao K, Deng B, Song P, Ding H, Liu H, Lian B. Difference Analysis of the Composition of Iron (Hydr)Oxides and Dissolved Organic Matter in Pit Mud of Different Pit Ages in Luzhou Laojiao and Its Implications for the Ripening Process of Pit Mud. Foods 2023; 12:3962. [PMID: 37959081 PMCID: PMC10648004 DOI: 10.3390/foods12213962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Long-term production practice proves that good liquor comes out of the old cellar, and the aged pit mud is very important to the quality of Luzhou-flavor liquor. X-ray diffraction, Fourier transform ion cyclotron resonance mass spectrometry, and infrared spectroscopy were used to investigate the composition characteristics of iron-bearing minerals and dissolved organic matter (DOM) in 2-year, 40-year, and 100-year pit mud and yellow soil (raw materials for making pit mud) of Luzhou Laojiao distillery. The results showed that the contents of total iron and crystalline iron minerals decreased significantly, while the ratio of Fe(II)/Fe(III) and the content of amorphous iron (hydr)oxides increased significantly with increasing cellar age. DOM richness, unsaturation, and aromaticity, as well as lignin/phenolics, polyphenols, and polycyclic aromatics ratios, were enhanced in pit mud. The results of the principal component analysis indicate that changes in the morphology and content of iron-bearing minerals in pit mud were significantly correlated with the changes in DOM molecular components, which is mainly attributed to the different affinities of amorphous iron (hydr)oxides and crystalline iron minerals for the DOM components. The study is important for understanding the evolution pattern of iron-bearing minerals and DOM and their interactions during the aging of pit mud and provides a new way to further understand the influence of aged pit mud on Luzhou-flavor liquor production.
Collapse
Affiliation(s)
- Kairui Jiao
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; (K.J.); (H.L.)
| | - Bo Deng
- National Engineering Research Center of Solid State Brewing, Luzhou 646000, China; (B.D.); (H.D.)
| | - Ping Song
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China;
| | - Hailong Ding
- National Engineering Research Center of Solid State Brewing, Luzhou 646000, China; (B.D.); (H.D.)
| | - Hailong Liu
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; (K.J.); (H.L.)
| | - Bin Lian
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
32
|
Glöckler D, Harir M, Schmitt-Kopplin P, Elsner M, Bakkour R. Selectivity of β-Cyclodextrin Polymer toward Aquatic Contaminants: Insights from Ultrahigh-Resolution Mass Spectrometry of Dissolved Organic Matter. Anal Chem 2023; 95:15505-15513. [PMID: 37831967 DOI: 10.1021/acs.analchem.3c01394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Selectivity in solid-phase extraction (SPE) materials has become increasingly important for analyte enrichment in sensitive analytical workflows to alleviate detrimental matrix effects. Molecular-level investigation of matrix constituents, which are preferentially extracted or excluded, can provide the analytical chemist with valuable information to learn about their control on sorbent selectivity. In this work, we employ nontargeted Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) to elucidate the molecular chemodiversity of freshwater-derived dissolved organic matter (DOM) extracted by the selective model sorbent β-cyclodextrin polymer (β-CDP) in comparison to conventional, universal SPE sorbents (i.e., Oasis HLB, Supel-Select HLB, and LiChrolut EN). Statistical analysis of MS data corroborated the highly selective nature of β-CDP by revealing the extracted DOM spectra that are most dissimilar to original compositions. We found that its selectivity was characterized by pronounced discrimination against highly oxygenated and unsaturated DOM compounds, which were associated with the classes of lignin-like, tannin-like, and carboxylic-rich alicyclic molecules. In contrast, conventional sorbents excluded less highly oxygenated compounds and showed a more universal extraction behavior for a wide range of DOM compositional space. We lay these findings in a larger context that aids the analyst in obtaining an a priori estimate of sorbent selectivity toward any target analyte of interest serving thereby an optimization of sample preparation. This study highlights the great value of nontargeted ultrahigh-resolution MS for better understanding of targeted analytics and provides new insights into the selective sorption behavior of novel sorbents.
Collapse
Affiliation(s)
- David Glöckler
- TUM School of Natural Sciences, Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Garching 85748 , Germany
| | - Mourad Harir
- Research Unit Analytical BioGeoChemistry, Helmholtz Munich, Neuherberg 85764, Germany
- TUM School of Life Sciences, Chair of Analytical Food Chemistry, Technical University of Munich, Freising 85354, Germany
| | - Philippe Schmitt-Kopplin
- Research Unit Analytical BioGeoChemistry, Helmholtz Munich, Neuherberg 85764, Germany
- TUM School of Life Sciences, Chair of Analytical Food Chemistry, Technical University of Munich, Freising 85354, Germany
| | - Martin Elsner
- TUM School of Natural Sciences, Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Garching 85748 , Germany
| | - Rani Bakkour
- TUM School of Natural Sciences, Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Garching 85748 , Germany
| |
Collapse
|
33
|
Tureţcaia AB, Garayburu-Caruso VA, Kaufman MH, Danczak RE, Stegen JC, Chu RK, Toyoda JG, Cardenas MB, Graham EB. Rethinking Aerobic Respiration in the Hyporheic Zone under Variation in Carbon and Nitrogen Stoichiometry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15499-15510. [PMID: 37795960 PMCID: PMC10586321 DOI: 10.1021/acs.est.3c04765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 10/06/2023]
Abstract
Hyporheic zones (HZs)─zones of groundwater-surface water mixing─are hotspots for dissolved organic matter (DOM) and nutrient cycling that can disproportionately impact aquatic ecosystem functions. However, the mechanisms affecting DOM metabolism through space and time in HZs remain poorly understood. To resolve this gap, we investigate a recently proposed theory describing trade-offs between carbon (C) and nitrogen (N) limitations as a key regulator of HZ metabolism. We propose that throughout the extent of the HZ, a single process like aerobic respiration (AR) can be limited by both DOM thermodynamics and N content due to highly variable C/N ratios over short distances (centimeter scale). To investigate this theory, we used a large flume, continuous optode measurements of dissolved oxygen (DO), and spatially and temporally resolved molecular analysis of DOM. Carbon and N limitations were inferred from changes in the elemental stoichiometric ratio. We show sequential, depth-stratified relationships of DO with DOM thermodynamics and organic N that change across centimeter scales. In the shallow HZ with low C/N, DO was associated with the thermodynamics of DOM, while deeper in the HZ with higher C/N, DO was associated with inferred biochemical reactions involving organic N. Collectively, our results suggest that there are multiple competing processes that limit AR in the HZ. Resolving this spatiotemporal variation could improve predictions from mechanistic models, either via more highly resolved grid cells or by representing AR colimitation by DOM thermodynamics and organic N.
Collapse
Affiliation(s)
- Anna B. Tureţcaia
- Department
of Earth and Planetary Sciences, The University
of Texas at Austin, Austin, Texas 78712, United States
| | | | - Matthew H. Kaufman
- Pacific
Northwest National Laboratory, Richland, Washington 99352, United States
- Department
of Earth, Environment, and Physics, Worcester
State University, Worcester, Massachusetts 01602, United States
| | - Robert E. Danczak
- Pacific
Northwest National Laboratory, Richland, Washington 99352, United States
| | - James C. Stegen
- Pacific
Northwest National Laboratory, Richland, Washington 99352, United States
- School
of the Environment, Washington State University, Pullman, Washington 99164, United States
| | - Rosalie K. Chu
- Environmental
Molecular Sciences Laboratory, Richland, Washington 99352, United States
| | - Jason G. Toyoda
- Environmental
Molecular Sciences Laboratory, Richland, Washington 99352, United States
| | - M. Bayani Cardenas
- Department
of Earth and Planetary Sciences, The University
of Texas at Austin, Austin, Texas 78712, United States
| | - Emily B. Graham
- Pacific
Northwest National Laboratory, Richland, Washington 99352, United States
- School
of Biological Sciences, Washington State
University, Pullman, Washington 99164, United States
| |
Collapse
|
34
|
Zhang H, Ni J, Wei R, Chen W. Water-soluble organic carbon (WSOC) from vegetation fire and its differences from WSOC in natural media: Spectral comparison and self-organizing maps (SOM) classification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165180. [PMID: 37385508 DOI: 10.1016/j.scitotenv.2023.165180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/10/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
Vegetation fire frequently occurs globally and produces two types of water-soluble organic carbon (WSOC) including black carbon WSOC (BC-WSOC) and smoke-WSOC, they will eventually enter the surface environment (soil and water) and participate in the eco-environmental processes on the earth surface. Exploring the unique features of BC-WSOC and smoke-WSOC is critical and fundamental for understanding their eco-environmental effects. Presently, their differences from the natural WSOC of soil and water remain unknown. This study produced various BC-WSOC and smoke-WSOC by simulating vegetation fire and used UV-vis, fluorescent EEM-PARAFAC, and fluorescent EEM-SOM to analyze their different features from natural WSOC of soil and water. The results showed that the maximum yield of smoke-WSOC reached about 6600 folds that of BC-WSOC after a vegetation fire event. The increasing burning temperature decreased the yield, molecular weight, polarity, and protein-like matters abundance of BC-WSOC and increased the aromaticity of BC-WSOC, but presented a negligible effect on the features of smoke-WSOC. Furthermore, compared with natural WSOC, BC-WSOC had a greater aromaticity, smaller molecular weight, and more humic-like matters, while smoke-WSOC had a lower aromaticity, smaller molecular size, higher polarity, and more protein-like matters. EEM-SOM analysis indicated that the ratio between the fluorescence intensity at Ex/Em: 275 nm/320 nm and the sum fluorescence intensity at Ex/Em: 275 nm/412 nm and Ex/Em: 310 nm/420 nm could effectively differentiate WSOC of different sources, following the order of smoke-WSOC (0.64-11.38) > water-WSOC and soil-WSOC (0.06-0.76) > BC-WSOC (0.0016-0.04). Hence, BC-WSOC and smoke-WSOC possibly directly alter the quantity, properties, and organic compositions of WSOC in soil and water. Owing to smoke-WSOC having far greater yield and bigger difference from natural WSOC than BC-WSOC, the eco-environmental effect of smoke-WSOC deposition should be given more attention after a vegetation fire.
Collapse
Affiliation(s)
- Huiying Zhang
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, Fujian 350007, China; Fujian Provincial Key Laboratory for Plant Eco-physiology, Fujian Normal University, Fuzhou, Fujian 350007, China; School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Jinzhi Ni
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, Fujian 350007, China; Fujian Provincial Key Laboratory for Plant Eco-physiology, Fujian Normal University, Fuzhou, Fujian 350007, China; School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Ran Wei
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, Fujian 350007, China; Fujian Provincial Key Laboratory for Plant Eco-physiology, Fujian Normal University, Fuzhou, Fujian 350007, China; School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Weifeng Chen
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, Fujian 350007, China; Fujian Provincial Key Laboratory for Plant Eco-physiology, Fujian Normal University, Fuzhou, Fujian 350007, China; School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China.
| |
Collapse
|
35
|
Sheng M, Chen S, Liu CQ, Fu Q, Zhang D, Hu W, Deng J, Wu L, Li P, Yan Z, Zhu YG, Fu P. Spatial and molecular variations in forest topsoil dissolved organic matter as revealed by FT-ICR mass spectrometry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165099. [PMID: 37379928 DOI: 10.1016/j.scitotenv.2023.165099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/01/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023]
Abstract
Forest soils cover about 30 % of the Earth's land surface and play a fundamental role in the global cycle of organic matter. Dissolved organic matter (DOM), the largest active pool of terrestrial carbon, is essential for soil development, microbial metabolism and nutrient cycling. However, forest soil DOM is a highly complex mixture of tens of thousands of individual compounds, which is largely composed of organic matter from primary producers, residues from microbial process and the corresponding chemical reactions. Therefore, we need a detailed picture of molecular composition in forest soil, especially the pattern of large-scale spatial distribution, which can help us understand the role of DOM in the carbon cycle. To explore the spatial and molecular variations of DOM in forest soil, we choose six major forest reserves located in different latitudes ranging in China, which were investigated by Fourier transform-ion cyclotron resonance mass spectrometry (FT-ICR MS). Results show that aromatic-like molecules are preferentially enriched in DOM at high latitude forest soils, while aliphatic/peptide-like, carbohydrate-like, and unsaturated hydrocarbon molecules are preferentially enriched in DOM at low latitude forest soils, besides, lignin-like compounds account for the highest proportion in all forest soil DOM. High latitude forest soils have higher aromatic equivalents and aromatic indices than low latitude forest soils, which suggest that organic matter at higher latitude forest soils preferentially contain plant-derived ingredients and are refractory to degradation while microbially derived carbon is dominant in organic matter at low latitudes. Besides, we found that CHO and CHON compounds make up the majority in all forest soil samples. Finally, we visualized the complexity and diversity of soil organic matter molecules through network analysis. Our study provides a molecular-level understanding of forest soil organic matter at large scales, which may contribute to the conservation and utilization of forest resources.
Collapse
Affiliation(s)
- Ming Sheng
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Shuang Chen
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Cong-Qiang Liu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China.
| | - Qinglong Fu
- School of Environment Studies, China University of Geosciences, Wuhan 430074, China
| | - Donghuan Zhang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Wei Hu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Junjun Deng
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Libin Wu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Ping Li
- LAPC, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Zhifeng Yan
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Pingqing Fu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
36
|
Gao XX, Wang YW, An YC, Ren RY, Lin YH, Wang N, Wang YF, Han JL, Hao ZN, Liu JF, Wang AJ, Ren NQ. Molecular insights into the dissolved organic matter of leather wastewater in leather industrial park wastewater treatment plant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163174. [PMID: 37028676 DOI: 10.1016/j.scitotenv.2023.163174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/23/2023] [Accepted: 03/26/2023] [Indexed: 06/01/2023]
Abstract
Leather wastewater (LW) effluent is characterized by complex organic matter, high salinity, and poor biodegradability. To meet the discharge standards, LW effluent is often mixed with municipal wastewater (MW) before being treated at a leather industrial park wastewater treatment plant (LIPWWTP). However, whether this method efficiently removes the dissolved organic matter (DOM) from LW effluent (LWDOM) remains debatable. In this study, the transformation of DOM during full-scale treatment was revealed using spectroscopy and Fourier transform ion cyclotron resonance mass spectrometry. LWDOM exhibited higher aromaticity and lower molecular weight than DOM in MW (MWDOM). The DOM properties in mixed wastewater (MixW) were similar to those in LWDOM and MWDOM. The MixW was treated using a flocculation/primary sedimentation tank (FL1/PST), anoxic/oxic (A/O) process, secondary sedimentation tank (SST), flocculation/sedimentation tank, denitrification filter (FL2/ST-DNF), and an ozonation contact reactor (O3). The FL1/PST unit preferentially removed the peptide-like compounds. The A/O-SST units had the highest removal efficiencies for dissolved organic carbon (DOC) (61.34 %) and soluble chemical oxygen demand (SCOD) (52.2 %). The FL2/ST-DNF treatment removed the lignin-like compounds. The final treatment showed poor DOM mineralization efficiency. The correlation between water quality indices, spectral indices, and molecular-level parameters indicated that lignin-like compounds were strongly correlated with spectral indices and CHOS compounds considerably contributed to the SCOD and DOC. Although the effluent SCOD met the discharge standard, some refractory DOM from LW remained in the effluent. This study illustrates the composition and transformation of DOM and provides theoretical guidance for improving the current treatment processes.
Collapse
Affiliation(s)
- Xiao-Xu Gao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 10085, PR China
| | - Yun-Wen Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 10085, PR China
| | - Ye-Chen An
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Rui-Yun Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Yao-Hui Lin
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 10085, PR China
| | - Ning Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 10085, PR China
| | - Yi-Fan Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China
| | - Jing-Long Han
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China.
| | - Zhi-Neng Hao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 10085, PR China.
| | - Jing-Fu Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 10085, PR China
| | - Ai-Jie Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China
| |
Collapse
|
37
|
Guo M, Li X, Wang Y, Zhang Y, Fu Q, Huguet A, Liu G. New insights into the mechanism of phosphate release during particulate organic matter photodegradation based on optical and molecular signatures. WATER RESEARCH 2023; 236:119954. [PMID: 37098318 DOI: 10.1016/j.watres.2023.119954] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/29/2023] [Accepted: 04/07/2023] [Indexed: 06/19/2023]
Abstract
Phosphate release from particulate organic matter (POM) dominates phosphorus (P) cycling in aquatic ecosystems. However, the mechanisms underlying P release from POM remain poorly understood because of complex fractionation and analytical challenges. In this study, the release of dissolved inorganic phosphate (DIP) during POM photodegradation was assessed using excitation-emission matrix (EEM) fluorescence spectroscopy and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). POM in suspension was significantly photodegraded under light irradiation, concomitantly with the production and release of DIP in the aqueous solution. Chemical sequential extraction revealed that organic phosphorus (OP) in POM participated in photochemical reactions. Moreover, FT-ICR MS analysis revealed that the average molecular weight of P-containing formulas decreased from 374.2 to 340.1 Da. Formulas containing P with a lower oxidation degree and unsaturation were preferentially photodegraded, generating oxygen-enriched and saturated formula compounds, such as protein- and carbohydrate-like P-containing formulas, benefiting further utilization of P by organisms. Reactive oxygen species played an important role in the photodegradation of POM, and excited triplet state chromophoric dissolved organic matter (3CDOM*) was mainly responsible for POM photodegradation. These results provide new insights into the P biogeochemical cycle and POM photodegradation in aquatic ecosystems.
Collapse
Affiliation(s)
- Minli Guo
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River) Ministry of Agriculture and Rural Affairs College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaolu Li
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River) Ministry of Agriculture and Rural Affairs College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Yi Wang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River) Ministry of Agriculture and Rural Affairs College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Yunlin Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Qinglong Fu
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Arnaud Huguet
- CNRS, EPHE, PSL, UMR METIS, Sorbonne Université, Paris F-75005, France
| | - Guanglong Liu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River) Ministry of Agriculture and Rural Affairs College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
38
|
Shi S, Xu H, Shui Y, Liu D, Xie Q, Zhou K, Zhang J, Song Y, Wang J, Hu C, Wang Y, Fu P. Sedimentary organic molecular compositions reveal the influence of glacier retreat on ecology on the Tibetan Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163629. [PMID: 37086994 DOI: 10.1016/j.scitotenv.2023.163629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/29/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Global warming and glacier retreat have significant impacts on the structure and function of natural ecosystems. However, little is known about how glacier retreat affects the long-term evolution of ecosystems at high-altitude regions. In this study, we explored the possible effects of glacier retreat on catchment vegetation and lake productivity in Lake Puma Yumco, southeastern Tibetan Plateau, based on detailed organic molecular compositions determined by an ultra-high-resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), and combined with various sedimentary geochemical indicators. The glaciers in the catchment keep retreating since 1870 CE, as inferred from the multiple indices of total organic carbon content (TOC), total nitrogen content (TN), C/N ratios, and carbonate contents. Accompanying modern global warming and glacier shrinkage, the relative abundance of soil- and vegetation-derived large molecular compounds (e.g., vascular plant-derived polyphenols, highly unsaturated and phenolic compounds, and condensed aromatics) increased gradually in lake sediments, suggesting that ice-covered land was exposed under warming condition, and gradually revegetation occurred. Both increases in relative abundance of nitrogen-containing compounds (e.g., CHNO) and chlorophyll derivative contents in the lake sediments were observed since 1870 CE, suggesting that stronger catchment weathering and increasing terrestrial nutrient loads enhanced the downstream lake productivity after glacier retreat. Our results imply that continued global warming and alpine glacier retreat in the future may further promote vegetation expansion and increases in lake productivity on the Tibetan Plateau.
Collapse
Affiliation(s)
- Siwei Shi
- School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Hai Xu
- School of Earth System Science, Tianjin University, Tianjin 300072, China.
| | - Yong Shui
- Hydrographic Survey Bureau of Tibet Autonomous Region, Lhasa 850000, China
| | - Dandan Liu
- School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Qiaorong Xie
- School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Kang'en Zhou
- School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Jin Zhang
- School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Yunping Song
- School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Jing Wang
- School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Chukun Hu
- School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Yuchun Wang
- Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Pingqing Fu
- School of Earth System Science, Tianjin University, Tianjin 300072, China
| |
Collapse
|
39
|
Zhao P, Du Z, Fu Q, Ai J, Hu A, Wang D, Zhang W. Molecular composition and chemodiversity of dissolved organic matter in wastewater sludge via Fourier transform ion cyclotron resonance mass spectrometry: Effects of extraction methods and electrospray ionization modes. WATER RESEARCH 2023; 232:119687. [PMID: 36758353 DOI: 10.1016/j.watres.2023.119687] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
High-resolution mass spectrometry was extensively applied in molecular composition and transformation pathways of dissolved organic matter (DOM) in wastewater sludge treatments. Sample pretreatment methods and electrospray ionization (ESI) modes significant affect the accuracy of molecular characterization for DOM. This study investigated the effects of pretreatment methods (styrene divinyl benzene polymer (PPL), octadecyl (C18), and electrodialysis (ED)) on molecular characteristics of DOM in two typical wastewater sludges (waste activated sludge (WAS) and anaerobic digestion sludge (ADS)) analyzed by FT-ICR MS in both positive ESI (ESI (+)) and negative ESI (ESI (-)) modes. The results indicated that ED pretreatment exhibited the highest recovery rate of 70% ‒ 95% for sludge-derived DOM. ED and PPL performed well in recovering the different sludge-derived DOM with a high similarity of molecular characteristics (e.g., lipids, proteins/aliphatic, and lignins/CRAM-like), and the C18 method was ineffective in extracting carbohydrates, unsaturated hydrocarbons, and amino sugars. In addition, compared with single ESI (-) analysis mode, the molecular number identified by ESI (+) analysis mode was increased by 200%, especially, more unsaturated hydrocarbons and N-containing compounds were detected. Except for biogenic DOM, plenty of emerging containments (ECs) in sludge-derived DOM were identified; ESI (-) mode was more effectively in recognizing the alkyl benzene sulfonic acids (e.g., anionic surfactants); and ESI (+) mode was more effectively for plasticizers identification, for example, dioctyl terephthalate and dibutyl phthalate. This study illustrated that ED pretreatment coupled with FT-ICR MS in dual ESI modes could give more insights in complexed molecular information for DOM in wastewater sludge, and provides a theoretical basis for subsequent sludge treatments and disposals.
Collapse
Affiliation(s)
- Peipei Zhao
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430074, China
| | - Zhengliang Du
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430074, China; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Qinglong Fu
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430074, China.
| | - Jing Ai
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430074, China
| | - Aibin Hu
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430074, China
| | - Dongsheng Wang
- Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Weijun Zhang
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430074, China; National Engineering Laboratory of High Concentration Refractory Organic Wastewater Treatment Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
40
|
Zhou Z, Fu QL, Fujii M, Waite TD. Complementary Elucidation of the Molecular Characteristics of Groundwater Dissolved Organic Matter Using Ultrahigh-Resolution Mass Spectrometry Coupled with Negative- and Positive-Ion Electrospray Ionization. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4690-4700. [PMID: 36905367 DOI: 10.1021/acs.est.2c08816] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The formula assignment of the Fourier transform ion cyclotron resonance mass spectrometry coupled with positive-ion electrospray ionization [ESI(+)-FT-ICR MS] is challenging because of the extensive occurrence of adducts. However, there is a paucity of automated formula assignment methods for ESI(+)-FT-ICR MS spectra. The novel automated formula assignment algorithm for ESI(+)-FT-ICR MS spectra developed herein has been applied to elucidate the composition of dissolved organic matter (DOM) in groundwater during air-induced ferrous [Fe(II)] oxidation. The ESI(+)-FT-ICR MS spectra of groundwater DOM were profoundly impacted by [M + Na]+ adducts and, to a lesser extent, [M + K]+ adducts. Oxygen-poor and N-containing compounds were frequently detected when the FT-ICR MS was operated in the ESI(+) mode, while the components with higher carbon oxidation states were preferentially ionized in the negative-ion electrospray ionization [ESI(-)] mode. Values for the difference between double-bond equivalents and the number of oxygen atoms from -13 to 13 are proposed for the formula assignment of the ESI(+)-FT-ICR MS spectra of aquatic DOM. Furthermore, for the first time, the Fe(II)-mediated formation of highly toxic organic iodine species was reported in groundwater rich in Fe(II), iodide, and DOM. The results of this study not only shed light on the further algorithm development for comprehensive characterization of DOM by ESI(-)-FT-ICR MS and ESI(+)-FT-ICR MS but also highlight the importance of appropriate treatment of specific groundwater prior to use.
Collapse
Affiliation(s)
- Ziqi Zhou
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
- UNSW Water Research Centre, School of Civil and Environmental Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Qing-Long Fu
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Manabu Fujii
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-Ku, Tokyo 152-8550, Japan
| | - T David Waite
- UNSW Water Research Centre, School of Civil and Environmental Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
41
|
Zhu X, Wang K, Liu Z, Wang J, Wu E, Yu W, Zhu X, Chu C, Chen B. Probing Molecular-Level Dynamic Interactions of Dissolved Organic Matter with Iron Oxyhydroxide via a Coupled Microfluidic Reactor and an Online High-Resolution Mass Spectrometry System. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2981-2991. [PMID: 36749182 DOI: 10.1021/acs.est.2c06816] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The interactions between dissolved organic matter (DOM) and iron (Fe) oxyhydroxide are crucial in regulating the biogeochemical cycling of nutrients and elements, including the preservation of carbon in soils. The mechanisms of DOM molecular assembly on mineral surfaces have been extensively studied at the mesoscale with equilibrium experiments, yet the molecular-level evolution of the DOM-mineral interface under dynamic interaction conditions is not fully understood. Here, we designed a microfluidic reactor coupled with an online solid phase extraction (SPE)-LC-QTOF MS system to continually monitor the changes in DOM composition during flowing contact with Fe oxyhydroxide at circumneutral pH, which simulates soil minerals interacting with constant DOM input. Time-series UV-visible absorption spectra and mass spectrometry data showed that after aromatic DOM moieties were first preferentially sequestered by the pristine Fe oxyhydroxide surface, the adsorption of nonaromatic DOM molecules with greater hydrophobicity, lower acidity, and lower molecular weights (<400) from new DOM solutions was favored. This is accompanied by a transition from mineral surface chemistry-dominated adsorption to organic-organic interaction-dominated adsorption. These findings provide direct molecular-level evidence to the zonal model of DOM assembly on mineral surfaces by taking the dynamics of interfacial interactions into consideration. This study also shows that coupled microfluidics and online high-resolution mass spectrometry (HRMS) system is a promising experimental platform for probing microscale environmental carbon dynamics by integrating in situ reactions, sample pretreatment, and automatic analysis.
Collapse
Affiliation(s)
- Xiangyu Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| | - Kun Wang
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| | - Zhengzheng Liu
- Zhejiang Key Laboratory of Ecological and Environmental Monitoring, Forewarning and Quality Control, Zhejiang Ecological and Environmental Monitoring Center, Hangzhou, Zhejiang 310012, China
| | - Jing Wang
- Zhejiang Key Laboratory of Ecological and Environmental Monitoring, Forewarning and Quality Control, Zhejiang Ecological and Environmental Monitoring Center, Hangzhou, Zhejiang 310012, China
| | - Enhui Wu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| | - Wentao Yu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| | - Xiaoying Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| | - Chiheng Chu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
42
|
Wu L, Sheng M, Liu X, Zheng Z, Emslie SD, Yang N, Wang X, Nie Y, Jin J, Xie Q, Chen S, Zhang D, Su S, Zhong S, Hu W, Deng J, Zhu J, Qi Y, Liu CQ, Fu P. Molecular transformation of organic nitrogen in Antarctic penguin guano-affected soil. ENVIRONMENT INTERNATIONAL 2023; 172:107796. [PMID: 36773562 DOI: 10.1016/j.envint.2023.107796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/19/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Organic nitrogen (ON) is an important participant in the Earth's N cycle. Previous studies have shown that penguin feces add an abundance of nutrients including N to the soil, significantly changing the eco-environment in ice-free areas in Antarctica. To explore the molecular transformation of ON in penguin guano-affected soil, we collected guano-free weathered soil, modern guano-affected soil from penguin colonies, ancient guano-affected soil from abandoned penguin colonies, and penguin feces from the Ross Sea region, Antarctica, and Fourier transform ion cyclotron mass spectrometry (FT-ICR MS) was used to investigate the chemical composition of water-extractable ON. By comparing the molecular compositions of ON among different samples, we found that the number of ON compounds (>4,000) in weathered soil is minimal, while carboxylic-rich alicyclic-like molecules (CRAM-like) are dominant. Penguin feces adds ON into the soil with > 10,000 CHON, CHONS and CHN compounds, including CRAM-like, lipid-like, aliphatic/ peptide-like molecules and amines in the guano-affected soil. After the input of penguin feces, macromolecules continue to degrade, and other ON compounds tend to be oxidized into relatively stable CRAM-like molecules, this is an important transformation process of ON in guano-affected soils. We conclude the roles of various forms of ON in the N cycle are complex and diverse. Combined with previous studies, ON eventually turns into inorganic N and is lost from the soil. The lost N ultimately returns to the ocean and the food web, thus completing the N cycle. Our study preliminarily reveals the molecular transformation of ON in penguin guano-affected soil and is important for understanding the N cycle in Antarctica.
Collapse
Affiliation(s)
- Libin Wu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China.
| | - Ming Sheng
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China.
| | - Xiaodong Liu
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Zhangqin Zheng
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Steven D Emslie
- Department of Biology and Marine Biology, University of North Carolina Wilmington, 601 S. College Road, Wilmington, NC 28403, USA.
| | - Ning Yang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China.
| | - Xueying Wang
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Yaguang Nie
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China.
| | - Jing Jin
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Qiaorong Xie
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China.
| | - Shuang Chen
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China.
| | - Donghuan Zhang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China.
| | - Sihui Su
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China.
| | - Shujun Zhong
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China.
| | - Wei Hu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China.
| | - Junjun Deng
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China.
| | - Jialei Zhu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China.
| | - Yulin Qi
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China.
| | - Cong-Qiang Liu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China.
| | - Pingqing Fu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
43
|
Ye Y, Wang Z, Liu L, Qi K, Xie X. Novel insights into the temporal molecular fractionation of dissolved black carbon at the iron oxyhydroxide - water interface. WATER RESEARCH 2023; 229:119410. [PMID: 36462262 DOI: 10.1016/j.watres.2022.119410] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
As the most reactive and mobile fraction of black carbon, dissolved black carbon (DBC) inexorably interacts with minerals in the biosphere. Nevertheless, the research on the mechanisms and compositions of DBC assembly at the mineral-water interface remains limited. In this study, we revealed the "kinetic architecture" of DBC on iron oxyhydroxide at novel insights based on quantitative and qualitative approaches. The results indicated that high molecular weight, highly unsaturated, oxygen-rich (such as carboxyl-rich fraction, phenolics), aliphatics, and long C chains compounds were preferentially adsorbed on the iron oxyhydroxide. 2D-COS analyses directly disclosed the sequential fractionation: aromatic and phenolic groups > aliphatic groups, and few aromatics were continuously adsorbed after the rapid adsorption. Quantitative determinations identified that aromatic and phenolic components were adsorbed rapidly over the first 60 min, while aromatics achieved the dynamic equilibrium until ∼300 min, which was consistent with the 2D-COS observations. Our findings supported the hypothesis that "mineral-OM" and "OM-OM" interactions worked simultaneously, and the adsorption might be co-driven by ligand exchange, hydrophobic interactions, and other mechanisms. This work provided the theoretical basis for organic carbon storage and turnover, and it was valuable for predicting the behaviors and fates of contaminants at the soil-water interface and surface water.
Collapse
Affiliation(s)
- Yuping Ye
- Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Tianshui South Road 222, Lanzhou, Gansu 730000, China
| | - Zhaowei Wang
- Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Tianshui South Road 222, Lanzhou, Gansu 730000, China.
| | - Lijuan Liu
- Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Tianshui South Road 222, Lanzhou, Gansu 730000, China
| | - Kemin Qi
- Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Tianshui South Road 222, Lanzhou, Gansu 730000, China
| | - Xiaoyun Xie
- Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Tianshui South Road 222, Lanzhou, Gansu 730000, China.
| |
Collapse
|
44
|
Gu Z, Bao M, He C, Chen W. Transformation of dissolved organic matter in landfill leachate during a membrane bioreactor treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159066. [PMID: 36174682 DOI: 10.1016/j.scitotenv.2022.159066] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/01/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
In this study, a cutting-edge mass spectrometry (MS) technique, Orbitrap fusion MS with ultrahigh resolution, was used to analyze the molecular composition, chemical properties, formation mechanism, and environmental impact of refractory dissolved organic matter (rDOM) in leachate. The results showed that the bioavailable DOM (bDOM) and rDOM constituents varied substantially during the biological treatment of landfill leachate. Compared with bDOM, the rDOM in leachate had a higher degree of unsaturation, aromaticity, and oxidation, and a larger molecular weight, and contained more organic matter with benzene ring and biphenyl structures. Using high-throughput 16S rRNA sequencing, metagenomics, the Kendrick mass defect (KMD), and a mass difference network (MDiN), it was found that rDOM in leachate is generated through carboxylation (+COO), dehydro-oligomerization (-H2), and chain scission (-CH2) pathways due to the activity of microbes such as Patescibacteria, Chloroflexi, and Proteobacteria. Compared with Suwannee River fulvic acid (SRFA), the rDOM in leachate contained more organics with nitrogen, sulfur, benzene rings, and biphenyls. If the rDOM in leachate enters the environment it will affect the composition of the original organic matter, and its biogeochemical transformation and environmental fate will then need to be monitored and may require special attention.
Collapse
Affiliation(s)
- Zhepei Gu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Min Bao
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Chen He
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Weiming Chen
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China.
| |
Collapse
|
45
|
jin L, Wei D, Yin D, Zou G, Li Y, Zhang Y, Ding J, Wang L, Liang L, Sun L, Wang W, Shen H, Wang Y, Xu J. Prediction of Soil Water-Soluble Organic Matter by Continuous Use of Corn Biochar Using Three-Dimensional Fluorescence Spectra and Deep Learning. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2023; 2023:7535594. [PMID: 36936670 PMCID: PMC10017222 DOI: 10.1155/2023/7535594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/21/2022] [Accepted: 08/18/2022] [Indexed: 03/10/2023]
Abstract
The purpose is to study the soil's water-soluble organic matter and improve the utilization rate of the soil layer. This exploration is based on the theories of three-dimensional fluorescence spectroscopy, deep learning, and biochar. Chernozem in Harbin City, Heilongjiang Province, is taken as the research object. Three-dimensional fluorescence spectra and a deep learning model are used to analyze the content of water-soluble organic matter in the soil layer after continuous application of corn biochar for six years and to calculate different fluorescence indexes in the whole soil depth. Among them, the three-dimensional fluorescence spectrum theory provides the detection standard for the application effect detection of biochar, the deep learning theory provides the technical support for this exploration, and the biochar theory provides the specific research direction. The results show that the application of corn biochar for six consecutive years significantly reduces the average content of water-soluble organic matter in different soil layers. Among them, the highest average content of soil water-soluble organic matter is "nitrogen, potassium, phosphorous" (NPK) and the lowest is "boron, carbon" (BC). Comparing the soil with BC alone, in the topsoil, the second section (330-380 nm/200-250 nm) with BC + NPK increases by 13.3%, the third section (380-550 nm/220-250 nm) increases by 8.4%, and the fourth section (250-380 nm/250-600 nm) increases by 50.1%. The combination of nitrogen (N) + BC has a positive effect of 20.7%, 12.2%, and 28.4% on sections I, II, and IV, respectively. In addition, in the topsoil, the combination of NPK + BC significantly increases the content of acid-like substances compared with the application of BC alone. In the black soil, with or without fertilizer NPK, there is no significant difference in the level of fulvic acid-like components. The prediction of soil water-soluble organic matter after continuous application of corn biochar based on three-dimensional fluorescence spectra and deep learning is carried out, which has reference significance for the rapid identification and early prediction of subsequent soil activity.
Collapse
Affiliation(s)
- Liang jin
- 1Plant Nutrition and Resources Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing100097, China
| | - Dan Wei
- 1Plant Nutrition and Resources Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing100097, China
| | - Dawei Yin
- 2College of Agricultural Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Guoyuan Zou
- 1Plant Nutrition and Resources Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing100097, China
| | - Yan Li
- 1Plant Nutrition and Resources Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing100097, China
| | - Yitao Zhang
- 3Institute of Geographic Sciences and Natural Resources Research, Beijing 100101, China
| | - JianLi Ding
- 1Plant Nutrition and Resources Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing100097, China
| | - Lei Wang
- 1Plant Nutrition and Resources Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing100097, China
| | - Lina Liang
- 1Plant Nutrition and Resources Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing100097, China
| | - Lei Sun
- 4Heilongjiang Institute of Black Soil Protection and Utilization, Harbin 150086, China
| | - Wei Wang
- 4Heilongjiang Institute of Black Soil Protection and Utilization, Harbin 150086, China
| | - Huibo Shen
- 5Qiqihar Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar 161006, China
| | - Yuxian Wang
- 5Qiqihar Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar 161006, China
| | - Junsheng Xu
- 6Qingdao Reserved Materials Management Station, Qingdao 266000, China
| |
Collapse
|
46
|
Wan J, Zhang L, Jia B, Yang B, Luo Z, Yang J, Boguta P, Su X. Effects of enzymes on organic matter conversion in anaerobic fermentation of sludge to produce volatile fatty acids. BIORESOURCE TECHNOLOGY 2022; 366:128227. [PMID: 36332860 DOI: 10.1016/j.biortech.2022.128227] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/23/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Sludge hydrolysis is a vital step in anaerobic digestion of sludge. This study compared the efficacy of free versus immobilized enzymes at different concentrations in promoting sludge disintegration. Pretreatment with 1,000 mg/L immobilized enzymes was more efficient in promoting sludge disintegration than free enzymes at the same concentration. Under the optimized conditions, volatile fatty acids (VFAs) were produced at 10.6 g/L, accounting for 85 % of total soluble chemical oxygen demand. Improved VFA production was attributed to the release of large amounts of polysaccharides and proteins from the enzymatically pretreated sludge. Released organic matter are the substrates for VFAs generated by the determined microbial community of Firmicutes, Proteobacteria, Bacteroidetes, Actinobacteria, and Chloroflexi. In this study, anaerobic fermentation was used to successfully convert organic matter in sludge into high-value-added VFAs. Therefore, this process can be selected as a strategy to reduce carbon emissions from wastewater treatment plants (WWTPs).
Collapse
Affiliation(s)
- Juanjuan Wan
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Lijuan Zhang
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, Guangdong 510006, China
| | - Boyu Jia
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Bo Yang
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Zeliang Luo
- College of Electro-mechanical Engineering, Zhuhai City Polytechnic, Zhuhai, Guangdong 519090, China
| | - Jiakuan Yang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Patrycja Boguta
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| | - Xintai Su
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
47
|
Roth HK, Nelson AR, McKenna AM, Fegel TS, Young RB, Rhoades CC, Wilkins MJ, Borch T. Impact of beaver ponds on biogeochemistry of organic carbon and nitrogen along a fire-impacted stream. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:1661-1677. [PMID: 36004537 DOI: 10.1039/d2em00184e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Wildfires, which are increasing in frequency and severity in the western U.S., impact water quality through increases in erosion, and transport of nutrients and metals. Meanwhile, beaver populations have been increasing since the early 1900s, and the ponds they create slow or impound hydrologic and elemental fluxes, increase soil saturation, and have a high potential to transform redox active elements (e.g., oxygen, nitrogen, sulfur, and metals). However, it remains unknown how the presence of beaver ponds in burned watersheds may impact retention and transformation of chemical constituents originating in burned uplands (e.g., pyrogenic dissolved organic matter; pyDOM) and the consequences for downstream water quality. Here, we investigate the impact of beaver ponds on the chemical properties and molecular composition of dissolved forms of C and N, and the microbial functional potential encoded within these environments. The chemistry and microbiology of surface water and sediment changed along a stream sequence starting upstream of fire and flowing through multiple beaver ponds and interconnecting stream reaches within a burned high-elevation forest watershed. The relative abundance of N-containing compounds increased in surface water of the burned beaver ponds, which corresponded to lower C/N and O/C, and higher aromaticity as characterized by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). The resident microbial communities lack the capacity to process such aromatic pyDOM, though genomic analyses demonstrate their potential to metabolize various compounds in the anaerobic sediments of the beaver ponds. Collectively, this work highlights the role of beaver ponds as biological "hotspots" with unique biogeochemistry in fire-impacted systems.
Collapse
Affiliation(s)
- Holly K Roth
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA.
| | - Amelia R Nelson
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA
| | - Amy M McKenna
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA
- National High Magnetic Field Laboratory, Ion Cyclotron Resonance Facility, Florida State University, FL, USA
| | - Timothy S Fegel
- Rocky Mountain Research Station, U.S. Forest Service, Fort Collins, CO, USA
| | - Robert B Young
- Chemical Analysis & Instrumentation Laboratory, New Mexico State University, Las Cruces, NM, USA
| | - Charles C Rhoades
- Rocky Mountain Research Station, U.S. Forest Service, Fort Collins, CO, USA
| | - Michael J Wilkins
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA
| | - Thomas Borch
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA.
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
48
|
Lv J, Huang Z, Luo L, Zhang S, Wang Y. Advances in Molecular and Microscale Characterization of Soil Organic Matter: Current Limitations and Future Prospects. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12793-12810. [PMID: 36037253 DOI: 10.1021/acs.est.2c00421] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Soil organic matter (SOM) comprises a continuum of organic materials from granular organic debris to small organic molecules and contains more organic carbon than global vegetation and the atmosphere combined. It has remarkable effects on soil ecological functions and the global carbon cycle as well as the fate of pollutants in the terrestrial ecosystem. Therefore, characterization of SOM is an important topic in soil science, ecology, and environmental science. Chemical complexity and spatial heterogeneity are by far the two biggest challenges to our understanding of SOM. Recent developments in analytical techniques and methods provide the opportunity to reveal SOM composition at the molecular level and to observe its distribution in soils at micro- and nanoscales, which have greatly improved our understanding of SOM. This paper reviews the outstanding advances in SOM characterization regarding these two issues from target and nontarget analyses comprising molecular marker analysis, ultrahigh-resolution mass spectrometry analysis, and in situ microscopic imaging techniques such as synchrotron-based spectromicroscopy, nanoscale secondary ion mass spectrometry, and emerging electron and optical microscopic imaging techniques. However, current techniques and methods remain far from unlocking the unknown properties of SOM. We systematically point out the limitations of the current technologies and outline the future prospects for comprehensive characterization of SOM at the molecular level and micro- and nanoscales, paying particular attention to issues of environmental concern.
Collapse
Affiliation(s)
- Jitao Lv
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zaoquan Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Guangdong Key Laboratory of Contaminated Site Environmental Management and Remediation, Guangdong Provincial Academy of Environmental Science, Guangzhou, Guangdong 510045, China
| | - Lei Luo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Shuzhen Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yawei Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
49
|
Goranov AI, Tadini AM, Martin-Neto L, Bernardi ACC, Oliveira PPA, Pezzopane JRM, Milori DMBP, Mounier S, Hatcher PG. Comparison of Sample Preparation Techniques for the (-)ESI-FT-ICR-MS Analysis of Humic and Fulvic Acids. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12688-12701. [PMID: 35969691 DOI: 10.1021/acs.est.2c01125] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Soil organic matter (SOM) plays a key role in the global carbon and nitrogen cycles. Soil biogeochemistry is regularly studied by extracting the base-soluble fractions of SOM: acid-insoluble humic acid (HA) and acid-soluble fulvic acid (FA). Electrospray ionization-Fourier transform-ion cyclotron resonance-mass spectrometry (ESI-FT-ICR-MS) is commonly utilized for molecularly characterizing these fractions. Different sample preparation techniques exist for the analysis of HA and FA though questions remain regarding data comparability following different preparations. Comparisons of different sample preparation techniques here revealed that the negative-mode ESI-FT-ICR-MS analytical window can be skewed to detect different groups of molecules, with primary differences in oxygenation, aromaticity, and molecular weight. It was also observed that HA and FA from soils versus an aquatic matrix behaved very differently. Thus, we conclude that sample preparation techniques determined to be "most optimal" in our study are in no way universal. We recommend that future studies of HA and FA involve similar comparative studies for determining the most suitable sample preparation technique for their particular type of HA or FA matrices. This will enhance data comparability among different studies and environmental systems and ultimately allow us to better understand the complex composition of environmental matrices.
Collapse
Affiliation(s)
- Aleksandar I Goranov
- Department of Chemistry and Biochemistry, Old Dominion University, 4501 Elkhorn Avenue, Norfolk, Virginia 23529, United States
| | - Amanda M Tadini
- Department of Chemistry and Biochemistry, Old Dominion University, 4501 Elkhorn Avenue, Norfolk, Virginia 23529, United States
- Embrapa Instrumentação, Brazilian Agricultural Research Corporation - Embrapa, Street XV de Novembro, 1452, São Carlos, São Paulo 13560-970, Brazil
| | - Ladislau Martin-Neto
- Embrapa Instrumentação, Brazilian Agricultural Research Corporation - Embrapa, Street XV de Novembro, 1452, São Carlos, São Paulo 13560-970, Brazil
| | - Alberto C C Bernardi
- Embrapa Pecuária Sudeste, Brazilian Agricultural Research Corporation - Embrapa, Rodovia Washington Luiz, Km 234 s/n°, Fazenda Canchim São Carlos, São Paulo 13560-970, Brazil
| | - Patricia P A Oliveira
- Embrapa Pecuária Sudeste, Brazilian Agricultural Research Corporation - Embrapa, Rodovia Washington Luiz, Km 234 s/n°, Fazenda Canchim São Carlos, São Paulo 13560-970, Brazil
| | - José R M Pezzopane
- Embrapa Pecuária Sudeste, Brazilian Agricultural Research Corporation - Embrapa, Rodovia Washington Luiz, Km 234 s/n°, Fazenda Canchim São Carlos, São Paulo 13560-970, Brazil
| | - Débora M B P Milori
- Embrapa Instrumentação, Brazilian Agricultural Research Corporation - Embrapa, Street XV de Novembro, 1452, São Carlos, São Paulo 13560-970, Brazil
| | - Stéphane Mounier
- Unité mixte 110, Mediterranean Institute of Oceanography (MIO), Université de Toulon, Avenue de l'Université - Bat. R, Toulon 83041, France
- Unité mixte 110, MIO, Aix Marseille Université, 163 Avenue de Luminy, Marseille 13288, France
- Unité mixte 110, MIO, Institut de la Recherche et du Développement, 163 Avenue de Luminy, Marseille 13288, France
- Unité mixte 110, MIO, Institut des Sciences de l'Univers, Centre National de la Recherche Scientifique, 163 Avenue de Luminy, Marseille 13288, France
| | - Patrick G Hatcher
- Department of Chemistry and Biochemistry, Old Dominion University, 4501 Elkhorn Avenue, Norfolk, Virginia 23529, United States
| |
Collapse
|
50
|
Ge J, Qi Y, Li C, Ma J, Yi Y, Hu Q, Mostofa KMG, Volmer DA, Li SL. Fluorescence and molecular signatures of dissolved organic matter to monitor and assess its multiple sources from a polluted river in the farming-pastoral ecotone of northern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:154575. [PMID: 35302015 DOI: 10.1016/j.scitotenv.2022.154575] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
The sources and composition of dissolved organic matter (DOM) in rivers are critical to water quality and aquatic ecosystems. Studies on detailed composition of organic matter in rivers in the farming-pastoral ecotone are relatively limited in the research community. To better understand the characteristics and dynamics of DOM, Yang River in North China was selected as the study area because of its profound influences on the farming-pastoral ecotone nearby. A combination of fluorescence spectroscopy and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) techniques revealed that the DOM composition of Yang River is driven by land use. DOM in Yang River is predominantly imported from allochthonous inputs, together with agricultural runoff, pastureland, and urban sewage, causing a comprehensive impact on DOM. In detail, DOM associated with cropland inputs was dominated by lignin-like species, with higher nitrogen content. In comparison, DOM related to grassland is more diverse and susceptible to degradation. An increase in urban areas led to an increase in sulfur-containing compounds, while their oxygen, nitrogen, and aromaticity contents were significantly lower than those in cropland. Interestingly, urban-influenced lignin-like compounds may be associated with the effluents from the pulp and paper mill. Additionally, synthetic surfactants from the lower section of the river were also structurally identified by tandem mass spectrometry. Overall, this study could provide valuable insights into the DOM sources and their transformation dynamics at a molecular level, which could be an indicator for riverine water quality management and be applied to other farming-pastoral ecotones straightforward.
Collapse
Affiliation(s)
- Jinfeng Ge
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Yulin Qi
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin 300072, China.
| | - Cai Li
- School of Urban and Environmental Sciences, Huaiyin Normal Univerity, Huaiyin 223300, China
| | - Jifu Ma
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Yuanbi Yi
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Qiaozhuan Hu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Khan M G Mostofa
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin 300072, China
| | - Dietrich A Volmer
- Department of Chemistry, Humboldt-Universität zu Berlin, Berlin 12489, Germany
| | - Si-Liang Li
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin 300072, China
| |
Collapse
|