1
|
Chen Y, Mi X, Cao Z, Guo A, Li C, Yao H, Yuan P. Mechanisms of surface groups regulating developmental toxicity of graphene-based nanomaterials via glycerophospholipid metabolic pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 938:173576. [PMID: 38810761 DOI: 10.1016/j.scitotenv.2024.173576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 05/07/2024] [Accepted: 05/25/2024] [Indexed: 05/31/2024]
Abstract
Surface modification of graphene-based nanomaterials (GBNs) may occur in aquatic environment and during intentional preparation. However, the influence of the surface groups on the developmental toxicity of GBNs has not been determined. In this study, we evaluated the developmental toxicity of three GBNs including GO (graphene oxide), RGO (reduced GO) and RGO-N (aminated RGO) by employing zebrafish embryos at environmentally relevant concentrations (1-100 μg/L), and the underlying metabolic mechanisms were explored. The results showed that both GO and RGO-N disturbed the development of zebrafish embryos, and the adverse effect of GO was greater than that of RGO-N. Furthermore, the oxygen-containing groups of GBNs play a more important role in inducing developmental toxicity compared to size, defects and nitrogen-containing groups. Specifically, the epoxide and hydroxyl groups of GBNs increased their intrinsic oxidative potential, promoted the generation of ROS, and caused lipid peroxidation. Moreover, a significant decrease in guanosine and abnormal metabolism of multiple glycerophospholipids were observed in all three GBN-treated groups. Nevertheless, GO exposure triggered more metabolic activities related to lipid peroxidation than RGO or RGO-N exposure, and the disturbance intensity of the same metabolite was greater than that of the other two agents. These findings reveal underlying metabolic mechanisms of GBN-induced developmental toxicity.
Collapse
Affiliation(s)
- Yuming Chen
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China; Henan Key Laboratory of Neurorestoratology, First Hospital Affiliated to Xinxiang Medical University, Weihui 453100, China.
| | - Xingjie Mi
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Zhenzhen Cao
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Ao Guo
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Chunjie Li
- Xinxiang Key Laboratory of Molecular Neurology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Haojing Yao
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Peng Yuan
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China.
| |
Collapse
|
2
|
Wu K, Ouyang S, Tao Z, Hu X, Zhou Q. Algal extracellular polymeric substance compositions drive the binding characteristics, affinity, and phytotoxicity of graphene oxide in water. WATER RESEARCH 2024; 260:121908. [PMID: 38878307 DOI: 10.1016/j.watres.2024.121908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 07/27/2024]
Abstract
Graphene oxide (GO, a popular 2D nanomaterial) poses great potential in water treatment arousing considerable attention regarding its fate and risk in aquatic environments. Extracellular polymeric substances (EPS) exist widely in water and play critical roles in biogeochemical processes. However, the influences of complex EPS fractions on the fate and risk of GO remain unknown in water. This study integrates fluorescence excitation-emission matrix-parallel factor, two-dimensional correlation spectroscopy, and biolayer interferometry studies on the binding characteristics and affinity between EPS fractions and GO. The results revealed the preferential binding of fluorescent aromatic protein-like component, fulvic-like component, and non-fluorescent polysaccharide in soluble EPS (S-EPS) and bound EPS (B-EPS) on GO via π-π stacking and electrostatic interaction that contributed to a higher adsorption capacity of S-EPS on GO and weaker affinity than of B-EPS. Moreover, the EPS fractions drive the morphological and structural alterations, and the attenuated colloid stability of GO in water. Notably, GO-EPS induced stronger phytotoxicity (e.g., photosynthetic damage, and membrane lipid remodeling) compared to pristine GO. Metabolic and functional lipid analysis further elucidated the regulation of amino acid, carbohydrate, and lipid metabolism contributed to the persistent phytotoxicity. This work provides insights into the roles and mechanisms of EPS fractions composition in regulating the environmental fate and risk of GO in natural water.
Collapse
Affiliation(s)
- Kangying Wu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Carbon Neutrality Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shaohu Ouyang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Carbon Neutrality Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Zongxin Tao
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Carbon Neutrality Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Carbon Neutrality Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Carbon Neutrality Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
3
|
Li Y, Zhang K, Yin Y, Kong X, Zhang R, Wang H, Zhang Z. Amino-functionalized graphene oxide affects bacteria-phage interactions in aquatic environments. WATER RESEARCH 2024; 259:121840. [PMID: 38820731 DOI: 10.1016/j.watres.2024.121840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/16/2024] [Accepted: 05/24/2024] [Indexed: 06/02/2024]
Abstract
The widespread use of graphene family nanomaterials (GFNs) in mass production has resulted in their release into the atmosphere, soil and water environment through various processes. Among these, the water environment is particularly affected by GFN pollution. Our previous study has demonstrated the impact of graphene oxide (GO) on bacteria-phage interactions in natural systems. However, the effects of amino-functionalized GO with a positive charge on bacteria-phage interactions in aquatic environments remain unclear. In the present study, we found that amino-functionalized graphene oxide (AGO) (0.05 mg/mL) inhibited the growth of Pseudomonas aeruginosa Y12. Furthermore, treating P. aeruginosa Y12 and phage with AGO (0.05 mg/mL) led to a reduced ratio of phage to bacteria, indicating that AGO can inhibit phage infection of bacteria. Additionally, the acidic environment exacerbated this effect by promoting electrostatic adsorption between the positively charged AGO and the negatively charged phage. Finally, a field water body intervention experiment showed that the richness and diversity of bacterial communities in six water samples changed due to AGO exposure, as revealed by Illumina analysis based on the bacterial 16S rRNA gene. These findings offer valuable insights into the environmental impacts of GFNs.
Collapse
Affiliation(s)
- Ying Li
- School of Clinical and Basic Medical Science, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an 271016, Shandong, PR China; Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an 271016, PR China
| | - Kexin Zhang
- Hospital for Skin Diseases, Shandong First Medical University, Ji'nan, PR China; Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Ji'nan, PR China
| | - Yansong Yin
- School of Clinical and Basic Medical Science, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an 271016, Shandong, PR China; Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an 271016, PR China
| | - Xinxin Kong
- School of Clinical and Basic Medical Science, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an 271016, Shandong, PR China; Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an 271016, PR China
| | - Ruiling Zhang
- School of Clinical and Basic Medical Science, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an 271016, Shandong, PR China; Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an 271016, PR China.
| | - Haijun Wang
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an 271016, PR China; School of Life Science, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an 271016, PR China.
| | - Zhong Zhang
- School of Clinical and Basic Medical Science, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an 271016, Shandong, PR China; Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an 271016, PR China; Shandong Second Medical University, Weifang 261021, PR China; The First Affiliated Hospital of Shandong First Medical University, Ji'nan 250014, PR China.
| |
Collapse
|
4
|
Xin Y, Liang J, Ren C, Song W, Huang B, Liu Y, Zhang S. Physiological and transcriptomic responses of silkworms to graphene oxide exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116434. [PMID: 38728944 DOI: 10.1016/j.ecoenv.2024.116434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/27/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
The growing use of nanomaterials has sparked significant interest in assessing the insect toxicities of nanoparticles. The silkworm, as an economically important insect, serves as a promising model for studying how insects respond to harmful substances. Here, we conducted a comprehensive investigation on the impact of graphene oxide (GO) on silkworms using a combination of physiological and transcriptome analyses. GO can enter the midguts and posterior silk glands of silkworms. High GO concentrations (> 25 mg/L) significantly (P < 0.01) inhibited larval growth. Additionally, GO (> 5 mg/L) significantly reduced the cocooning rate, and GO (> 15 mg/L) hindered oviduct development and egg laying in silkworms. GO increased the reactive oxygen species content and regulated catalase activity, suggesting that it may affect insect growth by regulating reactive oxygen detoxification. The transcriptome data analysis showed that 35 metabolism-related genes and 20 ribosome biogenesis-related genes were differentially expressed in response to GO, and their expression levels were highly correlated. Finally, we propose that a Ribosome biogenesis-Metabolic signaling network is involved in responses to GO. The research provides a new perspective on the molecular responses of insects to GO.
Collapse
Affiliation(s)
- Youchao Xin
- College of Forestry, Shandong Agricultural University, Tai'an 271018, China
| | - Jiawen Liang
- College of Forestry, Shandong Agricultural University, Tai'an 271018, China
| | - Chunjiu Ren
- College of Forestry, Shandong Agricultural University, Tai'an 271018, China
| | - Wenhui Song
- College of Forestry, Shandong Agricultural University, Tai'an 271018, China
| | - Bokai Huang
- College of Forestry, Shandong Agricultural University, Tai'an 271018, China
| | - Yangyang Liu
- College of Forestry, Shandong Agricultural University, Tai'an 271018, China
| | - Shengxiang Zhang
- College of Forestry, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
5
|
Makaras T, Jakubowska-Lehrmann M, Jurgelėnė Ž, Šemčuk S. Exploring the Effects of Graphene-Based Nanoparticles on Early Salmonids Cardiorespiratory Responses, Swimming and Nesting Behavior. J Xenobiot 2024; 14:484-496. [PMID: 38651379 PMCID: PMC11036200 DOI: 10.3390/jox14020029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/03/2024] [Accepted: 04/10/2024] [Indexed: 04/25/2024] Open
Abstract
Graphene-based nanomaterials are exceptionally attractive for a wide range of applications, raising the likelihood of the release of graphene-containing nanoparticles into aquatic environments. The growing use of these carbon nanomaterials in different industries highlights the crucial need to investigate their environmental impact and evaluate potential risks to living organisms. The current investigation evaluated the nanotoxicity of graphene (nanoflakes) and graphene oxide (GO) nanoparticles on the cardiorespiratory responses (heart rate, gill ventilation frequency), as well as the swimming and nesting behavioral parameters of early stage larvae and juvenile salmonids. Both short-term (96 h) and long-term (23 days) exposure experiments were conducted using two common species: brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss). The findings demonstrated notable alterations in fish nesting behavior, swimming performance, and cardiorespiratory functions, indicating the potential toxicity of nanoparticles. This impact was observed at both physiological and whole-organismal levels in salmonids at early stages. Future investigations should explore different types of nanocarbons and their potential enduring effects on fish population structure, considering not only individual survival but also broader aspects of development, including feeding, reproductive, and other social dynamics.
Collapse
Affiliation(s)
- Tomas Makaras
- Nature Research Centre, Akademijos St. 2, 08412 Vilnius, Lithuania;
| | | | - Živilė Jurgelėnė
- Nature Research Centre, Akademijos St. 2, 08412 Vilnius, Lithuania;
| | - Sergej Šemčuk
- Center for Physical Sciences and Technology, Saulėtekio Av. 3, 02300 Vilnius, Lithuania;
| |
Collapse
|
6
|
Ede JD, Diges AS, Zhang Y, Shatkin JA. Life-cycle risk assessment of graphene-enabled textiles in fire protection gear. NANOIMPACT 2024; 33:100488. [PMID: 37940075 DOI: 10.1016/j.impact.2023.100488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 10/06/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
A nanomaterial life-cycle risk assessment (Nano LCRA) of a graphene-enabled textile used in the construction of heat and fire-resistant personal protective equipment (PPE) was conducted to develop, analyze, and prioritize potential occupational, health and environmental risks. The analysis identifies potential receptors and exposure pathways at each product life-cycle stage and makes a qualitative evaluation of the potential significance of each scenario. A literature review, quality evaluation, and database were developed as part of the LCRA to identify potential hazards associated with graphene-based materials (GBMs) throughout the product life-cycle. Generally, risks identified from graphene-enabled textiles were low. Of the developed exposure scenarios, occupational inhalation exposures during raw material and product manufacturing ranked highest. The analysis identifies the key potential human and environmental hazards and exposures of the products across the product life-cycle of graphene enabled textiles. Priority research gaps to reduce uncertainty include evaluating long-term, low dose graphene exposures typical of the workplace, as well as the potential release and hazard characterization of graphene-acrylic nanocomposites.
Collapse
Affiliation(s)
| | | | - Yueyang Zhang
- Vireo Advisors LLC, Boston, MA 02205, USA; University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
7
|
Pinilla-Peñalver E, Esteban-Arranz A, Contento AM, Ríos Á. Fluorescent dual-mode sensor for the determination of graphene oxide and catechin in environmental or food field. RSC Adv 2023; 13:33255-33268. [PMID: 37954414 PMCID: PMC10637338 DOI: 10.1039/d3ra04726a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/22/2023] [Indexed: 11/14/2023] Open
Abstract
The novel fluorescent sensor is proposed in this work based on the competitive interactions between the known bioactive compounds, riboflavin and catechin, which act as guests, and graphene oxide (GO) material that acts as host. Specifically, this proposal is based on an indicator displacement assay which allows the detection of GO and catechin (fluorescence quenching of riboflavin signal by GO and increase in fluorescence by catechin on the GO-riboflavin system). Three GO structures with different lateral dimensions and thickness were synthesized and tested, being able to be the three differentiated depending on the attenuation capacity of the fluorescent signal that each one possesses. The environmental analytical control of GO is more and more important, being this method sensitive and selective in the presence of other potential interferent substances. On the other hand, the other sensing capacity of the sensor also allows the determination of catechin in food samples based on the formation of riboflavin-GO complex. It is a rapid, simple and non-expensive procedure. Thus, the same 2D nanomaterial (GO) is seen to play a double role in this sensing strategy (analyte and analytical tool for the determination of another compound).
Collapse
Affiliation(s)
- Esther Pinilla-Peñalver
- Department of Analytical Chemistry and Food Technology, University of Castilla-La Mancha Avenue Camilo José Cela, s/n 13071 Ciudad Real Spain +34926295232
- Regional Institute for Applied Chemistry Research, IRICA Avenue Camilo José Cela, 1 13071 Ciudad Real Spain
| | - Adrián Esteban-Arranz
- Department of Chemical Engineering, University of Castilla La-Mancha Avenue Camilo José Cela, 12 13071 Ciudad Real Spain
- Department of Polymeric Nanomaterials and Biomaterials, Polymer Science and Technology Institute (CSIC) Juan de la Cierva 3 28006 Madrid Spain
| | - Ana M Contento
- Department of Analytical Chemistry and Food Technology, University of Castilla-La Mancha Avenue Camilo José Cela, s/n 13071 Ciudad Real Spain +34926295232
| | - Ángel Ríos
- Department of Analytical Chemistry and Food Technology, University of Castilla-La Mancha Avenue Camilo José Cela, s/n 13071 Ciudad Real Spain +34926295232
| |
Collapse
|
8
|
Lu K, Hu Q, Zhai L, Zhu Z, Xu Y, Ding Z, Zeng H, Dong S, Gao S, Mao L. Mineralization of Few-Layer Graphene Made It Bioavailable in Chlamydomonas reinhardtii. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15255-15265. [PMID: 37768274 DOI: 10.1021/acs.est.3c04549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Numerous studies have emphasized the toxicity of graphene-based nanomaterials to algae, however, the fundamental behavior and processes of graphene in biological hosts, including its transportation, metabolization, and bioavailability, are still not well understood. As photosynthetic organisms, algae are key contributors to carbon fixation and may play an important role in the fate of graphene. This study investigated the biological fate of 14C-labeled few-layer graphene (14C-FLG) in Chlamydomonas reinhardtii (C. reinhardtii). The results showed that 14C-FLG was taken up by C. reinhardtii and then translocated into its chloroplast. Metabolomic analysis revealed that 14C-FLG altered the metabolic profiles (including sugar metabolism, fatty acid, and tricarboxylic acid cycle) of C. reinhardtii, which promoted the photosynthesis of C. reinhardtii and then enhanced their growth. More importantly, the internalized 14C-FLG was metabolized into 14CO2, which was then used to participate in the metabolic processes required for life. Approximately 61.63%, 25.31%, and 13.06% of the total radioactivity (from 14CO2) was detected in carbohydrates, lipids, and proteins of algae, respectively. Overall, these results reveal the role of algae in the fate of graphene and highlight the potential of available graphene in bringing biological effects to algae, which helps to better assess the environmental risks of graphene.
Collapse
Affiliation(s)
- Kun Lu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China
| | - Qingyuan Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China
| | - Li Zhai
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
| | - Zhiyu Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China
| | - Yunsong Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China
| | - Zhaohui Ding
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China
| | - Hang Zeng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China
| | - Shipeng Dong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China
| | - Shixiang Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China
| | - Liang Mao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China
| |
Collapse
|
9
|
Cruces E, Barrios AC, Cahue YP, Januszewski B, Sepulveda P, Cubillos V, Perreault F. Toxicity mechanisms of graphene oxide and cadmium in Microcystis aeruginosa: evaluation of photosynthetic and oxidative responses. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 263:106703. [PMID: 37748231 DOI: 10.1016/j.aquatox.2023.106703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 09/27/2023]
Abstract
The potential ecotoxicological hazard of gaphene oxide (GO) is not fully clarified for photoautotrophic organisms, especially when the interactions of GO with other environmental toxicants are considered. The objective of the current study was to better understand the mechanisms of toxicity of GO in the cyanobacteria Microcystis aeruginosa, and to identify its interactions with cadmium (Cd). The individual and combined contribution of both pollutants in cyanobacteria were evaluated after 96 hours of exposure to GO and/or Cd, using photosynthetic pigments, photosynthetic parameters, cellular indicators of peroxidative damage, viability, and intracellular ROS formation as indicators of toxicity. Interactions between GO and Cd were evaluated using Toxic Units based on the EC50 of each parameter evaluated. The results of this study indicate that single concentrations ≥ 5 µg mL-1 of GO and ≥ 0.1 µg mL-1 of Cd induced a decrease in cell biomass and a change in the photosynthetic parameters associated with primary productivity in M. aeruginosa. In the combined experiments, higher GO ratios (≥ 9.1 µg mL-1) in terms of Toxic Units decreased photochemical processes and cellular metabolism, increased oxidative stress, and ultimately affected the size of M. aeruginosa. Finally, the relationship between GO concentration, Cd concentration, and the adsorption capacity of GO with respect to the co-pollutant must be taken into account when assessing the environmental risk of GO in aquatic environments.
Collapse
Affiliation(s)
- Edgardo Cruces
- Centro de Investigaciones Costeras Universidad de Atacama, Avenida Copayapu 485, Copiapo, Chile
| | - Ana C Barrios
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, 85287-3005
| | - Yaritza P Cahue
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, 85287-3005
| | - Brielle Januszewski
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, 85287-3005
| | - Pamela Sepulveda
- Centro de Nanotecnología Aplicada (CNAP), Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago, Chile
| | - Victor Cubillos
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile,Valdivia, Chile; Laboratorio Costero de Recursos Acuáticos de Calfuco, Facultad de Ciencias, Universidad Austral de Chile,Valdivia, Chile
| | - François Perreault
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, 85287-3005; Department of Chemistry, University of Quebec in Montreal, CP 8888, Succ. Centre-Ville, Montreal, QC, H3C 3P8, Canada.
| |
Collapse
|
10
|
Yin Z, Liu S, Tian Z, Zhao X, He J, Wang C. Carbon-based nanomaterials mediated adsorption and photodegradation of typical organic contaminants in aqueous fulvic acid solution. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:1863-1874. [PMID: 37831001 PMCID: wst_2023_300 DOI: 10.2166/wst.2023.300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
In this work, the formation of carbon-based nanomaterials-fulvic acid (CNMs-FA) composites and their capacities for the adsorption and photodegradation of typical organic contaminants in aqueous solutions were investigated. The results suggested that the formation of CNMs-FA composites was dominated by adsorbing FA on CNMs via the physisorption process, which fit the pseudo-first-order kinetic model and the Langmuir isotherm model. The formed CNMs-FA composites were characterized by using the Brunauer-Emmett-Teller, scanning electron microscopy, and infrared spectroscopy techniques and further applied for examining their effects on the adsorption and photodegradation of selected organic contaminants in aqueous solutions. The adsorption of organic contaminants on CNMs-FA composites is mainly involved in hydrogen bonding and electrostatic interactions between organic contaminants and FA species adhering to CNMs. In addition, the CNMs-FA composites are able to promote the photosensitive degradation of organic contaminants due to the photogenerated reactive species including ROS and CNMs-3FA* under sunlight irradiation. This study provided a deeper and more comprehensive understanding of the environmental behavior of CNMs in real natural surface water and clarified the underlying mechanisms.
Collapse
Affiliation(s)
- Zhiming Yin
- College of Resources and Environment, South-Central Minzu University, Wuhan 430074, China E-mail:
| | - Siyu Liu
- College of Resources and Environment, South-Central Minzu University, Wuhan 430074, China
| | - Zhen Tian
- College of Resources and Environment, South-Central Minzu University, Wuhan 430074, China
| | - Xinyue Zhao
- College of Resources and Environment, South-Central Minzu University, Wuhan 430074, China
| | - Jun He
- Department of Chemical and Environmental Engineering, University of Nottingham-Ningbo China, Ningbo 315100, China
| | - Chengjun Wang
- College of Resources and Environment, South-Central Minzu University, Wuhan 430074, China
| |
Collapse
|
11
|
Saqib M, Solomonenko AN, Barek J, Dorozhko EV, Korotkova EI, Aljasar SA. Graphene derivatives-based electrodes for the electrochemical determination of carbamate pesticides in food products: A review. Anal Chim Acta 2023; 1272:341449. [PMID: 37355324 DOI: 10.1016/j.aca.2023.341449] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/26/2023]
Abstract
Graphene (GR) composites have great potential for the determination of carbamates pesticides (CPs) by electrochemical methods. Since the beginning of the 20th century, GR has shown remarkable promise as electrode material for various sensors. The contamination of food products with harmful CPs is a major problem as they do not always damage human health immediately, but can be harmful after prolonged exposure. A range of advantages can be gained from their electrochemical determination, such as high sensitivity, reasonably selectivity, rapid detection, low limit of detection, and easy electrode fabrication. Furthermore, these electrochemical techniques are robust, reproducible, user-friendly, and conform to both "green" and "white" analytical chemistry. This review is focused on results published in the last ten years in the field of electrochemical determination of CPs in food products using GR and its derivatives.
Collapse
Affiliation(s)
- Muhammad Saqib
- Chemical Engineering Department, School of Earth Sciences and Engineering, National Research Tomsk Polytechnic University, Lenin Ave. 30, 634050, Tomsk, Russia; Charles University, Faculty of Science, Department of Analytical Chemistry, UNESCO Laboratory of Environmental Electrochemistry, Hlavova 8/2030, CZ 128 43, Prague 2, Czech Republic
| | - Anna N Solomonenko
- Chemical Engineering Department, School of Earth Sciences and Engineering, National Research Tomsk Polytechnic University, Lenin Ave. 30, 634050, Tomsk, Russia
| | - Jiří Barek
- Charles University, Faculty of Science, Department of Analytical Chemistry, UNESCO Laboratory of Environmental Electrochemistry, Hlavova 8/2030, CZ 128 43, Prague 2, Czech Republic.
| | - Elena V Dorozhko
- Chemical Engineering Department, School of Earth Sciences and Engineering, National Research Tomsk Polytechnic University, Lenin Ave. 30, 634050, Tomsk, Russia
| | - Elena I Korotkova
- Chemical Engineering Department, School of Earth Sciences and Engineering, National Research Tomsk Polytechnic University, Lenin Ave. 30, 634050, Tomsk, Russia
| | - Shojaa A Aljasar
- Physics and Engineering Department, National Research Tomsk State University, Lenin Ave. 36, 634045, Tomsk, Russia
| |
Collapse
|
12
|
Hu X, Xu Y, Liu S, Gudda FO, Ling W, Qin C, Gao Y. Graphene Quantum Dots Nonmonotonically Influence the Horizontal Transfer of Extracellular Antibiotic Resistance Genes via Bacterial Transformation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301177. [PMID: 37144438 DOI: 10.1002/smll.202301177] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/10/2023] [Indexed: 05/06/2023]
Abstract
Graphene quantum dots (GQDs) coexist with antibiotic resistance genes (ARGs) in the environment. Whether GQDs influence ARG spread needs investigation, since the resulting development of multidrug-resistant pathogens would threaten human health. This study investigates the effect of GQDs on the horizontal transfer of extracellular ARGs (i.e., transformation, a pivotal way that ARGs spread) mediated by plasmids into competent Escherichia coli cells. GQDs enhance ARG transfer at lower concentrations, which are close to their environmental residual concentrations. However, with further increases in concentration (closer to working concentrations needed for wastewater remediation), the effects of enhancement weaken or even become inhibitory. At lower concentrations, GQDs promote the gene expression related to pore-forming outer membrane proteins and the generation of intracellular reactive oxygen species, thus inducing pore formation and enhancing membrane permeability. GQDs may also act as carriers to transport ARGs into cells. These factors result in enhanced ARG transfer. At higher concentrations, GQD aggregation occurs, and aggregates attach to the cell surface, reducing the effective contact area of recipients for external plasmids. GQDs also form large agglomerates with plasmids and thus hindering ARG entrance. This study could promote the understanding of the GQD-caused ecological risks and benefit their safe application.
Collapse
Affiliation(s)
- Xiaojie Hu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Yanxing Xu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Si Liu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Fredrick Owino Gudda
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Wanting Ling
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Chao Qin
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Yanzheng Gao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| |
Collapse
|
13
|
Wang Y, Pang S, Chen Z, Wang J, Liu L, Zhang L, Wang F, Song M. Surface Modification Determines the Distribution and Toxicity of Quantum Dots during the Development of Early Staged Zebrafish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:10574-10581. [PMID: 37450278 DOI: 10.1021/acs.est.3c01949] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Surface modifications are generally used to functionalize QDots to improve their properties for practical applications, but the relationship between QDot modification and biological activity is not well understood. Using an early staged zebrafish model, we investigated the biodistribution and toxicity of CdSe/ZnS QDots with four types of modifications, including anionic poly(ethylene glycol)-carboxyl ((PEG)n-COOH), anionic mercaptopropionic acid (MPA), zwitterionic glutathione (GSH), and cationic cysteamine (CA). None of the QDots showed obvious toxicity to zebrafish embryos prior to hatching because the zebrafish chorion is an effective barrier that protects against QDot exposure. The QDots were mainly absorbed on the epidermis of the target organs after hatching and were primarily deposited in the mouth and gastrointestinal tract when the zebrafish started feeding. CA-QDots possessed the highest adsorption capacity; however, (PEG)n-COOH-QDots showed the most severe toxicity to zebrafish, as determined by mortality, hatching rate, heartbeat, and malformation assessments. It shows that the toxicity of the QDots is mainly attributed to ROS generation rather than Cd2+ release. This study provides a comprehensive understanding of the environmental and ecological risks of nanoparticles in relation to their surface modification.
Collapse
Affiliation(s)
- Yuanyuan Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Diseases Control and Prevention, Beijing 100021, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Shaochen Pang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, 430056 Wuhan, China
| | - Zihan Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Wang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, 430056 Wuhan, China
| | - Li Liu
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, 430056 Wuhan, China
| | - Lan Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Diseases Control and Prevention, Beijing 100021, China
| | - Fengbang Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Maoyong Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
González-Soto N, Blasco N, Irazola M, Bilbao E, Guilhermino L, Cajaraville MP. Fate and effects of graphene oxide alone and with sorbed benzo(a)pyrene in mussels Mytilus galloprovincialis. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131280. [PMID: 37030218 DOI: 10.1016/j.jhazmat.2023.131280] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/13/2023] [Accepted: 03/22/2023] [Indexed: 05/03/2023]
Abstract
Graphene oxide (GO) has gained a great scientific and economic interest due to its unique properties. As incorporation of GO in consumer products is rising, it is expected that GO will end up in oceans. Due to its high surface to volume ratio, GO can adsorb persistent organic pollutants (POPs), such as benzo(a)pyrene (BaP), and act as carrier of POPs, increasing their bioavailability to marine organisms. Thus, uptake and effects of GO in marine biota represent a major concern. This work aimed to assess the potential hazards of GO, alone or with sorbed BaP (GO+BaP), and BaP alone in marine mussels after 7 days of exposure. GO was detected through Raman spectroscopy in the lumen of the digestive tract and in feces of mussels exposed to GO and GO+BaP while BaP was bioaccumulated in mussels exposed to GO+BaP, but especially in those exposed to BaP. Overall, GO acted as a carrier of BaP to mussels but GO appeared to protect mussels towards BaP accumulation. Some effects observed in mussels exposed to GO+BaP were due to BaP carried onto GO nanoplatelets. Enhanced toxicity of GO+BaP with respect to GO and/or BaP or to controls were identified for other biological responses, demonstrating the complexity of interactions between GO and BaP.
Collapse
Affiliation(s)
- Nagore González-Soto
- CBET Research Group, Dept. Zoology and Animal Cell Biology, Science and Technology Faculty and Plentzia Marine Station, University of the Basque Country (UPV/EHU), Basque Country, Spain
| | - Nagore Blasco
- CBET Research Group, Dept. Zoology and Animal Cell Biology, Science and Technology Faculty and Plentzia Marine Station, University of the Basque Country (UPV/EHU), Basque Country, Spain
| | - Mireia Irazola
- Dept. Analytical Chemistry and Plentzia Marine Station, University of the Basque Country (UPV/EHU), Basque Country, Spain
| | - Eider Bilbao
- CBET Research Group, Dept. Zoology and Animal Cell Biology, Science and Technology Faculty and Plentzia Marine Station, University of the Basque Country (UPV/EHU), Basque Country, Spain
| | - Lúcia Guilhermino
- Ecotoxicology Research Group, ICBAS, Institute of Biomedical Sciences of Abel Salazar and Research Group of Ecotoxicology, Stress Ecology and Environmental Health (ECOTOX), CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Portugal
| | - Miren P Cajaraville
- CBET Research Group, Dept. Zoology and Animal Cell Biology, Science and Technology Faculty and Plentzia Marine Station, University of the Basque Country (UPV/EHU), Basque Country, Spain.
| |
Collapse
|
15
|
Huang Y, Yao H, Li X, Li F, Wang X, Fu Z, Li N, Chen J. Differences of functionalized graphene materials on inducing chronic aquatic toxicity through the regulation of DNA damage, metabolism and oxidative stress in Daphnia magna. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162735. [PMID: 36907422 DOI: 10.1016/j.scitotenv.2023.162735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/19/2023] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
Abstract
Graphene can be modified with functional groups when released into the environment. However, very little is known about molecular mechanisms of chronic aquatic toxicity induced by graphene nanomaterials with different surface functional groups. By using RNA sequencing, we investigated the toxic mechanisms of unfunctionalized graphene (u-G), carboxylated graphene (G-COOH), aminated graphene (G-NH2), hydroxylated graphene (G-OH) and thiolated graphene (G-SH) to Daphnia magna during 21-day exposure. We revealed that alteration of ferritin transcription levels in the "mineral absorption" signaling pathway is a molecular initiating event leading to potential of oxidative stress in Daphnia magna by u-G, while toxic effects of four functionalized graphenes are related to several metabolic pathways including the "protein digestion and absorption" pathway and "carbohydrate digestion and absorption" pathway. The transcription and translation related pathways were inhibited by G-NH2 and G-OH, which further affected the functions of proteins and normal life activities. Noticeably, detoxifications of graphene and its surface functional derivatives were promoted by increasing the gene expressions related to chitin and glucose metabolism as well as cuticle structure components. These findings demonstrate important mechanistic insights that can potentially be employed for safety assessment of graphene nanomaterials.
Collapse
Affiliation(s)
- Yang Huang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, PR China
| | - Hongye Yao
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, PR China
| | - Xuehua Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, PR China.
| | - Fei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China
| | - Xiaoqing Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Zhiqiang Fu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, PR China
| | - Ningjing Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, PR China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, PR China
| |
Collapse
|
16
|
Cebadero-Dominguez Ó, Casas-Rodríguez A, Puerto M, Cameán AM, Jos A. In vitro safety assessment of reduced graphene oxide in human monocytes and T cells. ENVIRONMENTAL RESEARCH 2023; 232:116356. [PMID: 37295592 DOI: 10.1016/j.envres.2023.116356] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023]
Abstract
Considering the increase in the use of graphene derivatives in different fields, the environmental and human exposure to these materials is likely, and the potential consequences are not fully elucidated. This study is focused on the human immune system, as this plays a key role in the organism's homeostasis. In this sense, the cytotoxicity response of reduced graphene oxide (rGO) was investigated in monocytes (THP-1) and human T cells (Jurkat). A mean effective concentration (EC50-24 h) of 121.45 ± 11.39 μg/mL and 207.51 ± 21.67 μg/mL for cytotoxicity was obtained in THP-1 and Jurkat cells, respectively. rGO decreased THP-1 monocytes differentiation at the highest concentration after 48 h of exposure. Regarding the inflammatory response at genetic level, rGO upregulated IL-6 in THP-1 and all cytokines tested in Jurkat cells after 4 h of exposure. At 24 h, IL-6 upregulation was maintained, and a significant decrease of TNF-α gene expression was observed in THP-1 cells. Moreover, TNF-α, and INF-γ upregulation were maintained in Jurkat cells. With respect to the apoptosis/necrosis, gene expression was not altered in THP-1 cells, but a down regulation of BAX and BCL-2 was observed in Jurkat cells after 4 h of exposure. These genes showed values closer to negative control after 24 h. Finally, rGO did not trigger a significant release of any cytokine at any exposure time assayed. In conclusion, our data contributes to the risk assessment of this material and suggest that rGO has an impact on the immune system whose final consequences should be further investigated.
Collapse
Affiliation(s)
- Óscar Cebadero-Dominguez
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n°2, 41012, Seville, Spain.
| | - Antonio Casas-Rodríguez
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n°2, 41012, Seville, Spain.
| | - María Puerto
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n°2, 41012, Seville, Spain.
| | - Ana María Cameán
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n°2, 41012, Seville, Spain.
| | - Angeles Jos
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n°2, 41012, Seville, Spain.
| |
Collapse
|
17
|
Mottier A, Légnani M, Candaudap F, Flahaut E, Mouchet F, Gauthier L, Evariste L. Graphene oxide worsens copper-mediated embryo-larval toxicity in the pacific oyster while reduced graphene oxide mitigates the effects. CHEMOSPHERE 2023; 335:139140. [PMID: 37285981 DOI: 10.1016/j.chemosphere.2023.139140] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/01/2023] [Accepted: 06/03/2023] [Indexed: 06/09/2023]
Abstract
Due to their properties, graphene-based nanomaterials (GBMs) are triggering a great interest leading to an increase of their global production and use in new applications. As a consequence, their release into the environment is expected to increase in the next years. When considering the current knowledge in the evaluation of GBMs ecotoxic potential, studies aiming to evaluate the hazard associated to these nanomaterials towards marine species and particularly considering potential interactions with other environmental pollutants such as metals are scarce. Here we evaluated the embryotoxic potential of GBMs, which include graphene oxide (GO) and its reduced form (rGO), both individually and in combination with copper (Cu) as a referent toxicant, towards early life stages of the Pacific oyster through the use of a standardized method (NF ISO 17244). We found that following exposure to Cu, dose-dependent decrease in the proportion of normal larvae was recorded with an Effective Concentration leading to the occurrence of 50% of abnormal larvae (EC50) of 13.85 ± 1.21 μg/L. Interestingly, the presence of GO at a non-toxic dose of 0.1 mg/L decreased the Cu EC50 to 12.04 ± 0.85 μg/L while it increased to 15.91 ± 1.57 μg/L in presence of rGO. Based on the measurement of copper adsorption, the obtained results suggest that GO enhances Cu bioavailability, potentially modifying its toxic pathways, while rGO mitigates Cu toxicity by decreasing its bioavailability. This research underscores the need to characterize the risk associated to GBMs interactions with other aquatic contaminants and supports the adoption of a safer-by-design strategy using rGO in marine environments. This would contribute to minimize the potential adverse effects on aquatic species and to reduce the risk for economic activities associated to coastal environments.
Collapse
Affiliation(s)
- Antoine Mottier
- Adict Solutions - Campus INP ENSAT, Avenue de l'agrobiopole - BP 32607 - Auzeville-Tolosane, 31326, Castanet-Tolosan, cedex, France
| | - Morgan Légnani
- CIRIMAT, CNRS-INP-UPS, UMR N°5085, Université Toulouse 3 Paul Sabatier, 118 Route de Narbonne, CEDEX 9, F-31062, Toulouse, France
| | - Frédéric Candaudap
- Laboratoire d'Ecologie Fonctionnelle et Environnement, UMR 5245 CNRS, Université Paul Sabatier, 31062, Toulouse, France
| | - Emmanuel Flahaut
- CIRIMAT, CNRS-INP-UPS, UMR N°5085, Université Toulouse 3 Paul Sabatier, 118 Route de Narbonne, CEDEX 9, F-31062, Toulouse, France
| | - Florence Mouchet
- Laboratoire d'Ecologie Fonctionnelle et Environnement, UMR 5245 CNRS, Université Paul Sabatier, 31062, Toulouse, France
| | - Laury Gauthier
- Laboratoire d'Ecologie Fonctionnelle et Environnement, UMR 5245 CNRS, Université Paul Sabatier, 31062, Toulouse, France
| | - Lauris Evariste
- Laboratoire d'Ecologie Fonctionnelle et Environnement, UMR 5245 CNRS, Université Paul Sabatier, 31062, Toulouse, France.
| |
Collapse
|
18
|
Jakubowska-Lehrmann M, Dąbrowska A, Białowąs M, Makaras T, Hallmann A, Urban-Malinga B. The impact of various carbon nanomaterials on the morphological, behavioural, and biochemical parameters of rainbow trout in the early life stages. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 259:106550. [PMID: 37163832 DOI: 10.1016/j.aquatox.2023.106550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/12/2023]
Abstract
With the increasing production and the number of potential applications of carbon nanomaterials, mainly from the graphene family, their release into the natural environment, especially to aquatic ecosystems, is inevitable. The aim of the study was to determine the effects of various carbon nanomaterials (graphene nanoflakes (GNF), graphene oxide (GO), reduced graphene oxide (RGO) and silicon carbide nanofibers (NFSiC) in the concentration of 4 mg L-1 on the early life stages of the rainbow trout Oncorhynchus mykiss. The survival rates of O. mykiss were not affected after 36 days of exposure to studied materials, except for RGO, which caused significant mortality of both embryos and larvae compared to the control conditions. Larvae exposed to GO and NFSiC were characterized by a smaller standard body length at hatch, whereas at the end of the experiment, the growth of fish exposed to all materials was accelerated, especially in GO and RGO treatment, in which higher body weight and length were accompanied by lower volume of the yolk sac. Neither the markers of the oxidative damage nor the antioxidant enzymes activities were significantly affected in embryos, newly hatched larvae and larvae after 26-day exposure to studied carbon nanomaterials. Also, no neurotoxic effect expressed by the activity of the whole-body acetylcholinesterase was observed. Nevertheless, the significant increase in the velocity and the overall activity of larvae exposed to GNF (not investigated after exposure to other materials) must be highlighted. The most pronounced effect of RGO might be connected with its large particle size, sharp edges, and the presence of TiO2 nanoparticles. The results indicate for the first time that various carbon nanomaterials potentially released into aquatic ecosystems may have serious developmental implications for the early life stages of salmonid fish.
Collapse
Affiliation(s)
| | - Agnieszka Dąbrowska
- Laboratory of Spectroscopy and Intermolecular Interactions, Department of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland; University of Warsaw Biological and Chemical Research Centre, Żwirki i Wigury 101, Warsaw 02-089, Poland.
| | - Marcin Białowąs
- National Marine Fisheries Research Institute, Kołłątaja 1, Gdynia 81-332, Poland
| | - Tomas Makaras
- Nature Research Centre, Akademijos St. 2, Vilnius 08412, Lithuania
| | - Anna Hallmann
- Department of Pharmaceutical Biochemistry, Medical University of Gdańsk, Dębinki 1, Gdańsk, Poland
| | | |
Collapse
|
19
|
Kim KY, Kim JY, Park J, Choi YE. The cytotoxicity of nano- and micro-sized graphene oxides on microalgae depends on the characteristics of cell wall and flagella. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161783. [PMID: 36702276 DOI: 10.1016/j.scitotenv.2023.161783] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/06/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Cytotoxic effects of emerging contaminants in aquatic environments have been widely studied using diverse microalgal species. However, the role of microalgal characteristics such as presence/absence of cell wall or flagella on cytotoxicity of contaminants was not elucidated yet. In this study, four different Chlamydomonas reinhardtii strains that have different characteristics were used to confirm how these characteristics affect toxicity of contaminants, nano-/micro-sized graphene oxide (GO). The nano-sized GO inhibited the growth of cell wall-deficient strains and reduced the photosynthetic activity. The micro-sized GO inhibited the growth of all strains, but the inhibition efficiency was higher in flagella-deficient strains, indicating that cell wall and flagella have different roles in response to contaminant exposure. The electron microscopy analysis demonstrated that nano-sized GO caused the cell rupture in cell wall-deficient strains. In flagella-deficient strains, the nano- and micro-sized GOs were parallelly attached on the surface of cells, covering the cells. The wrapping of flagella-deficient cells by GO led to the increase of reactive oxygen species (ROS) contents. These results indicate main cytotoxic mechanism of nano-sized GO was the membrane damage of cells, and the presence of cell wall can protect the cells from the attack of nano-sized GO. On the one hand, the presence of flagella might help to avoid the attachment of GO while the cell proliferation and photosynthesis were inhibited in flagella-deficient cells due to the GO wrapping. Overall, given that different microalgal species have different characteristics and these characteristics might affect the cytotoxic effect of the contaminants, it is of great importance to consider the characteristics of test microalgal species when evaluating the cytotoxic mechanism of the nano-/micro-sized pollutants.
Collapse
Affiliation(s)
- Ka Young Kim
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Jee Young Kim
- Institute of Life Science and Natural Resources, Korea University, Seoul 02841, Republic of Korea
| | - Jaewon Park
- OJeong Resilience Institute, Korea University, Seoul 02841, Republic of Korea.
| | - Yoon-E Choi
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
20
|
Petersen E, Barrios AC, Bjorkland R, Goodwin DG, Li J, Waissi G, Henry T. Evaluation of bioaccumulation of nanoplastics, carbon nanotubes, fullerenes, and graphene family materials. ENVIRONMENT INTERNATIONAL 2023; 173:107650. [PMID: 36848829 DOI: 10.1016/j.envint.2022.107650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/15/2022] [Accepted: 11/19/2022] [Indexed: 06/18/2023]
Abstract
Bioaccumulation is a key factor in understanding the potential ecotoxicity of substances. While there are well-developed models and methods to evaluate bioaccumulation of dissolved organic and inorganic substances, it is substantially more challenging to assess bioaccumulation of particulate contaminants such as engineered carbon nanomaterials (CNMs; carbon nanotubes (CNTs), graphene family nanomaterials (GFNs), and fullerenes) and nanoplastics. In this study, the methods used to evaluate bioaccumulation of different CNMs and nanoplastics are critically reviewed. In plant studies, uptake of CNMs and nanoplastics into the roots and stems was observed. For multicellular organisms other than plants, absorbance across epithelial surfaces was typically limited. Biomagnification was not observed for CNTs and GFNs but were observed for nanoplastics in some studies. However, the reported absorption in many nanoplastic studies may be a consequence of an experimental artifact, namely release of the fluorescent probe from the plastic particles and subsequent uptake. We identify that additional work is needed to develop analytical methods to provide robust, orthogonal methods that can measure unlabeled (e.g., without isotopic or fluorescent labels) CNMs and nanoplastics.
Collapse
Affiliation(s)
- Elijah Petersen
- Biosystems and Biomaterials Division, NIST, Gaithersburg, MD 20899, United States.
| | - Ana C Barrios
- Biosystems and Biomaterials Division, NIST, Gaithersburg, MD 20899, United States
| | | | - David G Goodwin
- Engineering Laboratory, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899, United States
| | - Jennifer Li
- Biosystems and Biomaterials Division, NIST, Gaithersburg, MD 20899, United States
| | - Greta Waissi
- University of Eastern Finland, School of Pharmacy, POB 1627 70211, Kuopio, Finland
| | - Theodore Henry
- Institute of Life and Earth Sciences, School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| |
Collapse
|
21
|
Wu K, Li Y, Zhou Q, Hu X, Ouyang S. Integrating FTIR 2D correlation analyses, regular and omics analyses studies on the interaction and algal toxicity mechanisms between graphene oxide and cadmium. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130298. [PMID: 36356516 DOI: 10.1016/j.jhazmat.2022.130298] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/14/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Graphene oxide (GO, a popular 2D graphene-based nanomaterial) has developed quickly and has received considerable attention for its applications in environmental protection and pollutant removal. However, significant knowledge gaps still exist about the interaction characteristic and joint toxicity mechanism of GO and cadmium (Cd) on aquatic organisms. In this study, GO showed a high adsorption capacity (120. 6 mg/g) and strong adsorption affinity (KL = 0.85 L/mg) for Cd2+. Integrating multiple analytical methods (e.g., electron microscopy, Raman spectra, and 2D correlation spectroscopy) revealed that Cd2+ is uniformly adsorbed on the GO surface and edge mainly through cation-π interactions. The combined ecological effects of GO and Cd2+ on Chlorella vulgaris were observed. Cd2+ induced more severe growth inhibition, photosynthesis toxicity, ultrastructure damage and plasmolysis than GO. Interestingly, we found that GO nanosheets could augment the algal toxicity of Cd2+ (e.g., chlorophyll b, mitochondrial membrane damage, and uptake). Transcriptomics and metabolomics further explained the underlying mechanism. The results indicated that the regulation of PSI-, PSII-, and metal transport-related genes (e.g., ABCG37 and ZIP4) and the inhibition of metabolic pathways (e.g., amino acid, fatty acid, and carbohydrate metabolism) were responsible for the persistent phytotoxicity. The present work provides mechanistic insights into the roles of coexisting inorganic pollutants on the environmental fate and risk of GO in aquatic ecosystems.
Collapse
Affiliation(s)
- Kangying Wu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yuhao Li
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shaohu Ouyang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
22
|
Evariste L, Mouchet F, Pinelli E, Flahaut E, Gauthier L, Barret M. Gut microbiota impairment following graphene oxide exposure is associated to physiological alterations in Xenopus laevis tadpoles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159515. [PMID: 36270377 DOI: 10.1016/j.scitotenv.2022.159515] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/03/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Graphene-based nanomaterials such as graphene oxide (GO) possess unique properties triggering high expectations for the development of technological applications. Thus, GO is likely to be released in aquatic ecosystems. It is essential to evaluate its ecotoxicological potential to ensure a safe use of these nanomaterials. In amphibians, previous studies highlighted X. laevis tadpole growth inhibitions together with metabolic disturbances and genotoxic effects following GO exposure. As GO is known to exert bactericidal effects whereas the gut microbiota constitutes a compartment involved in host homeostasis regulation, it is important to determine if this microbial compartment constitutes a toxicological pathway involved in known GO-induced host physiological impairments. This study investigates the potential link between gut microbial communities and host physiological alterations. For this purpose, X. laevis tadpoles were exposed during 12 days to GO. Growth rate was monitored every 2 days and genotoxicity was assessed through enumeration of micronucleated erythrocytes. Genomic DNA was also extracted from the whole intestine to quantify gut bacteria and to analyze the community composition. GO exposure led to a dose dependent growth inhibition and genotoxic effects were detected following exposure to low doses. A transient decrease of the total bacteria was noticed with a persistent shift in the gut microbiota structure in exposed animals. Genotoxic effects were associated to gut microbiota remodeling characterized by an increase of the relative abundance of Bacteroides fragilis. The growth inhibitory effects would be associated to a shift in the Firmicutes/Bacteroidetes ratio while metagenome inference suggested changes in metabolic pathways and upregulation of detoxification processes. This work indicates that the gut microbiota compartment is a biological compartment of interest as it is integrative of host physiological alterations and should be considered for ecotoxicological studies as structural or functional impairments could lead to later life host fitness loss.
Collapse
Affiliation(s)
- Lauris Evariste
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France.
| | - Florence Mouchet
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Eric Pinelli
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Emmanuel Flahaut
- CIRIMAT, Université de Toulouse, CNRS, INPT, UPS, UMR CNRS-UPS-INP N°5085, Université Toulouse 3 Paul Sabatier, Bât. CIRIMAT, 118 Route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Laury Gauthier
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Maialen Barret
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| |
Collapse
|
23
|
González V, Frontiñan-Rubio J, Gomez MV, Montini T, Durán-Prado M, Fornasiero P, Prato M, Vázquez E. Easy and Versatile Synthesis of Bulk Quantities of Highly Enriched 13C-Graphene Materials for Biological and Safety Applications. ACS NANO 2023; 17:606-620. [PMID: 36538410 PMCID: PMC9835986 DOI: 10.1021/acsnano.2c09799] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
The preparation of bulk quantities of 13C-labeled graphene materials is relevant for basic investigations and for practical applications. In addition, 13C-labeled graphene materials can be very useful in biological and environmental studies, as they may allow the detection of graphene or its derivatives in cells or organs. In this paper, we describe the synthesis of 13C-labeled graphene materials (few-layer graphene, FLG, and graphene oxide, GO) on a tens of mg scale, starting from 13C-labeled methane to afford carbon fibers, followed by liquid-phase exfoliation (FLG) or oxidation (GO). The materials have been characterized by several analytical and microscopic techniques, including Raman and nuclear magnetic resonance spectroscopies, thermogravimetric analysis, X-ray photoelectron spectroscopy, and X-ray powder diffraction. As a proof of concept, the distribution of the title compounds in cells has been investigated. In fact, the analysis of the 13C/12C ratio with isotope ratio mass spectrometry (IRMS) allows the detection and quantification of very small amounts of material in cells or biological compartments with high selectivity, even when the material has been degraded. During the treatment of 13C-labeled FLG with HepG2 cells, 4.1% of the applied dose was found in the mitochondrial fraction, while 4.9% ended up in the nuclear fraction. The rest of the dose did not enter into the cell and remained in the plasma membrane or in the culture media.
Collapse
Affiliation(s)
- Viviana González
- Instituto
Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha, 13071Ciudad Real, Spain
| | - Javier Frontiñan-Rubio
- Instituto
Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha, 13071Ciudad Real, Spain
- Cell
Biology Area, Department of Medical Sciences, Faculty of Medicine, Universidad de Castilla-La Mancha, 13071Ciudad Real, Spain
| | - M. Victoria Gomez
- Instituto
Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha, 13071Ciudad Real, Spain
- Faculty
of Chemical Science and Technology, Universidad
de Castilla-La Mancha, 13071Ciudad Real, Spain
| | - Tiziano Montini
- Department
of Chemical and Pharmaceutical Sciences, INSTM UdR Trieste, University of Trieste, Via Giorgeri 1, 34127Trieste, Italy
- ICCOM-CNR, University of Trieste, Via L. Giorgieri 1, 34127Trieste, Italy
| | - Mario Durán-Prado
- Cell
Biology Area, Department of Medical Sciences, Faculty of Medicine, Universidad de Castilla-La Mancha, 13071Ciudad Real, Spain
| | - Paolo Fornasiero
- Department
of Chemical and Pharmaceutical Sciences, INSTM UdR Trieste, University of Trieste, Via Giorgeri 1, 34127Trieste, Italy
- ICCOM-CNR, University of Trieste, Via L. Giorgieri 1, 34127Trieste, Italy
| | - Maurizio Prato
- Department
of Chemical and Pharmaceutical Sciences, INSTM UdR Trieste, University of Trieste, Via Giorgeri 1, 34127Trieste, Italy
- Center
for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014Donostia San Sebastián, Spain
- Basque
Foundation for Science (IKERBASQUE), Plaza Euskadi 5, 48013Bilbao, Spain
| | - Ester Vázquez
- Instituto
Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha, 13071Ciudad Real, Spain
- Faculty
of Chemical Science and Technology, Universidad
de Castilla-La Mancha, 13071Ciudad Real, Spain
| |
Collapse
|
24
|
Muñoz J, Palacios-Corella M, Gómez IJ, Zajíčková L, Pumera M. Synthetic Nanoarchitectonics of Functional Organic-Inorganic 2D Germanane Heterostructures via Click Chemistry. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2206382. [PMID: 36113982 DOI: 10.1002/adma.202206382] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Succeeding graphene, 2D inorganic materials made of reactive van der Waals layers, like 2D germanane (2D-Ge) derivatives, have attracted great attention because their physicochemical characteristics can be entirely tuned by modulating the nature of the surface substituent. Although very interesting from a scientific point of view, almost all the reported works involving 2D-Ge derivatives are focused on computational studies. Herein, a first prototype of organic-inorganic 2D-Ge heterostructure has been synthesized by covalently anchoring thiol-rich carbon dots (CD-SH) onto 2D allyl germanane (2D-aGe) via a simple and green "one-pot" click chemistry approach. Remarkably, the implanted characteristics of the carbon nanomaterial provide new physicochemical features to the resulting 0D/2D heterostructure, making possible its implementation in yet unexplored optoelectronic tasks-e.g., as a fluorescence resonance energy transfer (FRET) sensing system triggered by supramolecular π-π interactions-that are inaccessible for the pristine 2D-aGe counterpart. Consequently, this work builds a foundation toward the robust achievement of functional organic-inorganic 2D-Ge nanoarchitectonics through covalently assembling thiol-rich carbon nanoallotropes on commercially available 2D-aGe.
Collapse
Affiliation(s)
- Jose Muñoz
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno, 612 00, Czech Republic
| | - Mario Palacios-Corella
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno, 612 00, Czech Republic
| | - I Jénnifer Gómez
- Department of Condensed Matter Physics, Faculty of Science, Masaryk University, Kotlářská 2, Brno, 611 37, Czech Republic
- Plasma Technologies, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno, 612 00, Czech Republic
| | - Lenka Zajíčková
- Department of Condensed Matter Physics, Faculty of Science, Masaryk University, Kotlářská 2, Brno, 611 37, Czech Republic
- Plasma Technologies, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno, 612 00, Czech Republic
| | - Martin Pumera
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno, 612 00, Czech Republic
- Department of Medical Research, China Medical University Hospital, China Medical University, No. 91 Hsueh-Shih Road, Taichung, 40402, Taiwan
- Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava, 70800, Czech Republic
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| |
Collapse
|
25
|
Evariste L, Lagier L, Chary C, Mottier A, Cadarsi S, Pinelli E, Flahaut E, Gauthier L, Mouchet F. Exposure of Midge Larvae ( Chironomus riparius) to Graphene Oxide Leads to Development Alterations. TOXICS 2022; 10:588. [PMID: 36287868 PMCID: PMC9608897 DOI: 10.3390/toxics10100588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/26/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Despite the fast-growing use and production of graphene-based nanomaterials (GBMs), data concerning their effects on freshwater benthic macroinvertebrates are scarce. This study aims to investigate the effects of graphene oxide (GO) on the midge Chironomus riparius. Mortality, growth inhibition, development delay and teratogenicity, assessed using mentum deformity analysis, were investigated after a 7-day static exposure of the first instar larvae under controlled conditions. The collected data indicated that the survival rate was not impacted by GO, whereas chronic toxicity following a dose-dependent response occurred. Larval growth was affected, leading to a significant reduction in larval length (from 4.4 to 10.1%) in individuals reaching the fourth instar at any of the tested concentrations (from 0.1 to 100 mg/L). However, exposure to GO is not associated with an increased occurrence of mouthpart deformities or seriousness in larvae. These results highlight the suitability of monitoring the larval development of C. riparius as a sensitive marker of GO toxicity. The potential ecological consequences of larval size decrease need to be considered for a complete characterization of the GO-related environmental risk.
Collapse
Affiliation(s)
- Lauris Evariste
- Laboratoire d’Ecologie Fonctionnelle et Environnement, UMR 5245 CNRS, Université Paul Sabatier, 31062 Toulouse, France
| | - Laura Lagier
- Laboratoire d’Ecologie Fonctionnelle et Environnement, UMR 5245 CNRS, Université Paul Sabatier, 31062 Toulouse, France
| | - Chloé Chary
- Laboratoire d’Ecologie Fonctionnelle et Environnement, UMR 5245 CNRS, Université Paul Sabatier, 31062 Toulouse, France
| | - Antoine Mottier
- Laboratoire d’Ecologie Fonctionnelle et Environnement, UMR 5245 CNRS, Université Paul Sabatier, 31062 Toulouse, France
| | - Stéphanie Cadarsi
- Laboratoire d’Ecologie Fonctionnelle et Environnement, UMR 5245 CNRS, Université Paul Sabatier, 31062 Toulouse, France
| | - Eric Pinelli
- Laboratoire d’Ecologie Fonctionnelle et Environnement, UMR 5245 CNRS, Université Paul Sabatier, 31062 Toulouse, France
| | - Emmanuel Flahaut
- CIRIMAT, CNRS-INP-UPS, UMR N°5085, Université Toulouse 3 Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse, France
| | - Laury Gauthier
- Laboratoire d’Ecologie Fonctionnelle et Environnement, UMR 5245 CNRS, Université Paul Sabatier, 31062 Toulouse, France
| | - Florence Mouchet
- Laboratoire d’Ecologie Fonctionnelle et Environnement, UMR 5245 CNRS, Université Paul Sabatier, 31062 Toulouse, France
| |
Collapse
|
26
|
Hong H, Part F, Nowack B. Prospective Dynamic and Probabilistic Material Flow Analysis of Graphene-Based Materials in Europe from 2004 to 2030. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:13798-13809. [PMID: 36150207 PMCID: PMC9535810 DOI: 10.1021/acs.est.2c04002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 06/08/2023]
Abstract
As industrial demand for graphene-based materials (GBMs) grows, more attention falls on potential environmental risks. The present article describes a first assessment of the environmental releases of GBMs using dynamic probabilistic material flow analysis. The model considered all current or expected uses of GBMs from 2004 to 2030, during which time there have already been significant changes in how the graphene mass produced is distributed to different product categories. Although the volume of GBM production is expected to grow exponentially in the coming years, outflow from the consumption of products containing GBMs shows only a slightly positive trend due to their long lifetimes and the large in-use stock of some applications (e.g., GBM composites used in wind turbine blades). From consumption and end-of-life phase GBM mass flows in 2030, estimates suggest that more than 50% will be incinerated and oxidized in waste plants, 16% will be landfilled, 12% will be exported out of Europe, and 1.4% of the annual production will flow to the environment. Predicted release concentrations for 2030 are 1.4 ng/L in surface water and 20 μg/kg in sludge-treated soil. This study's results could be used for prospective environmental risk assessments and as input for environmental fate models.
Collapse
Affiliation(s)
- Hyunjoo Hong
- Technology
and Society Laboratory, Empa, Swiss Federal
Laboratories for Materials Science and Technologies, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Florian Part
- Department
of Water-Atmosphere-Environment, Institute of Waste Management and
Circularity, University of Natural Resources
and Life Sciences, Muthgasse
107, 1190 Vienna, Austria
- 3.1
Fachbereich Gefahrgutverpackungen, Bundesanstalt
für Materialforschung und -prüfung (BAM),Unter den Eichen 44−46, 12203 Berlin, Germany
| | - Bernd Nowack
- Technology
and Society Laboratory, Empa, Swiss Federal
Laboratories for Materials Science and Technologies, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| |
Collapse
|
27
|
Hamrahjoo M, Hadad S, Dehghani E, Salami-Kalajahi M, Roghani-Mamaqani H. Preparation of matrix-grafted graphene/poly(poly(ethylene glycol) methyl ether methacrylate) nanocomposite gel polymer electrolytes by reversible addition-fragmentation chain transfer polymerization for lithium ion batteries. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
28
|
Briñas E, González VJ, Herrero MA, Zougagh M, Ríos Á, Vázquez E. SERS-Based Methodology for the Quantification of Ultratrace Graphene Oxide in Water Samples. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:9527-9535. [PMID: 35700386 PMCID: PMC9261266 DOI: 10.1021/acs.est.2c00937] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The extensive use of graphene materials in real-world applications has increased their potential release into the environment. To evaluate their possible health and ecological risks, there is a need for analytical methods that can quantify these materials at very low concentrations in environmental media such as water. In this work, a simple, reproducible, and sensitive method to detect graphene oxide (GO) in water samples using the surface-enhanced Raman spectroscopy (SERS) technique is presented. The Raman signal of graphene is enhanced when deposited on a substrate of gold nanoparticles (AuNPs), thus enabling its determination at low concentrations with no need for any preconcentration step. The practical limit of quantification achieved with the proposed method was 0.1 ng mL-1, which is lower than the predicted concentrations for graphene in effluent water reported to date. The optimized procedure has been successively applied to the determination of ultratraces of GO in water samples.
Collapse
Affiliation(s)
- Elena Briñas
- Department
of Organic Chemistry, Regional Institute
of Applied Scientific Research (IRICA), 13071 Ciudad Real, Spain
| | - Viviana Jehová González
- Department
of Organic Chemistry, Regional Institute
of Applied Scientific Research (IRICA), 13071 Ciudad Real, Spain
| | - María Antonia Herrero
- Department
of Organic Chemistry, Regional Institute
of Applied Scientific Research (IRICA), 13071 Ciudad Real, Spain
- Department
of Organic Chemistry, Faculty of Science and Chemistry Technologies, University of Castilla-La Mancha (UCLM), 13071 Ciudad Real, Spain
| | - Mohammed Zougagh
- Department
of Organic Chemistry, Regional Institute
of Applied Scientific Research (IRICA), 13071 Ciudad Real, Spain
- Department
of Analytical Chemistry and Food Technology, Faculty of Pharmacy, University of Castilla-La Mancha (UCLM), 02071 Albacete, Spain
| | - Ángel Ríos
- Department
of Analytical Chemistry and Food Technology, Faculty of Pharmacy, University of Castilla-La Mancha (UCLM), 02071 Albacete, Spain
- Department
of Analytical Chemistry and Food Technology, University of Castilla-La Mancha (UCLM), 13071 Ciudad Real, Spain
| | - Ester Vázquez
- Department
of Organic Chemistry, Regional Institute
of Applied Scientific Research (IRICA), 13071 Ciudad Real, Spain
- Department
of Organic Chemistry, Faculty of Science and Chemistry Technologies, University of Castilla-La Mancha (UCLM), 13071 Ciudad Real, Spain
| |
Collapse
|
29
|
Lu K, Zha Y, Dong S, Zhu Z, Lv Z, Gu Y, Deng R, Wang M, Gao S, Mao L. Uptake Route Altered the Bioavailability of Graphene in Misgurnus anguillicaudatus: Comparing Waterborne and Sediment Exposures. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:9435-9445. [PMID: 35700278 DOI: 10.1021/acs.est.2c01805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Numerous studies on the bioavailability of graphene-based nanomaterials relate to the water-only exposure route. However, the sediment exposure route should be the most important pathway for benthic organisms to ingest graphene, while to date little work on the bioavailability of graphene in benthic organisms has been explored. In this study, with the help of carbon-14-labeled few-layer graphene (14C-FLG), we quantificationally compared the bioaccumulation, biodistribution, and elimination kinetics of 14C-FLG in loaches via waterborne and sediment exposures. After 72 h of exposure, the accumulated 14C-FLG in loaches exposed via waterborne was 14.28 μg/g (dry mass), which was 3.18 times higher than that (4.49 μg/g) exposed via sediment. The biodistribution results showed that, compared to waterborne exposure, sediment exposure remarkably facilitated the transport of 14C-FLG from the gut into the liver, which made it difficult to be excreted. Although 14C-FLG did not cause significant hepatotoxicity, the disruption of intestinal microbiota homeostasis, immune response, and several key metabolic pathways in the gut were observed, which may be due to the majority of 14C-FLG being accumulated in the gut. Overall, this study reveals the different bioavailabilities of graphene in loaches via waterborne and sediment exposures, which is helpful in predicting its bioaccumulation capability and trophic transfer ability.
Collapse
Affiliation(s)
- Kun Lu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Yilin Zha
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Shipeng Dong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Zhiyu Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Zhuoyan Lv
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Yufei Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Renquan Deng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Mingjie Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Shixiang Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Liang Mao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| |
Collapse
|
30
|
Siqueira PR, Souza JP, Estevão BM, Altei WF, Carmo TLL, Santos FA, Araújo HSS, Zucolotto V, Fernandes MN. Concentration- and time-dependence toxicity of graphene oxide (GO) and reduced graphene oxide (rGO) nanosheets upon zebrafish liver cell line. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 248:106199. [PMID: 35613511 DOI: 10.1016/j.aquatox.2022.106199] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 04/10/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Graphene oxide (GO) and reduced graphene oxide (rGO) are carbon-based nanomaterials that have a wide range of applicability. Therefore, it is expected that their residual traces reach the aquatic environment, accumulate, and interact with its different compartments and the biota living in them. The concentration- and time-dependency response to GO and rGO in aquatic organisms are still poorly known. In the present study, the effects of GO and rGO on zebrafish hepatocytes were investigated using in vitro assays performed with established liver cell lines from zebrafish (ZFL). GO and rGO nanosheets were applied on ZFL cells at a concentration range of 1-100 µg mL-1 for 24 and 72 h. The internalization of GO and rGO nanosheets, reactive oxygen species (ROS) production, cell viability, and cell death were evaluated. The internalization of GO increased as the concentrations of GO increased. The rGO nanosheets were smaller than GO nanosheets, and their hydrophobic characteristic favors their interaction with the cell membrane. However, the rGO nanosheets were not observed in the uptake assay. Exposure for 72 h was found to cause harmful effects in ZFL cells, causing higher ROS production in cells exposed to rGO and stopping cell replication. Nevertheless, GO did not stop cell replication, but exposed cells had higher levels of apoptosis and necrosis. After 72 h, both GO and rGO were toxic, but with different mechanisms of toxicity.
Collapse
Affiliation(s)
- Priscila Rodrigues Siqueira
- Federal University of São Carlos, Rod. Washington Luiz Km 235, 13565-905 São Carlos, São Paulo, Brazil; Physiological Sciences Department, Federal University of São Carlos, Rod. Washington Luís, km 235, 13565-905 São Carlos, São Paulo, Brazil.
| | - Jaqueline Pérola Souza
- Institute of Physics, University of São Paulo, Av. Trabalhador São-Carlense, 400, 13566-970 São Carlos, São Paulo, Brazil
| | - Bianca Martins Estevão
- Institute of Physics, University of São Paulo, Av. Trabalhador São-Carlense, 400, 13566-970 São Carlos, São Paulo, Brazil
| | - Wanessa Fernanda Altei
- Physiological Sciences Department, Federal University of São Carlos, Rod. Washington Luís, km 235, 13565-905 São Carlos, São Paulo, Brazil; Radiation Oncology Department, Barretos Cancer Hospital, SP, Brazil; Molecular Oncology Research Center, Barretos Cancer Hospital, SP, Brazil
| | - Talita Laurie Lustosa Carmo
- Departamento de Ciências Fisiológicas, Universidade Federal do Amazonas, Av. Gen. Rodrigo Octávio, 6200, Campus Universitário, 69080-900 Manaus, Amazonas, Brazil
| | - Fabrício Aparecido Santos
- Institute of Physics, University of São Paulo, Av. Trabalhador São-Carlense, 400, 13566-970 São Carlos, São Paulo, Brazil
| | - Heloísa Sobreiro Selistre Araújo
- Physiological Sciences Department, Federal University of São Carlos, Rod. Washington Luís, km 235, 13565-905 São Carlos, São Paulo, Brazil
| | - Valtecir Zucolotto
- Institute of Physics, University of São Paulo, Av. Trabalhador São-Carlense, 400, 13566-970 São Carlos, São Paulo, Brazil
| | - Marisa Narciso Fernandes
- Federal University of São Carlos, Rod. Washington Luiz Km 235, 13565-905 São Carlos, São Paulo, Brazil; Physiological Sciences Department, Federal University of São Carlos, Rod. Washington Luís, km 235, 13565-905 São Carlos, São Paulo, Brazil.
| |
Collapse
|
31
|
Jiang C, Liu S, Zhang T, Liu Q, Alvarez PJJ, Chen W. Current Methods and Prospects for Analysis and Characterization of Nanomaterials in the Environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:7426-7447. [PMID: 35584364 DOI: 10.1021/acs.est.1c08011] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Analysis and characterization of naturally occurring and engineered nanomaterials in the environment are critical for understanding their environmental behaviors and defining real exposure scenarios for environmental risk assessment. However, this is challenging primarily due to the low concentration, structural heterogeneity, and dynamic transformation of nanomaterials in complex environmental matrices. In this critical review, we first summarize sample pretreatment methods developed for separation and preconcentration of nanomaterials from environmental samples, including natural waters, wastewater, soils, sediments, and biological media. Then, we review the state-of-the-art microscopic, spectroscopic, mass spectrometric, electrochemical, and size-fractionation methods for determination of mass and number abundance, as well as the morphological, compositional, and structural properties of nanomaterials, with discussion on their advantages and limitations. Despite recent advances in detecting and characterizing nanomaterials in the environment, challenges remain to improve the analytical sensitivity and resolution and to expand the method applications. It is important to develop methods for simultaneous determination of multifaceted nanomaterial properties for in situ analysis and characterization of nanomaterials under dynamic environmental conditions and for detection of nanoscale contaminants of emerging concern (e.g., nanoplastics and biological nanoparticles), which will greatly facilitate the standardization of nanomaterial analysis and characterization methods for environmental samples.
Collapse
Affiliation(s)
- Chuanjia Jiang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin 300350, China
| | - Songlin Liu
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin 300350, China
| | - Tong Zhang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin 300350, China
| | - Qian Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Wei Chen
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin 300350, China
| |
Collapse
|
32
|
Hasan MS, Dong J, Gadhamshetty V, Geza M. Modeling graphene oxide transport and retention in biochar. JOURNAL OF CONTAMINANT HYDROLOGY 2022; 248:104014. [PMID: 35462133 DOI: 10.1016/j.jconhyd.2022.104014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 02/28/2022] [Accepted: 04/10/2022] [Indexed: 06/14/2023]
Abstract
Experimental data from fixed-bed column studies and a numerical model based on convection-dispersion equations were used to describe transport and retention of Graphene Oxide (GO) in sand, biochar (BC), and BC modified with nanoscale zero-valent iron (BC-nZVI). Three blocking functions, namely no blocking, site-blocking, and depth-dependent blocking, were used to analyze GO transport and retention behavior in each media as a function of Ionic Strength (IS). An inverse modeling approach was implemented to determine the attachment coefficient (Ka) and maximum solid-phase retention capacity (Smax). The Langmuirian attachment model with site-blocking function effectively described experimental GO breakthrough curves (R2 ~ 0.70-0.99) compared to other models, indicating the importance of introducing a limit on the attachment capacity of the media. The Ka values for BC and BC-nZVI were significantly higher than sand, attributable to high porosity, roughness, and surface chemical properties. The models predicted an increasing trend in Ka (0.065 to 0.615 min-1) in BC with increasing IS (0.1 to 10 mM), while Ka values decreased (2.26 to 0.349 min-1) for BC-nZVI. A consistent increase in Smax was observed for both BC and BC-nZVI with increasing IS. Scenario analysis was conducted to further understand the effect of influent IS, GO concentration, and treatment depth. BC-nZVI exhibited a higher Ka and Smax and as a result, higher GO retention than BC at lower IS (0.1 and 1.0 mM). BC-nZVI had a relatively lower Ka (0.349 min-1) at 10 mM IS, however, it outperformed BC when GO retention capacities are compared over a longer period attributable to a higher Smax (6.47). Complete GO breakthrough occurred in a 5 cm media after 350 and 465 days for BC and BC-nZVI, respectively at 10 mM IS and influent concentration of 0.1 mg·L-1. GO breakthrough time increased with increasing treatment depth, however, the relation was non-linear.
Collapse
Affiliation(s)
- Md Sazadul Hasan
- Department of Civil and Environmental engineering, South Dakota School of Mines and Technology, 501 East Saint Joseph Street, Rapid City, SD 57701, United States
| | - Jingnuo Dong
- Department of Civil and Environmental engineering, South Dakota School of Mines and Technology, 501 East Saint Joseph Street, Rapid City, SD 57701, United States
| | - Venkataramana Gadhamshetty
- 2-Dimensional Materials for Biofilm Engineering Science and Technology (2DBEST) Center, South Dakota School of Mines and Technology, 501 East Saint Joseph Street, Rapid City, SD 57701, United States
| | - Mengistu Geza
- Department of Civil and Environmental engineering, South Dakota School of Mines and Technology, 501 East Saint Joseph Street, Rapid City, SD 57701, United States.
| |
Collapse
|
33
|
Chang X, Tan YM, Allen DG, Bell S, Brown PC, Browning L, Ceger P, Gearhart J, Hakkinen PJ, Kabadi SV, Kleinstreuer NC, Lumen A, Matheson J, Paini A, Pangburn HA, Petersen EJ, Reinke EN, Ribeiro AJS, Sipes N, Sweeney LM, Wambaugh JF, Wange R, Wetmore BA, Mumtaz M. IVIVE: Facilitating the Use of In Vitro Toxicity Data in Risk Assessment and Decision Making. TOXICS 2022; 10:232. [PMID: 35622645 PMCID: PMC9143724 DOI: 10.3390/toxics10050232] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/24/2022] [Indexed: 02/04/2023]
Abstract
During the past few decades, the science of toxicology has been undergoing a transformation from observational to predictive science. New approach methodologies (NAMs), including in vitro assays, in silico models, read-across, and in vitro to in vivo extrapolation (IVIVE), are being developed to reduce, refine, or replace whole animal testing, encouraging the judicious use of time and resources. Some of these methods have advanced past the exploratory research stage and are beginning to gain acceptance for the risk assessment of chemicals. A review of the recent literature reveals a burst of IVIVE publications over the past decade. In this review, we propose operational definitions for IVIVE, present literature examples for several common toxicity endpoints, and highlight their implications in decision-making processes across various federal agencies, as well as international organizations, including those in the European Union (EU). The current challenges and future needs are also summarized for IVIVE. In addition to refining and reducing the number of animals in traditional toxicity testing protocols and being used for prioritizing chemical testing, the goal to use IVIVE to facilitate the replacement of animal models can be achieved through their continued evolution and development, including a strategic plan to qualify IVIVE methods for regulatory acceptance.
Collapse
Affiliation(s)
- Xiaoqing Chang
- Inotiv-RTP, 601 Keystone Park Drive, Suite 200, Morrisville, NC 27560, USA; (X.C.); (D.G.A.); (S.B.); (L.B.); (P.C.)
| | - Yu-Mei Tan
- U.S. Environmental Protection Agency, Office of Pesticide Programs, 109 T.W. Alexander Drive, Durham, NC 27709, USA;
| | - David G. Allen
- Inotiv-RTP, 601 Keystone Park Drive, Suite 200, Morrisville, NC 27560, USA; (X.C.); (D.G.A.); (S.B.); (L.B.); (P.C.)
| | - Shannon Bell
- Inotiv-RTP, 601 Keystone Park Drive, Suite 200, Morrisville, NC 27560, USA; (X.C.); (D.G.A.); (S.B.); (L.B.); (P.C.)
| | - Paul C. Brown
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, 10903 New Hampshire Avenue, Silver Spring, MD 20903, USA; (P.C.B.); (A.J.S.R.); (R.W.)
| | - Lauren Browning
- Inotiv-RTP, 601 Keystone Park Drive, Suite 200, Morrisville, NC 27560, USA; (X.C.); (D.G.A.); (S.B.); (L.B.); (P.C.)
| | - Patricia Ceger
- Inotiv-RTP, 601 Keystone Park Drive, Suite 200, Morrisville, NC 27560, USA; (X.C.); (D.G.A.); (S.B.); (L.B.); (P.C.)
| | - Jeffery Gearhart
- The Henry M. Jackson Foundation, Air Force Research Laboratory, 711 Human Performance Wing, Wright-Patterson Air Force Base, OH 45433, USA;
| | - Pertti J. Hakkinen
- National Library of Medicine, National Center for Biotechnology Information, 8600 Rockville Pike, Bethesda, MD 20894, USA;
| | - Shruti V. Kabadi
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Food Additive Safety, 5001 Campus Drive, HFS-275, College Park, MD 20740, USA;
| | - Nicole C. Kleinstreuer
- National Institute of Environmental Health Sciences, National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods, P.O. Box 12233, Research Triangle Park, NC 27709, USA;
| | - Annie Lumen
- U.S. Food and Drug Administration, National Center for Toxicological Research, 3900 NCTR Road, Jefferson, AR 72079, USA;
| | - Joanna Matheson
- U.S. Consumer Product Safety Commission, Division of Toxicology and Risk Assessment, 5 Research Place, Rockville, MD 20850, USA;
| | - Alicia Paini
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy;
| | - Heather A. Pangburn
- Air Force Research Laboratory, 711 Human Performance Wing, 2729 R Street, Area B, Building 837, Wright-Patterson Air Force Base, OH 45433, USA;
| | - Elijah J. Petersen
- U.S. Department of Commerce, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA;
| | - Emily N. Reinke
- U.S. Army Public Health Center, 8252 Blackhawk Rd., Aberdeen Proving Ground, MD 21010, USA;
| | - Alexandre J. S. Ribeiro
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, 10903 New Hampshire Avenue, Silver Spring, MD 20903, USA; (P.C.B.); (A.J.S.R.); (R.W.)
| | - Nisha Sipes
- U.S. Environmental Protection Agency, Center for Computational Toxicology and Exposure, 109 TW Alexander Dr., Research Triangle Park, NC 27711, USA; (N.S.); (J.F.W.); (B.A.W.)
| | - Lisa M. Sweeney
- UES, Inc., 4401 Dayton-Xenia Road, Beavercreek, OH 45432, Assigned to Air Force Research Laboratory, 711 Human Performance Wing, Wright-Patterson Air Force Base, OH 45433, USA;
| | - John F. Wambaugh
- U.S. Environmental Protection Agency, Center for Computational Toxicology and Exposure, 109 TW Alexander Dr., Research Triangle Park, NC 27711, USA; (N.S.); (J.F.W.); (B.A.W.)
| | - Ronald Wange
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, 10903 New Hampshire Avenue, Silver Spring, MD 20903, USA; (P.C.B.); (A.J.S.R.); (R.W.)
| | - Barbara A. Wetmore
- U.S. Environmental Protection Agency, Center for Computational Toxicology and Exposure, 109 TW Alexander Dr., Research Triangle Park, NC 27711, USA; (N.S.); (J.F.W.); (B.A.W.)
| | - Moiz Mumtaz
- Agency for Toxic Substances and Disease Registry, Office of the Associate Director for Science, 1600 Clifton Road, S102-2, Atlanta, GA 30333, USA
| |
Collapse
|
34
|
Syngouna VI, Kourtaki KI, Georgopoulou MP, Chrysikopoulos CV. The role of nanoparticles (titanium dioxide, graphene oxide) on the inactivation of co-existing bacteria in the presence and absence of quartz sand. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:19199-19211. [PMID: 34709550 DOI: 10.1007/s11356-021-17086-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
The increased mass production and application of engineered nanomaterials (ENMs) have resulted in the release of nanoparticles (NPs) in the environment, raising uncertainties regarding their environmental impacts. This study examines the effect of graphene oxide (GO) and titanium dioxide (TiO2) NPs on the inactivation of the three model bacteria originated by mammalians including humans: Escherichia (E.) coli, Enterococcus (E.) faecalis, and Staphylococcus (S.) aureus. A series of dynamic batch experiments were conducted at constant room temperature (22 °C) in order to examine the inactivation of co-existing bacteria by NPs, in the presence and absence of quartz sand. The inactivation experimental data were satisfactorily fitted with a pseudo-first order expression with a time dependent rate coefficient. The inactivation of E. coli and S. aureus was shown to increase in the co-presence of GO or TiO2 NPs and quartz sand comparing with the presence of GO or TiO2 NPs alone. For E. faecalis, no clear trend was observed. Moreover, quartz sand was shown to affect inactivation of bacteria by GO and TiO2 NPs. Among the bacteria examined, the highest inactivation rates were observed for S. aureus.
Collapse
Affiliation(s)
- Vasiliki I Syngouna
- School of Chemical and Environmental Engineering, Technical University of Crete, 73100, Chania, Greece.
- Department of Environment, Ionian University, 29100, Zakynthos, Greece.
| | - Kleanthi I Kourtaki
- School of Chemical and Environmental Engineering, Technical University of Crete, 73100, Chania, Greece
| | - Maria P Georgopoulou
- School of Chemical and Environmental Engineering, Technical University of Crete, 73100, Chania, Greece
| | | |
Collapse
|
35
|
Giroux M, Zahra Z, Salawu OA, Burgess RM, Ho KT, Adeleye AS. Assessing the Environmental Effects Related to Quantum Dot Structure, Function, Synthesis and Exposure. ENVIRONMENTAL SCIENCE. NANO 2022; 9:867-910. [PMID: 35401985 PMCID: PMC8992011 DOI: 10.1039/d1en00712b] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Quantum dots (QDs) are engineered semiconductor nanocrystals with unique fluorescent, quantum confinement, and quantum yield properties, making them valuable in a range of commercial and consumer imaging, display, and lighting technologies. Production and usage of QDs are increasing, which increases the probability of these nanoparticles entering the environment at various phases of their life cycle. This review discusses the major types and applications of QDs, their potential environmental exposures, fates, and adverse effects on organisms. For most applications, release to the environment is mainly expected to occur during QD synthesis and end-product manufacturing since encapsulation of QDs in these devices prevents release during normal use or landfilling. In natural waters, the fate of QDs is controlled by water chemistry, light intensity, and the physicochemical properties of QDs. Research on the adverse effects of QDs primarily focuses on sublethal endpoints rather than acute toxicity, and the differences in toxicity between pristine and weathered nanoparticles are highlighted. A proposed oxidative stress adverse outcome pathway framework demonstrates the similarities among metallic and carbon-based QDs that induce reactive oxygen species formation leading to DNA damage, reduced growth, and impaired reproduction in several organisms. To accurately evaluate environmental risk, this review identifies critical data gaps in QD exposure and ecological effects, and provides recommendations for future research. Future QD regulation should emphasize exposure and sublethal effects of metal ions released as the nanoparticles weather under environmental conditions. To date, human exposure to QDs from the environment and resulting adverse effects has not been reported.
Collapse
Affiliation(s)
- Marissa Giroux
- U.S. Environmental Protection Agency, ORD/CEMM Atlantic Coastal Environmental Sciences Division, Narragansett, Rhode Island, USA
| | - Zahra Zahra
- Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, CA 92697-2175, USA
| | - Omobayo A. Salawu
- Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, CA 92697-2175, USA
| | - Robert M Burgess
- U.S. Environmental Protection Agency, ORD/CEMM Atlantic Coastal Environmental Sciences Division, Narragansett, Rhode Island, USA
| | - Kay T Ho
- U.S. Environmental Protection Agency, ORD/CEMM Atlantic Coastal Environmental Sciences Division, Narragansett, Rhode Island, USA
| | - Adeyemi S Adeleye
- Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, CA 92697-2175, USA
| |
Collapse
|
36
|
Wang D, Zhang J, Cao R, Zhang Y, Li J. The detection and characterization techniques for the interaction between graphene oxide and natural colloids: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:151906. [PMID: 34838546 DOI: 10.1016/j.scitotenv.2021.151906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
The high dispersibility of graphene oxide (GO) and the universality of natural colloids (clay minerals, (hydr)oxides of Al, Fe, silica, etc.) make them interact easily. Many kinds of analytical methods have been used to study the interaction between GO and natural colloids. This review provides a comprehensive overview of analytical methods for the detection and quantification of interaction process. We highlighted the influence of the most relevant environmental factors (ionic strength, pH, etc.) on batch experiment, quartz crystal microbalance with dissipation monitoring measurements, and column experiments. Besides, the benefits and drawbacks of spectroscopic, microscopic techniques, theoretical models, calculation and time-resolved dynamic light scattering methods also have discussed in this work. This review can give some guidance to researchers in their selection and combination of the technique for the research of the interaction between GO and natural colloids.
Collapse
Affiliation(s)
- De Wang
- CAS Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China; University of Science and Technology of China, Hefei 230026, PR China
| | - Jianfeng Zhang
- CAS Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China; University of Science and Technology of China, Hefei 230026, PR China
| | - Ruya Cao
- CAS Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China; University of Science and Technology of China, Hefei 230026, PR China
| | - Yingzi Zhang
- CAS Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China; University of Science and Technology of China, Hefei 230026, PR China
| | - Jiaxing Li
- CAS Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China; University of Science and Technology of China, Hefei 230026, PR China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, PR China.
| |
Collapse
|
37
|
Manousiouthakis E, Park J, Hardy JG, Lee JY, Schmidt CE. Towards the translation of electroconductive organic materials for regeneration of neural tissues. Acta Biomater 2022; 139:22-42. [PMID: 34339871 DOI: 10.1016/j.actbio.2021.07.065] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 12/13/2022]
Abstract
Carbon-based conductive and electroactive materials (e.g., derivatives of graphene, fullerenes, polypyrrole, polythiophene, polyaniline) have been studied since the 1970s for use in a broad range of applications. These materials have electrical properties comparable to those of commonly used metals, while providing other benefits such as flexibility in processing and modification with biologics (e.g., cells, biomolecules), to yield electroactive materials with biomimetic mechanical and chemical properties. In this review, we focus on the uses of these electroconductive materials in the context of the central and peripheral nervous system, specifically recent studies in the peripheral nerve, spinal cord, brain, eye, and ear. We also highlight in vivo studies and clinical trials, as well as a snapshot of emerging classes of electroconductive materials (e.g., biodegradable materials). We believe such specialized electrically conductive biomaterials will clinically impact the field of tissue regeneration in the foreseeable future. STATEMENT OF SIGNIFICANCE: This review addresses the use of conductive and electroactive materials for neural tissue regeneration, which is of significant interest to a broad readership, and of particular relevance to the growing community of scientists, engineers and clinicians in academia and industry who develop novel medical devices for tissue engineering and regenerative medicine. The review covers the materials that may be employed (primarily focusing on derivatives of fullerenes, graphene and conjugated polymers) and techniques used to analyze materials composed thereof, followed by sections on the application of these materials to nervous tissues (i.e., peripheral nerve, spinal cord, brain, optical, and auditory tissues) throughout the body.
Collapse
Affiliation(s)
- Eleana Manousiouthakis
- Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville 32611, FL, United States
| | - Junggeon Park
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - John G Hardy
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom; Materials Science Institute, Lancaster University, Lancaster LA1 4YB, United Kingdom.
| | - Jae Young Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.
| | - Christine E Schmidt
- Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville 32611, FL, United States.
| |
Collapse
|
38
|
Guo Q, Yang Y, Zhao L, Chen J, Duan G, Yang Z, Zhou R. Graphene oxide toxicity in W 1118 flies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150302. [PMID: 34536880 DOI: 10.1016/j.scitotenv.2021.150302] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 08/09/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
The risk of graphene oxide (GO) exposure to various species has been greatly amplified in recent years due to its booming production and applications in various fields. However, a deep understanding of the GO biosafety lags its wide applications. Herein, we used W1118 flies as a model organism to study GO toxicity at relatively low concentrations. We found that GO exposure led to remarkable weight loss, delayed development, retarded motion, and shortened lifespan of these flies. On the other hand, the GO influence on their sex ratio and the total number of pupae and adults were insignificant. The toxicological effect of GO was shown to be related to its serious compromise of the nutrient absorption in flies due to the severe damages in midguts. These damages were then attributed to the excessive accumulation of reactive oxygen species (ROS), which triggers the oxidative stress. These findings reveal the underlying mechanisms of GO biotoxicities in fruit flies, which might provide a useful reference to assess the risks of these newly invented nanomaterials likely never encountered by various species before.
Collapse
Affiliation(s)
- Qing Guo
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Ying Yang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Lin Zhao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Jian Chen
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Guangxin Duan
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
| | - Zaixing Yang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
| | - Ruhong Zhou
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China; Institute of Quantitative Biology and College of Life Sciences, Zhejiang University, 310058 Hangzhou, China
| |
Collapse
|
39
|
Petersen EJ, Ceger P, Allen DG, Coyle J, Derk R, Reyero NG, Gordon J, Kleinstreuer N, Matheson J, McShan D, Nelson BC, Patri AK, Rice P, Rojanasakul L, Sasidharan A, Scarano L, Chang X. U.S. Federal Agency interests and key considerations for new approach methodologies for nanomaterials. ALTEX 2021; 39:183–206. [PMID: 34874455 PMCID: PMC9115850 DOI: 10.14573/altex.2105041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 12/02/2021] [Indexed: 12/22/2022]
Abstract
Engineered nanomaterials (ENMs) come in a wide array of shapes, sizes, surface coatings, and compositions, and often possess novel or enhanced properties compared to larger sized particles of the same elemental composition. To ensure the safe commercialization of products containing ENMs, it is important to thoroughly understand their potential risks. Given that ENMs can be created in an almost infinite number of variations, it is not feasible to conduct in vivo testing on each type of ENM. Instead, new approach methodologies (NAMs) such as in vitro or in chemico test methods may be needed, given their capacity for higher throughput testing, lower cost, and ability to provide information on toxicological mechanisms. However, the different behaviors of ENMs compared to dissolved chemicals may challenge safety testing of ENMs using NAMs. In this study, member agencies within the Interagency Coordinating Committee on the Validation of Alternative Methods were queried about what types of ENMs are of agency interest and whether there is agency-specific guidance for ENM toxicity testing. To support the ability of NAMs to provide robust results in ENM testing, two key issues in the usage of NAMs, namely dosimetry and interference/bias controls, are thoroughly discussed.
Collapse
Affiliation(s)
- Elijah J. Petersen
- U.S. Department of Commerce, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Patricia Ceger
- Integrated Laboratory Systems LLC, Research Triangle Park, NC, USA
| | - David G. Allen
- Integrated Laboratory Systems LLC, Research Triangle Park, NC, USA
| | - Jayme Coyle
- National Institute for Occupational Safety and Health, Health Effects Laboratory Division, Morgantown, WV, USA
- Current affiliation: UES, Inc., Dayton, OH, USA
| | - Raymond Derk
- National Institute for Occupational Safety and Health, Health Effects Laboratory Division, Morgantown, WV, USA
| | | | - John Gordon
- U.S. Consumer Product Safety Commission, Bethesda, MD, USA
| | - Nicole Kleinstreuer
- National Institute of Environmental Health Sciences, National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods, Research Triangle Park, NC, USA
| | | | - Danielle McShan
- U.S. Environmental Protection Agency, Office of Pesticide Programs, Washington, DC, USA
| | - Bryant C. Nelson
- U.S. Department of Commerce, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Anil K. Patri
- U.S. Food and Drug Administration, National Center for Toxicological Research, Jefferson, AR, USA
| | - Penelope Rice
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, MD, USA
| | - Liying Rojanasakul
- National Institute for Occupational Safety and Health, Health Effects Laboratory Division, Morgantown, WV, USA
| | - Abhilash Sasidharan
- U.S. Environmental Protection Agency, Office of Pollution Prevention and Toxics, Washington, DC, USA
| | - Louis Scarano
- U.S. Environmental Protection Agency, Office of Pollution Prevention and Toxics, Washington, DC, USA
| | - Xiaoqing Chang
- Integrated Laboratory Systems LLC, Research Triangle Park, NC, USA
| |
Collapse
|
40
|
You Y, Liu L, Wang Y, Li J, Ying Z, Hou Z, Liu H, Du S. Graphene oxide decreases Cd concentration in rice seedlings but intensifies growth restriction. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:125958. [PMID: 34020354 DOI: 10.1016/j.jhazmat.2021.125958] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 03/30/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
The extensive use of graphene oxide (GO) results in its inevitable entry into the environment, raising risks to the environment, especially the ecological risks when coexisting with other contaminants. Nevertheless, how GO affects the biological behavior of Cd in plants remains poorly understood. Here, we report that the transcript levels of Cd transporters, including OsIRT1, OsIRT2, OsNramp1, OsNramp5, and OsHMA2, were decreased by 56-96% in Cd-stressed rice seedlings with exposure to 400 mg L-1 GO compared with those without GO exposure. The in situ non-invasive microelectrodes test revealed that GO clearly reduced the net Cd influx of rice roots. Thus, GO exposure decreased the level of Cd in rice seedlings by approximately 60%, compared with the GO-free condition. However, the analyses of biomass, chlorophyll fluorescence parameters and Evans blue staining, indicated that GO had adverse effects on the robustness of plants under the Cd co-contaminated condition. Taken together, although GO reduced the accumulation of Cd in rice seedlings, it still negatively affected plant growth. Therefore, the positive and negative impacts of GO on crop production are of concern. Our findings provide new information for establishing a wider phytotoxicity evaluation system for the safe manufacture and use of GO.
Collapse
Affiliation(s)
- Yue You
- Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Lijuan Liu
- Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Yu Wang
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Jiaxin Li
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Zhining Ying
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Zhilin Hou
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Huijun Liu
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Shaoting Du
- Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China.
| |
Collapse
|
41
|
Phototransformation of Graphene Oxide on the Removal of Sulfamethazine in a Water Environment. NANOMATERIALS 2021; 11:nano11082134. [PMID: 34443964 PMCID: PMC8398241 DOI: 10.3390/nano11082134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/08/2021] [Accepted: 08/19/2021] [Indexed: 11/17/2022]
Abstract
Graphene oxide (GO) is widely used in various fields and has raised concerns regarding its potential environmental fate and effect. However, there are few studies on its influence on coexisting pollutants. In this study, the phototransformation of GO and coexisting sulfamethazine (SMZ) under UV irradiation was investigated, with a focus on the role of reactive oxygen species. The results demonstrated that GO promoted the degradation of SMZ under UV irradiation. The higher the concentration of GO, the higher the degradation rate of SMZ, and the faster the first-order reaction rate. Two main radicals, ∙OH and 1O2, both contributed greatly in terms of regulating the removal of SMZ. Cl−, SO42−, and pH mainly promoted SMZ degradation by increasing the generation of ∙OH, while humic acid inhibited SMZ degradation due to the reduction of ∙OH. Moreover, after UV illumination, the GO suspension changed from light yellow to dark brown with increasing absorbance at a wavelength of 225 nm. Raman spectra revealed that the ID/IG ratio slightly decreased, indicating that some of the functional groups on the surface of GO were removed under low-intensity UV illumination. This study revealed that GO plays important roles in the photochemical transformation of environmental pollutants, which is helpful for understanding the environmental behaviors and risks of nanoparticles in aquatic environments.
Collapse
|
42
|
Sun B, Zhang Y, Li R, Wang K, Xiao B, Yang Y, Wang J, Zhu L. New insights into the colloidal stability of graphene oxide in aquatic environment: Interplays of photoaging and proteins. WATER RESEARCH 2021; 200:117213. [PMID: 34015575 DOI: 10.1016/j.watres.2021.117213] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
Wide application leads to release of graphene oxide (GO) in aquatic environment, where it is subjected to photoaging and changes in physicochemical properties. As important component of natural organic matters, proteins may greatly affect the aggregation behaviors of photoaged GO. The effects of a typical model protein (bovine serum albumin, BSA) on the colloidal stability of photoaged GO were firstly investigated. Photoaging reduced the lateral size and oxygen-containing groups of GO, while the graphene domains and hydrophobicity increased as a function of irradiation time (0-24 h). Consequently, the photoaged GO became less stable than the pristine one in electrolyte solutions. Adsorption of BSA on the surface of the photoaged GO decreased as well, leading to thinner BSA coating on the photoaged GO. In the solutions with low concentrations of electrolytes, the aggregation rate constants (k) of all the photoaged GO firstly increased to the maximum agglomeration rate constants (kfast, regime I), maintained at kfast (regime Ⅱ) and then decreased to zero (regime Ⅲ) as the BSA concentration increased. In both regime I and III, the photoaged GO were less stable at the same BSA concentrations, and the impacts of BSA on the colloidal stability of the photoaged GO were less than the pristine one, which was attributed to the weaker interactions between the photoaged GO and BSA. This study provided new insights into the colloidal stability and fate of GO nanomaterials, which are subjected to extensive light irradiation, in wastewater and protein-rich aquatic environment.
Collapse
Affiliation(s)
- Binbin Sun
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Yinqing Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Ruixuan Li
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Kunkun Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Bowen Xiao
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Yi Yang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Jingzhen Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China.
| |
Collapse
|
43
|
Petersen EJ, Sharma M, Clippinger AJ, Gordon J, Katz A, Laux P, Leibrock LB, Luch A, Matheson J, Stucki AO, Tentschert J, Bierkandt FS. Use of Cause-and-Effect Analysis to Optimize the Reliability of In Vitro Inhalation Toxicity Measurements Using an Air-Liquid Interface. Chem Res Toxicol 2021; 34:1370-1385. [PMID: 34097823 DOI: 10.1021/acs.chemrestox.1c00080] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In vitro inhalation toxicology methods are increasingly being used for research and regulatory purposes. Although the opportunity for increased human relevance of in vitro inhalation methods compared to in vivo tests has been established and discussed, how to systematically account for variability and maximize the reliability of these in vitro methods, especially for assays that use cells cultured at an air-liquid interface (ALI), has received less attention. One tool that has been used to evaluate the robustness of in vitro test methods is cause-and-effect (C&E) analysis, a conceptual approach to analyze key sources of potential variability in a test method. These sources of variability can then be evaluated using robustness testing and potentially incorporated into in-process control measurements in the assay protocol. There are many differences among in vitro inhalation test methods including the use of different types of biological test systems, exposure platforms/conditions, substances tested, and end points, which represent a major challenge for use in regulatory testing. In this manuscript, we describe how C&E analysis can be applied using a modular approach based on the idea that shared components of different test methods (e.g., the same exposure system is used) have similar sources of variability even though other components may differ. C&E analyses of different in vitro inhalation methods revealed a common set of recommended exposure systems and biological in-process control measurements. The approach described here, when applied in conjunction with Good Laboratory Practices (GLP) criteria, should help improve the inter- and intralaboratory agreement of in vitro inhalation test results, leading to increased confidence in these methods for regulatory and research purposes.
Collapse
Affiliation(s)
- Elijah J Petersen
- Biosystems and Biomaterials Division, Material Measurement Laboratory, National Institute of Standards and Technology (NIST), 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Monita Sharma
- PETA Science Consortium International e.V., 70499 Stuttgart, Germany
| | - Amy J Clippinger
- PETA Science Consortium International e.V., 70499 Stuttgart, Germany
| | - John Gordon
- United States Consumer Product Safety Commission, 5 Research Place, Rockville, Maryland 20850, United States
| | - Aaron Katz
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Peter Laux
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Lars B Leibrock
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Andreas Luch
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Joanna Matheson
- United States Consumer Product Safety Commission, 5 Research Place, Rockville, Maryland 20850, United States
| | - Andreas O Stucki
- PETA Science Consortium International e.V., 70499 Stuttgart, Germany
| | - Jutta Tentschert
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Frank S Bierkandt
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| |
Collapse
|
44
|
Environmental impact of emerging contaminants from battery waste: A mini review. CASE STUDIES IN CHEMICAL AND ENVIRONMENTAL ENGINEERING 2021. [DOI: 10.1016/j.cscee.2021.100104] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
45
|
Audira G, Lee JS, Siregar P, Malhotra N, Rolden MJM, Huang JC, Chen KHC, Hsu HS, Hsu Y, Ger TR, Hsiao CD. Comparison of the chronic toxicities of graphene and graphene oxide toward adult zebrafish by using biochemical and phenomic approaches. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 278:116907. [PMID: 33744786 DOI: 10.1016/j.envpol.2021.116907] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/27/2021] [Accepted: 03/05/2021] [Indexed: 05/14/2023]
Abstract
Graphene (GR) and graphene oxide (GO) are widely being used as promising candidates for biomedical applications, as well as for bio-sensing, drug delivery, and anticancer therapy. However, their undesirable side effects make it necessary to assess further the toxicity and safety of using these materials. The main objective of the current study was to investigate the toxicities of GR and GO in predicted environmental relevant concentrations in adult zebrafish (Danio rerio), particularly on their behaviors, and conducted biochemical assays to elucidate the possible mechanism that underlies their toxicities. Zebrafish was chronically (∼14 days) exposed to two different doses of GR (0.1 and 0.5 ppm) or GO (0.1 and 1 ppm). At 14 ± 1 days, a battery of behavioral tests was conducted, followed by enzyme-linked immunosorbent assays (ELISA) test on the following day to inspect the alterations in antioxidant activity, oxidative stress, and neurotransmitters in the treated zebrafish brain. An alteration in predator avoidance behavior was observed in all treated groups, while GR-treated fish exhibited abnormal exploratory behavior. Furthermore, altered locomotor activity was displayed by most of the treated groups, except for the high concentration of the GR group. From the ELISA results, we discovered a high concentration of GR exposure significantly decreased several neurotransmitters and cortisol levels. Meanwhile, elevated reactive oxygen species (ROS) were displayed by the group treated with low and high doses of GR and GO, respectively. These significant changes would possibly affect zebrafish behaviors and might suggest the potential toxicity from GR and GO exposures. To sum up, the present study presented new evidence for the effects of GR and GO in zebrafish behavioral dysregulation. We hope these assessments can contribute to our understanding of graphene and graphene oxide biosafety.
Collapse
Affiliation(s)
- Gilbert Audira
- Department of Chemistry, Chung Yuan Christian University, Chung-Li, 320314, Taiwan; Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li, 320314, Taiwan
| | - Jiann-Shing Lee
- Department of Applied Physics, National Pingtung University, Pingtung, 90003, Taiwan
| | - Petrus Siregar
- Department of Chemistry, Chung Yuan Christian University, Chung-Li, 320314, Taiwan; Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li, 320314, Taiwan
| | - Nemi Malhotra
- Department of Biomedical Engineering, Chung Yuan Christian University, Chung-Li, 320314, Taiwan
| | - Marri Jmelou M Rolden
- Faculty of Pharmacy and the Graduate School, University of Santo Tomas, Manila, 1008, Philippines
| | - Jong-Chin Huang
- Department of Applied Chemistry, National Pingtung University, Pingtung, 90003, Taiwan
| | - Kelvin H-C Chen
- Department of Applied Chemistry, National Pingtung University, Pingtung, 90003, Taiwan
| | - Hua-Shu Hsu
- Department of Applied Physics, National Pingtung University, Pingtung, 90003, Taiwan
| | - Yuchun Hsu
- Department of Applied Physics, National Pingtung University, Pingtung, 90003, Taiwan
| | - Tzong-Rong Ger
- Department of Biomedical Engineering, Chung Yuan Christian University, Chung-Li, 320314, Taiwan; Center for Nanotechnology, Chung Yuan Christian University, Chung-Li, 320314, Taiwan
| | - Chung-Der Hsiao
- Department of Chemistry, Chung Yuan Christian University, Chung-Li, 320314, Taiwan; Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li, 320314, Taiwan; Center for Nanotechnology, Chung Yuan Christian University, Chung-Li, 320314, Taiwan.
| |
Collapse
|
46
|
Li M, Zhu J, Wu Q, Wang Q. The combined adverse effects of cis-bifenthrin and graphene oxide on lipid homeostasis in Xenopus laevis. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124876. [PMID: 33360192 DOI: 10.1016/j.jhazmat.2020.124876] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/19/2020] [Accepted: 12/12/2020] [Indexed: 06/12/2023]
Abstract
Simultaneous exposure to multiple pollutants has received great concerns considering that the interactions between pollutants can alter the environment fate and bioavailability of pollutants with potentially deleterious effects. Graphene oxide (GO) has been widely used in many areas including environmental remediation, biology and agriculture. However, researchers have largely ignored the combined toxicity of GO with coexisting toxicants. Cis-bifenthrin (cis-BF), a typical synthetic pyrethroid insecticide, was frequently detected in the environment, which raised the possibility of interaction between cis-BF and GO. Our study investigated the toxic effects of cis-BF alone or combined with GO on the lipid homeostasis in Xenopus laevis. Tadpoles at 51 stage were exposed to cis-BF (0, 12, 60 and 300 ng/L) or in their combination with GO (0.1 mg/L) for 21 days. Coexposure to cis-BF and GO deteriorated the lipid homeostasis disruption in tadpoles. The up- or down-regulation of lipogenesis genes expression and enzymes activity were amplified in the coexposure groups. Furthermore, the presence of GO enhanced the deleterious impacts of cis-BF on the hepatic function in tadpoles. This study uniquely shows that GO promotes the lipotoxicity and hepatic function deficit caused by cis-BF exposure in frog.
Collapse
Affiliation(s)
- Meng Li
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China; College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiaping Zhu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
| | - Qiong Wu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
| | - Qiangwei Wang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
47
|
Evariste L, Braylé P, Mouchet F, Silvestre J, Gauthier L, Flahaut E, Pinelli E, Barret M. Graphene-Based Nanomaterials Modulate Internal Biofilm Interactions and Microbial Diversity. Front Microbiol 2021; 12:623853. [PMID: 33841352 PMCID: PMC8032548 DOI: 10.3389/fmicb.2021.623853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/28/2021] [Indexed: 02/04/2023] Open
Abstract
Graphene-based nanomaterials (GBMs), such as graphene oxide (GO) and reduced graphene oxide (rGO), possess unique properties triggering high expectations for the development of new technological applications and are forecasted to be produced at industrial-scale. This raises the question of potential adverse outcomes on living organisms and especially toward microorganisms constituting the basis of the trophic chain in ecosystems. However, investigations on GBMs toxicity were performed on various microorganisms using single species that are helpful to determine toxicity mechanisms but fail to predict the consequences of the observed effects at a larger organization scale. Thus, this study focuses on the ecotoxicological assessment of GO and rGO toward a biofilm composed of the diatom Nitzschia palea associated to a bacterial consortium. After 48 and 144 h of exposure to these GBMs at 0, 0.1, 1, and 10 mg.L−1, their effects on the diatom physiology, the structure, and the metabolism of bacterial communities were measured through the use of flow cytometry, 16S amplicon sequencing, and Biolog ecoplates, respectively. The exposure to both of these GBMs stimulated the diatom growth. Besides, GO exerted strong bacterial growth inhibition as from 1 mg.L−1, influenced the taxonomic composition of diatom-associated bacterial consortium, and increased transiently the bacterial activity related to carbon cycling, with weak toxicity toward the diatom. On the contrary, rGO was shown to exert a weaker toxicity toward the bacterial consortium, whereas it influenced more strongly the diatom physiology. When compared to the results from the literature using single species tests, our study suggests that diatoms benefited from diatom-bacteria interactions and that the biofilm was able to maintain or recover its carbon-related metabolic activities when exposed to GBMs.
Collapse
Affiliation(s)
- Lauris Evariste
- Laboratoire d'écologie fonctionnelle et environnement, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Paul Braylé
- Laboratoire d'écologie fonctionnelle et environnement, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Florence Mouchet
- Laboratoire d'écologie fonctionnelle et environnement, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Jérôme Silvestre
- Laboratoire d'écologie fonctionnelle et environnement, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Laury Gauthier
- Laboratoire d'écologie fonctionnelle et environnement, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Emmanuel Flahaut
- CIRIMAT, Université de Toulouse, CNRS, INPT, UPS, UMR CNRS-UPS-INP N°5085, Université Toulouse 3 Paul Sabatier, Bât. CIRIMAT, Toulouse, France
| | - Eric Pinelli
- Laboratoire d'écologie fonctionnelle et environnement, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Maialen Barret
- Laboratoire d'écologie fonctionnelle et environnement, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| |
Collapse
|
48
|
Ku T, Hao F, Yang X, Rao Z, Liu QS, Sang N, Faiola F, Zhou Q, Jiang G. Graphene Quantum Dots Disrupt Embryonic Stem Cell Differentiation by Interfering with the Methylation Level of Sox2. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:3144-3155. [PMID: 33569944 DOI: 10.1021/acs.est.0c07359] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The tremendous potential for graphene quantum dots (GQDs) in biomedical applications has led to growing concerns of their health risks in human beings. However, present studies mainly focused on oxidative stress, apoptosis, and other general toxicity effects; the knowledge on the developmental toxicity and the related regulatory mechanisms is still far from sufficient. Our study revealed the development retardation of mouse embryonic stem cells (mESCs) caused by GQDs with a novel DNA methylation epigenetic mechanism. Specifically, GQDs were internalized into cells mainly via energy-dependent endocytosis, and a significant fraction of internalized GQDs remained in the cells even after a 48-h clearance period. Albeit with unobservable cytotoxicity or any influences on cell pluripotency, significant retardation was found in the in vitro differentiation of the mESCs into embryoid bodies (EBs) with the upregulation of Sox2 levels in GQD pretreatment groups. Importantly, this effect could be contributed by GQD-induced inhibition in CpG methylation of Sox2 through altering methyltransferase and demethyltransferase transcriptional expressions, and the demethyltransferase inhibitor, bobcat339 hydrochloride, reduced GQD-induced upregulation of Sox2. The current study first demonstrated that GQDs compromised the differentiation program of the mESCs, potentially causing development retardation. Exposure to this nanomaterial during gestation or early developmental period would cause adverse health risks and is worthy of more attention.
Collapse
Affiliation(s)
- Tingting Ku
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, China
| | - Fang Hao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiaoxi Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ziyu Rao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qian S Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, China
| | - Francesco Faiola
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qunfang Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| |
Collapse
|
49
|
Wang T, Wang L, Chen Q, Kalogerakis N, Ji R, Ma Y. Interactions between microplastics and organic pollutants: Effects on toxicity, bioaccumulation, degradation, and transport. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 748:142427. [PMID: 33113705 DOI: 10.1016/j.scitotenv.2020.142427] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
Microplastics (MPs), defined as particles with diameters <5 mm and including nanoplastics (NPs), with diameters <1 μm, are characterized by large specific surface areas and hydrophobicity. In aquatic and terrestrial environments, MPs interact with co-occurring organic pollutants through sorption and desorption, which alters the environmental behavior of the pollutants, such as their toxicity, bioaccumulation, degradation, and transport. In this review, we summarize the results of current studies of the interactions between MPs and organic contaminants, and focus on the different mechanisms and subsequent ecological risks of contaminant transfer among environmental media, MPs and organisms. The sorption/desorption of organic pollutants on/from MPs is discussed with respect to solution conditions and the properties of both the MPs and the pollutants. More importantly, the ability of MPs to alter the toxicity, bioaccumulation, degradation, and transport of organic pollutants through these interactions is considered as well. We then examine the interrelationships of the different environmental behaviors of MPs and organic pollutants and the roles played by environmental processes. Finally, we identify the remaining knowledge gaps that must be filled in further studies in order to accurately evaluate the environmental risks of MPs and their associated organic pollutants.
Collapse
Affiliation(s)
- Ting Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Lin Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Qianqian Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Nicolas Kalogerakis
- School of Environmental Engineering, Technical University of Crete, Chania, Greece
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yini Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; International Institute for Environmental Studies, Nanjing 210023, China.
| |
Collapse
|
50
|
Goodwin DG, Shen SJ, Lyu Y, Lankone R, Barrios AC, Kabir S, Perreault F, Wohlleben W, Nguyen T, Sung L. Graphene/polymer nanocomposite degradation by ultraviolet light: The effects of graphene nanofillers and their potential for release. Polym Degrad Stab 2020; 182:10.1016/j.polymdegradstab.2020.109365. [PMID: 36936609 PMCID: PMC10021000 DOI: 10.1016/j.polymdegradstab.2020.109365] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ultraviolet (UV)-induced degradation of graphene/polymer nanocomposites was investigated in this study. Specifically, the effect of few-layer graphene nanofillers on the degradation of a thermoplastic polyurethane (TPU) and the release potential of graphene from the degraded nanocomposite surfaces were assessed. Graphene/TPU (G/TPU) nanocomposites and neat TPU were UV-exposed under both dry and humid conditions in the NIST SPHERE, a precisely controlled, high intensity UV-weathering device. Neat TPU and G/TPU were characterized over the time course of UV exposure using color measurements and infrared spectroscopy, for appearance and chemical changes, respectively. Changes in thickness and surface morphology were obtained with scanning electron microscopy. A new fluorescence quenching measurement approach was developed to identify graphene sheets at the nanocomposite surface, which was supported by contact angle measurements. The potential for graphene release from the nanocomposite surface was evaluated using a tape-lift method followed by microscopy of any particles present on the tape. The findings suggest that graphene improves the service life of TPU with respect to UV exposure, but that graphene becomes exposed at the nanocomposite surface over time, which may potentially lead to its release when exposed to small mechanical forces or upon contact with other materials.
Collapse
Affiliation(s)
- David G. Goodwin
- National Institute of Standards and Technology, Materials and Structural Systems Division, Engineering Laboratory, Gaithersburg, MD, 20899, USA
- Corresponding author. (D.G. Goodwin Jr)
| | - Shih-Jia Shen
- National Institute of Standards and Technology, Materials and Structural Systems Division, Engineering Laboratory, Gaithersburg, MD, 20899, USA
| | - Yadong Lyu
- National Institute of Standards and Technology, Materials and Structural Systems Division, Engineering Laboratory, Gaithersburg, MD, 20899, USA
| | - Ronald Lankone
- National Institute of Standards and Technology, Materials and Structural Systems Division, Engineering Laboratory, Gaithersburg, MD, 20899, USA
| | - Ana C. Barrios
- National Institute of Standards and Technology, Materials and Structural Systems Division, Engineering Laboratory, Gaithersburg, MD, 20899, USA
- School of Sustainable Engineering and the Built Environment, Arizona State University, 660 S. College Ave, Tempe, AZ, 85281
| | - Samir Kabir
- National Institute of Standards and Technology, Materials and Structural Systems Division, Engineering Laboratory, Gaithersburg, MD, 20899, USA
| | - François Perreault
- School of Sustainable Engineering and the Built Environment, Arizona State University, 660 S. College Ave, Tempe, AZ, 85281
| | - Wendel Wohlleben
- BASF SE, Dept. Material Physics & Analytics, Carl-Bosch-Strasse 38, Ludwigshafen, 67056, Germany
| | - Tinh Nguyen
- National Institute of Standards and Technology, Materials and Structural Systems Division, Engineering Laboratory, Gaithersburg, MD, 20899, USA
| | - Lipiin Sung
- National Institute of Standards and Technology, Materials and Structural Systems Division, Engineering Laboratory, Gaithersburg, MD, 20899, USA
| |
Collapse
|