1
|
Ding C, Wu Y, Zhan C, Naseem A, Chen L, Li H, Yang B, Liu Y. Research progress on the role and inhibitors of Keap1 signaling pathway in inflammation. Int Immunopharmacol 2024; 141:112853. [PMID: 39159555 DOI: 10.1016/j.intimp.2024.112853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/23/2024] [Accepted: 07/30/2024] [Indexed: 08/21/2024]
Abstract
Inflammation is a protective mechanism against endogenous and exogenous pathogens. It is a typical feature of numerous chronic diseases and their complications. Keap1 is an essential target in oxidative stress and inflammatory diseases. Among them, the Keap1-Nrf2-ARE pathway (including Keap1-Nrf2-HO-1) is the most significant pathway of Keap1 targets, which participates in the control of inflammation in multiple organs (including renal inflammation, lung inflammation, liver inflammation, neuroinflammation, etc.). Identifying new Keap1 inhibitors is crucial for new drug discovery. However, most drugs have specificity issues as they covalently bind to cysteine residues of Keap1, causing off-target effects. Therefore, direct inhibition of Keap1-Nrf2 PPIs is a new research idea. Through non-electrophilic and non-covalent binding, its inhibitors have better specificity and ability to activate Nrf2, and targeting therapy against Keap1-Nrf2 PPIs has become a new method for drug development in chronic diseases. This review summarizes the members and downstream genes of the Keap1-related pathway and their roles in inflammatory disease models. In addition, we summarize all the research progress of anti-inflammatory drugs targeting Keap1 from 2010 to 2024, mainly describing their biological functions, molecular mechanisms of action, and therapeutic roles in inflammatory diseases.
Collapse
Affiliation(s)
- Chao Ding
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China.
| | - Ying Wu
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, China.
| | - Chaochao Zhan
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China.
| | - Anam Naseem
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China.
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Bingyou Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China.
| | - Yan Liu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China.
| |
Collapse
|
2
|
Wójciak M, Paduch R, Drozdowski P, Żuk M, Wójciak W, Tyszczuk-Rotko K, Feldo M, Sowa I. Ultra-Performance Liquid Chromatography and Mass Spectrometry Characterization, and Antioxidant, Protective, and Anti-Inflammatory Activity, of the Polyphenolic Fraction from Ocimum basilicum. Molecules 2024; 29:5043. [PMID: 39519685 PMCID: PMC11547609 DOI: 10.3390/molecules29215043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/23/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Ocimum basilicum is a valuable plant widely consumed worldwide and considered a rich source of polyphenols. This study examined the impact of the polyphenolic fraction isolated from basil (ObF) on human normal colon epithelial cells and human colorectal adenocarcinoma cells, evaluating its anti-inflammatory and protective activity against oxidative stress. The phytochemical characterization of the fraction was performed using ultra-performance liquid chromatography (UPLC) with a photodiode detector (DAD) and mass spectrometry (MS). UPLC-DAD-MS revealed that ObF predominantly contains caffeic acid derivatives, with rosmarinic acid and chicoric acid being the most abundant. The fraction demonstrated high antioxidant potential, as shown by DPPH assays, along with significant reducing power (FRAP). Furthermore, it prevented the depletion of antioxidant enzymes, including superoxide dismutase and catalase, and decreased malonylodialdehyde (MDA) in induced oxidative stress condition. Additionally, it exhibited a significant protective effect against H2O2-induced cytotoxicity in human normal colon epithelial cells. Although it had no impact on the viability of adenocarcinoma cells, it significantly reduced IL-1β levels in the neoplastic microenvironment. Our study demonstrated that basil polyphenols provide significant health benefits due to their antioxidant and protective activities.
Collapse
Affiliation(s)
- Magdalena Wójciak
- Department of Analytical Chemistry, Medical University of Lublin, 20-093 Lublin, Poland; (M.Ż.); (W.W.); (I.S.)
| | - Roman Paduch
- Department of Virology and Immunology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, 20-033 Lublin, Poland;
- Department of General and Pediatric Ophthalmology, Medical University of Lublin, 20-079 Lublin, Poland
| | - Piotr Drozdowski
- Department of Plastic Surgery, Specialist Medical Centre, 57-320 Polanica-Zdrój, Poland;
| | - Magdalena Żuk
- Department of Analytical Chemistry, Medical University of Lublin, 20-093 Lublin, Poland; (M.Ż.); (W.W.); (I.S.)
| | - Weronika Wójciak
- Department of Analytical Chemistry, Medical University of Lublin, 20-093 Lublin, Poland; (M.Ż.); (W.W.); (I.S.)
| | - Katarzyna Tyszczuk-Rotko
- Faculty of Chemistry, Institute of Chemical Sciences, Maria Curie-Skłodowska University in Lublin, 20-031 Lublin, Poland;
| | - Marcin Feldo
- Department of Vascular Surgery, Medical University of Lublin, 20-081 Lublin, Poland;
| | - Ireneusz Sowa
- Department of Analytical Chemistry, Medical University of Lublin, 20-093 Lublin, Poland; (M.Ż.); (W.W.); (I.S.)
| |
Collapse
|
3
|
Li M, Abouelfetouh MM, Salah E, Kiani FA, Nan S, Ding M, Ding Y. Chicory supplementation improves growth performance in juvenile ostriches potentially by attenuating enteritis. Front Vet Sci 2024; 11:1432269. [PMID: 39376909 PMCID: PMC11457291 DOI: 10.3389/fvets.2024.1432269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/03/2024] [Indexed: 10/09/2024] Open
Abstract
Introduction Enteritis and dysbiosis are the major causes of high morbidity and mortality of juvenile ostriches. Chicory (CC) has been proven to have excellent antioxidant, anti-inflammatory, and antibacterial activities. However, it's unclear whether CC could improve the survival rate of juvenile ostriches by relieving enteritis and correcting dysbiosis. Materials and methods South African ostrich hatchlings (Struthio camelus domesticus) were fed with and without a CC-supplemented diet, and the body weight gain and mortality were compared over 4 months of age. Fresh fecal samples of clinically healthy ostriches were collected, and 16S DNAs were analyzed. Moreover, ostrich chicks with LPS-induced enteritis were fed with different dosages (0, 20, 40, and 80 mg/kg) of chicoric acid (CA), a major bioactive component of CC, for five consecutive days. The expression levels of tight junction (TJ)-related proteins and inflammatory mediators in the ilea were detected with western blot and immunofluorescence. Results The ostrich chicks fed on the CC-supplemented diet began to increase in weight at the 1st month of age and became remarkably heavier at the fourth month (p < 0.01) compared with those fed on the non-CC-supplemented diet. Additionally, the mortality percentage was lower in the chicks fed on the CC-supplemented diet than those fed on the non-CC-supplemented diet (19% vs. 36%, respectively). The diet with the CC supplementation significantly increased the abundance of Phascolactobacteria (linear discriminant analysis; LDA >4) and Bacteroidota (26.7% vs. 17.7%, respectively) as well as decreased the enrichment of Clostridium (5.0% vs. 9.1%, respectively) in the ostrich ilea compared to the diet without CC. The supplementation of CA at a dose of 80 mg/kg significantly increased the expression level of ZO-1 and claudin-3 (p < 0.0001) and suppressed the levels of IL-1β, IL-6, and TNF-α (p < 0.0001) in ostriches with LPS-induced ileitis. Conclusion Our results substantiate that CC or CA supplementation in a diet could effectively improve growth performance and reduce mortality in juvenile ostriches via modulating the gut microbiota and attenuating enteritis.
Collapse
Affiliation(s)
- Meng Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Henan Jinlu Special Breeding Farm, Zhengzhou, China
| | - Mahmoud M. Abouelfetouh
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Egypt
| | - Eman Salah
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Egypt
| | - Faisal Ayub Kiani
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Bahauddin Zakariyah University, Multan, Pakistan
| | - Sha Nan
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Mingxing Ding
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yi Ding
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
4
|
Ye J, Shi R, Fan H, Wang D, Xiao C, Yang T, Ye P, Xia B, Zhao B, Wang Y, Liu X. Stevioside Ameliorates Prenatal Obesity Induced Postpartum Depression: The Potential Role of Gut Barrier Homeostasis. Mol Nutr Food Res 2024; 68:e2300255. [PMID: 38100291 DOI: 10.1002/mnfr.202300255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/23/2023] [Indexed: 12/17/2023]
Abstract
SCOPE Postpartum depression and cognitive impairment are the common complications of prenatal obesity. Stevioside is a non-nutritive natural sweetener with antioxidant and anti-inflammatory. However, its effects on depression behaviors and cognitive impairment induced by a high-fat diet (HFD) remain unclear. METHODS AND RESULTS An 8-week HFD is used to establish a prenatal obesity model in female C57BL/6J mice to explore the improvement effects of stevioside (0.5 mg mL-1 in drinking water) on maternal depression and cognitive dysfunction after weaning. The results demonstrated that stevioside improves behavioral performance of obese maternal mice, and inhibits neuronal damage and 5-hydroxytryptamine (5-HT) abnormality induced by HFD. In addition, stevioside inhibits oxidative stress by reducing malondialdehyde (MDA) and increasing superoxide dismutase (SOD) and glutathione (GSH) activities in the brains of obese maternal mice. Additionally, stevioside improves gut barrier integrity and prevented lipopolysaccharide (LPS) extravasation, and alleviates neuroinflammation. Correlation analysis shows that gut barrier and serum LPS are closely related to behavioral performance and brain biochemical indicators. CONCLUSION Stevioside is capable to prevent prenatal obesity-induced cognitive and mood disorders by restoring intestinal barrier damage and inhibiting inflammation.
Collapse
Affiliation(s)
- Jin Ye
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Renjie Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hua Fan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Danna Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chunxia Xiao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Tianyingzi Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Peng Ye
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Bing Xia
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Beita Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yutang Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
5
|
Yuchen-Zhang, Du MR, Zhang QY, Yang SY, Chen JQ, Dan CM, Lian LD, Wang J. Armillariella tabescens-derived polysaccharides alleviated Ɒ-Gal-induced neuroinflammation and cognitive injury through enterocerebral axis and activation of keap-1/Nrf2 pathway. Int J Biol Macromol 2024; 273:133035. [PMID: 38866276 DOI: 10.1016/j.ijbiomac.2024.133035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/14/2024]
Abstract
The early symptoms of neurodegenerative diseases include oxidative stress disorder and accelerated inflammation levels. Edible fungi polysaccharides play essential roles in anti-neuroinflammation. We analyzed the regulatory mechanisms of polysaccharides from extracellular Armillariella tabescens (ATEP) in alleviating neuroinflammation in mice. Mice were induced with d-galactose and aluminum chloride to establish an animal model of Alzheimer's disease, then intragastrically treated with ATEP, which had been previously analyzed for its physicochemical properties. We assessed the critical characteristics of mice treated for neuroinflammation, including cognitive behavior, the anti-inflammatory potential of ATEP in hippocampal pathology and critical protein expression, and changes in fecal microbial composition and metabolites. ATEP intervened in oxidative stress by enhancing antioxidant enzyme activities and suppressing the Keap-1/Nrf2 signaling pathway. Changing the Nrf2 content in the nucleus led to changes in the downstream oxidation-related enzymes, HO-1, NQO-1, iNOS, and COX-2, and the neuronal morphology in CA3 region of the hippocampus. Microbiome analysis revealed that ATEP remodeled the gut microbiotas and regulated the short-chain fatty acids-producing bacteria. Early intervention with ATEP via active dietary supplementation may promote neuroprotection.
Collapse
Affiliation(s)
- Yuchen-Zhang
- Food and Function Microbiology Laboratory, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Min-Ru Du
- Food and Function Microbiology Laboratory, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Qian-Yuan Zhang
- Food and Function Microbiology Laboratory, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Shu-Yu Yang
- Food and Function Microbiology Laboratory, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Jia-Qi Chen
- Food and Function Microbiology Laboratory, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Cen-Meng Dan
- Food and Function Microbiology Laboratory, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Ling-Dan Lian
- Food and Function Microbiology Laboratory, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Jie Wang
- Food and Function Microbiology Laboratory, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
6
|
Di Y, Song Y, Xu K, Wang Q, Zhang L, Liu Q, Zhang M, Liu X, Wang Y. Chicoric Acid Alleviates Colitis via Targeting the Gut Microbiota Accompanied by Maintaining Intestinal Barrier Integrity and Inhibiting Inflammatory Responses. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6276-6288. [PMID: 38485738 DOI: 10.1021/acs.jafc.3c08363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Polyphenols have shown great potential to prevent ulcerative colitis. As a natural plant polyphenol, chicoric acid (CA) has antioxidant and anti-inflammatory properties. This study explored the intervention effects and potential mechanism of CA on dextran sodium sulfate (DSS)-induced colitis mice. The results showed that CA alleviated the symptoms of colitis and maintained the intestinal barrier integrity. CA significantly downregulated the mRNA expression levels of inflammatory factors including IL-6, IL-1β, TNF-α, IFN-γ, COX-2, and iNOS. In addition, CA modulated the gut microbiota by improving the microbial diversity, reducing the abundance of Gammaproteobacteriaand Clostridium_XI and increasing the abundance ofBarnesiellaandLachnospiraceae. Further fecal microbiota transplantation experiments showed that FM from CA donor mice significantly alleviated the symptoms of colitis, verifying the key role of gut microbiota. These results indicate that CA effectively relieves DSS-induced colitis via targeting gut microbiota along with preserving intestinal barrier function and suppressing inflammatory responses.
Collapse
Affiliation(s)
- Yan Di
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Yi Song
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Kejia Xu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Qianxu Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Li Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Qian Liu
- College of Food Science and Technology, Northwest University, Xi'an 710069, PR China
| | - Min Zhang
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, PR China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Yutang Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| |
Collapse
|
7
|
Ávila-Gálvez MÁ, Giménez-Bastida JA, Karadeniz B, Romero-Reyes S, Espín JC, Pelvan E, González-Sarrías A. Polyphenolic Characterization and Anti-Inflammatory Effect of In Vitro Digested Extracts of Echinacea purpurea L. Plant Parts in an Inflammatory Model of Human Colon Cells. Int J Mol Sci 2024; 25:1744. [PMID: 38339018 PMCID: PMC10855148 DOI: 10.3390/ijms25031744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/18/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Echinacea purpurea L. (EP) preparations are globally popular herbal supplements known for their medicinal benefits, including anti-inflammatory activities, partly related to their phenolic composition. However, regarding their use for the management of inflammation-related intestinal diseases, the knowledge about the fate of orally ingested constituents throughout the human gastrointestinal tract and the exposition of in vitro digested extracts in relevant inflammatory models are unknown. This study investigated for the first time the impact of in vitro gastrointestinal digestion (INFOGEST) on the phenolic composition and anti-inflammatory properties of EP extracts from flowers (EF), leaves (EL), and roots (ER) on IL-1β-treated human colon-derived CCD-18Co cells. Among the seven hydroxycinnamic acids identified using HPLC-UV-MS/MS, chicoric and caftaric acids showed the highest concentrations in EL, followed by EF and ER, and all extracts exerted significant reductions in IL-6, IL-8, and PGE2 levels. After digestion, despite reducing the bioaccessibility of their phenolics, the anti-inflammatory effects were preserved for digested EL and, to a lesser extent, for EF, but not for digested ER. The lower phenolic content in digested EF and ER could explain these findings. Overall, this study emphasizes the potential of EP in alleviating intestinal inflammatory conditions and related disorders.
Collapse
Affiliation(s)
- María Ángeles Ávila-Gálvez
- Laboratory of Food and Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, Campus de Espinardo, P.O. Box 164, 30100 Murcia, Spain; (M.Á.Á.-G.); (J.A.G.-B.); (S.R.-R.); (J.C.E.)
| | - Juan Antonio Giménez-Bastida
- Laboratory of Food and Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, Campus de Espinardo, P.O. Box 164, 30100 Murcia, Spain; (M.Á.Á.-G.); (J.A.G.-B.); (S.R.-R.); (J.C.E.)
| | - Bulent Karadeniz
- Life Sciences, TÜBİTAK Marmara Research Center, P.O. Box 21, 41470 Gebze-Kocaeli, Türkiye; (B.K.); (E.P.)
| | - Salvador Romero-Reyes
- Laboratory of Food and Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, Campus de Espinardo, P.O. Box 164, 30100 Murcia, Spain; (M.Á.Á.-G.); (J.A.G.-B.); (S.R.-R.); (J.C.E.)
| | - Juan Carlos Espín
- Laboratory of Food and Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, Campus de Espinardo, P.O. Box 164, 30100 Murcia, Spain; (M.Á.Á.-G.); (J.A.G.-B.); (S.R.-R.); (J.C.E.)
| | - Ebru Pelvan
- Life Sciences, TÜBİTAK Marmara Research Center, P.O. Box 21, 41470 Gebze-Kocaeli, Türkiye; (B.K.); (E.P.)
| | - Antonio González-Sarrías
- Laboratory of Food and Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, Campus de Espinardo, P.O. Box 164, 30100 Murcia, Spain; (M.Á.Á.-G.); (J.A.G.-B.); (S.R.-R.); (J.C.E.)
| |
Collapse
|
8
|
Zhang H, Feng Y, Si Y, Lu C, Wang J, Wang S, Li L, Xie W, Yue Z, Yong J, Dai S, Zhang L, Li X. Shank3 ameliorates neuronal injury after cerebral ischemia/reperfusion via inhibiting oxidative stress and inflammation. Redox Biol 2024; 69:102983. [PMID: 38064762 PMCID: PMC10755590 DOI: 10.1016/j.redox.2023.102983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/22/2023] [Accepted: 11/30/2023] [Indexed: 01/01/2024] Open
Abstract
Shank3, a key molecule related to the development and deterioration of autism, has recently been found to downregulate in the murine brain after ischemia/reperfusion (I/R). Despite this discovery, however, its effects on neuronal injury and the mechanism underlying the effects remain to be clarified. To address this, in this study, based on genetically modified mice models, we revealed that the expression of Shank3 showed a time-dependent change in murine hippocampal neurons after I/R, and that conditional knockout (cko) of Shank3 in neurons resulted in aggravated neuronal injuries. The protective effects of Shank3 against oxidative stress and inflammation after I/R were achieved through direct binding STIM1 and subsequent proteasome-mediated degradation of STIM1. The STIM1 downregulation induced the phosphorylation of downstream Nrf2 Ser40, which subsequently translocated to the nucleus, and further increased the expression of antioxidant genes such as NQO1 and HO-1 in HT22 cells. In vivo, the study has further confirmed that double knockout of Shank3 and Stim1 alleviated oxidative stress and inflammation after I/R in Shank3cko mice. In conclusion, the present study has demonstrated that Shank3 interacts with STIM1 and inhibits post-I/R neuronal oxidative stress and inflammatory response via the Nrf2 pathway. This interaction can potentially contribute to the development of a promising method for I/R treatment.
Collapse
Affiliation(s)
- Hongchen Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yuan Feng
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yanfang Si
- Department of Ophthalmology, The Eighth Medical Center, Affiliated to the Senior Department of Ophthalmology, The Third Medical Center, Chinese People's Liberation Army General Hospital, Beijing, 100091, China
| | - Chuanhao Lu
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Juan Wang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Shiquan Wang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Liang Li
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Wenyu Xie
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Zheming Yue
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Jia Yong
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Shuhui Dai
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China; National Translational Science Center for Molecular Medicine and Department of Cell Biology, Fourth Military Medical University, Xi'an, 710032, China.
| | - Lei Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| | - Xia Li
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
9
|
Goyal A, Dubey N, Agrawal A, Sharma R, Verma A. An Insight into the Promising Therapeutic Potential of Chicoric Acid. Curr Pharm Biotechnol 2024; 25:1708-1718. [PMID: 38083896 DOI: 10.2174/0113892010280616231127075921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/09/2023] [Accepted: 11/21/2023] [Indexed: 09/04/2024]
Abstract
The pharmacological treatments that are now recommended for the therapy of chronic illnesses are examined in a great number of studies to determine whether or not they are both safe and effective. Therefore, it is important to investigate various alternative therapeutic assistance, such as natural remedies derived from medicinal plants. In this context, chicoric acid, classified as a hydroxycinnamic acid, has been documented to exhibit a range of health advantages. These include antiviral, antioxidant, anti-inflammatory, obesity-preventing, and neuroprotective effects. Due to its considerable pharmacological properties, chicoric acid has found extensive applications in food, pharmaceuticals, animal husbandry, and various other commercial sectors. This article provides a comprehensive overview of in vitro and in vivo investigations on chicoric acid, highlighting its beneficial effects and therapeutic activity when used as a preventative and management aid for public health conditions, including diabetes, cardiovascular disease, and hepatic illnesses like non-alcoholic steatohepatitis. Moreover, further investigation of this compound can lead to its development as a potential phytopharmaceutical candidate.
Collapse
Affiliation(s)
- Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Nandini Dubey
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Anant Agrawal
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Rashmi Sharma
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Aanchal Verma
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| |
Collapse
|
10
|
Lan X, Qi D, Ren H, Liu T, Shao H, Zhang J. Chicoric acid ameliorates LPS-induced inflammatory injury in bovine lamellar keratinocytes by modulating the TLR4/MAPK/NF-κB signaling pathway. Sci Rep 2023; 13:21963. [PMID: 38082032 PMCID: PMC10713547 DOI: 10.1038/s41598-023-49169-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023] Open
Abstract
Damage to lamellar keratinocytes, an essential cellular component of the epidermal layer of hoof tissue, can have a detrimental effect on hoof health and the overall production value of dairy cows. We isolated and cultured cow lamellar keratinocytes using the Dispase II and collagenase methods. We purified them by differential digestion and differential velocity adherent methods at each passaging and identified them by keratin 14 immunofluorescence. We established an in vitro model of inflammation in laminar keratinocytes using LPS and investigated whether chicoric acid protects against inflammatory responses by inhibiting the activation of the TLR4/MAPK/NF-κB signaling pathway. The results showed that cow lamellar keratinocytes were successfully isolated and cultured by Dispase II combined with the collagenase method. In the in vitro inflammation model established by LPS, the Chicoric acid decreased the concentration of inflammatory mediators (TNF-α, IL-1β, and IL-6), down-regulated the mRNA expression of TLR4 and MyD88 (P < 0.01), down-regulated the expression of TLR4, MyD88, p-ERK, p-p38, IKKβ, p-p65, p-p50 (P < 0.05), and increased the IκBα protein expression (P < 0.05). In conclusion, Chicoric acid successfully protected cow lamellar keratinocytes from LPS-induced inflammatory responses by modulating the TLR4/MAPK/NF-κB signaling pathway and downregulating inflammatory mediators.
Collapse
Affiliation(s)
- Xiang Lan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Northeast Agricultural University, Harbin, China
| | - Dongdong Qi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Hao Ren
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Tao Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Hong Shao
- The Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin, China
| | - Jiantao Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.
- Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Northeast Agricultural University, Harbin, China.
| |
Collapse
|
11
|
Yao N, Feng L, Jiang W, Wu P, Ren H, Shi H, Tang L, Li S, Wu C, Li H, Liu Y, Zhou X. An emerging role of arecoline on growth performance, intestinal digestion and absorption capacities and intestinal structural integrity of adult grass carp ( Ctenopharyngodon idella). ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 15:173-186. [PMID: 38023377 PMCID: PMC10679820 DOI: 10.1016/j.aninu.2023.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 07/06/2023] [Accepted: 07/20/2023] [Indexed: 12/01/2023]
Abstract
Arecoline is an alkaloid with important pharmacological effects in the plant areca nut, which has been demonstrated to be an agonist of muscarinic receptors (M receptor). This study explored the influences of dietary arecoline on growth performance, intestinal digestion and absorption abilities, antioxidant capacity, and the apical junction complex (AJC) of adult grass carp (Ctenopharyngodon idella). Adult grass carp (608 to 1512 g) were fed at 6 graded levels of dietary arecoline (0, 0.5, 1.0, 1.5, 2.0, and 2.5 mg/kg diet) for 9 weeks. The results suggested that appropriate dietary supplementation of arecoline (1.0 mg/kg) increased growth parameters and intestinal growth in adult grass carp (P < 0.05), enhanced digestion and absorption capacities (P < 0.05), up-regulated muscarinic receptor 3 (M3) mRNA level (P < 0.05), increased the content of neuropeptide fish substance P (P < 0.05), improved antioxidant capacity by activating the Keap1a/Nrf2 signaling pathway (P < 0.05), reduced intestinal mucosal permeability (P < 0.05), and increased mRNA levels of tight junction (TJ) and adherent junction AJ-related proteins in fish by inhibiting the RhoA/ROCK signaling pathway (RhoA/ROCK/MLCK/NMII) (P < 0.05). In addition, the appropriate arecoline supplementation for adult grass carp was determined to be 1.20, 1.21, 1.07, and 1.19 mg/kg based on percentage weight gain, lipase activity, serum diamine oxidase, and protein carbonyl, respectively. Overall, to the best of our knowledge, we investigated for the first time the effects and possible mechanisms of dietary arecoline on intestinal digestive and absorptive capacities and structural integrity in fish and evaluated the appropriate level of supplementation.
Collapse
Affiliation(s)
- Na Yao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China
| | - Weidan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China
| | - Hongmei Ren
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hequn Shi
- Guangzhou Cohoo Biotech Co., Ltd., Guangzhou, 510663, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Sichuan Animtech Feed Co. Ltd, Chengdu, 610066, Sichuan, China
| | - Shuwei Li
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Sichuan Animtech Feed Co. Ltd, Chengdu, 610066, Sichuan, China
| | - Caimei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hua Li
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China
| | - Xiaoqiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China
| |
Collapse
|
12
|
Alharthi F. Chicoric acid enhances the antioxidative defense system and protects against inflammation and apoptosis associated with the colitis model induced by dextran sulfate sodium in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:119814-119824. [PMID: 37930572 DOI: 10.1007/s11356-023-30742-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 10/25/2023] [Indexed: 11/07/2023]
Abstract
Although several anticolitic drugs are available, their application is associated with numerous side effects. Chicoric acid (CA) is a hydroxycinnamic acid found naturally in chicory (Cichorium intybus), purple coneflower (Echinacea purpurea), and basil with numerous health benefits, such as antioxidative and anti-inflammatory activities. Here, the potential anticolitic efficiency of CA against dextran sulfate sodium (DSS)-induced colitis in rats was examined in rats. Animals were randomly assigned to the following five groups: control, CA (100 mg/kg body weight), DSS [(DSS); 4% w/v], CA + DSS (100 mg/kg), and the 5-aminosalicylic acid (100 mg/kg) + DSS group. The obtained data revealed that CA significantly prevented the shortening of colon length. Meanwhile, the oxidative stress-related enzymes were increased, while malondialdehyde and nitric oxide, were markedly decreased significantly by CA. The results also indicated that CA administration decreased significantly the pro-apoptogenic indices (Bax and caspase-3) and enhanced significantly Bcl-2, the anti-apoptogenic protein. Moreover, DSS caused a significant elevation of pro-inflammatory mediators, including interleukin-1β, tumor necrosis factor-α, myeloperoxidase, cyclooxygenase II, prostaglandin E2, and peroxisome proliferator-activated receptor gamma. Interestingly, these changes were significantly decreased following the CA administration. At the molecular level, CA supplementation has increased significantly the expression level of nuclear factor erythroid 2-related factor-2 (Nrf2) and decreased the expressions of nitric oxide synthase and mitogen-activated protein kinase 14. CA has been determined to significantly lessen DSS-induced colitis by activating Nrf2 and its derived antioxidant molecules and suppressing inflammation and apoptosis cascades associated with the development of colitis; suggesting that CA could be used as an alternative naturally-derived anticolitic agent.
Collapse
Affiliation(s)
- Fahad Alharthi
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia.
| |
Collapse
|
13
|
Ramadan SA, Kamel EM, Alruhaimi RS, Bin-Ammar A, Ewais MA, Khowailed AA, Hassanein EH, Mahmoud AM. An integrated phytochemical, in silico and in vivo approach to identify the protective effect of Caroxylon salicornicum against cisplatin hepatotoxicity. Saudi Pharm J 2023; 31:101766. [PMID: 37731943 PMCID: PMC10507235 DOI: 10.1016/j.jsps.2023.101766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 08/27/2023] [Indexed: 09/22/2023] Open
Abstract
Cisplatin (CIS) is a chemotherapeutic medication for the treatment of cancer. However, hepatotoxicity is among the adverse effects limiting its use. Caroxylon salicornicum is traditionally used for treating inflammatory diseases. In this investigation, three flavonoids, four coumarins, and three sterols were detected in the petroleum ether fraction of C. salicornicum (PEFCS). The isolated phytochemicals exhibited binding affinity toward Keap1, NF-κB, and SIRT1 in silico. The hepatoprotective role of PEFCS (100, 200 and 400 mg/kg) was investigated in vivo. Rats received PEFCS for 14 days and CIS on day 15. CIS increased ALT, AST and ALP and caused tissue injury along with increased ROS, MDA, and NO. Hepatic NF-κB p65, pro-inflammatory mediators, Bax and caspase-3 were increased in CIS-treated animals while antioxidants and Bcl-2 were decreased. PEFCS mitigated hepatocyte injury, and ameliorated transaminases, ALP, oxidative stress (OS) and inflammatory markers. PEFCS downregulated pro-apoptosis markers and boosted Bcl-2 and antioxidants. In addition, PEFCS upregulated Nrf2, HO-1, and SIRT1 in CIS-administered rats. In conclusion, PEFCS is rich in beneficial phytoconstituents and conferred protection against liver injury by attenuating OS and inflammation and upregulating Nrf2 and SIRT1.
Collapse
Affiliation(s)
| | | | - Reem S. Alruhaimi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Albandari Bin-Ammar
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Hail, Saudi Arabia
| | - Madeha A. Ewais
- Physiology Department, Faculty of Medicine, Beni-Suef University, Egypt
| | | | - Emad H.M. Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University-Assiut Branch, Egypt
| | - Ayman M. Mahmoud
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Egypt
| |
Collapse
|
14
|
Birsa ML, Sarbu LG. Health Benefits of Key Constituents in Cichorium intybus L. Nutrients 2023; 15:1322. [PMID: 36986053 PMCID: PMC10058675 DOI: 10.3390/nu15061322] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/30/2023] Open
Abstract
The genus Cichorium (Asteraceae) that originates from the Mediterranean area consists of six species (Cichorium intybus, Cichorium frisee, Cichorium endivia, Cichorium grouse, Cichorium chico and Cichorium pumilum). Cichorium intybus L., commonly known as chicory, has a rich history of being known as a medicinal plant and coffee substitute. A variety of key constituents in chicory play important roles as antioxidant agents. The herb is also used as a forage plant for animals. This review highlights the bioactive composition of C. intybus L. and summarizes the antioxidant activity associated with the presence of inulin, caffeic acid derivatives, ferrulic acid, caftaric acid, chicoric acid, chlorogenic and isochlorogenic acids, dicaffeoyl tartaric acid, sugars, proteins, hydroxycoumarins, flavonoids and sesquiterpene lactones. It also covers the plant's occurrence, agriculture improvement, natural biosynthesis, geographical distribution and waste valorization.
Collapse
Affiliation(s)
| | - Laura G. Sarbu
- Department of Chemistry, Alexandru Ioan Cuza University of Iasi, 11 Carol I Blvd., 700506 Iasi, Romania
| |
Collapse
|
15
|
Olędzka AJ, Czerwińska ME. Role of Plant-Derived Compounds in the Molecular Pathways Related to Inflammation. Int J Mol Sci 2023; 24:ijms24054666. [PMID: 36902097 PMCID: PMC10003729 DOI: 10.3390/ijms24054666] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023] Open
Abstract
Inflammation is the primary response to infection and injury. Its beneficial effect is an immediate resolution of the pathophysiological event. However, sustained production of inflammatory mediators such as reactive oxygen species and cytokines may cause alterations in DNA integrity and lead to malignant cell transformation and cancer. More attention has recently been paid to pyroptosis, which is an inflammatory necrosis that activates inflammasomes and the secretion of cytokines. Taking into consideration that phenolic compounds are widely available in diet and medicinal plants, their role in the prevention and support of the treatment of chronic diseases is apparent. Recently, much attention has been paid to explaining the significance of isolated compounds in the molecular pathways related to inflammation. Therefore, this review aimed to screen reports concerning the molecular mode of action assigned to phenolic compounds. The most representative compounds from the classes of flavonoids, tannins, phenolic acids, and phenolic glycosides were selected for this review. Our attention was focused mainly on nuclear factor-κB (NF-κB), nuclear factor erythroid 2-related factor 2 (Nrf2), and mitogen-activated protein kinase (MAPK) signaling pathways. Literature searching was performed using Scopus, PubMed, and Medline databases. In conclusion, based on the available literature, phenolic compounds regulate NF-κB, Nrf2, and MAPK signaling, which supports their potential role in chronic inflammatory disorders, including osteoarthritis, neurodegenerative diseases, cardiovascular, and pulmonary disorders.
Collapse
Affiliation(s)
- Agata J. Olędzka
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland
- Centre for Preclinical Research, Medical University of Warsaw, 1B Banacha Str., 02-097 Warsaw, Poland
| | - Monika E. Czerwińska
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland
- Centre for Preclinical Research, Medical University of Warsaw, 1B Banacha Str., 02-097 Warsaw, Poland
- Correspondence: ; Tel.: +48-22-116-61-85
| |
Collapse
|
16
|
Lv C, Li Y, Liang R, Huang W, Xiao Y, Ma X, Wang Y, Zou H, Qin F, Sun C, Li T, Zhang J. Characterization of tangeretin as an activator of nuclear factor erythroid 2-related factor 2/antioxidant response element pathway in HEK293T cells. Curr Res Food Sci 2023; 6:100459. [PMID: 36846469 PMCID: PMC9945746 DOI: 10.1016/j.crfs.2023.100459] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 01/13/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Numerous studies have reported that tangeretin is a polymethoxylated flavone with a variety of biological activates, but little research has been done on the antioxidant mechanism of tangeretin. Hence, we investigated the effect of tangeretin on the nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway and its potential molecular mechanisms by in vitro and in silico research. The results of molecular docking suggested that tangeretin bound at the top of the central pore of Kelch-like ECH-associated protein 1 (Keap1) Kelch domain, and the hydrophobic and hydrogen bond interactions contributed to their stable binding. Herein, the regulation of Nrf2-ARE pathway by tangeretin was explored in the human embryonic kidney cell line HEK293T, which is relatively easy to be transfected. Upon binding to tangeretin, Nrf2 translocated to the nucleus of HEK293T cells, which in turn activated the Nrf2-ARE pathway. Luciferase reporter gene analysis showed that tangeretin significantly induced ARE-mediated transcriptional activation. Real-time PCR and Western blot assays showed that tangeretin induced the gene and protein expressions of Nrf2-mediated targets, including heme oxygenase 1 (HO-1), nicotinamide adenine dinucleotide phosphate (NADPH) quinone dehydrogenase 1 (NQO1), and glutamate-cysteine ligase (GCLM). In addition, tangeretin could effectively scavenge 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radicals. In summary, tangeretin may be a potential antioxidant via activating the Nrf2-ARE pathway.
Collapse
Affiliation(s)
- Chengyu Lv
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China,Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Yuqiu Li
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Rong Liang
- Agricultural Science and Engineering School, Liaocheng University, Liaocheng, 252059, China
| | - Wei Huang
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Yechen Xiao
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Xinqi Ma
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Yongjun Wang
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Haoyang Zou
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Fen Qin
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Chang Sun
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Tiezhu Li
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China,Corresponding author.
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China,Corresponding author.
| |
Collapse
|
17
|
Li Q, Du Y, Xiang P, Chen G, Qian X, Li S, Mao Y, Ling W, Wang D. Re-Visiting Antioxidant Therapy in Murine Advanced Atherosclerosis with Brussels Chicory, a Typical Vegetable in Mediterranean Diets. Nutrients 2023; 15:832. [PMID: 36839190 PMCID: PMC9966914 DOI: 10.3390/nu15040832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/02/2023] [Accepted: 02/04/2023] [Indexed: 02/09/2023] Open
Abstract
Brussels chicory, a typical vegetable in Mediterranean diets, has been recently reported to stabilize advanced atherosclerotic plaques in the brachiocephalic artery of apoE-deficient (Apoe-/-) mice. Herein, we investigated whether Brussels chicory can stabilize advanced plaques in the aorta via improving oxidative stress. Thirty week old Apoe-/- mice were fed the AIN-93G diet or supplemented with 0.5% freeze-dried Brussels chicory for twenty weeks. Aortic plaque size and stability, aortic relaxation, monocyte adhesion to aortic endothelium, free radicals, and enzymatic and non-enzymatic factors involved in free radical production and elimination in aorta and serum were measured. Brussels chicory consumption did not alter aortic plaque size, however, it stabilized aortic plaques, promoted aortic relaxation, and also inhibited monocyte adhesion to aortic endothelium. Moreover, this administration reduced oxidized LDL (ox-LDL) and 4-hydroxynonenal (4-HNE) content in aortic plaques, associated with inhibited aortic NADPH oxidase (NOX) and uncoupled endothelial nitric oxide synthase (eNOS)-mediated free radical production. However, Brussels chicory consumption did not appreciably alter aortic and serum superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities, aortic glutathione (GSH), as well as serum non-enzymatic antioxidants, such as bilirubin, uric acid, and GSH. Collectively, improved oxidative stress might contribute to the atheroprotective effect of Brussels chicory, supporting the prospect of the antioxidant therapy in advanced atherosclerosis progression.
Collapse
Affiliation(s)
- Qing Li
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou 510080, China
| | - Yushi Du
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou 510080, China
| | - Panyin Xiang
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou 510080, China
| | - Guanyu Chen
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou 510080, China
| | - Xiaoxian Qian
- Department of Cardiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Shuangshuang Li
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou 510080, China
| | - Yihui Mao
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou 510080, China
| | - Wenhua Ling
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou 510080, China
- Guangdong Provincial Key Laboratory for Food, Nutrition and Health, Guangzhou 510080, China
| | - Dongliang Wang
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou 510080, China
- Guangdong Provincial Key Laboratory for Food, Nutrition and Health, Guangzhou 510080, China
| |
Collapse
|
18
|
Micheli L, Maggini V, Ciampi C, Gallo E, Bogani P, Fani R, Pistelli L, Ghelardini C, Di Cesare Mannelli L, De Leo M, Firenzuoli F. Echinacea purpurea against neuropathic pain: Alkamides versus polyphenols efficacy. Phytother Res 2022; 37:1911-1923. [PMID: 36578266 DOI: 10.1002/ptr.7709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/30/2022]
Abstract
Chemotherapy-induced neuropathy represents the main dose-limiting toxicity of several anticancer drugs, such as oxaliplatin, leading to chronic pain and an impairment of the quality of life. Echinacea purpurea n-hexane extract (EP4 -RE ; rich in alkamides) and butanolic extract (EP4 -RBU ; rich in polyphenols) have been characterized and tested in an in vivo model of oxaliplatin-induced neuropathic pain, addressing the endocannabinoid system with alkamides and counteracting the redox imbalance with polyphenols. Thermal hypersensitivity was evaluated by the Cold Plate test. EP4 -RE showed a dose-dependent anti-hyperalgesic profile. The extract was more effective than its main constituent, dodeca-2 E,4 E,8Z,10 E/Z-tetraenoic acid isobutylamide (18 mg kg-1 , twofold to equimolar EP4 -RE 30 mg kg-1 ), suggesting a synergy with other extract constituents. Administration of cannabinoid type 2 (CB2) receptor-selective antagonist completely blocked the anti-allodynic effect of EP4 -RE , differently from the antagonism of CB1 receptors. EP4 -RBU (30 mg kg-1 ) exhibited anti-neuropathic properties too. The effect was mainly exerted by chicoric acid, which administered alone (123 μg kg-1 , equimolar to EP4 -RBU 30 mg kg-1 ) completely reverted oxaliplatin-induced allodynia. A synergy between different polyphenols in the extract had not been highlighted. Echinacea extracts have therapeutic potential in the treatment of neuropathic pain, through both alkamides CB2-selective activity and polyphenols protective properties.
Collapse
Affiliation(s)
- Laura Micheli
- Department of Neurosciences, Psychology, Drug Research and Child Health-Neurofarba-Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Valentina Maggini
- Research and Innovation Center in Phytotherapy and Integrated Medicine (CERFIT), Referring Center for Phytotherapy, Tuscany Region, Careggi University Hospital, Florence, Italy
| | - Clara Ciampi
- Department of Neurosciences, Psychology, Drug Research and Child Health-Neurofarba-Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Eugenia Gallo
- Research and Innovation Center in Phytotherapy and Integrated Medicine (CERFIT), Referring Center for Phytotherapy, Tuscany Region, Careggi University Hospital, Florence, Italy
| | - Patrizia Bogani
- Department of Biology, University of Florence, Sesto Fiorentino, Italy
| | - Renato Fani
- Department of Biology, University of Florence, Sesto Fiorentino, Italy
| | - Luisa Pistelli
- Department of Pharmacy, University of Pisa, Pisa, Italy.,CISUP, Centre for Instrumentation Sharing Pisa University, Pisa, Italy
| | - Carla Ghelardini
- Department of Neurosciences, Psychology, Drug Research and Child Health-Neurofarba-Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Lorenzo Di Cesare Mannelli
- Department of Neurosciences, Psychology, Drug Research and Child Health-Neurofarba-Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Marinella De Leo
- Department of Pharmacy, University of Pisa, Pisa, Italy.,CISUP, Centre for Instrumentation Sharing Pisa University, Pisa, Italy
| | - Fabio Firenzuoli
- Research and Innovation Center in Phytotherapy and Integrated Medicine (CERFIT), Referring Center for Phytotherapy, Tuscany Region, Careggi University Hospital, Florence, Italy
| |
Collapse
|
19
|
Wang K, Gao S, Wang J, Yu F, Ye C. Protective effects of chicoric acid on LPS-induced endometritis in mice via inhibiting ferroptosis by Nrf2/HO-1 signal axis. Int Immunopharmacol 2022; 113:109435. [PMID: 36403522 DOI: 10.1016/j.intimp.2022.109435] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/18/2022]
Abstract
Chicoric acid (CA), a natural phenolic acid extracted from Mediterranean vegetable chicory, has anti-oxidative effect. We aimed to investigate the effects of CA on endometritis and clarify the underlying mechanism. C57BL/6 mice were divided into five groups: control group, LPS group, and LPS + CA groups. All mice except control group were infused of LPS into the uterus. The mice of LPS + CA groups were intraperitoneally injected CA 1 h before LPS challenge. CA significantly alleviatedLPS-induced pathological damage, MPO activity, and inflammatory cytokine production. CA significantly suppressed ferroptosis in LPS-induced endometritis. CA also attenuated LPS-induced NF-κB activation. Furthermore, Nrf2 and HO-1 expression were increased by CA. Moreover, the inhibition of CA on LPS-induced endometritis and ferroptosis were markedly prevented in Nrf2 knockdown mice. In conclusion, the results suggested CA protected mice against LPS-induced endometritisthrough inhibiting ferroptosis via Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Kexin Wang
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Erdao District, 126 Sendai Street, Changchun, Jilin Province 130033, China
| | - Shouyang Gao
- Department of Obstetrics and Gynecology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China
| | - Junrong Wang
- Department of Obstetrics and Gynecology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China
| | - Fan Yu
- Department of Gartroenterology and Hepatology, China-Japan Union Hospital of Jilin University, Erdao District, 126 Sendai Street, Changchun, Jilin Province 130033, China.
| | - Cong Ye
- Department of Obstetrics and Gynecology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China.
| |
Collapse
|
20
|
Guo J, Lu A, Sun Y, Liu B, Zhang J, Zhang L, Huang P, Yang A, Li Z, Cao Y, Miao J. Purification and identification of antioxidant and angiotensin converting enzyme-inhibitory peptides from Guangdong glutinous rice wine. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
21
|
Qu Y, Shen Y, Teng L, Huang Y, Yang Y, Jian X, Fan S, Wu P, Fu Q. Chicoric acid attenuates tumor necrosis factor-α-induced inflammation and apoptosis via the Nrf2/HO-1, PI3K/AKT and NF-κB signaling pathways in C28/I2 cells and ameliorates the progression of osteoarthritis in a rat model. Int Immunopharmacol 2022; 111:109129. [PMID: 35961266 DOI: 10.1016/j.intimp.2022.109129] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/29/2022]
Abstract
Osteoarthritis (OA) is the most common arthritis, and is characterized by inflammation and cartilage degradation. Chicoric acid (CA), a bioactive caffeic acid derivative isolated from the root of Taraxacum mongolicumHand. - Mazz., has been reported to have anti-inflammatory effects. However, the therapeutic effects of CA on chondrocyte inflammation remain unknown. Our study aimed to explore the effect of CA on OA both in vivo and in vitro. In vitro, CA treatment significantly suppressed the overproduction of nitric oxide (NO), prostaglandin E2 (PGE2), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin-1 beta (IL-1β), interleukin-6 (IL-6), and IL-12 in tumor necrosis factor alpha (TNF-α)-induced human C28/I2 chondrocytes. Moreover, CA attenuated TNF-α induced degradation of the extracellular matrix (ECM) by upregulating the expression of collagen Ⅱ and aggrecan, and downregulating ADAMTS-5 and matrix metalloproteinases (MMPs). Additionally, CA treatment inhibited apoptosis in C28/I2 cells by upregulating of Bcl-2 levels, downregulating Bax and ROS levels, and activating the Nrf2/HO-1 pathway. Mechanistically, CA exerted an anti-inflammatory effect by inhibiting the PI3K/AKT and NF-κB signaling pathways, enhancing Nrf-2/HO-1 to limit the activation of NF-κB. In vivo experiments also proved the therapeutic effects of CA on OA in rats. These findings indicate that CA may become a new drug for the treatment of OA.
Collapse
Affiliation(s)
- Yuhan Qu
- Key Laboratory of Drug-Targeting and Drug Delivery System of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China; School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Yue Shen
- Key Laboratory of Drug-Targeting and Drug Delivery System of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Li Teng
- Key Laboratory of Drug-Targeting and Drug Delivery System of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China; School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Yuehui Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Yuting Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Xi Jian
- Key Laboratory of Drug-Targeting and Drug Delivery System of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Shengli Fan
- Key Laboratory of Drug-Targeting and Drug Delivery System of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Ping Wu
- Department of Pharmacy, Chengdu Integrated TCM and Western Medicine Hospital, Chengdu 610041, China.
| | - Qiang Fu
- Key Laboratory of Drug-Targeting and Drug Delivery System of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China.
| |
Collapse
|
22
|
Wang J, Li T, Li M, Shi D, Tan X, Qiu F. Lycopene attenuates D-galactose-induced insulin signaling impairment by enhancing mitochondrial function and suppressing the oxidative stress/inflammatory response in mouse kidneys and livers. Food Funct 2022; 13:7720-7729. [PMID: 35762205 DOI: 10.1039/d2fo00706a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Lycopene (LYC) possesses bioactivity to improve the pathogenesis of several chronic diseases via antioxidant-associated mechanisms. The purpose of this study was to investigate whether LYC could attenuate D-galactose (D-gal)-induced mitochondrial dysfunction and insulin signaling impairment in mouse kidneys and livers. Two-month-old CD-1 mice were treated by intraperitoneal injection of 150 mg kg-1 day-1D-gal for 8 weeks and received 0.03% LYC (w/w, mixed into diet). The results showed that LYC ameliorated oxidative stress triggered by D-gal by enhancing the Nrf2 antioxidant defense pathway and increasing the expression of the antioxidant response genes HO-1 and NQO1 in mouse kidneys and livers. LYC inhibited the MAPK and NFκB pathways and attenuated renal and hepatic inflammatory responses. Moreover, LYC upregulated the expression of genes related to mitochondrial biosynthesis and oxidative phosphorylation and improved insulin signal transduction through the IRS-1/AKT/GSK3β pathway in mouse kidneys and livers.
Collapse
Affiliation(s)
- Jia Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China.
| | - Ting Li
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China.
| | - Mengling Li
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China.
| | - Dongxing Shi
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China.
| | - Xintong Tan
- College of Food Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271000, China.
| | - Fubin Qiu
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China.
| |
Collapse
|
23
|
Yang M, Wu C, Zhang T, Shi L, Li J, Liang H, Lv X, Jing F, Qin L, Zhao T, Wang C, Liu G, Feng S, Li F. Chicoric Acid: Natural Occurrence, Chemical Synthesis, Biosynthesis, and Their Bioactive Effects. Front Chem 2022; 10:888673. [PMID: 35815211 PMCID: PMC9262330 DOI: 10.3389/fchem.2022.888673] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/09/2022] [Indexed: 12/15/2022] Open
Abstract
Chicoric acid has been widely used in food, medicine, animal husbandry, and other commercial products because of its significant pharmacological activities. However, the shortage of chicoric acid limits its further development and utilization. Currently, Echinacea purpurea (L.) Moench serves as the primary natural resource of chicoric acid, while other sources of it are poorly known. Extracting chicoric acid from plants is the most common approach. Meanwhile, chicoric acid levels vary in different plants as well as in the same plant from different areas and different medicinal parts, and different extraction methods. We comprehensively reviewed the information regarding the sources of chicoric acid from plant extracts, its chemical synthesis, biosynthesis, and bioactive effects.
Collapse
Affiliation(s)
- Min Yang
- Teaching and Research Office of Chinese Medicines authentication, College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chao Wu
- Teaching and Research Office of Chinese Medicines authentication, College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Department of Pharmaceutical Preparation Technology, Department of Pharmaceutical Engineering, Shandong Drug and Food Vocational College, Weihai, China
| | - Tianxi Zhang
- Teaching and Research Office of Chinese Medicines authentication, College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lei Shi
- Teaching and Research Office of Chinese Medicines authentication, College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jian Li
- Teaching and Research Office of Chinese Medicines authentication, College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Grade Three Laboratory of Traditional Chinese Medicine Preparation, Department of Pharmacy, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hongbao Liang
- Teaching and Research Office of Chinese Medicines authentication, College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Lunan Pharmaceutical Group Co., Ltd., State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, China
| | - Xuzhen Lv
- Teaching and Research Office of Chinese Medicines authentication, College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fengtang Jing
- Teaching and Research Office of Chinese Medicines authentication, College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lu Qin
- Teaching and Research Office of Chinese Medicines authentication, College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tianlun Zhao
- Teaching and Research Office of Chinese Medicines authentication, College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chenxi Wang
- Teaching and Research Office of Chinese Medicines authentication, College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guangxu Liu
- Teaching and Research Office of Chinese Medicines authentication, College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shuai Feng
- Teaching and Research Office of Chinese Medicines authentication, College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Feng Li
- Teaching and Research Office of Chinese Medicines authentication, College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
24
|
Cichoric Acid May Play a Role in Protecting Hair Cells from Ototoxic Drugs. Int J Mol Sci 2022; 23:ijms23126701. [PMID: 35743144 PMCID: PMC9224198 DOI: 10.3390/ijms23126701] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 02/01/2023] Open
Abstract
Ototoxic hearing loss due to antibiotic medication including aminoglycosides and excess free radical production causes irreversible hair cell injury. Cichoric acid, a naturally occurring phenolic acid, has recently been found to exert anti-oxidative and anti-inflammatory properties through its free radical scavenging capacity. The present study aimed to investigate the protective effects of cichoric acid against neomycin-induced ototoxicity using transgenic zebrafish (pvalb3b: TagGFP). Our results indicated that cichoric acid in concentrations up to 5 μM did not affect zebrafish viability during the 2 h treatment period. Therefore, the otoprotective concentration of cichoric acid was identified as 5 μM under 2 h treatment by counting viable hair cells within the neuromasts of the anterior- and posterior-lateral lines in the study. Pretreatment of transgenic zebrafish with 5 μM of cichoric acid for 2 h significantly protected against neomycin-induced hair cell death. Protection mediated by cichoric acid was, however, lost over time. A terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay and FM4-64 staining, respectively, provided in situ evidence that cichoric acid ameliorated apoptotic signals and mechanotransduction machinery impairment caused by neomycin. A fish locomotor test (distance move, velocity, and rotation frequency) assessing behavioral alteration after ototoxic damage revealed rescue due to cichoric acid pretreatment before neomycin exposure. These findings suggest that cichoric acid in 5 μM under 2 h treatment has antioxidant effects and can attenuate neomycin-induced hair cell death in neuromasts. Although cichoric acid offered otoprotection, there is only a small difference between pharmacological and toxic concentrations, and hence cichoric acid can be considered a rather prototypical compound for the development of safer otoprotective compounds.
Collapse
|
25
|
Tráj P, Herrmann EM, Sebők C, Vörösházi J, Mackei M, Gálfi P, Kemény Á, Neogrády Z, Mátis G. Protective effects of chicoric acid on polyinosinic-polycytidylic acid exposed chicken hepatic cell culture mimicking viral damage and inflammation. Vet Immunol Immunopathol 2022; 250:110427. [DOI: 10.1016/j.vetimm.2022.110427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 10/18/2022]
|
26
|
Zhu Z, Yang L, Li Z, Liu Q. Cyanidin-3-O-glucoside, cyanidin, and oxidation products of cyanidin protect neuronal function through alleviating inflammation and oxidative damage. J Food Sci 2022; 87:2159-2172. [PMID: 35340035 DOI: 10.1111/1750-3841.16125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 02/24/2022] [Accepted: 02/27/2022] [Indexed: 11/28/2022]
Abstract
Neurotoxicity seriously affects the normal function of the nervous system. Cyanidin-3-O-glucoside (C3G) is the most abundant anthocyanin widely distributed in plants. Using β-amyloid (Aβ) transgenic Caenorhabditis elegans and cell models, the neuroprotective effect of C3G was examined. The results showed that C3G remarkably suppressed Aβ aggregation, enhanced antioxidant capacity, improved the sensitive capacity towards chemical compounds, and boosted the memory ability of C. elegans. There was no significant difference between preventive and long-term treatment groups at the same dosage of C3G. Given the rapid metabolism and oxidation of C3G in vivo, the antioxidative and anti-inflammatory activities of C3G, the metabolite cyanidin (Cy), oxidation products of Cy (OP), as well as protocatechuic acid (PCA) at the corresponding level in OP were compared by using lipopolysaccharide (LPS)-stimulated BV2 microglia cell model. The results indicated that C3G, Cy, and OP could prevent BV2 cells against LPS-induced inflammation and oxidative damage. There was no significant difference on antioxidative and anti-inflammatory activities among C3G, Cy, and OP at the same level. Notably, PCA at the corresponding concentration in OP exhibited limited antioxidative and anti-inflammatory activities. The results suggested that C3G could exert neuroprotective function through the metabolite Cy and its oxidation products by inhibiting inflammation and oxidative damage, and PCA was not the primary bioactive species in OP. PRACTICAL APPLICATION: This study confirmed the neuroprotection of cyanidin-3-O-glucoside (C3G) in transgenic Caenorhabditis elegans. C3G, its metabolite cyanidin (Cy), and oxidation products of Cy (OP) alleviated both neuroinflammation and oxidative damage. It highlighted that C3G-rich foods could exert neuroprotective potential through their oxidation products, the constitution, and existence of OP in vivo need further study.
Collapse
Affiliation(s)
- Zhenzhu Zhu
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing of Jiangsu Province, Nanjing University of Finance and Economics, Nanjing, China
| | - Lipin Yang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing of Jiangsu Province, Nanjing University of Finance and Economics, Nanjing, China
| | - Zhong Li
- Agricultural and Forestry Products Deep Processing Technology and Equipment Engineering Center of Jiangsu Province, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Qin Liu
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing of Jiangsu Province, Nanjing University of Finance and Economics, Nanjing, China
| |
Collapse
|
27
|
Gu YF, Chen YP, Jin R, Wang C, Wen C, Zhou YM. Dietary chitooligosaccharide supplementation alleviates intestinal barrier damage, and oxidative and immunological stress in lipopolysaccharide-challenged laying hens. Poult Sci 2022; 101:101701. [PMID: 35150943 PMCID: PMC8844238 DOI: 10.1016/j.psj.2022.101701] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/15/2021] [Accepted: 12/30/2021] [Indexed: 02/07/2023] Open
Abstract
This study aimed to investigate the effects of chitooligosaccharide (COS) on intestinal barrier, antioxidant capacity, and immunity of lipopolysaccharide (LPS)-challenged laying hens. A total of 360 Hy-line Brown laying hens (80-wk-old) were randomly divided into 5 groups with 6 replicates of 12 birds. Hens were fed a corn-soybean meal basal diet supplemented with different COS levels (0; 5; 10; 15; 20 mg/kg) for 8 wk. The results showed that 15 mg/kg COS administration elevated albumen height and Haugh unit (P < 0.05), and numerically optimized productive performance (P > 0.05), therefore, the dosage of 15 mg/kg was chosen for the subsequent experiment. Thereafter, 12 birds from non-supplemented group were randomly selected and assigned into 2 groups, and birds in each group were administered (1.5 mg/kg BW, i.p.) with saline (control group) or LPS (challenge group). Another 6 hens from 15 mg/kg COS-supplemented group were selected and injected with LPS in the same way. Compared with the control group, LPS-challenged birds exhibited elevated circulating diamine oxidase activity, and reduced jejunal villus height and ratio of villus height to crypt depth, and these indices were reversed to control levels by COS (P < 0.05). Also, LPS increased malondialdehyde accumulation and reduced several antioxidant enzyme activities in the intestinal mucosa (P < 0.05). Additionally, LPS increased jejunal secretory IgA and interferon-γ (IFN-γ), and ileal secretory IgA, IgM, and interleukin-1β (IL-1β) concentrations, whereas COS reduced jejunal IFN-γ and IL-1β, and ileal IgM levels (P < 0.05). Moreover, LPS down-regulated mRNA abundance of jejunal occludin and claudin 2, and upregulated expression of jejunal nuclear factor erythroid-2 related factor 2, superoxide dismutase 1, and IFN-γ as well as ileal IL-1β (P < 0.05). Besides, COS increased jejunal occludin and ileal claudin 2, nuclear factor erythroid-2 related factor 2, and heme oxygenase-1 expression, and decreased jejunal IFN-γ and IL-1β abundance (P < 0.05). These results suggested that COS could alleviate LPS-induced intestinal barrier impairment, and oxidative and immunological stress in laying hens.
Collapse
Affiliation(s)
- Y F Gu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Y P Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - R Jin
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - C Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - C Wen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Y M Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China.
| |
Collapse
|
28
|
Nasimi Doost Azgomi R, Karimi A, Tutunchi H, Moini Jazani A. A comprehensive mechanistic and therapeutic insight into the effect of chicory (Cichorium intybus) supplementation in diabetes mellitus: A systematic review of literature. Int J Clin Pract 2021; 75:e14945. [PMID: 34606165 DOI: 10.1111/ijcp.14945] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 10/01/2021] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Cichorium intybus is a rich source of terpenoids and phenolic compounds, one of the effective methods in managing and reducing the complications of chronic diseases such as diabetes mellitus. The purpose of this systematic review was to evaluate the evidence obtained from animal and human studies on the effects of chicory on metabolic indicators (such as inflammation, oxidative stress, blood sugar and dyslipidaemia) of diabetes mellitus. MATERIALS AND METHODS This systematic search was performed in ProQuest, PubMed, Google Scholar, Scopus, Cochrane Central Register of Controlled Trials, Embase and Science Direct databases and on articles published until August 2021. All of the animal studies and clinical trials included in this systematic review that assessed the effect of chicory on metabolic risk markers in diabetes were published in English language journals. RESULTS Finally, amongst 686 articles, only 23 articles met the needed criteria for further analysis. Out of 23 articles, 3 studies on humans and 20 studies on animals have been carried out. Fifteen of the 19 studies that evaluated the effect of chicory on the glycaemic index showed that Cichorium intybus improved blood glucose index (it had no effect in two human studies and three animal studies). Ten of the 13 studies evaluating the effect of Cichorium intybus on lipid profiles showed that it improved dyslipidaemia. Also, all 12 studies showed that chicory significantly reduces oxidative stress and inflammation. CONCLUSION According to the available evidence, Cichorium intybus might improve the glycaemic status, dyslipidaemia, oxidative stress and inflammation. However, further studies are recommended for a comprehensive conclusion about the exact mechanism of chicory in diabetic patients.
Collapse
Affiliation(s)
- Ramin Nasimi Doost Azgomi
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Arash Karimi
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Department of Clinical Nutrition, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Helda Tutunchi
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arezoo Moini Jazani
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
29
|
Galangin Attenuates Liver Injury, Oxidative Stress and Inflammation, and Upregulates Nrf2/HO-1 Signaling in Streptozotocin-Induced Diabetic Rats. Processes (Basel) 2021. [DOI: 10.3390/pr9091562] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Chronic hyperglycemia increases the risk of liver damage. Oxidative stress and aberrant inflammatory response are entangled in diabetes-associated liver injury. This study evaluated the protective effect of the flavonoid galangin (Gal) on glucose intolerance, liver injury, oxidative stress, inflammatory response, and Nrf2/HO-1 signaling in diabetic rats. Diabetes was induced by streptozotocin (STZ), and the rats received Gal for six weeks. STZ-induced rats showed glucose intolerance, hypoinsulinemia, elevated glycated hemoglobin (HbA1c), and decreased liver glycogen. Gal ameliorated glucose intolerance, reduced HbA1c%, increased serum insulin and liver glycogen and hexokinase activity, and suppressed glycogen phosphorylase, glucose-6-phosphatase and fructose-1,6-biphosphatase in diabetic rats. Circulating transaminases, ALP and LDH, and liver ROS, MDA, TNF-α, IL-1β, and IL-6 were increased and GSH, SOD, and CAT were diminished in diabetic rats. In addition, diabetic rats exhibited multiple histopathological alterations and marked collagen deposition. Treatment with Gal mitigated liver injury, prevented histopathological alterations, decreased ROS, MDA, pro-inflammatory cytokines, Bax and caspase-3, and enhanced cellular antioxidants and Bcl-2. Gal downregulated hepatic Keap1 in diabetic rats and upregulated Nrf2 and HO-1 mRNA as well as HO-1 activity. Molecular modeling studies revealed the ability of Gal to bind to and inhibit NF-κB and Keap1, and also showed its binding pattern with HO-1. In conclusion, Gal ameliorates hyperglycemia, glucose intolerance, oxidative stress, inflammation, and apoptosis in diabetic rats. Gal improved carbohydrate metabolizing enzymes and upregulated Nrf2/HO-1 signaling.
Collapse
|
30
|
Catorce MN, Gevorkian G. Evaluation of Anti-inflammatory Nutraceuticals in LPS-induced Mouse Neuroinflammation Model: An Update. Curr Neuropharmacol 2021; 18:636-654. [PMID: 31934839 PMCID: PMC7457421 DOI: 10.2174/1570159x18666200114125628] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/26/2019] [Accepted: 01/11/2020] [Indexed: 02/08/2023] Open
Abstract
It is known that peripheral infections, accompanied by inflammation, represent significant risk factors for the development of neurological disorders by modifying brain development or affecting normal brain aging. The acute effects of systemic inflammation on progressive and persistent brain damage and cognitive impairment are well documented. Anti-inflammatory therapies may have beneficial effects on the brain, and the protective properties of a wide range of synthetic and natural compounds have been extensively explored in recent years. In our previous review, we provided an extensive analysis of one of the most important and widely-used animal models of peripherally induced neuroinflammation and neurodegeneration - lipopolysaccharide (LPS)-treated mice. We addressed the data reproducibility in published research and summarized basic features and data on the therapeutic potential of various natural products, nutraceuticals, with known anti-inflammatory effects, for reducing neuroinflammation in this model. Here, recent data on the suitability of the LPS-induced murine neuroinflammation model for preclinical assessment of a large number of nutraceuticals belonging to different groups of natural products such as flavonoids, terpenes, non-flavonoid polyphenols, glycosides, heterocyclic compounds, organic acids, organosulfur compounds and xanthophylls, are summarized. Also, the proposed mechanisms of action of these molecules are discussed.
Collapse
Affiliation(s)
- Miryam Nava Catorce
- Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico (UNAM), Mexico DF, Mexico
| | - Goar Gevorkian
- Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico (UNAM), Mexico DF, Mexico
| |
Collapse
|
31
|
Lee W, Lee CH, Lee J, Jeong Y, Park JH, Nam IJ, Lee DS, Lee HM, Lee J, Yun N, Song J, Choi S, Kim S. Botanical formulation, TADIOS, alleviates lipopolysaccharide (LPS)-Induced acute lung injury in mice via modulation of the Nrf2-HO-1 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2021; 270:113795. [PMID: 33421604 PMCID: PMC7832766 DOI: 10.1016/j.jep.2021.113795] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/29/2020] [Accepted: 01/03/2021] [Indexed: 05/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE TADIOS is an herbal formulation prepared from a mixture of Taraxacum officinale (L.) Weber ex F.H.Wigg, Dioscorea batatas Decaisne and Schizonepeta tenuifolia (Benth.) Briquet. These plants have traditionally been used in Asia to treat a variety of respiratory diseases. A bulk of literature on traditional Korean medicine describe their activities and functions for respiratory problems. Therefore, we hypothesized that the combination of these plants might be effective in alleviating respiratory symptoms. AIM OF THE STUDY In this study, we investigated whether TADIOS ameliorates LPS-induced acute lung injury via regulation of the Nrf2-HO-1 signaling pathway. MATERIALS AND METHODS The LPS-induced acute lung injury mouse model was used to determine the anti-inflammatory and anti-oxidative stress effects of TADIOS. The amount of marker compounds contained in TADIOS was quantified using high-performance liquid chromatography (HPLC) analysis. The protein level of pro-inflammatory cytokines in culture supernatant was measured by ELISA. Changes in the RNA level of pro-inflammatory cytokines in mice lungs and RAW264.7 cells were measured by quantitative RT-PCR. The relative amounts of reactive oxygen species (ROS) were measured by DCF-DA assay. Western blot analysis was used to evaluate expression of cellular proteins. Effects of TADIOS on antioxidant responsive elements (AREs) were determined by luciferase assay. The severity of acute lung injury was evaluated by Hematoxylin & Eosin (H&E) staining. To test the effects of TADIOS on LPS-induced oxidative stress, myeloperoxidase (MPO) activity and the total antioxidant capacity were measured. RESULTS TADIOS was prepared by extraction of a blend of these three plants by ethanol, and quality control was performed through quantification of marker compounds by HPLC and measurement of bioactivities using cell-based bioassays. In the murine macrophage cell line RAW264.7, TADIOS effectively suppressed the production of pro-inflammatory cytokines such as IL-6 and IL-1β, and also ROS induced by LPS. When RAW264.7 cells were transfected with a luciferase reporter plasmid containing nucleotide sequences for AREs, TADIOS treatment increased the level of relative luciferase units in a dose-dependent manner. In the LPS-induced acute lung injury mouse model, orally administered TADIOS alleviated lung damage and neutrophil infiltration induced by LPS. Consistent with the in vitro data, treatment with TADIOS inhibited the LPS-mediated expression of pro-inflammatory cytokines and oxidative stress, and activated the Nrf2-HO-1 axis. CONCLUSION Our data suggest the potential for TADIOS to be developed as a safe and effective therapeutics for the treatment of acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Wonwoo Lee
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, 07794, South Korea.
| | - Chang Hyung Lee
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, 07794, South Korea.
| | - Jungkyu Lee
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, 07794, South Korea.
| | - Yoonseon Jeong
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, 07794, South Korea.
| | - Jong-Hyung Park
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, 07794, South Korea.
| | - In-Jeong Nam
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, 07794, South Korea.
| | - Doo Suk Lee
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, 07794, South Korea.
| | - Hyun Myung Lee
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, 07794, South Korea.
| | - Jaehyun Lee
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, 07794, South Korea.
| | - Nayoung Yun
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, 07794, South Korea.
| | - Jisun Song
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, 07794, South Korea.
| | - Sooyeon Choi
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, 07794, South Korea.
| | - Sunyoung Kim
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, 07794, South Korea.
| |
Collapse
|
32
|
Yin C, Tang S, Liu L, Cao A, Xie J, Zhang H. Effects of Bile Acids on Growth Performance and Lipid Metabolism during Chronic Heat Stress in Broiler Chickens. Animals (Basel) 2021; 11:ani11030630. [PMID: 33673472 PMCID: PMC7997420 DOI: 10.3390/ani11030630] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/18/2021] [Accepted: 02/23/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary The negative impacts of heat stress (HS) on growth performance and lipid metabolism have been reported, but there are still no effective nutritional strategies to alleviate heat stress. Bile acids are new for their antioxidative properties and regulatory effect on lipid metabolism. This study was carried out to evaluate the growth performance and lipid metabolism in chickens under heat stress when fed with bile acid supplements in their diet. The results showed that mild heat stress (32 °C) induced hepatic lipogenic gene (hepatic SREBP-1c) expressions and lipid deposition, without obvious tissue damage in broilers. Dietary supplementation of bile acid could decrease hepatic lipid deposition without affecting endogenous bile acid biosynthesis. Therefore, bile acid supplements can benefit broiler chickens during high ambient temperatures, serving as a new nutritional strategy against heat stress. Abstract This study aimed to investigate whether dietary bile acid (BA) supplements can improve growth performance and lipid metabolism in heat-stressed broiler chickens. A total of 288 Arbor Acres broilers were blocked by BW and then randomly allocated into 4 treatments at 21 days of age. Birds reared under 32 °C had a higher cloacal temperature (p = 0.01), faster respiratory rate (p < 0.001), and a greatly reduced average daily feed intake (ADFI, p = 0.016), average daily gain (ADG, p = 0.006), final body weight (FBW, p = 0.008), and feed conversion rate (FCR, p = 0.004). In heat stress (HS) birds, the breast muscle rate (p = 0.006) and pH 24 h postmortem (p = 0.065) were lower, and the shear force was higher (p = 0.027). Dietary BA supplements tended to increase the breast muscle rate (p = 0.075) without affecting the growth performance and serum lipids (p > 0.05). Serum total bile acid (TBA) was roughly duplicated after BA supplements (p = 0.001). In the liver, total cholesterol was lower (p = 0.046), and triglycerides were higher (p = 0.04) in the HS birds, whereas the expression of SREBP-1c showed an increasing trend (p = 0.06). In contrast, dietary BA decreased triglycerides and the expressions of hepatic SREBP-1c and FAS in the liver (p < 0.05). In summary, mild HS causes hepatic lipid accumulation without obvious tissue damages, whereas BA has positive effects on relieving abnormal lipid metabolism, indicating that BA as a nutritional strategy has a certain potential in alleviating HS.
Collapse
Affiliation(s)
- Chang Yin
- The State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.Y.); (S.T.); (L.L.); (H.Z.)
| | - Shanlong Tang
- The State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.Y.); (S.T.); (L.L.); (H.Z.)
| | - Lei Liu
- The State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.Y.); (S.T.); (L.L.); (H.Z.)
| | - Aizhi Cao
- Shandong Longchang Animal Health Care Co., Ltd., Jinan 251100, China;
| | - Jingjing Xie
- The State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.Y.); (S.T.); (L.L.); (H.Z.)
- Correspondence:
| | - Hongfu Zhang
- The State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.Y.); (S.T.); (L.L.); (H.Z.)
| |
Collapse
|
33
|
Zhang S, Niu Y, Yang Z, Zhang Y, Guo Q, Yang Y, Zhou X, Ding Y, Liu C. Biochanin A alleviates gingival inflammation and alveolar bone loss in rats with experimental periodontitis. Exp Ther Med 2020; 20:251. [PMID: 33178349 PMCID: PMC7654219 DOI: 10.3892/etm.2020.9381] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 05/20/2020] [Indexed: 02/05/2023] Open
Abstract
Biochanin A (BA) is an organic compound produced by Trifolium pretense and Arachis hypogaea with anti-inflammatory and antioxidative effects. The aim of the current study was to evaluate the effects of BA on gingival inflammation and alveolar bone destruction in rats with experimental periodontitis. Experimental rats (n=25) were distributed equally into five groups: i) Healthy control (control) group; ii) experimental periodontitis (ligation) group; and iii) and ligation plus low, medium and high dose of BA (12.5, 25 and 50 mg/kg/day, respectively) groups. A nylon ligature was inserted around rats' maxillary molars for 14 days to trigger the experimental periodontitis. BA was intravenous injected once daily for 4 weeks. After that, interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), reactive oxygen species (ROS) and osteocalcin (OCN) levels were determined in gingival and/or serum samples using ELISA or reverse transcription-quantitative PCR. Alveolar bone volume was assessed via hematoxylin and eosin staining and micro-computed tomography. Osteoclasts were identified by tartrate-resistant acid phosphatase staining, and the level of the nuclear factor erythroid-2 related factor 2 (Nrf2) was also detected by immunohistochemical staining. BA treatment groups showed alleviated alveolar bone resorption compared with the ligation group. Moreover, BA treatment significantly inhibited IL-1β, TNF-α, ROS levels, and reduced leukocyte acid phosphatase-positive cells, as well as increased OCN and Nrf2 levels compared with the ligation group. BA had beneficial effects on experimental periodontitis of rats. BA treatment inhibited inflammation, regulated unbalanced oxidative stress response and ameliorated the alveolar bone loss.
Collapse
Affiliation(s)
- Shengdan Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yulong Niu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Zhuo Yang
- General Stomatology Clinic, Stomatological Hospital of Chongqing Medical University, Chongqing 401147, P.R. China
| | - Yuwei Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Qiang Guo
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yi Yang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yi Ding
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Chengcheng Liu
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
34
|
Jantas D, Chwastek J, Malarz J, Stojakowska A, Lasoń W. Neuroprotective Effects of Methyl Caffeate against Hydrogen Peroxide-Induced Cell Damage: Involvement of Caspase 3 and Cathepsin D Inhibition. Biomolecules 2020; 10:E1530. [PMID: 33182454 PMCID: PMC7696984 DOI: 10.3390/biom10111530] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 12/23/2022] Open
Abstract
Finding effective neuroprotective strategies to combat various neurodegenerative disorders still remain a clinically unmet need. Methyl caffeate (MC), a naturally occurring ester of caffeic acid, possesses antioxidant and anti-inflammatory activities; however, its role in neuroprotection is less investigated. In order to better characterize neuroprotective properties of MC, we tested its effectiveness in various models of neuronal cell injury in human neuroblastoma SH-SY5Y cells and in mouse primary neuronal cell cultures. MC at micromolar concentrations attenuated neuronal cell damage induced by hydrogen peroxide (H2O2) in undifferentiated and neuronal differentiated SH-SY5Y cells as well as in primary cortical neurons. This effect was associated with inhibition of both caspase-3 and cathepsin D but without involvement of the PI3-K/Akt pathway. MC was neuroprotective when given before and during but not after the induction of cell damage by H2O2. Moreover, MC was protective against 6-OHDA-evoked neurotoxicity in neuronal differentiated SH-SY5Y cells via inhibition of necrotic and apoptotic processes. On the other hand, MC was ineffective in models of excitotoxicity (induced by glutamate or oxygen-glucose deprivation) and even moderately augmented cytotoxic effects of the classical apoptotic inducer, staurosporine. Finally, in undifferentiated neuroblastoma cells MC at higher concentrations (above 50 microM) induced cell death and when combined with the chemotherapeutic agent, doxorubicin, it increased the cell damaging effects of the latter compound. Thus, neuroprotective properties of MC appear to be limited to certain models of neurotoxicity and depend on its concentrations and time of administration.
Collapse
Affiliation(s)
- Danuta Jantas
- Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland; (J.C.); (W.L.)
| | - Jakub Chwastek
- Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland; (J.C.); (W.L.)
| | - Janusz Malarz
- Department of Phytochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland; (J.M.); (A.S.)
| | - Anna Stojakowska
- Department of Phytochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland; (J.M.); (A.S.)
| | - Władysław Lasoń
- Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland; (J.C.); (W.L.)
| |
Collapse
|
35
|
Lycopene prevents lipid accumulation in hepatocytes by stimulating PPARα and improving mitochondrial function. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103857] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
36
|
Lu S, Liao L, Zhang B, Yan W, Chen L, Yan H, Guo L, Lu S, Xiong K, Yan J. Antioxidant cascades confer neuroprotection in ethanol, morphine, and methamphetamine preconditioning. Neurochem Int 2019; 131:104540. [DOI: 10.1016/j.neuint.2019.104540] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/06/2019] [Accepted: 08/23/2019] [Indexed: 12/22/2022]
|
37
|
Deng Y, Liu Q, Dang T, Gong G, Chen X, Tang R, Sun J, Song S, Huang L, Wang Z. Preparation, structural characterization and bioactivity of 4-O-Methylglucuronoxylan from Artemisia sphaerocephala Krasch. Carbohydr Polym 2019; 222:115009. [DOI: 10.1016/j.carbpol.2019.115009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/11/2019] [Accepted: 06/19/2019] [Indexed: 01/19/2023]
|
38
|
Liu Q, Fang J, Chen P, Die Y, Wang J, Liu Z, Liu X. Chicoric acid improves neuron survival against inflammation by promoting mitochondrial function and energy metabolism. Food Funct 2019; 10:6157-6169. [PMID: 31501849 DOI: 10.1039/c9fo01417a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chicoric acid (CA), a major nutraceutical component of a typical Mediterranean vegetable, chicory, possesses excellent antioxidant and anti-inflammatory bioactivities. This work aimed to elucidate the effects of CA on neuron survival against inflammation and the underlying molecular mechanisms. Results demonstrated that CA promoted SH-SY5Y cells' autophagic vesicle formation, up-regulated autophagic elongation phase related gene expressions, and inhibited apoptosis stimulated by microglial conditioned culture medium (MCM). In addition, CA significantly improved mitochondrial function and regulated redox homeostasis related signaling pathways such as MAPKs and PI3K/AKT. MCM with CA notably increased the expressions of PGC-1α, SIRT1 and enhanced the phosphorylation of AMPK, promoting energy metabolism. On the other hand, the underlying mechanisms of the intervention of CA in MCM-induced cell apoptosis were partly due to its direct protective effect on SH-SY5Y cells and inhibition of microglial inflammatory factor release. This establishes a theoretical foundation for neuro-nutrition intervention studies of natural functional food components, and provides new clues for developing health foods containing CA.
Collapse
Affiliation(s)
- Qian Liu
- College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Jie Fang
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - PanPan Chen
- College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Yun Die
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Jing Wang
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Zhigang Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
39
|
Liang F, Cao W, Huang Y, Fang Y, Cheng Y, Pan S, Xu X. Isoflavone biochanin A, a novel nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element activator, protects against oxidative damage in HepG2 cells. Biofactors 2019; 45:563-574. [PMID: 31131946 DOI: 10.1002/biof.1514] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 04/13/2019] [Accepted: 04/27/2019] [Indexed: 01/29/2023]
Abstract
Isoflavones are one group of the major flavonoids and possess multiple biological activities due to their antioxidant properties. However, a clear antioxidant mechanism of dietary isoflavones is still remained to be answered. In this study, the effects of isoflavones on the nuclear factor E2-related factor 2 (Nrf2)-antioxidant response element (ARE) signaling pathway and the underlying molecular mechanisms were investigated. Results showed that isoflavones are potential Nrf2-ARE activators while their activities were structure dependent. Biochanin A (BCA), an O-methylated isoflavone with low direct antioxidant activity, can effectively protect HepG2 cells against tert-butyl hydroperoxide (t-BHP)-induced oxidative damage via activation of the Nrf2 signaling, and thereby the induction of downstream cytoprotective enzymes including NAD(P)H quinone oxidoreductase-1, heme oxygenasae-1, and glutamate-cysteine ligase catalytic subunit. A molecular docking study revealed that BCA could directly bind into the pocket of Kelch-like erythroid cell-derived protein with CNC homology (ECH)-associated protein 1 (Keap1), a cytoplasmic suppressor of Nrf2, to facilitate Nrf2 activation. The upstream mitogen-activated protein kinase (MAPK) pathways were also involved in the activation of Nrf2 signaling. These findings indicate that the protective actions of dietary isoflavones against oxidative damage may be at least partly due to their ability to enhance the intracellular antioxidant response system by modulating the Nrf2-ARE signaling pathway.
Collapse
Affiliation(s)
- Fuqiang Liang
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan, People's Republic of China
| | - Weiwei Cao
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan, People's Republic of China
| | - Yuting Huang
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan, People's Republic of China
| | - Yajing Fang
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan, People's Republic of China
| | - Yuxin Cheng
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan, People's Republic of China
| | - Siyi Pan
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan, People's Republic of China
| | - Xiaoyun Xu
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan, People's Republic of China
| |
Collapse
|
40
|
Peng Y, Sun Q, Park Y. The Bioactive Effects of Chicoric Acid As a Functional Food Ingredient. J Med Food 2019; 22:645-652. [DOI: 10.1089/jmf.2018.0211] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Ye Peng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Quancai Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
41
|
Qi G, Mi Y, Fan R, Li R, Liu Z, Liu X. Nobiletin Protects against Systemic Inflammation-Stimulated Memory Impairment via MAPK and NF-κB Signaling Pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:5122-5134. [PMID: 30995031 DOI: 10.1021/acs.jafc.9b00133] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Neuroinflammation has been intensively demonstrated to be related to various neurodegenerative diseases including Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and Alzheimer's disease (AD). A natural polymethoxylated flavone, nobiletin (NOB) has been reported to alleviate oxidative stress, insulin resistance, and obesity. In this study, we evaluated the protection effects of NOB on neuroinflammation and memory deficit. Three-month mice were administrated with NOB by oral gavage every day for 6 weeks (100 mg/kg/day); subsequently mice were injected intraperitoneally with lipopolysaccharide (LPS) for 7 days. Results of behavioral tests revealed that NOB dramatically ameliorated LPS-triggered memory deficit regarding synaptic dysfunctions and neuronal loss. Also, NOB suppressed the microglial activation and proinflammatory cytokine secretion, such as COX-2, IL-1β, TNF-α, and iNOS. Similarly, upon LPS stimulation, pretreatment NOB diminished the secretion of the proinflammatory cytokines in BV-2 microglia cells by exposure to LPS via modulating MAPKs, PI3K/AKT, and NF-κB signaling pathways. In addition, NOB alleviated LPS-amplified redox imbalance, disturbance of mitochondrial membrane potential (MMP), and dampening of the expression of protein related to mitochondrial respiration. The present study provides compelling evidence that NOB decreased LPS-stimulated neuroinflammation and memory impairment through maintaining cellular oxidative balance and blocking the NF-κB transcriptional pathway, illustrating that the nutritional compound NOB may serve as a potential approach to alleviate neuroinflammation-related diseases.
Collapse
Affiliation(s)
- Guoyuan Qi
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering , Northwest A&F University , Yangling , Shaanxi 712100 , People's Republic of China
| | - Yashi Mi
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering , Northwest A&F University , Yangling , Shaanxi 712100 , People's Republic of China
| | - Rong Fan
- Department of Nutrition and Health Sciences , University of Nebraska-Lincoln , Lincoln , Nebraska 68583 , United States
| | - Runnan Li
- Department of Animal and Food Science , University of Kentucky , Lexington , Kentucky 40506 , United States
| | - Zhigang Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering , Northwest A&F University , Yangling , Shaanxi 712100 , People's Republic of China
| | - Xuebo Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering , Northwest A&F University , Yangling , Shaanxi 712100 , People's Republic of China
| |
Collapse
|
42
|
Kłeczek N, Michalak B, Malarz J, Kiss AK, Stojakowska A. Carpesium divaricatum Sieb. & Zucc. Revisited: Newly Identified Constituents from Aerial Parts of the Plant and Their Possible Contribution to the Biological Activity of the Plant. Molecules 2019; 24:molecules24081614. [PMID: 31022860 PMCID: PMC6514683 DOI: 10.3390/molecules24081614] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/18/2019] [Accepted: 04/20/2019] [Indexed: 11/30/2022] Open
Abstract
Carpesium divaricatum Sieb. & Zucc. has a long history of use as both a medicinal and a food plant. However, except for terpenoids, its chemical constituents have remained poorly investigated. The composition of hydroalcoholic extract from aerial parts of C. divaricatum was analyzed by HPLC-DAD-MSn, revealing the presence of numerous caffeic acid derivatives that were formerly unknown constituents of the plant. In all, 17 compounds, including commonly found chlorogenic acids and rarely occurring butyryl and methylbutyryl tricaffeoylhexaric acids, were tentatively identified. Fractionation of lipophilic extract from cultivated shoots led to the isolation of 12-oxo-phytodienoic acid (12-OPDA), which is a newly identified constituent of the plant. The compound, at concentrations of 0.5, 1.0, and 2.5 μM, significantly reduced IL-8, IL-1β, TNFα, and CCL2 excretion by lipopolysaccharide (LPS)-stimulated human neutrophils. Reactive oxygen species (ROS) production induced by f-MLP was also significantly diminished in the neutrophils pretreated by 12-OPDA. The newly identified constituents of the plant seem to be partly responsible for its pharmacological activity and elevate the value of C. divaricatum as a potential functional food.
Collapse
Affiliation(s)
- Natalia Kłeczek
- Institute of Pharmacology, Polish Academy of Sciences, Department of Phytochemistry, 31-343 Kraków, Smętna Street 12, Poland.
| | - Barbara Michalak
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, 1 Banacha Street, 02-097 Warsaw, Poland.
| | - Janusz Malarz
- Institute of Pharmacology, Polish Academy of Sciences, Department of Phytochemistry, 31-343 Kraków, Smętna Street 12, Poland.
| | - Anna Karolina Kiss
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, 1 Banacha Street, 02-097 Warsaw, Poland.
| | - Anna Stojakowska
- Institute of Pharmacology, Polish Academy of Sciences, Department of Phytochemistry, 31-343 Kraków, Smętna Street 12, Poland.
| |
Collapse
|
43
|
Anti-Fatigue Activity of Aqueous Extracts of Sonchus arvensis L. in Exercise Trained Mice. Molecules 2019; 24:molecules24061168. [PMID: 30934545 PMCID: PMC6470720 DOI: 10.3390/molecules24061168] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/21/2019] [Accepted: 03/22/2019] [Indexed: 12/16/2022] Open
Abstract
Sonchus arvensis L. is a nutritious vegetable and herbal medicine that is consumed worldwide. The aim of this study was to evaluate the anti-fatigue effects and underlying effects of aqueous extract of Sonchus arvensis L. (SA). Male C57BL/6 mice from four groups designated vehicle, exercise, exercise with low dose (250 mg/kg) or high dose of SA (500 mg/kg), were trained by swimming exercise and orally administrated with SA every other day for 28 days. The anti-fatigue activity was determined by exhaustive swimming test, as well as the muscle structure, levels of blood hemoglobin, and metabolites including lactate and urea nitrogen. SA alleviated mice fatigue behaviors by eliminating metabolites, while improving muscle structure and hemoglobin levels. Moreover, SA enhanced glycogen synthesis of liver but not muscle via increasing GCK and PEPCK gene expressions. Importantly, SA improved antioxidant enzymes expression and activities in both liver and muscle, which was possibly related to its primary components polysaccharides and the antioxidant components including chlorogenic acid, luteolin, and chicoric acid. Taken together, the anti-fatigue effects of SA could be partly explained by its antioxidant activity and mediating effects on glycogen synthesis and metabolites elimination. Therefore, SA could be a potential nutraceutical for improving exercise performance and alleviating physical fatigue.
Collapse
|
44
|
Yu XB, Zhang HN, Dai Y, Zhou ZY, Xu RA, Hu LF, Zhang CH, Xu HQ, An YQ, Tang CR, Lin GY. Simvastatin prevents and ameliorates depressive behaviors via neuroinflammatory regulation in mice. J Affect Disord 2019; 245:939-949. [PMID: 30699879 DOI: 10.1016/j.jad.2018.11.086] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 10/16/2018] [Accepted: 11/12/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Statins play a beneficial role in the treatment of coronary artery disease and are widely prescribed to prevent hypercholesterolemia. Previous studies have demonstrated that statins also have anti-inflammatory and immunomodulatory properties, and these are being explored for potential benefits in depression. However, the role of statins in the treatment of depression has not been well examined. METHODS We investigated the effects of simvastatin on depressive behaviors and neuroinflammation in lipopolysaccharide (LPS) and chronic mild stress (CMS) induced depression model in mice. Sucrose preference test (SPT), forced swimming test (FST), novelty-suppressed feeding test (NSFT) were used to detect the depressive behaviors. The microglial activation was detected by immunohistochemistry analysis and the pro-inflammatory cytokines expressions including IL-1β, TNF-α and IL-6 were examined by Western blot analysis. RESULTS Our data indicated that oral administration of simvastatin at 20 mg/kg significantly prevented and ameliorated depressive behaviors reflected by better performance in the SPT, FST and NSFT. Moreover, simvastatin markedly prevented and ameliorated LPS and CMS-induced neuroinflammation, as shown by the suppressed activation of microglia in hippocampus and decreased hippocampal pro-inflammatory cytokines expressions including IL-1β, TNF-α, IL-6, which might be mediated via the inhibition of NF-κB pathway, as shown by the decreased nuclear NF-κB p65 expression. LIMITATIONS The interpretation of the evidence of a positive treatment effect of simvastatin on the depressive manifestations, multifaceted etiology of depression, and confirmation of this finding from animal models to humans is needed. CONCLUSION These results suggest that simvastatin has the potential to be employed as a therapy for depression associated with neuroinflammation.
Collapse
Affiliation(s)
- Xu-Ben Yu
- Department of Pharmacy, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, the First Affiliated Hospital of Wenzhou Medical University, 325000, China
| | - Hai-Na Zhang
- Department of Pharmacy, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, the First Affiliated Hospital of Wenzhou Medical University, 325000, China
| | - Ying Dai
- Department of Pharmacy, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, the First Affiliated Hospital of Wenzhou Medical University, 325000, China
| | - Zi-Ye Zhou
- Department of Pharmacy, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, the First Affiliated Hospital of Wenzhou Medical University, 325000, China
| | - Ren-Ai Xu
- Department of Pharmacy, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, the First Affiliated Hospital of Wenzhou Medical University, 325000, China
| | - Lu-Feng Hu
- Department of Pharmacy, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, the First Affiliated Hospital of Wenzhou Medical University, 325000, China
| | - Chun-Hong Zhang
- Department of Pharmacy, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, the First Affiliated Hospital of Wenzhou Medical University, 325000, China; Department of Pharmacy, University of Pittsburgh, PA 15260, United States
| | - Hui-Qin Xu
- Department of Pharmacy, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, the First Affiliated Hospital of Wenzhou Medical University, 325000, China
| | - Yun-Qi An
- Department of Pharmacy, University of Pittsburgh, PA 15260, United States
| | - Cong-Rong Tang
- Department of Pharmacy, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, the First Affiliated Hospital of Wenzhou Medical University, 325000, China.
| | - Guan-Yang Lin
- Department of Pharmacy, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, the First Affiliated Hospital of Wenzhou Medical University, 325000, China.
| |
Collapse
|
45
|
Qi G, Wu W, Mi Y, Shi R, Sun K, Li R, Liu X, Liu X. Tea polyphenols direct Bmal1-driven ameliorating of the redox imbalance and mitochondrial dysfunction in hepatocytes. Food Chem Toxicol 2018; 122:181-193. [PMID: 30316844 DOI: 10.1016/j.fct.2018.10.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 09/11/2018] [Accepted: 10/10/2018] [Indexed: 12/22/2022]
Abstract
Circadian rhythms are intimately linked to cellular redox status homeostasis via the regulation of mitochondrial function. Tea polyphenols (TP) are nutraceuticals that possess powerful antioxidant properties, especially ameliorating oxidative stress. The objective of this study was to investigate whether circadian clock is involved in the protection effect of TP on oxidative stress cell models. TP ameliorate H2O2-triggered relatively shallow daily oscillations and phase shift of circadian clock genes transcription and protein expression. Meanwhile, TP attenuate H2O2-stimulated excessive secretions of reactive oxygen species (ROS) and restore the depletions of mitochondrial function in a Bmal1-dependent manner. Furthermore, TP treatment accelerates nuclear translocation of Nrf2 and modulates the downstream expressions of antioxidant enzymes. Intriguingly, knockdown of Bmal1 notably blocked Nrf2/ARE/HO-1 redox-sensitive transcription pathway. Our study revealed that TP, as a Bmal1-enhancing natural compound, alleviated redox imbalance via strengthening Keap1/Nrf2 antioxidant defense pathway and ameliorating mitochondrial dysfunction in a Bmal1-dependent manner.
Collapse
Affiliation(s)
- Guoyuan Qi
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Wanqiang Wu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yashi Mi
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Renjie Shi
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Keyu Sun
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Runnan Li
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiao Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xuebo Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
46
|
Baiyun R, Li S, Liu B, Lu J, Lv Y, Xu J, Wu J, Li J, Lv Z, Zhang Z. Luteolin-mediated PI3K/AKT/Nrf2 signaling pathway ameliorates inorganic mercury-induced cardiac injury. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 161:655-661. [PMID: 29933135 DOI: 10.1016/j.ecoenv.2018.06.046] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 05/31/2018] [Accepted: 06/14/2018] [Indexed: 06/08/2023]
Abstract
Inorganic mercury is a toxic metal of worldwide concern, and causes serious cardiac injury. However, effective treatment for cardiac injury induced by mercuric chloride (HgCl2) has not been fully identified. Luteolin (Lut) is a novel natural antioxidant. This study aimed to investigate the role of Lut on HgCl2-induced cardiac injury. Male Wistar rats were randomly assigned to 4 groups, control, Lut (80 mg/kg intragastrically), HgCl2 (80 mg/L, in drinking water), and HgCl2 + Lut groups. The results indicated that Lut significantly ameliorated cardiac histopathological damage, oxidative stress, and apoptosis induced by HgCl2 in the rat heart. Furthermore, Lut evidently increased levels of phosphatidylinositol 3-kinase (PI3K), protein kinase B (AKT), and nuclear factor-erythroid-2-related factor 2 (Nrf2) and its downstream proteins, and inhibited NF-κB activation in the heart of rats treated by HgCl2. Taken together, our findings suggest that activating PI3K/AKT/Nrf2 signaling pathway is involved in the protective effect of Lut against HgCl2-induced cardiac damage.
Collapse
Affiliation(s)
- Ruiqi Baiyun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Siyu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Biying Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jingjing Lu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin 150030, China
| | - Yueying Lv
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin 150030, China
| | - Jianwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jiahui Wu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jiayi Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Zhanjun Lv
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin 150030, China
| | - Zhigang Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
47
|
Guo R, Zhao B, Wang Y, Wu D, Wang Y, Yu Y, Yan Y, Zhang W, Liu Z, Liu X. Cichoric Acid Prevents Free-Fatty-Acid-Induced Lipid Metabolism Disorders via Regulating Bmal1 in HepG2 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:9667-9678. [PMID: 30036051 DOI: 10.1021/acs.jafc.8b02147] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Cichoric acid (CA), a polyphenol component from Echinacea purpurea, exhibits preventive effects on liver lipid-metabolism disorders in obesity. This research aimed to determine the role of circadian rhythm signaling during the process of CA-attenuated lipid accumulation in hepatocytes. In the current study, CA treatments improved cell morphology changes and hepatic lipid levels, which were triggered by free fatty acids (2:1, oleate: palmitate) in a dose-dependent way. Besides, CA (200 μM) regulated the circadian rhythm expressions of clock genes and the relatively shallow daily oscillations. Moreover, silencing Bmal1 significantly blocked the p-Akt/Akt pathway to 80.1% ± 1.5% and the p-GSK3β/GSK3β pathway to 64.7% ± 2.8% ( p < 0.05). Furthermore, silencing Bmal1 elevated the expressions of FAS and ACC to 122.4% ± 5.6% and 114.9% ± 1.7% in protein levels ( p < 0.05) and to 166.5% ± 18.5% and 131.4% ± 5.5% in mRNA levels ( p < 0.05). Therefore, our results demonstrated that CA has a Bmal1 resistance to lipid accumulation by enhancing the Akt/GSK3β signaling pathways and modulating the downstream expressions related to lipid metabolism, which indicated that CA might be useful as a natural and promising nonalcoholic fatty liver diseases (NAFLD) modulator.
Collapse
Affiliation(s)
- Rui Guo
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering , Northwest A&F University , Xinong Road 22 , Yangling 712100 , China
| | - Beita Zhao
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering , Northwest A&F University , Xinong Road 22 , Yangling 712100 , China
| | - Yijie Wang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering , Northwest A&F University , Xinong Road 22 , Yangling 712100 , China
| | - Dandan Wu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering , Northwest A&F University , Xinong Road 22 , Yangling 712100 , China
| | - Yutang Wang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering , Northwest A&F University , Xinong Road 22 , Yangling 712100 , China
| | - Yafan Yu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering , Northwest A&F University , Xinong Road 22 , Yangling 712100 , China
| | - Yuchen Yan
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering , Northwest A&F University , Xinong Road 22 , Yangling 712100 , China
| | - Wentong Zhang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering , Northwest A&F University , Xinong Road 22 , Yangling 712100 , China
| | - Zhigang Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering , Northwest A&F University , Xinong Road 22 , Yangling 712100 , China
| | - Xuebo Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering , Northwest A&F University , Xinong Road 22 , Yangling 712100 , China
| |
Collapse
|
48
|
Apigenin prevents metabolic syndrome in high-fructose diet-fed mice by Keap1-Nrf2 pathway. Biomed Pharmacother 2018; 105:1283-1290. [DOI: 10.1016/j.biopha.2018.06.108] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 06/04/2018] [Accepted: 06/18/2018] [Indexed: 01/06/2023] Open
|
49
|
Phenolics and terpenoids from a wild edible plant Lactuca orientalis (Boiss.) Boiss.: A preliminary study. J Food Compost Anal 2018. [DOI: 10.1016/j.jfca.2018.01.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
50
|
Qi G, Mi Y, Wang Y, Li R, Huang S, Li X, Liu X. Neuroprotective action of tea polyphenols on oxidative stress-induced apoptosis through the activation of the TrkB/CREB/BDNF pathway and Keap1/Nrf2 signaling pathway in SH-SY5Y cells and mice brain. Food Funct 2018; 8:4421-4432. [PMID: 29090295 DOI: 10.1039/c7fo00991g] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Many studies have shown that oxidative stress is a major cause of cellular injuries in a variety of human diseases including cognitive impairment. Tea polyphenols (TPs), natural plant flavonoids found in tea plant leaves, possess the bioactivity to affect the pathogenesis of several chronic diseases via antioxidant associated mechanisms. However, the possible antioxidant and neuroprotective properties of TPs in the brain of mice housed in constant darkness and in H2O2-stimulated SH-SY5Y cells are yet to be elucidated. In this study, pretreatment with TPs markedly attenuated H2O2-elicited cell viability loss and mitochondrial dysfunction, suppressed the induced apoptosis and reduced the elevated levels of intracellular ROS and H2O2. Additionally, TPs modulate the nuclear translocation of Nrf2 and the TrkB/CREB/BDNF signaling pathway by provoking the PI3K/AKT pathway and thus, they transcriptionally regulate the downstream expression of antioxidant enzymes including HO-1, NQO-1, and BDNF in SH-SY5Y cells. Furthermore, an in vivo study revealed that housing mice in constant darkness, simulating shift work disruption in humans, notably affects the AKT/CREB/BDNF signal pathway and the nuclear translocation of Nrf2 and its downstream phase II detoxification enzymes in brain tissue. Remarkably, TP supplementation through drinking water eliminated these changes. These results suggest that TPs possess protective effects against oxidative stress-triggered cognitive impairment, which might be a potential nutritional preventive strategy for neurodegenerative diseases implicated with oxidative stress in shift workers.
Collapse
Affiliation(s)
- Guoyuan Qi
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | | | | | | | | | | | | |
Collapse
|