1
|
Zhu N, Wu J, Zhao D. Nanospace Engineering for C 8 Aromatic Isomer Separation. ACS NANO 2025; 19:2029-2046. [PMID: 39762116 DOI: 10.1021/acsnano.4c15755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
C8 aromatic isomers, namely para-xylene (PX), meta-xylene (MX), ortho-xylene (OX), and ethylbenzene (EB), are essential industrial chemicals with a wide range of applications. The effective separation of these isomers is crucial across various sectors, including petrochemicals, pharmaceuticals, and polymer manufacturing. Traditional separation methods, such as distillation and solvent extraction, are energy-intensive. In contrast, selective adsorption has emerged as an efficient technique for separating C8 aromatic isomers, in which nanospace engineering offers promising strategies to address existing challenges by precisely tailoring the structures and properties of porous materials at the nanoscale. This review explores the application of nanospace engineering in modifying the pore structures and characteristics of diverse porous materials─including zeolites, metal-organic frameworks (MOFs), covalent organic frameworks (COFs), and other porous substances─to enhance their performance in C8 aromatic isomer separation. Additionally, this review provides a comprehensive summary of how different separation techniques, temperature fluctuations, enthalpy/entropy considerations, and desorption processes influence separation efficiency. It also presents a forward-looking perspective on remaining challenges and potential opportunities for advancing C8 aromatic isomer separation.
Collapse
Affiliation(s)
- Nengxiu Zhu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585 Singapore
| | - Jiayi Wu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585 Singapore
| | - Dan Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585 Singapore
| |
Collapse
|
2
|
Balasubramanian S, Kulandaisamy AJ, Das A, Rayappan JBB. MOFabric: an effective and wearable protective garment towards CWA detoxification. RSC Adv 2024; 14:20923-20932. [PMID: 38957585 PMCID: PMC11217922 DOI: 10.1039/d4ra03830d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 06/19/2024] [Indexed: 07/04/2024] Open
Abstract
In current trends, an imminent development of self-detoxification filters is highly desirable against exposure to chemical warfare agents (CWAs). Exploiting protective materials that can be applicable in day-to-day life for instantaneous detoxification will be of immense importance. The available technologies in the current scenario are susceptible to secondary emission and pose a need for an alternate design strategy for effective degradation. In addition, the choice of active material and successful impregnation on a suitable substrate for developing potential barriers requires complex material design. In this context, the developed self-standing UiO-66 and UiO-66-NH2 functionalized fabrics (MOFabrics) present an expeditious detoxification performance against CWA simulant, methyl-paraoxon, with a maximum removal percent conversion of 88.9 and 90.68%. It shows a reduced half-life of approximately 10.16 and 11.23 min, in comparison to an unmodified/carboxymethylated fabric of 462 min.
Collapse
Affiliation(s)
- Selva Balasubramanian
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), SASTRA Deemed University Thanjavur Tamil Nadu - 613 401 India +91 4362 264 120 +91 4362 350 009 ext: 2255
- School of Electrical & Electronics Engineering (SEEE), SASTRA Deemed University Thanjavur Tamil Nadu - 613 401 India
| | | | - Apurba Das
- Department of Textile & Fibre Engineering, Indian Institute of Technology Delhi Hauz Khas New Delhi - 110 016 India
| | - John Bosco Balaguru Rayappan
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), SASTRA Deemed University Thanjavur Tamil Nadu - 613 401 India +91 4362 264 120 +91 4362 350 009 ext: 2255
- School of Electrical & Electronics Engineering (SEEE), SASTRA Deemed University Thanjavur Tamil Nadu - 613 401 India
| |
Collapse
|
3
|
Yan M, Zhang Y, Zhu G, Kong X, Cang T, Wang D, Wibowo H, Kanchanatip E. Hydrogen-rich syngas upgrading via CO 2 adsorption by amine-functionalized Cu-BTC: the effect of different amines. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:35979-35991. [PMID: 38744769 DOI: 10.1007/s11356-024-33646-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/07/2024] [Indexed: 05/16/2024]
Abstract
Syngas produced from supercritical water gasification typically contain a high amount of CO2 along with H2. In order to improve the quality of syngas, amine-functionalized copper benzene-1,3,5-tricarboxylate (Cu-BTC) was synthesized as an effective adsorbent for selective removal of CO2 from syngas to increase the concentration of H2. The amines used in this study included monoethanolamine (MEA), ethylenediamine (EDA), and polyethyleneimine (PEI). The fundamental physicochemical character of adsorbents, CO2 adsorption capacity, and CO2/H2 selectivity were analyzed. The physicochemical characterization indicated that the structure of amine-functionalized Cu-BTC was partially damaged, which resulted in a decrease in specific surface area and pore volume. On the other hand, the enlarged pore size was beneficial for the mass transfer of gas in the adsorbent. Among these adsorbents, Cu-BTC/PEI exhibited the maximum CO2 adsorption capacity of 3.83 mmol/g and the highest CO2/H2 selectivity of 19.74. It was found that the adsorption pressure is the most significant factor for the CO2 adsorption capacity. Lower temperature and higher pressure were favored for CO2 adsorption capacity and CO2/H2 selectivity, so physical adsorption by Cu-BTC played a dominant role. Moreover, Cu-BTC/PEI can be well-regenerated with stable adsorption efficiency after five consecutive cycles. These findings suggested that Cu-BTC/PEI could be a promising alternative adsorbent for CO2 capture from syngas.
Collapse
Affiliation(s)
- Mi Yan
- Institute of Energy and Power Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yan Zhang
- Institute of Energy and Power Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Guolei Zhu
- Zhejiang Energy Group, Hangzhou, 310014, China
| | - Xiangzhi Kong
- Research and Development Institute, Zhejiang Energy Group, Hangzhou, 310014, China
| | - Teng Cang
- Institute of Energy and Power Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Dan Wang
- Institute of Energy and Power Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Haryo Wibowo
- Department of Mechanical Engineering, Faculty of Engineering, Kasetsart University, Bangkok, 10900, Thailand
| | - Ekkachai Kanchanatip
- Department of Civil and Environmental Engineering, Faculty of Science and Engineering, Kasetsart University, Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, 47000, Thailand.
- Center of Excellence in Environmental Catalysis and Adsorption, Faculty of Engineering, Thammasat University, Pathumthani, 12120, Thailand.
| |
Collapse
|
4
|
Goncalves RB, Collados CC, Malliakas CD, Wang Z, Thommes M, Snurr RQ, Hupp JT. Chemically Reversible CO 2 Uptake by Dendrimer-Impregnated Metal-Organic Frameworks. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:9299-9309. [PMID: 38647019 DOI: 10.1021/acs.langmuir.4c00885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Industrialization over the past two centuries has resulted in a continuous rise in global CO2 emissions. These emissions are changing ecosystems and livelihoods. Therefore, methods are needed to capture these emissions from point sources and possibly from our atmosphere. Though the amount of CO2 is rising, it is challenging to capture directly from air because its concentration in air is extremely low, 0.04%. In this study, amines installed inside metal-organic frameworks (MOFs) are investigated for the adsorption of CO2, including at low concentrations. The amines used are polyamidoamine dendrimers that contain many primary amines. Chemically reversible adsorption of CO2 via carbamate formation was observed, as was enhanced uptake of carbon dioxide, likely via dendrimer-amide-based physisorption. Limiting factors in this initial study are comparatively low dendrimer loadings and slow kinetics for carbon dioxide uptake and release, even at 80 °C.
Collapse
Affiliation(s)
- Rebecca B Goncalves
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Carlos Cuadrado Collados
- Institute of Separation Science and Technology, Department of Chemical and Bioengineering, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen 91058, Germany
| | - Christos D Malliakas
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Zhiwei Wang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Matthias Thommes
- Institute of Separation Science and Technology, Department of Chemical and Bioengineering, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen 91058, Germany
| | - Randall Q Snurr
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Joseph T Hupp
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
5
|
Usman J, Abba SI, Baig N, Abu-Zahra N, Hasan SW, Aljundi IH. Design and Machine Learning Prediction of In Situ Grown PDA-Stabilized MOF (UiO-66-NH 2) Membrane for Low-Pressure Separation of Emulsified Oily Wastewater. ACS APPLIED MATERIALS & INTERFACES 2024; 16:16271-16289. [PMID: 38514254 DOI: 10.1021/acsami.4c00752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Significant progress has been made in designing advanced membranes; however, persistent challenges remain due to their reduced permeation rates and a propensity for substantial fouling. These factors continue to pose significant barriers to the effective utilization of membranes in the separation of oil-in-water emulsions. Metal-organic frameworks (MOFs) are considered promising materials for such applications; however, they encounter three key challenges when applied to the separation of oil from water: (a) lack of water stability; (b) difficulty in producing defect-free membranes; and (c) unresolved issue of stabilizing the MOF separating layer on the ceramic membrane (CM) support. In this study, a defect-free hydrolytically stable zirconium-based MOF separating layer was formed through a two-step method: first, by in situ growth of UiO-66-NH2 MOF into the voids of polydopamine (PDA)-functionalized CM during the solvothermal process, and then by facilitating the self-assembly of UiO-66-NH2 with PDA using a pressurized dead-end assembly. A stable MOF separating layer was attained by enriching the ceramic support with amines and hydroxyl groups using PDA, which assisted in the assembly and stabilization of UiO-66-NH2. The PDA-s-UiO-66-NH2-CM membrane displayed air superhydrophilicity and underwater superoleophobicity, demonstrating its oil resistance and high antifouling behavior. The PDA-s-UiO-66-NH2-CM membrane has shown exceptionally high permeability and separation capacity for challenging oil-in-water emulsions. This is attributed to numerous nanochannels from the membrane and its high resistance to oil adhesion. The membranes showed excellent stability over 15 continuous test cycles, which indicates that the developed MOFs separating layers have a low tendency to be clogged by oil droplets during separation. Machine learning-based Gaussian process regression (GPR) models as nonparametric kernel-based probabilistic models were employed to predict the performance efficiency of the PDA-s-UiO-66-NH2-CM membrane in oil-in-water separation. The outcomes were compared with the support vector machine (SVM) and decision tree (DT) algorithm. This efficiency includes various metrics related to its separation accuracy, and the models were developed through feature engineering to identify and utilize the most significant factors affecting the membrane's performance. The results proved the reliability of GPR optimization with the highest prediction accuracy in the validation phase. The average percentage increase of the GPR model compared to the SVM and DT model was 6.11 and 42.94%, respectively.
Collapse
Affiliation(s)
- Jamilu Usman
- Interdisciplinary Research Centre for Membranes and Water Security (IRC-MWS), King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Sani I Abba
- Interdisciplinary Research Centre for Membranes and Water Security (IRC-MWS), King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Nadeem Baig
- Interdisciplinary Research Centre for Membranes and Water Security (IRC-MWS), King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Nidal Abu-Zahra
- Materials Science and Engineering Department, University of Wisconsin-Milwaukee, 3200 North Cramer Street, Milwaukee, Wisconsin 53201, United States
| | - Shadi W Hasan
- Center for Membranes and Advanced Water Technology (CMAT), Department of Chemical and Petroleum Engineering, Khalifa University of Science and Technology, P.O. Box 127788 Abu Dhabi, United Arab Emirates
| | - Isam H Aljundi
- Interdisciplinary Research Centre for Membranes and Water Security (IRC-MWS), King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
- Chemical Engineering Department, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| |
Collapse
|
6
|
Supianto M, Yoo DK, Hwang H, Oh HB, Jhung SH, Lee HJ. Linker-Preserved Iron Metal-Organic Framework-Based Lateral Flow Assay for Sensitive Transglutaminase 2 Detection in Urine Through Machine Learning-Assisted Colorimetric Analysis. ACS Sens 2024; 9:1321-1330. [PMID: 38471126 DOI: 10.1021/acssensors.3c02250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
A groundbreaking demonstration of the utilization of the metal-organic framework MIL-101(Fe) as an exceptionally perceptive visual label in colorimetric lateral flow assays (LFA) is described. This pioneering approach enables the precise identification of transglutaminase 2 (TGM2), a recognized biomarker for chronic kidney disease (CKD), in urine specimens, which offers a remarkably sensitive naked-eye detection mechanism. The surface of MIL-101(Fe) was modified with oxalyl chloride, adipoyl chloride, and poly(acrylic) acid (PAA); these not only improved the labeling material stability in a complex matrix but also achieved a systematic control in the detection limit of the TGM2 concentration using our LFA platform. The advanced LFA with the MIL-101(Fe)-PAA label can detect TGM2 concentrations down to 0.012, 0.009, and 0.010 nM in Tris-HCl buffer, urine, and desalted urine, respectively, which are approximately 55-fold lower than those for a conventional AuNP-based LFAs. Aside from rapid TGM2 detection (i.e., within 20 min), the performance of the MIL-101(Fe)-PAA-based LFA on reproducibility [coefficients of variation (CV) < 2.9%] and recovery (95.9-103.2%) along with storage stability within 25 days of observation (CV < 6.0%) shows an acceptable parameter range for quantitative analysis. A sophisticated sensing method grounded in machine learning principles was also developed, specifically aimed at precisely deducing the TGM2 concentration by analyzing immunoreaction sites. More importantly, our developed LFA offers potential for clinical measurement of TGM2 concentration in normal human urine and CKD patients' samples.
Collapse
Affiliation(s)
- Mulya Supianto
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehakro, Buk-gu, Daegu-city 41566, Republic of Korea
| | - Dong Kyu Yoo
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehakro, Buk-gu, Daegu-city 41566, Republic of Korea
| | - Hagyeong Hwang
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| | - Han Bin Oh
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| | - Sung Hwa Jhung
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehakro, Buk-gu, Daegu-city 41566, Republic of Korea
| | - Hye Jin Lee
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehakro, Buk-gu, Daegu-city 41566, Republic of Korea
| |
Collapse
|
7
|
Rajendran HK, Deen MA, Ray JP, Singh A, Narayanasamy S. Harnessing the Chemical Functionality of Metal-Organic Frameworks Toward Removal of Aqueous Pollutants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:3963-3983. [PMID: 38319923 DOI: 10.1021/acs.langmuir.3c02668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Wastewater treatment has been bestowed with a plethora of materials; among them, metal-organic frameworks (MOFs) are one such kind with exceptional properties. Besides their application in gas adsorption and storage, they are applied in many fields. In orientation toward wastewater treatment, MOFs have been and are being successfully employed to capture a variety of aqueous pollutants, including both organic and inorganic ones. This review sheds light on the postsynthetic modifications (PSMs) performed over MOFs to adsorb and degrade recalcitrant. Modifications performed on the metal nodes and the linkers have been explained with reference to some widely used chemical modifications like alkylation, amination, thiol addition, tandem modifications, and coordinate modifications. The boost in pollutant removal efficacy, reaction rate, adsorption capacity, and selectivity for the modified MOFs is highlighted. The rationale and the robustness of micromotor MOFs, i.e., MOFs with motor activity, and their potential application in the capture of toxic pollutants are also presented for readers. This review also discusses the challenges and future recommendations to be considered in performing PSM over a MOF concerning wastewater treatment.
Collapse
Affiliation(s)
- Harish Kumar Rajendran
- Biochemical and Environmental Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Mohammed Askkar Deen
- Biochemical and Environmental Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Jyoti Prakash Ray
- Biochemical and Environmental Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Anushka Singh
- Biochemical and Environmental Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Selvaraju Narayanasamy
- Biochemical and Environmental Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
8
|
Tajwar MA, Qi L. Dual Stimulus-Responsive Enzyme@Metal-Organic Framework-Polymer Composites toward Enhanced Catalytic Performance for Visual Detection of Glucose. ACS APPLIED BIO MATERIALS 2024; 7:325-331. [PMID: 38096574 DOI: 10.1021/acsabm.3c00918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Enzyme immobilization on a metal-organic framework (enzyme@MOF) has been proven to be a promising strategy for boosting catalysis and biosensing applications. However, promoting the catalytic performance of polymer-modified enzyme@MOF composites remains an ongoing challenge. Herein, a protocol for enzyme immobilization was designed by using a smart polymer-modified MOF (UiO-66-NH2, UN) as the support. Through in situ polymerization, the dual stimulus-responsive poly(N-2-dimethylamino ethyl methacrylate) (PDM) was prepared. The PDM as a "soft cage" protected the immobilized glucose oxidase (GOx)-horseradish peroxidase (HRP) on the surface of the rigid UN. The confinement effect was generated by varying the temperature and pH, thereby improving the catalytic activity of the GOx-HRP@UN-PDM composites. In comparison with free enzymes, the fabricated composites exhibited an 8.9-fold enhancement in catalytic performance (Vmax) at pH 5.0 and 49 °C. Furthermore, relying on a cascade reaction generated in the composites, an assay was developed for the visual detection of glucose in rat serum. This study introduces a groundbreaking approach for the construction of smart enzyme@MOF-polymer composites with high catalytic activity for sensitive monitoring of biomolecules.
Collapse
Affiliation(s)
- Muhammad Ali Tajwar
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Li Qi
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
9
|
Khosrojerdi S, Gholami L, Khazaei M, Hashemzadeh A, Darroudi M, Kazemi Oskuee R. Synthesis and evaluation of gene delivery vectors based on PEI-modified metal-organic framework (MOF) nanoparticles. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:203-213. [PMID: 38234668 PMCID: PMC10790290 DOI: 10.22038/ijbms.2023.71892.15644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/19/2023] [Indexed: 01/19/2024]
Abstract
Objectives Zirconium-based metal-organic frameworks (MOFs) nanostructures, due to their capability of easy surface modification, are considered interesting structures for delivery. In the present study, the surfaces of UIO-66 and NH2-UIO-66 MOFs were modified by polyethyleneimine (PEI) 10000 Da, and their efficiency for plasmid delivery was evaluated. Materials and Methods Two different approaches, were employed to prepare surface-modified nanoparticles. The physicochemical characteristics of the resulting nanoparticles, as well as their transfection efficiency and cytotoxicity, were investigated on the A549 cell line. Results The sizes of DNA/nanocarriers for PEI-modified UIO-66 (PEI-UIO-66) were between 212-291 nm and 267-321 nm for PEI 6-bromohexanoic acid linked UIO-66 (PEI-HEX-UIO-66). The zeta potential of all was positive with the ranges of +16 to +20 mV and +23 to +26 mV for PEI-UIO-66 and PEI-HEX-UIO-66, respectively. Cellular assay results showed that the PEI linking method had a higher rate of gene transfection efficiency with minimal cytotoxicity than the wet impregnation method. The difference between transfection of modified nanoparticles compared to the PEI 10 kDa was not significant but the PEI-HEX-UIO-66 showed less cytotoxicity. Conclusion The present study suggested that the post-synthetic modification of MOFs with PEI 10000 Da through EDC/NHS+6-bromohexanoic acid reaction can be considered as an effective approach for modifying MOFs' structure in order to obtain nanoparticles with better biological function in the gene delivery process.
Collapse
Affiliation(s)
- Somayeh Khosrojerdi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Gholami
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Hashemzadeh
- Targeted Drug Delivery Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Darroudi
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Reza Kazemi Oskuee
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
10
|
Wu WN, Mizrahi Rodriguez K, Roy N, Teesdale JJ, Han G, Liu A, Smith ZP. Engineering the Polymer-MOF Interface in Microporous Composites to Address Complex Mixture Separations. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37931132 DOI: 10.1021/acsami.3c11300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Poor interfacial compatibility remains a pressing challenge in the fabrication of high-performance polymer-MOF composites. In response, introducing compatible chemistries such as a carboxylic acid moiety has emerged as a compelling strategy to increase polymer-MOF interactions. In this work, we leveraged compatible functionalities in UiO-66-NH2 and a carboxylic acid-functionalized PIM-1 to fabricate mixed-matrix membranes (MMMs) with improved separation performance compared to PIM-1-based MMMs in industrially relevant conditions. Under pure-gas conditions, PIM-COOH-based MMMs retained selectivity with increasing MOF loading and showed increased permeability due to increased diffusion. The composites were further investigated under industrially relevant conditions, including CO2/N2, CO2/CH4, and H2S/CO2/CH4 mixtures, to elucidate the effects of competitive sorption and plasticization. Incorporation of UiO-66-NH2 in PIM-COOH and PIM-1 mitigated the effects of CO2- and H2S-induced plasticization typically observed in linear polymers. In CO2-based binary mixed-gas tests, all samples showed similar performance as that in pure-gas tests, with minimal competitive sorption contributions associated with the amine functional groups of the MOF. In ternary mixed-gas tests, improved plasticization resistance and interfacial compatibility resulted in PIM-COOH-based MMMs having the highest H2S/CH4 and CO2/CH4 selectivity combinations among the films tested in this study. These findings demonstrate that selecting MOFs and polymers with compatible functional groups is a useful strategy in developing high-performing microporous MMMs that require stability under complex and industrially relevant conditions.
Collapse
Affiliation(s)
- Wan-Ni Wu
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Katherine Mizrahi Rodriguez
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Naksha Roy
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Justin J Teesdale
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Gang Han
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin300350, P.R. China
| | - Alexander Liu
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Zachary P Smith
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
11
|
Philip FA, Henni A. Incorporation of Amino Acid-Functionalized Ionic Liquids into Highly Porous MOF-177 to Improve the Post-Combustion CO 2 Capture Capacity. Molecules 2023; 28:7185. [PMID: 37894664 PMCID: PMC10608833 DOI: 10.3390/molecules28207185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
This study presents the encapsulation of two amino acid-based ionic liquids (AAILs), 1-ethyl-3-methylimidazolium glycine [Emim][Gly] and 1-ethyl-3-methylimidazolium alanine [Emim][Ala], in a highly porous metal-organic framework (MOF-177) to generate state-of-the-art composites for post-combustion CO2 capture. Thermogravimetric analysis (TGA) demonstrated a successful encapsulation of the AAILs, with a dramatic reduction in the composites' surface areas and pore volumes. Both [Emim][Gly]@MOF-177 and [Emim][Ala]@MOF-177 had close to three times the CO2 uptake of MOF-177 at 20 wt.% loading, 0.2 bar, and 303 K. Additionally, 20-[Emim][Gly]@MOF-177 and 20-[Emim] [Ala]@MOF-177 enhanced their CO2/N2 selectivity from 5 (pristine MOF-177) to 13 and 11, respectively.
Collapse
Affiliation(s)
| | - Amr Henni
- Faculty of Engineering and Applied Science, University of Regina, Regina, SK S4S 0A2, Canada;
| |
Collapse
|
12
|
Kobaisy AM, Elkady MF, Abdel-Moneim AA, El-Khouly ME. Surface-decorated porphyrinic zirconium-based metal-organic frameworks (MOFs) using post-synthetic self-assembly for photodegradation of methyl orange dye. RSC Adv 2023; 13:23050-23060. [PMID: 37529362 PMCID: PMC10388159 DOI: 10.1039/d3ra02656f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/22/2023] [Indexed: 08/03/2023] Open
Abstract
We report herein the surface decoration of a water-soluble free-base porphyrin, namely, 5,10,15,20-tetrakis(1-methyl-4-pyridinio)porphyrin-tetra(p-toluenesulfonate) (H2TMPyP), over three different zirconium-based metal-organic frameworks of different linker structure and functionality; namely UiO66, UiO66-NH2, and MIP-202, via self-assembly. The synthesized MOFs along with the resulting complexes have been characterized via spectroscopic and analytical techniques (XRD, FT-IR, TEM, N2 adsorption/desorption, and laser scanning confocal microscopy). The self-assembly of H2TMPyP with the examined three MOFs was observed by using the steady-state absorption and fluorescence, as well as the fluorescence lifetime studies. It was evident that the highest complex interaction was recorded between porphyrin and UiO-66-NH2 compared with the lowest interactions between porphyrin and MIP-202. This is in good agreement with the high surface area and pore volume of UiO-66 (1100 m2 g-1 and 0.68 cm3 g-1) and compared to that of MIP-202 (94 m2 g-1 and 0.26 cm3 g-1). The photocatalytic activities of the three porphyrin entities immobilized zirconium-based MOFs were compared toward methyl orange dye degradation from aqueous solution under visible light irradiation (λex = 430 nm). The photocatalytic studies render the fabrication of the self-assembled H2TMPyP@UiO-66-NH2 composite as a promising material for dye degradation from polluted wastewater.
Collapse
Affiliation(s)
- Ahmed M Kobaisy
- Nanoscience Program, Institute of Basic and Applied Science, Egypt-Japan University of Science and Technology (E-JUST) New Borg El-Arab City Alexandria Egypt
| | - Marwa F Elkady
- Chemical and Petrochemicals Engineering Department, Egypt-Japan University of Science and Technology (E-JUST) New Borg El-Arab City Alexandria Egypt
| | - Ahmed A Abdel-Moneim
- Nanoscience Program, Institute of Basic and Applied Science, Egypt-Japan University of Science and Technology (E-JUST) New Borg El-Arab City Alexandria Egypt
| | - Mohamed E El-Khouly
- Nanoscience Program, Institute of Basic and Applied Science, Egypt-Japan University of Science and Technology (E-JUST) New Borg El-Arab City Alexandria Egypt
| |
Collapse
|
13
|
Xing YY, Wang J, Zhang CX, Wang QL. High Proton Conductivity of the UiO-66-NH 2-SPES Composite Membrane Prepared by Covalent Cross-Linking. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37368410 DOI: 10.1021/acsami.3c06630] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
A sulfonated poly(ethersulfone) (SPES)-metal-organic framework (MOF) film with excellent proton conductivity was synthesized by anchoring UiO-66-NH2 to the main chain of the aromatic polymer through the Hinsberg reaction. The chemical bond was formed between the amino group in MOFs and the -SO2Cl group in chlorosulfonated poly(ethersulfones) to conduct protons in the proton channel of the membrane, making the membrane have excellent proton conductivity. UiO-66-NH2 is successfully prepared as a result of the consistency of the experimental and simulated powder X-ray diffraction (PXRD) patterns of MOFs. The existence of absorption peaks of characteristic functional groups in Fourier transform infrared (FTIR) spectra proved the successful preparation of SPES, PES-SO2Cl, and a composite film. The results of the AC impedance test indicate that the composite film with a 3% mass fraction has the best proton conductivity of 0.215 S·cm-1, which is 6.2 times higher than that of the blended film without a chemical bond at 98% RH and 353 K. To our knowledge, there are rarely any reports on the preparation of a composite membrane by directly linking MOFs and the membrane matrix with chemical bonds. This work provides a good way to synthesize the highly conductive proton exchange film.
Collapse
Affiliation(s)
- Yuan-Yuan Xing
- College of Chemical Engineering and Materials, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Jiao Wang
- College of Chemical Engineering and Materials, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Chen-Xi Zhang
- College of Chemical Engineering and Materials, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nan Kai University, Tianjin 300071, P. R. China
| | - Qing-Lun Wang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nan Kai University, Tianjin 300071, P. R. China
| |
Collapse
|
14
|
Poryvaev AS, Larionov KP, Albrekht YN, Efremov AA, Kiryutin AS, Smirnova KA, Evtushok VY, Fedin MV. UiO-66 framework with an encapsulated spin probe: synthesis and exceptional sensitivity to mechanical pressure. Phys Chem Chem Phys 2023; 25:13846-13853. [PMID: 37161549 DOI: 10.1039/d3cp01063e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Probes sensitive to mechanical stress are in demand for the analysis of pressure distribution in materials, and the design of pressure sensors based on metal-organic frameworks (MOFs) is highly promising due to their structural tunability. We report a new pressure-sensing material, which is based on the UiO-66 framework with trace amounts of a spin probe (0.03 wt%) encapsulated in cavities. To obtain this material, we developed an approach for encapsulation of stable nitroxide radical TEMPO ((2,2,6,6-tetramethylpiperidin-1-yl)oxyl) into the micropores of UiO-66 during its solvothermal synthesis. Pressure read-out using electron paramagnetic resonance (EPR) spectroscopy allows monitoring the degradation of the defected MOF structure upon pressurization, where full collapse of pores occurs at as low a pressure as 0.13 GPa. The developed methodology can be used in and ex situ and provides sensitive tools for non-destructive mapping of pressure effects in various materials.
Collapse
Affiliation(s)
- Artem S Poryvaev
- International Tomography Center SB RAS, Institutskaya str. 3a, Novosibirsk, 630090, Russia.
| | - Kirill P Larionov
- Boreskov Institute of Catalysis SB RAS, Lavrentiev av. 5, Novosibirsk, 630090, Russia
| | - Yana N Albrekht
- International Tomography Center SB RAS, Institutskaya str. 3a, Novosibirsk, 630090, Russia.
| | - Alexander A Efremov
- International Tomography Center SB RAS, Institutskaya str. 3a, Novosibirsk, 630090, Russia.
- Novosibirsk State University, Pirogova str. 1, Novosibirsk, 630090, Russia
| | - Alexey S Kiryutin
- International Tomography Center SB RAS, Institutskaya str. 3a, Novosibirsk, 630090, Russia.
| | - Kristina A Smirnova
- International Tomography Center SB RAS, Institutskaya str. 3a, Novosibirsk, 630090, Russia.
- Novosibirsk State University, Pirogova str. 1, Novosibirsk, 630090, Russia
| | - Vasiliy Y Evtushok
- Boreskov Institute of Catalysis SB RAS, Lavrentiev av. 5, Novosibirsk, 630090, Russia
| | - Matvey V Fedin
- International Tomography Center SB RAS, Institutskaya str. 3a, Novosibirsk, 630090, Russia.
- Novosibirsk State University, Pirogova str. 1, Novosibirsk, 630090, Russia
| |
Collapse
|
15
|
Ma J, Zhou S, Lai Y, Wang Z, Ni N, Dai F, Xu Y, Yang X. Ionic Liquids Facilitate the Dispersion of Branched Polyethylenimine Grafted ZIF-8 for Reinforced Epoxy Composites. Polymers (Basel) 2023; 15:polym15081837. [PMID: 37111984 PMCID: PMC10146677 DOI: 10.3390/polym15081837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Metal-organic frameworks (MOFs) have been previously shown as an emerging modified class of epoxy resin. In this work, we report a simple strategy for preventing zeolitic imidazolate framework (ZIF-8) nanoparticles from agglomerating in epoxy resin (EP). Branched polyethylenimine grafted ZIF-8 in ionic liquid (BPEI-ZIF-8) nanofluid with good dispersion was prepared successfully using an ionic liquid as both the dispersant and curing agent. Results indicated that the thermogravimetric curve of the composite material had no noticeable change with increasing BPEI-ZIF-8/IL content. The glass transition temperature (Tg) of the epoxy composite was reduced with the addition of BPEI-ZIF-8/IL. The addition of 2 wt% BPEI-ZIF-8/IL into EP effectively improved the flexural strength to about 21.7%, and the inclusion of 0.5 wt% of BPEI-ZIF-8/IL EP composites increased the impact strength by about 83% compared to pure EP. The effect of adding BPEI-ZIF-8/IL on the Tg of epoxy resin was explored, and its toughening mechanism was analyzed in combination with SEM images showing fractures in the EP composites. Moreover, the damping and dielectric properties of the composites were improved by adding BPEI-ZIF-8/IL.
Collapse
Affiliation(s)
- Junchi Ma
- Key Laboratory for Light-Weight Materials, Nanjing Tech University, Nanjing 210009, China
| | - Shihao Zhou
- Key Laboratory for Light-Weight Materials, Nanjing Tech University, Nanjing 210009, China
| | - Yuanchang Lai
- Key Laboratory for Light-Weight Materials, Nanjing Tech University, Nanjing 210009, China
| | - Zhaodi Wang
- Key Laboratory for Light-Weight Materials, Nanjing Tech University, Nanjing 210009, China
| | - Nannan Ni
- Key Laboratory for Light-Weight Materials, Nanjing Tech University, Nanjing 210009, China
| | - Feng Dai
- Key Laboratory for Light-Weight Materials, Nanjing Tech University, Nanjing 210009, China
| | - Yahong Xu
- Key Laboratory for Light-Weight Materials, Nanjing Tech University, Nanjing 210009, China
| | - Xin Yang
- Key Laboratory for Light-Weight Materials, Nanjing Tech University, Nanjing 210009, China
| |
Collapse
|
16
|
Weerasinghe PVT, Wu S, Lee WPC, Lin M, Anariba F, Li X, Seng DHL, Sim JY, Wu P. Efficient Synthesis of 2D Mica Nanosheets by Solvothermal and Microwave-Assisted Techniques for CO 2 Capture Applications. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2921. [PMID: 37049217 PMCID: PMC10096432 DOI: 10.3390/ma16072921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
Mica, a commonly occurring mineral, has significant potential for various applications due to its unique structure and properties. However, due to its non-Van Der Waals bonded structure, it is difficult to exfoliate mica into ultrathin nanosheets. In this work, we report a rapid solvothermal microwave synthesis of 2D mica with short reaction time and energy conservation. The resulting exfoliated 2D mica nanosheets (eMica nanosheets) were characterized by various techniques, and their ability to capture CO2 was tested by thermogravimetric analysis (TGA). Our results showed an 87% increase in CO2 adsorption capacity with eMica nanosheets compared to conventional mica. Further characterization by Fourier-transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS), as well as first-principles calculations, showed that the high specific surface area and deposited K2CO3 layer contribute to the increased CO2 adsorption on the mica nanosheets. These results speak to the potential of high-quality eMica nanosheets and efficient synthesis processes to open new avenues for new physical properties of 2D materials and the development of CO2 capture technologies.
Collapse
Affiliation(s)
- P. Vishakha T. Weerasinghe
- Entropic Interface Group, Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore; (P.V.T.W.); (S.W.); (W.P.C.L.); (F.A.)
| | - Shunnian Wu
- Entropic Interface Group, Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore; (P.V.T.W.); (S.W.); (W.P.C.L.); (F.A.)
| | - W. P. Cathie Lee
- Entropic Interface Group, Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore; (P.V.T.W.); (S.W.); (W.P.C.L.); (F.A.)
| | - Ming Lin
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), Singapore 138634, Singapore; (M.L.); (X.L.); (D.H.L.S.)
| | - Franklin Anariba
- Entropic Interface Group, Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore; (P.V.T.W.); (S.W.); (W.P.C.L.); (F.A.)
- Anariba Brands Group, Science, Mathematics and Technology (SMT), Engineering Product Development (EPD), Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Xu Li
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), Singapore 138634, Singapore; (M.L.); (X.L.); (D.H.L.S.)
- Institute of Sustainability for Chemicals, Energy and Environment, Agency for Science, Technology and Research (A*STAR), Singapore 627833, Singapore;
| | - Debbie Hwee Leng Seng
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), Singapore 138634, Singapore; (M.L.); (X.L.); (D.H.L.S.)
| | - Jia Yu Sim
- Institute of Sustainability for Chemicals, Energy and Environment, Agency for Science, Technology and Research (A*STAR), Singapore 627833, Singapore;
| | - Ping Wu
- Entropic Interface Group, Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore; (P.V.T.W.); (S.W.); (W.P.C.L.); (F.A.)
| |
Collapse
|
17
|
Gul Zaman H, Baloo L, Kutty SR, Aziz K, Altaf M, Ashraf A, Aziz F. Insight into microwave-assisted synthesis of the chitosan-MOF composite: Pb(II) adsorption. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:6216-6233. [PMID: 35989404 DOI: 10.1007/s11356-022-22438-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Heavy metal contamination has increased over the globe, causing significant environmental issues owing to direct and indirect releases into water bodies. As a result, metal removal from water entities must be addressed soon. Various adsorbents such as MOFs and chitosan have demonstrated promising results in water treatment. The present study prepared a composite material (chitosan-UiO-66-glycidyl methacrylate MOF) by a microwave-assisted method. The structure and morphology of the chitosan-MOF composite were studied using FE-SEM, EDX, XRD, BET, FT-IR, and TGA techniques. In addition, the adsorption of Pb(II) from aqueous solution onto the chitosan-MOF composite was analyzed in a batch study concerning pH, contact time, initial metal ion concentration, and adsorbent dosage. The composite has a large surface area of 867 m2/g with a total pore volume of 0.51 cm3/g and thermal stability of up to 400 [Formula: see text]. Following an analysis of the adsorption isotherms, kinetics, and thermodynamics, the Langmuir model showed an excellent fit with the adsorption data (R2 = 0.99) and chi-squared (X2 = 3.609). The adsorption process was a spontaneous exothermic reaction and the pseudo-second-order rate equation fitted the kinetic profile well. Moreover, the composite is recyclable, retaining 83.45% of its removal effectiveness after 5 consecutive cycles, demonstrating it as a sustainable adsorbent for metal recovery. This study introduces a novel synthesized composite with enhanced recyclability and a higher potential for eliminating pollutants from industrial wastewater.
Collapse
Affiliation(s)
- Humaira Gul Zaman
- Civil and Environmental Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
| | - Lavania Baloo
- Civil and Environmental Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia.
| | - Shamsul Rahman Kutty
- Civil and Environmental Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
| | - Khalid Aziz
- Laboratory of Biotechnology, Materials, and Environment, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Muhammad Altaf
- Civil and Environmental Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
| | - Aniqa Ashraf
- CAS Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Faissal Aziz
- Laboratory of Water, Biodiversity and Climate Change, Faculty of Science Semlalia of Marrakech, Cadi Ayyad University, Marrakech, Morocco
| |
Collapse
|
18
|
Recent advances in removal of toxic elements from water using MOFs: A critical review. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
19
|
Shahin R, Yousefi M, Ziyadi H, Bikhof M, Hekmati M. pH-Responsive and magnetic Fe3O4@UiO-66-NH2@PEI nanocomposite as drug nanocarrier: Loading and release study of Imatinib. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
Zhang X, Hao X, Qiu S, Lu G, Liu W, Wang L, Wei Y, Chen B, Lan X, Zhao H. Efficient capture and release of carboxylated benzisothiazolinone from UiO-66-NH2 for antibacterial and antifouling applications. J Colloid Interface Sci 2022. [DOI: 10.1016/j.jcis.2022.05.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Khosroshahi N, Goudarzi MD, Gilvan ME, Safarifard V. Collocation of MnFe2O4 and UiO-66-NH2: An efficient and reusable nanocatalyst for achieving high-performance in hexavalent chromium reduction. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132994] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
22
|
Hui Y, Yang D, Wang W, Liu Y, He C, Wang B. A label-free electrochemical aptasensor based on a gold nanoparticle/carbon nanotube/metal–organic framework nanohybrid for ultrasensitive detection of streptomycin in milk samples. Food Chem 2022; 402:134150. [DOI: 10.1016/j.foodchem.2022.134150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/28/2022] [Accepted: 09/04/2022] [Indexed: 10/14/2022]
|
23
|
Post Synthetic Modification of NH2-(Zr-MOF) via Rapid Microwave-Promoted Synthesis for Effective Adsorption of Pb(II) and Cd(II). ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
24
|
Dispersive solid phase extraction of several pesticides from fruit juices using a hydrophobic metal organic framework prior to HPLC-MS/MS determination. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Barghi B, Jürisoo M, Volokhova M, Seinberg L, Reile I, Mikli V, Niidu A. Process Optimization for Catalytic Oxidation of Dibenzothiophene over UiO-66-NH 2 by Using a Response Surface Methodology. ACS OMEGA 2022; 7:16288-16297. [PMID: 35601300 PMCID: PMC9118427 DOI: 10.1021/acsomega.1c05965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 03/29/2022] [Indexed: 06/15/2023]
Abstract
This research investigates the catalytic performance of a metal-organic framework (MOF) with a functionalized ligand-UiO-66-NH2-in the oxidative desulfurization of dibenzothiophene (DBT) in n-dodecane as a model fuel mixture (MFM). The solvothermally prepared catalyst was characterized by XRD, FTIR, 1H NMR, SEM, TGA, and MP-AES analyses. A response surface methodology was employed for the experiment design and variable optimization using central composite design (CCD). The effects of reaction conditions on DBT removal efficiency, including temperature (X 1), oxidant agent over sulfur (O/S) mass ratio (X 2), and catalyst over sulfur (C/S) mass ratio (X 3), were assessed. Optimal process conditions for sulfur removal were obtained when the temperature, O/S mass ratio, and C/S mass ratio were 72.6 °C, 1.62 mg/mg, and 12.1 mg/mg, respectively. Under these conditions, 89.7% of DBT was removed from the reaction mixture with a composite desirability score of 0.938. From the results, the temperature has the most significant effect on the oxidative desulfurization reaction. The model F values gave evidence that the quadratic model was well-fitted. The reusability of the MOF catalyst in the ODS reaction was tested and demonstrated a gradual loss of activity over four runs.
Collapse
Affiliation(s)
- Bijan Barghi
- Virumaa
College, School of Engineering, Tallinn
University of Technology, Järveküla 75, 30322 Kohtla-Järve, Estonia
| | - Martin Jürisoo
- Virumaa
College, School of Engineering, Tallinn
University of Technology, Järveküla 75, 30322 Kohtla-Järve, Estonia
| | - Maria Volokhova
- National
Institute of Chemical Physics and Biophysics, Akadeemia 23, 12618 Tallinn, Estonia
| | - Liis Seinberg
- National
Institute of Chemical Physics and Biophysics, Akadeemia 23, 12618 Tallinn, Estonia
| | - Indrek Reile
- National
Institute of Chemical Physics and Biophysics, Akadeemia 23, 12618 Tallinn, Estonia
| | - Valdek Mikli
- Department
of Chemistry and Materials Technology, School of Engineering, Tallinn University of Technology, Ehitajate 5, 19086 Tallinn, Estonia
| | - Allan Niidu
- Virumaa
College, School of Engineering, Tallinn
University of Technology, Järveküla 75, 30322 Kohtla-Järve, Estonia
| |
Collapse
|
26
|
Pujić I, Perreault H. Recent advancements in glycoproteomic studies: Glycopeptide enrichment and derivatization, characterization of glycosylation in SARS CoV2, and interacting glycoproteins. MASS SPECTROMETRY REVIEWS 2022; 41:488-507. [PMID: 33393161 DOI: 10.1002/mas.21679] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/13/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
Proteomics studies allow for the determination of the identity, amount, and interactions of proteins under specific conditions that allow the biological state of an organism to ultimately change. These conditions can be either beneficial or detrimental. Diseases are due to detrimental changes caused by either protein overexpression or underexpression caused by as a result of a mutation or posttranslational modifications (PTM), among other factors. Identification of disease biomarkers through proteomics can be potentially used as clinical information for diagnostics. Common biomarkers to look for include PTM. For example, aberrant glycosylation of proteins is a common marker and will be a focus of interest in this review. A common way to analyze glycoproteins is by glycoproteomics involving mass spectrometry. Due to factors such as micro- and macroheterogeneity which result in a lower abundance of each version of a glycoprotein, it is difficult to obtain meaningful results unless rigorous sample preparation procedures are in place. Microheterogeneity represents the diversity of glycans at a single site, whereas macroheterogeneity depicts glycosylation levels at each site of a protein. Enrichment and derivatization of glycopeptides help to overcome these limitations. Over the time range of 2016 to 2020, several methods have been proposed in the literature and have contributed to drastically improve the outcome of glycosylation analysis, as presented in the sampling surveyed in this review. As a current topic in 2020, glycoproteins carried by pathogens can also cause disease and this is seen with SARS CoV2, causing the COVID-19 pandemic. This review will discuss glycoproteomic studies of the spike glycoprotein and interacting proteins such as the ACE2 receptor.
Collapse
Affiliation(s)
- Ivona Pujić
- Chemistry Department, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Hélène Perreault
- Chemistry Department, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
27
|
Askari S, Khodaei MM, Jafarzadeh M. Heterogenized Phosphinic Acid on UiO-66-NH2: A Bifunctional Catalyst for the Synthesis of Polyhydroquinolines. Catal Letters 2022. [DOI: 10.1007/s10562-021-03734-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
28
|
Jun HJ, Yoo DK, Jhung SH. Metal-organic framework (MOF-808) functionalized with ethyleneamines: Selective adsorbent to capture CO2 under low pressure. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.101932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
29
|
Abstract
The ZIF-8 crystals were successfully postsynthetically modified using methylamine (MA), ethylenediamine (ED), and N, N
-dimethylethylenediamine (MMEN) to improve their adsorption performance toward CO2. Results showed that, compared with the original ZIF-8, the BET specific surface area of MA-ZIF-8, MMEN-ZIF-8, and ED-ZIF-8 has increased by 118.2%, 92.0%, and 29.8%, respectively. In addition, their total pore volume increased separately by 130.8%, 100%, and 48.7%. The adsorption capacities of CO2 on the amine-modified ZIF-8 samples followed the order
. The CO2 adsorption capacities at 298 K on MA-ZIF-8, MMEN-ZIF-8, and ED-ZIF-8 were increased by 118.2%, 90.2%, and 29.8%, respectively. What is more, the CO2/N2 selectivities calculated using an IAST model of the amine@ZIF-8 samples at 0.01 bar and 298 K were also significantly improved and followed the order
, which increased by 173.0%, 121.4%, and 22.6%, respectively. The isosteric heat of CO2 adsorption (
) on the MA-ZIF-8, MMEN-ZIF-8, and ED-ZIF-8 all becomes higher, while
of N2 on these samples was slightly lower in comparison with that on the ZIF-8. Furthermore, after six recycle runs of gravimetric CO2 adsorption-desorption on MA-ZIF-8, the adsorption performance of CO2 is still very good, indicating that the MA-ZIF-8 sample has good regeneration performance and can be applied into industrial CO2 adsorption and separation.
Collapse
|
30
|
Gao C, Zhang Q, Yang Y, Li Y, Lin W. Recent trends in therapeutic application of engineered blood purification materials for kidney disease. Biomater Res 2022; 26:5. [PMID: 35120554 PMCID: PMC8815201 DOI: 10.1186/s40824-022-00250-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 01/10/2022] [Indexed: 12/11/2022] Open
Abstract
Blood purification is a commonly used method to remove excess metabolic waste in the blood in renal replacement therapy. The sufficient removal of these toxins from blood can reduce complications and improve survival lifetime in dialysis patients. However, the current biological blood purification materials in clinical practice are not ideal, where there is an unmet need for producing novel materials that have better biocompatibility, reduced toxicity, and, in particular, more efficient toxin clearance rates and a lower cost of production. Given this, this review has carefully summarized newly developed engineered different structural biomedical materials for blood purification in terms of types and structure characteristics of blood purification materials, the production process, as well as interfacial chemical adsorption properties or mechanisms. This study may provide a valuable reference for fabricating a user-friendly purification device that is more suitable for clinical blood purification applications in dialysis patients.
Collapse
Affiliation(s)
- Cui Gao
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China
| | - Qian Zhang
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China
| | - Yi Yang
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China.
- Department of Nephology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang, China.
- International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang, China.
| | - Yangyang Li
- Key Laboratory of Women's Reproductive Health Research of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| | - Weiqiang Lin
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China.
- International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang, China.
| |
Collapse
|
31
|
Rong S, Zou L, Meng L, Yang X, Dai J, Wu M, Qiu R, Tian Y, Feng X, Ren X, Jia L, Jiang L, Hang Y, Ma H, Pan H. Dual function metal-organic frameworks based ratiometric electrochemical sensor for detection of doxorubicin. Anal Chim Acta 2022; 1196:339545. [DOI: 10.1016/j.aca.2022.339545] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/27/2021] [Accepted: 01/21/2022] [Indexed: 11/16/2022]
|
32
|
Li X, Wang D, Ning H, Xin Y, He Z, Su F, Wang Y, Zhang J, Wang H, Qian L, Zheng Y, Yao D, Li M. An electrostatic repulsion strategy construct ZIFs based liquids with permanent porosity for efficient CO2 capture. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
33
|
Musa SG, Aljunid Merican ZM, Akbarzadeh O. Study on Selected Metal-Organic Framework-Based Catalysts for Cycloaddition Reaction of CO 2 with Epoxides: A Highly Economic Solution for Carbon Capture and Utilization. Polymers (Basel) 2021; 13:3905. [PMID: 34833202 PMCID: PMC8619864 DOI: 10.3390/polym13223905] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/23/2021] [Accepted: 03/31/2021] [Indexed: 11/17/2022] Open
Abstract
The level of carbon dioxide in the atmosphere is growing rapidly due to fossil fuel combustion processes, heavy oil, coal, oil shelter, and exhausts from automobiles for energy generation, which lead to depletion of the ozone layer and consequently result in global warming. The realization of a carbon-neutral environment is the main focus of science and academic researchers of today. Several processes were employed to minimize carbon dioxide in the air, some of which include the utilization of non-fossil sources of energy like solar, nuclear, and biomass-based fuels. Consequently, these sources were reported to have a relatively high cost of production and maintenance. The applications of both homogeneous and heterogeneous processes in carbon capture and storage were investigated in recent years and the focus now is on the conversion of CO2 into useful chemicals and compounds. It was established that CO2 can undergo cycloaddition reaction with epoxides under the influence of special catalysts to give cyclic carbonates, which can be used as value-added chemicals at a different level of pharmaceutical and industrial applications. Among the various catalysts studied for this reaction, metal-organic frameworks are now on the frontline as a potential catalyst due to their special features and easy synthesis. Several metal-organic framework (MOF)-based catalysts were studied for their application in transforming CO2 to organic carbonates using epoxides. Here, we report some recent studies of porous MOF materials and an in-depth discussion of two repeatedly used metal-organic frameworks as a catalyst in the conversion of CO2 to organic carbonates.
Collapse
Affiliation(s)
- Suleiman Gani Musa
- Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar 32610, Malaysia;
- Department of Chemistry, Al-Qalam University Katsina, PMB 2137, Tafawa Balewa Way, Dutsin-ma Road, Katsina 820252, Nigeria
| | - Zulkifli Merican Aljunid Merican
- Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar 32610, Malaysia;
- Institute of Contaminant Management for Oil & Gas, Universiti Teknologi PETRONAS, Bandar Seri Iskandar 32610, Malaysia
| | - Omid Akbarzadeh
- Nanotechnology & Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur 50603, Malaysia;
| |
Collapse
|
34
|
Veisi H, Abrifam M, Kamangar SA, Pirhayati M, Saremi SG, Noroozi M, Tamoradi T, Karmakar B. Pd immobilization biguanidine modified Zr-UiO-66 MOF as a reusable heterogeneous catalyst in Suzuki-Miyaura coupling. Sci Rep 2021; 11:21883. [PMID: 34750439 PMCID: PMC8575879 DOI: 10.1038/s41598-021-00991-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 10/14/2021] [Indexed: 11/13/2022] Open
Abstract
In recent days, nanohybrid metal organic frameworks (MOF) have been considered as next generation catalysts due to their unique features like large surface to volume ratio, tailorable geometry, uniform pore sizes and homogeneous distribution of active sites. In this report, we address the biguanidine modified 3D Zr-centred MOF UiO-66-NH2 following a post synthetic modification approach. Utilizing the excellent chelating ability of biguanidine, Pd ions are immobilized over the host matrix MOF. The as-synthesized material was physicochemically characterized using a broad range of analytical techniques like FT-IR, electron microscopy, EDS, elemental mapping, XRD and ICP-OES. Subsequently the material has been catalytically employed in the classical Suzuki-Miyaura coupling towards the synthesis of diverse biphenyl derivatives at sustainable conditions. There are very few reports on the covalently modified MOFs towards the organic coupling reactions. The catalyst has been isolated by centrifugation and recycled in 9 consecutive runs with almost insignificant leaching and minute decrease in reactivity.
Collapse
Affiliation(s)
- Hojat Veisi
- Department of Chemistry, Payame Noor University, Tehran, Iran.
| | - Mozhdeh Abrifam
- Department of Chemistry, Payame Noor University, Tehran, Iran
| | | | - Mozhgan Pirhayati
- Department of Applied Chemistry, Faculty of Science, Malayer University, Malayer, Iran
| | | | - Mohammad Noroozi
- Center for Research and Development of Petroleum Technologies at Kermanshah, Research Institute of Petroleum Industry (RIPI), Tehran, Iran
| | - Taiebeh Tamoradi
- Department of Chemistry, Production Technology Research Institute-ACECR, Ahvaz, Iran.
| | - Bikash Karmakar
- Department of Chemistry, Gobardanga Hindu College, 24-Parganas (North), Gobardanga, India.
| |
Collapse
|
35
|
Dymek K, Kurowski G, Kuterasiński Ł, Jędrzejczyk R, Szumera M, Sitarz M, Pajdak A, Kurach Ł, Boguszewska-Czubara A, Jodłowski PJ. In Search of Effective UiO-66 Metal-Organic Frameworks for Artificial Kidney Application. ACS APPLIED MATERIALS & INTERFACES 2021; 13:45149-45160. [PMID: 34520182 PMCID: PMC8485328 DOI: 10.1021/acsami.1c05972] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Indexed: 06/01/2023]
Abstract
The removal of uremic toxins from patients with acute kidney injury is a key issue in improving the quality of life for people requiring peritoneal dialysis. The currently utilized method for the removal of uremic toxins from the human organism is hemodialysis, performed on semipermeable membranes where the uremic toxins, along with small molecules, are separated from proteins and blood cells. In this study, we describe a mixed-linker modulated synthesis of zirconium-based metal-organic frameworks for efficient removal of uremic toxins. We determined that the efficient adsorption of uremic toxins is achieved by optimizing the ratio between -amino functionalization of the UiO-66 structure with 75% of -NH2 groups within organic linker structure. The maximum adsorption of hippuric acid and 3-indoloacetic acid was achieved by UiO-66-NH2 (75%) and by UiO-66-NH2 (75%) 12.5% HCl prepared by modulated synthesis. Furthermore, UiO-66-NH2 (75%) almost completely adsorbs 3-indoloacetic acid bound to bovine serum albumin, which was used as a model protein to which uremic toxins bind in the human body. The high adsorption capacity was confirmed in recyclability test, which showed almost 80% removal of 3-indoloacetic acid after the third adsorption cycle. Furthermore, in vitro cytotoxicity tests as well as hemolytic activity assay have proven that the UiO-66-based materials can be considered as potentially safe for hemodialytic purposes in living organisms.
Collapse
Affiliation(s)
- Klaudia Dymek
- Faculty
of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 30-155 Kraków, Poland
| | - Grzegorz Kurowski
- Faculty
of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 30-155 Kraków, Poland
| | - Łukasz Kuterasiński
- Jerzy
Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Kraków, Poland
| | - Roman Jędrzejczyk
- Małopolska
Centre of Biotechnology, Jagiellonian University, ul. Gronostajowa 7A, 30-387 Kraków, Poland
| | - Magdalena Szumera
- Faculty
of Materials Science and Ceramics, AGH University
of Science and Technology, Mickiewicza 30, 30-059 Kraków, Poland
| | - Maciej Sitarz
- Faculty
of Materials Science and Ceramics, AGH University
of Science and Technology, Mickiewicza 30, 30-059 Kraków, Poland
| | - Anna Pajdak
- Strata
Mechanics Research Institute, Polish Academy
of Sciences, Reymonta
27, 30-059 Kraków, Poland
| | - Łukasz Kurach
- Independent
Laboratory of Behavioral Studies, Medical
University of Lublin, 4A Chodzki Str., 20-093 Lublin, Poland
| | - Anna Boguszewska-Czubara
- Department
of Medical Chemistry, Medical University
of Lublin, 4A Chodzki Str., 20-093 Lublin, Poland
| | - Przemysław J. Jodłowski
- Faculty
of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 30-155 Kraków, Poland
| |
Collapse
|
36
|
Awad FS, Bakry AM, Ibrahim AA, Lin A, El-Shall MS. Thiol- and Amine-Incorporated UIO-66-NH 2 as an Efficient Adsorbent for the Removal of Mercury(II) and Phosphate Ions from Aqueous Solutions. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01892] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fathi S. Awad
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Ayyob M. Bakry
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
- Department of Chemistry, Faculty of Science, Jazan University, Jizan 45142, Saudi Arabia
| | - Amr Awad Ibrahim
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Andrew Lin
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - M. Samy El-Shall
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| |
Collapse
|
37
|
Zahid M, Zhang D, Xu X, Pan M, Ul Haq MH, Reda AT, Xu W. Barbituric and thiobarbituric acid-based UiO-66-NH 2 adsorbents for iodine gas capture: Characterization, efficiency and mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125835. [PMID: 34492792 DOI: 10.1016/j.jhazmat.2021.125835] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/01/2021] [Accepted: 04/04/2021] [Indexed: 06/13/2023]
Abstract
Efficient iodine gas capture is necessitated in many industries like spent nuclear fuel off-gas treatment in view of environmental protection and resource recycling. However, the adsorption efficiency and stability of the current adsorbents are limited. In the present work, efficient and stable barbituric and thiobarbituric acid-based UiO-66-NH2 adsorbents (i.e., UiO-66-NH-B.D and UiO-66-NH-T.D, respectively) have been synthesized by post-synthetic covalent modification. Characterization approaches, including SEM-EDS, TEM, XRD, FTIR, XPS, 1H NMR, TGA and BET, are used to obtain information on the properties and adsorption mechanisms of these metal-organic framework (MOF) adsorbents. The kinetics and mechanisms involved are studied in detail. The treatment efficiency and recyclability of the adsorbents are checked and compared with the adsorbents reported in previous works. The results show that the current adsorbents are potentially suitable for efficient iodine gas capture. High maximum iodine adsorption amount by UiO-66-NH-B.D and UiO-66-NH-T.D (1.17 and 1.33 g/g) was achieved under 75 °C. These new adsorbents are thermally stable for iodine adsorption and regenerated and reused with good performance. The adsorption mechanisms were revealed based on experimental results, indicating that iodine is adsorbed by both physisorption and chemisorption.
Collapse
Affiliation(s)
- Muhammad Zahid
- College of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Dongxiang Zhang
- College of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Xiyan Xu
- College of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Meng Pan
- College of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Muhammad Hammad Ul Haq
- College of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Alemtsehay Tesfay Reda
- College of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Wenguo Xu
- College of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
38
|
Justin A, Espín J, Kochetygov I, Asgari M, Trukhina O, Queen WL. A Two Step Postsynthetic Modification Strategy: Appending Short Chain Polyamines to Zn-NH 2-BDC MOF for Enhanced CO 2 Adsorption. Inorg Chem 2021; 60:11720-11729. [PMID: 34264652 DOI: 10.1021/acs.inorgchem.1c01216] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Functionalizing metal-organic frameworks (MOFs) with amines is a commonly used strategy to enhance their performance in CO2 capture applications. As such, in this work, a two-step strategy to covalently functionalize NH2-containing MOFs with short chain polyamines was developed. In the first step, the parent MOF, Zn4O(NH2-BDC)3, was exposed to bromoacetyl bromide (BrAcBr), which readily reacts with pendant -NH2 groups on the 2-amino-1,4-benzenedicarboxylate (NH2-BDC2-) ligand. 1H NMR of the digested MOF sample revealed that as much as 90% of the MOF ligands could be functionalized in the first step. Next, the MOF samples 60% of the ligands functionalized with acetyl bromide, Zn4O(NH2-BDC)1.2(BrAcNH-BDC)1.8, was exposed to several short chain amines including ethylenediamine (ED), diethylenetriamine (DETA), and tris(2-aminoethyl)amine (TAEA). Subsequent digested 1H NMR analysis indicated that a total of 30%, 28%, and 19% of the MOF ligands were successfully grafted to ED, DETA, and TAEA, respectively. Next, the CO2 adsorption properties of the amine grafted MOFs were studied. The best performing material, TAEA-appended-Zn4O(NH2-BDC)1.2(BrAcNH-BDC)1.8, exhibits a zero-coverage isosteric heat of CO2 adsorption of -62.5 kJ/mol, a value that is considerably higher than the one observed for the parent framework, -21 kJ/mol. Although the boosted CO2 affinity only leads to a slight increase in the CO2 adsorption capacity in the low-pressure regime (0.15 bar), which is of interest in postcombustion carbon dioxide capture, the CO2/N2 (15/85) selectivity at 313 K is 143, a value that is ∼35 times higher than the one observed for Zn4O(NH2-BDC)3, 4.1. Such enhancements are attributed to accessible primary amines, which were grafted to the MOF ligand. This hypothesis was further supported via in situ DRIFTS measurements of TAEA-Ac-Zn4O(NH2-BDC)1.2(BrAcNH-BDC)1.8 after exposure to CO2, which revealed the chemisorption of CO2 via the formation of hydrogen bonded carbamates/carbamic acid and CO2δ- species; the latter are adducts formed between CO2 and [amineH]+Br- salts that are produced during the amine grafting step.
Collapse
Affiliation(s)
- Anita Justin
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1951 Sion, Switzerland
| | - Jordi Espín
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1951 Sion, Switzerland
| | - Ilia Kochetygov
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1951 Sion, Switzerland
| | - Mehrdad Asgari
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1951 Sion, Switzerland
| | - Olga Trukhina
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1951 Sion, Switzerland
| | - Wendy L Queen
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1951 Sion, Switzerland
| |
Collapse
|
39
|
Polyzwitterion-grafted UiO-66-PEI incorporating polyimide membrane for high efficiency CO2/CH4 separation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118617] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
40
|
Li G, Kujawski W, Knozowska K, Kujawa J. Thin Film Mixed Matrix Hollow Fiber Membrane Fabricated by Incorporation of Amine Functionalized Metal-Organic Framework for CO 2/N 2 Separation. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3366. [PMID: 34204567 PMCID: PMC8233894 DOI: 10.3390/ma14123366] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 11/22/2022]
Abstract
Membrane separation technology can used to capture carbon dioxide from flue gas. However, plenty of research has been focused on the flat sheet mixed matrix membrane rather than the mixed matrix thin film hollow fiber membranes. In this work, mixed matrix thin film hollow fiber membranes were fabricated by incorporating amine functionalized UiO-66 nanoparticles into the Pebax® 2533 thin selective layer on the polypropylene (PP) hollow fiber supports via dip-coating process. The attenuated total reflection-Fourier transform infrared (ATR-FTIR), scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDX) mapping analysis, and thermal analysis (TGA-DTA) were used to characterize the synthesized UiO-66-NH2 nanoparticles. The morphology, surface chemistry, and the gas separation performance of the fabricated Pebax® 2533-UiO-66-NH2/PP mixed matrix thin film hollow fiber membranes were characterized by using SEM, ATR-FTIR, and gas permeance measurements, respectively. It was found that the surface morphology of the prepared membranes was influenced by the incorporation of UiO-66 nanoparticles. The CO2 permeance increased along with an increase of UiO-66 nanoparticles content in the prepared membranes, while the CO2/N2 ideal gas selectively firstly increased then decreased due to the aggregation of UiO-66 nanoparticles. The Pebax® 2533-UiO-66-NH2/PP mixed matrix thin film hollow fiber membranes containing 10 wt% UiO-66 nanoparticles exhibited the CO2 permeance of 26 GPU and CO2/N2 selectivity of 37.
Collapse
Affiliation(s)
- Guoqiang Li
- Department of Physical Chemistry and Physical Chemistry of Polymers, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarina Street, 87-100 Toruń, Poland
| | - Wojciech Kujawski
- Department of Physical Chemistry and Physical Chemistry of Polymers, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarina Street, 87-100 Toruń, Poland
- Moscow Engineering Physics Institute, National Research Nuclear University MEPhI, 31 Kashira Hwy, 115409 Moscow, Russia
| | - Katarzyna Knozowska
- Department of Physical Chemistry and Physical Chemistry of Polymers, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarina Street, 87-100 Toruń, Poland
| | - Joanna Kujawa
- Department of Physical Chemistry and Physical Chemistry of Polymers, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarina Street, 87-100 Toruń, Poland
| |
Collapse
|
41
|
Usman M, Helal A, Abdelnaby MM, Alloush AM, Zeama M, Yamani ZH. Trends and Prospects in UiO-66 Metal-Organic Framework for CO 2 Capture, Separation, and Conversion. CHEM REC 2021; 21:1771-1791. [PMID: 33955166 DOI: 10.1002/tcr.202100030] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/19/2022]
Abstract
Among thousands of known metal-organic frameworks (MOFs), the University of Oslo's MOF (UiO-66) exhibits unique structure topology, chemical and thermal stability, and intriguing tunable properties, that have gained incredible research interest. This paper summarizes the structural advancement of UiO-66 and its role in CO2 capture, separation, and transformation into chemicals. The first part of the review summarizes the fast-growing literature related to the CO2 capture reported by UiO-66 during the past ten years. The second part provides an overview of various advancements in UiO-66 membranes in CO2 purification. The third part describes the role of UiO-66 and its composites as catalysts for CO2 conversion into useful products. Despite many achievements, significant challenges associated with UiO-66 are addressed, and future perspectives are comprehensively presented to forecast how UiO-66 might be used further for CO2 management.
Collapse
Affiliation(s)
- Muhammad Usman
- Center of Research Excellence in Nanotechnology (CENT), King Fahd University of Petroleum & Minerals (KFUPM), KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - Aasif Helal
- Center of Research Excellence in Nanotechnology (CENT), King Fahd University of Petroleum & Minerals (KFUPM), KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - Mahmoud M Abdelnaby
- King Abdulaziz City for Science and Technology - Technology Innovation Center on Carbon Capture and Sequestration (KACST-TIC on CCS) at, KFUPM, Dhahran, 31261, Saudi Arabia
| | - Ahmed M Alloush
- King Abdulaziz City for Science and Technology - Technology Innovation Center on Carbon Capture and Sequestration (KACST-TIC on CCS) at, KFUPM, Dhahran, 31261, Saudi Arabia
| | - Mostafa Zeama
- King Abdulaziz City for Science and Technology - Technology Innovation Center on Carbon Capture and Sequestration (KACST-TIC on CCS) at, KFUPM, Dhahran, 31261, Saudi Arabia
| | - Zain H Yamani
- Center of Research Excellence in Nanotechnology (CENT), King Fahd University of Petroleum & Minerals (KFUPM), KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
42
|
Sardo M, Afonso R, Juźków J, Pacheco M, Bordonhos M, Pinto ML, Gomes JRB, Mafra L. Unravelling moisture-induced CO 2 chemisorption mechanisms in amine-modified sorbents at the molecular scale. JOURNAL OF MATERIALS CHEMISTRY. A 2021; 9:5542-5555. [PMID: 34671479 PMCID: PMC8459418 DOI: 10.1039/d0ta09808f] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 01/08/2021] [Indexed: 05/03/2023]
Abstract
This work entails a comprehensive solid-state NMR and computational study of the influence of water and CO2 partial pressures on the CO2-adducts formed in amine-grafted silica sorbents. Our approach provides atomic level insights on hypothesised mechanisms for CO2 capture under dry and wet conditions in a tightly controlled atmosphere. The method used for sample preparation avoids the use of liquid water slurries, as performed in previous studies, enabling a molecular level understanding, by NMR, of the influence of controlled amounts of water vapor (down to ca. 0.7 kPa) in CO2 chemisorption processes. Details on the formation mechanism of moisture-induced CO2 species are provided aiming to study CO2 : H2O binary mixtures in amine-grafted silica sorbents. The interconversion between distinct chemisorbed CO2 species was quantitatively monitored by NMR under wet and dry conditions in silica sorbents grafted with amines possessing distinct bulkiness (primary and tertiary). Particular attention was given to two distinct carbonyl environments resonating at δ C ∼161 and 155 ppm, as their presence and relative intensities are greatly affected by moisture depending on the experimental conditions. 1D and 2D NMR spectral assignments of both these 13C resonances were assisted by density functional theory calculations of 1H and 13C chemical shifts on model structures of alkylamines grafted onto the silica surface that validated various hydrogen-bonded CO2 species that may occur upon formation of bicarbonate, carbamic acid and alkylammonium carbamate ion pairs. Water is a key component in flue gas streams, playing a major role in CO2 speciation, and this work extends the current knowledge on chemisorbed CO2 structures and their stabilities under dry/wet conditions, on amine-modified solid surfaces.
Collapse
Affiliation(s)
- Mariana Sardo
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago 3810-193 Aveiro Portugal
| | - Rui Afonso
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago 3810-193 Aveiro Portugal
| | - Joanna Juźków
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago 3810-193 Aveiro Portugal
| | - Marlene Pacheco
- CERENA, Instituto Superior Técnico, University of Lisbon Av. Rovisco Pais 1049-001 Lisboa Portugal
| | - Marta Bordonhos
- CERENA, Instituto Superior Técnico, University of Lisbon Av. Rovisco Pais 1049-001 Lisboa Portugal
| | - Moisés L Pinto
- CERENA, Instituto Superior Técnico, University of Lisbon Av. Rovisco Pais 1049-001 Lisboa Portugal
| | - José R B Gomes
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago 3810-193 Aveiro Portugal
| | - Luís Mafra
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago 3810-193 Aveiro Portugal
| |
Collapse
|
43
|
Ru J, Wang X, Wang F, Cui X, Du X, Lu X. UiO series of metal-organic frameworks composites as advanced sorbents for the removal of heavy metal ions: Synthesis, applications and adsorption mechanism. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111577. [PMID: 33160184 DOI: 10.1016/j.ecoenv.2020.111577] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/16/2020] [Accepted: 10/27/2020] [Indexed: 05/25/2023]
Abstract
Heavy metal pollution has threatened the ecological environment and human health, therefore, effective removal of these toxic pollutants from various complex substrates is of great significance. So far, adsorption is still one of the most effective approaches. Metal-organic frameworks (MOFs), which are porous crystalline materials consisting of metal ions or metal clusters and organic ligands through coordination bonds. Due to their high surface area, porosity, as well as good chemical/thermal stability, the materials have recently attracted great attention in environmental analytical chemistry. This review mainly focused on the recent studies about the applications of UiO series MOFs and their composites as the emerging MOFs, which have been used effectively for the adsorption and removal of diverse heavy metal ions from a variety of environmental samples as novel adsorption materials. Moreover, an elaboration about UiO-MOFs and its composites including the synthetic methods and the applications of these materials in the removal of heavy metal ions were presented in detail. In addition, the adsorption characteristics and mechanism of UiO-MOFs as solid sorbents for heavy metal ions were discussed, including adsorption isotherms equation, adsorption thermodynamics, and kinetics. To this end, the developing trends of MOF-based composites for the removal of heavy metal ions had also prospected. This review will provide a new idea for the study of the adsorption mechanism of heavy metal ions on sorbents and the development of high-performance media for the efficient removal of pollutants in wastewater.
Collapse
Affiliation(s)
- Jing Ru
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| | - Xuemei Wang
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China.
| | - Fangbing Wang
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| | - Xinglan Cui
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| | - Xinzhen Du
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| | - Xiaoquan Lu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China.
| |
Collapse
|
44
|
Pashazadeh A, Habibi B. A nickel ion-incorporating zinc-mesoporous metal organic framework thin film nanocomposite modified glassy carbon electrode for electrocatalytic oxidation of methanol in alkaline media. NEW J CHEM 2021. [DOI: 10.1039/d0nj05468b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In this work, we have successfully synthesized a nickel ion-incorporating zinc-mesoporous metal–organic framework thin films (Zn-mMOFTFs) modified glassy carbon electrode (GCE), Ni/Zn-mMOFTFs/GCE, for electrooxidation of methanol in alkaline solution.
Collapse
Affiliation(s)
- Ali Pashazadeh
- Electroanalytical Chemistry Laboratory
- Department of Chemistry
- Faculty of Sciences
- Azarbaijan Shahid Madani University
- Tabriz 53714-161
| | - Biuck Habibi
- Electroanalytical Chemistry Laboratory
- Department of Chemistry
- Faculty of Sciences
- Azarbaijan Shahid Madani University
- Tabriz 53714-161
| |
Collapse
|
45
|
Hossain I, Husna A, Chaemchuen S, Verpoort F, Kim TH. Cross-Linked Mixed-Matrix Membranes Using Functionalized UiO-66-NH 2 into PEG/PPG-PDMS-Based Rubbery Polymer for Efficient CO 2 Separation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:57916-57931. [PMID: 33337874 DOI: 10.1021/acsami.0c18415] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Mixed-matrix membranes (MMMs) with an ideal polymer-filler interface and high gas separation performance are very challenging to fabricate because of incompatibility between the fillers and the polymer matrix. This work provides a simple technique to prepare a series of cross-linked MMMs (xMMM@n) by covalently attaching UiO-66-NB metal-organic frameworks (MOFs) within the PEG/PPG-PDMS copolymer matrix via ring-opening metathesis polymerization and in situ membrane casting. The norbornene-modified MOF (UiO-66-NB) is successfully copolymerized and dispersed homogeneously into a PEG/PPG-PDMS matrix because of very fast polymer formation and strong covalent interaction between MOFs and the rubbery polymer. A significant improvement in gas permeability is achieved in membranes up to a 5 wt % MOF loading compared to the pristine polymer membrane without affecting selectivity. The CO2/N2 separation performance of xMMM@1, xMMM@3, and xMMM@5 with 1, 3, and 5 wt % MOF loading, respectively, surpassed Robeson's 2008 upper bound. In addition, the best performing membrane, xMMM@3 (PCO2 = 585 Barrer and CO2/N2 ∼53), approaches the 2019 upper bound, indicating that the cross-linked MMMs (xMMM@n) are very promising for CO2 separation from flue gas. The experimental results of our study were evaluated and are supported by theoretical data obtained using the Maxwell model for MMMs. Moreover, the developed MMMs, xMMM@ns, displayed outstanding antiplasticization performance at pressures of up to 25 atm and very stable antiaging performance for up to 11 months with good temperature switching behaviors.
Collapse
Affiliation(s)
- Iqubal Hossain
- Organic Material Synthesis Laboratory, Department of Chemistry, Incheon National University, Incheon 22012, Korea
- Research Institute of Basic Sciences, Incheon National University, Incheon 22012, Korea
- Department of Chemistry, Ghent University, Gent 9000, Belgium
- Ghent University Global Campus, Incheon 21985, Korea
| | - Asmaul Husna
- Organic Material Synthesis Laboratory, Department of Chemistry, Incheon National University, Incheon 22012, Korea
- Research Institute of Basic Sciences, Incheon National University, Incheon 22012, Korea
| | - Somboon Chaemchuen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Francis Verpoort
- Department of Chemistry, Ghent University, Gent 9000, Belgium
- Ghent University Global Campus, Incheon 21985, Korea
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China
- National Research Tomsk Polytechnic University, Tomsk 634050, Russian Federation
| | - Tae-Hyun Kim
- Organic Material Synthesis Laboratory, Department of Chemistry, Incheon National University, Incheon 22012, Korea
- Research Institute of Basic Sciences, Incheon National University, Incheon 22012, Korea
| |
Collapse
|
46
|
CO2 adsorption at low pressure over polymers-loaded mesoporous metal organic framework PCN-777: effect of basic site and porosity on adsorption. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2020.101332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
47
|
Ahmadijokani F, Ahmadipouya S, Molavi H, Rezakazemi M, Aminabhavi TM, Arjmand M. Impact of scale, activation solvents, and aged conditions on gas adsorption properties of UiO-66. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 274:111155. [PMID: 32805472 DOI: 10.1016/j.jenvman.2020.111155] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/26/2020] [Accepted: 07/29/2020] [Indexed: 05/16/2023]
Abstract
This work reports on the potential application of UiO-66 in gas sweetening and its structural stability against water, air, dimethylformamide (DMF), and chloroform. The UiO-66 nanoparticles were solvothermally synthesized at different scales and activated via solvent exchange technique using chloroform, methanol, and ethanol. Thus prepared and aged MOFs were characterized using Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), and nitrogen adsorption-desorption analysis. The chloroform-activated MOF showed the largest surface area among all activation solvents, and presented high uptakes of 8.8 and 4.3 mmol/g for CO2 and CH4, respectively, at 298 K and 30 bar. This might be due to removing all unreacted organic ligands and DMF molecules from the pores of the framework. The UiO-66 nanoparticles are stable at the experimental conditions with no significant loss in crystalline structure and gas adsorption ability even after aging under different conditions for one year. The UiO-66 could be easily regenerated at 373 K with no observed significant reduction in gas uptakes even after five consecutive adsorption-desorption cycles. The present findings suggest the excellent potential of the UiO-66-derived MOFs as the promising materials for CO2/CH4 separation at low pressures and results can be applied in practical natural gas sweetening.
Collapse
Affiliation(s)
- Farhad Ahmadijokani
- School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Salman Ahmadipouya
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Hossein Molavi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran.
| | - Mashallah Rezakazemi
- Faculty of Chemical and Materials Engineering, Shahrood University of Technology, Shahrood, Iran
| | - Tejraj M Aminabhavi
- Pharmaceutical Engineering, Soniya College of Pharmacy, Dharwad, 580-007, India.
| | - Mohammad Arjmand
- School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada.
| |
Collapse
|
48
|
Shi M, Huang R, Qi W, Su R, He Z. Synthesis of superhydrophobic and high stable Zr-MOFs for oil-water separation. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125102] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
49
|
Durak Ö, Kulak H, Kavak S, Polat HM, Keskin S, Uzun A. Towards complete elucidation of structural factors controlling thermal stability of IL/MOF composites: effects of ligand functionalization on MOFs. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:484001. [PMID: 32590364 DOI: 10.1088/1361-648x/aba06c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 06/26/2020] [Indexed: 06/11/2023]
Abstract
In this work, we incorporated an ionic liquid (IL), 1-n-butyl-3-methylimidazolium methyl sulfate ([BMIM][MeSO4]) into two different metal organic frameworks (MOFs), UiO-66, and its amino-functionalized counterpart, NH2-UiO-66, to investigate the effects of ligand-functionalization on the thermal stability limits of IL/MOF composites. The as-synthesized IL/MOF composites were characterized in detail by combining x-ray diffraction, scanning electron microscopy, Brunauer-Emmett-Teller analysis, x-ray fluorescence, infrared spectroscopies (FTIR), and their thermal stability limits were determined by thermogravimetric analysis (TGA). Characterization data confirmed the successful incorporation of the IL into each MOF and indicated the presence of direct interactions between them. A comparison of the interactions in [BMIM][MeSO4]-incorporated UiO-66 and NH2-UiO-66 with those in their 1-n-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6])-incorporated counterparts showed that the hydrophilic IL, [BMIM][MeSO4], interacts with the 1,4-benzenedicarboxylate (BDC) ligand of the UiO-66, while the hydrophobic IL, [BMIM][PF6], is interacting with the joints where zirconium metal cluster coordinates with BDC ligand. The TGA data demonstrated that the composite with the ligand-functionalized MOF, NH2-UiO-66, exhibited a lower percentage decrease in the maximum tolerable temperature compared to those of IL/UiO-66 composites. Moreover, it is discovered that when the IL is hydrophilic, its hydrogen bonding ability can be utilized to designate an interaction site on MOF's ligand structure, leads to a lower reduction in thermal stability limits. These results provide insights for the rational design of IL/MOF composites and contribute towards the complete elucidation of structural factors controlling the thermal stability.
Collapse
Affiliation(s)
- Özce Durak
- Department of Chemical and Biological Engineering, Ko̧ University, Rumelifeneri Yolu, 34450 Sariyer, Istanbul, Turkey
- Ko̧ University TÜPRAŞ Energy Center (KUTEM), Ko̧ University, Rumelifeneri Yolu, 34450 Sariyer, Istanbul, Turkey
| | - Harun Kulak
- Department of Chemical and Biological Engineering, Ko̧ University, Rumelifeneri Yolu, 34450 Sariyer, Istanbul, Turkey
- Ko̧ University TÜPRAŞ Energy Center (KUTEM), Ko̧ University, Rumelifeneri Yolu, 34450 Sariyer, Istanbul, Turkey
| | - Safiyye Kavak
- Ko̧ University TÜPRAŞ Energy Center (KUTEM), Ko̧ University, Rumelifeneri Yolu, 34450 Sariyer, Istanbul, Turkey
- Department of Materials Science and Engineering, Ko̧ University, Rumelifeneri Yolu, 34450 Sariyer, Istanbul, Turkey
| | - H Mert Polat
- Ko̧ University TÜPRAŞ Energy Center (KUTEM), Ko̧ University, Rumelifeneri Yolu, 34450 Sariyer, Istanbul, Turkey
- Department of Materials Science and Engineering, Ko̧ University, Rumelifeneri Yolu, 34450 Sariyer, Istanbul, Turkey
| | - Seda Keskin
- Department of Chemical and Biological Engineering, Ko̧ University, Rumelifeneri Yolu, 34450 Sariyer, Istanbul, Turkey
- Ko̧ University TÜPRAŞ Energy Center (KUTEM), Ko̧ University, Rumelifeneri Yolu, 34450 Sariyer, Istanbul, Turkey
| | - Alper Uzun
- Department of Chemical and Biological Engineering, Ko̧ University, Rumelifeneri Yolu, 34450 Sariyer, Istanbul, Turkey
- Ko̧ University TÜPRAŞ Energy Center (KUTEM), Ko̧ University, Rumelifeneri Yolu, 34450 Sariyer, Istanbul, Turkey
- Koç University Surface Science and Technology Center (KUYTAM), Koç University, Rumelifeneri Yolu, 34450 Sariyer, Istanbul, Turkey
| |
Collapse
|
50
|
Construction and Mechanism of Ag3PO4/UiO-66-NH2 Z-Scheme Heterojunction with Enhanced Photocatalytic Activity. Catal Letters 2020. [DOI: 10.1007/s10562-020-03349-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|