1
|
Bálint M, Zsidó BZ, van der Spoel D, Hetényi C. Binding Networks Identify Targetable Protein Pockets for Mechanism-Based Drug Design. Int J Mol Sci 2022; 23:ijms23137313. [PMID: 35806314 PMCID: PMC9267029 DOI: 10.3390/ijms23137313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 02/01/2023] Open
Abstract
The human genome codes only a few thousand druggable proteins, mainly receptors and enzymes. While this pool of available drug targets is limited, there is an untapped potential for discovering new drug-binding mechanisms and modes. For example, enzymes with long binding cavities offer numerous prerequisite binding sites that may be visited by an inhibitor during migration from a bulk solution to the destination site. Drug design can use these prerequisite sites as new structural targets. However, identifying these ephemeral sites is challenging. Here, we introduce a new method called NetBinder for the systematic identification and classification of prerequisite binding sites at atomic resolution. NetBinder is based on atomistic simulations of the full inhibitor binding process and provides a networking framework on which to select the most important binding modes and uncover the entire binding mechanism, including previously undiscovered events. NetBinder was validated by a study of the binding mechanism of blebbistatin (a potent inhibitor) to myosin 2 (a promising target for cancer chemotherapy). Myosin 2 is a good test enzyme because, like other potential targets, it has a long internal binding cavity that provides blebbistatin with numerous potential prerequisite binding sites. The mechanism proposed by NetBinder of myosin 2 structural changes during blebbistatin binding shows excellent agreement with experimentally determined binding sites and structural changes. While NetBinder was tested on myosin 2, it may easily be adopted to other proteins with long internal cavities, such as G-protein-coupled receptors or ion channels, the most popular current drug targets. NetBinder provides a new paradigm for drug design by a network-based elucidation of binding mechanisms at an atomic resolution.
Collapse
Affiliation(s)
- Mónika Bálint
- Pharmacoinformatics Unit, Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12., 7624 Pécs, Hungary; (M.B.); (B.Z.Z.)
| | - Balázs Zoltán Zsidó
- Pharmacoinformatics Unit, Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12., 7624 Pécs, Hungary; (M.B.); (B.Z.Z.)
| | - David van der Spoel
- Department of Cell and Molecular Biology, Uppsala University, Box 596, SE-75124 Uppsala, Sweden;
| | - Csaba Hetényi
- Pharmacoinformatics Unit, Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12., 7624 Pécs, Hungary; (M.B.); (B.Z.Z.)
- Correspondence:
| |
Collapse
|
2
|
Kang W, Zhang J, Li H, Yu N, Tang R, Sun X, Wei L, Sun J, Chen Y. Quantification of major allergens in peach based on shotgun proteomics using liquid chromatography-tandem mass spectrometry. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113234] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
3
|
Gianotti AR, Klinke S, Ermácora MR. The structure of unliganded sterol carrier protein 2 from Yarrowia lipolytica unveils a mechanism for binding site occlusion. J Struct Biol 2020; 213:107675. [PMID: 33278583 DOI: 10.1016/j.jsb.2020.107675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/21/2020] [Accepted: 11/27/2020] [Indexed: 11/19/2022]
Abstract
Isolated or as a part of multidomain proteins, Sterol Carrier Protein 2 (SCP2) exhibits high affinity and broad specificity for different lipidic and hydrophobic compounds. A wealth of structural information on SCP2 domains in all forms of life is currently available; however, many aspects of its ligand binding activity are poorly understood. ylSCP2 is a well-characterized single domain SCP2 from the yeast Yarrowia lipolytica. Herein, we report the X-ray structure of unliganded ylSCP2 refined to 2.0 Å resolution. Comparison with the previously solved liganded ylSCP2 structure unveiled a novel mechanism for binding site occlusion. The liganded ylSCP2 binding site is a large cavity with a volume of more than 800 Å3. In unliganded ylSCP2 the binding site is reduced to about 140 Å3. The obliteration is caused by a swing movement of the C-terminal α helix 5 and a subtle compaction of helices 2-4. Previous pairwise comparisons were between homologous SCP2 domains with a uncertain binding status. The reported unliganded ylSCP2 structure allows for the first time a fully controlled comparative analysis of the conformational effects of ligand occupation dispelling several doubts regarding the architecture of SCP2 binding site.
Collapse
Affiliation(s)
- Alejo R Gianotti
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Argentina; Grupo de Biología Estructural y Biotecnología, IMBICE, CONICET, Universidad Nacional de Quilmes, Argentina
| | - Sebastián Klinke
- Fundación Instituto Leloir, IIBBA-CONICET, and Plataforma Argentina de Biología Estructural y Metabolómica PLABEM, Buenos Aires, Argentina
| | - Mario R Ermácora
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Argentina; Grupo de Biología Estructural y Biotecnología, IMBICE, CONICET, Universidad Nacional de Quilmes, Argentina.
| |
Collapse
|
4
|
Wei X, Li ZC, Li SJ, Peng XB, Zhao Q. Protein structure determination using a Riemannian approach. FEBS Lett 2019; 594:1036-1051. [PMID: 31769509 DOI: 10.1002/1873-3468.13688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 10/31/2019] [Accepted: 11/14/2019] [Indexed: 11/05/2022]
Abstract
Protein NMR structure determination is one of the most extensively studied problems. Here, we adopt a novel method based on a matrix completion technique - the Riemannian approach - to rebuild the protein structure from the nuclear Overhauser effect distance restraints and the dihedral angle restraints. In comparison with the cyana method, the results generated via the Riemannian approach are more similar to the standard X-ray crystallographic structures as a result of the simple but powerful internal calculation processing function. In addition, our results demonstrate that the Riemannian approach has a comparable or even better performance than the cyana method on other structural assessment metrics, including the stereochemical quality and restraint violations. The Riemannian approach software is available at: https://github.com/xubiaopeng/Protein_Recon_MCRiemman.
Collapse
Affiliation(s)
- Xian Wei
- Center for Quantum Technology Research, School of Physics, Beijing Institute of Technology, China.,Department of Science, Taiyuan Institute of Technology, China
| | - Zhi-Cheng Li
- Department of Physics, Taiyuan Normal University, China
| | - Shi-Jian Li
- Center for Quantum Technology Research, School of Physics, Beijing Institute of Technology, China
| | - Xu-Biao Peng
- Center for Quantum Technology Research, School of Physics, Beijing Institute of Technology, China
| | - Qing Zhao
- Center for Quantum Technology Research, School of Physics, Beijing Institute of Technology, China
| |
Collapse
|
5
|
A phosphatidic acid-binding protein is important for lipid homeostasis and adaptation to anaerobic biofilm conditions in Pseudomonas aeruginosa. Biochem J 2018; 475:1885-1907. [DOI: 10.1042/bcj20180257] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 04/27/2018] [Accepted: 05/01/2018] [Indexed: 01/22/2023]
Abstract
A quantitative Pseudomonas aeruginosa proteomics approach revealed increased abundance of the so-far uncharacterized protein PA3911 in anaerobic biofilms grown under conditions of the cystic fibrosis lung. Physiological relevance of ORF PA3911 was demonstrated, inter alia, using phenotype microarray experiments. The mutant strain showed increased susceptibility in the presence of antimicrobials (minocycline, nafcillin, oxacillin, chloramphenicol and thiamphenicol), enhanced twitching motility and significantly impaired biofilm formation. PA3911 is a soluble, cytoplasmic protein in P. aeruginosa. In protein–lipid overlay experiments, purified PA3911 bound specifically to phosphatidic acid (PA), the central hub of phospholipid metabolism. Structure-guided site-directed mutagenesis was used to explore the proposed ligand-binding cavity of PA3911. Protein variants of Leu56, Leu58, Val69 and Leu114 were shown to impair PA interaction. A comparative shotgun lipidomics approach demonstrated a multifaceted response of P. aeruginosa to anaerobic conditions at the lipid head group and fatty acid level. Lipid homeostasis in the PA3911 mutant strain was imbalanced with respect to lysophosphatidylcholine, phosphatidylcholine and diacylglycerol under anaerobic and/or aerobic conditions. The impact of the newly identified PA-binding protein on lipid homeostasis and the related macroscopic phenotypes of P. aeruginosa are discussed.
Collapse
|
6
|
Roversi P, Johnson S, Preston SG, Nunn MA, Paesen GC, Austyn JM, Nuttall PA, Lea SM. Structural basis of cholesterol binding by a novel clade of dendritic cell modulators from ticks. Sci Rep 2017; 7:16057. [PMID: 29167574 PMCID: PMC5700055 DOI: 10.1038/s41598-017-16413-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/13/2017] [Indexed: 12/13/2022] Open
Abstract
Two crystal structures of Japanin, an 18 kDa immune-modulatory lipocalin from the Brown Ear Tick (Rhipicephalus appendiculatus), have been determined at 2.2 and 2.4 Å resolution. In both crystal forms the protein is in complex with cholesterol, which sits in a closed pocket at the centre of the lipocalin barrel. Both crystal forms are dimers, which are also observed in solution. Molecular modelling suggests that previously-described members of a tick protein family bearing high sequence homology to Japanin are also likely to bind cholesterol or cholesterol derivatives.
Collapse
Affiliation(s)
- Pietro Roversi
- Biochemistry Department, University of Oxford, Oxford, OX1 3QU, England, United Kingdom. .,Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester, LE1 7RH, England, United Kingdom.
| | - Steven Johnson
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, England, United Kingdom
| | - Stephen G Preston
- Department of Zoology, University of Oxford, Oxford, OX1 3PS, England, United Kingdom
| | - Miles A Nunn
- Akari Therapeutics, Plc, 75/76 Wimpole Street, London, W1G 9RT, England, United Kingdom
| | - Guido C Paesen
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, United Kingdom
| | - Jonathan M Austyn
- Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, England, United Kingdom
| | - Patricia A Nuttall
- Department of Zoology, University of Oxford, Oxford, OX1 3PS, England, United Kingdom
| | - Susan M Lea
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, England, United Kingdom.
| |
Collapse
|
7
|
Advances on the Transfer of Lipids by Lipid Transfer Proteins. Trends Biochem Sci 2017; 42:516-530. [PMID: 28579073 PMCID: PMC5486777 DOI: 10.1016/j.tibs.2017.05.001] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 05/02/2017] [Accepted: 05/03/2017] [Indexed: 12/22/2022]
Abstract
Transfer of lipid across the cytoplasm is an essential process for intracellular lipid traffic. Lipid transfer proteins (LTPs) are defined by highly controlled in vitro experiments. The functional relevance of these is supported by evidence for the same reactions inside cells. Major advances in the LTP field have come from structural bioinformatics identifying new LTPs, and from the development of countercurrent models for LTPs. However, the ultimate aim is to unite in vitro and in vivo data, and this is where much progress remains to be made. Even where in vitro and in vivo experiments align, rates of transfer tend not to match. Here we set out some of the advances that might test how LTPs work. LTPs facilitate the essential movement of lipid across aqueous spaces and are defined by in vitro experiments. Recent developments include a novel concept of countercurrent lipid transfer and identification of additional LTP families by bioinformatics. In vivo and in vitro data have yet to converge to one complete model. Advances in in vitro characterisation of LTPs provide an opportunity to unite biochemical experimentation to cellular function.
Collapse
|
8
|
A structural appraisal of sterol carrier protein 2. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:565-577. [DOI: 10.1016/j.bbapap.2017.03.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/03/2017] [Accepted: 03/07/2017] [Indexed: 11/19/2022]
|
9
|
NMR structure and function of Helicoverpa armigera sterol carrier protein-2, an important insecticidal target from the cotton bollworm. Sci Rep 2015; 5:18186. [PMID: 26655641 PMCID: PMC4674756 DOI: 10.1038/srep18186] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 11/13/2015] [Indexed: 12/22/2022] Open
Abstract
The cotton bollworm, Helicoverpa armigera, has developed strong resistance to many insecticides. Sterol Carrier Protein-2 (SCP-2) is an important non-specific lipid transfer protein in insects and appears to be a potential new target. In order to elucidate the structure and function of Helicoverpa armigera SCP-2 (HaSCP-2), NMR spectroscopy, docking simulations, mutagenesis and bioassays were performed. HaSCP-2 composed of five α-helices and four stranded β-sheets. The folds of α-helices and β-sheets interacted together to form a hydrophobic cavity with putative entrance and exit openings, which served as a tunnel for accommodating and transporting of lipids. Several sterols and fatty acids could interact with HaSCP-2 via important hydrophobic sites, which could be potential targets for insecticides. Mutagenesis experiments indicated Y51, F53, F89, F110, I117 and Q131 may be the key functional sites. HaSCP-2 showed high cholesterol binding activity and SCP-2 inhibitors (SCPIs) could inhibit the biological activity of HaSCP-2. SCPI-treated larvae at young stage showed a significant decrease of cholesterol uptake in vivo. Our study describes for the first time a NMR structure of SCP-2 in lepidopteran H. armigera and reveals its important function in cholesterol uptake, which facilitates the screening of effective insecticides targeting the insect cholesterol metabolism.
Collapse
|
10
|
Cheng Z, Li Y, Sui C, Sun X, Xie Y. Synthesis, purification and crystallographic studies of the C-terminal sterol carrier protein type 2 (SCP-2) domain of human hydroxysteroid dehydrogenase-like protein 2. Acta Crystallogr F Struct Biol Commun 2015; 71:901-5. [PMID: 26144236 PMCID: PMC4498712 DOI: 10.1107/s2053230x15008559] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 05/01/2015] [Indexed: 11/11/2022] Open
Abstract
Human hydroxysteroid dehydrogenase-like protein 2 (HSDL2) is a member of the short-chain dehydrogenase/reductase (SDR) subfamily of oxidoreductases and contains an N-terminal catalytic domain and a C-termianl sterol carrier protein type 2 (SCP-2) domain. In this study, the C-terminal SCP-2 domain of human HSDL2, including residues Lys318-Arg416, was produced in Escherichia coli, purified and crystallized. X-ray diffraction data were collected to 2.10 Å resolution. The crystal belonged to the trigonal space group P3(1)21 (or P3(2)21), with unit-cell parameters a = b = 70.4, c = 60.6 Å, α = β = 90, γ = 120°. Two protein molecules are present in the asymmetric unit, resulting in a Matthews coefficient of 2.16 Å(3) Da(-1) and an approximate solvent content of 43%.
Collapse
Affiliation(s)
- Zhong Cheng
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, 151 Malianwa North Road, Haidian District, Beijing 100193, People’s Republic of China
| | - Yao Li
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, 151 Malianwa North Road, Haidian District, Beijing 100193, People’s Republic of China
| | - Chun Sui
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, 151 Malianwa North Road, Haidian District, Beijing 100193, People’s Republic of China
| | - Xiaobo Sun
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, 151 Malianwa North Road, Haidian District, Beijing 100193, People’s Republic of China
| | - Yong Xie
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, 151 Malianwa North Road, Haidian District, Beijing 100193, People’s Republic of China
| |
Collapse
|
11
|
Shahine A, Littler D, Brammananath R, Chan PY, Crellin PK, Coppel RL, Rossjohn J, Beddoe T. A structural and functional investigation of a novel protein from Mycobacterium smegmatis implicated in mycobacterial macrophage survivability. ACTA ACUST UNITED AC 2014; 70:2264-76. [PMID: 25195741 DOI: 10.1107/s139900471401092x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 05/13/2014] [Indexed: 01/17/2023]
Abstract
The success of pathogenic mycobacterial species is owing in part to their ability to parasitize the generally inhospitable phagosomal environment of host macrophages, utilizing a variety of strategies to avoid their antimycobacterial capabilities and thereby enabling their survival. A recently identified gene target in Mycobacterium smegmatis, highly conserved within Mycobacterium spp. and denoted MSMEG_5817, has been found to be important for bacterial survival within host macrophages. To gain insight into its function, the crystal structure of MSMEG_5817 has been solved to 2.40 Å resolution. The structure reveals a high level of structural homology to the sterol carrier protein (SCP) family, suggesting a potential role of MSMEG_5817 in the binding and transportation of biologically relevant lipids required for bacterial survival. The lipid-binding capacity of MSMEG_5817 was confirmed by ELISA, revealing binding to a number of phospholipids with varying binding specificities compared with Homo sapiens SCP. A potential lipid-binding site was probed by alanine-scanning mutagenesis, revealing structurally relevant residues and a binding mechanism potentially differing from that of the SCPs.
Collapse
Affiliation(s)
- Adam Shahine
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Dene Littler
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Rajini Brammananath
- Australian Research Council (ARC) Centre of Excellence in Structural and Functional Microbial Genomics, Monash University, Clayton, Victoria 3800, Australia
| | - Phooi Y Chan
- Australian Research Council (ARC) Centre of Excellence in Structural and Functional Microbial Genomics, Monash University, Clayton, Victoria 3800, Australia
| | - Paul K Crellin
- Australian Research Council (ARC) Centre of Excellence in Structural and Functional Microbial Genomics, Monash University, Clayton, Victoria 3800, Australia
| | - Ross L Coppel
- Australian Research Council (ARC) Centre of Excellence in Structural and Functional Microbial Genomics, Monash University, Clayton, Victoria 3800, Australia
| | - Jamie Rossjohn
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Travis Beddoe
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
12
|
Zhang L, Li D, Xu R, Zheng S, He H, Wan J, Feng Q. Structural and functional analyses of a sterol carrier protein in Spodoptera litura. PLoS One 2014; 9:e81542. [PMID: 24454688 PMCID: PMC3893073 DOI: 10.1371/journal.pone.0081542] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Accepted: 10/23/2013] [Indexed: 11/19/2022] Open
Abstract
Backgrounds In insects, cholesterol is one of the membrane components in cells and a precursor of ecdysteroid biosynthesis. Because insects lack two key enzymes, squalene synthase and lanosterol synthase, in the cholesterol biosynthesis pathway, they cannot autonomously synthesize cholesterol de novo from simple compounds and therefore have to obtain sterols from their diet. Sterol carrier protein (SCP) is a cholesterol-binding protein responsible for cholesterol absorption and transport. Results In this study, a model of the three-dimensional structure of SlSCPx-2 in Spodoptera litura, a destructive polyphagous agricultural pest insect in tropical and subtropical areas, was constructed. Docking of sterol and fatty acid ligands to SlSCPx-2 and ANS fluorescent replacement assay showed that SlSCPx-2 was able to bind with relatively high affinities to cholesterol, stearic acid, linoleic acid, stigmasterol, oleic acid, palmitic acid and arachidonate, implying that SlSCPx may play an important role in absorption and transport of these cholesterol and fatty acids from host plants. Site-directed mutation assay of SlSCPx-2 suggests that amino acid residues F53, W66, F89, F110, I115, T128 and Q131 are critical for the ligand-binding activity of the SlSCPx-2 protein. Virtual ligand screening resulted in identification of several lead compounds which are potential inhibitors of SlSCPx-2. Bioassay for inhibitory effect of five selected compounds showed that AH-487/41731687, AG-664/14117324, AG-205/36813059 and AG-205/07775053 inhibited the growth of S. litura larvae. Conclusions Compounds AH-487/41731687, AG-664/14117324, AG-205/36813059 and AG-205/07775053 selected based on structural modeling showed binding affinity to SlSCPx-2 protein and inhibitory effect on the growth of S. litura larvae.
Collapse
Affiliation(s)
- Lili Zhang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Ding Li
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, China
| | - Rui Xu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Sichun Zheng
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Hongwu He
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, China
| | - Jian Wan
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, China
- * E-mail: (QF); (JW)
| | - Qili Feng
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
- * E-mail: (QF); (JW)
| |
Collapse
|
13
|
De Berti FP, Capaldi S, Ferreyra R, Burgardt N, Acierno JP, Klinke S, Monaco HL, Ermácora MR. The crystal structure of sterol carrier protein 2 from Yarrowia lipolytica and the evolutionary conservation of a large, non-specific lipid-binding cavity. ACTA ACUST UNITED AC 2013; 14:145-53. [DOI: 10.1007/s10969-013-9166-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Accepted: 11/11/2013] [Indexed: 11/25/2022]
|
14
|
Quaternary structure of human, Drosophila melanogaster
and Caenorhabditis elegans
MFE-2 in solution from synchrotron small-angle X-ray scattering. FEBS Lett 2013; 587:305-10. [DOI: 10.1016/j.febslet.2012.12.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 11/22/2012] [Accepted: 12/14/2012] [Indexed: 11/22/2022]
|
15
|
Janardan N, Harijan RK, Wierenga RK, Murthy MRN. Crystal structure of a monomeric thiolase-like protein type 1 (TLP1) from Mycobacterium smegmatis. PLoS One 2012; 7:e41894. [PMID: 22844533 PMCID: PMC3406046 DOI: 10.1371/journal.pone.0041894] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 06/29/2012] [Indexed: 11/29/2022] Open
Abstract
An analysis of the Mycobacterium smegmatis genome suggests that it codes for several thiolases and thiolase-like proteins. Thiolases are an important family of enzymes that are involved in fatty acid metabolism. They occur as either dimers or tetramers. Thiolases catalyze the Claisen condensation of two acetyl-Coenzyme A molecules in the synthetic direction and the thiolytic cleavage of 3-ketoacyl-Coenzyme A molecules in the degradative direction. Some of the M. smegmatis genes have been annotated as thiolases of the poorly characterized SCP2-thiolase subfamily. The mammalian SCP2-thiolase consists of an N-terminal thiolase domain followed by an additional C-terminal domain called sterol carrier protein-2 or SCP2. The M. smegmatis protein selected in the present study, referred to here as the thiolase-like protein type 1 (MsTLP1), has been biochemically and structurally characterized. Unlike classical thiolases, MsTLP1 is a monomer in solution. Its structure has been determined at 2.7 Å resolution by the single wavelength anomalous dispersion method. The structure of the protomer confirms that the N-terminal domain has the thiolase fold. An extra C-terminal domain is indeed observed. Interestingly, it consists of six β-strands forming an anti-parallel β-barrel which is completely different from the expected SCP2-fold. Detailed sequence and structural comparisons with thiolases show that the residues known to be essential for catalysis are not conserved in MsTLP1. Consistent with this observation, activity measurements show that MsTLP1 does not catalyze the thiolase reaction. This is the first structural report of a monomeric thiolase-like protein from any organism. These studies show that MsTLP1 belongs to a new group of thiolase related proteins of unknown function.
Collapse
Affiliation(s)
- Neelanjana Janardan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| | | | | | | |
Collapse
|
16
|
Miller WL, Bose HS. Early steps in steroidogenesis: intracellular cholesterol trafficking. J Lipid Res 2011; 52:2111-2135. [PMID: 21976778 DOI: 10.1194/jlr.r016675] [Citation(s) in RCA: 368] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Steroid hormones are made from cholesterol, primarily derived from lipoproteins that enter cells via receptor-mediated endocytosis. In endo-lysosomes, cholesterol is released from cholesterol esters by lysosomal acid lipase (LAL; disordered in Wolman disease) and exported via Niemann-Pick type C (NPC) proteins (disordered in NPC disease). These diseases are characterized by accumulated cholesterol and cholesterol esters in most cell types. Mechanisms for trans-cytoplasmic cholesterol transport, membrane insertion, and retrieval from membranes are less clear. Cholesterol esters and "free" cholesterol are enzymatically interconverted in lipid droplets. Cholesterol transport to the cholesterol-poor outer mitochondrial membrane (OMM) appears to involve cholesterol transport proteins. Cytochrome P450scc (CYP11A1) then initiates steroidogenesis by converting cholesterol to pregnenolone on the inner mitochondrial membrane (IMM). Acute steroidogenic responses are regulated by cholesterol delivery from OMM to IMM, triggered by the steroidogenic acute regulatory protein (StAR). Chronic steroidogenic capacity is determined by CYP11A1 gene transcription. StAR mutations cause congenital lipoid adrenal hyperplasia, with absent steroidogenesis, potentially lethal salt loss, and 46,XY sex reversal. StAR mutations initially destroy most, but not all steroidogenesis; low levels of StAR-independent steroidogenesis are lost later due to cellular damage, explaining the clinical findings. Rare P450scc mutations cause a similar syndrome. This review addresses these early steps in steroid biosynthesis.
Collapse
Affiliation(s)
- Walter L Miller
- Department of Pediatrics, School of Medicine, University of California, San Francisco, CA 94143; UCSF Benioff Children's Hospital, San Francisco, CA 94143.
| | - Himangshu S Bose
- Department of Biochemistry, Mercer University School of Medicine, Savannah, GA 31404; and; Memorial University Medical Center, Savannah, GA 31404
| |
Collapse
|
17
|
Unusual regioversatility of acetyltransferase Eis, a cause of drug resistance in XDR-TB. Proc Natl Acad Sci U S A 2011; 108:9804-8. [PMID: 21628583 DOI: 10.1073/pnas.1105379108] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The emergence of multidrug-resistant and extensively drug-resistant (XDR) tuberculosis (TB) is a serious global threat. Aminoglycoside antibiotics are used as a last resort to treat XDR-TB. Resistance to the aminoglycoside kanamycin is a hallmark of XDR-TB. Here, we reveal the function and structure of the mycobacterial protein Eis responsible for resistance to kanamycin in a significant fraction of kanamycin-resistant Mycobacterium tuberculosis clinical isolates. We demonstrate that Eis has an unprecedented ability to acetylate multiple amines of many aminoglycosides. Structural and mutagenesis studies of Eis indicate that its acetylation mechanism is enabled by a complex tripartite fold that includes two general control non-derepressible 5 (GCN5)-related N-acetyltransferase regions. An intricate negatively charged substrate-binding pocket of Eis is a potential target of new antitubercular drugs expected to overcome aminoglycoside resistance.
Collapse
|
18
|
NMR and X-ray structures of the putative sterol carrier protein 2 from Thermus thermophilus HB8 show conformational changes. ACTA ACUST UNITED AC 2010; 11:247-56. [DOI: 10.1007/s10969-010-9096-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 09/23/2010] [Indexed: 11/27/2022]
|
19
|
Kriska T, Pilat A, Schmitt JC, Girotti AW. Sterol carrier protein-2 (SCP-2) involvement in cholesterol hydroperoxide cytotoxicity as revealed by SCP-2 inhibitor effects. J Lipid Res 2010; 51:3174-84. [PMID: 20656919 DOI: 10.1194/jlr.m008342] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sterol carrier protein-2 (SCP-2) plays an important role in cholesterol trafficking and metabolism in mammalian cells. The purpose of this study was to determine whether SCP-2, under oxidative stress conditions, might also traffic hydroperoxides of cholesterol, thereby disseminating their cytotoxic effects. Two inhibitors, SCPI-1 and SCPI-3, known to block cholesterol binding by an insect SCP-2, were used to investigate this. A mouse fibroblast transfectant clone (SC2F) overexpressing SCP-2 was found to be substantially more sensitive to apoptotic killing induced by liposomal 7α-hydroperoxycholesterol (7α-OOH) than a wild-type control. 7α-OOH uptake by SC2F cells and resulting apoptosis were both inhibited by SCPI-1 or SCPI-3 at a subtoxic concentration. Preceding cell death, reactive oxidant accumulation and loss of mitochondrial membrane potential were also strongly inhibited. Similar SCPI protection against 7α-OOH was observed with two other types of SCP-2-expressing mammalian cells. In striking contrast, neither inhibitor had any effect on H(2)O(2)-induced cell killing. To learn whether 7α-OOH cytotoxicity is due to uptake/transport by SCP-2, we used a fluorescence-based competitive binding assay involving recombinant SCP-2, NBD-cholesterol, and SCPI-1/SCPI-3 or 7α-OOH. The results clearly showed that 7α-OOH binds to SCP-2 in SCPI-inhibitable fashion. Our findings suggest that cellular SCP-2 not only binds and translocates cholesterol but also cholesterol hydroperoxides, thus expanding their redox toxicity and signaling ranges under oxidative stress conditions.
Collapse
Affiliation(s)
- Tamas Kriska
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | | | | |
Collapse
|
20
|
Singarapu KK, Radek JT, Tonelli M, Markley JL, Lan Q. Differences in the structure and dynamics of the apo- and palmitate-ligated forms of Aedes aegypti sterol carrier protein 2 (AeSCP-2). J Biol Chem 2010; 285:17046-53. [PMID: 20356842 DOI: 10.1074/jbc.m110.101154] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sterol carrier protein-2 (SCP-2) is a nonspecific lipid-binding protein expressed ubiquitously in most organisms. Knockdown of SCP-2 expression in mosquitoes has been shown to result in high mortality in developing adults and significantly lowered fertility. Thus, it is of interest to determine the structure of mosquito SCP-2 and to identify its mechanism of lipid binding. We report here high quality three-dimensional solution structures of SCP-2 from Aedes aegypti determined by NMR spectroscopy in its ligand-free state (AeSCP-2) and in complex with palmitate. Both structures have a similar mixed alpha/beta fold consisting of a five-stranded beta-sheet and four alpha-helices arranged on one side of the beta-sheet. Ligand-free AeSCP-2 exhibited regions of structural heterogeneity, as evidenced by multiple two-dimensional (15)N heteronuclear single-quantum coherence peaks for certain amino acids; this heterogeneity disappeared upon complex formation with palmitate. The binding of palmitate to AeSCP-2 was found to decrease the backbone mobility of the protein but not to alter its secondary structure. Complex formation is accompanied by chemical shift differences and a loss of mobility for residues in the loop between helix alphaI and strand betaA. The structural differences between the alphaI and betaA of the mosquito and the vertebrate SCP-2s may explain the differential specificity (insect versus vertebrate) of chemical inhibitors of the mosquito SCP-2.
Collapse
Affiliation(s)
- Kiran K Singarapu
- Department of Biochemistry, National Magnetic Resonance Facility at Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
21
|
Burgardt NI, Ferreyra RG, Falomir-Lockhart L, Córsico B, Ermácora MR, Ceolín M. Biophysical characterisation and urea-induced unfolding of recombinant Yarrowia lipolytica sterol carrier protein-2. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:1115-22. [PMID: 19376277 DOI: 10.1016/j.bbapap.2009.04.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Revised: 03/18/2009] [Accepted: 04/06/2009] [Indexed: 11/30/2022]
Affiliation(s)
- Noelia I Burgardt
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
| | | | | | | | | | | |
Collapse
|
22
|
Lige B, Jayabalasingham B, Zhang H, Pypaert M, Coppens I. Role of an ancestral d-bifunctional protein containing two sterol-carrier protein-2 domains in lipid uptake and trafficking in Toxoplasma. Mol Biol Cell 2008; 20:658-72. [PMID: 19005217 DOI: 10.1091/mbc.e08-05-0482] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The inability to synthesize cholesterol is universal among protozoa. The intracellular pathogen Toxoplasma depends on host lipoprotein-derived cholesterol to replicate in mammalian cells. Mechanisms of cholesterol trafficking in this parasite must be important for delivery to proper organelles. We characterized a unique d-bifunctional protein variant expressed by Toxoplasma consisting of one N-terminal d-3-hydroxyacyl-CoA dehydrogenase domain fused to two tandem sterol carrier protein-2 (SCP-2) domains. This multidomain protein undergoes multiple cleavage steps to release free SCP-2. The most C-terminal SCP-2 carries a PTS1 that directs the protein to vesicles before processing. Abrogation of this signal results in SCP-2 accumulation in the cytoplasm. Cholesterol specifically binds to parasite SCP-2 but with 10-fold lower affinity than phosphatidylcholine. In mammalian cells and Toxoplasma, the two parasite SCP-2 domains promote the circulation of various lipids between organelles and to the surface. Compared with wild-type parasites, TgHAD-2SCP-2-transfected parasites replicate faster and show enhanced uptake of cholesterol and oleate, which are incorporated into neutral lipids that accumulate at the basal end of Toxoplasma. This work provides the first evidence that the lipid transfer capability of an ancestral eukaryotic SCP-2 domain can influence the lipid metabolism of an intracellular pathogen to promote its multiplication in mammalian cells.
Collapse
Affiliation(s)
- Bao Lige
- Department of Molecular Microbiology and Immunology, Johns Hopkins University School of Public Health, Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|
23
|
Martin GG, Hostetler HA, McIntosh AL, Tichy SE, Williams BJ, Russell DH, Berg JM, Spencer TA, Ball J, Kier AB, Schroeder F. Structure and function of the sterol carrier protein-2 N-terminal presequence. Biochemistry 2008; 47:5915-34. [PMID: 18465878 PMCID: PMC2474712 DOI: 10.1021/bi800251e] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although sterol carrier protein-2 (SCP-2) is encoded as a precursor protein (proSCP-2), little is known regarding the structure and function of the 20-amino acid N-terminal presequence. As shown herein, the presequence contains significant secondary structure and alters SCP-2: (i) secondary structure (CD), (ii) tertiary structure (aqueous exposure of Trp shown by UV absorbance, fluorescence, and fluorescence quenching), (iii) ligand binding site [Trp response to ligands, peptide cross-linked by photoactivatable free cholesterol (FCBP)], (iv) selectivity for interaction with anionic phospholipid-rich membranes, (v) interaction with a peroxisomal import protein [FRET studies of Pex5p(C) binding], the N-terminal presequence increased SCP-2's affinity for Pex5p(C) by 10-fold, and (vi) intracellular targeting in living and fixed cells (confocal microscopy). Nearly 5-fold more SCP-2 than proSCP-2 colocalized with plasma membrane lipid rafts and caveolae (AF488-CTB); 2.8-fold more SCP-2 than proSCP-2 colocalized with a mitochondrial marker (Mitotracker), but nearly 2-fold less SCP-2 than proSCP-2 colocalized with peroxisomes (AF488 antibody to PMP70). These data indicate the importance of the N-terminal presequence in regulating SCP-2 structure, cholesterol localization within the ligand binding site, membrane association, and, potentially, intracellular targeting.
Collapse
Affiliation(s)
- Gregory G. Martin
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX 77843-4466
| | - Heather A. Hostetler
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX 77843-4466
| | - Avery L. McIntosh
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX 77843-4466
| | - Shane E. Tichy
- Department of Chemistry, Texas A&M University, College Station, TX 77843-3255
| | - Brad J. Williams
- Department of Chemistry, Texas A&M University, College Station, TX 77843-3255
| | - David H. Russell
- Department of Chemistry, Texas A&M University, College Station, TX 77843-3255
| | - Jeremy M. Berg
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | | | - Judith Ball
- Department of Pathobiology, Texas A&M University, College Station, TX 77843-4467
| | - Ann B. Kier
- Department of Pathobiology, Texas A&M University, College Station, TX 77843-4467
| | - Friedhelm Schroeder
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX 77843-4466
| |
Collapse
|
24
|
Dyer DH, Wessely V, Forest KT, Lan Q. Three-dimensional structure/function analysis of SCP-2-like2 reveals differences among SCP-2 family members. J Lipid Res 2008; 49:644-53. [DOI: 10.1194/jlr.m700460-jlr200] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
25
|
Zheng BS, Rönnberg E, Viitanen L, Salminen TA, Lundgren K, Moritz T, Edqvist J. Arabidopsis sterol carrier protein-2 is required for normal development of seeds and seedlings. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:3485-99. [PMID: 18687588 PMCID: PMC2529247 DOI: 10.1093/jxb/ern201] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Revised: 06/27/2008] [Accepted: 07/04/2008] [Indexed: 05/20/2023]
Abstract
The Arabidopsis thaliana sterol carrier protein-2 (AtSCP2) is a small, basic and peroxisomal protein that in vitro enhances the transfer of lipids between membranes. AtSCP2 and all other plant SCP-2 that have been identified are single-domain polypeptides, whereas in many other eukaryotes SCP-2 domains are expressed in the terminus of multidomain polypeptides. The AtSCP2 transcript is expressed in all analysed tissues and developmental stages, with the highest levels in floral tissues and in maturing seeds. The expression of AtSCP2 is highly correlated with the multifunctional protein-2 (MFP2) involved in beta-oxidation. A. thaliana Atscp2-1 plants deficient in AtSCP2 show altered seed morphology, a delayed germination, and are dependent on an exogenous carbon source to avoid a delayed seedling establishment. Metabolomic investigations revealed 110 variables (putative metabolites) that differed in relative concentration between Atscp2-1 and normal A. thaliana wild-type seedlings. Microarray analysis revealed that many genes whose expression is altered in mutants with a deficiency in the glyoxylate pathway, also have a changed expression level in Atscp2-1.
Collapse
Affiliation(s)
- Bing Song Zheng
- Department of Plant Biology and Forest Genetics, Swedish University of Agricultural Sciences, PO Box 7080, 750 07 Uppsala, Sweden
- School of Forestry and Biotechnology, Zhejiang Forestry University, 311300, Lin An, China
| | - Elin Rönnberg
- Department of Plant Biology and Forest Genetics, Swedish University of Agricultural Sciences, PO Box 7080, 750 07 Uppsala, Sweden
| | - Lenita Viitanen
- Department of Biochemistry and Pharmacy, Åbo Akademi University, Artillerigatan 6 A III, FIN-20520 Turku, Finland
| | - Tiina A. Salminen
- Department of Biochemistry and Pharmacy, Åbo Akademi University, Artillerigatan 6 A III, FIN-20520 Turku, Finland
| | - Krister Lundgren
- Umeå Plant Science Center, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden
| | - Thomas Moritz
- Umeå Plant Science Center, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden
| | - Johan Edqvist
- IFM Biology, Linköping University, 581 83 Linköping, Sweden
- To whom correspondence should be addressed:
| |
Collapse
|
26
|
Stanley WA, Fodor K, Marti-Renom MA, Schliebs W, Wilmanns M. Protein translocation into peroxisomes by ring-shaped import receptors. FEBS Lett 2007; 581:4795-802. [PMID: 17884042 DOI: 10.1016/j.febslet.2007.09.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Accepted: 09/04/2007] [Indexed: 12/27/2022]
Abstract
Folded and functional proteins destined for translocation from the cytosol into the peroxisomal matrix are recognized by two different peroxisomal import receptors, Pex5p and Pex7p. Both cargo-loaded receptors dock on the same translocon components, followed by cargo release and receptor recycling, as part of the complete translocation process. Recent structural and functional evidence on the Pex5p receptor has provided insight on the molecular requirements of specific cargo recognition, while the remaining processes still remain largely elusive. Comparison of experimental structures of Pex5p and a structural model of Pex7p reveal that both receptors are built by ring-like arrangements with cargo binding sites, central to the respective structures. Although, molecular insight into the complete peroxisomal translocon still remains to be determined, emerging data allow to deduce common molecular principles that may hold for other translocation systems as well.
Collapse
Affiliation(s)
- Will A Stanley
- ARC Plant Energy Biology Centre M316, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | | | | | | | | |
Collapse
|
27
|
Parr RD, Martin GG, Hostetler HA, Schroeder ME, Mir KD, Kier AB, Ball JM, Schroeder F. A new N-terminal recognition domain in caveolin-1 interacts with sterol carrier protein-2 (SCP-2). Biochemistry 2007; 46:8301-14. [PMID: 17580960 PMCID: PMC3658303 DOI: 10.1021/bi7002636] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Although plasma membrane domains, such as caveolae, provide an organizing principle for signaling pathways and cholesterol homeostasis in the cell, relatively little is known regarding specific mechanisms, whereby intracellular lipid-binding proteins are targeted to caveolae. Therefore, the interaction between caveolin-1 and sterol carrier protein-2 (SCP-2), a protein that binds and transfers both cholesterol and signaling lipids (e.g., phosphatidylinositides and sphingolipids), was examined by yeast two-hybrid, in vitro binding and fluorescence resonance energy transfer (FRET) analyses. Results of the in vivo and in vitro assays identified for the first time the N-terminal amino acids (aa) 1-32 amphipathic alpha helix of SCP-2 functionally interacted with caveolin-1. This interaction was independent of the classic caveolin-1 scaffolding domain, in which many signaling proteins interact. Instead, SCP-2 bound caveolin-1 through a new domain identified in the N-terminal domain of caveolin-1 between aa 34-40. Modeling studies suggested that electrostatic interactions between the SCP-2 N-terminal aa 1-32 amphipathic alpha-helical domain (cationic, positively charged face) and the caveolin-1 N-terminal aa 33-59 alpha helix (anionic, negatively charged face) may significantly contribute to this interaction. These findings provide new insights on how SCP-2 enhances cholesterol retention within the cell as well as regulates the distribution of signaling lipids, such as phosphoinositides and sphingolipids, at plasma membrane caveolae.
Collapse
Affiliation(s)
- Rebecca D. Parr
- Department of Pathobiology, Texas A&M University, TVMC, College Station, TX77843-4467
| | - Gregory G. Martin
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX77843-4466
| | - Heather A. Hostetler
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX77843-4466
| | - Megan E. Schroeder
- Department of Pathobiology, Texas A&M University, TVMC, College Station, TX77843-4467
| | - Kiran D. Mir
- Department of Pathobiology, Texas A&M University, TVMC, College Station, TX77843-4467
| | - Ann B. Kier
- Department of Pathobiology, Texas A&M University, TVMC, College Station, TX77843-4467
| | - Judith M. Ball
- Department of Pathobiology, Texas A&M University, TVMC, College Station, TX77843-4467
| | - Friedhelm Schroeder
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX77843-4466
| |
Collapse
|
28
|
Xu S, Benoff B, Liou HL, Lobel P, Stock AM. Structural basis of sterol binding by NPC2, a lysosomal protein deficient in Niemann-Pick type C2 disease. J Biol Chem 2007; 282:23525-31. [PMID: 17573352 PMCID: PMC3645284 DOI: 10.1074/jbc.m703848200] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
NPC2 is a small lysosomal glycoprotein that binds cholesterol with submicromolar affinity. Deficiency in NPC2 is the cause of Niemann-Pick type C2 disease, a fatal neurovisceral disorder characterized by accumulation of cholesterol in lysosomes. Here we report the crystal structure of bovine NPC2 bound to cholesterol-3-O-sulfate, an analog that binds with greater apparent affinity than cholesterol. Structures of both apo-bound and sterol-bound NPC2 were observed within the same crystal lattice, with an asymmetric unit containing one molecule of apoNPC2 and two molecules of sterol-bound NPC2. As predicted from a previously determined structure of apoNPC2, the sterol binds in a deep hydrophobic pocket sandwiched between the two beta-sheets of NPC2, with only the sulfate substituent of the ligand exposed to solvent. In the two available structures of apoNPC2, the incipient ligand-binding pocket, which ranges from a loosely packed hydrophobic core to a small tunnel, is too small to accommodate cholesterol. In the presence of sterol, the pocket expands, facilitated by a slight separation of the beta-strands and substantial reorientation of some side chains, resulting in a perfect molding of the pocket around the hydrocarbon portion of cholesterol. A notable feature is the repositioning of two aromatic residues at the tunnel entrance that are essential for NPC2 function. The NPC2 structures provide evidence of a malleable binding site, consistent with the previously documented broad range of sterol ligand specificity.
Collapse
Affiliation(s)
- Sujuan Xu
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | | | | | |
Collapse
|
29
|
Abstract
The nonspecific lipid transfer protein sterol carrier protein 2 (SCP2) is involved in organellar fatty acid metabolism. A hydrophobic cavity in the structure of SCP2 accommodates a wide variety of apolar ligands such as cholesterol derivatives or fatty acyl-coenzyme A (CoA) conjugates. The properties of this nonspecific lipid binding pocket are explored using NMR chemical shift perturbations, paramagnetic relaxation enhancement, amide hydrogen exchange, and 15N relaxation measurements. A common binding cavity shared by different physiological ligands is identified. NMR relaxation measurements reveal that residues in the three C-terminal alpha-helices within the lipid binding region exhibit mobility at fast (picosecond to nanosecond) and slow (microsecond to millisecond) time scales. Ligand binding is associated with a considerable loss of peptide backbone mobility. The observed conformational dynamics in SCP2 may play a role for the access of hydrophobic ligands to an occluded binding pocket. The C-terminal peroxisomal targeting signal of SCP2 is specifically recognized by the Pex5p receptor protein, which conducts cargo proteins toward the peroxisomal organelle. Neither the C-terminal targeting signal nor the N-terminal precursor sequence interferes with lipid binding by SCP2. The alpha-helices involved in lipid binding also mediate a secondary interaction interface with the Pex5p receptor. Silencing of conformational dynamics of the peptide backbone in these helices upon either lipid or Pex5p binding might communicate the loading state of the cargo protein to the targeting receptor.
Collapse
Affiliation(s)
| | - Michael Sattler
- Corresponding author. Telephone: +49-6221-387-552. Fax: +49-6221-387-98552.
| |
Collapse
|
30
|
Kanno K, Wu MK, Scapa EF, Roderick SL, Cohen DE. Structure and function of phosphatidylcholine transfer protein (PC-TP)/StarD2. Biochim Biophys Acta Mol Cell Biol Lipids 2007; 1771:654-62. [PMID: 17499021 PMCID: PMC2743068 DOI: 10.1016/j.bbalip.2007.04.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2006] [Revised: 03/31/2007] [Accepted: 04/03/2007] [Indexed: 11/29/2022]
Abstract
Phosphatidylcholine transfer protein (PC-TP) is a highly specific soluble lipid binding protein that transfers phosphatidylcholine between membranes in vitro. PC-TP is a member of the steroidogenic acute regulatory protein-related transfer (START) domain superfamily. Although its biochemical properties and structure are well characterized, the functions of PC-TP in vivo remain incompletely understood. Studies of mice with homozygous disruption of the Pctp gene have largely refuted the hypothesis that this protein participates in the hepatocellular selection and transport of biliary phospholipids, in the production of lung surfactant, in leukotriene biosynthesis and in cellular phosphatidylcholine metabolism. Nevertheless, Pctp(-/-) mice exhibit interesting defects in lipid homeostasis, the understanding of which should elucidate the biological functions of PC-TP.
Collapse
Affiliation(s)
- Keishi Kanno
- Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Michele K. Wu
- Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Erez F. Scapa
- Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Steven L. Roderick
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - David E. Cohen
- Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Harvard-Massachusetts Institute of Technology, Division of Health Sciences and Technology, Boston, MA 02115, USA
- Correspondence should be addressed to this author at: Department of Medicine, Gastroenterology Division, Brigham and Women’s Hospital, 75 Francis Street, Boston, MA 02115. Phone: (617) 525-7846; Fax: (617) 264-6368;
| |
Collapse
|
31
|
Stanley WA, Versluis K, Schultz C, Heck AJR, Wilmanns M. Investigation of the ligand spectrum of human sterol carrier protein 2 using a direct mass spectrometry assay. Arch Biochem Biophys 2007; 461:50-8. [PMID: 17418802 DOI: 10.1016/j.abb.2007.02.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Revised: 02/11/2007] [Accepted: 02/12/2007] [Indexed: 11/17/2022]
Abstract
Sterol carrier protein 2 (SCP2) has been investigated by nearly native electrospray ionisation mass spectrometry in the presence of long chain fatty acyl CoAs (LCFA-CoAs) and carnitine derivatives of equivalent fatty acid chain length (LCFA-carnitines). Four SCP2 constructs were compared to examine the influence of the N-terminal presequence and the C-terminal peroxisomal targeting signal on ligand binding. Removal of N- or C-terminal residues did not influence ligand binding. The observation that LCFA-CoAs are high affinity ligands for SCP2 was confirmed, while LCFA-carnitines were demonstrated for the first time not to interact with SCP2. LCFA-CoAs formed non-covalent complexes with SCP2 of 2:1 and 1:1 stoichiometry, which could be dissociated by elevating the energy of the ions upon entrance to the mass spectrometer. A fluorescence-competition assay using Nile Red butyric acid confirmed the mass spectrometric observations in solution. The physiological significance of the lack of LCFA-carnitine binding by SCP2 is discussed.
Collapse
Affiliation(s)
- Will A Stanley
- EMBL-Hamburg, c/o DESY, Notkestrasse 85, 22603 Hamburg, Germany.
| | | | | | | | | |
Collapse
|
32
|
Stanley WA, Filipp FV, Kursula P, Schüller N, Erdmann R, Schliebs W, Sattler M, Wilmanns M. Recognition of a functional peroxisome type 1 target by the dynamic import receptor pex5p. Mol Cell 2007; 24:653-663. [PMID: 17157249 PMCID: PMC5030714 DOI: 10.1016/j.molcel.2006.10.024] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Revised: 08/16/2006] [Accepted: 10/16/2006] [Indexed: 10/23/2022]
Abstract
Peroxisomes require the translocation of folded and functional target proteins of various sizes across the peroxisomal membrane. We have investigated the structure and function of the principal import receptor Pex5p, which recognizes targets bearing a C-terminal peroxisomal targeting signal type 1. Crystal structures of the receptor in the presence and absence of a peroxisomal target, sterol carrier protein 2, reveal major structural changes from an open, snail-like conformation into a closed, circular conformation. These changes are caused by a long loop C terminal to the 7-fold tetratricopeptide repeat segments. Mutations in residues of this loop lead to defects in peroxisomal import in human fibroblasts. The structure of the receptor/cargo complex demonstrates that the primary receptor-binding site of the cargo is structurally and topologically autonomous, enabling the cargo to retain its native structure and function.
Collapse
Affiliation(s)
- Will A Stanley
- European Molecular Biology Laboratory-Hamburg Outstation, Notkestrasse 85, 22603 Hamburg
| | - Fabian V Filipp
- Structural and Computational Biology Unit, European Molecular Biology Laboratory-Heidelberg, Meyerhofstrasse 1, 69117 Heidelberg
| | - Petri Kursula
- European Molecular Biology Laboratory-Hamburg Outstation, Notkestrasse 85, 22603 Hamburg
| | - Nicole Schüller
- European Molecular Biology Laboratory-Hamburg Outstation, Notkestrasse 85, 22603 Hamburg
| | - Ralf Erdmann
- Department of Systems Biology, Institute for Physiological Chemistry, Faculty of Medicine, Ruhr University of Bochum, 44780 Bochum, Germany
| | - Wolfgang Schliebs
- Department of Systems Biology, Institute for Physiological Chemistry, Faculty of Medicine, Ruhr University of Bochum, 44780 Bochum, Germany
| | - Michael Sattler
- Structural and Computational Biology Unit, European Molecular Biology Laboratory-Heidelberg, Meyerhofstrasse 1, 69117 Heidelberg
| | - Matthias Wilmanns
- European Molecular Biology Laboratory-Hamburg Outstation, Notkestrasse 85, 22603 Hamburg.
| |
Collapse
|
33
|
Viitanen L, Nylund M, Eklund DM, Alm C, Eriksson AK, Tuuf J, Salminen TA, Mattjus P, Edqvist J. Characterization of SCP-2 from Euphorbia lagascae reveals that a single Leu/Met exchange enhances sterol transfer activity. FEBS J 2006; 273:5641-55. [PMID: 17212780 DOI: 10.1111/j.1742-4658.2006.05553.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sterol carrier protein-2 (SCP-2) is a small intracellular basic protein domain implicated in peroxisomal beta-oxidation. We extend our knowledge of plant SCP-2 by characterizing SCP-2 from Euphorbia lagascae. This protein consists of 122 amino acids including a PTS1 peroxisomal targeting signal. It has a molecular mass of 13.6 kDa and a pI of 9.5. It shares 67% identity and 84% similarity with SCP-2 from Arabidopsis thaliana. Proteomic analysis revealed that E. lagascae SCP-2 accumulates in the endosperm during seed germination. It showed in vitro transfer activity of BODIPY-phosphatidylcholine (BODIPY-PC). The transfer of BODIPY-PC was almost completely inhibited after addition of phosphatidylinositol, palmitic acid, stearoyl-CoA and vernolic acid, whereas sterols only had a very marginal inhibitory effect. We used protein modelling and site-directed mutagenesis to investigate why the BODIPY-PC transfer mediated by E. lagascae SCP-2 is not sensitive to sterols, whereas the transfer mediated by A. thaliana SCP-2 shows sterol sensitivity. Protein modelling suggested that the ligand-binding cavity of A. thaliana SCP-2 has four methionines (Met12, 14, 15 and 100), which are replaced by leucines (Leu11, 13, 14 and 99) in E. lagascae SCP-2. Changing Leu99 to Met99 was sufficient to convert E. lagascae SCP-2 into a sterol-sensitive BODIPY-PC-transfer protein, and correspondingly, changing Met100 to Leu100 abolished the sterol sensitivity of A. thaliana SCP-2.
Collapse
Affiliation(s)
- Lenita Viitanen
- Department of Biochemistry and Pharmacy, Abo Akademi University, Turku, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Stanley WA, Wilmanns M. Dynamic architecture of the peroxisomal import receptor Pex5p. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:1592-8. [PMID: 17141887 DOI: 10.1016/j.bbamcr.2006.10.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2006] [Revised: 10/26/2006] [Accepted: 10/26/2006] [Indexed: 11/29/2022]
Abstract
The majority of peroxisomal matrix proteins are recognized by the import receptor Pex5p. The receptor is dynamic in terms of its overall architecture and association with the peroxisomal membrane. It participates in different protein complexes during the translocation of cargos from the cytosol to the peroxisomal matrix. Its sequence comprises two structurally and functionally autonomous parts. The N-terminal segment interacts with several peroxins that assemble into distinct protein complexes during cargo translocation. Despite evidence for alpha-helical binding motifs for some of these components (Pex13p, Pex14p) its overall appearance is that of a molten globule and folding/unfolding transitions may play a critical role in its function. In contrast, most of the C-terminal part of the receptor folds into a ring-like alpha-helical structure and binds folded and functionally intact peroxisomal targets that bear a C-terminal peroxisomal targeting signal type-1. Some of these targets also bind to secondary binding sites of the receptor.
Collapse
Affiliation(s)
- Will A Stanley
- EMBL-Hamburg Outstation, c/o DESY, Notkestrasse 85, 22603 Hamburg, Germany
| | | |
Collapse
|
35
|
Ferreyra RG, Burgardt NI, Milikowski D, Melen G, Kornblihtt AR, Dell' Angelica EC, Santomé JA, Ermácora MR. A yeast sterol carrier protein with fatty-acid and fatty-acyl-CoA binding activity. Arch Biochem Biophys 2006; 453:197-206. [PMID: 16890184 DOI: 10.1016/j.abb.2006.06.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Revised: 06/29/2006] [Accepted: 06/30/2006] [Indexed: 11/22/2022]
Abstract
The 14-kDa sterol carrier protein 2 (SCP2) domain is present in Eukaria, Bacteria and Archaea, and has been implicated in the transport and metabolism of lipids. We report the cloning, expression, purification and physicochemical characterization of a SCP2 from the yeast Yarrowia lipolytica (YLSCP2). Analytical size-exclusion chromatography, circular dichroism and fluorescence spectra, indicate that recombinant YLSCP2 is a well-folded monomer. Thermal unfolding experiments show that SCP2 maximal stability is at pH 7.0-9.0. YLSCP2 binds cis-parinaric acid and palmitoyl-CoA with KD values of 81+/-40 nM and 73+/-33 nM, respectively, sustaining for the first time the binding of fatty acids and their CoA esters to a nonanimal SCP2. The role of yeast SCP2 and other lipid binding proteins in transport, storage and peroxisomal oxidation of fatty acids is discussed.
Collapse
Affiliation(s)
- Raúl G Ferreyra
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Wirtz KWA. Phospholipid transfer proteins in perspective. FEBS Lett 2006; 580:5436-41. [PMID: 16828756 DOI: 10.1016/j.febslet.2006.06.065] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Revised: 06/19/2006] [Accepted: 06/20/2006] [Indexed: 01/07/2023]
Abstract
Since their discovery and subsequent purification from mammalian tissues more than 30 years ago an impressive number of studies have been carried out to characterize and elucidate the biological functions of phosphatidylcholine transfer protein (PC-TP), phosphatidylinositol transfer protein (PI-TP) and non-specific lipid transfer protein, more commonly known as sterol carrier protein 2 (SCP-2). Here I will present information to show that these soluble, low-molecular weight proteins constitute domain structures in StArR-related lipid transfer (START) proteins (i.e. PC-TP), in retinal degeneration protein, type B (RdgB)-related PI-TPs (e.g. Dm RdgB, Nir2, Nir3) and in peroxisomal beta-oxidation enzyme-related SCP-2 (i.e. 3-oxoacyl-CoA thiolase, also denoted as SCP-X and the 80-kDa D-bifunctional protein). Further I will summarize the most recent studies pertaining to the physiological function of these soluble phospholipid transfer proteins in metazoa.
Collapse
Affiliation(s)
- Karel W A Wirtz
- Bijvoet Center for Biomolecular Research, Section of Lipid Biochemistry, Utrecht University, Padualaan 8, 3584CH Utrecht, The Netherlands.
| |
Collapse
|
37
|
Hagelueken G, Adams TM, Wiehlmann L, Widow U, Kolmar H, Tümmler B, Heinz DW, Schubert WD. The crystal structure of SdsA1, an alkylsulfatase from Pseudomonas aeruginosa, defines a third class of sulfatases. Proc Natl Acad Sci U S A 2006; 103:7631-6. [PMID: 16684886 PMCID: PMC1472496 DOI: 10.1073/pnas.0510501103] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2005] [Indexed: 11/18/2022] Open
Abstract
Pseudomonas aeruginosa is both a ubiquitous environmental bacterium and an opportunistic human pathogen. A remarkable metabolic versatility allows it to occupy a multitude of ecological niches, including wastewater treatment plants and such hostile environments as the human respiratory tract. P. aeruginosa is able to degrade and metabolize biocidic SDS, the detergent of most commercial personal hygiene products. We identify SdsA1 of P. aeruginosa as a secreted SDS hydrolase that allows the bacterium to use primary sulfates such as SDS as a sole carbon or sulfur source. Homologues of SdsA1 are found in many pathogenic and some nonpathogenic bacteria. The crystal structure of SdsA1 reveals three distinct domains. The N-terminal catalytic domain with a binuclear Zn2+ cluster is a distinct member of the metallo-beta-lactamase fold family, the central dimerization domain ensures resistance to high concentrations of SDS, whereas the C-terminal domain provides a hydrophobic groove, presumably to recruit long aliphatic substrates. Crystal structures of apo-SdsA1 and complexes with substrate analog and products indicate an enzymatic mechanism involving a water molecule indirectly activated by the Zn2+ cluster. The enzyme SdsA1 thus represents a previously undescribed class of sulfatases that allows P. aeruginosa to survive and thrive under otherwise bacteriocidal conditions.
Collapse
Affiliation(s)
- Gregor Hagelueken
- *Division of Structural Biology, German Research Centre for Biotechnology, Mascheroder Weg 1, D-38124 Braunschweig, Germany
| | - Thorsten M. Adams
- Department of Molecular Genetics, Institute for Microbiology and Genetics, University of Göttingen, Grisebachstrasse 8, D-37077 Göttingen, Germany
- Klinische Forschergruppe OE 6711, Medizinische Hochschule Hannover, Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany; and
| | - Lutz Wiehlmann
- Klinische Forschergruppe OE 6711, Medizinische Hochschule Hannover, Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany; and
| | - Ute Widow
- *Division of Structural Biology, German Research Centre for Biotechnology, Mascheroder Weg 1, D-38124 Braunschweig, Germany
| | - Harald Kolmar
- Department of Molecular Genetics, Institute for Microbiology and Genetics, University of Göttingen, Grisebachstrasse 8, D-37077 Göttingen, Germany
- Clemens-Schoepf-Institute for Organic Chemistry and Biochemistry, Darmstadt University of Technology, Petersenstrasse 22, D-64287 Darmstadt, Germany
| | - Burkhard Tümmler
- Klinische Forschergruppe OE 6711, Medizinische Hochschule Hannover, Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany; and
| | - Dirk W. Heinz
- *Division of Structural Biology, German Research Centre for Biotechnology, Mascheroder Weg 1, D-38124 Braunschweig, Germany
| | - Wolf-Dieter Schubert
- *Division of Structural Biology, German Research Centre for Biotechnology, Mascheroder Weg 1, D-38124 Braunschweig, Germany
| |
Collapse
|
38
|
Huyghe S, Mannaerts GP, Baes M, Van Veldhoven PP. Peroxisomal multifunctional protein-2: the enzyme, the patients and the knockout mouse model. Biochim Biophys Acta Mol Cell Biol Lipids 2006; 1761:973-94. [PMID: 16766224 DOI: 10.1016/j.bbalip.2006.04.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2006] [Revised: 04/04/2006] [Accepted: 04/10/2006] [Indexed: 10/24/2022]
Abstract
The mammalian multifunctional protein-2 (MFP-2, also called multifunctional enzyme 2, D-bifunctional enzyme or 17-beta-estradiol dehydrogenase type IV) was identified by several groups about a decade ago. It plays a central role in peroxisomal beta-oxidation as it handles most, if not all, peroxisomal beta-oxidation substrates. Deficiency of this enzyme in man causes a severe developmental syndrome with abnormalities in several organs but in particular in the brain, leading to death within the first year of life. Accumulation of branched-long-chain fatty acids and very-long-chain fatty acids and a disturbed synthesis of bile acids were documented in these patients. A mouse model with MFP-2 deficiency only partly phenocopies the human disease. Although the expected metabolic abnormalities are present, no neurodevelopmental aberrations are observed. However, the survival of these mice into adulthood allowed to document the importance of this enzyme for the normal functioning of the brain, eyes and testis. In the present review, the identification and biochemical characteristics of MFP-2, and the consequences of MFP-2 dysfunction in humans and in mice will be discussed.
Collapse
Affiliation(s)
- Steven Huyghe
- Laboratory of Cell Metabolism, Department of Pharmaceutical Sciences, Katholieke Universiteit Leuven, Campus Gasthuisberg, Onderwijs en Navorsing II, bus 823, Herestraat 49, B-3000 Leuven, Belgium
| | | | | | | |
Collapse
|
39
|
Edqvist J, Blomqvist K. Fusion and fission, the evolution of sterol carrier protein-2. J Mol Evol 2006; 62:292-306. [PMID: 16501878 DOI: 10.1007/s00239-005-0086-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2005] [Accepted: 10/21/2005] [Indexed: 11/28/2022]
Abstract
Sterol carrier protein-2 (SCP-2) is an intracellular, small, basic protein domain that in vitro enhances the transfer of lipids between membranes. It is expressed in bacteria, archaea, and eukaryotes. There are five human genes, HSD17B4, SCPX, HSDL2 STOML1, and C20orf79, which encode SCP-2. HSD17B4, SCPX, HSDL2, and STOML1 encode fusion proteins with SCP-2 downstream of another protein domain, whereas C20orf79 encodes an unfused SCP-2. We have extracted SCP-2 domains from databases and analyzed the evolution of the eukaryotic SCP-2. We show that SCPX and HSDL2 are present in most animals from Cnidaria to Chordata. STOML1 are present in nematodes and more advanced animals. HSD17B4 which encodes a D-bifunctional protein (DBP) with domains for D-3-hydroxyacyl-CoA dehydrogenase, enoyl-CoA hydratase, and SCP-2 are found in animals from insects to mammals and also in fungi. Nematodes, amoebas, ciliates, apicomplexans, and oomycetes express an alternative DBP with the SCP-2 domain directly connected to the D-3-hydroxyacyl-CoA dehydrogenase. This fusion has not been retained in plant genomes, which solely express unfused SCP-2 domains. Proteins carrying unfused SCP-2 domains are also encoded in bacteria, archaea, ciliates, fungi, insects, nematodes, and vertebrates. Our results indicate that the fusion between D-3-hydroxyacyl-CoA dehydrogenase and SCP-2 was formed early during eukaryotic evolution. There have since been several gene fission events where genes encoding unfused SCP-2 domains have been formed, as well as gene fusion events placing the SCP-2 domain in novel protein domain contexts.
Collapse
Affiliation(s)
- Johan Edqvist
- Department of Plant Biology and Forest Genetics, Swedish University of Agricultural Sciences, Uppsala.
| | | |
Collapse
|
40
|
Im YJ, Raychaudhuri S, Prinz WA, Hurley JH. Structural mechanism for sterol sensing and transport by OSBP-related proteins. Nature 2005; 437:154-8. [PMID: 16136145 PMCID: PMC1431608 DOI: 10.1038/nature03923] [Citation(s) in RCA: 335] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2005] [Accepted: 06/09/2005] [Indexed: 11/09/2022]
Abstract
The oxysterol-binding-protein (OSBP)-related proteins (ORPs) are conserved from yeast to humans, and are implicated in the regulation of sterol homeostasis and in signal transduction pathways. Here we report the structure of the full-length yeast ORP Osh4 (also known as Kes1) at 1.5-1.9 A resolution in complexes with ergosterol, cholesterol, and 7-, 20- and 25-hydroxycholesterol. We find that a single sterol molecule binds within a hydrophobic tunnel in a manner consistent with a transport function for ORPs. The entrance is blocked by a flexible amino-terminal lid and surrounded by basic residues that are critical for Osh4 function. The structure of the open state of a lid-truncated form of Osh4 was determined at 2.5 A resolution. Structural analysis and limited proteolysis show that sterol binding closes the lid and stabilizes a conformation favouring transport across aqueous barriers and signal transmission. The structure of Osh4 in the absence of ligand exposes potential phospholipid-binding sites that are positioned for membrane docking and sterol exchange. On the basis of these observations, we propose a model in which sterol and membrane binding promote reciprocal conformational changes that facilitate a sterol transfer and signalling cycle.
Collapse
Affiliation(s)
- Young Jun Im
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD 20892, USA and
| | - Sumana Raychaudhuri
- Laboratory of Cell Biochemistry and Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD 20892, USA
| | - William A. Prinz
- Laboratory of Cell Biochemistry and Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD 20892, USA
| | - James H. Hurley
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD 20892, USA and
- Correspondence: JHH, 1-301-402-4703, email
| |
Collapse
|
41
|
Malakhova ML, Malinina L, Pike HM, Kanack AT, Patel DJ, Brown RE. Point mutational analysis of the liganding site in human glycolipid transfer protein. Functionality of the complex. J Biol Chem 2005; 280:26312-20. [PMID: 15901739 PMCID: PMC1393170 DOI: 10.1074/jbc.m500481200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammalian glycolipid transfer proteins (GLTPs) facilitate the selective transfer of glycolipids between lipid vesicles in vitro. Recent structural determinations of the apo- and glycolipid-liganded forms of human GLTP have provided the first insights into the molecular architecture of the protein and its glycolipid binding site (Malinina, L., Malakhova, M. L., Brown, R. E., and Patel, D. J. (2004) Nature 430, 1048-1053). In the present study, we have evaluated the functional consequences of point mutation of the glycolipid liganding site of human GLTP within the context of a carrier-based mechanism of glycolipid intermembrane transfer. Different approaches were developed to rapidly and efficiently assess the uptake and release of glycolipid by GLTP. They included the use of glass-immobilized, glycolipid films to load GLTP with glycolipid and separation of GLTP/glycolipid complexes from vesicles containing glycolipid (galactosylceramide or lactosylceramide) or from monosialoganglioside dispersions by employing nickel-nitrilotriacetic acid-based affinity or gel filtration strategies. Point mutants of the sugar headgroup recognition center (Trp-96, Asp-48, Asn-52) and of the ceramide-accommodating hydrophobic tunnel (Phe-148, Phe-183, Leu-136) were analyzed for their ability to acquire and release glycolipid ligand. Two manifestations of point mutation within the liganding site were apparent: (i) impaired formation of the GLTP/glycolipid complex; (ii) impaired acquisition and release of bound glycolipid by GLTP. The results are consistent with a carrier-based mode of GLTP action to accomplish the intermembrane transfer of glycolipid. Also noteworthy was the inefficient release of glycolipid by wtGLTP into phosphatidylcholine acceptor vesicles, raising the possibility of a function other than intermembrane glycolipid transfer in vivo.
Collapse
|
42
|
Koski KM, Haapalainen AM, Hiltunen JK, Glumoff T. Crystal Structure of 2-Enoyl-CoA Hydratase 2 from Human Peroxisomal Multifunctional Enzyme Type 2. J Mol Biol 2005; 345:1157-69. [PMID: 15644212 DOI: 10.1016/j.jmb.2004.11.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2004] [Revised: 10/21/2004] [Accepted: 11/05/2004] [Indexed: 11/17/2022]
Abstract
2-Enoyl-CoA hydratase 2 is the middle part of the mammalian peroxisomal multifunctional enzyme type 2 (MFE-2), which is known to be important in the beta-oxidation of very-long-chain and alpha-methyl-branched fatty acids as well as in the synthesis of bile acids. Here, we present the crystal structure of the hydratase 2 from the human MFE-2 to 3A resolution. The three-dimensional structure resembles the recently solved crystal structure of hydratase 2 from the yeast, Candida tropicalis, MFE-2 having a two-domain subunit structure with a C-domain complete hot-dog fold housing the active site, and an N-domain incomplete hot-dog fold housing the cavity for the aliphatic acyl part of the substrate molecule. The ability of human hydratase 2 to utilize such bulky compounds which are not physiological substrates for the fungal ortholog, e.g. CoA esters of C26 fatty acids, pristanic acid and di/trihydroxycholestanoic acids, is explained by a large hydrophobic cavity formed upon the movements of the extremely mobile loops I-III in the N-domain. In the unliganded form of human hydratase 2, however, the loop I blocks the entrance of fatty enoyl-CoAs with chain-length >C8. Therefore, we expect that upon binding of substrates bulkier than C8, the loop I gives way, contemporaneously causing a secondary effect in the CoA-binding pocket and/or active site required for efficient hydration reaction. This structural feature would explain the inactivity of human hydratase 2 towards short-chain substrates. The solved structure is also used as a tool for analyzing the various inactivating mutations, identified among others in MFE-2-deficient patients. Since hydratase 2 is the last functional unit of mammalian MFE-2 whose structure has been solved, the organization of the functional units in the biologically active full-length enzyme is also discussed.
Collapse
Affiliation(s)
- Kristian M Koski
- Department of Biochemistry and Biocenter Oulu, University of Oulu, Box 3000, FIN-90014 Oulu, Finland
| | | | | | | |
Collapse
|
43
|
Abstract
A mosquito sterol carrier protein-2, AeSCP-2, has been shown to aid in the uptake of cholesterol in mosquito cells. The discovery of chemical inhibitors of AeSCP-2 is reported here. AeSCP-2 inhibitors (SCPIs) belong to several chemotypes of hydrophobic compounds. Those inhibitors competed with cholesterol for AeSCP-2, binding with relatively high binding affinities. In cultured insect cells, SCPIs reduced cholesterol uptake by as much as 30% at 1-5 microM concentrations. SCPIs were potent larvicides to the yellow fever mosquito, Aedes aegypti, and to the tobacco hornworm, Manduca sexta, with 50% lethal doses (LD50s) of 5-21 microM and 0.013-15 ng/mg diet, respectively. The results indicate that sterol carrier protein-2 has functional similarity in two different insect species.
Collapse
Affiliation(s)
- Min-sik Kim
- Department of Entomology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | | |
Collapse
|
44
|
Edqvist J, Rönnberg E, Rosenquist S, Blomqvist K, Viitanen L, Salminen TA, Nylund M, Tuuf J, Mattjus P. Plants Express a Lipid Transfer Protein with High Similarity to Mammalian Sterol Carrier Protein-2. J Biol Chem 2004; 279:53544-53. [PMID: 15456765 DOI: 10.1074/jbc.m405099200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
This is the first report describing the cloning and characterization of sterol carrier protein-2 (SCP-2) from plants. Arabidopsis thaliana SCP-2 (AtSCP-2) consists of 123 amino acids with a molecular mass of 13.6 kDa. AtSCP-2 shows 35% identity and 56% similarity to the human SCP-2-like domain present in the human D-bifunctional protein (DBP) and 30% identity and 54% similarity to the human SCP-2 encoded by SCP-X. The presented structural models of apo-AtSCP-2 and the ligand-bound conformation of AtSCP-2 reveal remarkable similarity with two of the structurally known SCP-2s, the SCP-2-like domain of human DBP and the rabbit SCP-2, correspondingly. The AtSCP-2 models in both forms have a similar hydrophobic ligand-binding tunnel, which is extremely suitable for lipid binding. AtSCP-2 showed in vitro transfer activity of BODIPY-phosphatidylcholine (BODIPY-PC) from donor membranes to acceptor membranes. The transfer of BODIPY-PC was almost completely inhibited after addition of 1-palmitoyl 2-oleoyl phosphatidylcholine or ergosterol. Dimyristoyl phosphatidic acid, stigmasterol, steryl glucoside, and cholesterol showed a moderate to marginal ability to lower the BODIPY-PC transfer rate, and the single chain palmitic acid and stearoyl-coenzyme A did not affect transfer at all. Expression analysis showed that AtSCP-2 mRNA is accumulating in most plant tissues. Plasmids carrying fusion genes between green fluorescent protein and AtSCP-2 were transformed with particle bombardment to onion epidermal cells. The results from analyzing the transformants indicate that AtSCP-2 is localized to peroxisomes.
Collapse
Affiliation(s)
- Johan Edqvist
- Department of Plant Biology and Forest Genetics, Swedish University of Agricultural Sciences, Box 7080, 750 07 Uppsala, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Schrick K, Nguyen D, Karlowski WM, Mayer KFX. START lipid/sterol-binding domains are amplified in plants and are predominantly associated with homeodomain transcription factors. Genome Biol 2004; 5:R41. [PMID: 15186492 PMCID: PMC463074 DOI: 10.1186/gb-2004-5-6-r41] [Citation(s) in RCA: 201] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2004] [Revised: 04/08/2004] [Accepted: 04/30/2004] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In animals, steroid hormones regulate gene expression by binding to nuclear receptors. Plants lack genes for nuclear receptors, yet genetic evidence from Arabidopsis suggests developmental roles for lipids/sterols analogous to those in animals. In contrast to nuclear receptors, the lipid/sterol-binding StAR-related lipid transfer (START) protein domains are conserved, making them candidates for involvement in both animal and plant lipid/sterol signal transduction. RESULTS We surveyed putative START domains from the genomes of Arabidopsis, rice, animals, protists and bacteria. START domains are more common in plants than in animals and in plants are primarily found within homeodomain (HD) transcription factors. The largest subfamily of HD-START proteins is characterized by an HD amino-terminal to a plant-specific leucine zipper with an internal loop, whereas in a smaller subfamily the HD precedes a classic leucine zipper. The START domains in plant HD-START proteins are not closely related to those of animals, implying collateral evolution to accommodate organism-specific lipids/sterols. Using crystal structures of mammalian START proteins, we show structural conservation of the mammalian phosphatidylcholine transfer protein (PCTP) START domain in plants, consistent with a common role in lipid transport and metabolism. We also describe putative START-domain proteins from bacteria and unicellular protists. CONCLUSIONS The majority of START domains in plants belong to a novel class of putative lipid/sterol-binding transcription factors, the HD-START family, which is conserved across the plant kingdom. HD-START proteins are confined to plants, suggesting a mechanism by which lipid/sterol ligands can directly modulate transcription in plants.
Collapse
Affiliation(s)
- Kathrin Schrick
- Keck Graduate Institute of Applied Life Sciences, 535 Watson Drive, Claremont, CA 91711, USA.
| | | | | | | |
Collapse
|
46
|
Abstract
The synthesis and excretion of bile acids comprise the major pathway of cholesterol catabolism in mammals. Synthesis provides a direct means of converting cholesterol, which is both hydrophobic and insoluble, into a water-soluble and readily excreted molecule, the bile acid. The biosynthetic steps that accomplish this transformation also confer detergent properties to the bile acid, which are exploited by the body to facilitate the secretion of cholesterol from the liver. This role in the elimination of cholesterol is counterbalanced by the ability of bile acids to solubilize dietary cholesterol and essential nutrients and to promote their delivery to the liver. The synthesis of a full complement of bile acids requires 17 enzymes. The expression of selected enzymes in the pathway is tightly regulated by nuclear hormone receptors and other transcription factors, which ensure a constant supply of bile acids in an ever changing metabolic environment. Inherited mutations that impair bile acid synthesis cause a spectrum of human disease; this ranges from liver failure in early childhood to progressive neuropathy in adults.
Collapse
Affiliation(s)
- David W Russell
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390-9046, USA.
| |
Collapse
|
47
|
Dyer DH, Lovell S, Thoden JB, Holden HM, Rayment I, Lan Q. The structural determination of an insect sterol carrier protein-2 with a ligand-bound C16 fatty acid at 1.35-A resolution. J Biol Chem 2003; 278:39085-91. [PMID: 12855689 DOI: 10.1074/jbc.m306214200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Yellow fever mosquito sterol carrier protein (SCP-2) is known to bind to cholesterol. We report here the three-dimensional structure of the complex of SCP-2 from Aedes aegypti with a C16 fatty acid to 1.35-A resolution. The protein fold is exceedingly similar to the human and rabbit proteins, which consist of a five-stranded beta-sheet that exhibits strand order 3-2-1-4-5 with an accompanying layer of four alpha-helices that cover the beta-sheet. A large cavity exists at the interface of the layer alpha-helices and the beta-sheet, which serves as the fatty acid binding site. The carboxylate moiety of the fatty acid is coordinated by a short loop that connects the first alpha-helix to the first beta-strand, whereas the acyl chain extends deep into the interior of the protein. Interestingly, the orientation of the fatty acid is opposite to the observed orientation for Triton X-100 in the SCP-2-like domain from the peroxisomal multifunctional enzyme (Haapalainen, A. M., van Aalten, D. M., Merilainen, G., Jalonen, J. E., Pirila, P., Wierenga, R. K., Hiltunen, J. K., and Glumoff, T. (2001) J. Mol. Biol. 313, 1127-1138). The present study suggests that the binding pocket in the SCP-2 family of proteins may exhibit conformational flexibility to allow coordination of a variety of lipids.
Collapse
Affiliation(s)
- David H Dyer
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | | | |
Collapse
|
48
|
Soccio RE, Breslow JL. StAR-related lipid transfer (START) proteins: mediators of intracellular lipid metabolism. J Biol Chem 2003; 278:22183-6. [PMID: 12724317 DOI: 10.1074/jbc.r300003200] [Citation(s) in RCA: 238] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Raymond E Soccio
- Laboratory of Biochemical Genetics and Metabolism, The Rockefeller University, New York, New York 10021, USA
| | | |
Collapse
|
49
|
Lensink MF, Haapalainen AM, Hiltunen JK, Glumoff T, Juffer AH. Response of SCP-2L domain of human MFE-2 to ligand removal: binding site closure and burial of peroxisomal targeting signal. J Mol Biol 2002; 323:99-113. [PMID: 12368102 DOI: 10.1016/s0022-2836(02)00939-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the study of the structure and function relationship of human MFE-2, we have investigated the dynamics of human MFE-2SCP-2L (hSCP-2L) and its response to ligand removal. A comparison was made with homologous rabbit SCP-2. Breathing and a closing motion are found, identifiable with an adjustment in size and a closing off of the binding pocket. Crucial residues for structural integrity have been identified. Particularly mobile areas of the protein are loop 1 that is connecting helices A and C in space, and helix D, next to the entrance of the pocket. In hSCP-2L, the binding pocket gets occupied by Phe93, which is making a tight hydrophobic contact with Trp36. In addition, it is found that the C-terminal peroxisomal targeting signal (PTS1) that is solvent exposed in the complexed structure becomes buried when no ligand is present. Moreover, an anti-correlation exists between burial of PTS1 and the size of the binding pocket. The results are in accordance with plant nsLTPs, where a similar accommodation of binding pocket size was found after ligand binding/removal. Furthermore, the calculations support the suggestion of a ligand-assisted targeting mechanism.
Collapse
Affiliation(s)
- M F Lensink
- Biocenter Oulu and Department of Biochemistry, University of Oulu, P.O. Box 3000, FIN-90014, Oulu, Finland
| | | | | | | | | |
Collapse
|
50
|
Haapalainen AM, van Aalten DM, Meriläinen G, Jalonen JE, Pirilä P, Wierenga RK, Hiltunen JK, Glumoff T. Crystal structure of the liganded SCP-2-like domain of human peroxisomal multifunctional enzyme type 2 at 1.75 A resolution. J Mol Biol 2001; 313:1127-38. [PMID: 11700068 DOI: 10.1006/jmbi.2001.5084] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
beta-Oxidation of amino acyl coenzyme A (acyl-CoA) species in mammalian peroxisomes can occur via either multifunctional enzyme type 1 (MFE-1) or type 2 (MFE-2), both of which catalyze the hydration of trans-2-enoyl-CoA and the dehydrogenation of 3-hydroxyacyl-CoA, but with opposite chiral specificity. MFE-2 has a modular organization of three domains. The function of the C-terminal domain of the mammalian MFE-2, which shows similarity with sterol carrier protein type 2 (SCP-2), is unclear. Here, the structure of the SCP-2-like domain comprising amino acid residues 618-736 of human MFE-2 (d Delta h Delta SCP-2L) was solved at 1.75 A resolution in complex with Triton X-100, an analog of a lipid molecule. This is the first reported structure of an MFE-2 domain. The d Delta h Delta SCP-2L has an alpha/beta-fold consisting of five beta-strands and five alpha-helices; the overall architecture resembles the rabbit and human SCP-2 structures. However, the structure of d Delta h Delta SCP-2L shows a hydrophobic tunnel that traverses the protein, which is occupied by an ordered Triton X-100 molecule. The tunnel is large enough to accommodate molecules such as straight-chain and branched-chain fatty acyl-CoAs and bile acid intermediates. Large empty apolar cavities are observed near the exit of the tunnel and between the helices C and D. In addition, the C-terminal peroxisomal targeting signal is ordered in the structure and solvent-exposed, which is not the case with unliganded rabbit SCP-2, supporting the hypothesis of a ligand-assisted targeting mechanism.
Collapse
Affiliation(s)
- A M Haapalainen
- Biocenter Oulu and Department of Biochemistry, University of Oulu, FIN-90014, Finland
| | | | | | | | | | | | | | | |
Collapse
|