1
|
Liu Z, Ling JL, Liu YY, Zheng BH, Wu CD. Incorporation of enzyme-mimic species in porous materials for the construction of porous biomimetic catalysts. Chem Commun (Camb) 2024; 60:12964-12976. [PMID: 39415700 DOI: 10.1039/d4cc04223a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The unique catalytic properties of natural enzymes have inspired chemists to develop biomimetic catalyst platforms for the intention of retaining the unique functions and solving the application limitations of enzymes, such as high costs, instability and unrecyclable ability. Porous materials possess unique advantages for the construction of biomimetic catalysts, such as high surface areas, thermal stability, permanent porosity and tunability. These characteristics make them ideal porous matrices for the construction of biomimetic catalysts by immobilizing enzyme-mimic active sites inside porous materials. The developed porous biomimetic catalysts demonstrate high activity, selectivity and stability. In this feature article, we categorize and discuss the recently developed strategies for introducing enzyme-mimic active species inside porous materials, which are based on the type of employed porous materials, including metal-organic frameworks (MOFs), covalent organic frameworks (COFs), molecular sieves, porous metal silicate (PMS) materials and porous carbon materials. The advantages and limitations of these porous materials-based biomimetic catalysts are discussed, and the challenges and future directions in this field are also highlighted.
Collapse
Affiliation(s)
- Zikun Liu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Jia-Long Ling
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Yang-Yang Liu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Bu-Hang Zheng
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Chuan-De Wu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
| |
Collapse
|
2
|
Kuddusi Y, Dobbelaere MR, Van Geem KM, Züttel A. Accelerated design of nickel-cobalt based catalysts for CO 2 hydrogenation with human-in-the-loop active machine learning. Catal Sci Technol 2024; 14:6307-6320. [PMID: 39282506 PMCID: PMC11391929 DOI: 10.1039/d4cy00873a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/08/2024] [Indexed: 09/19/2024]
Abstract
Thermo-catalytic conversion of CO2 into more valuable compounds, such as methane, is an attractive strategy for energy storage in chemical bonds and creating a carbon-based circular economy. However, designing heterogeneous catalysts remains a challenging, time- and resource-consuming task. Herein, we present an interpretable, human-in-the-loop active machine learning framework to efficiently plan catalytic experiments, execute them in an automated set-up, and estimate the effect of experimental variables on the catalytic activity. A dataset with 48 catalytic activity tests was compiled from a design space of Ni-Co/Al2O3 catalysts with over 50 million potential combinations in only eight iterations. This small dataset was found sufficient to predict CO2 conversion, methane selectivity, and methane space-time yield with remarkable accuracy (R 2 > 0.9) for untested catalysts and reaction conditions. New experiments and catalysts were selected with this methodology, leading to experimental conditions that improved the methane space-time yield by nearly 50% in comparison to the previously obtained maximum in the dataset. Interpretation of the model predictions unveiled the effect of each catalyst descriptor and reaction condition on the outcome. Particularly, the strong predicted inverse trend between the calcination temperature and the catalytic activity was validated experimentally, and characterization implied an underlying structure-performance relationship. Finally, it is demonstrated that the deployed active learning model is excellently suited to predict and fit kinetic trends with a minimal amount of data. This data-driven framework is a first step to faster, model-based, and interpretable design of catalysts and holds promise for broader applications across catalytic processes.
Collapse
Affiliation(s)
- Yasemen Kuddusi
- Laboratory of Materials for Renewable Energy (LMER), Institute of Chemical Sciences and Engineering (ISIC), Basic Science Faculty (SB), École Polytechnique Fédérale de Lausanne (EPFL) Valais/Wallis, Energypolis Rue de l'Industrie 17 1951 Sion Switzerland
- Empa Materials Science & Technology 8600 Dübendorf Switzerland
| | - Maarten R Dobbelaere
- Laboratory for Chemical Technology, Department of Materials, Textiles and Chemical Engineering, Ghent University Technologiepark 125 9052 Gent Belgium
| | - Kevin M Van Geem
- Laboratory for Chemical Technology, Department of Materials, Textiles and Chemical Engineering, Ghent University Technologiepark 125 9052 Gent Belgium
| | - Andreas Züttel
- Laboratory of Materials for Renewable Energy (LMER), Institute of Chemical Sciences and Engineering (ISIC), Basic Science Faculty (SB), École Polytechnique Fédérale de Lausanne (EPFL) Valais/Wallis, Energypolis Rue de l'Industrie 17 1951 Sion Switzerland
- Empa Materials Science & Technology 8600 Dübendorf Switzerland
| |
Collapse
|
3
|
Safari Yazd M, Motahari S, Rahimpour MR, Froud Moorjani S, Sobhani Bazghaleh F. The support effect on the performance of a MOF-derived Co-based nano-catalyst in Fischer Tropsch synthesis. NANOSCALE 2024; 16:19422-19444. [PMID: 39347750 DOI: 10.1039/d4nr02499k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The catalyst plays a central role in the Fischer-Tropsch synthesis (FTS) process, and the choice of catalyst support significantly impacts FTS catalyst performance by enhancing its attributes. In this study, the effects of utilizing various metal oxides-CeO2, ZrO2, and TiO2-on a cobalt-based FTS nanocatalyst are investigated by evaluating the catalyst's reducibility, stability, syngas chemisorption, intermediate species spillover, charge transfer, and metal-support interaction (MSI). This evaluation is conducted both theoretically and experimentally through diverse characterization tests and molecular dynamics (MD) simulations. Characterization tests reveal that the ceria-supported catalyst (Ceria Nano Catalyst, CNC) demonstrates the highest reducibility, stability, CO chemisorption, and spillover, while the zirconia-supported catalyst (Zirconia Nano Catalyst, ZNC) exhibits the highest hydrogen chemisorption and spillover. The MD simulation results align well with these findings; for instance, ZNC has the lowest hydrogen adsorption enthalpy (ΔHAds.), whereas CNC has the lowest ΔHAds. for CO. Additionally, MD simulations indicate that the titania-supported catalyst (Titania Nano Catalyst, TNC) possesses the highest MSI value, closely resembling that of ZNC, albeit with a minor difference. The TNC catalyst's performance in other tests is also similar to that of ZNC. Finally, FTS performance tests illustrate that the ZNC catalyst achieves the highest CO conversion at 88.1%, while the CNC catalyst presents the lowest CO conversion at 82.2%. Notably, the CNC catalyst showcases the highest durability, with only a 4.4% loss in CO conversion and an 8.55% loss in C5+ yield after 192 h of operation.
Collapse
Affiliation(s)
- Masoud Safari Yazd
- Faculty of Chemical Engineering, Department of Process, Tarbiat Modares University, Tehran, Iran
| | - Sirous Motahari
- Department of Chemical Engineering, Shiraz University, Shiraz, Iran.
| | | | - Sadegh Froud Moorjani
- Faculty of Chemical Engineering, Department of Process, Tarbiat Modares University, Tehran, Iran
| | | |
Collapse
|
4
|
Both KG, Neagu D, Prytz Ø, Norby T, Chatzitakis A. Exsolution of Ni nanoparticles in A-site excess STO films. NANOSCALE ADVANCES 2024:d4na00213j. [PMID: 39479001 PMCID: PMC11515931 DOI: 10.1039/d4na00213j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 10/11/2024] [Indexed: 11/02/2024]
Abstract
Exsolution is a technique to create metal nanoparticles embedded within a matrix. The phenomenon has previously predominantly been studied in A-site deficient and stoichiometric perovskite powders. Here, we present a systematic study of an A-site excess perovskite oxide based on SrTiO3 thin films, doped with nickel and exsolved under different conditions. The study aims to shed light on particle formation in these novel systems, including the effects of (i) the thin film thickness, (ii) pre-exsolution annealing in an oxidative atmosphere, (iii) a reductive atmosphere during the exsolution step, and (iv) exsolution time on the particle size and particle density. Our results indicate that exsolution occurs quickly, forming nanoparticles both on the surface and in the bulk of the host perovskite. The findings indicate that pre-annealing in an ambient atmosphere leads to fewer but larger exsolved particles compared to samples without pre-annealing. Consequently, while crystallization of the thin film occurs in both atmospheres, the simultaneous crystallization of the thin film and formation of the nanoparticles leads to a smaller apparent average radius. Moreover, we present evidence that metal particles can be found beyond the originally doped region. These findings are a step towards realizing tunable functional materials using exsolution to create metallic nanostructures within a thin film in a predictable manner.
Collapse
Affiliation(s)
- Kevin G Both
- Centre for Materials Science and Nanotechnology, Department of Physics, University of Oslo Gaustadalléen 21 NO-0349 Oslo Norway
| | - Dragos Neagu
- Department of Chemical and Process Engineering, University of Strathclyde 75 Montrose St G1 1XJ Glasgow UK
| | - Øystein Prytz
- Centre for Materials Science and Nanotechnology, Department of Physics, University of Oslo Gaustadalléen 21 NO-0349 Oslo Norway
| | - Truls Norby
- Centre for Materials Science and Nanotechnology, Department of Chemistry, University of Oslo Gaustadalléen 21 NO-0349 Oslo Norway
| | - Athanasios Chatzitakis
- Centre for Materials Science and Nanotechnology, Department of Chemistry, University of Oslo Gaustadalléen 21 NO-0349 Oslo Norway
| |
Collapse
|
5
|
Hansen C, Zhou W, Brack E, Wang Y, Wang C, Paterson J, Southouse J, Copéret C. Decoding the Promotional Effect of Iron in Bimetallic Pt-Fe-nanoparticles on the Low Temperature Reverse Water-Gas Shift Reaction. J Am Chem Soc 2024; 146:27555-27562. [PMID: 39347826 DOI: 10.1021/jacs.4c08517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The reverse water-gas shift (RWGS) reaction is a key technology of the chemical industry, central to the emerging circular carbon economy. Pt-based catalysts have previously been shown to effectively promote RWGS, especially when modified by promoter elements. However, their active states are still poorly understood. Here, we show that the intimate incorporation of an iron promoter into metal-oxide-supported Pt-based nanoparticles can increase their activity and selectivity for the low temperature reverse water-gas shift (LT-RWGS) substantially and drastically outperform unpromoted Pt-based materials. Specifically, the study explores the promotional effect of iron in Pt-Fe bimetallic systems supported on silica (PtxFey@SiO2) prepared by surface organometallic chemistry (SOMC). The most active catalyst (Pt1Fe1@SiO2) shows high selectivity (>99% CO) toward CO at a formation rate of 0.192 molCO h-1 gcat-1, which is significantly higher than that of monometallic Pt@SiO2 (96% sel. and 0.022 molCO h-1 gcat-1). In-situ diffuse reflectance FT-IR spectroscopy (DRIFTS) and X-ray absorption spectroscopy (XAS) indicate a dynamic process at the catalyst surface under the reaction conditions, revealing distinct reaction pathways for the monometallic Pt@SiO2 and bimetallic PtxFey@SiO2 systems.
Collapse
Affiliation(s)
- Colin Hansen
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1-5, Zurich CH-8093, Switzerland
| | - Wei Zhou
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1-5, Zurich CH-8093, Switzerland
| | - Enzo Brack
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1-5, Zurich CH-8093, Switzerland
| | - Yuhao Wang
- Engineering Research Center of Metallurgical Energy Conservation and Emission Reduction, Ministry of Education, Kunming University of Science and Technology, Kunming 650093, China
| | - Chunliang Wang
- Engineering Research Center of Metallurgical Energy Conservation and Emission Reduction, Ministry of Education, Kunming University of Science and Technology, Kunming 650093, China
| | - James Paterson
- bp Technology, Applied Sciences bp plc Saltend, Hull HU12 8DS, United Kingdom
| | - Jamie Southouse
- bp Technology, Applied Sciences bp plc Saltend, Hull HU12 8DS, United Kingdom
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1-5, Zurich CH-8093, Switzerland
| |
Collapse
|
6
|
Song YJ, Guo S, Xia P, Sun F, Chen ZX, Yang SH, Zhang XY, Zhang T. Development of supported intermetallic compounds: advancing the Frontiers of heterogeneous catalysis. NANOSCALE HORIZONS 2024. [PMID: 39377263 DOI: 10.1039/d4nh00337c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Intermetallic compound (IMC) catalysts have garnered significant attention due to their unique surface and electronic properties, which can lead to enhanced catalytic performance compared to traditional monometallic catalysts. However, developing IMC materials as high-performance catalysts has been hindered by the inherent complexity of synthesizing nanoparticles with well-defined bulk and surface compositions. Achieving precise control over the composition of supported bimetallic IMC catalysts, especially those with high surface area and stability, has proven challenging. This review provides a comprehensive overview of the recent progress in developing supported IMC catalysts. We first examine the various synthetic approaches that have been explored to prepare supported IMC nanoparticles with phase-pure bulk structures and tailored surface compositions. Key factors influencing the formation kinetics and compositional control of these materials are discussed in detail. Then the strategies for manipulating the surface composition of supported IMCs are delved into. Applications of high-performance supported IMCs in important reactions such as selective hydrogenation, reforming, dehydrogenation, and deoxygenation are comprehensively reviewed, showcasing the unique advantages offered by these materials. Finally, the prevailing research challenges associated with supported IMCs are identified, including the need for a better understanding of the composition-property relationships and the development of scalable synthesis methods. The prospects for the practical implementation of these versatile catalysts in industrial processes are also highlighted, underscoring the importance of continued research in this field.
Collapse
Affiliation(s)
- Yuan-Jun Song
- School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China.
- Suzhou Key Laboratory of Metal Nano-Optoelectronic Technology, Suzhou 215123, China
| | - Sijie Guo
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Peng Xia
- School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China.
- Suzhou Key Laboratory of Metal Nano-Optoelectronic Technology, Suzhou 215123, China
| | - Fei Sun
- School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China.
- Suzhou Key Laboratory of Metal Nano-Optoelectronic Technology, Suzhou 215123, China
| | - Ze-Xian Chen
- School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China.
- Suzhou Key Laboratory of Metal Nano-Optoelectronic Technology, Suzhou 215123, China
| | - Shi-Han Yang
- School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China.
- Suzhou Key Laboratory of Metal Nano-Optoelectronic Technology, Suzhou 215123, China
| | - Xiao-Yang Zhang
- School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China.
- Suzhou Key Laboratory of Metal Nano-Optoelectronic Technology, Suzhou 215123, China
| | - Tong Zhang
- School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China.
- Suzhou Key Laboratory of Metal Nano-Optoelectronic Technology, Suzhou 215123, China
- Key Laboratory of Micro-Inertial Instrument and Advanced Navigation Technology, Ministry of Education, and School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
7
|
Chaltin F, Rosenthal M, Léonard AF, Goderis B, Gommes CJ. Two-Step Wetting of Nanoporous Carbons: Small-Angle Scattering Analysis of Capillary Rise. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:20604-20615. [PMID: 39303211 DOI: 10.1021/acs.langmuir.4c02414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Numerous applications of nanoporous materials require their pores to be filled with liquids. In spite of its huge technological importance, the conditions for the wetting of nanometer-sized pores and its phenomenology are still poorly understood. We report on capillary rise experiments with water in carbon xerogels, with synchrotron small-angle scattering used to follow the process in situ at the nanometer scale. The data reveal a two-step wetting process whereby water permeates first into molecular-sized micropores, which is followed by the imbibition of larger mesopores. A Cassie-Baxter analysis shows that the presence of water in the micropores is central, as it turns the mesopores from being hydrophobic to hydrophilic. Based on the so-calculated contact angles, the mesopore wetting kinetics are found to be quantitatively described by a classical Washburn model. Modeling of the experimental water profile ahead of the Washburn front reveals strong surface barriers opposing water transfer from the mesopores to the micropores.
Collapse
Affiliation(s)
- François Chaltin
- Department of Chemical Engineering, University of Liège, B6A, Allée du Six Août 13, 4000 Liège, Belgium
| | - Martin Rosenthal
- Dual-Belgian-Beamline (DUBBLE, BM26), European Synchrotron Radiation Facility, 71 Avenue des Martyrs, CS40220, Grenoble 38043, Cedex 9, France
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Box 2404, 3001 Leuven, Belgium
| | - Alexandre F Léonard
- CARPOR, Department of Chemical Engineering, University of Liège, B6A, Allée du Six Août 13, 4000 Liège, Belgium
| | - Bart Goderis
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Box 2404, 3001 Leuven, Belgium
| | - Cedric J Gommes
- Department of Chemical Engineering, University of Liège, B6A, Allée du Six Août 13, 4000 Liège, Belgium
| |
Collapse
|
8
|
Nisha, Kohli S, Singh S, Sharma N, Chandra R. Fe 3O 4/PANI/CuI as a sustainable heterogeneous nanocatalyst for A 3 coupling. NANOSCALE ADVANCES 2024; 6:4842-4851. [PMID: 39323424 PMCID: PMC11421548 DOI: 10.1039/d4na00448e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/19/2024] [Indexed: 09/27/2024]
Abstract
The prepared copper iodide nanoparticles were impregnated on the support of ferrite nanoparticles functionalized with polyaniline, resulting in a magnetically recoverable heterogeneous nanocomposite. The activity of the prepared nanocomposite was investigated in the synthesis of propargylamine derivatives via A3 coupling under mild conditions. Techniques such as FESEM, EDAX, XRD, XPS, TEM, BET and FTIR were used to characterize the effective and unique heterogeneous Fe3O4/PANI/CuI nanocomposite developed in this work. This method used in the current study has several advantages, including a short reaction time, neat conditions, good product yield, ideal green matrices values, reusability for up to seven cycles, and magnetic retrievability.
Collapse
Affiliation(s)
- Nisha
- Drug Discovery & Development Laboratory, Department of Chemistry, University of Delhi Delhi-110007 India
| | - Sahil Kohli
- Department of Chemistry, School of Basic Sciences, Galgotias University Greater Noida-203201 Uttar Pradesh India
- Manav Rachna International Institute of Research & Studies Faridabad Haryana-121004 India
| | - Snigdha Singh
- Drug Discovery & Development Laboratory, Department of Chemistry, University of Delhi Delhi-110007 India
| | - Neera Sharma
- Department of Chemistry, Hindu College, University of Delhi Delhi-110019 India
| | - Ramesh Chandra
- Drug Discovery & Development Laboratory, Department of Chemistry, University of Delhi Delhi-110007 India
- Dr. B. R. Ambedkar Centre for Biomedical Research (ACBR), University of Delhi Delhi-110007 India
- Institute of Nanomedical Science (INMS), University of Delhi Delhi-110007 India
- Maharaja Surajmal Brij University Bharatpur-321201 Rajasthan India
| |
Collapse
|
9
|
Ramasundaram S, Jeevanandham S, Vijay N, Divya S, Jerome P, Oh TH. Unraveling the Dynamic Properties of New-Age Energy Materials Chemistry Using Advanced In Situ Transmission Electron Microscopy. Molecules 2024; 29:4411. [PMID: 39339406 PMCID: PMC11433656 DOI: 10.3390/molecules29184411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/07/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
The field of energy storage and conversion materials has witnessed transformative advancements owing to the integration of advanced in situ characterization techniques. Among them, numerous real-time characterization techniques, especially in situ transmission electron microscopy (TEM)/scanning TEM (STEM) have tremendously increased the atomic-level understanding of the minute transition states in energy materials during electrochemical processes. Advanced forms of in situ/operando TEM and STEM microscopic techniques also provide incredible insights into material phenomena at the finest scale and aid to monitor phase transformations and degradation mechanisms in lithium-ion batteries. Notably, the solid-electrolyte interface (SEI) is one the most significant factors that associated with the performance of rechargeable batteries. The SEI critically controls the electrochemical reactions occur at the electrode-electrolyte interface. Intricate chemical reactions in energy materials interfaces can be effectively monitored using temperature-sensitive in situ STEM techniques, deciphering the reaction mechanisms prevailing in the degradation pathways of energy materials with nano- to micrometer-scale spatial resolution. Further, the advent of cryogenic (Cryo)-TEM has enhanced these studies by preserving the native state of sensitive materials. Cryo-TEM also allows the observation of metastable phases and reaction intermediates that are otherwise challenging to capture. Along with these sophisticated techniques, Focused ion beam (FIB) induction has also been instrumental in preparing site-specific cross-sectional samples, facilitating the high-resolution analysis of interfaces and layers within energy devices. The holistic integration of these advanced characterization techniques provides a comprehensive understanding of the dynamic changes in energy materials. This review highlights the recent progress in employing state-of-the-art characterization techniques such as in situ TEM, STEM, Cryo-TEM, and FIB for detailed investigation into the structural and chemical dynamics of energy storage and conversion materials.
Collapse
Affiliation(s)
| | - Sampathkumar Jeevanandham
- Molecular Science and Engineering Laboratory, Amity Institute of Click Chemistry Research and Studies, Amity University, Noida 201313, Uttar Pradesh, India
| | - Natarajan Vijay
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Sivasubramani Divya
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Peter Jerome
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Tae Hwan Oh
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
10
|
Walerowski MG, Kyrimis S, Hewitt VA, Armstrong LM, Raja R. Rationalising catalytic performance using a unique correlation matrix. Chem Commun (Camb) 2024; 60:10314-10317. [PMID: 39169817 DOI: 10.1039/d4cc03193h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Relationships between catalyst synthesis, structure and performance were investigated. Precise nanoparticle size control was achieved by tailoring solvent volume, drying temperature and solvent polarity. Catalyst performance was rationalised using a novel multidimensional correlation matrix, which considered synthetic, structural and catalytic data. This unique matrix can aid the design of improved catalysts.
Collapse
Affiliation(s)
| | - Stylianos Kyrimis
- School of Chemistry, University of Southampton, Southampton, SO17 1BJ, UK.
- School of Engineering, University of Southampton, Southampton, SO17 1BJ, UK
| | - Victoria A Hewitt
- School of Chemistry, University of Southampton, Southampton, SO17 1BJ, UK.
| | | | - Robert Raja
- School of Chemistry, University of Southampton, Southampton, SO17 1BJ, UK.
| |
Collapse
|
11
|
Pornsetmetakul P, Maineawklang N, Wattanakit C. Preparation of Metal-Supported Nanostructured Zeolite Catalysts and their Applications in the Upgrading of Biomass-Derived Furans: Advances and Prospects. Chempluschem 2024:e202400343. [PMID: 39231200 DOI: 10.1002/cplu.202400343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/08/2024] [Indexed: 09/06/2024]
Abstract
The development of platform chemicals derived from biomass, in particular, 5-hydroxymethylfurfural (5-HMF) and furfural (FUR), is of crucial importance in biorefinery. Over the past decades, metal-supported nanostructured zeolites, in particular, metal-supported hierarchically porous zeolites or metal-encapsulated zeolites, have been extensively elaborated because of their multiple functionalities and superior properties, for example, shape-selectivity, (hydro)thermal stability, tunable acidity and basicity, redox properties, improved diffusion, and intimacy of multiple active sites. In this review, the effects of such properties of metal-supported nanostructured zeolites on the enhanced catalytic performances in furanic compound upgrading are discussed. In addition, the recent rational design of metal-supported nanostructured zeolites is exemplified. Consequently, the ongoing challenges for further developing metal-supported nanostructured zeolites-based catalysts and their applications in HMF and FUR upgrading are identified.
Collapse
Affiliation(s)
- Peerapol Pornsetmetakul
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
| | - Narasiri Maineawklang
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
| | - Chularat Wattanakit
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
| |
Collapse
|
12
|
Rana A, Peredkov S, Behrens M, DeBeer S. Probing the Local Environment in Potassium Salts and Potassium-Promoted Catalysts by Potassium Valence-to-Core X-ray Emission Spectroscopy. Inorg Chem 2024; 63:16217-16223. [PMID: 39162299 PMCID: PMC11372750 DOI: 10.1021/acs.inorgchem.4c02069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Potassium plays an important role in biology as well as a promoter in heterogeneous catalysis. There are, however, limited characterization techniques for potassium available in the literature. This study elucidates the potential of element-selective X-ray emission spectroscopy (XES) for characterizing the coordination environment and the electronic properties of potassium. A series of XES measurements were conducted, primarily focusing on the VtC transition (Kβ2,5) of potassium halides (KCl, KBr, and KI) and oxide-bound potassium salts, including potassium nitrate (KNO3) and potassium carbonate (K2CO3). Across the series of potassium halides, the VtC transition energy is observed to increase, as accurately reproduced by TDDFT calculations. Molecular orbital analysis suggests that the Kβ2,5 transition is primarily derived from halide np contributions, with the primary factor influencing the energy shift being the metal-ligand distances. For oxide ligands, an additional Kβ″ transition appears alongside the Kβ2,5, which is attributed to a low-energy ligand ns, as elucidated by theoretical calculations. Finally, the XES spectra of two potassium-promoted catalysts for ammonia decomposition/synthesis were measured. These spectra show that potassium within the catalyst is distinct from other K salts in the VtC region, which could be promising for understanding the role of potassium as an electronic promoter.
Collapse
Affiliation(s)
- Atanu Rana
- Max Planck Institute for Chemical Energy Conversion, Stiftstraβe 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Sergey Peredkov
- Max Planck Institute for Chemical Energy Conversion, Stiftstraβe 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Malte Behrens
- Institute of Inorganic Chemistry, Kiel University, Max-Eyth-Str. 2, 24118 Kiel, Germany
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, Stiftstraβe 34-36, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
13
|
Weber JL, Mejía CH, de Jong KP, de Jongh PE. Recent advances in bifunctional synthesis gas conversion to chemicals and fuels with a comparison to monofunctional processes. Catal Sci Technol 2024; 14:4799-4842. [PMID: 39206322 PMCID: PMC11347923 DOI: 10.1039/d4cy00437j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/04/2024] [Indexed: 09/04/2024]
Abstract
In order to meet the climate goals of the Paris Agreement and limit the potentially catastrophic consequences of climate change, we must move away from the use of fossil feedstocks for the production of chemicals and fuels. The conversion of synthesis gas (a mixture of hydrogen, carbon monoxide and/or carbon dioxide) can contribute to this. Several reactions allow to convert synthesis gas to oxygenates (such as methanol), olefins or waxes. In a consecutive step, these products can be further converted into chemicals, such as dimethyl ether, short olefins, or aromatics. Alternatively, fuels like gasoline, diesel, or kerosene can be produced. These two different steps can be combined using bifunctional catalysis for direct conversion of synthesis gas to chemicals and fuels. The synergistic effects of combining two different catalysts are discussed in terms of activity and selectivity and compared to processes based on consecutive reaction with single conversion steps. We found that bifunctional catalysis can be a strong tool for the highly selective production of dimethyl ether and gasoline with high octane numbers. In terms of selectivity bifunctional catalysis for short olefins or aromatics struggles to compete with processes consisting of single catalytic conversion steps.
Collapse
Affiliation(s)
- J L Weber
- Materials Chemistry and Catalysis, Universiteit Utrecht Universiteitsweg 99 Utrecht Netherlands
| | - C Hernández Mejía
- Materials Chemistry and Catalysis, Universiteit Utrecht Universiteitsweg 99 Utrecht Netherlands
| | - K P de Jong
- Materials Chemistry and Catalysis, Universiteit Utrecht Universiteitsweg 99 Utrecht Netherlands
| | - P E de Jongh
- Materials Chemistry and Catalysis, Universiteit Utrecht Universiteitsweg 99 Utrecht Netherlands
| |
Collapse
|
14
|
Fehér Z, Richter D, Dargó G, Kupai J. Factors influencing the performance of organocatalysts immobilised on solid supports: A review. Beilstein J Org Chem 2024; 20:2129-2142. [PMID: 39224231 PMCID: PMC11368055 DOI: 10.3762/bjoc.20.183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Organocatalysis has become a powerful tool in synthetic chemistry, providing a cost-effective alternative to traditional catalytic methods. The immobilisation of organocatalysts offers the potential to increase catalyst reusability and efficiency in organic reactions. This article reviews the key parameters that influence the effectiveness of immobilised organocatalysts, including the type of support, immobilisation techniques and the resulting interactions. In addition, the influence of these factors on catalytic activity, selectivity and recyclability is discussed, providing an insight into optimising the performance of immobilised organocatalysts for practical applications in organic chemistry.
Collapse
Affiliation(s)
- Zsuzsanna Fehér
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Dóra Richter
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Gyula Dargó
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - József Kupai
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| |
Collapse
|
15
|
Imaoka T, Antoku N, Narita Y, Nishiyama K, Takada K, Saito S, Tanaka M, Okochi M, Huda M, Tanabe M, Chun WJ, Yamamoto K. Synthesis of atom-precise supported metal clusters via solid-phase peptide synthesis. Chem Sci 2024:d4sc04400b. [PMID: 39246354 PMCID: PMC11376025 DOI: 10.1039/d4sc04400b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/14/2024] [Indexed: 09/10/2024] Open
Abstract
While the utility of supported metal and alloy clusters as catalytic materials is widely recognized, their precise synthesis remains a challenge. Here, we demonstrate the precise synthesis of these clusters via metallopeptides. This technique is characterized by its ability to be automated using Merrifield's solid-phase peptide synthesis (SPPS). Metallopeptides with iron and platinum complexes in their side chains have been prepared using this SPPS. These metallopeptides were successfully transformed into the corresponding supported metal clusters by heating in a hydrogen atmosphere.
Collapse
Affiliation(s)
- Takane Imaoka
- Laboratory for Chemistry and Life Science, Tokyo Institute of Technology Yokohama 226-8503 Japan
- Department of Chemical Science and Engineering, Tokyo Institute of Technology Tokyo 152-8552 Japan
| | - Nanami Antoku
- Laboratory for Chemistry and Life Science, Tokyo Institute of Technology Yokohama 226-8503 Japan
- Department of Chemical Science and Engineering, Tokyo Institute of Technology Tokyo 152-8552 Japan
| | - Yusuke Narita
- Laboratory for Chemistry and Life Science, Tokyo Institute of Technology Yokohama 226-8503 Japan
- Department of Chemical Science and Engineering, Tokyo Institute of Technology Tokyo 152-8552 Japan
| | - Kazuki Nishiyama
- Laboratory for Chemistry and Life Science, Tokyo Institute of Technology Yokohama 226-8503 Japan
- Department of Chemical Science and Engineering, Tokyo Institute of Technology Tokyo 152-8552 Japan
| | - Kenji Takada
- Laboratory for Chemistry and Life Science, Tokyo Institute of Technology Yokohama 226-8503 Japan
| | - Shogo Saito
- Department of Chemical Science and Engineering, Tokyo Institute of Technology Tokyo 152-8552 Japan
| | - Masayoshi Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology Tokyo 152-8552 Japan
| | - Mina Okochi
- Department of Chemical Science and Engineering, Tokyo Institute of Technology Tokyo 152-8552 Japan
| | - Miftakhul Huda
- Laboratory for Chemistry and Life Science, Tokyo Institute of Technology Yokohama 226-8503 Japan
| | - Makoto Tanabe
- Laboratory for Chemistry and Life Science, Tokyo Institute of Technology Yokohama 226-8503 Japan
| | - Wang-Jae Chun
- Graduate School of Arts and Sciences, International Christian University Mitaka Tokyo 181-8585 Japan
| | - Kimihisa Yamamoto
- Laboratory for Chemistry and Life Science, Tokyo Institute of Technology Yokohama 226-8503 Japan
- Department of Chemical Science and Engineering, Tokyo Institute of Technology Tokyo 152-8552 Japan
| |
Collapse
|
16
|
Lim KRG, Aizenberg M, Aizenberg J. Colloidal Templating in Catalyst Design for Thermocatalysis. J Am Chem Soc 2024; 146:22103-22121. [PMID: 39101642 PMCID: PMC11328140 DOI: 10.1021/jacs.4c07167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Conventional catalyst preparative methods commonly entail the impregnation, precipitation, and/or immobilization of nanoparticles on their supports. While convenient, such methods do not readily afford the ability to control collective ensemble-like nanoparticle properties, such as nanoparticle proximity, placement, and compartmentalization. In this Perspective, we illustrate how incorporating colloidal templating into catalyst design for thermocatalysis confers synthetic advantages to facilitate new catalytic investigations and augment catalytic performance, focusing on three colloid-templated catalyst structures: 3D macroporous structures, hierarchical macro-mesoporous structures, and discrete hollow nanoreactors. We outline how colloidal templating decouples the nanoparticle and support formation steps to devise modular catalyst platforms that can be flexibly tuned at different length scales. Of particular interest is the raspberry colloid templating (RCT) method which confers high thermomechanical stability by partially embedding nanoparticles within its support, while retaining high levels of reactant accessibility. We illustrate how the high modularity of the RCT approach allows one to independently control collective nanoparticle properties, such as nanoparticle proximity and localization, without concomitant changes to other catalytic descriptors that would otherwise confound analyses of their catalytic performance. We next discuss how colloidal templating can be employed to achieve spatially disparate active site functionalization while directing reactant transport within the catalyst structure to enhance selectivity in multistep catalytic cascades. Throughout this Perspective, we highlight developments in advanced characterization that interrogate transport phenomena and/or derive new insights into these catalyst structures. Finally, we offer our outlook on the future roles, applications, and challenges of colloidal templating in catalyst design for thermocatalysis.
Collapse
Affiliation(s)
- Kang Rui Garrick Lim
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Michael Aizenberg
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Joanna Aizenberg
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
17
|
Song Y, Tüysüz H. CO 2 Fixation to Prebiotic Intermediates over Heterogeneous Catalysts. Acc Chem Res 2024; 57:2038-2047. [PMID: 39024180 PMCID: PMC11308370 DOI: 10.1021/acs.accounts.4c00151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/24/2024] [Accepted: 07/03/2024] [Indexed: 07/20/2024]
Abstract
ConspectusThe study of the origin of life requires a multifaceted approach to understanding where and how life arose on Earth. One of the most compelling hypotheses is the chemosynthetic origin of life at hydrothermal vents, as this condition has been considered viable for early forms of life. The continuous production of H2 and heat by serpentinization generates reductive conditions at hydrothermal vents, in which CO2 can be used to build large biomolecules. Although this involves surface catalysis and an autocatalytic process, in which solid minerals act as catalysts in the conversion of CO2 to metabolically important organic molecules, the systematic investigation of heterogeneous catalysis to comprehend prebiotic chemistry at hydrothermal vents has not been undertaken.In this Account, we discuss geochemical CO2 fixation to metabolic intermediates by synthetic minerals at hydrothermal vents from the perspective of heterogeneous catalysis. Ni and Fe are the most abundant transition metals at hydrothermal vents and occur in the active site of the enzymes carbon monoxide dehydrogenases/acetyl coenzyme A synthases (CODH/ACS). Synthetic free-standing NiFe alloy nanoparticles can convert CO2 to acetyl coenzyme A pathway intermediates such as formate, acetate, and pyruvate. The same alloy can further convert pyruvate to citramalate, which is essential in the biological citramalate pathway. Thermal treatment of Ni3Fe nanoparticles under NH3, which can occur in hydrothermal vents, results in Ni3FeN/Ni3Fe heterostructures. This catalyst has been demonstrated to produce prebiotic formamide and acetamide from CO2 and H2O using Ni3FeN/Ni3Fe as both substrate and catalyst. In the process of serpentinization, Co can be reduced in the vicinity of olivine, a Mg-Fe silicate mineral. This produces CoFe and CoFe2 with serpentine in nature, representing SiO2-supported CoFe alloys. In mimicking these natural minerals, synthetic SiO2-supported CoFe alloys demonstrate the same liquid products as NiFe alloys, namely, formate, acetate, and pyruvate under mild hydrothermal vent conditions. In contrast to the NiFe system, hydrocarbons up to C6 were detected in the gas phase, which is also present in hydrothermal vents. The addition of alkali and alkaline-earth metals to the catalysts results in enhanced formate concentration, playing a promotional role in CO2 reduction. Finally, Co was loaded onto ordered mesoporous SiO2 after modification with cations to simulate the minerals found in hydrothermal vents. These catalysts were then investigated under diminished H2O concentration, revealing the conversion of CO2 to CO, CH4, methanol, and acetate. Notably, the selectivity to metabolically relevant methanol was enhanced in the presence of cations that could generate and stabilize the methoxy intermediate. Calculation using the machine learning approach revealed the possibility of predicting the selectivity of CO2 fixation when modifying mesoporous SiO2 supports with heterocations. Our research demonstrates that minerals at hydrothermal vents can convert CO2 into metabolites under a variety of prebiotic conditions, potentially paving the way for modern biological CO2 fixation processes.
Collapse
Affiliation(s)
- Youngdong Song
- Department of Heterogeneous
Catalysis, Max-Planck-Institut für
Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Harun Tüysüz
- Department of Heterogeneous
Catalysis, Max-Planck-Institut für
Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
18
|
Küspert S, Campbell IE, Zeng Z, Balaghi SE, Ortlieb N, Thomann R, Knäbbeler-Buß M, Allen CS, Mohney SE, Fischer A. Ultrasmall and Highly Dispersed Pt Entities Deposited on Mesoporous N-doped Carbon Nanospheres by Pulsed CVD for Improved HER. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311260. [PMID: 38634299 DOI: 10.1002/smll.202311260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/11/2024] [Indexed: 04/19/2024]
Abstract
Vapor-based deposition techniques are emerging approaches for the design of carbon-supported metal powder electrocatalysts with tailored catalyst entities, sizes, and dispersions. Herein, a pulsed CVD (Pt-pCVD) approach is employed to deposit different Pt entities on mesoporous N-doped carbon (MPNC) nanospheres to design high-performance hydrogen evolution reaction (HER) electrocatalysts. The influence of consecutive precursor pulse number (50-250) and deposition temperature (225-300 °C) are investigated. The Pt-pCVD process results in highly dispersed ultrasmall Pt clusters (≈1 nm in size) and Pt single atoms, while under certain conditions few larger Pt nanoparticles are formed. The best MPNC-Pt-pCVD electrocatalyst prepared in this work (250 pulses, 250 °C) reveals a Pt HER mass activity of 22.2 ± 1.2 A mg-1 Pt at -50 mV versus the reversible hydrogen electrode (RHE), thereby outperforming a commercially available Pt/C electrocatalyst by 40% as a result of the increased Pt utilization. Remarkably, after optimization of the Pt electrode loading, an ultrahigh Pt mass activity of 56 ± 2 A mg-1 Pt at -50 mV versus RHE is found, which is among the highest Pt mass activities of Pt single atom and cluster-based electrocatalysts reported so far.
Collapse
Affiliation(s)
- Sven Küspert
- Institute of Inorganic and Analytical Chemistry (IAAC), University of Freiburg, Albertstraße 21, 79104, Freiburg, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Straße 21, 79104, Freiburg, Germany
| | - Ian E Campbell
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Zhiqiang Zeng
- Institute of Inorganic and Analytical Chemistry (IAAC), University of Freiburg, Albertstraße 21, 79104, Freiburg, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Straße 21, 79104, Freiburg, Germany
- Cluster of Excellence livMatS, Cluster of Excellence livMatS, University of Freiburg, Freiburg, Germany
| | - S Esmael Balaghi
- Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Straße 21, 79104, Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg, Germany
| | - Niklas Ortlieb
- Institute of Inorganic and Analytical Chemistry (IAAC), University of Freiburg, Albertstraße 21, 79104, Freiburg, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Straße 21, 79104, Freiburg, Germany
- Cluster of Excellence livMatS, Cluster of Excellence livMatS, University of Freiburg, Freiburg, Germany
| | - Ralf Thomann
- Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Straße 21, 79104, Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg, Germany
| | - Markus Knäbbeler-Buß
- Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstraße 2, 79110, Freiburg, Germany
| | - Christopher S Allen
- Electron Physical Science Imaging Center, Diamond Light Source Ltd, Didcot, Oxfordshire, OX11 0DE, UK
- Department of Materials, University of Oxford, Oxford, OX1 3HP, UK
| | - Suzanne E Mohney
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
- Freiburg Institute for Advanced Studies, University of Freiburg, Albertstraße 19, 79104, Freiburg, Germany
| | - Anna Fischer
- Institute of Inorganic and Analytical Chemistry (IAAC), University of Freiburg, Albertstraße 21, 79104, Freiburg, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Straße 21, 79104, Freiburg, Germany
- Cluster of Excellence livMatS, Cluster of Excellence livMatS, University of Freiburg, Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg, Germany
| |
Collapse
|
19
|
Turner SJ, Visser NL, Dalebout R, Wezendonk DFL, de Jongh PE, de Jong KP. An In Situ TEM Study of the Influence of Water Vapor on Reduction of Nickel Phyllosilicate - Retarded Growth of Metal Nanoparticles at Higher Rates. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401009. [PMID: 38552229 DOI: 10.1002/smll.202401009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/08/2024] [Indexed: 08/09/2024]
Abstract
Unavoidable water formation during the reduction of solid catalyst precursors has long been known to influence the nanoparticle size and dispersion in the active catalyst. This in situ transmission electron microscopy study provides insight into the influence of water vapor at the nanoscale on the nucleation and growth of the nanoparticles (2-16 nm) during the reduction of a nickel phyllosilicate catalyst precursor under H2/Ar gas at 700 °C. Water suppresses and delays nucleation, but counterintuitively increases the rate of particle growth. After full reduction is achieved, water vapor significantly enhances Ostwald ripening which in turn increases the likelihood of particle coalescence. This study proposes that water leads to formation of mobile nickel hydroxide species, leading to faster rates of particle growth during and after reduction.
Collapse
|
20
|
Shultz-Johnson LR, Rahmani A, Frisch J, Hsieh TE, Hu L, Sosa J, Davy M, Xie S, Beazley MJ, Gao Z, Golvari P, Wang TH, Ong TG, Rudawski NG, Liu F, Banerjee P, Feng X, Bär M, Jurca T. Modifying the Substrate-Dependent Pd/Fe 2O 3 Catalyst-Support Synergism with ZnO Atomic Layer Deposition. ACS APPLIED MATERIALS & INTERFACES 2024; 16:39387-39398. [PMID: 39031912 DOI: 10.1021/acsami.4c01528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/22/2024]
Abstract
Low-loading Pd supported on Fe2O3 nanoparticles was synthesized. A common nanocatalyst system with previously reported synergistic enhancement of reactivity that is attributed to the electronic interactions between Pd and the Fe2O3 support. Fe2O3-selective precoalescence overcoating with ZnO atomic layer deposition (ALD), using Zn(CH2CH3)2 and H2O as precursors, dampens competitive hydrogenation reactivity at Fe2O3-based sites. The result is enhanced efficiency at the low-loading but high reactivity Pd sites. While this increases catalyst efficiency toward most aqueous redox reactions tested, it suppresses reactivity toward polyaromatic core substrates. X-ray photoelectron spectroscopy (XPS) and ultraviolet photoelectron spectroscopy (UPS) show minimal electronic impacts for the ZnO overcoat on the Pd particles, implying a predominantly physical site blocking effect as the reason for the modified reactivity. This serves as a proof-of-concept of not only stabilizing supported nanocatalysts but also altering reactivity with ultrathin ALD overcoats. The results point to a facile ALD route for selective enhancement of reactivity for low-loading Pd-based supported nanocatalysts.
Collapse
Affiliation(s)
- Lorianne R Shultz-Johnson
- Department of Chemistry, University of Central Florida (UCF), Orlando 32816, Florida, United States
- Renewable Energy and Chemical Transformations Cluster (REACT), UCF, Orlando 32816, Florida, United States
| | - Azina Rahmani
- Department of Chemistry, University of Central Florida (UCF), Orlando 32816, Florida, United States
- Renewable Energy and Chemical Transformations Cluster (REACT), UCF, Orlando 32816, Florida, United States
| | - Johannes Frisch
- Department Interface Design, Helmholtz-Zentrum Berlin Für Materialien und Energie GmbH (HZB), 12489 Berlin, Germany
- Energy Materials In-Situ Laboratory Berlin (EMIL), HZB, 12489 Berlin, Germany
| | - Tzung-En Hsieh
- Department Interface Design, Helmholtz-Zentrum Berlin Für Materialien und Energie GmbH (HZB), 12489 Berlin, Germany
- Energy Materials In-Situ Laboratory Berlin (EMIL), HZB, 12489 Berlin, Germany
| | - Lin Hu
- Department of Materials Science and Engineering, UCF, Orlando 32816, Florida, United States
| | - Jaynlynn Sosa
- NanoScience and Technology Center (NSTC), UCF, Orlando 32816, Florida, United States
| | - Marie Davy
- Department of Chemistry, University of Central Florida (UCF), Orlando 32816, Florida, United States
| | - Shaohua Xie
- Department of Civil, Environmental, and Construction Engineering, UCF, Orlando 32816, Florida, United States
| | - Melanie J Beazley
- Department of Chemistry, University of Central Florida (UCF), Orlando 32816, Florida, United States
| | - Zhengning Gao
- Department of Materials Science and Engineering, UCF, Orlando 32816, Florida, United States
| | - Pooria Golvari
- Department of Chemistry, University of Central Florida (UCF), Orlando 32816, Florida, United States
| | - Ting-Hsuan Wang
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan, Republic of China
- School of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing 526061, Guangdong, P. R. China
| | - Tiow-Gan Ong
- Department of Chemistry, University of Central Florida (UCF), Orlando 32816, Florida, United States
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan, Republic of China
| | - Nicholas G Rudawski
- Herbert Wertheim College of Engineering Research Service Centers, University of Florida, Gainesville 32611, Florida, United States
| | - Fudong Liu
- Renewable Energy and Chemical Transformations Cluster (REACT), UCF, Orlando 32816, Florida, United States
- NanoScience and Technology Center (NSTC), UCF, Orlando 32816, Florida, United States
- Department of Civil, Environmental, and Construction Engineering, UCF, Orlando 32816, Florida, United States
- Department of Chemical and Environmental Engineering, University of California, Riverside 92521, California, United States
| | - Parag Banerjee
- Renewable Energy and Chemical Transformations Cluster (REACT), UCF, Orlando 32816, Florida, United States
- Department of Materials Science and Engineering, UCF, Orlando 32816, Florida, United States
- NanoScience and Technology Center (NSTC), UCF, Orlando 32816, Florida, United States
| | - Xiaofeng Feng
- Department of Chemistry, University of Central Florida (UCF), Orlando 32816, Florida, United States
- Renewable Energy and Chemical Transformations Cluster (REACT), UCF, Orlando 32816, Florida, United States
- Department of Materials Science and Engineering, UCF, Orlando 32816, Florida, United States
- NanoScience and Technology Center (NSTC), UCF, Orlando 32816, Florida, United States
- Department of Physics, UCF, Orlando 32816, Florida, United States
| | - Marcus Bär
- Department Interface Design, Helmholtz-Zentrum Berlin Für Materialien und Energie GmbH (HZB), 12489 Berlin, Germany
- Energy Materials In-Situ Laboratory Berlin (EMIL), HZB, 12489 Berlin, Germany
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (HI ERN), Albert-Einstein-Str. 15, 12489 Berlin, Germany
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstr. 3, 91058 Erlangen, Germany
| | - Titel Jurca
- Department of Chemistry, University of Central Florida (UCF), Orlando 32816, Florida, United States
- Renewable Energy and Chemical Transformations Cluster (REACT), UCF, Orlando 32816, Florida, United States
- NanoScience and Technology Center (NSTC), UCF, Orlando 32816, Florida, United States
| |
Collapse
|
21
|
Lasemi N, Wicht T, Bernardi J, Liedl G, Rupprechter G. Defect-Rich CuZn Nanoparticles for Model Catalysis Produced by Femtosecond Laser Ablation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:38163-38176. [PMID: 38934369 DOI: 10.1021/acsami.4c07766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Femtosecond laser ablation of Cu0.70Zn0.30 targets in ethanol led to the formation of periodic surface nanostructures and crystalline CuZn alloy nanoparticles with defects, low-coordinated surface sites, and, controlled by the applied laser fluence, different sizes and elemental composition. The Cu/Zn ratio of the nanoparticles was determined by energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and selected area electron diffraction. The CuZn nanoparticles were about 2-3 nm in size, and Cu-rich, varying between 70 and 95%. Increasing the laser fluence from 1.6 to 3.2 J cm-2 yielded larger particles, more stacking fault defects, and repeated nanotwinning, as evident from high-resolution transmission electron microscopy, aided by (inverse) fast Fourier transform analysis. This is due to the higher plasma temperature, leading to increased random collisions/diffusion of primary nanoparticles and their incomplete ordering due to immediate solidification typical of ultrashort pulses. The femtosecond laser-synthesized often nanotwinned CuZn nanoparticles were supported on highly oriented pyrolytic graphite and applied for ethylene hydrogenation, demonstrating their promising potential as model catalysts. Nanoparticles produced at 3.2 J cm-2 exhibited lower catalytic activity than those made at 2.7 J cm-2. Presumably, agglomeration/aggregation of especially 2-3 nm sized nanoparticles, as observed by postreaction analysis, resulted in a decrease in the surface area to volume ratio and thus in the number of low-coordinated active sites.
Collapse
Affiliation(s)
- Niusha Lasemi
- Institute of Materials Chemistry, TU Wien, 1060 Wien, Austria
| | - Thomas Wicht
- Institute of Materials Chemistry, TU Wien, 1060 Wien, Austria
| | - Johannes Bernardi
- University Service Center for Transmission Electron Microscopy, TU Wien, 1020 Wien, Austria
| | - Gerhard Liedl
- Institute of Production Engineering and Photonic Technologies, TU Wien, 1060 Wien, Austria
| | | |
Collapse
|
22
|
Hershey M, Lu G, North JD, Swearer DF. Mie Resonant Metal Oxide Nanospheres for Broadband Photocatalytic Enhancements. ACS NANO 2024; 18:18493-18502. [PMID: 38959059 DOI: 10.1021/acsnano.4c03913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Metal oxides are widely used in heterogeneous catalysis as supports to disperse catalytically active nanoparticles, isolated atomic sites, or even as catalysts themselves. Herein, we present a method to produce optically active metal oxide supports that exhibit size-dependent Mie resonances based on TiO2 nanospheres with tunable size, crystalline phase composition, and optical properties. Mie resonant TiO2 nanospheres were used as supports to disperse Au, Pt, and Pd nanoparticles. We have found up to a 50-fold enhancement of the electric field at the metal oxide/metal interface corresponding to wavelength-dependent multipolar resonances in the TiO2 structure. Using Au/TiO2 as a prototypical photocatalyst, we demonstrate broadband rate enhancements between 400 and 800 nm during CO oxidation, with a noticeable increase below 500 nm. This increased reactivity at higher photon energies is due to improved photon utilization and interband absorption in the gold that results in greater secondary electron generation through electron-electron scattering processes, thus leading to higher rates in conjunction with the Mie scattering TiO2 support. This study not only highlights the potential of Mie resonant TiO2 in broadband photocatalytic enhancements but also for developing various Mie resonant metal oxide supports, such as ZnO or Cu2O, which can improve photocatalytic performance for a number of critical reactions. As the chemical and energy industries move toward conversion technologies driven by renewable energy sources, the strategy of designing optical resonances into oxide supports that are already widely used could enable a straightforward adaptation of photochemical processing based on traditional heterogeneous catalysts.
Collapse
Affiliation(s)
- Matthew Hershey
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Guanyu Lu
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Jamie D North
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Dayne F Swearer
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
23
|
Vikrant K, Kim KH, Boukhvalov DW, Heynderickx PM. Benzene Oxidation in Air by an Amine-Functionalized Metal-Organic Framework-Derived Carbon- and Nitrogen-Loaded Zirconium Dioxide-Supported Platinum Catalyst. ACS APPLIED MATERIALS & INTERFACES 2024; 16:33669-33687. [PMID: 38912904 DOI: 10.1021/acsami.4c07188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
To learn more about the behavior of amine (NH2)-functionalized metal-organic framework (MOF)-derived noble metal catalysts in the removal of aromatic volatile organic compounds in air, benzene oxidation at low temperatures has been investigated using 0.2-, 0.8-, and 1.5%-platinum (Pt)/Universitetet i Oslo (UiO)-66-NH2. The benzene conversion (XB) of x%-Pt/UiO-66-NH2-R under dry conditions (175 °C) was 23% (x = 0.2%) < 52% (x = 0.8%) < 100% (x = 1.5%): 'R' suffix denotes reduction pretreatment using a hydrogen (10 vol %) and nitrogen mixture at 300 °C for the generation of metallic Pt (Pt0) sites and simultaneous partial MOF decomposition into carbon- and nitrogen-loaded zirconium dioxide. The prominent role of reduction pretreatment was apparent in benzene oxidation as 1.5%-Pt/UiO-66-NH2 did not exhibit catalytic activity below 175 °C (dry condition). The promotional role of moisture in benzene oxidation by 1.5%-Pt/UiO-66-NH2-R was evident with a rise in the steady-state reaction rate (r) at 110 °C (21 kPa molecular oxygen (O2)) from 1.3 × 10-3 to 5.0 × 10-3 μmol g-1 s-1 as the water (H2O) partial pressure increased from 0 to 1.88 kPa. In contrast, the activity was lowered with increasing RH due to catalyst poisoning by excess moisture (r (110 °C) of 6.6 × 10-04 μmol g-1 s-1 at 2.83 kPa H2O (21 kPa O2)). Kinetic modeling suggests that XB proceeds through the Langmuir-Hinshelwood mechanism on the Pt/UiO-66-NH2-R surface (dissociative O2 chemisorption and the involvement of two oxygen species in benzene oxidation). According to the density functional theory simulation, the carbon and nitrogen impurities are to make the first XB step (i.e., hydrogen migration from the benzene molecule to the substrate) energetically favorable. The second hydrogen atom from the benzene molecule is also extracted effectively, while the oxygen derived from O2 facilitates further XB. The Pt0 sites dissociate the O2 and H2O molecules, while the product of the latter, i.e., free hydrogen and hydroxyl, makes the subsequent XB steps energetically favorable.
Collapse
Affiliation(s)
- Kumar Vikrant
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea
| | - Danil W Boukhvalov
- College of Science, Institute of Materials Physics and Chemistry, Nanjing Forestry University, Nanjing 210037, China
- Institute of Physics and Technology, Ural Federal University, Mira Street 19, Yekaterinburg 620002, Russia
| | - Philippe M Heynderickx
- Center for Green Chemistry and Environmental Biotechnology (GREAT), Engineering of Materials via Catalysis and Characterization, Ghent University Global Campus, 119-5 Songdo Munhwa-ro, Yeonsu-gu, Incheon 406-840, Republic of Korea
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent B-9000, Belgium
| |
Collapse
|
24
|
Chen G, Zhou L, Xiao Y, Chen Y. Constructing Efficient CuAg Nanoalloys on Ce 0.90In 0.10O δ for Methanol Deep Oxidation Catalysis at Low Temperature. Chempluschem 2024; 89:e202300740. [PMID: 38439199 DOI: 10.1002/cplu.202300740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/21/2024] [Accepted: 03/04/2024] [Indexed: 03/06/2024]
Abstract
So far, it is still extremely challenging to develop an efficient catalyst for deep oxidation of methanol at low temperature. Herein, we report the construction of the highly dispersed CuAg alloy on the surface of Ce0.90In0.10Oδ nanorods support for catalyzing methanol deep oxidation. The composition, structure and properties of catalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), ultraviolet-visible (UV-vis) spectroscopy and X-ray photoelectron spectroscopy (XPS). The results show that the CuxAg100-x/Ce0.90In0.10Oδ alloy catalysts exhibit superior catalytic activity and stability compared to pure Ag/Ce0.90In0.10Oδ, with the highest activity observed for Cu40Ag60/Ce0.90In0.10Oδ, accompanied by the light-off temperature (T50) and full conversion temperature (T90) of 115 and 145 °C, respectively. This is attributed to the synergistic effect of CuAg alloy, which results in electron transfer, generating more Ag0, and enhanced interaction between CuAg alloy and the support, leading to increased Ce3+ content and higher oxygen vacancy concentration. This work successfully applies CuAg alloy catalysts in thermo-catalytic reaction, offering promising prospects for CuAg alloy catalysts in the methanol deep oxidation.
Collapse
Affiliation(s)
- Gang Chen
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan, 610500, P. R. China
| | - Lulu Zhou
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan, 610500, P. R. China
| | - Yongli Xiao
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan, 610500, P. R. China
| | - Yongdong Chen
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan, 610500, P. R. China
| |
Collapse
|
25
|
Hua Y, Vikrant K, Kim KH, Heynderickx PM, Boukhvalov DW. The practical utility of ternary nickel-cobalt-manganese oxide-supported platinum catalysts for room-temperature oxidative removal of formaldehyde from the air. J Colloid Interface Sci 2024; 665:1029-1042. [PMID: 38579386 DOI: 10.1016/j.jcis.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 04/07/2024]
Abstract
Formaldehyde (FA), a carcinogenic oxygenated volatile organic compound, is present ubiquitously in indoor air. As such, it is generally regarded as a critical target for air quality management. The oxidative removal of FA under dark and room-temperature (RT) conditions is of practical significance. A series of ternary nickel-cobalt-manganese oxide-supported platinum catalysts (Pt/NiCoMnO4) have been synthesized for FA oxidative removal at RT in the dark. Their RT conversion values for 50 ppm FA (XFA) at 5,964 h-1 gas hourly space velocity (GHSV) decrease in the following order: 1 wt% Pt/NiCoMnO4 (100 %) > 0.5 wt% Pt/NiCoMnO4 (25 %) > 0.05 wt% Pt/NiCoMnO4 (14 %) > NiCoMnO4 (6 %). The catalytic performance of 1 wt% Pt/NiCoMnO4 has been examined further under the control of various process variables (e.g., catalyst mass, flow rate, relative humidity, FA concentration, time on stream, and molecular oxygen content). The catalytic oxidation of FA at low temperatures (e.g., RT and 60 °C) is accounted for by Langmuir-Hinshelwood mechanism (single-site competitive-adsorption), while Mars van Krevelen kinetics is prevalent at higher temperatures. In situ diffuse-reflectance infrared Fourier-transform spectroscopy reveals that FA oxidation proceeds through a series of reaction intermediates such as DOM, HCOO-, and CO32-. Based on the density functional theory simulations, the unique electronic structures of the nearest surface atoms (platinum and nickel) are suggested to be responsible for the superior catalytic activity of Pt/NiCoMnO4.
Collapse
Affiliation(s)
- Yongbiao Hua
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea
| | - Kumar Vikrant
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea.
| | - Philippe M Heynderickx
- Center for Environmental and Energy Research (CEER), Engineering of Materials via Catalysis and Characterization, Ghent University Global Campus, 119-5 Songdo Munhwa-ro, Yeonsu-gu, Incheon 406-840, Republic of Korea; Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Danil W Boukhvalov
- College of Science, Institute of Materials Physics and Chemistry, Nanjing Forestry University, Nanjing 210037, China; Institute of Physics and Technology, Ural Federal University, Mira Street 19, 620002 Yekaterinburg, Russia
| |
Collapse
|
26
|
Jeong D, Oh W, Park JW. 3D-Continuous Nanoporous Covalent Framework Membrane Nanoreactors with Quantitatively Loaded Ultrafine Pd Nanocatalysts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309490. [PMID: 38651888 DOI: 10.1002/smll.202309490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/07/2024] [Indexed: 04/25/2024]
Abstract
The confinement effect of catalytic nanoreactors containing metal catalysts within nanometer-sized volumes has attracted significant attention for their potential to enhance reaction rate and selectivity. Nevertheless, unregulated catalyst loading, aggregation, leaching, and limited reusability remain obstacles to achieving an efficient nanoreactor. A robust and durable catalytic membrane nanoreactor prepared by incorporating palladium nanocatalysts within a 3D-continuous nanoporous covalent framework membrane is presented. The reduction of palladium precursor occurs on the pore surface within 3D nanochannels, producing ultrafine palladium nanoparticles (Pd NPs) with their number density adjustable by varying metal precursor concentrations. The precise catalyst loading enables controlling the catalytic activity of the reactor while preventing excess metal usage. The facile preparation of Pd NP-loaded free-standing membrane materials allows hydrodechlorination in both batch and continuous flow modes. In batch mode, the catalytic activity is proportional to the loaded Pd amount and membrane area, while the membrane retains its activity upon repeated use. In continuous mode, the conversion remains above 95% for over 100 h, with the reactant solution passing through a single 50 µm-thick Pd-loaded membrane. The efficient nanoporous film-type catalytic nanoreactor may find applications in catalytic reactions for small chemical devices as well as in conventional chemistry and processes.
Collapse
Affiliation(s)
- Dawoon Jeong
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Bukgu, Gwangju, 61005, South Korea
| | - Wangsuk Oh
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Bukgu, Gwangju, 61005, South Korea
| | - Ji-Woong Park
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Bukgu, Gwangju, 61005, South Korea
| |
Collapse
|
27
|
Jain A, Yadav VK, Kumari A, Saha SK, Metre RK, Bhattacharyya S, Rana NK. Supported-amine-catalyzed cascade synthesis of spiro-thiazolone-tetrahydrothiophenes: assessing HSA binding activity. Org Biomol Chem 2024; 22:5087-5092. [PMID: 38835316 DOI: 10.1039/d4ob00619d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
We have devised a supported-amine-catalyzed efficient synthesis of spiro-thiazolone-tetrahydrothiophenes via a sulfa-Michael/aldol cascade approach. The catalyst demonstrated sustained efficacy over 21 cycles. These derivatives were found to exhibit excellent binding abilities with purified human serum albumin as indicated by both in silico and in vitro-based experiments.
Collapse
Affiliation(s)
- Anshul Jain
- Department of Chemistry, Indian Institute of Technology Jodhpur, Rajasthan-342030, India.
| | - Vinay K Yadav
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Rajasthan-342030, India
| | - Akanksha Kumari
- Department of Chemistry, Indian Institute of Technology Jodhpur, Rajasthan-342030, India.
| | - Suman K Saha
- Department of Chemistry, Indian Institute of Technology Jodhpur, Rajasthan-342030, India.
| | - Ramesh K Metre
- Department of Chemistry, Indian Institute of Technology Jodhpur, Rajasthan-342030, India.
| | - Sudipta Bhattacharyya
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Rajasthan-342030, India
| | - Nirmal K Rana
- Department of Chemistry, Indian Institute of Technology Jodhpur, Rajasthan-342030, India.
| |
Collapse
|
28
|
Lim KRG, Kaiser SK, Wu H, Garg S, O'Connor CR, Reece C, Aizenberg M, Aizenberg J. Deconvoluting the Individual Effects of Nanoparticle Proximity and Size in Thermocatalysis. ACS NANO 2024; 18:15958-15969. [PMID: 38836504 DOI: 10.1021/acsnano.4c04193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Nanoparticle (NP) size and proximity are two physical descriptors applicable to practically all NP-supported catalysts. However, with conventional catalyst design, independent variation of these descriptors to investigate their individual effects on thermocatalysis remains challenging. Using a raspberry-colloid-templating approach, we synthesized a well-defined catalyst series comprising Pd12Au88 alloy NPs of three distinct sizes and at two different interparticle distances. We show that NP size and interparticle distance independently control activity and selectivity, respectively, in the hydrogenation of benzaldehyde to benzyl alcohol and toluene. Surface-sensitive spectroscopic analysis indicates that the surfaces of smaller NPs expose a greater fraction of reactive Pd dimers, compared to inactive Pd single atoms, thereby increasing intrinsic catalytic activity. Computational simulations reveal how a larger interparticle distance improves catalytic selectivity by diminishing the local benzyl alcohol concentration profile between NPs, thus suppressing its readsorption and consequently, undesired formation of toluene. Accordingly, benzyl alcohol yield is maximized using catalysts with smaller NPs separated by larger interparticle distances, overcoming activity-selectivity trade-offs. This work exemplifies the high suitability of the modular raspberry-colloid-templating method as a model catalyst platform to isolate individual descriptors and establish clear structure-property relationships, thereby bridging the materials gap between surface science and technical catalysts.
Collapse
Affiliation(s)
- Kang Rui Garrick Lim
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Selina K Kaiser
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Haichao Wu
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Sadhya Garg
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Christopher R O'Connor
- Rowland Institute at Harvard, Harvard University, Cambridge, Massachusetts 02142, United States
| | - Christian Reece
- Rowland Institute at Harvard, Harvard University, Cambridge, Massachusetts 02142, United States
| | - Michael Aizenberg
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Joanna Aizenberg
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
29
|
Choi M, Lim J, Yang J. Synergistic role of MoS 2 in gelation-induced fabrication of graphene oxide films. Sci Rep 2024; 14:12159. [PMID: 38802552 PMCID: PMC11130228 DOI: 10.1038/s41598-024-62146-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024] Open
Abstract
Supporting materials for electrocatalysts must exhibit relative chemical inertness to facilitate unimpeded movement of gas, and demonstrate electrical conductivity to promote efficient electron transfer to the catalyst. Conventional catalyst electrodes, such as glassy carbon, carbon cloths, or Ni foam, are commonly employed. However, the challenge lies in the limited stability observed during testing due to the relatively weak adhesion between the catalyst and the electrode. Addressing this limitation is crucial for advancing the stability and performance of catalyst-electrode systems in various applications. Here, we suggest a novel fabrication method for a freestanding conducting film, accomplished through gelation, incorporating 1T-MoS2 and graphene oxide. 1T-MoS2 nanosheets play a crucial role in promoting the reduction of graphene oxide (GO) on the Zn foil. This contribution leads to accelerated film formation and enhanced electrical conductivity in the film. The synergistic effect also enhances the film's stability as catalyst supports. This study provides insights into the effective utilization of MoS2 and graphene oxide in the creating of advanced catalyst support systems with potential applications in diverse catalytic reaction.
Collapse
Affiliation(s)
- Minah Choi
- Department of Chemistry, College of Science, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Joonwon Lim
- Department of Information Display, College of Science, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| | - Jieun Yang
- Department of Chemistry, College of Science, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| |
Collapse
|
30
|
Luo Z, Shehzad A. Advances in Naked Metal Clusters for Catalysis. Chemphyschem 2024; 25:e202300715. [PMID: 38450926 DOI: 10.1002/cphc.202300715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/08/2024]
Abstract
The properties of sub-nano metal clusters are governed by quantum confinement and their large surface-to-bulk ratios, atomically precise compositions and geometric/electronic structures. Advances in metal clusters lead to new opportunities in diverse aspects of sciences including chemo-sensing, bio-imaging, photochemistry, and catalysis. Naked metal clusters having synergic multiple active sites and coordinative unsaturation and tunable stability/activity enable researchers to design atomically precise metal catalysts with tailored catalysis for different reactions. Here we summarize the progress of ligand-free naked metal clusters for catalytic applications. It is anticipated that this review helps to better understand the chemistry of small metal clusters and facilitates the design and development of new catalysts for potential applications.
Collapse
Affiliation(s)
- Zhixun Luo
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Aamir Shehzad
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
31
|
Zheng F, Cao Z, Lin T, Tu B, Shao S, Yang C, An P, Chen W, Fang Q, Wang Y, Tang Z, Li G. Nanocavity in hollow sandwiched catalysts as substrate regulator for boosting hydrodeoxygenation of biomass-derived carbonyl compounds. SCIENCE ADVANCES 2024; 10:eadn9896. [PMID: 38758785 PMCID: PMC11100558 DOI: 10.1126/sciadv.adn9896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/12/2024] [Indexed: 05/19/2024]
Abstract
Hydrodeoxygenation of oxygen-rich molecules toward hydrocarbons is attractive yet challenging in the sustainable biomass upgrading. The typical supported metal catalysts often display unstable catalytic performances owing to the migration and aggregation of metal nanoparticles (NPs) into large sizes under harsh conditions. Here, we develop a crystal growth and post-synthetic etching method to construct hollow chromium terephthalate MIL-101 (named as HoMIL-101) with one layer of sandwiched Ru NPs as robust catalysts. Impressively, HoMIL-101@Ru@MIL-101 exhibits the excellent activity and stability for hydrodeoxygenation of biomass-derived levulinic acid to gamma-valerolactone under 50°C and 1-megapascal H2, and its activity is about six times of solid sandwich counterparts, outperforming the state-of-the-art heterogeneous catalysts. Control experiments and theoretical simulation clearly indicate that the enrichment of levulinic acid and H2 by nanocavity as substrate regulator enables self-regulating the backwash of both substrates toward Ru NPs sandwiched in MIL-101 shells for promoting reaction with respect to solid counterparts, thus leading to the substantially enhanced performance.
Collapse
Affiliation(s)
- Fengbin Zheng
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Zhouwen Cao
- Laboratory of Theoretical and Computational Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Tian Lin
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Bin Tu
- Laboratory of Theoretical and Computational Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shengxian Shao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Caoyu Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Pengfei An
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wenxing Chen
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100181, P.R. China
| | - Qiaojun Fang
- Laboratory of Theoretical and Computational Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yinglong Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Zhiyong Tang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Guodong Li
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
32
|
Swann WA, Yadav A, Colvin NB, Freundl NK, Li CW. Diastereoselective Hydrogenation of Tetrasubstituted Olefins using a Heterogeneous Pt-Ni Alloy Catalyst. Angew Chem Int Ed Engl 2024; 63:e202317710. [PMID: 38407502 PMCID: PMC11098551 DOI: 10.1002/anie.202317710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 02/27/2024]
Abstract
Stereoselective hydrogenation of tetrasubstituted olefins is an attractive method to access compounds with two contiguous stereocenters. However, homogeneous catalysts for enantio- and diastereoselective hydrogenation exhibit low reactivity toward tetrasubstituted olefins due to steric crowding between the ligand scaffold and the substrate. Monometallic heterogeneous catalysts, on the other hand, provide accessible surface active sites for hindered olefins but exhibit unpredictable and inconsistent stereoinduction. In this work, we develop a Pt-Ni bimetallic alloy catalyst that can diastereoselectively hydrogenate unactivated, sterically-bulky tetrasubstituted olefins, utilizing the more oxophilic Ni atoms to adsorb a hydroxyl directing group and direct facially-selective hydrogen addition to the olefin via the Pt atoms. Structure-activity studies on several Pt-Ni compositions underscore the importance of exposing a uniform PtNi alloy surface to achieve high diastereoselectivity and minimize side reactions. The optimized Pt-Ni/SiO2 catalyst exhibits good functional group tolerance and broad scope for tetrasubstituted olefins in a cyclopentene scaffold, generating cyclopentanol products with three contiguous stereocenters. The synthetic utility of the method is demonstrated in a four-step synthesis of (1R,2S)-(+)-cis-methyldihydrojasmonate with high yield and enantiopurity.
Collapse
Affiliation(s)
- William A. Swann
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Anish Yadav
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Nicholas B. Colvin
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Nicole K. Freundl
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Christina W. Li
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
33
|
Kumar P, Nemiwal M. Advanced Functionalized Nanoclusters (Cu, Ag, and Au) as Effective Catalyst for Organic Transformation Reactions. Chem Asian J 2024; 19:e202400062. [PMID: 38386668 DOI: 10.1002/asia.202400062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 02/24/2024]
Abstract
A considerable amount of research has been carried out in recent years on synthesizing metal nanoclusters (NCs), which have wide applications in the field of optical materials with non-linear properties, bio-sensing, and catalysis. Aside from being structurally accurate, the atomically precise NCs possess well-defined compositions due to significant tailoring, both at the surface and the core, for certain functionalities. To illustrate the importance of atomically precise metal NCs for catalytic processes, this review emphasizes 1) the recent work on Cu, Ag, and Au NCs with their synthesis, 2) the parameters affecting the activity and selectivity of NCs catalysis, and 3) the discussion on the catalytic potential of these metal NCs. Additionally, metal NCs will facilitate the design of extremely active and selective catalysts for significant reactions by elucidating catalytic mechanisms at the atomic and molecular levels. Future advancements in the science of catalysis are expected to come from the potential to design NCs catalysts at the atomic level.
Collapse
Affiliation(s)
- Parveen Kumar
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur, 302017, India
| | - Meena Nemiwal
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur, 302017, India
| |
Collapse
|
34
|
Bargakshatriya R, Lo R, Das A, Pramanik SK. Micropores in Hollow Organic Cage Nanocapsule as a Size Exclusion Gate: Cage Entrapped Pd(II)-Catalyst for Efficient Cross-Coupling Reaction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:8820-8826. [PMID: 38619546 DOI: 10.1021/acs.langmuir.3c03933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Hollow porous organic capsules (HPOCs) with an entrapped active catalyst have nanosized cavities, providing the benefits of a nanoreactor, as well as separation of the catalysts from the reaction medium via pores acting as a size-exclusion gate. Such purpose-built HPOCs with desired molecular weight cutoffs offer the advantages of semipermeable membrane separation and a sustainable chemical process that excludes energy-extensive separation. Here, we report a newly synthesized HPOC with an entrapped Pd(PPh3)2Cl2 as the catalyst for demonstrating a Suzuki-Miyaura coupling reaction as a proof of concept.
Collapse
Affiliation(s)
- Rupa Bargakshatriya
- CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat 364002, India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002, India
| | - Rabindranath Lo
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, v.v.i., Flemingovo nám. 2, 160 00 Prague 6, Czech Republic
| | - Amitava Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, West Bengal 741246, India
| | - Sumit Kumar Pramanik
- CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat 364002, India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002, India
| |
Collapse
|
35
|
Casavola M, Armstrong LM, Zhu Z, Ledwoch D, McConnell M, Frampton P, Curran P, Reid G, Hector AL. Fluidized Bed Chemical Vapor Deposition on Hard Carbon Powders to Produce Composite Energy Materials. ACS OMEGA 2024; 9:13447-13457. [PMID: 38524494 PMCID: PMC10955755 DOI: 10.1021/acsomega.4c00297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/12/2024] [Accepted: 02/21/2024] [Indexed: 03/26/2024]
Abstract
Herein, we report a general route for the uniform coating of hard carbon (HC) powders via fluidized bed chemical vapor deposition. Carbon-based fine powders are excellent substrate materials for many catalytic and electrochemical applications but intrinsically difficult to fluidize and prone to elutriation. The reactor was designed to achieve as much retention of powders as possible, supported by a computational fluid dynamics study to assess the hydrodynamic behavior for varying gaseous flow rates. Solutions of the tin seleno- and thio-ether complexes [SnCl4{nBuSe(CH2)3SenBu}] and [SnCl4{nBuS(CH2)3SnBu}] were used as single source precursors and injected at high temperature into a fluidized bed of HC powders under nitrogen flow. The method allowed for the synthesis of HC-SnSx-SnSe2 composites at the gram scale with potential applications in electrocatalysis and sodium-ion battery anodes.
Collapse
Affiliation(s)
- Marianna Casavola
- School
of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | | | - Zening Zhu
- School
of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Daniela Ledwoch
- Deregallera
Ltd, Unit 2, De Clare
Court, Pontygwindy Industrial Estate, Caerphilly CF83 3HU, U.K.
| | - Matthew McConnell
- School
of Mechanical and Design Engineering, University
of Portsmouth, Anglesea Building, Portsmouth PO1 3DJ, U.K.
| | - Paul Frampton
- School
of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Peter Curran
- Deregallera
Ltd, Unit 2, De Clare
Court, Pontygwindy Industrial Estate, Caerphilly CF83 3HU, U.K.
| | - Gillian Reid
- School
of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Andrew L. Hector
- School
of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| |
Collapse
|
36
|
Carabineiro SAC. Catalysis by Metal-Oxide Nanostructures. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:415. [PMID: 38470746 DOI: 10.3390/nano14050415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024]
Abstract
Catalysis is an important field dealing with innovation, sustainability, and materials science that has been witnessing remarkable advancements through nanotechnology [...].
Collapse
|
37
|
Magson L, Hölzel H, Aslam AS, Henninger S, Munz G, Moth-Poulsen K, Knaebbeler-Buss M, Funes-Ardoiz I, Sampedro D. Synthesis and Characterization of Carbon-Based Heterogeneous Catalysts for Energy Release of Molecular Solar Thermal Energy Storage Materials. ACS APPLIED MATERIALS & INTERFACES 2024; 16:7211-7218. [PMID: 38301237 PMCID: PMC10875640 DOI: 10.1021/acsami.3c16855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/15/2024] [Accepted: 01/22/2024] [Indexed: 02/03/2024]
Abstract
Molecular solar thermal energy storage (MOST) systems are rapidly becoming a feasible alternative to energy storage and net-zero carbon emission heating. MOST systems involve a single photoisomerization pair that incorporates light absorption, storage, and heat release processes in one recurring cycle. Despite significant recent advancements in the field, the catalytic back-reaction from MOST systems remains relatively unexplored. A wide range of applications is possible, contingent on the energy densities of the specific photoisomers. Here, we report platinum-, copper-, and nickel-based heterogeneous catalysts screened in batch conditions for the back-conversion reaction on the cyano-3-(4-methoxyphenyl)-norbornadiene/quadricyclane pair. Catalyst reactivities are investigated using structural characterization, imaging techniques, and spectroscopic analysis. Finally, the thermal stability is also explored for our best-performing catalysts.
Collapse
Affiliation(s)
- Lucien Magson
- Instituto
de Investigación en Química de la Universidad de La
Rioja (IQUR), C/Madre de Dios 53, Logroño 26004, La Rioja
| | - Helen Hölzel
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, Kemivagen 4, Gothenburg 412 96, Sweden
- Department
of Chemical Engineering, Universitat Politècnica
de Catalunya, EEBE, Eduard
Maristany 10-14, Barcelona 08019, Spain
| | - Adil S. Aslam
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, Kemivagen 4, Gothenburg 412 96, Sweden
| | - Stefan Henninger
- Heating
and Cooling Technologies, Fraunhofer Institute
for Solar Energy Systems (ISE), Heidenhofstr. 2, Freiburg 79110, Germany
| | - Gunther Munz
- Heating
and Cooling Technologies, Fraunhofer Institute
for Solar Energy Systems (ISE), Heidenhofstr. 2, Freiburg 79110, Germany
| | - Kasper Moth-Poulsen
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, Kemivagen 4, Gothenburg 412 96, Sweden
- Department
of Chemical Engineering, Universitat Politècnica
de Catalunya, EEBE, Eduard
Maristany 10-14, Barcelona 08019, Spain
- Catalan
Institution for Research & Advanced Studies, ICREA, Pg. Llúıs Companys
23, Barcelona 08010, Spain
- Institute
of Materials Science of Barcelona, ICMAB-CSIC, Bellaterra, Barcelona 08193, Spain
| | - Markus Knaebbeler-Buss
- Hydrogen
Technologies and Electrical Energy Storage, Fraunhofer Institute for Solar Energy Systems (ISE), Heidenhofstr. 2, Freiburg 79110, Germany
| | - Ignacio Funes-Ardoiz
- Instituto
de Investigación en Química de la Universidad de La
Rioja (IQUR), C/Madre de Dios 53, Logroño 26004, La Rioja
| | - Diego Sampedro
- Instituto
de Investigación en Química de la Universidad de La
Rioja (IQUR), C/Madre de Dios 53, Logroño 26004, La Rioja
| |
Collapse
|
38
|
Wang J, Ye B, Xiao S, Liu X. Engineering a hierarchically micro-/nanostructured Si@Au-based artificial enzyme with improved accessibility of active sites for enhanced catalysis. RSC Adv 2024; 14:2697-2703. [PMID: 38229716 PMCID: PMC10790278 DOI: 10.1039/d3ra07421h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 11/29/2023] [Indexed: 01/18/2024] Open
Abstract
The active site accessibility and high loading of gold nanoparticles (AuNPs) are key factors affecting the catalytic activity of supported AuNP-based catalysts. However, the preparation of supported AuNP-based catalysts with highly accessible active sites still remains a challenge. Herein, sphere-on-sphere (SoS) silica microspheres with a hierarchical structure, good dispersion and high surface density of thiol groups (10 SH nm-2) are prepared and used as a platform for the growth of high-density AuNPs. The obtained hierarchical Si@Au micro-/nanostructure consisting of 0.55 μm SoS silica microspheres and 7.3 nm AuNPs (SoS-0.55@Au-7.3) is found to show excellent peroxidase-mimicking activity (Km = 0.033 mM and Vmax = 34.6 × 10-8 M s-1) with merits of high stability and good reusability. Furthermore, the as-obtained SoS-0.55@Au-7.3-based system can sensitively detect hydrogen peroxide (H2O2) with a low detection limit of 1.6 μM and a wide linear range from 2.5 μM to 1.0 mM. The high catalytic activity, excellent stability and good reusability of SoS-0.55@Au-7.3 imply its great prospects in biosensing and biomedical analysis.
Collapse
Affiliation(s)
- Jian Wang
- School of Chemistry, Southwest Jiaotong University Chengdu 610031 China
| | - Bo Ye
- College of Life Science and Engineering, Southwest Jiaotong University Chengdu 610031 China
| | - Shiqi Xiao
- College of Life Science and Engineering, Southwest Jiaotong University Chengdu 610031 China
| | - Xia Liu
- School of Chemistry, Southwest Jiaotong University Chengdu 610031 China
| |
Collapse
|
39
|
Zaidi Z, Kamlesh, Gupta Y, Singhai S, Mudgal M, Singh A. Emerging trends in research and development on earth abundant materials for ammonia degradation coupled with H 2 generation. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2024; 25:2301423. [PMID: 38357414 PMCID: PMC10866070 DOI: 10.1080/14686996.2023.2301423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 12/30/2023] [Indexed: 02/16/2024]
Abstract
Ammonia, as an essential and economical fuel, is a key intermediate for the production of innumerable nitrogen-based compounds. Such compounds have found vast applications in the agricultural world, biological world (amino acids, proteins, and DNA), and various other chemical transformations. However, unlike other compounds, the decomposition of ammonia is widely recognized as an important step towards a safe and sustainable environment. Ammonia has been popularly recommended as a viable candidate for chemical storage because of its high hydrogen content. Although ruthenium (Ru) is considered an excellent catalyst for ammonia oxidation; however, its high cost and low abundance demand the utilization of cheaper, robust, and earth abundant catalyst. The present review article underlines the various ammonia decomposition methods with emphasis on the use of non-noble metals, such as iron, nickel, cobalt, molybdenum, and several other carbides as well as nitride species. In this review, we have highlighted various advances in ammonia decomposition catalysts. The major challenges that persist in designing such catalysts and the future developments in the production of efficient materials for ammonia decomposition are also discussed.
Collapse
Affiliation(s)
- Zakiullah Zaidi
- CARS and GM, CSIR-Advanced Materials Process Research Institute (AMPRI), Bhopal, India
| | - Kamlesh
- CARS and GM, CSIR-Advanced Materials Process Research Institute (AMPRI), Bhopal, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
| | - Yesleen Gupta
- CARS and GM, CSIR-Advanced Materials Process Research Institute (AMPRI), Bhopal, India
| | - Sandeep Singhai
- CARS and GM, CSIR-Advanced Materials Process Research Institute (AMPRI), Bhopal, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
| | - Manish Mudgal
- CARS and GM, CSIR-Advanced Materials Process Research Institute (AMPRI), Bhopal, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
| | - Archana Singh
- CARS and GM, CSIR-Advanced Materials Process Research Institute (AMPRI), Bhopal, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
40
|
Liu L, Lu J, Yang Y, Ruettinger W, Gao X, Wang M, Lou H, Wang Z, Liu Y, Tao X, Li L, Wang Y, Li H, Zhou H, Wang C, Luo Q, Wu H, Zhang K, Ma J, Cao X, Wang L, Xiao FS. Dealuminated Beta zeolite reverses Ostwald ripening for durable copper nanoparticle catalysts. Science 2024; 383:94-101. [PMID: 38127809 DOI: 10.1126/science.adj1962] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023]
Abstract
Copper nanoparticle-based catalysts have been extensively applied in industry, but the nanoparticles tend to sinter into larger ones in the chemical atmospheres, which is detrimental to catalyst performance. In this work, we used dealuminated Beta zeolite to support copper nanoparticles (Cu/Beta-deAl) and showed that these particles become smaller in methanol vapor at 200°C, decreasing from ~5.6 to ~2.4 nanometers in diameter, which is opposite to the general sintering phenomenon. A reverse ripening process was discovered, whereby migratable copper sites activated by methanol were trapped by silanol nests and the copper species in the nests acted as new nucleation sites for the formation of small nanoparticles. This feature reversed the general sintering channel, resulting in robust catalysts for dimethyl oxalate hydrogenation performed with supported copper nanoparticles for use in industry.
Collapse
Affiliation(s)
- Lujie Liu
- Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jiaye Lu
- Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yahui Yang
- BASF Advanced Chemicals Co., Ltd., Shanghai 200137, China
| | | | - Xinhua Gao
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Ming Wang
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Hao Lou
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Zhandong Wang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Yifeng Liu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Xin Tao
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
| | - Lina Li
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
| | - Yong Wang
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hangjie Li
- Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hang Zhou
- Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Chengtao Wang
- Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Qingsong Luo
- Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Huixin Wu
- Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Kaidi Zhang
- Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jiabi Ma
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Xiaoming Cao
- Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liang Wang
- Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Feng-Shou Xiao
- Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
41
|
Ganganboina AB, Park EY. Signal-Amplified Nanobiosensors for Virus Detection Using Advanced Nanomaterials. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024; 187:381-412. [PMID: 38337075 DOI: 10.1007/10_2023_244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Rapid diagnosis and treatment of infectious illnesses are crucial for clinical outcomes and public health. Biosensing developments enhance diagnostics at the point of care. This is superior to traditional procedures, which need centralized lab facilities, specialized personnel, and large equipment. The emerging coronavirus epidemic threatens global health and economic security. Increasing viral surveillance and regulatory actions against disease transmission necessitate rapid, sensitive testing tools for viruses. Due to their sensitivity and specificity, biosensors offer a possible reliable and quantifiable viral detection method. Current advances in genetic engineering, such as genetic alteration and material engineering, have provided several opportunities to enhance biosensors' sensitivity, selectivity, and recognition efficiency. This chapter explains biosensing techniques, biosensor varieties, and signal amplification technologies. Challenges and potential developments for viral microorganisms based on biosensors and signal amplification were also investigated.
Collapse
Affiliation(s)
- Akhilesh Babu Ganganboina
- International Center for Young Scientists ICYS-NAMIKI, National Institute for Materials Science, Ibaraki, Japan.
| | - Enoch Y Park
- Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan.
| |
Collapse
|
42
|
Shin S, Song H, Shin YS, Lee J, Seo TH. Bayesian Optimization of Wet-Impregnated Co-Mo/Al 2O 3 Catalyst for Maximizing the Yield of Carbon Nanotube Synthesis. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 14:75. [PMID: 38202530 PMCID: PMC10780783 DOI: 10.3390/nano14010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/19/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024]
Abstract
Multimetallic catalysts have demonstrated their high potential for the controlled synthesis of carbon nanotubes (CNTs), but their development requires a more complicated optimization than that of monometallic catalysts. Here, we employed Bayesian optimization (BO) to optimize the preparation of Co-Mo/Al2O3 catalyst using wet impregnation, with the goal of maximizing carbon yield in the chemical vapor deposition (CVD) synthesis of CNTs. In the catalyst preparation process, we selected four parameters to optimize: the weight percentage of metal, the ratio of Co to Mo in the catalyst, the drying temperature, and the calcination temperature. We ran two parallel BO processes to compare the performance of two types of acquisitions: expected improvement (EI), which does not consider noise, and one-shot knowledge gradient (OKG), which takes noise into account. As a result, both acquisition functions successfully optimized the carbon yield with similar performance. The result suggests that the use of EI, which has a lower computational load, is acceptable if the system has sufficient robustness. The investigation of the contour plots showed that the addition of Mo has a negative effect on carbon yield.
Collapse
Affiliation(s)
- Sangsoo Shin
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea; (S.S.); (H.S.); (Y.S.S.)
| | - Hyeongyun Song
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea; (S.S.); (H.S.); (Y.S.S.)
| | - Yeon Su Shin
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea; (S.S.); (H.S.); (Y.S.S.)
| | - Jaegeun Lee
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea; (S.S.); (H.S.); (Y.S.S.)
- Department of Organic Material Science and Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Tae Hoon Seo
- Green Energy and Nano Technology & R&D Group, Korea Institute of Industrial Technology (KITECH), Gwangju 61012, Republic of Korea
| |
Collapse
|
43
|
Sheng Z, Zhou H, Zhang Y, Li J, Wang L. Sheet-Like Morphology CuO/Co 3O 4 Nanocomposites for Enhanced Catalysis in Hydrogenation of CO 2 to Methanol. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:3153. [PMID: 38133050 PMCID: PMC10745419 DOI: 10.3390/nano13243153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
The selective hydrogenation of CO2 into high-value chemicals is an effective approach to address environmental issues. Cobalt-based catalysts have significant potential in CO2 hydrogenation reaction systems; however, there is a need to control their selectivity better. In this study, copper is introduced onto Co3O4 nanosheets using the ion exchange reverse loading method. The unique interaction of these materials significantly alters the selectivity of the cobalt-based catalyst. Results from scanning transmission electron microscopy and scanning electron microscopy indicate that this catalyst enables a more even dispersion of copper species in the Co3O4 nanosheets. Temperature-programmed reduction and X-ray photoelectron spectroscopy reveal that the catalyst facilitates the metal-metal interaction between Co and Cu. Temperature-programmed desorption experiments for CO2 and H2 demonstrate that the close interaction between Co and Cu modifies CO2 adsorption, leading to differences in catalytic activity. Moreover, the catalyst effectively suppresses CO2 methanation and promotes methanol formation by altering the alkalinity of the catalyst surface and weakening the hydrogen dissociation ability.
Collapse
Affiliation(s)
| | | | | | - Jinlin Li
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Li Wang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan 430074, China
| |
Collapse
|
44
|
Ling T, Qiao SZ. High loading Pt single-atoms on metastable MoS 2 for highly active H 2 evolution. Sci Bull (Beijing) 2023; 68:2896-2897. [PMID: 37973462 DOI: 10.1016/j.scib.2023.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Affiliation(s)
- Tao Ling
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China.
| | - Shi-Zhang Qiao
- School of Chemical Engineering, The University of Adelaide, Adelaide SA 5005, Australia.
| |
Collapse
|
45
|
Yang GQ, Niu Y, Kondratenko VA, Yi X, Liu C, Zhang B, Kondratenko EV, Liu ZW. Controlling Metal-Oxide Reducibility for Efficient C-H Bond Activation in Hydrocarbons. Angew Chem Int Ed Engl 2023; 62:e202310062. [PMID: 37702304 DOI: 10.1002/anie.202310062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 09/14/2023]
Abstract
Knowing the structure of catalytically active species/phases and providing methods for their purposeful generation are two prerequisites for the design of catalysts with desired performance. Herein, we introduce a simple method for precise preparation of supported/bulk catalysts. It utilizes the ability of metal oxides to dissolve and to simultaneously precipitate during their treatment in an aqueous ammonia solution. Applying this method for a conventional VOx -Al2 O3 catalyst, the concentration of coordinatively unsaturated Al sites was tuned simply by changing the pH value of the solution. These sites affect the strength of V-O-Al bonds of isolated VOx species and thus the reducibility of the latter. This method is also applicable for controlling the reducibility of bulk catalysts as demonstrated for a CeO2 -ZrO2 -Al2 O3 system. The application potential of the developed catalysts was confirmed in the oxidative dehydrogenation of ethylbenzene to styrene with CO2 and in the non-oxidative propane dehydrogenation to propene. Our approach is extendable to the preparation of any metal oxide catalysts dissolvable in an ammonia solution.
Collapse
Affiliation(s)
- Guo-Qing Yang
- Key Laboratory of Syngas Conversion of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
- Leibniz-Institut für Katalyse e.V, Albert-Einstein-Strasse 29 a, Rostock, 18059, Germany
| | - Yiming Niu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Vita A Kondratenko
- Leibniz-Institut für Katalyse e.V, Albert-Einstein-Strasse 29 a, Rostock, 18059, Germany
| | - Xianfeng Yi
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Chang Liu
- Key Laboratory of Syngas Conversion of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Bingsen Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Evgenii V Kondratenko
- Leibniz-Institut für Katalyse e.V, Albert-Einstein-Strasse 29 a, Rostock, 18059, Germany
| | - Zhong-Wen Liu
- Key Laboratory of Syngas Conversion of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
46
|
Suvarna M, Vaucher AC, Mitchell S, Laino T, Pérez-Ramírez J. Language models and protocol standardization guidelines for accelerating synthesis planning in heterogeneous catalysis. Nat Commun 2023; 14:7964. [PMID: 38042926 PMCID: PMC10693572 DOI: 10.1038/s41467-023-43836-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 11/22/2023] [Indexed: 12/04/2023] Open
Abstract
Synthesis protocol exploration is paramount in catalyst discovery, yet keeping pace with rapid literature advances is increasingly time intensive. Automated synthesis protocol analysis is attractive for swiftly identifying opportunities and informing predictive models, however such applications in heterogeneous catalysis remain limited. In this proof-of-concept, we introduce a transformer model for this task, exemplified using single-atom heterogeneous catalysts (SACs), a rapidly expanding catalyst family. Our model adeptly converts SAC protocols into action sequences, and we use this output to facilitate statistical inference of their synthesis trends and applications, potentially expediting literature review and analysis. We demonstrate the model's adaptability across distinct heterogeneous catalyst families, underscoring its versatility. Finally, our study highlights a critical issue: the lack of standardization in reporting protocols hampers machine-reading capabilities. Embracing digital advances in catalysis demands a shift in data reporting norms, and to this end, we offer guidelines for writing protocols, significantly improving machine-readability. We release our model as an open-source web application, inviting a fresh approach to accelerate heterogeneous catalysis synthesis planning.
Collapse
Affiliation(s)
- Manu Suvarna
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland
| | | | - Sharon Mitchell
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland
| | - Teodoro Laino
- IBM Research Europe, Säumerstrasse 4, 8803, Rüschlikon, Switzerland.
| | - Javier Pérez-Ramírez
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland.
| |
Collapse
|
47
|
Rieder D, Peters EAJF, Kuipers JAM. Modeling the Drying Process of Porous Catalysts: Impact of the Pore Size Distribution. Ind Eng Chem Res 2023; 62:20006-20016. [PMID: 38037620 PMCID: PMC10682989 DOI: 10.1021/acs.iecr.3c03057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023]
Abstract
The distribution of catalytically active species in heterogeneous porous catalysts strongly influences their performance and durability in industrial reactors. A drying model for investigating this redistribution was developed and implemented using the finite volume method. This model embeds an analytical approach regarding the permeability and capillary pressure from arbitrary pore size distributions. Subsequently, a set of varying pore size distributions are investigated, and their impact on the species redistribution during drying is quantified. It was found that small amounts of large pores speed up the drying process and reduce internal pressure build up significantly while having a negligible impact on the final distribution of the catalytically active species. By further increasing the amount of large pores, the accumulation of species at the drying surface is facilitated.
Collapse
Affiliation(s)
- David
R. Rieder
- Multiphase
Reactors Group, Department
of Chemical Engineering and Chemistry, Eindhoven
University of Technology, MB Eindhoven 5600, The Netherlands
| | - Elias A. J. F. Peters
- Multiphase
Reactors Group, Department
of Chemical Engineering and Chemistry, Eindhoven
University of Technology, MB Eindhoven 5600, The Netherlands
| | - Johannes A. M. Kuipers
- Multiphase
Reactors Group, Department
of Chemical Engineering and Chemistry, Eindhoven
University of Technology, MB Eindhoven 5600, The Netherlands
| |
Collapse
|
48
|
Wu X, Lee WT, Turnell-Ritson RC, Delannoi PCL, Lin KH, Dyson PJ. Controlling the selectivity of the hydrogenolysis of polyamides catalysed by ceria-supported metal nanoparticles. Nat Commun 2023; 14:6524. [PMID: 37845260 PMCID: PMC10579319 DOI: 10.1038/s41467-023-42246-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/04/2023] [Indexed: 10/18/2023] Open
Abstract
Catalytic hydrogenolysis is a promising approach to transform waste plastic into valuable chemicals. However, the transformation of N-containing polymers, such as polyamides (i.e. nylon), remains under-investigated, particularly by heterogeneous catalysis. Here, we demonstrate the hydrogenolysis of various polyamides catalysed by platinum-group metal nanoparticles supported on CeO2. Ru/CeO2 and Pt/CeO2 are both highly active but display different selectivity; Ru/CeO2 is selective for the conversion of all polyamides into water, ammonia, and methane, whereas Pt/CeO2 yields hydrocarbons retaining the carbon backbone of the parent polyamide. Density functional theory computations illustrate that Pt nanoparticles require higher activation energy for carbon-carbon bond cleavage than Ru nanoparticles, rationalising the observed selectivity. The high activity and product selectivity of both catalysts was maintained when converting real-world polyamide products, such as fishing net. This study provides a mechanistic basis for heterogeneously catalysed polyamide hydrogenolysis, and a new approach to the valorisation of polyamide containing waste.
Collapse
Affiliation(s)
- XinBang Wu
- Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Wei-Tse Lee
- Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Roland C Turnell-Ritson
- Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Pauline C L Delannoi
- Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Kun-Han Lin
- Department of Chemical Engineering, National Tsing Hua University (NTHU), Hsinchu, Taiwan.
| | - Paul J Dyson
- Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
49
|
Ul Huda N, Ul-Hamid A, Khan MA, Shahida S, Zaheer M. Mesoporous Silica (MCM-41) Containing Dispersed Palladium Nanoparticles as Catalyst for Dehydrogenation, Methanolysis, and Reduction Reactions. Chempluschem 2023; 88:e202300338. [PMID: 37736704 DOI: 10.1002/cplu.202300338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 09/23/2023]
Abstract
Generating highly dispersed metal NPs of the desired size on surfaces such as porous silica is challenging due to wettability issues. Here, we report highly active and well-dispersed Pd incorporated mesoporous MCM-41 (Pd@MCM) using a facile impregnation via a molecular approach based on hydrogen bonding interaction of a palladium β-diketone complex with surface silanol groups of mesoporous silica. Controlled thermal treatment of so obtained materials in air, argon, and hydrogen provided the catalysts characterized by electron microscopy, nitrogen physisorption, X-ray diffraction and spectroscopy. Gratifyingly, our catalyst provided the lowest ever activation energy (14.3 kJ/mol) reported in literature for dehydrogenation of NaBH4 . Moreover, the rate constant (7×10-3 s-1 ) for the reduction of 4-nitrophenol outperformed the activity of commercial Pd/C (4×10-3 s-1 ) and Pd/Al2 O3 (5×10-3 s-1 ) catalysts.
Collapse
Affiliation(s)
- Noor Ul Huda
- Department of chemistry and Chemical Engineering, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences (LUMS), Sector U, DHA, Lahore, 54792, Pakistan
| | - Anwar Ul-Hamid
- Core Research Facilities, King Fahd University of Petroleum and Mineral, Dhahran, 31261, Saudi Arabia
| | - Muhammad Abdullah Khan
- Renewable Energy Advancement Laboratory, Department of Environmental Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Shabnam Shahida
- Department of Chemistry, University of Poonch Rawalakot Azad Jammu and Kashmir, Rawalakot, Pakistan
| | - Muhammad Zaheer
- Department of chemistry and Chemical Engineering, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences (LUMS), Sector U, DHA, Lahore, 54792, Pakistan
| |
Collapse
|
50
|
Montes-Monroy JM, Manzorro R, Chinchilla LE, Celín WE, Calvino JJ, Pérez-Omil JA. Supported Ce/Zr pyrochlore monolayers as a route to single cerium atom catalysts with low temperature reducibility. iScience 2023; 26:107506. [PMID: 37636072 PMCID: PMC10448079 DOI: 10.1016/j.isci.2023.107506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/09/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023] Open
Abstract
The combination of structural characterization at atomic resolution, chemical data, and theoretical insights has revealed the unique nanostructures which develop in ceria supported on yttria-stabilized zirconia (YSZ) after being submitted to high-temperature reducing treatments. The results show that just a small ceria loading is needed for creating a supported Zr-rich pyrochlore (111) nanostructure, resembling the structure of single cerium atom catalysts. The specific atomic arrangement of this nanostructure allows to explain the improvement of the reducibility at low temperature. The reduction mechanism can be extrapolated to ceria-zirconia mixed oxides with pyrochlore-like cationic ordering, exposing Zr-rich (111) surfaces. The results gathered here provide key information to understand the redox behavior of these types of systems, which may contribute to improving the design of new ceria-zirconia based materials, with lower content of the lanthanide element, nearly 100% cerium atom utilization, and applications in environmental catalysis.
Collapse
Affiliation(s)
- Jose M. Montes-Monroy
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz, 11510 Puerto Real, Spain
- Instituto de Microscopía Electrónica y Materiales (IMEYMAT), Facultad de Ciencias, Universidad de Cádiz, 11510 Puerto Real, Spain
| | - Ramón Manzorro
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz, 11510 Puerto Real, Spain
- Instituto de Microscopía Electrónica y Materiales (IMEYMAT), Facultad de Ciencias, Universidad de Cádiz, 11510 Puerto Real, Spain
| | - Lidia E. Chinchilla
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz, 11510 Puerto Real, Spain
- Instituto de Microscopía Electrónica y Materiales (IMEYMAT), Facultad de Ciencias, Universidad de Cádiz, 11510 Puerto Real, Spain
| | - William E. Celín
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz, 11510 Puerto Real, Spain
- Instituto de Microscopía Electrónica y Materiales (IMEYMAT), Facultad de Ciencias, Universidad de Cádiz, 11510 Puerto Real, Spain
| | - Jose J. Calvino
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz, 11510 Puerto Real, Spain
- Instituto de Microscopía Electrónica y Materiales (IMEYMAT), Facultad de Ciencias, Universidad de Cádiz, 11510 Puerto Real, Spain
| | - Jose A. Pérez-Omil
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz, 11510 Puerto Real, Spain
- Instituto de Microscopía Electrónica y Materiales (IMEYMAT), Facultad de Ciencias, Universidad de Cádiz, 11510 Puerto Real, Spain
| |
Collapse
|