1
|
Shu Q, Xie S, Junaid M, Zheng R, Tang H, Zou J, Zhou A. MPs and PFOS single and combined exposure significantly alter genetic expressions of growth hormone and insulin growth factor-related biomarkers during zebrafish embryonic development. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:174925. [PMID: 39043301 DOI: 10.1016/j.scitotenv.2024.174925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/20/2024] [Accepted: 07/19/2024] [Indexed: 07/25/2024]
Abstract
Microplastics (MPs) and perfluorooctane sulfonate (PFOS) are emerging pollutants that are ubiquitously present in the environment and can cause series of ecotoxicological effects on aquatic animals. This study examined how the expression of genes related to insulin growth factor (igf1, igf2a, igf2b, igfra, and igfrb) and growth hormone (ghrh, gh1, ghra, and ghrb) changes during the development of zebrafish embryos exposed to 8 μm polyethylene microplastics (PE-MPs) and perfluorooctane sulfonate (PFOS) individually and in combination for 72 h. Our findings revealed that both low-concentrations of MP (50 μg/L) and PFOS (0.02 μg/L) treatments could significantly activate gene expression within a short period. High concentrations of MPs (500 μg/L) and PFOS (0.1 μg/L) not only rapidly activated gene expression but also sustained high expression levels for a longer duration. During combined exposures, peak gene expression in the low concentration groups (50 μg/L MPs and 0.02 μg/L PFOS; 50 μg/L MPs and 0.1 μg/L PFOS) primarily occurred within 12 h after treatment. In the high concentration groups (500 μg/L MPs and 0.02 μg/L PFOS), peak expression was also observed within 12 h. Notably, the combined exposure groups exhibited more pronounced effects on gene expression than the individual exposure groups. The activation of gene expression was both more significant and longer-lasting in the combined exposure, indicating a synergistic regulatory effect of MPs and PFOS. Overall, our study suggests that zebrafish embryo development can be significantly impacted by exposure to MPs, PFOS, and their combination, with combined exposures having a more lasting and profound effect on gene regulation compared to single exposures.
Collapse
Affiliation(s)
- Qingsong Shu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Shaolin Xie
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Muhammad Junaid
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Ran Zheng
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Huijuan Tang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China.
| | - Jixing Zou
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China.
| | - Aiguo Zhou
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China.
| |
Collapse
|
2
|
Yan PF, Dong S, Pennell KD, Cápiro NL. A review of the occurrence and microbial transformation of per- and polyfluoroalkyl substances (PFAS) in aqueous film-forming foam (AFFF)-impacted environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:171883. [PMID: 38531439 DOI: 10.1016/j.scitotenv.2024.171883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/15/2024] [Accepted: 03/20/2024] [Indexed: 03/28/2024]
Abstract
Aqueous film-forming foams (AFFFs) have been extensively used for extinguishing hydrocarbon-fuel fires at military sites, airports, and fire-training areas. Despite being a significant source of per- and polyfluoroalkyl substances (PFAS), our understanding of PFAS occurrence in AFFF formulations and AFFF-impacted environments is limited, as is the impact of microbial transformation on the environment fate of AFFF-derived PFAS. This literature review compiles PFAS concentrations in electrochemical fluorination (ECF)- and fluorotelomer (FT)-based AFFFs and provides an overview of PFAS occurrence in AFFF-impacted environments. Our analysis reveals that AFFF use is a predominant point source of PFAS contamination, including primary precursors (polyfluoroalkyl substances as AFFF components), secondary precursors (polyfluoroalkyl transformation products of primary precursors), and perfluoroalkyl acids (PFAAs). Moreover, there are discrepancies between PFAS concentration profiles in AFFFs and those measured in AFFF-impacted media. For example, primary precursors constitute 52.6 % and 99.5 % of PFAS mass in ECF- and FT-based AFFFs, respectively, whereas they represent only 0.7 % total mass in AFFF-impacted groundwater. Conversely, secondary precursors, which constitute <1 % of PFAS in AFFFs, represent 4.0-27.8 % of PFAS in AFFF-impacted environments. The observed differences in PFAS levels between AFFFs and environmental samples are likely due to in-situ biotransformation processes. Biotransformation rates and pathways reported for AFFF-derived primary and secondary precursors varied among different classes of precursors, consistent with the PFAS occurrence in AFFF-impacted environments. For example, readily biodegradable primary precursors, N-dimethyl ammonio propyl perfluoroalkane sulfonamide (AmPr-FASA) and n:2 fluorotelomer thioether amido sulfonate (n:2 FtTAoS), were rarely detected in AFFF-impacted environments. In contrast, key secondary precursors, perfluoroalkane sulfonamides (FASAs) and n:2 fluorotelomer sulfonate (n:2 FTS), were widely detected, which was attributed to their resistance to biotransformation. Key knowledge gaps and future research priorities are presented to better understand the occurrence, fate, and transport of AFFF-derived PFAS in the environment and to design more effective remediation strategies.
Collapse
Affiliation(s)
- Peng-Fei Yan
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, United States of America.
| | - Sheng Dong
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, United States of America
| | - Kurt D Pennell
- School of Engineering, Brown University, Providence, RI, United States of America
| | - Natalie L Cápiro
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, United States of America.
| |
Collapse
|
3
|
Marin M, Annunziato KM, Tompach MC, Liang W, Zahn SM, Li S, Doherty J, Lee J, Clark JM, Park Y, Timme-Laragy AR. Maternal PFOS exposure affects offspring development in Nrf2-dependent and independent ways in zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 271:106923. [PMID: 38669778 PMCID: PMC11177596 DOI: 10.1016/j.aquatox.2024.106923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/29/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024]
Abstract
Perfluorooctanesulfonic acid (PFOS) is a ubiquitous legacy environmental contaminant detected broadly in human samples and water supplies. PFOS can cross the placenta and has been detected in cord blood and breastmilk samples, underscoring the importance of understanding the impacts of maternal PFOS exposure during early development. This study aimed to investigate the effects of a preconception exposure to PFOS on developmental endpoints in offspring, as well as examine the role of the transcription factor Nuclear factor erythroid-2-related factor (Nrf2a) in mediating these effects. This transcription factor regulates the expression of several genes that protect cells against oxidative stress including during embryonic development. Adult female zebrafish were exposed to 0.02, 0.08 or 0.14 mg/L PFOS for 1 week (duration of one cycle of oocyte maturation) and then paired with unexposed males from Nrf2a mutant or wildtype strains. Embryos were collected for two weeks or until completion of 5 breeding events. PFOS was maternally transferred to offspring independent of genotype throughout all breeding events in a dose-dependent manner, ranging from 2.77 to 23.72 ng/embryo in Nrf2a wildtype and 2.40 to 15.80 ng/embryo in Nrf2a mutants. Although embryo viability at collection was not impacted by maternal PFOS exposure, developmental effects related to nutrient uptake, growth and pancreatic β-cell morphology were observed and differed based on genotype. Triglyceride levels were increased in Nrf2a wildtype eggs from the highest PFOS group. In Nrf2a wildtype larvae there was a decrease in yolk sac uptake while in Nrf2a mutants there was an increase. Additionally, there was a significant decrease in pancreatic β-cell (islet) area in wildtype larvae from the 0.14 mg/L PFOS accompanied by an increase in the prevalence of abnormal islet morphologies compared to controls. Abnormal morphology was also observed in the 0.02 and 0.08 mg/L PFOS groups. Interestingly, in Nrf2a mutants there was a significant increase in the pancreatic β-cell area in the 0.02 and 0.08 mg/L PFOS groups and no changes in the prevalence of abnormal islet morphologies. These results suggest that the regulation of processes like nutrient consumption, growth and pancreatic β-cell development are at least partially modulated by the presence of a functional Nrf2a transcriptomic response. Overall, preconception exposure to environmental pollutants, such as PFOS, may impact the maturing oocyte and cause subtle changes that can ultimately impact offspring health and development.
Collapse
Affiliation(s)
- Marjorie Marin
- Department of Environmental Health Sciences, University of Massachusetts, Amherst, MA, USA; Biotechnology Training Program, University of Massachusetts, Amherst, MA, USA
| | - Kate M Annunziato
- Department of Environmental Health Sciences, University of Massachusetts, Amherst, MA, USA
| | - Madeline C Tompach
- Department of Environmental Health Sciences, University of Massachusetts, Amherst, MA, USA; Biotechnology Training Program, University of Massachusetts, Amherst, MA, USA; Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, USA
| | - Wenle Liang
- Department of Environmental Health Sciences, University of Massachusetts, Amherst, MA, USA
| | - Sarah M Zahn
- Department of Environmental Health Sciences, University of Massachusetts, Amherst, MA, USA
| | - Sida Li
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Jeffery Doherty
- Department of Veterinary and Animal Science, University of Massachusetts, Amherst, MA, USA
| | - Jonghwa Lee
- Department of Veterinary and Animal Science, University of Massachusetts, Amherst, MA, USA
| | - John M Clark
- Department of Veterinary and Animal Science, University of Massachusetts, Amherst, MA, USA
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Alicia R Timme-Laragy
- Department of Environmental Health Sciences, University of Massachusetts, Amherst, MA, USA; Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, USA.
| |
Collapse
|
4
|
Kabiri S, Tavakkoli E, Navarro DA, Degryse F, Grimison C, Higgins CP, Mueller JF, Kookana RS, McLaughlin MJ. The complex effect of dissolved organic carbon on desorption of per- and poly-fluoroalkyl substances from soil under alkaline conditions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124234. [PMID: 38815892 DOI: 10.1016/j.envpol.2024.124234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/17/2024] [Accepted: 05/24/2024] [Indexed: 06/01/2024]
Abstract
Per- and poly-fluoroalkyl substances (PFASs) are contaminants of emerging concern, yet the understanding of factors that control their leaching and release from contaminated soils remains limited. This study aimed to investigate the impact of dissolved organic carbon (DOC) on the release of PFASs-specifically, perfluorohexane sulfonate (PFHxS), perfluorooctane sulfonate (PFOS), and perfluorooctanoic acid (PFOA)from soils contaminated by aqueous film forming foam (AFFF). Batch aqueous leaching experiments were conducted on AFFF-contaminated soils under alkaline solution conditions (pH 9.5, 10.5, and 12) as it enhances leaching of both PFAS and DOC. Leaching of PFOS was significantly increased under alkaline conditions. Although the leaching of PFAS generally increased with pH, PFOS appeared to be more retained under the very alkaline pH conditions used in this study. At the same solution pH, leaching of PFOS and DOC was less in Ca(OH)2 than in NaOH. The retention of PFOS under these conditions may be attributable to the shielding of the negative charge of the soil components and colloids (e.g., DOC and clay minerals) in the leachates and/or the screening of negative charges on head groups of PFOS due to the high concentration of divalent cations. Solution chemistry affected desorption of PFOS more than PFHxS and PFOA. The study highlights that the influence of DOC on PFAS leaching and transport can be very complex, and depends on leachate chemistry (e.g., pH and cation type), PFAS chemistry, the magnitude of PFAS contamination and factors that influence the solid:liquid partitioning of organic carbon in soil.
Collapse
Affiliation(s)
- Shervin Kabiri
- School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMB1, Glen Osmond, South Australia 5064, Australia.
| | - Ehsan Tavakkoli
- School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMB1, Glen Osmond, South Australia 5064, Australia
| | | | - Fien Degryse
- School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMB1, Glen Osmond, South Australia 5064, Australia
| | | | - Christopher P Higgins
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO 80401, USA
| | - Jochen F Mueller
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Brisbane, Queensland 4102, Australia
| | - Rai S Kookana
- CSIRO Environment, PMB 2, Glen Osmond, SA, 5064, Australia
| | - Michael J McLaughlin
- School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMB1, Glen Osmond, South Australia 5064, Australia
| |
Collapse
|
5
|
Sun B, Hu M, Lan X, Waiho K, Lv X, Xu C, Wang Y. Nano-titanium dioxide exacerbates the harmful effects of perfluorooctanoic acid on the health of mussels. ENVIRONMENT INTERNATIONAL 2024; 187:108681. [PMID: 38663234 DOI: 10.1016/j.envint.2024.108681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 05/19/2024]
Abstract
Exposing marine organisms to contemporary contaminants, such as perfluorooctanoic acid (PFOA) and nano-titanium dioxide (nano-TiO2), can induce multifaceted physiological consequences. Our investigation centered on the responses of the mussel, Mytilus coruscus, to these agents. We discerned pronounced disruptions in gill filament connections, pivotal structures for aquatic respiration, suggesting compromised oxygen uptake capabilities. Concurrently, the respiratory rate exhibited a marked decline, indicating a respiratory distress. Furthermore, the mussels' clearance rate, a metric of their filtration efficacy, diminished, suggesting the potential for bioaccumulation of deleterious substances. Notably, the co-exposure of PFOA and nano-TiO2 exhibits interactive effects on the physiological performance of the mussels. The mussels' digestive performance waned in the face of heightened PFOA and nano-TiO2 concentrations, possibly hampering nutrient assimilation and energy accrual. This was mirrored in the noticeable contraction of their energy budget, suggesting long-term growth repercussions. Additionally, the dysregulation of the gut microbiota and the reduction in its diversity further confirm alterations in intestinal homeostasis, subsequently impacting its physiological functions and health. Collectively, these findings underscore the perils posed by escalated PFOA and nano-TiO2 levels to marine mussels, accentuating the need for a deeper understanding of nanoparticle-pollutant synergies in marine ecosystems.
Collapse
Affiliation(s)
- Bingyan Sun
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Menghong Hu
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Xukai Lan
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Khor Waiho
- Higher Institution Center of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, University Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia
| | - Xiaohui Lv
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Chaosong Xu
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Youji Wang
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
6
|
Jian M, Chen X, Liu S, Liu Y, Liu Y, Wang Q, Tu W. Combined exposure with microplastics increases the toxic effects of PFOS and its alternative F-53B in adult zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:170948. [PMID: 38365036 DOI: 10.1016/j.scitotenv.2024.170948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/08/2024] [Accepted: 02/11/2024] [Indexed: 02/18/2024]
Abstract
Microplastics (MPs) can adsorb and desorb organic pollutants, which may alter their biotoxicities. Although the toxicity of perfluorooctane sulfonate (PFOS) and its alternative 6:2 chlorinated polyfluorinated ether sulfonate (F-53B) to organisms has been reported, the comparative study of their combined toxic effects with MPs on aquatic organisms is limited. In this study, adult female zebrafish were exposed to 10 μg/L PFOS/F-53B and 50 μg/L MPs alone or in combination for 14 days to investigate their single and combined toxicities. The results showed that the presence of MPs reduced the concentration of freely dissolved PFOS and F-53B in the exposure solution but did not affect their bioaccumulation in the zebrafish liver and gut. The combined exposure to PFOS and MPs had the greatest impact on liver oxidative stress, immunoinflammatory, and energy metabolism disorders. 16S rRNA gene sequencing analysis revealed that the combined exposure to F-53B and MPs had the greatest impact on gut microbiota. Functional enrichment analysis predicted that the alternations in the gut microbiome could interfere with signaling pathways related to immune and energy metabolic processes. Moreover, significant correlations were observed between changes in gut microbiota and immune and energy metabolism indicators, highlighting the role of gut microbiota in host health. Together, our findings demonstrate that combined exposure to PFOS/F-53B and MPs exacerbates liver immunotoxicity and disturbances in energy metabolism in adult zebrafish compared to single exposure, potentially through dysregulation of gut microbiota.
Collapse
Affiliation(s)
- Minfei Jian
- College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Xi Chen
- College of Life Science, Jiangxi Normal University, Nanchang 330022, China; Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Shuai Liu
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China.
| | - Yingxin Liu
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China; School of New Energy Science and Engineering, Xinyu University, Xinyu 338004, China
| | - Yu Liu
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Qiyu Wang
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Wenqing Tu
- School of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
7
|
Yu Y, Pan L, Sun Q, Wang J. The mechanism and kinetics of the atmospheric oxidation of CF 3(CF 2) 2CHCH 2 (HFC-1447fz) by hydroxyl radicals: ab initio investigation. Phys Chem Chem Phys 2024; 26:10989-10997. [PMID: 38526437 DOI: 10.1039/d3cp06149c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
The oxidation of 3,3,4,4,5,5,5-heptafluoro-1-pentene (HFC-1447fz) by hydroxyl radicals plays a crucial role in atmospheric conditions. By employing the CCSD(T)/cc-pVTZ//M06-2X/6-311++G(d,p) level of theory, the detailed reaction mechanism, kinetics and atmospheric implications of the degradation of HFC-1447fz by hydroxyl radicals were investigated. Compared to H-abstraction channels, the OH addition reaction is determined to be more favorable initial pathways in the degradation processes of HFC-1447fz. The overall rate coefficient of the degradation of HFC-1447fz by OH radicals is estimated to be 1.66 × 10-12 cm3 molecule-1 s-1 and the lifetime of HFC-1447fz is found to be 7 days at 298 K, which are in good agreement with the reported experimental results. The global warming potential (GWP) for HFC-1447fz on the 50, 100 and 500-year time horizons is estimated using the calculated rate coefficient. Furthermore, the mechanisms of the subsequent reactions of two OH-addition adducts have also been investigated. By TD-DFT calculations, it was found that eleven species can undergo photodissociation, while ten other species are photolytically stable under sunlight.
Collapse
Affiliation(s)
- Youqing Yu
- Green Intelligence Environmental School, Yangtze Normal University, Chongqing 408100, China.
| | - Li Pan
- Chongqing Medical and Health School, Chongqing 408100, China
| | - Qiyao Sun
- Green Intelligence Environmental School, Yangtze Normal University, Chongqing 408100, China.
| | - Jie Wang
- Green Intelligence Environmental School, Yangtze Normal University, Chongqing 408100, China.
| |
Collapse
|
8
|
Hassan MTA, Chen X, Fnu PIJ, Osonga FJ, Sadik OA, Li M, Chen H. Rapid detection of per- and polyfluoroalkyl substances (PFAS) using paper spray-based mass spectrometry. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133366. [PMID: 38185081 DOI: 10.1016/j.jhazmat.2023.133366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/10/2023] [Accepted: 12/22/2023] [Indexed: 01/09/2024]
Abstract
Traditional PFAS analysis by mass spectrometry (MS) is time-consuming, as laborious sample preparation (e.g., extraction and desalting) is necessary. Herein, we report fast detection of PFAS by paper spray (PS)-based MS techniques, which employs a triangular-shaped filter paper for sample loading and ionization (≤ 3 min per sample). In this study, PS-MS was first used for direct PFAS analysis of drinking water, tap water, and wastewater. Interestingly, food package paper materials can be directly cut and examined with PS-MS for possible PFAS contamination. For samples containing salt matrices which would suppress PFAS ion signal, desalting paper spray mass spectrometry (DPS-MS), was shown to be capable of rapidly desalting, ionizing and detecting PFAS species such as per-fluorooctanoic acid (PFOA) and per-fluorosulphonic acid (PFOS). The retention of PFAS on paper substrate while salts being washed away by water is likely due to hydrophilic interaction between the PFAS polar head (e.g., carboxylic acid, sulfonic acid) with the polar filter paper cellulose surface. The DPS-MS method is highly sensitive (limits of detection:1.2-4.5 ppt) and can be applicable for directly analyzing soil extract and soil samples. These results suggest the high potential of PS-MS and the related DPS-MS technique in real-world environmental analysis of PFAS.
Collapse
Affiliation(s)
- Md Tanim-Al Hassan
- Department of Chemistry and Environmental Science, New Jersey Institutes of Technology, University Heights, Newark, NJ 07102, USA
| | - Xingzhi Chen
- Department of Chemistry and Environmental Science, New Jersey Institutes of Technology, University Heights, Newark, NJ 07102, USA
| | - Praneeth Ivan Joel Fnu
- Department of Chemistry and Environmental Science, New Jersey Institutes of Technology, University Heights, Newark, NJ 07102, USA
| | - Francis J Osonga
- Department of Chemistry and Environmental Science, New Jersey Institutes of Technology, University Heights, Newark, NJ 07102, USA
| | - Omowunmi A Sadik
- Department of Chemistry and Environmental Science, New Jersey Institutes of Technology, University Heights, Newark, NJ 07102, USA
| | - Mengyan Li
- Department of Chemistry and Environmental Science, New Jersey Institutes of Technology, University Heights, Newark, NJ 07102, USA
| | - Hao Chen
- Department of Chemistry and Environmental Science, New Jersey Institutes of Technology, University Heights, Newark, NJ 07102, USA.
| |
Collapse
|
9
|
Antonopoulou M, Spyrou A, Tzamaria A, Efthimiou I, Triantafyllidis V. Current state of knowledge of environmental occurrence, toxic effects, and advanced treatment of PFOS and PFOA. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169332. [PMID: 38123090 DOI: 10.1016/j.scitotenv.2023.169332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are anthropogenic synthetic compounds, with high chemical and thermal stability and a persistent, stable and bioaccumulative nature that renders them a potential hazard for the environment, its organisms, and humans alike. Perfluorooctane sulfonic acid (PFOS) and Perfluorooctanoic acid (PFOA) are the most well-known substances of this category and even though they are phased out from production they are still highly detectable in several environmental matrices. As a result, they have been spread globally in water sources, soil and biota exerting toxic and detrimental effects. Therefore, up and coming technologies, namely advanced oxidation processes (AOPs) and advanced reduction processes (ARPs) are being tested for their implementation in the degradation of these pollutants. Thus, the present review compiles the current knowledge on the occurrence of PFOS and PFOA in the environment, the various toxic effects they have induced in different organisms as well as the ability of AOPs and ARPs to diminish and/or eliminate them from the environment.
Collapse
Affiliation(s)
- Maria Antonopoulou
- Department of Sustainable Agriculture, University of Patras, 30131 Agrinio, Greece.
| | - Alexandra Spyrou
- Department of Sustainable Agriculture, University of Patras, 30131 Agrinio, Greece
| | - Anna Tzamaria
- Department of Sustainable Agriculture, University of Patras, 30131 Agrinio, Greece
| | - Ioanna Efthimiou
- Department of Biology, Section of Genetics Cell Biology and Development, University of Patras, 26500 Patras, Greece
| | | |
Collapse
|
10
|
Bhat AP, Pomerantz WCK, Arnold WA. Fluorinated Pharmaceutical and Pesticide Photolysis: Investigating Reactivity and Identifying Fluorinated Products by Combining Computational Chemistry, 19F NMR, and Mass Spectrometry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 38340057 PMCID: PMC10883306 DOI: 10.1021/acs.est.3c09341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Fluorinated breakdown products from photolysis of pharmaceuticals and pesticides are of environmental concern due to their potential persistence and toxicity. While mass spectrometry workflows have been shown to be useful in identifying products, they fall short for fluorinated products and may miss up to 90% of products. Studies have shown that 19F NMR measurements assist in identifying and quantifying reaction products, but this protocol can be further developed by incorporating computations. Density functional theory was used to compute 19F NMR shifts for parent and product structures in photolysis reactions. Computations predicted NMR spectra of compounds with an R2 of 0.98. Computed shifts for several isolated product structures from LC-HRMS matched the experimental shifts with <0.7 ppm error. Multiple products including products that share the same shift that were not previously reported were identified and quantified using computational shifts, including aliphatic products in the range of -80 to -88 ppm. Thus, photolysis of fluorinated pharmaceuticals and pesticides can result in compounds that are polyfluorinated alkyl substances (PFAS), including aliphatic-CF3 or vinyl-CF2 products derived from heteroaromatic-CF3 groups. C-F bond-breaking enthalpies and electron densities around the fluorine motifs agreed well with the experimentally observed defluorination of CF3 groups. Combining experimental-computational 19F NMR allows quantification of products identified via LC-HRMS without the need for authentic standards. These results have applications for studies of environmental fate and analysis of fluorinated pharmaceuticals and pesticides in development.
Collapse
Affiliation(s)
- Akash P Bhat
- Department of Civil, Environmental, and Geo- Engineering University of Minnesota, 500 Pillsbury Dr. SE, Minneapolis, Minnesota 55455, United States
| | - William C K Pomerantz
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - William A Arnold
- Department of Civil, Environmental, and Geo- Engineering University of Minnesota, 500 Pillsbury Dr. SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
11
|
Foord CS, Szabo D, Robb K, Clarke BO, Nugegoda D. Hepatic concentrations of per- and polyfluoroalkyl substances (PFAS) in dolphins from south-east Australia: Highest reported globally. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168438. [PMID: 37963535 DOI: 10.1016/j.scitotenv.2023.168438] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/13/2023] [Accepted: 11/07/2023] [Indexed: 11/16/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) concentrations were investigated in hepatic tissue of four dolphin species stranded along the south-east coast of Australia between 2006 and 2021; Burrunan dolphin (Tursiops australis), common bottlenose dolphin (Tursiops truncatus), Indo-Pacific bottlenose dolphin (Tursiops aduncus), and short-beaked common dolphin (Delphinus delphis). Two Burrunan dolphin populations represented in the dataset have the highest reported global population concentrations of ∑25PFAS (Port Phillip Bay median 9750 ng/g ww, n = 3, and Gippsland Lakes median 3560 ng/g ww, n = 8), which were 50-100 times higher than the other species reported here; common bottlenose dolphin (50 ng/g ww, n = 9), Indo-Pacific bottlenose dolphin (80 ng/g ww, n = 1), and short-beaked common dolphin (61 ng/g ww, n = 12). Also included in the results is the highest reported individual ∑25PFAS (19,500 ng/g ww) and PFOS (18,700 ng/g ww) concentrations, at almost 30 % higher than any other Cetacea reported globally. Perfluorooctane sulfonate (PFOS) was above method reporting limits for all samples (range; 5.3-18,700 ng/g ww), and constituted the highest contribution to overall ∑PFAS burdens with between 47 % and 99 % of the profile across the dataset. The concentrations of PFOS exceed published tentative critical concentrations (677-775 ng/g) in 42 % of all dolphins and 90 % of the critically endangered Burrunan dolphin. This research reports for the first time novel and emerging PFASs such as 6:2 Cl-PFESA, PFMPA, PFEECH and FBSA in marine mammals of the southern hemisphere, with high detection rates across the dataset. It is the first study to show the occurrence of PFAS in the tissues of multiple species of Cetacea from the Australasian region, demonstrating high global concentrations for inshore dolphins. Finally, it provides key baseline knowledge to the potential exposure and bioaccumulation of PFAS compounds within the coastal environment of south-east Australia.
Collapse
Affiliation(s)
- Chantel S Foord
- Royal Melbourne Institute of Technology, Bundoora, Australia; Marine Mammal Foundation, Mentone, VIC.
| | - Drew Szabo
- Australian Laboratory for Emerging Contaminants, School of Chemistry, University of Melbourne, Victoria 3010, Australia; Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius Väg 16C, SE-106 91 Stockholm, Sweden
| | - Kate Robb
- Marine Mammal Foundation, Mentone, VIC
| | - Bradley O Clarke
- Australian Laboratory for Emerging Contaminants, School of Chemistry, University of Melbourne, Victoria 3010, Australia
| | | |
Collapse
|
12
|
Nilsen E, Muensterman D, Carini L, Waite I, Payne S, Field JA, Peterson J, Hafley D, Farrer D, Jones GD. Target and suspect per- and polyfluoroalkyl substances in fish from an AFFF-impacted waterway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167798. [PMID: 37838049 DOI: 10.1016/j.scitotenv.2023.167798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/19/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
A major source of toxic per- and polyfluoroalkyl substances (PFAS) is aqueous film-forming foams (AFFF) used in firefighting and training at airports and military installations, however, PFAS have many additional sources in consumer products and industrial processes. A field study was conducted on fish tissues from three reaches of the Columbia Slough, located near Portland International Airport, OR, that are affected by AFFF and other PFAS sources. Fishes including largescale sucker (Catostomus macrocheilus), goldfish (Carassius auratus), and largemouth bass (Micropterus salmoides) were collected in 2019 and 2020. Fish blood, liver, and fillet (muscle) were analyzed for target and suspect PFAS by liquid chromatography high resolution mass spectrometry (LC-HRMS). Data were analyzed for patterns by fish species, tissue type, and river reach. Thirty-three out of 50 target PFAS and additional suspect compounds were detected at least once during the study, at concentrations up to 856 ng/g. Seven carboxylic acids (PFOA, PFNA, PFDA, PFUdA, PFDoA, PFTrDA, PFTeDA), three sulfonates (PFHxS, PFOS, PFDS), three electrofluorination-based compounds (FBSA, FHxSA, FOSA), and two fluorotelomer-based compounds (8:2 FTS, 10:2 FTS) were the most frequently detected compounds in all tissue types. The C6 (PFHxS) to C10 (PFDS) homologs were detected with PFOS and FHxSA at concentrations 1-3 orders of magnitude greater than the other PFAS detected. This is the first report of Cl-PFOS, FPeSA, and FHpSA detected in fish tissue. In all fish samples, fillet concentrations of PFAS were the lowest, followed by liver, and blood concentrations of PFAS were the highest. Differences in PFAS concentrations were driven primarily by tissue types and to a lesser extent fish species, but weakly by river reach. The Oregon Health Authority modified an existing fish consumption advisory on the Columbia Slough to recommend no whole-body consumption of most fish to avoid elevated levels of PFOS in fish liver. Measured PFAS concentrations in fish tissues indicate the potential for adverse ecological effects.
Collapse
Affiliation(s)
- Elena Nilsen
- U.S. Geological Survey, Oregon Water Science Center, Portland, OR, USA.
| | - Derek Muensterman
- Department of Chemistry, Oregon State University, Corvallis, OR, USA
| | - Lya Carini
- Department of Biological & Ecological Engineering, Oregon State University, Corvallis, OR, USA
| | - Ian Waite
- U.S. Geological Survey, Oregon Water Science Center, Portland, OR, USA
| | - Sean Payne
- U.S. Geological Survey, Oregon Water Science Center, Portland, OR, USA
| | - Jennifer A Field
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | | | - Daniel Hafley
- Oregon Department of Environmental Quality, Portland, OR, USA
| | - David Farrer
- Oregon Health Authority, 800 NE Oregon Street, Suite 640, Portland, OR 97232, USA
| | - Gerrad D Jones
- Department of Biological & Ecological Engineering, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
13
|
Dewapriya P, Nilsson S, Ghorbani Gorji S, O’Brien JW, Bräunig J, Gómez Ramos MJ, Donaldson E, Samanipour S, Martin JW, Mueller JF, Kaserzon SL, Thomas KV. Novel Per- and Polyfluoroalkyl Substances Discovered in Cattle Exposed to AFFF-Impacted Groundwater. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13635-13645. [PMID: 37648245 PMCID: PMC10501377 DOI: 10.1021/acs.est.3c03852] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 09/01/2023]
Abstract
The leaching of per- and polyfluoroalkyl substances (PFASs) from Australian firefighting training grounds has resulted in extensive contamination of groundwater and nearby farmlands. Humans, farm animals, and wildlife in these areas may have been exposed to complex mixtures of PFASs from aqueous film-forming foams (AFFFs). This study aimed to identify PFAS classes in pooled whole blood (n = 4) and serum (n = 4) from cattle exposed to AFFF-impacted groundwater and potentially discover new PFASs in blood. Thirty PFASs were identified at various levels of confidence (levels 1a-5a), including three novel compounds: (i) perfluorohexanesulfonamido 2-hydroxypropanoic acid (FHxSA-HOPrA), (ii) methyl((perfluorohexyl)sulfonyl)sulfuramidous acid, and (iii) methyl((perfluorooctyl)sulfonyl)sulfuramidous acid, belonging to two different classes. Biotransformation intermediate, perfluorohexanesulfonamido propanoic acid (FHxSA-PrA), hitherto unreported in biological samples, was detected in both whole blood and serum. Furthermore, perfluoroalkyl sulfonamides, including perfluoropropane sulfonamide (FPrSA), perfluorobutane sulfonamide (FBSA), and perfluorohexane sulfonamide (FHxSA) were predominantly detected in whole blood, suggesting that these accumulate in the cell fraction of blood. The suspect screening revealed several fluoroalkyl chain-substituted PFAS. The results suggest that targeting only the major PFASs in the plasma or serum of AFFF-exposed mammals likely underestimates the toxicological risks associated with exposure. Future studies of AFFF-exposed populations should include whole-blood analysis with high-resolution mass spectrometry to understand the true extent of PFAS exposure.
Collapse
Affiliation(s)
- Pradeep Dewapriya
- Queensland
Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba 4102 Queensland, Australia
| | - Sandra Nilsson
- Queensland
Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba 4102 Queensland, Australia
| | - Sara Ghorbani Gorji
- Queensland
Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba 4102 Queensland, Australia
| | - Jake W. O’Brien
- Queensland
Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba 4102 Queensland, Australia
- Van
‘t Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Amsterdam 1090 GD, The Netherlands
| | - Jennifer Bräunig
- Queensland
Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba 4102 Queensland, Australia
| | - María José Gómez Ramos
- Department
of Chemistry and Physics, University of
Almería, Agrifood Campus of International Excellence ceiA3
(ceiA3), Carretera Sacramento
s/n, La Cañada de San Urbano, Almería 04120, Spain
| | - Eric Donaldson
- Aviation
Medical Specialist, The Australasian Faculty of Occupational &
Environmental Medicine (AFOEM), The Royal
Australasian College of Physicians (RACP), Sydney, New South Wales 2000, Australia
| | - Saer Samanipour
- Queensland
Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba 4102 Queensland, Australia
- Van
‘t Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Amsterdam 1090 GD, The Netherlands
| | - Jonathan W. Martin
- Department
of Environmental Science (ACES, Exposure & Effects), Science for
Life Laboratory, Stockholm University, Stockholm 106 91, Sweden
| | - Jochen F. Mueller
- Queensland
Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba 4102 Queensland, Australia
| | - Sarit L. Kaserzon
- Queensland
Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba 4102 Queensland, Australia
| | - Kevin V. Thomas
- Queensland
Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba 4102 Queensland, Australia
| |
Collapse
|
14
|
Griffin EK, Hall LM, Brown MA, Taylor-Manges A, Green T, Suchanec K, Furman BT, Congdon VM, Wilson SS, Osborne TZ, Martin S, Schultz EA, Holden MM, Lukacsa DT, Greenberg JA, Deliz Quiñones KY, Lin EZ, Camacho C, Bowden JA. Aquatic Vegetation, an Understudied Depot for PFAS. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:1826-1836. [PMID: 37163353 DOI: 10.1021/jasms.3c00018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a class of manufactured chemicals that have been extensively utilized worldwide. We hypothesize that the presence, uptake, and accumulation of PFAS in aquatic vegetation (AV) is dependent upon several factors, such as the physiochemical properties of PFAS and proximity to potential sources. In this study, AV was collected from eight locations in Florida to investigate the PFAS presence, accumulation, and spatiotemporal distribution. PFAS were detected in AV at all sampling locations, with a range from 0.18 to 55 ng/g sum (∑)PFAS. Individual PFAS and their concentrations varied by sampling location, time, and AV species. A total of 12 PFAS were identified, with the greatest concentrations measured in macroalgae. The average bioconcentration factor (BCF) among all samples was 1225, indicating high PFAS accumulation in AV from surface water. The highest concentrations, across all AV types, were recorded in the Indian River Lagoon (IRL), a location with a history of elevated PFAS burdens. The present study represents the first investigation of PFAS in naturally existing estuarine AV, filling an important gap on PFAS partitioning within the environment, as well as providing insights into exposure pathways for aquatic herbivores. Examining the presence, fate, and transport of these persistent chemicals in Florida's waterways is critical for understanding their effect on environmental, wildlife, and human health.
Collapse
Affiliation(s)
- Emily K Griffin
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida 32611, United States
| | - Lauren M Hall
- St. Johns River Water Management District, Palm Bay, Florida 32909, United States
| | - Melynda A Brown
- Florida Department of Environmental Protection, Punta Gorda, Florida 33955, United States
| | - Arielle Taylor-Manges
- Florida Department of Environmental Protection, Punta Gorda, Florida 33955, United States
| | - Trisha Green
- Florida Department of Environmental Protection, Charlotte Harbor Seagrasses Aquatic Preserves, Punta Gorda, Florida 33955, United States
| | - Katherine Suchanec
- Florida Department of Environmental Protection, Charlotte Harbor Seagrasses Aquatic Preserves, Punta Gorda, Florida 33955, United States
| | - Bradley T Furman
- Florida Fish and Wildlife Conservation Commission, Florida Fish and Wildlife Research Institute, St. Petersburg, Florida 33701, United States
| | - Victoria M Congdon
- Florida Fish and Wildlife Conservation Commission, Florida Fish and Wildlife Research Institute, St. Petersburg, Florida 33701, United States
| | - Sara S Wilson
- Division of Coastlines and Oceans, Institute of Environment, Florida International University, 11200 SW Eighth Street, Miami, Florida 33199, United States
| | - Todd Z Osborne
- Department of Soil, Water, and Ecosystems, Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, Florida 32080, United States
| | - Shawn Martin
- Department of Marine and Environmental Technology, College of the Florida Keys, Key West, Florida 33040, United States
| | - Emma A Schultz
- Department of Wildlife, Fisheries, and Aquaculture, Mississippi State University, Starkville, Mississippi 39762, United States
| | - Mackenzie M Holden
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida 32611, United States
| | - Dylan T Lukacsa
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida 32611, United States
| | - Justin A Greenberg
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida 32611, United States
| | - Katherine Y Deliz Quiñones
- Department of Environmental Engineering Sciences, College of Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Elizabeth Z Lin
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, Connecticut 06510, United States
| | - Camden Camacho
- Department of Chemistry, College of Liberal Arts and Sciences, University of Florida, Gainesville, Florida 32610, United States
| | - John A Bowden
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
15
|
Zango ZU, Ethiraj B, Al-Mubaddel FS, Alam MM, Lawal MA, Kadir HA, Khoo KS, Garba ZN, Usman F, Zango MU, Lim JW. An overview on human exposure, toxicity, solid-phase microextraction and adsorptive removal of perfluoroalkyl carboxylic acids (PFCAs) from water matrices. ENVIRONMENTAL RESEARCH 2023; 231:116102. [PMID: 37196688 DOI: 10.1016/j.envres.2023.116102] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/02/2023] [Accepted: 05/10/2023] [Indexed: 05/19/2023]
Abstract
Perfluoroalkyl carboxylic acids (PFCAs) are sub-class of perfluoroalkyl substances commonly detected in water matrices. They are persistent in the environment, hence highly toxic to living organisms. Their occurrence at trace amount, complex nature and prone to matrix interference make their extraction and detection a challenge. This study consolidates current advancements in solid-phase extraction (SPE) techniques for the trace-level analysis of PFCAs from water matrices. The advantages of the methods in terms of ease of applications, low-cost, robustness, low solvents consumption, high pre-concentration factors, better extraction efficiency, good selectivity and recovery of the analytes have been emphasized. The article also demonstrated effectiveness of some porous materials for the adsorptive removal of the PFCAs from the water matrices. Mechanisms of the SPE/adsorption techniques have been discussed. The success and limitations of the processes have been elucidated.
Collapse
Affiliation(s)
- Zakariyya Uba Zango
- Department of Chemistry, College of Natural and Applied Science, Al-Qalam University Katsina, 2137, Katsina, Nigeria; Institute of Semi-Arid Zone Studies, Al-Qalam University Katsina, 2137, Katsina, Nigeria.
| | - Baranitharan Ethiraj
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, India
| | - Fahad S Al-Mubaddel
- Department of Chemical Engineering, College of Engineering, King Saud University, Riyadh, 11421, Saudi Arabia; Fellow, King Abdullah City for Renewable and Atomic Energy: Energy Research and Innovation Center, (ERIC), Riyadh, 11451, Saudi Arabia
| | - Mohammad Mahtab Alam
- Department of Basic Medical Sciences, College of Applied Medical Science, King Khalid University, Abha, 61421, Saudi Arabia
| | | | - Haliru Aivada Kadir
- Department of Quality Assurance and Control, Dangote Cement Plc, Kogi State, Nigeria
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan.
| | | | - Fahad Usman
- Institute of Semi-Arid Zone Studies, Al-Qalam University Katsina, 2137, Katsina, Nigeria
| | - Muttaqa Uba Zango
- Department of Civil Engineering, Kano University of Science and Technology, Wudil, P.M.B. 3244, Kano, Nigeria
| | - Jun Wei Lim
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| |
Collapse
|
16
|
Brown AS, Yun X, McKenzie ER, Heron CG, Field JA, Salice CJ. Spatial and temporal variability of per- and polyfluoroalkyl substances (PFAS) in environmental media of a small pond: Toward an improved understanding of PFAS bioaccumulation in fish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163149. [PMID: 37011692 DOI: 10.1016/j.scitotenv.2023.163149] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/23/2023] [Accepted: 03/25/2023] [Indexed: 05/27/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are highly fluorinated compounds with many industrial applications, for instance as ingredients in fire-suppressing aqueous film-forming foams (AFFF). Several PFAS have been demonstrated to be persistent, bioaccumulative and toxic. This study better characterizes the bioaccumulation of PFAS in freshwater fish through a spatial and temporal analysis of surface water and sediment from a stormwater pond in a former Naval air station (NAS) with historic AFFF use. We sampled environmental media from four locations twice per week for five weeks and sampled fish at the end of the sampling effort. The primary PFAS identified in surface water, sediment, and biota were perfluorooctane sulfonate (PFOS) and perfluorohexane sulfonate (PFHxS) followed by perfluorooctanoic acid (PFOA) in environmental media and perfluoroheptane sulfonate (PFHpS) in biota. We observed significant temporal variability in surface water concentrations at the pond headwaters following stochastic events such as heavy rainfall for many compounds, particularly PFHxS. Sediment concentrations varied most across sampling locations. In fish, liver tissue presented the highest concentrations for all compounds except PFHxS, which was highest in muscle tissue, suggesting the influence of fine-scale aqueous PFAS fluctuations on tissue distribution. Calculated log bioaccumulation factors (BAFs) ranged from 0.13 to 2.30 for perfluoroalkyl carboxylates (PFCA) and 0.29-4.05 for perfluoroalkane sulfonates (PFSA) and fluctuated greatly with aqueous concentrations. The variability of PFAS concentrations in environmental media necessitates more frequent sampling efforts in field-based studies to better characterize PFAS contamination in aquatic ecosystems as well as exercising caution when considering single time-point BAFs due to uncertainty of system dynamics.
Collapse
Affiliation(s)
- Abbi S Brown
- Environmental Science and Studies Program, Towson University, Towson, MD, USA
| | - Xiaoyan Yun
- Civil and Environmental Engineering Department, Temple University, Philadelphia, PA, USA
| | - Erica R McKenzie
- Civil and Environmental Engineering Department, Temple University, Philadelphia, PA, USA
| | - Christopher G Heron
- Department of Environmental and Molecular Toxicology, College of Agricultural Sciences, Oregon State University, Corvallis, OR, USA
| | - Jennifer A Field
- Department of Environmental and Molecular Toxicology, College of Agricultural Sciences, Oregon State University, Corvallis, OR, USA
| | | |
Collapse
|
17
|
Carrizo JC, Munoz G, Vo Duy S, Liu M, Houde M, Amé MV, Liu J, Sauvé S. PFAS in fish from AFFF-impacted environments: Analytical method development and field application at a Canadian international civilian airport. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163103. [PMID: 36972881 DOI: 10.1016/j.scitotenv.2023.163103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/09/2023] [Accepted: 03/23/2023] [Indexed: 05/17/2023]
Abstract
Methods targeting anionic per- and polyfluoroalkyl substances (PFAS) in aquatic biota are well established, but commonly overlook many PFAS classes present in aqueous film-forming foams (AFFFs). Here, we developed an analytical method for the expanded analysis of negative and positive ion mode PFAS in fish tissues. Eight variations of extraction solvents and clean-up protocols were first tested to recover 70 AFFF-derived PFAS from the fish matrix. Anionic, zwitterionic, and cationic PFAS displayed the best responses with methanol-based ultrasonication methods. The response of long-chain PFAS was improved for extracts submitted to graphite filtration alone compared with those involving solid-phase extraction. The validation included an assessment of linearity, absolute recovery, matrix effects, accuracy, intraday/interday precision, and trueness. The method was applied to a set of freshwater fish samples collected in 2020 in the immediate vicinity (creek, n = 15) and downstream (river, n = 15) of an active fire-training area at an international civilian airport in Ontario, Canada. While zwitterionic fluorotelomer betaines were major components of the subsurface AFFF source zone, they were rarely detected in fish, suggesting limited bioaccumulation potential. PFOS largely dominated the PFAS profile, with record-high concentrations in brook sticklebacks (Culaea inconstans) from the creek (16000-110,000 ng/g wet weight whole-body). These levels exceeded the Canadian Federal Environmental Quality Guidelines (FEQG) for PFOS pertaining to the Federal Fish Tissue Guideline (FFTG) for fish protection and Federal Wildlife Diet Guidelines (FWiDG) for the protection of mammalian and avian consumers of aquatic biota. Perfluorohexane sulfonamide and 6:2 fluorotelomer sulfonate were among the precursors detected at the highest levels (maximum of ∼340 ng/g and ∼1100 ng/g, respectively), likely reflecting extensive degradation and/or biotransformation of C6 precursors originally present in AFFF formulations.
Collapse
Affiliation(s)
- Juan Cruz Carrizo
- Department of Chemistry, Université de Montréal, Montréal, QC, Canada; CONICET, CIBICI and Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Dpto. Bioquímica Clínica, Córdoba, Argentina
| | - Gabriel Munoz
- Department of Chemistry, Université de Montréal, Montréal, QC, Canada
| | - Sung Vo Duy
- Department of Chemistry, Université de Montréal, Montréal, QC, Canada
| | - Min Liu
- Department of Civil Engineering, McGill University, Montréal, QC, Canada
| | - Magali Houde
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Montréal, QC, Canada
| | - María Valeria Amé
- CONICET, CIBICI and Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Dpto. Bioquímica Clínica, Córdoba, Argentina
| | - Jinxia Liu
- Department of Civil Engineering, McGill University, Montréal, QC, Canada
| | - Sébastien Sauvé
- Department of Chemistry, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
18
|
Griffin EK, Hall LM, Brown MA, Taylor-Manges A, Green T, Suchanec K, Furman BT, Congdon VM, Wilson SS, Osborne TZ, Martin S, Schultz EA, Lukacsa DT, Greenberg JA, Bowden JA. PFAS surveillance in abiotic matrices within vital aquatic habitats throughout Florida. MARINE POLLUTION BULLETIN 2023; 192:115011. [PMID: 37236089 DOI: 10.1016/j.marpolbul.2023.115011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 04/11/2023] [Accepted: 04/30/2023] [Indexed: 05/28/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a group of manufactured chemicals that are resistant to degradation and thus persistent in the environment. The presence, uptake, and accumulation of PFAS is dependent upon the physiochemical properties of the PFAS and matrix, as well as the environmental conditions since the time of release. The objective of this study was to measure the extent of PFAS contamination in surface water and sediment from nine vulnerable aquatic systems throughout Florida. PFAS were detected at all sampling locations with sediment exhibiting greater PFAS concentrations when compared to surface water. At most locations, elevated concentrations of PFAS were identified around areas of increased human activity, such as airports, military bases, and wastewater effluents. The results from the present study highlight the ubiquitous presence of PFAS in vital Florida waterways and filled an important gap in understanding the distribution of PFAS in dynamic, yet vulnerable, aquatic environments.
Collapse
Affiliation(s)
- Emily K Griffin
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA.
| | - Lauren M Hall
- St. Johns River Water Management District, Palm Bay, FL 32909, USA.
| | - Melynda A Brown
- Florida Department of Environmental Protection, Charlotte Harbor Aquatic Preserves, Punta Gorda, FL 33955, USA.
| | - Arielle Taylor-Manges
- Florida Department of Environmental Protection, Charlotte Harbor Aquatic Preserves, Punta Gorda, FL 33955, USA.
| | - Trisha Green
- Florida Department of Environmental Protection, Big Bend Seagrasses Aquatic Preserves, Crystal River, FL 34429, USA.
| | - Katherine Suchanec
- Florida Department of Environmental Protection, Big Bend Seagrasses Aquatic Preserves, Crystal River, FL 34429, USA.
| | - Bradley T Furman
- Florida Fish and Wildlife Conservation Commission, Florida Fish and Wildlife Research Institute, St. Petersburg, FL 33701, USA.
| | - Victoria M Congdon
- Florida Fish and Wildlife Conservation Commission, Florida Fish and Wildlife Research Institute, St. Petersburg, FL 33701, USA.
| | - Sara S Wilson
- Division of Coastlines and Oceans, Institute of Environment, Florida International University, 11200 SW 8th St., Miami, FL 33199, USA
| | - Todd Z Osborne
- Department of Soil, Water, and Ecosystems, Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL 32080, USA.
| | - Shawn Martin
- Department of Marine and Environmental Technology, College of the Florida Keys, Key West, FL 33040, USA.
| | - Emma A Schultz
- Department of Wildlife, Fisheries and Aquaculture, Mississippi State University, Starkville, MS 39762, USA.
| | - Dylan T Lukacsa
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA.
| | - Justin A Greenberg
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA.
| | - John A Bowden
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
19
|
Gonda N, Choyke S, Schaefer C, Higgins CP, Voelker B. Hydroxyl Radical Transformations of Perfluoroalkyl Acid (PFAA) Precursors in Aqueous Film Forming Foams (AFFFs). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:8053-8064. [PMID: 37200532 DOI: 10.1021/acs.est.2c08689] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Historical releases of aqueous film forming foam (AFFF) are significant sources of poly- and perfluoroalkyl substances (PFASs), including perfluoroalkyl acids (PFAAs) and their precursors, to the environment. While several studies have focused on microbial biotransformation of polyfluorinated precursors to PFAAs, the role of abiotic transformations at AFFF-impacted sites is less clear. Herein, we use photochemically generated hydroxyl radical to demonstrate that environmentally relevant concentrations of hydroxyl radical (•OH) can play a significant role in these transformations. High-resolution mass spectrometry (HRMS) was used to perform targeted analysis, suspect screening, and nontargeted analyses, which were used to identify the major products of AFFF-derived PFASs as perfluorocarboxylic acids, though several potentially semi-stable intermediates were also observed. Using competition kinetics in a UV/H2O2 system, hydroxyl radical rate constants (kOH) for 24 AFFF-derived polyfluoroalkyl precursors were measured to be 0.28 to 3.4 × 109 M-1 s-1. Differences in kOH were observed for compounds with differing headgroups and perfluoroalkyl chain lengths. Also, differences in kOH measured for the only relevant precursor standard available, n-[3-propyl]tridecafluorohexanesulphonamide (AmPr-FHxSA), as compared to AmPr-FHxSA present in AFFF suggest that intermolecular associations in the AFFF matrix may affect kOH. Considering environmentally relevant [•OH]ss, polyfluoroalkyl precursors are expected to exhibit half-lives of ∼8 days in sunlit surface waters and possibly as short as ∼2 h during oxygenation of Fe(II)-rich subsurface systems.
Collapse
Affiliation(s)
- Nicholas Gonda
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Sarah Choyke
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | | | - Christopher P Higgins
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Bettina Voelker
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| |
Collapse
|
20
|
Chang PH, Mukhopadhyay R, Zhong B, Yang QY, Zhou S, Tzou YM, Sarkar B. Synthesis and characterization of PCN-222 metal organic framework and its application for removing perfluorooctane sulfonate from water. J Colloid Interface Sci 2023; 636:459-469. [PMID: 36641821 DOI: 10.1016/j.jcis.2023.01.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/09/2022] [Accepted: 01/06/2023] [Indexed: 01/09/2023]
Abstract
Poly- and perfluoro alkyl substances (PFAS) are a group of man-made, notoriously persistent, and highly toxic contaminants in the environment reported worldwide. Many adsorbents including granular activated carbon, graphene, biochar, zeolites, and clay minerals have been tested for PFAS removal from water, but most of these materials suffer from high cost and/or poor removal performance. Here, we synthesized, characterized, and examined the efficiency of PCN-222(Fe), a new porous metal organic framework (MOF) with high water stability, for adsorptive removal of a frequently occurring PFAS, perfluorooctane sulfonate (PFOS), from water. The adsorption isotherm and kinetic studies revealed high PFOS adsorption capacity of PCN-222 (2257 mg/g), with rapid PFOS removal rate (within 30 min). The structure of PCN-222 was unaffected in water in the pH range of 2-10 but disintegrated and lost its PFOS removal ability at pH > 10. The PFOS adsorption on PCN-222 was an endothermic reaction. Electrostatic attraction was a dominant mechanism for PFOS adsorption at < 1694 mg/g PFOS concentration, while hydrophobic interaction accompanied with hydrogen-bonding was responsible at ≥ 1694 mg/g PFOS concentration. The interlayer morphology of PCN-222 did not change due to increasing PFOS loading. The findings of this study demonstrated superior features of PCN-222 over other conventional adsorbents for its potential application in removing PFOS from contaminated water to reduce PFOS transfer from water to living organisms.
Collapse
Affiliation(s)
- Po-Hsiang Chang
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Raj Mukhopadhyay
- Division of Irrigation and Drainage Engineering, ICAR-Central Soil Salinity Research Institute, Karnal 132001, Haryana, India
| | - Bo Zhong
- Shaanxi Provincial Land Engineering Construction Group Co. Ltd., Xi'an, Shaanxi 710075, China
| | - Qing-Yuan Yang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, Shaanxi 710049, PR China
| | - Shungui Zhou
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Yu-Min Tzou
- Department of Soil and Environmental Sciences, National Chung Hsing University, 145 Xingda Rd., Taichung 40227, Taiwan.
| | - Binoy Sarkar
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia.
| |
Collapse
|
21
|
Wang Q, Gu X, Liu Y, Liu S, Lu W, Wu Y, Lu H, Huang J, Tu W. Insights into the circadian rhythm alterations of the novel PFOS substitutes F-53B and OBS on adult zebrafish. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130959. [PMID: 36860044 DOI: 10.1016/j.jhazmat.2023.130959] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/20/2022] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
As alternatives to perfluorooctane sulfonate (PFOS), 6:2 Cl-PFESA (F-53B) and sodium p-perfluorous nonenoxybenzene sulfonate (OBS) are frequently detected in aquatic environments, but little is known about their neurotoxicity, especially in terms of circadian rhythms. In this study, adult zebrafish were chronically exposed to 1 μM PFOS, F-53B and OBS for 21 days taking circadian rhythm-dopamine (DA) regulatory network as an entry point to comparatively investigate their neurotoxicity and underlying mechanisms. The results showed that PFOS may affect the response to heat rather than circadian rhythms by reducing DA secretion due to disruption of calcium signaling pathway transduction caused by midbrain swelling. In contrast, F-53B and OBS altered the circadian rhythms of adult zebrafish, but their mechanisms of action were different. Specifically, F-53B might alter circadian rhythms by interfering with amino acid neurotransmitter metabolism and disrupting blood-brain barrier (BBB) formation, whereas OBS mainly inhibited canonical Wnt signaling transduction by reducing cilia formation in ependymal cells and induced midbrain ventriculomegaly, finally triggering imbalance in DA secretion and circadian rhythm changes. Our study highlights the need to focus on the environmental exposure risks of PFOS alternatives and the sequential and interactive mechanisms of their multiple toxicities.
Collapse
Affiliation(s)
- Qiyu Wang
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Xueyan Gu
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Yu Liu
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Shuai Liu
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Wuting Lu
- School of Life Science, Nanchang University, Nanchang 330031, China
| | - Yongming Wu
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Huiqiang Lu
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Jing Huang
- School of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wenqing Tu
- School of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
22
|
Bhat AP, Pomerantz WCK, Arnold WA. Wavelength-Dependent UV-LED Photolysis of Fluorinated Pesticides and Pharmaceuticals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5327-5336. [PMID: 36962003 DOI: 10.1021/acs.est.3c00627] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The wavelength dependence of photoproduct formation and quantum yields was evaluated for fluorinated pesticides and pharmaceuticals using UV-light emitting diodes (LEDs) with 255, 275, 308, 365, and 405 nm peak wavelengths. The fluorinated compounds chosen were saflufenacil, penoxsulam, sulfoxaflor, fluoxetine, 4-nitro-3-trifluoromethylphenol (TFM), florasulam, voriconazole, and favipiravir, covering key fluorine motifs (benzylic-CF3, heteroaromatic-CF3, aryl-F, and heteroaromatic-F). Quantum yields for the compounds were consistently higher for UV-C as compared to UV-A wavelengths and did not show the same trend as molar absorptivity. For all compounds except favipiravir and TFM, the fastest degradation was observed using 255 or 275 nm light, despite the low power of the LEDs. Using quantitative 19F NMR, fluoride, trifluoroacetate, and additional fluorinated byproducts were tracked and quantified. Trifluoroacetate was observed for both Ar-CF3 and Het-CF3 motifs and increased at longer wavelengths for Het-CF3. Fluoride formation from Het-CF3 was significantly lower as compared to other motifs. Ar-F and Het-F motifs readily formed fluoride at all wavelengths. For Het-CF3 and some Ar-CF3 motifs, 365 nm light produced either a greater number of or different major products. Aliphatic-CF2/CF3 products were stable under all wavelengths. These results assist in selecting the most efficient wavelengths for UV-LED degradation and informing future design of fluorinated compounds.
Collapse
Affiliation(s)
- Akash P Bhat
- Department of Civil, Environmental, and Geo- Engineering, University of Minnesota, 500 Pillsbury Dr. SE, Minneapolis, Minnesota 55455, United States
| | - William C K Pomerantz
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - William A Arnold
- Department of Civil, Environmental, and Geo- Engineering, University of Minnesota, 500 Pillsbury Dr. SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
23
|
Anderson J, Prosser RS. Investigation of the potential effects of firefighting water additives on soil invertebrates and terrestrial plants. CHEMOSPHERE 2023; 313:137496. [PMID: 36502915 DOI: 10.1016/j.chemosphere.2022.137496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/29/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
The intensity and frequency of forest fires is increasing across the globe due to climate change. Additives are often added to make water more effective at extinguishing fire and preventing re-ignition. This study investigated the toxicity of nine different firefighting water additives to four species of soil invertebrates (Folsomia candida, Porcellio laevis, Porcellio scaber, and Trichorhina tomentosa) and two plant species (Agropyron cristatum and Raphanus sativus). Considerable variation in toxicity was observed among the firefighting products. The toxicity of individual products also varied considerably amongst the tested species. A hazard assessment was conducted by comparing the concentration of firefighting water additive that caused a 50% effect (LC50 or EC50) or a concentration that caused no effect (NOEC) to the concentration recommended by the manufacturer. At a rate of application representative of a forest firefighting scenario, most firefighting water additives tested in this study posed a hazard to F. candida and the three isopod species. The majority of products did not pose a risk to the two plant species included in this study. Consideration of the toxicity of firefighting water additives to terrestrial biota should be considered along with the efficacy of the product to fight fires when deciding which products to use.
Collapse
Affiliation(s)
- J Anderson
- University of Guelph, School of Environmental Sciences, Guelph, Ontario, Canada
| | - R S Prosser
- University of Guelph, School of Environmental Sciences, Guelph, Ontario, Canada.
| |
Collapse
|
24
|
Anderson J, Prosser RS. Potential risk to aquatic biota from aerial application of firefighting water additives. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120651. [PMID: 36395903 DOI: 10.1016/j.envpol.2022.120651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
The frequency and severity of forest fires is increasing due to climate change. Consequently, there will be an increased use of forest firefighting additives, which increase the ability of water to extinguish fires and prevent reignition. Increased use will potentially result in increased exposure to aquatic ecosystems within forests. This study examined the toxicity of nine firefighting water additives that are currently on the market to three species of freshwater invertebrates that occupy different niches within freshwater ecosystems. The toxicity of the water additives varied up to three orders of magnitude. Pelagic and epibenthic invertebrates are affected at lower rates of application than endobenthic invertebrates. A field relevant application rate of three of the nine water additives tested represent a hazard to freshwater ecosystems under varies exposure scenarios represented by the depth of a theoretical water body (15-200 cm). This study highlights the importance of application buffers around water bodies and the selection of water additives that pose the lowest hazard to freshwater ecosystem, assuming that the efficacy of the additives in extinguishing fires is similar.
Collapse
Affiliation(s)
- J Anderson
- University of Guelph, School of Environmental Sciences, Guelph, Ontario, Canada
| | - R S Prosser
- University of Guelph, School of Environmental Sciences, Guelph, Ontario, Canada.
| |
Collapse
|
25
|
Du D, Lu Y, Zhou Y, Zhang M, Wang C, Yu M, Song S, Cui H, Chen C. Perfluoroalkyl acids (PFAAs) in water along the entire coastal line of China: Spatial distribution, mass loadings, and worldwide comparisons. ENVIRONMENT INTERNATIONAL 2022; 169:107506. [PMID: 36115250 DOI: 10.1016/j.envint.2022.107506] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/31/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
Perfluoroalkyl acids (PFAAs) have been ubiquitously distributed in water environment worldwide for a long time, especially in the estuaries and coastal areas. In this study, the distribution characteristics of 12 PFAAs in 91 main river estuaries along the entire coast of China were analyzed for the first time, and the riverine PFAAs fluxes into the coastal marine environment were estimated. Based on a mini-review, the PFAAs pollution in the coast of China at a global scale was evaluated, which was intended to reveal the overall level of PFAAs and to provide a science basis for strengthening environmental management along the coast of China. The results showed that perfluorooctanoic acid (PFOA), perfluorobutanoic acid (PFBA), and perfluorobutane sulfonic acid (PFBS) were dominant in the whole coastal region, which indicated the usage of PFAAs was changing from long-chain PFAAs to short-chain substitutes in China. With regard to the spatial distribution, the high PFAAs concentrations were found in the coastal areas of south Bohai Sea, Shandong Province from the north while those in the south were generally lower when taking the Qinling Mountain and Huaihe River as a dividing line. The estimated PFAAs riverine mass loading in the whole coastal region was 131 tons per year, and the discharge flux of the Yangtze River accounted for more than half (73.5 tons). In comparison with global data, PFAAs concentrations in the coast of China was at a moderate level, and the detected hotspots of high levels were strongly influenced by fluorochemical industries. However, the mass loading of PFAAs was diversified due to geographical differences and abundant river discharges.
Collapse
Affiliation(s)
- Di Du
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yonglong Lu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian 361102, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yunqiao Zhou
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Meng Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenchen Wang
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Mingzhao Yu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuai Song
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haotian Cui
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunci Chen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
26
|
Tunstill K, Grogan LF, Morrison C, McCallum H, Lanctôt C. Effects of two firefighting chemical formulations, Phos-Chek LC95W and BlazeTamer380, on striped marsh frog (Limodynastes peronii) tadpole survival, growth, development and behaviour. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 252:106326. [PMID: 36270184 DOI: 10.1016/j.aquatox.2022.106326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Global wildfire events are projected to become more frequent and severe due to the continual threat of climate change, resulting in increasing demand for effective fire mitigation methods. Firefighting chemicals (FFCs), including retardants, foams and water enhancers, are often used to prevent the spread of wildfires. However, the impact of FFCs on wildlife and ecosystems is poorly understood. We investigated the effects of two common FFC formulations, Phos-Chek LC95W and BlazeTamer380, on tadpole survival, growth, development and swimming behaviour. Tadpoles of the striped marsh frog (Limnodynastes peronii) were exposed to two concentrations of either Phos-Chek (0.25 and 1 g/L) or BlazeTamer (0.05 and 0.2 g/L) for 16 days. The highest concentration of Phos-Chek was lethal to tadpoles, with mortalities gradually increasing over time and only 8% of animals surviving to day 16. Both FFCs influenced the growth and development of tadpoles, though effects were more severe in tadpoles exposed to the Phos-Chek formulation. Phos-Chek was found to completely stop tadpole growth and development over the 16-day exposure, whereas BlazeTamer significantly delayed growth and development in comparison to controls. Nevertheless, treatments had no apparent effect on tadpole movement patterns and swimming activity. Greater toxicity caused by the Phos-Chek treatment likely relates to the increased ammonia and altered water quality parameters. Runoff or accidental application of commonly used FFCs into small waterways may therefore have important ramifications for aquatic biota.
Collapse
Affiliation(s)
- Kate Tunstill
- Centre for Planetary Health and Food Security, and School of Environment and Science, Griffith University, Gold Coast, QLD 4222, Australia
| | - Laura F Grogan
- Centre for Planetary Health and Food Security, and School of Environment and Science, Griffith University, Gold Coast, QLD 4222, Australia
| | - Clare Morrison
- Centre for Planetary Health and Food Security, and School of Environment and Science, Griffith University, Gold Coast, QLD 4222, Australia
| | - Hamish McCallum
- Centre for Planetary Health and Food Security, and School of Environment and Science, Griffith University, Gold Coast, QLD 4222, Australia
| | - Chantal Lanctôt
- Australian Rivers Institute and School of Environment and Science, Griffith University, Gold Coast, Queensland 4222, Australia.
| |
Collapse
|
27
|
Islam GJ, Arrigan DWM. Voltammetric Selectivity in Detection of Ionized Perfluoroalkyl Substances at Micro-Interfaces between Immiscible Electrolyte Solutions. ACS Sens 2022; 7:2960-2967. [PMID: 36112026 DOI: 10.1021/acssensors.2c01100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Widespread contamination by per- and polyfluoroalkyl substances (PFAS) and concern about their health impacts require the availability of rapid sensing approaches. In this research, four PFAS, perfluorooctanoic acid (PFOA), perfluorobutanesulfonic acid (PFBS), perfluorohexanesulfonic acid (PFHxS), and perfluorooctanesulfonic acid (PFOS), were studied at micropipette-based interfaces between two immiscible electrolyte solutions (μITIES) to assess the potentiality for their detection by ion transfer voltammetry. All four PFAS substances were detected by ion transfer voltammetry at the μITIES, with half-wave transfer potentials (E1/2 vs Ag/AgCl) for PFOS, PFHxS, PFBS, and PFOA of 0.34, 0.32, 0.25, and 0.23 V, respectively. The selectivity of the μITIES for detection of PFAS mixtures was investigated. Among the six combinations of the four compounds, most combinations were detectable, except PFOA + PFBS and PFHxS + PFOS, because of unresolved ion transfer voltammograms. These findings provide a basis for the design of new PFAS sensing strategies based on ion transfer voltammetry.
Collapse
Affiliation(s)
- Gazi Jahirul Islam
- School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, WA 6845, Australia.,Department of Chemistry, University of Barishal, Barisal 8254, Bangladesh
| | - Damien W M Arrigan
- School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| |
Collapse
|
28
|
Ojo AF, Peng C, Annamalai P, Megharaj M, Ng JC. Toxicity assessment of historical aqueous film-forming foams (AFFFs) using cell-based assays. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 310:119806. [PMID: 35868471 DOI: 10.1016/j.envpol.2022.119806] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/30/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Aqueous film-forming foam (AFFF) has historically contained high concentrations of long-chain per-and polyfluoroalkyl substances (PFAS), which have been linked with adverse health outcomes. However, the toxicity of historical AFFFs remains largely unknown, presenting uncertainties in their risk assessment. This study assessed the toxicity of historical AFFFs by exposing human liver cells (HepG2) to various dilutions of 3M Light Water AFFF or Ansulite AFFF (0.001%, 0.002%, 0.005%, 0.009%, 0.019%, 0.038%, 0.075%, 0.15%, and 0.3%) for 24 h. The effects of the two AFFF formulations on the cell viability, intracellular reactive oxygen species (ROS) production, Nrf2-ARE activity, and DNA damage were assessed by CellTiter 96® Aqueous One Solution Cell Proliferation Assay (MTS kit), dichlorofluorescein diacetate assay, luciferase assay, and alkaline Comet assay, respectively. The results revealed that the two brands of AFFFs tested were toxic to HepG2 cells at dilutions lower than the recommended 3% application formulation. Specifically, exposure to 3M Light Water AFFF or Ansulite AFFF induced a dilution-dependent decrease in cell viability, increased intracellular ROS production, and increased Nrf2-ARE activity. However, except for the highest concentration (lowest dilution) of 3M Light Water AFFF tested (0.038%.), both 3M Light Water AFFF and Ansulite AFFF did not significantly induce cellular DNA damage. Overall, 3M Light Water AFFF was more toxic than Ansulite AFFF. The findings from this study provided valuable in vitro toxicity data that may better inform the health risk assessment of these historical AFFFs.
Collapse
Affiliation(s)
- Atinuke F Ojo
- The University of Queensland, Queensland Alliance for Environmental Health Sciences (QAEHS), 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| | - Cheng Peng
- The University of Queensland, Queensland Alliance for Environmental Health Sciences (QAEHS), 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| | - Prasath Annamalai
- Global Centre for Environmental Remediation, School of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation, School of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Jack C Ng
- The University of Queensland, Queensland Alliance for Environmental Health Sciences (QAEHS), 20 Cornwall Street, Woolloongabba, QLD 4102, Australia.
| |
Collapse
|
29
|
Chang PH, Chen CY, Mukhopadhyay R, Chen W, Tzou YM, Sarkar B. Novel MOF-808 metal–organic framework as highly efficient adsorbent of perfluorooctane sulfonate in water. J Colloid Interface Sci 2022; 623:627-636. [DOI: 10.1016/j.jcis.2022.05.050] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/03/2022] [Accepted: 05/08/2022] [Indexed: 11/15/2022]
|
30
|
Lin H, Liu Z, Yang H, Lu L, Chen R, Zhang X, Zhong Y, Zhang H. Per- and Polyfluoroalkyl Substances (PFASs) Impair Lipid Metabolism in Rana nigromaculata: A Field Investigation and Laboratory Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:13222-13232. [PMID: 36044002 DOI: 10.1021/acs.est.2c03452] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are ubiquitous environmental pollutants, causing environmental threats and public health concerns, but information regarding PFAS hepatotoxicity remains elusive. We investigated the effects of PFASs on lipid metabolism in black-spotted frogs through a combined field and laboratory study. In a fluorochemical industrial area, PFASs seriously accumulate in frog tissues. PFAS levels in frog liver tissues are positively related to the hepatosomatic index along with triglyceride (TG) and cholesterol (TC) contents. In the laboratory, frogs were exposed to 1 and 10 μg/L PFASs, respectively (including PFOA, PFOS, and 6:2 Cl-PFESA). At 10 μg/L, PFASs change the hepatic fatty acid composition and significantly increase the hepatic TG content by 1.33 to 1.87 times. PFASs induce cross-talk accumulation of TG, TC, and their metabolites between the liver and serum. PFASs can bind to LXRα and PPARα proteins, further upregulate downstream lipogenesis-related gene expression, and downregulate lipolysis-related gene expression. Furthermore, lipid accumulation induced by PFASs is alleviated by PPARα and LXRα antagonists, suggesting the vital role of PPARα and LXRα in PFAS-induced lipid metabolism disorders. This work first reveals the disruption of PFASs on hepatic lipid homeostasis and provides novel insights into the occurrence and environmental risk of PFASs in amphibians.
Collapse
Affiliation(s)
- Huikang Lin
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Zhiquan Liu
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- School of Engineering, Hangzhou Normal University, Hangzhou, Zhejiang 310018, China
| | - Hongmei Yang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Liping Lu
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Runtao Chen
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Xiaofang Zhang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- School of Engineering, Hangzhou Normal University, Hangzhou, Zhejiang 310018, China
| | - Yuchi Zhong
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- School of Engineering, Hangzhou Normal University, Hangzhou, Zhejiang 310018, China
| | - Hangjun Zhang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- School of Engineering, Hangzhou Normal University, Hangzhou, Zhejiang 310018, China
| |
Collapse
|
31
|
Bhat A, Pomerantz WCK, Arnold WA. Finding Fluorine: Photoproduct Formation during the Photolysis of Fluorinated Pesticides. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12336-12346. [PMID: 35972505 PMCID: PMC9454825 DOI: 10.1021/acs.est.2c04242] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 05/28/2023]
Abstract
The photolysis of pesticides with different fluorine motifs was evaluated to quantify the formation of fluorinated products in buffered aqueous systems, advanced oxidation (AOP) and reduction processes (ARP), and river water. Simulated sunlight quantum yields at pH 7 were 0.0033, 0.0025, 0.0015, and 0.00012 for penoxsulam, florasulam, sulfoxaflor, and fluroxypyr, respectively. The bimolecular rate constants with hydroxyl radicals were 2 to 5.7 × 1010 M-1 s-1 and, with sulfate radicals, 1.6 to 2.6 × 108 M-1 s-1 for penoxsulam, florasulam, and fluroxypyr, respectively. The rate constants of sulfoxaflor were 100-fold lower. Using quantitative 19F-NMR, complete fluorine mass balances were obtained. The maximum fluoride formation was 53.4 and 87.4% for penoxsulam and florasulam under ARP conditions, and 6.1 and 100% for sulfoxaflor and fluroxypyr under AOP conditions. Heteroaromatic CF3 and aliphatic CF2 groups were retained in multiple fluorinated photoproducts. Aryl F and heteroaromatic F groups were readily defluorinated to fluoride. CF3 and CF2 groups formed trifluoroacetate and difluoroacetate, and yields increased under oxidizing conditions. 19F-NMR chemical shifts and coupling analysis provided information on hydrogen loss on adjacent bonds or changes in chirality. Mass spectrometry results were consistent with the observed 19F-NMR products. These results will assist in selecting treatment processes for specific fluorine motifs and in the design of agrochemicals to reduce byproduct formation.
Collapse
Affiliation(s)
- Akash
P. Bhat
- Department
of Civil, Environmental, and Geo-, Engineering, University of Minnesota, 500 Pillsbury Dr. SE, Minneapolis, Minnesota 55455, United States
| | - William C. K. Pomerantz
- Department
of Chemistry, 207 Pleasant St. SE, University
of Minnesota, Minneapolis, Minnesota, 55455, United States
| | - William A. Arnold
- Department
of Civil, Environmental, and Geo-, Engineering, University of Minnesota, 500 Pillsbury Dr. SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
32
|
Mayakaduwage S, Ekanayake A, Kurwadkar S, Rajapaksha AU, Vithanage M. Phytoremediation prospects of per- and polyfluoroalkyl substances: A review. ENVIRONMENTAL RESEARCH 2022; 212:113311. [PMID: 35460639 DOI: 10.1016/j.envres.2022.113311] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/02/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
Extensive use of per- and polyfluoroalkyl substances (PFASs) in various industrial activities and daily-life products has made them ubiquitous contaminants in soil and water. PFAS-contaminated soil acts as a long-term source of pollution to the adjacent surface water bodies, groundwater, soil microorganisms, and soil invertebrates. While several remediation strategies exist to eliminate PFASs from the soil, strong ionic interactions between charged groups on PFAS with soil constituents rendered these PFAS remediation technologies ineffective. Pilot and field-scale data from recent studies have shown a great potential of PFAS to bio-accumulate and distribute within plant compartments suggesting that phytoremediation could be a potential remediation technology to clean up PFAS contaminated soils. Even though several studies have been performed on the uptake and translocation of PFAS by different plant species, most of these studies are limited to agricultural crops and fruit species. In this review, the role of both aquatic and terrestrial plants in the phytoremediation of PFAS was discussed highlighting different mechanisms underlying the uptake of PFASs in the soil-plant and water-plant systems. This review further summarized a wide range of factors that influence the bioaccumulation and translocation of PFASs within plant compartments including both structural properties of PFASs and physiological properties of plant species. Even though phytoremediation appears to be a promising remediation technique, some limitations that reduced the feasibility of phytoremediation in the practical application have been emphasized in previous studies. Additional research directions are suggested, including advanced genetic engineering techniques and endophyte-assisted phytoremediation to upgrade the phytoremediation potential of plants for the successful removal of PFASs.
Collapse
Affiliation(s)
- Sonia Mayakaduwage
- School of Biological Sciences, University of Adelaide, Adelaide, Australia.
| | - Anusha Ekanayake
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka.
| | - Sudarshan Kurwadkar
- Department of Civil and Environmental Engineering, California State University, 800 N. State College Blvd., Fullerton, CA, 92831, USA
| | - Anushka Upamali Rajapaksha
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka; Instrument Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | - Meththika Vithanage
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka.
| |
Collapse
|
33
|
Viticoski RL, Wang D, Feltman MA, Mulabagal V, Rogers SR, Blersch DM, Hayworth JS. Spatial distribution and mass transport of Perfluoroalkyl Substances (PFAS) in surface water: A statewide evaluation of PFAS occurrence and fate in Alabama. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155524. [PMID: 35489494 DOI: 10.1016/j.scitotenv.2022.155524] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have been previously detected near suspected sources in Alabama, but the overall extent of contamination across the state is unknown. This study evaluated the spatial distribution of 17 PFAS within the ten major river basins in Alabama and provided insights into their transport and fate through a mass flux analysis. Six PFAS were identified in 65 out of the 74 riverine samples, with mean ∑6PFAS levels of 35.2 ng L-1. The highest ∑6PFAS concentration of 237 ng L-1 was detected in the Coosa River, a transboundary river that receives discharges from multiple sources in Alabama and Georgia. PFAS distribution was not observed to be uniform across the state: while the Coosa, Alabama, and Chattahoochee rivers presented relatively high mean ∑6PFAS concentrations of 191, 100 and 28.8 ng L-1, respectively, PFAS were not detected in the Conecuh, Escatawpa, and Yellow rivers. Remaining river systems presented mean ∑6PFAS concentrations between 7.94 and 24.7 ng L-1. Although the short-chain perfluoropentanoic acid (PFPeA) was the most detected analyte (88%), perfluorobutanesulfonic acid (PFBS) was the substance with the highest individual concentration of 79.4 ng L-1. Consistent increases in the mass fluxes of PFAS were observed as the rivers flowed through Alabama, reaching up to 63.3 mg s-1, indicating the presence of numerous sources across the state. Most of the mass inputs would not have been captured if only aqueous concentrations were evaluated, since concentration is usually heavily impacted by environmental conditions. Results of this study demonstrate that mass flux is a simple and powerful complementary approach that can be used to broadly understand trends in the transport and fate of PFAS in large river systems.
Collapse
Affiliation(s)
- Roger L Viticoski
- Department of Civil and Environmental Engineering, Auburn University, Auburn, AL 36849, United States
| | - Danyang Wang
- Department of Civil and Environmental Engineering, Auburn University, Auburn, AL 36849, United States
| | - Meredith A Feltman
- Department of Civil and Environmental Engineering, Auburn University, Auburn, AL 36849, United States
| | - Vanisree Mulabagal
- Department of Civil and Environmental Engineering, Auburn University, Auburn, AL 36849, United States
| | - Stephanie R Rogers
- Department of Geosciences, Auburn University, Auburn, AL 36849, United States
| | - David M Blersch
- Department of Biosystems Engineering, Auburn University, Auburn, AL 36849, United States
| | - Joel S Hayworth
- Department of Civil and Environmental Engineering, Auburn University, Auburn, AL 36849, United States.
| |
Collapse
|
34
|
Griffin EK, Aristizabal-Henao J, Timshina A, Ditz HL, Camacho CG, da Silva BF, Coker ES, Deliz Quiñones KY, Aufmuth J, Bowden JA. Assessment of per- and polyfluoroalkyl substances (PFAS) in the Indian River Lagoon and Atlantic coast of Brevard County, FL, reveals distinct spatial clusters. CHEMOSPHERE 2022; 301:134478. [PMID: 35367496 DOI: 10.1016/j.chemosphere.2022.134478] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) constitute a class of highly stable and extensively manufactured anthropogenic chemicals that have been linked to a variety of adverse health effects in humans and wildlife. These compounds are ubiquitously distributed in the environment and have been measured in aquatic systems globally. However, there are limited data on longitudinal comprehensive assessments of PFAS profiles within sensitive aquatic ecosystems. Surface water samples were collected from the Indian River Lagoon (IRL) and the Atlantic coast within Brevard County (BC), FL in December of 2019 (n = 57) and again from corresponding locations in February of 2021 (n = 40). Samples were analyzed by ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) to determine the occurrence, concentration, and distribution of 92 PFAS. No significant difference in total PFAS concentrations were identified between samples collected in 2019 (87 ng/L) and those collected in 2021 (77 ng/L). However, comparisons of PFAS among four natural sub-regions within Brevard County revealed site- and regional-specific differences. The Banana River exhibited the greatest concentration of total PFAS, followed by the southern Indian River, the northern Indian River, and then the Atlantic coast. Six distinct PFAS profiles were identified with the novel application of multivariate statistical cluster analysis, which may be useful for identifying potential sources of PFAS. Elevated total PFAS and unique compound mixtures identified in the Banana River are most likely a result of industrial discharge and extensive historical use of aqueous film-forming foams (AFFF). The environmental persistence of PFAS threatens key ecosystem services and the ecological homeostasis of the Indian River Lagoon - the most biologically diverse estuary in North America. Brevard County offers a unique model site that may be used to investigate potential exposure and health implications for wildlife and adjacent coastal communities, which could be extrapolated to better understand and manage other critical coastal systems.
Collapse
Affiliation(s)
- Emily K Griffin
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA, 32611.
| | | | - Alina Timshina
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA, 32611.
| | - Heather L Ditz
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA, 32611.
| | - Camden G Camacho
- Department of Chemistry, College of Liberal Arts and Sciences, University of Florida, Gainesville, Florida 32610, United States.
| | - Bianca F da Silva
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA, 32611.
| | - Eric S Coker
- College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA, 32611.
| | - Katherine Y Deliz Quiñones
- Department of Environmental Engineering Sciences, College of Engineering, University of Florida, Gainesville, FL, USA, 32611.
| | - Joe Aufmuth
- George A. Smathers Libraries, University of Florida, Gainesville, FL, USA, 32611.
| | - John A Bowden
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA, 32611.
| |
Collapse
|
35
|
Wang Q, Huang J, Liu S, Wang C, Jin Y, Lai H, Tu W. Aberrant hepatic lipid metabolism associated with gut microbiota dysbiosis triggers hepatotoxicity of novel PFOS alternatives in adult zebrafish. ENVIRONMENT INTERNATIONAL 2022; 166:107351. [PMID: 35738203 DOI: 10.1016/j.envint.2022.107351] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 05/23/2023]
Abstract
Perfluorooctane sulfonate (PFOS) has been reported to induce hepatotoxicity in wildlife and humans. Novel PFOS alternatives have been widely used following restrictions on PFOS, but little is known about their potential toxicity. Here, the first comprehensive investigation on the chronic hepatotoxicity and underlying molecular mechanisms of PFOS, 6:2Cl-PFESA (F-53B), and sodium p-perfluorous nonenoxybenzene sulfonate (OBS) was carried out on adult zebrafish through a histopathological examination, biochemical measurement, and multi-omics analysis. PFOS and its alternatives caused changes in liver histopathology and liver function indices in the order of F-53B > PFOS > OBS, which was consistent with their concentration in the liver. In silico modeling and transcriptional profiles suggested that the aberrant hepatic lipid metabolism induced by F-53B and PFOS was initiated by the action on peroxisome proliferator-activated receptor γ (PPARγ), which triggered changes in downstream genes transcription and led to an imbalance between lipid synthesis and expenditure. Gut microbiome analysis provided another novel mechanistic perspective that changes in the abundance of Legionella, Ralstonia, Brevundimonas, Alphaproteobacteria, Plesiomonas, and Hyphomicrobium might link to alterations in the PPAR pathway based on their significant correlation. This study provides insight into the molecular mechanisms of hepatotoxicity induced by PFOS and its novel alternatives and highlights the need for concern about their environmental exposure risks.
Collapse
Affiliation(s)
- Qiyu Wang
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Jing Huang
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China; School of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shuai Liu
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Caiyun Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China.
| | - Hong Lai
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Wenqing Tu
- School of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
36
|
Bednarz VN, Choyke S, Marangoni LFB, Otto EI, Béraud E, Metian M, Tolosa I, Ferrier-Pagès C. Acute exposure to perfluorooctane sulfonate exacerbates heat-induced oxidative stress in a tropical coral species. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 302:119054. [PMID: 35219792 DOI: 10.1016/j.envpol.2022.119054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/02/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Perfluorooctane sulfonate (PFOS) is among the most commonly per- and poly-fluoroalkyl substances (PFAS) found in environmental samples. Nevertheless, the effect of this legacy persistent organic contaminant has never been investigated on corals to date. Corals are the keystone organisms of coral reef ecosystems and sensitive to rising ocean temperatures, but it is not understood how the combination of elevated temperature and PFOS exposure will affect them. Therefore, the aims of the present study were (1) to evaluate the time-dependent bioconcentration and depuration of PFOS in the scleractinian coral Stylophora pistillata using a range of PFOS exposure concentrations, and (2) to assess the individual and combined effects of PFOS exposure and elevated seawater temperature on key physiological parameters of the corals. Our results show that the coral S. pistillata rapidly bioconcentrates PFOS from the seawater and eliminates it 14 days after ceasing the exposure. We also observed an antagonistic effect between elevated temperature and PFOS exposure. Indeed, a significantly reduced PFOS bioconcentration was observed at high temperature, likely due to a loss of symbionts and a higher removal of mucus compared to ambient temperature. Finally, concentrations of PFOS consistent with ranges observed in surface waters were non-lethal to corals, in the absence of other stressors. However, PFOS increased lipid peroxidation in coral tissue, which is an indicator of oxidative stress and enhanced the thermal stress-induced impairment of coral physiology. This study provides valuable insights into the combined effects of PFOS exposure and ocean warming for coral's physiology. PFOS is usually the most prevalent but not the only PFAS defected in reef waters, and thus it will be also important to monitor PFAS mixture concentrations in the oceans and to study their combined effects on aquatic wildlife.
Collapse
Affiliation(s)
- V N Bednarz
- Centre Scientifique de Monaco, Marine Biology Department, 8 Quai Antoine 1er, MC-98000, Monaco, Monaco.
| | - S Choyke
- International Atomic Energy Agency, Environment Laboratories, 4a Quai Antoine 1er, MC-98000, Monaco, Monaco
| | - L F B Marangoni
- Centre Scientifique de Monaco, Marine Biology Department, 8 Quai Antoine 1er, MC-98000, Monaco, Monaco; Smithsonian Tropical Research Institute, Smithsonian Institution, Ciudad de Panama, 0843-03092, Panama
| | - E I Otto
- Palau International Coral Reef Center, 1 M-Dock Road, P.O. Box 7086, Koror, 96940, Palau
| | - E Béraud
- Centre Scientifique de Monaco, Marine Biology Department, 8 Quai Antoine 1er, MC-98000, Monaco, Monaco
| | - M Metian
- International Atomic Energy Agency, Environment Laboratories, 4a Quai Antoine 1er, MC-98000, Monaco, Monaco
| | - I Tolosa
- International Atomic Energy Agency, Environment Laboratories, 4a Quai Antoine 1er, MC-98000, Monaco, Monaco
| | - C Ferrier-Pagès
- Centre Scientifique de Monaco, Marine Biology Department, 8 Quai Antoine 1er, MC-98000, Monaco, Monaco
| |
Collapse
|
37
|
Mahoney H, Xie Y, Brinkmann M, Giesy JP. Next generation per- and poly-fluoroalkyl substances: Status and trends, aquatic toxicity, and risk assessment. ECO-ENVIRONMENT & HEALTH (ONLINE) 2022; 1:117-131. [PMID: 38075527 PMCID: PMC10702929 DOI: 10.1016/j.eehl.2022.05.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/16/2022] [Accepted: 05/26/2022] [Indexed: 01/10/2024]
Abstract
Widespread application of poly- and per-fluoroalkyl substances (PFAS) has resulted in some substances being ubiquitous in environmental matrices. That and their resistance to degradation have allowed them to accumulate in wildlife and humans with potential for toxic effects. While specific substances of concern have been phased-out or banned, other PFAS that are emerging as alternative substances are still produced and are being released into the environment. This review focuses on describing three emerging, replacement PFAS: perfluoroethylcyclohexane sulphonate (PFECHS), 6:2 chlorinated polyfluoroalkyl ether sulfonate (6:2 Cl-PFAES), and hexafluoropropylene oxide dimer acid (HFPO-DA). By summarizing their physicochemical properties, environmental fate and transport, and toxic potencies in comparison to other PFAS compounds, this review offers insight into the viabilities of these chemicals as replacement substances. Using the chemical scoring and ranking assessment model, the relative hazards, uncertainties, and data gaps for each chemical were quantified and related to perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) based on their chemical and uncertainty scores. The substances were ranked PFOS > 6:2 Cl-PFAES > PFOA > HFPO-DA > PFECHS according to their potential toxicity and PFECHS > HFPO-DA > 6:2 Cl-PFAES > PFOS > PFOA according to their need for future research. Since future uses of PFAS remain uncertain in the face of governmental regulations and production bans, replacement PFAS will continue to emerge on the world market and in the environment, raising concerns about their general lack of information on mechanisms and toxic potencies.
Collapse
Affiliation(s)
- Hannah Mahoney
- Toxicology Center, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B3, Canada
| | - Yuwei Xie
- Toxicology Center, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B3, Canada
| | - Markus Brinkmann
- Toxicology Center, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B3, Canada
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5C8, Canada
- Global Institute for Water Security, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 3H5, Canada
- Centre for Hydrology, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 1K2, Canada
| | - John P. Giesy
- Toxicology Center, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B3, Canada
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Integrative Biology and Center for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
- Department of Environmental Science, Baylor University, Waco, TX, USA
| |
Collapse
|
38
|
Harris JD, Coon CM, Doherty ME, McHugh EA, Warner MC, Walters CL, Orahood OM, Loesch AE, Hatfield DC, Sitko JC, Almand EA, Steel JJ. Engineering and characterization of dehalogenase enzymes from Delftia acidovorans in bioremediation of perfluorinated compounds. Synth Syst Biotechnol 2022; 7:671-676. [PMID: 35224235 PMCID: PMC8857417 DOI: 10.1016/j.synbio.2022.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 01/28/2022] [Accepted: 02/10/2022] [Indexed: 12/29/2022] Open
Abstract
Per- and Polyfluorinated alkyl substances (PFAS) are a broad class of synthetic compounds that have fluorine substituted for hydrogen in several or all locations and are globally categorized as PFCs (perfluorochemicals; commonly called fluorinated chemicals). These compounds have unique chemical and physical properties that enable their use in non-stick surfaces, fire-fighting efforts, and as slick coatings. However, recent concerns over the health effects of such compounds, specifically perfluorooctanoic acid and perfluorooctane sulfonic acid (PFOA, PFOS; PFOA/S), have led to increased attention and research by the global community into degradation methods. In this study, soil samples from PFAS-contamination sites were cultured and screened for microbes with PFOA/S degradation potential, which led to the identification of Delftia acidovorans. It was found that D. acidovorans isolated from PFAS-contaminated soils was capable of growth in minimal media with PFOA as a sole carbon resource, and an observable fluoride concentration increase was observed when cells were exposed to PFOA. This suggests potential activity of a dehalogenase enzyme that may be of use in PFOA or PFAS microbial remediation efforts. Several associated haloacid dehalogenases have been identified in the D. acidovorans genome and have been engineered for expression in Escherichia coli for rapid production and purification. These enzymes have shown potential for enzymatic defluorination, a significant step in biological degradation and removal of PFOA/S from the environment. We hypothesize that bioremediation of PFAS using naturally occurring microbial degradation pathways may represent a novel approach to remove PFAS contamination.
Collapse
Affiliation(s)
- Jackson D. Harris
- Department of Biochemistry, United States Air Force Academy, Colorado Springs, CO, 80840, USA
| | - Collin M. Coon
- Department of Biology, United Stated Air Force Academy, Colorado Springs, CO, 80840, USA
| | - Megan E. Doherty
- Department of Biology, United Stated Air Force Academy, Colorado Springs, CO, 80840, USA
| | - Eamon A. McHugh
- Department of Biology, United Stated Air Force Academy, Colorado Springs, CO, 80840, USA
| | - Margaret C. Warner
- Department of Biology, United Stated Air Force Academy, Colorado Springs, CO, 80840, USA
| | - Conley L. Walters
- Department of Biology, United Stated Air Force Academy, Colorado Springs, CO, 80840, USA
| | - Olivia M. Orahood
- Department of Biology, United Stated Air Force Academy, Colorado Springs, CO, 80840, USA
| | - Abigail E. Loesch
- Department of Civil Engineering, United States Air Force Academy, Colorado Springs, CO, 80840, USA
| | - David C. Hatfield
- Department of Biology, United Stated Air Force Academy, Colorado Springs, CO, 80840, USA
| | - John C. Sitko
- Department of Biology, United Stated Air Force Academy, Colorado Springs, CO, 80840, USA
| | - Erin A. Almand
- Department of Biology, United Stated Air Force Academy, Colorado Springs, CO, 80840, USA
| | - J. Jordan Steel
- Department of Biology, United Stated Air Force Academy, Colorado Springs, CO, 80840, USA
| |
Collapse
|
39
|
Metcalfe CD, Bayen S, Desrosiers M, Muñoz G, Sauvé S, Yargeau V. An introduction to the sources, fate, occurrence and effects of endocrine disrupting chemicals released into the environment. ENVIRONMENTAL RESEARCH 2022; 207:112658. [PMID: 34990614 DOI: 10.1016/j.envres.2021.112658] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
Many classes of compounds are known or suspected to disrupt the endocrine system of vertebrate and invertebrate organisms. This review of the sources and fate of selected endocrine disrupting chemicals (EDCs) in the environment includes classes of compounds that are "legacy" contaminants, as well as contaminants of emerging concern. EDCs included for discussion are organochlorine compounds, halogenated aromatic hydrocarbons, brominated flame retardants, per- and polyfluoroalkyl substances, alkylphenols, phthalates, bisphenol A and analogues, pharmaceuticals, drugs of abuse and steroid hormones, personal care products, and organotins. An exhaustive survey of the fate of these contaminants in all environmental media (e.g., air, water, soil, biota, foods and beverages) is beyond the scope of this review, so the priority is to highlight the fate of EDCs in environmental media for which there is a clear link between exposure and endocrine effects in humans or in biota from other taxa. Where appropriate, linkages are also made between the fate of EDCs and regulatory limits such as environmental quality guidelines for water and sediments and total daily intake values for humans.
Collapse
Affiliation(s)
| | - S Bayen
- McGill University, Montréal, QC, Canada
| | - M Desrosiers
- Ministère du Développement durable, de l'Environnement et de la Lutte contre les changements climatiques du Québec. Québec City, QC, Canada
| | - G Muñoz
- Université de Montréal, Montréal, QC, Canada
| | - S Sauvé
- Université de Montréal, Montréal, QC, Canada
| | - V Yargeau
- McGill University, Montréal, QC, Canada
| |
Collapse
|
40
|
Roos AM, Gamberg M, Muir D, Kärrman A, Carlsson P, Cuyler C, Lind Y, Bossi R, Rigét F. Perfluoroalkyl substances in circum-ArcticRangifer: caribou and reindeer. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:23721-23735. [PMID: 34813015 PMCID: PMC8979910 DOI: 10.1007/s11356-021-16729-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Livers of caribou and reindeer (Rangifer tarandus) from Canada (n = 146), Greenland (n = 30), Svalbard (n = 7), and Sweden (n = 60) were analyzed for concentrations of eight perfluoroalkyl carboxylic acids and four perfluoroalkane sulfonic acids. In Canadian caribou, PFNA (range < 0.01-7.4 ng/g wet weight, ww) and PFUnDA (<0.01-5.6 ng/g ww) dominated, whereas PFOS predominated in samples from South Greenland, Svalbard, and Sweden, although the highest concentrations were found in caribou from Southwest Greenland (up to 28 ng/g ww). We found the highest median concentrations of all PFAS except PFHxS in Akia-Maniitsoq caribou (Southwest Greenland, PFOS 7.2-19 ng/g ww, median 15 ng/g ww). The highest concentrations of ΣPFAS were also found in Akia-Maniitoq caribou (101 ng/g ww) followed by the nearby Kangerlussuaq caribou (45 ng/g ww), where the largest airport in Greenland is situated, along with a former military base. Decreasing trends in concentrations were seen for PFOS in the one Canadian and three Swedish populations. Furthermore, PFNA, PFDA, PFUnDA, PFDoDA, and PFTrDA showed decreasing trends in Canada's Porcupine caribou between 2005 and 2016. In Sweden, PFHxS increased in the reindeer from Norrbotten between 2003 and 2011. The reindeer from Västerbotten had higher concentrations of PFNA and lower concentrations of PFHxS in 2010 compared to 2002. Finally, we observed higher concentrations in 2010 compared to 2002 (albeit statistically insignificant) for PFHxS in Jämtland, while PFNA, PFDA, PFUnDA, PFDoDA, and PFTrDA showed no difference at all.
Collapse
Affiliation(s)
- Anna Maria Roos
- Greenland Institute of Natural Resources, PO Box 570, 3900, Nuuk, Greenland.
- Department of Environmental Research and Monitoring, Swedish Museum of Natural History, PO Box 50007, SE-10405, Stockholm, Sweden.
| | - Mary Gamberg
- Gamberg Consulting, Box 11267, Yukon, Y1A 6N5, Whitehorse, Canada
| | - Derek Muir
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, 867 Lakeshore Road, Burlington, Ontario, L7S 1A1, Canada
| | - Anna Kärrman
- MTM Research Centre, School of Science and Technology, Örebro University, SE-70182, Örebro, Sweden
| | - Pernilla Carlsson
- Norwegian Institute for Water Research (NIVA), Fram Centre, Hjalmar Johansens gate 14, 9007, Tromsø, Norway
| | - Christine Cuyler
- Greenland Institute of Natural Resources, PO Box 570, 3900, Nuuk, Greenland
| | - Ylva Lind
- Department of Environmental Research and Monitoring, Swedish Museum of Natural History, PO Box 50007, SE-10405, Stockholm, Sweden
| | - Rossana Bossi
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark
| | - Frank Rigét
- Greenland Institute of Natural Resources, PO Box 570, 3900, Nuuk, Greenland
- Danish Centre for Environment and Energy, Department of Ecoscience, Arctic Research Centre, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark
| |
Collapse
|
41
|
Zhang F, Liang J, Liu Y, Zhou Q, Hong Y, Chen X, Tan K. A highly sensitive dual-readout assay for perfluorinated compounds based CdTe quantum dots. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 269:120753. [PMID: 34952440 DOI: 10.1016/j.saa.2021.120753] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/27/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Perfluorooctanoic acid (PFOA) and Perfluorooctane sulfonate (PFOS) are two typical perfluorinated compounds (PFCs) that poss potential ecological toxicity. In this work, a fluorescence and resonance light scattering (RLS) dual-readout strategy for the detection of PFCs at picomole level based on the water-soluble CdTe quantum dots (CdTe QDs) has been proposed. It is found that the CdTe QDs exhibit a quenching in the presence of PFCs and thus serve as useful probes for PFCs. The linear ranges are 0.032-10.0 nM with a limit of detection(LOD) of 32.02 pM for PFOA and 0.044-15.0 nM with a LOD of 43.96 pM for PFOS, respectively. Meanwhile, PFCs can form complexes with CdTe QDs in acid medium, resulting in remarkable RLS signals. The enhanced RLS intensities are in proportion to the concentrations of PFOA and PFOS, respectively. And the linear ranges are 0.048-5.0 nM with a LOD of 47.78 pM for PFOA, and 0.057-5.0 nM with a LOD of 56.72 pM for PFOS, respectively. This dual-mode detection increases the reliability of the measurement. The proposed method is simple, sensitive and cost-effective, with potential applications in environmental monitoring and assessment.
Collapse
Affiliation(s)
- Fang Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China; College of Food Science and Engineering, Zhengzhou University of Science and Technology, Zhengzhou 450064, China
| | - Jiaman Liang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China; Ziyang food and drug inspection and Testing Center, Ziyang 641399, China
| | - Yang Liu
- Department of Chemical and Biological Engineering, The University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, United States
| | - Qiuju Zhou
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| | - Yushuang Hong
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Xianping Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Kejun Tan
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| |
Collapse
|
42
|
Wilkinson RS, Lanza HA, Olson AD, Mudge JF, Salice CJ, Anderson TA. Perfluoroalkyl acids in sediment and water surrounding historical fire training areas at Barksdale Air Force Base. PeerJ 2022; 10:e13054. [PMID: 35287347 PMCID: PMC8917801 DOI: 10.7717/peerj.13054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 02/12/2022] [Indexed: 01/11/2023] Open
Abstract
Perfluoroalkyl acids (PFAAs) are environmentally persistent components of surfactants that consist of fully fluorinated carbon chains and a terminal sulfonate or carboxylate polar head moiety. Due to their unique amphiphilic properties, PFAAs are used in the manufacturing of products such as aqueous film forming foams (AFFF). There is cause for concern for PFAA contamination resulting from runoff and groundwater infiltration of AFFF that were used during fire training. This study analyzed water and sediment samples that were collected over a 13-month sampling period from bayous upstream and downstream of two former fire training areas located near Barksdale Air Force Base (BAFB); the occurrence and magnitude of PFAAs supported an aquatic ecological risk assessment of potential impacts of PFAAs at the site. Liquid chromatography coupled with mass spectrometry was used for determination of 6 PFAAs listed under the third Unregulated Contaminant Monitoring Rule (UCMR 3). Total PFAA concentrations in surface water and sediment samples ranged from 0 (ND) -7.1 ng/mL and 0 (ND) -31.4 ng/g, respectively. Perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) were the predominant PFAAs detected. In general, perfluorosulfonates were quantified more frequently and at higher concentrations than perfluorocarboxylates. The perfluoroalkyl chain length of PFAAs also showed significant influence on PFAA concentrations when analyzed by Spearman's rank correlation analysis. Some contamination we observed in surface water and sediment samples from reference locations could be a result of local runoff from the use of commercial products containing per- and poly-fluoroalkyl substances (PFAS), but AFFF appears to be the primary source given the close proximity of the historical fire training areas.
Collapse
Affiliation(s)
- Rebecca S. Wilkinson
- Department of Environmental Toxicology, Texas Tech University, Lubbock, TX, United States of America
| | - Heather A. Lanza
- Department of Environmental Toxicology, Texas Tech University, Lubbock, TX, United States of America
| | - Adric D. Olson
- Department of Environmental Toxicology, Texas Tech University, Lubbock, TX, United States of America
| | - Joseph F. Mudge
- Department of Environmental Toxicology, Texas Tech University, Lubbock, TX, United States of America
| | - Christopher J. Salice
- Environmental Science and Studies, Towson University, Towson, MD, United States of America
| | - Todd A. Anderson
- Department of Environmental Toxicology, Texas Tech University, Lubbock, TX, United States of America
| |
Collapse
|
43
|
Huang J, Wang Q, Liu S, Lai H, Tu W. Comparative chronic toxicities of PFOS and its novel alternatives on the immune system associated with intestinal microbiota dysbiosis in adult zebrafish. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127950. [PMID: 34894504 DOI: 10.1016/j.jhazmat.2021.127950] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/17/2021] [Accepted: 11/27/2021] [Indexed: 06/14/2023]
Abstract
6:2 Chlorinated polyfluorinated ether sulfonate (F-53B) and sodium p-perfluorous nonenoxybenzene sulfonate (OBS) are widely used as perfluorooctane sulfonate (PFOS) alternatives in the Chinese market. Here, adult zebrafish were chronically exposed to 1 μM PFOS, F-53B, and OBS for 21 days to investigate the comparative immunotoxicity of these three per- and polyfluoroalkyl substances (PFAS). PFOS induced more severe oxidative stress in the liver than F-53B and OBS, and these three PFAS induced similar anti-inflammatory effects by repressing the expression of pro-inflammatory cytokines. The intestinal microbiota analysis showed that the relative abundance of Plesiomonas, Aeromonas, Cetobacterium, Shewanella, and Vibrio changed with the same trend in the three PFAS treatment groups. Furthermore, the PFAS increased the expression of hepcidin, muc, the immune-related genes mpo and saa, and decreased the expression of the tight junction-related gene occ in the intestine; moreover, villus height of the intestine was reduced after PFAS exposure, which indicated the functional disruption of the intestine. In particular, the significant correlation between the changed intestinal microbiota and liver and intestinal indicators also suggested the interaction between the immune system and intestinal microbiota. Taken together, our results indicate that exposure to PFOS and its alternatives F-53B and OBS can induce hepatic immunotoxicity associated with intestinal microbiota dysbiosis in adult zebrafish.
Collapse
Affiliation(s)
- Jing Huang
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China; College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Qiyu Wang
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Shuai Liu
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China.
| | - Hong Lai
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Wenqing Tu
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China.
| |
Collapse
|
44
|
Gauthier JR, Mabury SA. Noise-Reduced Quantitative Fluorine NMR Spectroscopy Reveals the Presence of Additional Per- and Polyfluorinated Alkyl Substances in Environmental and Biological Samples When Compared with Routine Mass Spectrometry Methods. Anal Chem 2022; 94:3278-3286. [PMID: 35148065 DOI: 10.1021/acs.analchem.1c05107] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Per- and polyfluorinated alkyl substances (PFAS) are ubiquitous throughout the environment. Analysis of PFAS is commonly performed using both targeted and nontargeted mass spectrometry methods. However, it has been demonstrated that measurements of fluorinated compounds in the environment by mass spectrometry often fall short of the total fluorine concentration. In the present study, we employ a 19F NMR technique, which is capable of detailing fluorinated compounds in a sample while providing both quantitative and structural information. Inclusion of a noise-reduction strategy involving the acquisition of arrays of spectra with an increasing number of transients addresses the sensitivity challenges of environmental nuclear magnetic resonance (NMR), improving signal to noise. When this technique is applied to environmental and biological samples including rainwater, lake water, wastewater effluent, serum, and urine, the presence of PFAS, which may have been missed by routine mass spectrometric methods, is revealed. Important resonances in the 19F NMR spectrum such as that of trifluoroacetic acid are brought above the limit of quantification in all samples, allowing detection limits as low as 389 pg/L in rainwater. A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method, which was used to analyze 47 PFAS compounds, accounts for only 3.7-27% of the total fluorine concentration as determined by the NMR strategy in the present study.
Collapse
Affiliation(s)
- Jeremy R Gauthier
- Department of Chemistry, Lash Miller Chemical Labs, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Scott A Mabury
- Department of Chemistry, Lash Miller Chemical Labs, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
45
|
Zhang W, Zhang Q, Liang Y. Ineffectiveness of ultrasound at low frequency for treating per- and polyfluoroalkyl substances in sewage sludge. CHEMOSPHERE 2022; 286:131748. [PMID: 34352549 DOI: 10.1016/j.chemosphere.2021.131748] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 05/28/2023]
Abstract
Concerns have been raised about per- and polyfluoroalkyl substances (PFAS) in sewage sludge given the urgent need of finding suitable disposal methods for sludge. In this study, we evaluated the effect of ultrasonication on PFAS changes in sewage sludge. It was revealed that although ultrasonication at 20 kHz increased the soluble chemical oxygen demand (SCOD) of treated sewage sludge, this technique was ineffective for degrading perfluoroalkyl acids (PFAAs) and their precursors. Ultrasonic treatment for longer time (>15 min) led to concentration increase of perfluorooctanoic acid (PFOA), perfluoroheptanoic acid (PFHpA), and perfluorohexanoic acid (PFHxA) in the liquid phase, possibly due to their release from disrupted sludge flocs during cavitation. Adding permanganate (10 mM) to the ultrasonic system could also enhance the disruption of sludge particles, resulting in higher concentrations of PFOA and PFHxA in the solid phase and PFOA, PFHpA, PFHxA, and perfluorobutanesulfonic acid (PFBS) in the liquid phase. Overall, ultrasonic pretreatment at 20 kHz and 0.7 W/mL is unlikely to remove PFAS from sewage sludge. Instead, it could increase the risk of PFAS pollution upon final sludge disposal. Effective treatment technologies are thus demanded if PFAS in sludge are regulated.
Collapse
Affiliation(s)
- Weilan Zhang
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY, 12222, USA.
| | - Quan Zhang
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY, 12222, USA
| | - Yanna Liang
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY, 12222, USA
| |
Collapse
|
46
|
Lee H, Sung EJ, Seo S, Min EK, Lee JY, Shim I, Kim P, Kim TY, Lee S, Kim KT. Integrated multi-omics analysis reveals the underlying molecular mechanism for developmental neurotoxicity of perfluorooctanesulfonic acid in zebrafish. ENVIRONMENT INTERNATIONAL 2021; 157:106802. [PMID: 34358914 DOI: 10.1016/j.envint.2021.106802] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/19/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Limited studies on multi-omics have been conducted to comprehensively investigate the molecular mechanism underlying the developmental neurotoxicity of perfluorooctanesulfonic acid (PFOS). In this study, the locomotor behavior of zebrafish larvae was assessed under the exposure to 0.1-20 μM PFOS based on its reported neurobehavioral effect. After the number of zebrafish larvae was optimized for proteomics and metabolomics studies, three kinds of omics (i.e., transcriptomics, proteomics, and metabolomics) were carried out with zebrafish larvae exposed to 0.1, 1, 5, and 10 μM PFOS. More importantly, a data-driven integration of multi-omics was performed to elucidate the toxicity mechanism involved in developmental neurotoxicity. In a concentration-dependent manner, exposure to PFOS provoked hyperactivity and hypoactivity under light and dark conditions, respectively. Individual omics revealed that PFOS exposure caused perturbations in the pathways of neurological function, oxidative stress, and energy metabolism. Integrated omics implied that there were decisive pathways for axonal deformation, neuroinflammatory stimulation, and dysregulation of calcium ion signaling, which are more clearly specified for neurotoxicity. Overall, our findings broaden the molecular understanding of the developmental neurotoxicity of PFOS, for which multi-omics and integrated omics analyses are efficient for discovering the significant molecular pathways related to developmental neurotoxicity in zebrafish.
Collapse
Affiliation(s)
- Hyojin Lee
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Eun Ji Sung
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Seungwoo Seo
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Eun Ki Min
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Ji-Young Lee
- Environmental Health Research Department, National Institute of Environmental Research, Incheon 22689, Republic of Korea
| | - Ilseob Shim
- Environmental Health Research Department, National Institute of Environmental Research, Incheon 22689, Republic of Korea
| | - Pilje Kim
- Environmental Health Research Department, National Institute of Environmental Research, Incheon 22689, Republic of Korea
| | - Tae-Young Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea.
| | - Sangkyu Lee
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Ki-Tae Kim
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea.
| |
Collapse
|
47
|
Podder A, Sadmani AHMA, Reinhart D, Chang NB, Goel R. Per and poly-fluoroalkyl substances (PFAS) as a contaminant of emerging concern in surface water: A transboundary review of their occurrences and toxicity effects. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126361. [PMID: 34157464 DOI: 10.1016/j.jhazmat.2021.126361] [Citation(s) in RCA: 175] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/04/2021] [Accepted: 06/05/2021] [Indexed: 05/27/2023]
Abstract
Per and poly-fluoroalkyl substances (PFAS) have been recognized as contaminants of emerging concerns by the United States Environmental Protection Agency (US EPA) due to their environmental impact. Several advisory guidelines were proposed worldwide aimed at limiting their occurrences in the aquatic environments, especially for perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA). This review paper aims to provide a holistic review in the emerging area of PFAS research by summarizing the spatiotemporal variations in PFAS concentrations in surface water systems globally, highlighting the possible trends of occurrences of PFAS, and presenting potential human health impacts as a result of PFAS exposure through surface water matrices. From the data analysis in this study, occurrences of PFOA and PFOS in many surface water matrices were observed to be several folds higher than the US EPA health advisory level of 70 ng/L for lifetime exposure from drinking water. Direct discharge and atmospheric deposition were identified as primary sources of PFAS in surface water and cryosphere, respectively. While global efforts focused on limiting usages of long-chain PFAS such as PFOS and PFOA, the practices of using short-chain PFAS such as perfluorobutanoic acid (PFBA) and perfluorobutane sulfonic acid (PFBS) and PFAS alternatives increased substantially. These compounds are also potentially associated with adverse impacts on human health, animals and biota.
Collapse
Affiliation(s)
- Aditi Podder
- Department of Civil, Environmental and Construction Engineering, University of Central Florida, Orlando, FL 32816, United States.
| | - A H M Anwar Sadmani
- Department of Civil, Environmental and Construction Engineering, University of Central Florida, Orlando, FL 32816, United States
| | - Debra Reinhart
- Department of Civil, Environmental and Construction Engineering, University of Central Florida, Orlando, FL 32816, United States
| | - Ni-Bin Chang
- Department of Civil, Environmental and Construction Engineering, University of Central Florida, Orlando, FL 32816, United States
| | - Ramesh Goel
- Department of Civil and Environmental Engineering, University of Utah, Salt Lake City, UT 84112, United States
| |
Collapse
|
48
|
Anaraki MT, Lysak DH, Downey K, Kock FVC, You X, Majumdar RD, Barison A, Lião LM, Ferreira AG, Decker V, Goerling B, Spraul M, Godejohann M, Helm PA, Kleywegt S, Jobst K, Soong R, Simpson MJ, Simpson AJ. NMR spectroscopy of wastewater: A review, case study, and future potential. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2021; 126-127:121-180. [PMID: 34852923 DOI: 10.1016/j.pnmrs.2021.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
NMR spectroscopy is arguably the most powerful tool for the study of molecular structures and interactions, and is increasingly being applied to environmental research, such as the study of wastewater. With over 97% of the planet's water being saltwater, and two thirds of freshwater being frozen in the ice caps and glaciers, there is a significant need to maintain and reuse the remaining 1%, which is a precious resource, critical to the sustainability of most life on Earth. Sanitation and reutilization of wastewater is an important method of water conservation, especially in arid regions, making the understanding of wastewater itself, and of its treatment processes, a highly relevant area of environmental research. Here, the benefits, challenges and subtleties of using NMR spectroscopy for the analysis of wastewater are considered. First, the techniques available to overcome the specific challenges arising from the nature of wastewater (which is a complex and dilute matrix), including an examination of sample preparation and NMR techniques (such as solvent suppression), in both the solid and solution states, are discussed. Then, the arsenal of available NMR techniques for both structure elucidation (e.g., heteronuclear, multidimensional NMR, homonuclear scalar coupling-based experiments) and the study of intermolecular interactions (e.g., diffusion, nuclear Overhauser and saturation transfer-based techniques) in wastewater are examined. Examples of wastewater NMR studies from the literature are reviewed and potential areas for future research are identified. Organized by nucleus, this review includes the common heteronuclei (13C, 15N, 19F, 31P, 29Si) as well as other environmentally relevant nuclei and metals such as 27Al, 51V, 207Pb and 113Cd, among others. Further, the potential of additional NMR methods such as comprehensive multiphase NMR, NMR microscopy and hyphenated techniques (for example, LC-SPE-NMR-MS) for advancing the current understanding of wastewater are discussed. In addition, a case study that combines natural abundance (i.e. non-concentrated), targeted and non-targeted NMR to characterize wastewater, along with in vivo based NMR to understand its toxicity, is included. The study demonstrates that, when applied comprehensively, NMR can provide unique insights into not just the structure, but also potential impacts, of wastewater and wastewater treatment processes. Finally, low-field NMR, which holds considerable future potential for on-site wastewater monitoring, is briefly discussed. In summary, NMR spectroscopy is one of the most versatile tools in modern science, with abilities to study all phases (gases, liquids, gels and solids), chemical structures, interactions, interfaces, toxicity and much more. The authors hope this review will inspire more scientists to embrace NMR, given its huge potential for both wastewater analysis in particular and environmental research in general.
Collapse
Affiliation(s)
- Maryam Tabatabaei Anaraki
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada
| | - Daniel H Lysak
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada
| | - Katelyn Downey
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada
| | - Flávio Vinicius Crizóstomo Kock
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada; Department of Chemistry, Federal University of São Carlos-SP (UFSCar), São Carlos, SP, Brazil
| | - Xiang You
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada
| | - Rudraksha D Majumdar
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada; Synex Medical, 2 Bloor Street E, Suite 310, Toronto, ON M4W 1A8, Canada
| | - Andersson Barison
- NMR Center, Federal University of Paraná, CP 19081, 81530-900 Curitiba, PR, Brazil
| | - Luciano Morais Lião
- NMR Center, Institute of Chemistry, Universidade Federal de Goiás, Goiânia 74690-900, Brazil
| | | | - Venita Decker
- Bruker Biospin GmbH, Silberstreifen 4, 76287 Rheinstetten, Germany
| | | | - Manfred Spraul
- Bruker Biospin GmbH, Silberstreifen 4, 76287 Rheinstetten, Germany
| | | | - Paul A Helm
- Environmental Monitoring & Reporting Branch, Ontario Ministry of the Environment, Toronto M9P 3V6, Canada
| | - Sonya Kleywegt
- Technical Assessment and Standards Development Branch, Ontario Ministry of the Environment, Conservation and Parks, Toronto, ON M4V 1M2, Canada
| | - Karl Jobst
- Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - Ronald Soong
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada
| | - Myrna J Simpson
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada
| | - Andre J Simpson
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada.
| |
Collapse
|
49
|
Zhang W, Liang Y. Effects of hydrothermal treatments on destruction of per- and polyfluoroalkyl substances in sewage sludge. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117276. [PMID: 33964564 DOI: 10.1016/j.envpol.2021.117276] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
Sewage sludge has become a sink of per- and polyfluoroalkyl substances (PFAS) due to the ineffectiveness of PFAS removal during conventional activated sludge treatment process. In this study, we evaluated the performance of an enhanced method for PFAS extraction from sewage sludge. Significant matrix effect was observed for samples derived from untreated and hydrothermally treated sludge. Extra steps for removing potential interferences were thus needed to reduce these matrix effects and improve the accuracy of PFAS quantification. Hydrothermal treatment at 165 °C for 0.5/2 h and 250 °C for 0.5 h increased the concentration of extractable PFAAs in treated sludge. Increasing the temperature to 300 °C resulted in complete degradation of PFCAs after hydrothermal processing, but still increased the concentrations of PFSAs and PFAA precursors. The concentration increase could be due to the conversion of PFAA precursors to PFAAs and the release of PFAAs from sewage sludge during thermal treatment. Ca(OH)2 addition to hydrothermal treatment completely removed PFAA precursors but significantly increased the extractable PFAAs, except PFHpA and PFHxS, at 165 °C and all PFSAs at 300 °C. This study revealed the difficulties in extracting and quantifying PFAS in sludge and demonstrated the need for further research on finding suitable solutions for complete removal or destruction of PFAS in highly heterogeneous sewage sludge.
Collapse
Affiliation(s)
- Weilan Zhang
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY, 12222, USA.
| | - Yanna Liang
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY, 12222, USA
| |
Collapse
|
50
|
Vishal B. Foaming and rheological properties of aqueous solutions: an interfacial study. REV CHEM ENG 2021. [DOI: 10.1515/revce-2020-0060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Although aqueous foam is composed of simple fluids, air and water, it shows a complex rheological behavior. It exhibits solid-like behavior at low shear and fluid-like behavior at high shear rate. Therefore, understanding such behavior is important for many industrial applications in foods, pharmaceuticals, and cosmetics. Additionally, air–water interface of bubble surface plays an important role in the stabilizing mechanism of foams. Therefore, the rheological properties associated with the aqueous foam highly depend on its interfacial properties. In this review, a systematic study of aqueous foam are presented primarily from rheology point of view. Firstly, foaming agents, surfactants and particles are described; then foam structure was explained, followed by change in structure under applied shear. Finally, foam rheology was linked to interfacial rheology for the interface containing particles whose surface properties were altered by surfactants.
Collapse
Affiliation(s)
- Badri Vishal
- Department of Chemistry and Biochemistry , University of Hull , Hull , HU6 7RX , UK
| |
Collapse
|