1
|
Qiu J, Yin C, Li A, Yang Y, Wang G, Li D. Effects of microorganisms, temperature and irradiation on the stability of dissolved okadaic acid and dinophysistoxin-1 in seawater. MARINE ENVIRONMENTAL RESEARCH 2025; 204:106969. [PMID: 39874871 DOI: 10.1016/j.marenvres.2025.106969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/13/2024] [Accepted: 01/19/2025] [Indexed: 01/30/2025]
Abstract
Diarrhetic shellfish toxins (DSTs) are widespread in marine environments, posing potential threats to marine ecosystems, shellfish aquaculture, and human health. Despite their prevalence, knowledge of the stability of dissolved DSTs in seawater is still limited. This study aimed to investigate the effects of bacteria, temperature, and irradiation on the stability of dissolved okadaic acid (OA) and dinophysistoxin-1 (DTX1) in seawater. Results indicated that bacteria did not contribute to the biodegradation of OA and DTX1, while their growth was inhibited by the toxins over the 7-day experiment. During a 28-day period without irradiation at 4 °C, 20 °C, and 37 °C, no degradation of OA was observed, whereas significant degradation of DTX1 occurred, with concentrations dropping to 58%-78% of the initial concentration at the end of the experiment. Under xenon lamp irradiation at 1000 W, the concentrations of DTX1 decreased by 15%-19% in seawater after 160 min, while the concentrations of OA showed minimal change. Conversely, both OA and DTX1 underwent significant degradation under mercury lamp irradiation with an irradiation intensity-dependent pattern. Additionally, the degradation rates of OA and DTX1 increased with higher concentrations of dissolved organic matter in the range of 1.2-15 mg C L⁻1. This study enhances the understanding of DST stability in seawater under varying temperature and light conditions, highlighting the complexities involved in their degradation processes. The results of this study found that ultraviolet is an important driving environmental factor for OA and DTX1 degradation in the natural marine environment. In case of harmful algal blooms with associated phycotoxins, ultraviolet irradiation can be used as a removal method for OA and DTX1.
Collapse
Affiliation(s)
- Jiangbing Qiu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao, 266100, China
| | - Chao Yin
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Aifeng Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao, 266100, China.
| | - Yongmeng Yang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Guixiang Wang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Dongyue Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| |
Collapse
|
2
|
Xu J, Wei J, Zhang J, Xing Z, Wang Z, Qu R. Effect of Dissolved Organic Matter on the Photodegradation of Decachlorobiphenyl (PCB-209) in Heterogeneous Systems: Experimental Analysis and Excited-State Theory Calculations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39088507 DOI: 10.1021/acs.est.4c02816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
Dissolved organic matter (DOM) can affect the transformation of pollutants through photosensitization, but most current research focuses on hydrophilic pollutants, making it such that less attention is paid to hydrophobic pollutants. In this paper, the effect and action mechanism of coexisting DOM on the photodegradation of decachlorobiphenyl (PCB-209) on suspended particles collected from the Yellow River were systematically investigated in a heterogeneous system using DOM standards and model compounds. Through molecular probe experiments, mass spectrometry analysis and theoretical calculations, we found that the excited triplet state of DOM (3DOM*) could excite PCB-209 to undergo dechlorination reaction. Due to the different modes of electron transition, the presence of carbonyl groups decreased the energy of 3DOM*, whereas the electron-donating groups made the energy of 3DOM* higher. DOM containing phenolic hydroxyl groups led to a higher steady-state concentration of •OH, and DOM containing phenyl ketone structures had a stronger ability to produce •O2-. Compared with aqueous •OH, •O2- produced from hydrophobic microregions could react more readily with PCB-209. This study deepens the understanding of the role of different functional groups of DOM in the photosensitized transformation of hydrophobic compounds.
Collapse
Affiliation(s)
- Jianqiao Xu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, P. R. China
| | - Junyan Wei
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, P. R. China
| | - Jiayu Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, P. R. China
| | - Zhicheng Xing
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, P. R. China
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, P. R. China
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, P. R. China
| |
Collapse
|
3
|
Kong Q, Yao L, Ye L, Pan Y, Deng Y, Tan Z, Zhou Y, Shi G, Yang X. Photochemical Transformation of Monochloramine Induced by Triplet State Dissolved Organic Matter. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134366. [PMID: 38678708 DOI: 10.1016/j.jhazmat.2024.134366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/31/2024] [Accepted: 04/18/2024] [Indexed: 05/01/2024]
Abstract
The photoexcited dissolved organic matter (DOM) could produce reactive intermediates, affecting chemical oxidant transformation in UV based advanced oxidation processes (AOPs). This study confirmed the critical role of triplet state DOM (3DOM*), generated from DOM photoexcitation, in the transformation of monochloramine (NH2Cl), a commonly used chemical oxidant and disinfectant in water treatment. NH2Cl (42.25 μM, as Cl2) was decayed by 17.4-73.4 % within 60 min, primarily due to 3DOM* , in DOM (2-30 mgC L-1) solutions irradiated by 365 nm, where NH2Cl has no absorption. The second-order quenching rate constants of triplet state model photosensitizers by NH2Cl were determined to be 0.95(± 0.04)-4.49(± 0.04)× 108 M-1 s-1 by using laser flash photolysis. As a reductant, 3DOM* reacted with NH2Cl through one-transfer mechanism, leading to amino radical (NH2•) generation, which then transferred to ammonia (NH4+, pKa 9.25) through H-abstraction by the phenolic moieties in DOM. Additionally, the intermediate product of 3DOM* oxidized by NH2Cl or those triplet state quinones can hydrolyze to form phenolic moieties, elevating NH4+ yield to higher than 99% upon 365 nm irradiation. These findings suggest that the widespread DOM can be applied to convert NH2Cl via 3DOM* with minimal toxic risks.
Collapse
Affiliation(s)
- Qingqing Kong
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Liaoliao Yao
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Lei Ye
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Yanheng Pan
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Yanchun Deng
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Zijie Tan
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Yangjian Zhou
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Guojing Shi
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; School of Civil and Environmental Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Xin Yang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
4
|
Yan Y, Meng Y, Miu K, Wenk J, Anastasio C, Spinney R, Tang CJ, Xiao R. Direct Determination of Absolute Radical Quantum Yields in Hydroxyl and Sulfate Radical-Based Treatment Processes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8966-8975. [PMID: 38722667 DOI: 10.1021/acs.est.4c00246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The absolute radical quantum yield (Φ ) is a critical parameter to evaluate the efficiency of radical-based processes in engineered water treatment. However, measuring Φ is fraught with challenges, as current quantification methods lack selectivity, specificity, and anti-interference capabilities, resulting in significant error propagation. Herein, we report a direct and reliable time-resolved technique to determine Φ at pH 7.0 for commonly used radical precursors in advanced oxidation processes. For H2O2 and peroxydisulfate (PDS), the values of Φ •OH and Φ SO 4 • - at 266 nm were measured to be 1.10 ± 0.01 and 1.46 ± 0.05, respectively. For peroxymonosulfate (PMS), we developed a new approach to determine Φ • OH PMS with terephthalic acid as a trap-and-trigger probe in the nonsteady state system. For the first time, the Φ • OH PMS value was measured to be 0.56 by the direct method, which is stoichiometrically equal to Φ SO 4 • - PMS (0.57 ± 0.02). Additionally, radical formation mechanisms were elucidated by density functional theory (DFT) calculations. The theoretical results showed that the highest occupied molecular orbitals of the radical precursors are O-O antibonding orbitals, facilitating the destabilization of the peroxy bond for radical formation. Electronic structures of these precursors were compared, aiming to rationalize the tendency of the Φ values we observed. Overall, this time-resolved technique with specific probes can be used as a reliable tool to determine Φ , serving as a scientific basis for the accurate performance evaluation of diverse radical-based treatment processes.
Collapse
Affiliation(s)
- Yiqi Yan
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Yunxiang Meng
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Kanying Miu
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Jannis Wenk
- Department of Chemical Engineering, Water Innovation & Research Centre (WIRC@Bath), University of Bath, Bath BA2 7AY, U.K
| | - Cort Anastasio
- Department of Land, Air, and Water Resource, University of California, Davis, California 95616, United States
| | - Richard Spinney
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Chong-Jian Tang
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Ruiyang Xiao
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| |
Collapse
|
5
|
de Souza Freitas G, Rodrigues NG, Lastre-Acosta AM, Feirreira-Pinto L, Teixeira ACSC, Parizi MPS. Attenuation photochemical potential of Pontal of Paranapanema river waters (Brazil) from agrochemicals: geographical and temporal assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-33358-y. [PMID: 38632196 DOI: 10.1007/s11356-024-33358-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 04/12/2024] [Indexed: 04/19/2024]
Abstract
Knowledge of the environmental photochemical fate of pesticides is essential to assess their potential impacts. However, there are few studies in the literature focused on the photochemical attenuation of micropollutants in Brazilian rivers. In this context, this study characterized the surface waters of the Pontal of Paranapanema region (region which concentrates more than 80% of Brazilian sugarcane cultivations), in order to determine its photochemical attenuation potential against micropollutants in different seasons. Thus, the steady-state concentrations of the photochemically produced reactive intermediates (PPRIs) (hydroxyl radical, HO•; singlet oxygen, 1O2, and triplet-excited state chromophoric dissolved organic matter, 3CDOM*), formed in the rivers, were simulated by using the APEX model (Aquatic Photochemistry of Environmentally-occurring Xenobiotics), considering the sunlight irradiance, water chemistry, and depth. Based on our simulations, these concentrations vary between 0.35 × 10-15 and 4.52 × 10-14 mol L-1 for HO•, 1.3 × 10-15 and 1.2 × 10--14 mol L-1 for 3CDOM*, and 2.5 × 10-15 and 2.5 × 10-14 mol L-1 for 1O2. Finally, mathematical simulations were used for predicting persistence of pesticides atrazine (ATZ) and diuron (DIR) in Pontal of Paranapanema surface waters and the half-life times (t1/2) of the pollutants ranged from a few hours to one week.
Collapse
Affiliation(s)
| | | | - Arlen Mabel Lastre-Acosta
- Vale Do Paraíba Environmental Agency, São José Dos Campos, SP, Brazil
- Research Group in Advanced Oxidation Processes (AdOx), Chemical Systems Engineering Center, Department of Chemical Engineering, University of São Paulo, São Paulo, SP, Brazil
| | | | - Antonio Carlos Silva Costa Teixeira
- Research Group in Advanced Oxidation Processes (AdOx), Chemical Systems Engineering Center, Department of Chemical Engineering, University of São Paulo, São Paulo, SP, Brazil
| | | |
Collapse
|
6
|
Peng J, Pan Y, Zhou Y, Lei X, Guo Y, Lei Y, Kong Q, Cheng S, Yang X. Mechanistic Aspects of Photodegradation of Deoxynucleosides Induced by Triplet State of Effluent Organic Matter. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4751-4760. [PMID: 38324714 DOI: 10.1021/acs.est.3c08782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Excited triplet states of wastewater effluent organic matter (3EfOM*) are known as important photo-oxidants in the degradation of extracellular antibiotic resistance genes (eArGs) in sunlit waters. In this work, we further found that 3EfOM* showed highly selective reactivity toward 2'-deoxyguanosine (dG) sites within eArGs in irradiated EfOM solutions at pH 7.0, while it showed no photosensitizing capacity toward 2'-deoxyadenosine, 2'-deoxythymidine, and 2'-deoxycytidine (the basic structures of eArGs). The 3EfOM* contributed to the photooxidation of dG primarily via one-electron transfer mechanism, with second-order reaction rate constants of (1.58-1.74) × 108 M-1 s-1, forming the oxidation intermediates of dG (dG(-H)•). The formed dG(-H)• could play a significant role in hole hopping and damage throughout eArGs. Using the four deoxynucleosides as probes, the upper limit for the reduction potential of 3EfOM* is estimated to be between 1.47 and 1.94 VNHE. Compared to EfOM, the role of the triplet state of terrestrially natural organic matter (3NOM*) in dG photooxidation was minor (∼15%) mainly due to the rapid reverse reactions of dG(-H)• by the antioxidant moieties of NOM. This study advances our understanding of the difference in the photosensitizing capacity and electron donating capacity between NOM and EfOM and the photodegradation mechanism of eArGs induced by 3EfOM*.
Collapse
Affiliation(s)
- Jianglin Peng
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Yanheng Pan
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Yangjian Zhou
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Xin Lei
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, P. R. China
| | - Yifan Guo
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Yu Lei
- Key Laboratory of Photochemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing 100190, P. R. China
| | - Qingqing Kong
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Shuangshuang Cheng
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Xin Yang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
7
|
Wang J, Jiang J, Zhao H, Li Z, Li X, Azam S, Qu B. Phototransformation of halobenzoquinones in aqueous solution under the simulate sunlight: Kinetics, mechanism and products. CHEMOSPHERE 2024; 352:141318. [PMID: 38311038 DOI: 10.1016/j.chemosphere.2024.141318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/26/2024] [Accepted: 01/26/2024] [Indexed: 02/06/2024]
Abstract
Halobenzoquinones (HBQs) are a novel family of unregulated disinfection byproducts (DBPs). Little is known about their phototransformation activities in natural water. Here, five HBQs with various halogenated substituent types, numbers, and structures positions were selected to investigate the kinetics of degradation in aqueous solutions at various concentrations and in the presence of common environmental variables (Cl-, NO2-, and humic acid). The results indicated that dichloride and dibromo-substituted HBQs were photolyzed, whereas tetrachloro-substituted HBQs showed little degradation. The photolysis rate constant (k) of HBQs decreased with increasing initial concentration. The presence of NO2- and Cl- promoted the degradation of HBQs mainly through the formation of hydroxyl radical (•OH), which were confirmed by electron paramagnetic resonance (EPR). In contrast, humic acid played a negative role on HBQs transformation due to the adsorption and quenching reactions. Possible conversion pathways for HBQs were proposed based on the identification of two major photodegradation products, hydroxylated HBQs and halogenated-benzenetriol, as well as reactive free radicals. This study provided meaningful insights into the environmental fates and risk assessments of HBQs in natural aquatic system.
Collapse
Affiliation(s)
- Jingyao Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Jingqiu Jiang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012, Beijing, China
| | - Hongxia Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| | - Zhansheng Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Xintong Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Shafiul Azam
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Baocheng Qu
- College of Marine Technology and Environment, Dalian Ocean University, Dalian, 116024, China.
| |
Collapse
|
8
|
Sohn S, Kim MK, Lee YM, Sohn EJ, Choi GY, Chae SH, Zoh KD. Removal characteristics of 53 micropollutants during ozonation, chlorination, and UV/H 2O 2 processes used in drinking water treatment plant. CHEMOSPHERE 2024; 352:141360. [PMID: 38325620 DOI: 10.1016/j.chemosphere.2024.141360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
The removal of 53 emerging micropollutants (MPs), including 10 per- and polyfluorinated substances (PFASs), 25 pharmaceuticals and personal care products (PPCPs), 7 pesticides, 5 endocrine disrupters (EDCs), 3 nitrosamines, and 3 taste and odor compounds (T&Os), by chlorination, ozonation, and UV/H2O2 treatment was examined in deionized water and surface waters used as the raw waters in drinking water treatment plants (DWTPs) in South Korea. The UV/H2O2 treatment was effective in the removal of most MPs, whereas chlorination was selectively effective for 19 MPs, including EDCs (>70 %). MPs containing aromatic ring with electron-donating functional group, or primary and secondary amines were effectively removed by chlorination immediately upon reaction initiation. The removal of MPs by ozonation was generally lower than that of the other two processes at a low ozone dose (1 mg L-1), but higher than chlorination at a high ozone dose (3 mg L-1), particularly for 16 MPs, including T&Os. Compared in deionized water, the removals of MPs in the raw water samples were lower in all three processes. The regression models predicting the rate constants (kobs) of 53 MPs showed good agreement between modeled and measured value for UV/H2O2 treatment (R2 = 0.948) and chlorination (R2 = 0.973), despite using only dissolved organic carbon (DOC) and oxidant concentration as variables, whereas the ozonation model showed a variation (R2 = 0.943). Our results can provide the resources for determining which oxidative process is suitable for treating specific MPs present in the raw waters of DWTPs.
Collapse
Affiliation(s)
- Seungwoon Sohn
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, South Korea
| | - Moon-Kyung Kim
- Institute of Health & Environment, Seoul National University, Seoul, South Korea
| | - Young-Min Lee
- Institute of Health & Environment, Seoul National University, Seoul, South Korea
| | - Erica Jungmin Sohn
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, South Korea
| | - Grace Y Choi
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, South Korea
| | - Seon-Ha Chae
- Korea Water Resources Corporation, K-water Institute, Deajeon, South Korea
| | - Kyung-Duk Zoh
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, South Korea.
| |
Collapse
|
9
|
Azam S, Zhu J, Jiang J, Wang J, Zhao H. Photolysis of dinotefuran in aqueous solution: Kinetics, influencing factors and photodegradation mechanism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123352. [PMID: 38219898 DOI: 10.1016/j.envpol.2024.123352] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/06/2024] [Accepted: 01/11/2024] [Indexed: 01/16/2024]
Abstract
The environmental behaviour of neonicotinoid insecticides (NNIs) is of momentous concern due to their frequent detection in aquatic environment and their biotoxicity for non-target organisms. Phototransformation is one of the most significant transformation processes, which is directly related to NNIs exposure and environmental risks. In this study, the photodegradation of dinotefuran (DIN, 1-Methyl-2-nitro-3-(tetrahydro-3-furanylmethyl)-guanidine), one of the most promising NNIs, was conducted under irritated light in the presence of Cl-, DOM along with the effect of pH and initial concentration. The findings demonstrated that in ultra-pure (UP) water, the photolysis rate constants (k) of DIN rose with increasing initial concentration. Whereas, in tap water, at varied pH levels, and in the presence of Cl-, the outcomes were reversed. At the same time, lower concentration of DOM promoted DIN photolysis processes due to the production of reactive oxygen species, while higher concentrations of DOM inhibited the photolysis by the predominance of light shielding effects. The singlet oxygen (1O2) was produced in the photolysis processes of DIN with Cl- and DOM, which was confirmed by electron spin resonance (EPR) analysis. Four main photolysis products and three intermediates were identified by UPLC-Q-Exactive Orbitrap MS analysis. The possible photodegradation pathways of DIN were proposed including the oxidation by 1O2, reduction and hydrolysis after the removal of nitro group from parent compounds. This study expanding our understanding of transformation behavior and fate of NNIs in the aquatic environment, which is essential for estimating their environmental risks.
Collapse
Affiliation(s)
- Shafiul Azam
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116023, China
| | - Jie Zhu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jingqiu Jiang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012, Beijing, China.
| | - Jingyao Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116023, China
| | - Hongxia Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116023, China
| |
Collapse
|
10
|
Navidpour AH, Ahmed MB, Zhou JL. Photocatalytic Degradation of Pharmaceutical Residues from Water and Sewage Effluent Using Different TiO 2 Nanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:135. [PMID: 38251100 PMCID: PMC10821327 DOI: 10.3390/nano14020135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/01/2024] [Accepted: 01/04/2024] [Indexed: 01/23/2024]
Abstract
Pharmaceuticals are widely used and often discharged without metabolism into the aquatic systems. The photocatalytic degradation of pharmaceutical compounds propranolol, mebeverine, and carbamazepine was studied using different titanium dioxide nanostructures suspended in water under UV and UV-visible irradiation. Among three different photocatalysts, the degradation was most effective by using Degussa P25 TiO2, followed by Hombikat UV100 and Aldrich TiO2. The photocatalytic performance was dependent on photocatalyst dosage, with an optimum concentration of 150 mg L-1. The natural aquatic colloids were shown to enhance the extent of photocatalysis, and the effect was correlated with their aromatic carbon content. In addition, the photocatalysis of pharmaceuticals was enhanced by the presence of nitrate, but inhibited by the presence of 2-propanol, indicating the importance of hydroxyl radicals. Under optimum conditions, the pharmaceuticals were rapidly degraded, with a half-life of 1.9 min, 2.1 min, and 3.2 min for propranolol, mebeverine, and carbamazepine, respectively. In treating sewage effluent samples, the photocatalytic rate constants for propranolol (0.28 min-1), mebeverine (0.21 min-1), and carbamazepine (0.15 min-1) were similar to those in water samples, demonstrating the potential of photocatalysis as a clean technology for the effective removal of pharmaceuticals from sewage effluent.
Collapse
Affiliation(s)
- Amir Hossein Navidpour
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia;
| | - Mohammad Boshir Ahmed
- Institute for Sustainability, Energy and Resources (ISER), School of Chemical Engineering, The University of Adelaide, North Terrace, SA 5005, Australia;
| | - John L. Zhou
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia;
| |
Collapse
|
11
|
Kang L, Jiang Y, Tian Y, Zou J, Feng L, Liu Y, Han Q, Zhang L. Unveiling the enhancement mechanisms of algogenic extracellular organic matters on chlortetracycline photodegradation: Constitutive relationships of compound components and reactive oxygen species generation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167015. [PMID: 37734609 DOI: 10.1016/j.scitotenv.2023.167015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/08/2023] [Accepted: 09/10/2023] [Indexed: 09/23/2023]
Abstract
Algogenic extracellular organic matters (EOMs) have been found to play a crucial role in the photodegradation of antibiotics. However, the specific molecular structure compositions of EOMs have not been fully characterized, and the intrinsic association between the structure and the production of ROS remains unclear. In this study, EOMs from Chlorella Vulgaris were characterized using FT-ICR-MS. Based on the FT-ICR-MS results, nine representative model compounds (MCs, i.e., benzene, naphthalene, anthracene, phenanthrene, glucose, l-glutamic, triglyceride, tannic and lignin) were applied to investigate the physicochemical properties of EOMs and the ROS changes induced by the photoreaction of chlortetracycline (CTC). With the help of quenching assays, nine MCs were classified into prone-ROS and non-prone-ROS fractions. Prone-ROS compounds generate O2- upon electron transfer to 3O2, which then produces ·OH after disproportionation to generate hydrogen peroxide. The formation of 1O2 is attributed to energy transfer from prone-ROS to 3O2. Density functional theory revealed that prone-ROS exhibited higher reactivity compared to non-prone-ROS, this finding is as well supported by the result of steady-state photolysis measurement. Our study gives a new insight into photochemical fate of CTC in aquatic environments, providing theoretical basis for assessing antibiotics' ecological risk accurately.
Collapse
Affiliation(s)
- Longfei Kang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, China.
| | - Yixin Jiang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Yajun Tian
- College of Environment, Zhejiang University of Technology, Chaowang Road 18, Hangzhou 310014, China
| | - Jinru Zou
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Li Feng
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Yongze Liu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Qi Han
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Liqiu Zhang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, China.
| |
Collapse
|
12
|
Kim P, Boothby C, Grassian VH, Continetti RE. Photoinduced Reactions of Nitrate in Aqueous Microdroplets by Triplet Energy Transfer. J Phys Chem Lett 2023; 14:10677-10684. [PMID: 37988598 DOI: 10.1021/acs.jpclett.3c02178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
In-situ Raman spectroscopy of single levitated charged aqueous microdroplets irradiated by dual-beam (266 and 532 nm) lasers demonstrates that the nitrate anion (NO3-) can be depleted in the droplet through an energy transfer mechanism following excitation of sulfanilic acid (SA), a UV-absorbing aromatic organic compound. Upon 266 nm irradiation, a fast decrease of the NO3- concentration was observed when SA is present in the droplet. This photoinduced reaction occurs without the direct photolysis of NO3-. Instead, the rate of NO3- depletion was found to depend on the initial concentration of SA and the pH of the droplet. Based on absorption-emission spectral analysis and excited-state energy calculations, triplet-triplet energy transfer between SA and NO3- is proposed as the underlying mechanism for the depletion of NO3- in aqueous microdroplets. These results suggest that energy transfer mechanisms initiated by light-absorbing organic molecules may play a significant role in NO3- photochemistry.
Collapse
Affiliation(s)
- Pyeongeun Kim
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California, 92093-0340, United States
| | - Christian Boothby
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California, 92093-0340, United States
| | - Vicki H Grassian
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California, 92093-0340, United States
| | - Robert E Continetti
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California, 92093-0340, United States
| |
Collapse
|
13
|
Liao Z, Lu J, Xie K, Wang Y, Yuan Y. Prediction of Photochemical Properties of Dissolved Organic Matter Using Machine Learning. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:17971-17980. [PMID: 37029743 DOI: 10.1021/acs.est.2c07545] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Apparent quantum yields (Φ) of photochemically produced reactive intermediates (PPRIs) formed by dissolved organic matter (DOM) are vital to element cycles and contaminant fates in surface water. Simultaneous determination of ΦPPRI values from numerous water samples through existing experimental methods is time consuming and ineffective. Herein, machine learning models were developed with a systematic data set including 1329 data points to predict the values of three ΦPPRIs (Φ3DOM*, Φ1O2, and Φ·OH) based on DOM spectral parameters, experimental conditions, and calculation parameters. The best predictive performances for Φ3DOM*, Φ1O2, and Φ·OH were achieved using the CatBoost model, which outperformed the traditional linear regression models. The significances of the wavelength range and spectral parameters on the three ΦPPRI predictions were revealed, suggesting that DOM with lower molecular weight, lower aromatic content, and a more autochthonous portion possessed higher ΦPPRIs. Chain models were constructed by adding the predicted Φ3DOM* as a new feature into the Φ1O2 and Φ·OH models, which consequently improved the predictive performance of Φ1O2 but worsened the Φ·OH prediction likely due to the complex formation pathways of ·OH. Overall, this study offered robust ΦPPRI prediction across interlaboratory differences and provided new insights into the relationship between PPRIs formation and DOM properties.
Collapse
Affiliation(s)
- Zhiyang Liao
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Jinrong Lu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Kunting Xie
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Yi Wang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Yong Yuan
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
14
|
Liu J, Xue S, Jiang C, Zhang Z, Lin Y. Effect of dissolved organic matter on sulfachloropyridazine photolysis in liquid water and ice. WATER RESEARCH 2023; 246:120714. [PMID: 37837902 DOI: 10.1016/j.watres.2023.120714] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/05/2023] [Accepted: 10/07/2023] [Indexed: 10/16/2023]
Abstract
Dissolved organic matter (DOM) is an ubiquitous component of environmental snow and ice, which can absorb light and produce reactive species (RS) and thus is of importance in ice photochemistry. The photodegradation of sulfachloropyridazine (SCP) without and with DOM present in liquid water and ice were investigated in this study. The photodegradation rate constants for SCP without DOM present was enhanced by 52.5 % in ice relative to liquid water, likely due to the enhanced role of SCP self-sensitized RS in ice. DOM significantly promoted SCP photolysis in both liquid water and ice, which was mainly attributed to roles of singlet oxygen (1O2) and triplet excited-state DOM (3DOM*) generated from DOM. 1O2 production from DOM was significantly enhanced in ice relative to liquid water. Hydroxyl radical (•OH) production from DOM in ice was similar to those in liquid water. Enhancement in 3DOM* production in ice was observed at low DOM concentrations. Suwannee River Fulvic Acid (SRFA) and Elliott Soil Humic Acid (ESHA) exhibited differences in RS production in liquid water and ice, as well as in enhancement of 1O2 and 3DOM* produced in ice relative to liquid water. DOM induced reaction pathways of SCP different from those without DOM present, and therefore affected toxicity of SCP photoproducts. There were differences in photodegradation pathways of SCP as well as in toxicity of SCP photoproducts between liquid water and ice.
Collapse
Affiliation(s)
- Jiyang Liu
- School of Environmental Science, Liaoning University, Shenyang 110036, China
| | - Shuang Xue
- School of Environmental Science, Liaoning University, Shenyang 110036, China.
| | - Caihong Jiang
- School of Environmental Science, Liaoning University, Shenyang 110036, China
| | - Zhaohong Zhang
- School of Environmental Science, Liaoning University, Shenyang 110036, China
| | - Yingzi Lin
- School of Municipal and Environmental Engineering, Jilin Jianzhu University, Changchun 130118, China
| |
Collapse
|
15
|
Yu P, Guo Z, Wang T, Wang J, Guo Y, Zhang L. Insights into the mechanisms of natural organic matter on the photodegradation of indomethacin under natural sunlight and simulated light irradiation. WATER RESEARCH 2023; 244:120539. [PMID: 37659181 DOI: 10.1016/j.watres.2023.120539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 08/03/2023] [Accepted: 08/27/2023] [Indexed: 09/04/2023]
Abstract
Indomethacin (INDO) is an antipyretic and analgesic pharmaceutical that has been widely detected in the aquatic environment. Photodegradation is an essential pathway for removal of INDO in sunlit surface water, however the effect of dissolved organic matter (DOM) on its photodegradation and the ecotoxicity of photodegradation products are largely unknown. In this study, the effect of DOM on the photodegradation of INDO under both natural and simulated light irradiation was studied. The results showed that indirect photolysis is the main photodegradation pathway of INDO in presence of DOM where 3DOM* plays the most important promoting role. Compared to commercial DOM (SRNOM and SRFA), DOM extracted from local-lake water (SLDOM) promoted the photodegradation to the highest extent. Although the steady-state concentrations of 3DOM* of SRNOM and SRFA were higher than SLDOM, their inhibition effect surpassed SLDOM namely higher light screening effect and phenolic antioxidant concentrations. The photodegradation pathway in pure water is different from that in DOM system where the decarboxylation of acetic acid chain and the oxidative fracture of indole ring are the main degradation pathways. Density Functional Theory (DFT) calculation further supports the proposed degradation pathways of INDO. ECOSAR calculation showed that the toxicity of INDO photodegradation products to aquatic organisms may maintain or even exceed its parent compound. Therefore, comprehensive understanding of the impact of DOM on the photodegradation of INDO is of crucial significance for evaluating its ecological risk in the natural environment.
Collapse
Affiliation(s)
- Pengfei Yu
- Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Zhongyu Guo
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8552, Japan
| | - Tingting Wang
- Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Jieqiong Wang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Yuchen Guo
- College of Water Resources and Hydropower Engineering, North China Electric Power University, Beijing 102206, China
| | - Lilan Zhang
- Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing, 400045, China.
| |
Collapse
|
16
|
Liu Y, Cheng F, Zhang T, Qu J, Zhang YN, Peijnenburg WJGM. Determination of excited triplet states of dissolved organic matter using chemical probes: A comparative and mechanistic study. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:132011. [PMID: 37451100 DOI: 10.1016/j.jhazmat.2023.132011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/16/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
Dissolved organic matter (DOM) plays an important role in the biogeochemical cycle in natural waters. The determination and characterization of the excited triplet state of DOM (3DOM*) have attracted much attention recently. However, the underlying differences of determined 3DOM* through different pathways are not yet fully understood. In this study, the differences and underlying mechanisms of the determined 3DOM* using 2,4-hexadien-1-ol (HDO) through an energy transfer pathway and 2,4,6-trimethylphenol (TMP) through an electron transfer pathway, were investigated. The results showed that the determined quantum yields of 3DOM* (Φ3DOM*) for four commercial and four isolated local DOMs are different using HDO ((0.04 ± 0.00) × 10-2 to (2.9 ± 0.17) × 10-2)) and TMP ((0.08 ± 0.01) × 10-2 to (1.2 ± 0.17) × 10-2), respectively. For 17 DOM-analogs, significant differences were also observed with the quantum yields of their 3DOM* determined using HDO (ΦHDO) and the triplet-state quantum yield coefficients determined using TMP (fTMP). It indicates the different reactivity of TMP and HDO with the excited triplet of the chromophores with different structures within the isolated DOM. Based on the experimental and predicted values of fTMP and ΦHDO for different DOM-analogs, the impact of substituents on differences in 3DOM* values were further revealed. These results demonstrated that the levels of 3DOM* depended on the chemical functionalities present in the DOM-analogs.
Collapse
Affiliation(s)
- Yue Liu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Fangyuan Cheng
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Tingting Zhang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Jiao Qu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Ya-Nan Zhang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China.
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences, Leiden University, Leiden, the Netherlands; National Institute of Public Health and the Environment (RIVM), Center for Safety of Substances and Products, Bilthoven, the Netherlands
| |
Collapse
|
17
|
Peng J, Pan Y, Zhou Y, Kong Q, Lei Y, Lei X, Cheng S, Zhang X, Yang X. Triplet Photochemistry of Effluent Organic Matter in Degradation of Extracellular Antibiotic Resistance Genes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7230-7239. [PMID: 37114949 DOI: 10.1021/acs.est.2c08036] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Wastewater effluent is a major source of extracellular antibiotic resistance genes (eArGs) in the aquatic environment, a threat to human health and biosecurity. However, little is known about the extent to which organic matter in the wastewater effluent (EfOM) might contribute to photosensitized oxidation of eArGs. Triplet states of EfOM were found to dominate the degradation of eArGs (accounting for up to 85%). Photo-oxidation proceeded mainly via proton-coupled electron transfer reactions. They broke plasmid strands and damaged bases. O2•- was also involved, and it coupled with the reactions' intermediate radicals of eArGs. The second-order reaction rates of blaTEM-1 and tet-A segments (209-216 bps) with the triplet state of 4-carboxybenzophenone were calculated to be (2.61-2.75) × 108 M-1 s-1. Besides as photosensitizers, the antioxidant moieties in EfOM also acted as quenchers to revert intermediate radicals back to their original forms, reducing the rate of photodegradation. However, the terrestrial origin natural organic matter was unable to photosensitize because it formed less triplets, especially high-energy triplets, so its inhibitory effects predominated. This study advances our understanding of the role of EfOM in the photo-oxidation of eArGs and the difference between EfOM and terrestrial-origin natural organic matter.
Collapse
Affiliation(s)
- Jianglin Peng
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yanheng Pan
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yangjian Zhou
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Qingqing Kong
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yu Lei
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Xin Lei
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Shuangshuang Cheng
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Xinran Zhang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Xin Yang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
18
|
Ma L, Worland R, Tran T, Anastasio C. Evaluation of Probes to Measure Oxidizing Organic Triplet Excited States in Aerosol Liquid Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6052-6062. [PMID: 37011016 DOI: 10.1021/acs.est.2c09672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Oxidizing triplet excited states of organic matter (3C*) drive numerous reactions in fog/cloud drops and aerosol liquid water (ALW). Quantifying oxidizing triplet concentrations in ALW is difficult because 3C* probe loss can be inhibited by the high levels of dissolved organic matter (DOM) and copper in particle water, leading to an underestimate of triplet concentrations. In addition, illuminated ALW contains high concentrations of singlet molecular oxygen (1O2*), which can interfere with 3C* probes. Our overarching goal is to find a triplet probe that has low inhibition by DOM and Cu(II) and low sensitivity to 1O2*. To this end, we tested 12 potential probes from a variety of compound classes. Some probes are strongly inhibited by DOM, while others react rapidly with 1O2*. One of the probe candidates, (phenylthiol)acetic acid (PTA), seems well suited for ALW conditions, with mild inhibition and fast rate constants with triplets, but it also has weaknesses, including a pH-dependent reactivity. We evaluated the performance of both PTA and syringol (SYR) as triplet probes in aqueous extracts of particulate matter. While PTA is less sensitive to inhibition than SYR, it results in lower triplet concentrations, possibly because it is less reactive with weakly oxidizing triplets.
Collapse
Affiliation(s)
- Lan Ma
- Department of Land, Air, and Water Resources, University of California, Davis, California 95616, United States
| | - Reed Worland
- Department of Land, Air, and Water Resources, University of California, Davis, California 95616, United States
| | - Theo Tran
- Department of Land, Air, and Water Resources, University of California, Davis, California 95616, United States
| | - Cort Anastasio
- Department of Land, Air, and Water Resources, University of California, Davis, California 95616, United States
| |
Collapse
|
19
|
Remke SC, Houska J, von Gunten U, Canonica S. Impact of chlorination and ozonation of dissolved organic matter on its photo-induced production of long-lived photooxidants and excited triplet states. WATER RESEARCH 2023; 239:119921. [PMID: 37230030 DOI: 10.1016/j.watres.2023.119921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 03/19/2023] [Accepted: 03/26/2023] [Indexed: 05/27/2023]
Abstract
Recent studies suggested that long-lived photooxidants (LLPO), which are reactive intermediates formed during irradiation of dissolved organic matter (DOM), may consist of phenoxyl radicals derived from phenolic moieties of the DOM. Besides the well-studied excited triplet states of chromophoric DOM (3CDOM*), LLPO presumably are important photooxidants for the transformation of electron-rich contaminants in surface waters. The main objective of this study was to further test the potential role of phenoxyl radical as LLPO. Suwannee River fulvic acid (SRFA) as a model DOM was pre-oxidised using the phenol-reactive oxidants chlorine and ozone, followed by its characterization by the specific UV absorption at 254 nm (SUVA254), the ratio of absorbance at λ = 254 nm and λ = 365 nm (E2:E3), and the electron donating capacity (EDC). Subsequently, the photoreactivity of pre-oxidized SRFA was tested using 3,4-dimethoxyphenol (DMOP) as a LLPO probe compound at two initial concentrations ([DMOP]0 = 0.1 and 5.0 μM). Linear inter-correlations were observed for the relative changes in SUVA254, E2:E3, and EDC for increasing oxidant doses. Pseudo-first-order transformation rate constants normalized to the changing SRFA absorption rate (i.e., k0.1obs/rCDOMabsand k5.0obs/rCDOMabs, for 0.1 and 5.0 µM, respectively) exhibited the following distinct trends: The LLPO-dominated k0.1obs/rCDOMabsratio decreased with increasing oxidant dose and with decreasing SUVA254 and EDC, while the 3CDOM*-dominated k5.0obs/rCDOMabsratio positively correlated with E2:E3. Finally, it was concluded that precursors of 3CDOM* and LLPO are chemically modified differently by pre-oxidation of DOM, and LLPO precursors likely consist of phenolic moieties of DOM, suggesting phenoxyl radicals as LLPO.
Collapse
Affiliation(s)
- Stephanie C Remke
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, CH-8600 Dübendorf, Switzerland; School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Joanna Houska
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, CH-8600 Dübendorf, Switzerland; School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Urs von Gunten
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, CH-8600 Dübendorf, Switzerland; School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| | - Silvio Canonica
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, CH-8600 Dübendorf, Switzerland
| |
Collapse
|
20
|
He H, Liu K, Guo Z, Li F, Liao Z, Yang X, Ren X, Huang H, Huang B, Pan X. Photoaging mechanisms of microplastics mediated by dissolved organic matter in an iron-rich aquatic environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160488. [PMID: 36436646 DOI: 10.1016/j.scitotenv.2022.160488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/07/2022] [Accepted: 11/21/2022] [Indexed: 06/16/2023]
Abstract
As emerging pollutants, microplastics (MPs) have aroused worldwide concern due to their ubiquitous distribution, environmental persistence, and potential ecological risks. However, the ageing mechanisms, environmental behaviours and risks of photoaged MPs mediated by environmental factors remain obscure. Herein, systems containing a light source, humic acid (HA) and Fe were established to investigate the natural photoaging process of MPs including polyvinyl chloride (PVC) and polyethylene terephthalate (PET). The dehydrochlorination reaction of PVC-MP was inhibited by HA and Fe, which resulted from the coeffect of photon competition, excited state quenching, radical deactivation or transformation, and defect structure destruction. In contrast, the enhanced fluorescence effect suggested that the photooxidation reactions of PET-MP were promoted by HA and Fe. Therefore, the presence of HA and Fe in the environment inhibited the photoreduction of MPs while favoring the photooxidative process. Additionally, the adsorption capacity for 17α-ethinylestradiol and the cytotoxicity of MPs were increased after ageing in the hv + HA and hv + HA + Fe systems, which was attributed to the changes in morphology, elements and functional groups. This study provided new insight into the ageing behaviours of MPs in the natural environment with widespread dissolved organic matter and Fe.
Collapse
Affiliation(s)
- Huan He
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Kunqian Liu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Ziwei Guo
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Fan Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhicheng Liao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Xiaoxia Yang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | - Xiaomin Ren
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Huang Huang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Bin Huang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Provincial Key Laboratory of Carbon Sequestration and Pollution Control in Soils, Kunming 650500, China.
| | - Xuejun Pan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Provincial Key Laboratory of Carbon Sequestration and Pollution Control in Soils, Kunming 650500, China
| |
Collapse
|
21
|
Tu YN, Li C, Shi F, Li Y, Zhang Z, Liu H, Tian S. Enhancive and inhibitory effects of copper complexation on triplet dissolved black carbon-sensitized photodegradation of organic micropollutants. CHEMOSPHERE 2022; 307:135968. [PMID: 35964723 DOI: 10.1016/j.chemosphere.2022.135968] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 07/20/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Excited-triplet dissolved black carbon (DBC) was deemed as a significant reactive intermediate in the phototransformation of environmental micropollutants, but the impacts of concomitant metal ions on photochemical behavior of excited-triplet DBC (3DBC*) are poorly understood. Here, the photolytic kinetics of sulfadiazine and carbamazepine induced by 3DBC* involving Cu2+ was explored. The presence of Cu2+ reduced the 3DBC*-induced photodegradation rate of sulfadiazine; whereas for carbamazepine, Cu2+ enhanced 3DBC*-induced photodegradation. Cu(II)-DBC complex was formed due to the decreasing fluorescence intensities of DBC in the presence of Cu2+. Cu2+ complexation caused the decrease of 3DBC* steady-state concentrations, which markedly reduced 3DBC*-induced photodegradation rate of sulfadiazine due to its high triplet reactivity. Kinetic model showed that 3DBC* quenching rate by Cu2+ was 7.98 × 109 M-1 s-1. Cu2+ complexation can also enhance the electron transfer ability, thereby producing more ∙OH in Cu(II)-DBC complex, which explains the promoting effect of Cu2+ complexation on carbamazepine photodegradation in view of its low triplet reaction rate. These indicate that 3DBC* reactivity differences of organic micropollutants may explain their photodegradation kinetics differences in DBC system with/without Cu2+, which was supported by the linearized relationship between the photodegradation rate ratios of ten micropollutants with/without Cu2+ and their triplet reaction activity.
Collapse
Affiliation(s)
- Yi-Na Tu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Chen Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Fengli Shi
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Yingjie Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.
| | - Zhiyu Zhang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Huaying Liu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.
| | - Senlin Tian
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| |
Collapse
|
22
|
Bacilieri F, Vähätalo AV, Carena L, Wang M, Gao P, Minella M, Vione D. Wavelength trends of photoproduction of reactive transient species by chromophoric dissolved organic matter (CDOM), under steady-state polychromatic irradiation. CHEMOSPHERE 2022; 306:135502. [PMID: 35803378 DOI: 10.1016/j.chemosphere.2022.135502] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
The formation quantum yields of photochemically produced reactive intermediates (PPRIs) by irradiated CDOM (in this study, Suwannee River Natural Organic Matter and Upper Mississippi River Natural Organic Matter) decrease with increasing irradiation wavelength. In particular, the formation quantum yields of the excited triplet states of CDOM (3CDOM*) and of singlet oxygen (1O2) have an exponentially decreasing trend with wavelength. The •OH wavelength trend is different, because more effective •OH production occurs under UVB irradiation than foreseen by a purely exponential function. We show that the parameter-adjustable Weibull function (which adapts to both exponential and some non-exponential trends) is suitable to fit the mentioned quantum yield data, and it is very useful when CDOM irradiation is carried out under polychromatic lamps as done here. Model calculations suggest that, thanks to the ability of CDOM to also absorb visible radiation, and despite its decreasing quantum yield of •OH generation with increasing wavelength, CDOM would be able to trigger •OH photogeneration in deep waters, to a higher extent than UVB-absorbing nitrate or UVB + UVA-absorbing nitrite.
Collapse
Affiliation(s)
- Federico Bacilieri
- Department of Chemistry, University of Turin, Via Pietro Giuria 5, 10125, Torino, Italy
| | - Anssi V Vähätalo
- Department of Biological and Environmental Science, University of Jyväskylä, P.O.Box 35, FI-40014, Jyväskylä, Finland
| | - Luca Carena
- Department of Chemistry, University of Turin, Via Pietro Giuria 5, 10125, Torino, Italy
| | - Mingjie Wang
- Department of Chemistry, University of Turin, Via Pietro Giuria 5, 10125, Torino, Italy
| | - Pin Gao
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Marco Minella
- Department of Chemistry, University of Turin, Via Pietro Giuria 5, 10125, Torino, Italy
| | - Davide Vione
- Department of Chemistry, University of Turin, Via Pietro Giuria 5, 10125, Torino, Italy.
| |
Collapse
|
23
|
Kong Q, Pan Y, Lei X, Zhou Y, Lei Y, Peng J, Zhang X, Yin R, Shang C, Yang X. Reducing properties of triplet state organic matter ( 3DOM*) probed via the transformation from chlorine dioxide to chlorite. WATER RESEARCH 2022; 225:119120. [PMID: 36126426 DOI: 10.1016/j.watres.2022.119120] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/08/2022] [Accepted: 09/13/2022] [Indexed: 06/15/2023]
Abstract
The triplet states of dissolved organic matter (3DOM*) have been well known to oxidize various organic contaminants, but evidence of their reducing properties are largely scarce. In this work, chlorine dioxide (ClO2) as a single-electron oxidant was used as a probe to evaluate the reduction property of 3DOM*. The reduction of ClO2 to chlorite was observed in the solutions of model photosensitizers (i.e., 4-carboxybenzophenone, benzophenone, acetophenone, 3-methoxyacetophenone, naphthalene, and xanthone) during UV irradiation with the presence of ClO2, though they are resistant to ClO2 oxidation in the dark. The reducing property of the triplet states of photosensitizers was verified and their second-order reaction rate constants with ClO2 were determined to be in the range of 1.45(± 0.03)× 109 - 2.18(± 0.06) × 109 M-1 s-1 at pH 7.0. The quenching tests excluded the role of other reactive species (e.g., HO•, O(3P), Cl•, ClO• and HOCl/OCl-, O2•- and eaq-) in ClO2 reduction to chlorite when using model photosensitizers and DOM isolates. Chlorite formation was 48.1-90.4% and 4812.8-7721.8% higher during UV irradiation with the presence of ClO2 and DOM than those without UV irradiation or without DOM present, respectively. The enhancement was attributed to the enhanced electron donating capacity (chlorite precursors) of DOM upon UV irradiation and also to 3DOM* acting as an electron donor reducing ClO2 to chlorite. This study highlighted the important role of 3DOM* as a reductant.
Collapse
Affiliation(s)
- Qingqing Kong
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yanheng Pan
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Xin Lei
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yangjian Zhou
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yu Lei
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Jianglin Peng
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Xinran Zhang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Ran Yin
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999066, China
| | - Chii Shang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999066, China
| | - Xin Yang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
24
|
Bhat A, Pomerantz WCK, Arnold WA. Finding Fluorine: Photoproduct Formation during the Photolysis of Fluorinated Pesticides. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12336-12346. [PMID: 35972505 PMCID: PMC9454825 DOI: 10.1021/acs.est.2c04242] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 05/28/2023]
Abstract
The photolysis of pesticides with different fluorine motifs was evaluated to quantify the formation of fluorinated products in buffered aqueous systems, advanced oxidation (AOP) and reduction processes (ARP), and river water. Simulated sunlight quantum yields at pH 7 were 0.0033, 0.0025, 0.0015, and 0.00012 for penoxsulam, florasulam, sulfoxaflor, and fluroxypyr, respectively. The bimolecular rate constants with hydroxyl radicals were 2 to 5.7 × 1010 M-1 s-1 and, with sulfate radicals, 1.6 to 2.6 × 108 M-1 s-1 for penoxsulam, florasulam, and fluroxypyr, respectively. The rate constants of sulfoxaflor were 100-fold lower. Using quantitative 19F-NMR, complete fluorine mass balances were obtained. The maximum fluoride formation was 53.4 and 87.4% for penoxsulam and florasulam under ARP conditions, and 6.1 and 100% for sulfoxaflor and fluroxypyr under AOP conditions. Heteroaromatic CF3 and aliphatic CF2 groups were retained in multiple fluorinated photoproducts. Aryl F and heteroaromatic F groups were readily defluorinated to fluoride. CF3 and CF2 groups formed trifluoroacetate and difluoroacetate, and yields increased under oxidizing conditions. 19F-NMR chemical shifts and coupling analysis provided information on hydrogen loss on adjacent bonds or changes in chirality. Mass spectrometry results were consistent with the observed 19F-NMR products. These results will assist in selecting treatment processes for specific fluorine motifs and in the design of agrochemicals to reduce byproduct formation.
Collapse
Affiliation(s)
- Akash
P. Bhat
- Department
of Civil, Environmental, and Geo-, Engineering, University of Minnesota, 500 Pillsbury Dr. SE, Minneapolis, Minnesota 55455, United States
| | - William C. K. Pomerantz
- Department
of Chemistry, 207 Pleasant St. SE, University
of Minnesota, Minneapolis, Minnesota, 55455, United States
| | - William A. Arnold
- Department
of Civil, Environmental, and Geo-, Engineering, University of Minnesota, 500 Pillsbury Dr. SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
25
|
Carena L, Scozzaro A, Romagnoli M, Pazzi M, Martone L, Minero C, Minella M, Vione D. Phototransformation of the fungicide tebuconazole, and its predicted fate in sunlit surface freshwaters. CHEMOSPHERE 2022; 303:134895. [PMID: 35568219 DOI: 10.1016/j.chemosphere.2022.134895] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
The fungicide tebuconazole (TBCZ) is expected to undergo negligible direct photolysis in surface freshwaters, but it can be degraded by indirect photochemistry. TBCZ mainly reacts with hydroxyl radicals and, to a lesser extent, with the triplet states of chromophoric dissolved organic matter (3CDOM*). Indirect photochemistry is strongly affected by environmental conditions, and TBCZ lifetimes of about one week are expected in sunlit surface waters under favourable circumstances (shallow waters with low concentrations of dissolved organic carbon, DOC, during summer). In these cases, the time trend would follow pseudo-first order kinetics (mono-exponential decay). Under less favourable conditions, photoinduced degradation would span over a few or several months, and TBCZ phototransformation would depart from an exponential trend because of seasonally changing sunlight irradiance. The TBCZ phototransformation products should be less toxic than their parent compound,thus photodegradation has potential to decrease the environmental impact of TBCZ. Hydroxylation is a major TBCZ transformation route, due to either OH attack, or one-electron oxidation sensitised by 3CDOM*, followed by reaction of the oxidised transient with oxygen and water.
Collapse
Affiliation(s)
- Luca Carena
- Dipartimento di Chimica, Università degli Studi di Torino, Via Pietro Giuria 5, 10125, Torino, Italy
| | - Andrea Scozzaro
- Dipartimento di Chimica, Università degli Studi di Torino, Via Pietro Giuria 5, 10125, Torino, Italy
| | - Monica Romagnoli
- Dipartimento di Chimica, Università degli Studi di Torino, Via Pietro Giuria 5, 10125, Torino, Italy
| | - Marco Pazzi
- Dipartimento di Chimica, Università degli Studi di Torino, Via Pietro Giuria 5, 10125, Torino, Italy
| | - Luca Martone
- Dipartimento di Chimica, Università degli Studi di Torino, Via Pietro Giuria 5, 10125, Torino, Italy
| | - Claudio Minero
- Dipartimento di Chimica, Università degli Studi di Torino, Via Pietro Giuria 5, 10125, Torino, Italy
| | - Marco Minella
- Dipartimento di Chimica, Università degli Studi di Torino, Via Pietro Giuria 5, 10125, Torino, Italy
| | - Davide Vione
- Dipartimento di Chimica, Università degli Studi di Torino, Via Pietro Giuria 5, 10125, Torino, Italy.
| |
Collapse
|
26
|
Yang X, Rosario-Ortiz FL, Lei Y, Pan Y, Lei X, Westerhoff P. Multiple Roles of Dissolved Organic Matter in Advanced Oxidation Processes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:11111-11131. [PMID: 35797184 DOI: 10.1021/acs.est.2c01017] [Citation(s) in RCA: 122] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Advanced oxidation processes (AOPs) can degrade a wide range of trace organic contaminants (TrOCs) to improve the quality of potable water or discharged wastewater effluents. Their effectiveness is impacted, however, by the dissolved organic matter (DOM) that is ubiquitous in all water sources. During the application of an AOP, DOM can scavenge radicals and/or block light penetration, therefore impacting their effectiveness toward contaminant transformation. The multiple ways in which different types or sources of DOM can impact oxidative water purification processes are critically reviewed. DOM can inhibit the degradation of TrOCs, but it can also enhance the formation and reactivity of useful radicals for contaminants elimination and alter the transformation pathways of contaminants. An in-depth analysis highlights the inhibitory effect of DOM on the degradation efficiency of TrOCs based on DOM's structure and optical properties and its reactivity toward oxidants as well as the synergistic contribution of DOM to the transformation of TrOCs from the analysis of DOM's redox properties and DOM's transient intermediates. AOPs can alter DOM structure properties as well as and influence types, mechanisms, and extent of oxidation byproducts formation. Research needs are proposed to advance practical understanding of how DOM can be exploited to improve oxidative water purification.
Collapse
Affiliation(s)
- Xin Yang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Fernando L Rosario-Ortiz
- Department of Civil, Environmental and Architectural Engineering, University of Colorado, Boulder, Colorado 80309, United States
| | - Yu Lei
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yanheng Pan
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Xin Lei
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Paul Westerhoff
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287-3005, United States
| |
Collapse
|
27
|
Chen Z, An C, Elektorowicz M, Tian X. Sources, behaviors, transformations, and environmental risks of organophosphate esters in the coastal environment: A review. MARINE POLLUTION BULLETIN 2022; 180:113779. [PMID: 35635887 DOI: 10.1016/j.marpolbul.2022.113779] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
The rapid growth in the global production of organophosphate esters (OPEs) has resulted in their high environmental concentrations. The low removal rate of OPEs makes the effluents of wastewater treatment plants be one of the major sources of OPEs. Due to relatively high solubility and mobility, OPEs can be carried to the coastal environment through river discharge and atmospheric deposition. Therefore, the coastal environment can be an important OPE sink. Previous studies have shown that OPEs were widely detected in coastal atmospheres, water, sediments, and even aquatic organisms. OPEs can undergo various environmental processes in the coastal environment, including adsorption/desorption, air-water exchange, and degradation. In addition, bioaccumulation of OPEs was observed in coastal biota but current concentrations would not cause significant ecological risks. More efforts are required to understand the environmental behaviors of OPEs and address resultant environmental and health risks, especially in the complicated environment.
Collapse
Affiliation(s)
- Zhikun Chen
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal H3G 1M8, Canada
| | - Chunjiang An
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal H3G 1M8, Canada.
| | - Maria Elektorowicz
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal H3G 1M8, Canada
| | - Xuelin Tian
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal H3G 1M8, Canada
| |
Collapse
|
28
|
Wan D, Wang J, Chen T, Xiang W, Selvinsimpson S, Chen Y. Effect of disinfection on the photoreactivity of effluent organic matter and photodegradation of organic contaminants. WATER RESEARCH 2022; 219:118552. [PMID: 35550969 DOI: 10.1016/j.watres.2022.118552] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 06/15/2023]
Abstract
Chlorine, UV254, and ozone are three typical processes commonly used for wastewater disinfection, which could change the photoreactivity of dissolved organic matter (DOM) in effluents of wastewater treatment plants (WWTPs). The photoinduced reactive species (RS) from DOM, primarily including the excited triplet state of DOM (3DOM*), singlet oxygen (1O2), and hydroxyl radical (•OH), play important roles in the attenuation of contaminants. However, the effect of disinfection processes on the photosensitized degradation of contaminants is poorly understood. This paper presents the first evidence that 3DOM*, 1O2, and •OH interaction with three typical contaminants (diphenhydramine, cimetidine, and N,N-diethyl-m-toluamide (DEET)) was largely impacted by DOM after disinfection. The results of electron spin resonance (ESR) spectrometry and laser flash photolysis (LFP) experiments demonstrated that the chlorination increased the formation rate of 3DOM* and 1O2, while UV254 irradiation and ozonation decreased the formation rate of these RS. All these three disinfection processes promoted the photoproduction of •OH and increased the photodegradation rate constants (kobs) of DEET by 26-361%. The kobs of diphenhydramine, cimetidine, and DEET correlated positively with the formation rate of 3DOM*, 1O2, and •OH, respectively. The bimolecular reaction rate constant of 3DOM* with diphenhydramine increased by ∼41% after chlorination. These findings suggest that disinfection processes altered the photogeneration of RS from DOM, which significantly impacts the fate of trace pollutants in aquatic environments.
Collapse
Affiliation(s)
- Dong Wan
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Jie Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Tong Chen
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Weiming Xiang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | | | - Yong Chen
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|
29
|
Kamat M, Moor K, Langlois G, Chen M, Parker KM, McNeill K, Snow SD. The Overlooked Photochemistry of Iodine in Aqueous Suspensions of Fullerene Derivatives. ACS NANO 2022; 16:8309-8317. [PMID: 35533084 PMCID: PMC9134498 DOI: 10.1021/acsnano.2c02281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/05/2022] [Indexed: 06/14/2023]
Abstract
Fullerene's low water solubility was a serious challenge to researchers aiming to harness their excellent photochemical properties for aqueous applications. Cationic functionalization of the fullerene cage provided the most effective approach to increase water solubility, but common synthesis practices inadvertently complicated the photochemistry of these systems by introducing iodide as a counterion. This problem was overlooked until recent work noted a potentiation effect which occurred when photosensitizers were used to inactivate microorganisms with added potassium iodide. In this work, several photochemical pathways were explored to determine the extent and underlying mechanisms of iodide's interference in the photosensitization of singlet oxygen by cationic fulleropyrrolidinium ions and rose bengal. Triplet excited state sensitizer lifetimes were measured via laser flash photolysis to probe the role of I- in triplet sensitizer quenching. Singlet oxygen production rates were compared across sensitizers in the presence or absence of I-, SO42-, and other anions. 3,5-Dimethyl-1H-pyrazole was employed as a chemical probe for iodine radical species, such as I·, but none were observed in the photochemical systems. Molecular iodine and triiodide, however, were found in significant quantities when photosensitizers were irradiated in the presence of I- and O2. The formation of I2 in these photochemical systems calls into question the interpretations of prior studies that used I- as a counterion for photosensitizer materials. As an example, MS2 bacteriophages were inactivated here by cationic fullerenes with and without I- present, showing that I- moderately accelerated the MS2 deactivation, likely by producing I2. Production of I2 did not appear to be directly correlated with estimates of 1O2 concentration, suggesting that the relevant photochemical pathways are more complex than direct reactions between 1O2 and I- in the bulk solution. On the basis of the results here, iodine photochemistry may be underappreciated and misunderstood in other environmental systems.
Collapse
Affiliation(s)
- Madhusudan Kamat
- Department
of Civil and Environmental Engineering, Louisiana State University, 3255 Patrick Taylor Hall, Baton Rouge, Louisiana 70803, United States
| | - Kyle Moor
- Utah
Water Research Laboratory, Department of Civil and Environmental Engineering, Utah State University, 4110 Old Main Hill, Logan Utah 84322-4110, United States
- Department
of Environmental Systems Science, ETH Zurich, Universitaetstrasse 16, 8092 Zurich, Switzerland
| | - Gabrielle Langlois
- Department
of Civil and Environmental Engineering, Louisiana State University, 3255 Patrick Taylor Hall, Baton Rouge, Louisiana 70803, United States
| | - Moshan Chen
- Department
of Energy, Environmental, & Chemical Engineering, Washington University in St. Louis, 1 Brookings Drive, St. Louis, Missouri 63130-4899, United States
| | - Kimberly M. Parker
- Department
of Energy, Environmental, & Chemical Engineering, Washington University in St. Louis, 1 Brookings Drive, St. Louis, Missouri 63130-4899, United States
| | - Kristopher McNeill
- Department
of Environmental Systems Science, ETH Zurich, Universitaetstrasse 16, 8092 Zurich, Switzerland
| | - Samuel D. Snow
- Department
of Civil and Environmental Engineering, Louisiana State University, 3255 Patrick Taylor Hall, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
30
|
Huang S, Chen M, Diao Y, Feng Q, Zeng RJ, Zhou S. Dissolved Organic Matter Acting as a Microbial Photosensitizer Drives Photoelectrotrophic Denitrification. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:4632-4641. [PMID: 35319876 DOI: 10.1021/acs.est.1c07556] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The biogeochemical fates of dissolved organic matter (DOM) show important environmental significance in aqueous ecosystems. However, the current understanding of the trophic relationship between DOM and microorganisms limits the ability of DOM to serve as a heterotrophic substrate or electron shuttle for microorganisms. In this work, we provide the first evidence of photoelectrophy, a new trophic linkage, that occurs between DOM and nonphototrophic microorganisms. Specifically, the photoelectrotrophic denitrification process was demonstrated in a Thiobacillus denitrificans-DOM coupled system, in which DOM acted as a microbial photosensitizer to drive the model denitrifier nitrate reduction. The reduction of nitrate followed a pseudo-first-order reaction with a kinetic constant of 0.06 ± 0.003 h-1, and the dominant nitrogenous product was nitrogen. The significant upregulated (p < 0.01) expression of denitrifying genes, including nar, nir, nor, and nos, supported that the conversion of nitrate to nitrogen was the microorganism-mediated process. Interestingly, the photoelectrophic process triggered by DOM photosensitization promotes humification of DOM itself, an almost opposite trend of pure DOM irradiation. The finding not only reveals a so far overlooked role of DOM serving as the microbial photosensitizer in sunlit aqueous ecosystems but also suggests a strategy for promoting sunlight-driven denitrification in surface environments.
Collapse
Affiliation(s)
- Shaofu Huang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Man Chen
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Youming Diao
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Qinyuan Feng
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Raymond Jianxiong Zeng
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| |
Collapse
|
31
|
Liu H, Zhang Z, Tu YN, Li Y, Lei Y, Tian S. Dual roles of Cu 2+ complexation with dissolved organic matter on the photodegradation of trace organic pollutants: Triplet- and OH-induced reactions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152934. [PMID: 35007586 DOI: 10.1016/j.scitotenv.2022.152934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/17/2021] [Accepted: 01/02/2022] [Indexed: 06/14/2023]
Abstract
The triplet excited state of dissolved organic matter (3DOM⁎) is highly effective in the photodegradation of a broad spectrum of trace organic pollutants (TOPs), and its photoactivity is affected by concomitant metal ions in surface waters. However, the impact of environmental metal ions on the 3DOM⁎-induced photodegradation of TOPs has not been systemically explored. Herein, we investigated the effect of environmental Cu2+ on the 3DOM⁎-induced photodegradation kinetics of 16 TOPs. A fluorescence quenching experiment showed that a Cu(II)-DOM complex was formed. For the TOPs with stronger electron-donating groups (triplet-labile moieties, e.g., phenols and anilines), Cu2+ complexation notably inhibited 3DOM⁎-induced photodegradation. This may be ascribed to the decrease of 3DOM⁎ steady-state concentration because Cu2+ complexation reduces its formation rates and enhances scavenging rates tested by sorbic acid isomerization experiment. Meanwhile, it was found that Cu2+ complexation facilitated the photolysis of refractory TOPs (lower triplet reactivity) because of enhanced electron transfer between DOM and Cu(II), causing photoinduced OH formation. These findings implied that 3DOM⁎ reactivity differences in TOPs could affect the photodegradation rates in the complex system, which was confirmed via a linear correlation of photodegradation rate ratios for 16 TOPs induced by 3DOM⁎ in the presence/absence of Cu2+ with their 3DOM⁎ reactivity. These findings helped to improve our understanding of the photochemical reactivity of 3DOM⁎ in natural waters, especially the effects of environmentally concomitant metal ions.
Collapse
Affiliation(s)
- Huaying Liu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Zhiyu Zhang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Yi-Na Tu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Yingjie Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China.
| | - Yajie Lei
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Senlin Tian
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China.
| |
Collapse
|
32
|
Meng J, Yuan S, Wang W, Jin J, Zhan X, Xiao L, Hu ZH. Photodegradation of roxarsone in the aquatic environment: influencing factors, mechanisms, and artificial neural network modeling. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:7844-7852. [PMID: 34480704 DOI: 10.1007/s11356-021-16183-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Roxarsone (ROX), an organoarsenic feed additive, can be discharged into aquatic environment and photodegraded into more toxic inorganic arsenics. However, the photodegradation behavior of ROX in aquatic environment is still unclear. To better understand ROX photodegradation behavior, the influencing factors, photodegradation mechanism, and process modelling of ROX photodegradation were investigated in this study. The results showed that ROX in the aquatic environment was degraded to inorganic As(III) and As(V) under light irradiation. The degradation efficiency was enhanced by 25% with the increase of light intensity from 300 to 800 μW/cm2 via indirect photolysis. The photodegradation was temperature dependence, but was only slightly affected by pH. Nitrate ion (NO3-) had an obvious influence, but sulfate, carbonate, and chlorate ions had a negligible effect on ROX degradation. Dissolved organic matter (DOM) in the solution inhibited the photodegradation. ROX photodegradation was mainly mediated by reactive oxygen species (in the form of single oxygen 1O2) generated through ROX self-sensitization under irradiation. Based on the data of factors affecting ROX photodegradation, ROX photodegradation model was built and trained by an artificial neural network (ANN), and the predicted degradation rate was in good agreement with the real values with a root mean square error of 1.008. This study improved the understanding of ROX photodegradation behavior and provided a basis for controlling the pollution from ROX photodegradation.
Collapse
Affiliation(s)
- Jizhong Meng
- School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Shoujun Yuan
- School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China.
| | - Wei Wang
- School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Juliang Jin
- School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xinmin Zhan
- Civil Engineering, College of Science and Engineering, National University of Ireland, Galway, Ireland
| | - Liwen Xiao
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, Dublin 2, Ireland
| | - Zhen-Hu Hu
- School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China.
- Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|
33
|
Tian Y, Feng L, Li R, Li J, Du Z, Zhang L, Liu Y. Inhibitory effects of antioxidant moieties in humic substances on phototransformation of chlortetracycline mediated by the algae extracellular organic matter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 798:149001. [PMID: 34325136 DOI: 10.1016/j.scitotenv.2021.149001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/19/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
In algae rich waters, sunlight-driven transformation of antibiotics could be accelerated via sensitization by algae extracellular organic matter (EOM), and this photosensitization process will be affected by coexisting humic substances. In this study, we explored the effect and mechanism of humic substances on photodegradation of chlortetracycline (CTC) mediated by EOM. We found that humic substances exhibited a marked inhibitory effect on the EOM-mediated photodegradation of CTC. Given that humic substances exhibited little effects on the EOM-mediated formation of triplet state species, the quenching effect of humic substances on reactive species was excluded. The inhibitory effect of humic substances was mainly attributed to the back reduction of CTC oxidation intermediates by the antioxidant moieties in humic substances. The ozone oxidation treatment for humic substances was applied to destroy antioxidant moieties. After ozonation, the inhibitory effects of humic substances were greatly decreased, confirming the dominant role of antioxidant moieties in humic substances, which inhibited CTC photodegradation mediated by EOM via reducing oxidation intermediates of CTC. This back reduction was further verified to be exergonic via reactive Gibbs free energy, indicating the back reduction by humic substances of CTC oxidation intermediates could occur spontaneously. The present study will be helpful for predicting the fate and risk of CTC in algae rich water environments, and is of great significance for the study of phototransformation of other antibiotics.
Collapse
Affiliation(s)
- Yajun Tian
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing 100083, China; College of Environment, Zhejiang University of Technology, Chaowang Road 18, Hangzhou 310014, China
| | - Li Feng
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing 100083, China
| | - Renna Li
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing 100083, China
| | - Jun Li
- College of Environment, Zhejiang University of Technology, Chaowang Road 18, Hangzhou 310014, China
| | - Ziwen Du
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing 100083, China
| | - Liqiu Zhang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing 100083, China.
| | - Yongze Liu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
34
|
Wenk J, Graf C, Aeschbacher M, Sander M, Canonica S. Effect of Solution pH on the Dual Role of Dissolved Organic Matter in Sensitized Pollutant Photooxidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:15110-15122. [PMID: 34714642 PMCID: PMC8735754 DOI: 10.1021/acs.est.1c03301] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Dissolved organic matter (DOM) has a dual role in indirect phototransformations of aquatic contaminants by acting both as a photosensitizer and an inhibitor. Herein, the pH dependence of the inhibitory effect of DOM and the underlying mechanisms were studied in more than 400 kinetic irradiation experiments over the pH range of 6-11. Experiments employed various combinations of one of three DOM isolates, one of two model photosensitizers, the model antioxidant phenol, and one of nine target compounds (TCs), comprising several aromatic amines, in particular anilines and sulfonamides, and 4-cyanophenol. Using model photosensitizers without antioxidants, the phototransformation of most TCs increased with increasing pH, even for TCs for which pH did not affect speciation. This trend was attributed to pH-dependent formation yields of TC-derived radicals and their re-formation to the parent TC. Analogous trends were observed with DOM as a photosensitizer. Comparison of model and DOM photosensitizer data sets showed increasing inhibitory effects of DOM on TC phototransformation kinetics with increasing pH. In systems with anilines as a TC and phenol as a model antioxidant, pH trends of the inhibitory effect could be rationalized based on the reduction potential difference (ΔEred) of phenoxyl/phenol and anilinyl/aniline couples. Our results indicate that the light-induced transformation of aromatic amines in the aquatic environment is governed by the pH-dependent inhibitory effects of antioxidant phenolic moieties of DOM and pH-dependent processes related to the formation of amine oxidation intermediates.
Collapse
Affiliation(s)
- Jannis Wenk
- Eawag,
Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland
- Institute
of Biogeochemistry and Pollutant Dynamics, ETH Zürich, CH-8092 Zürich, Switzerland
- Department
of Chemical Engineering and Water Innovation & Research Centre
(WIRC), University of Bath, Claverton Down, Bath BA2
7AY, United Kingdom
- . Tel: +44-1225-383246
| | - Cornelia Graf
- Institute
of Biogeochemistry and Pollutant Dynamics, ETH Zürich, CH-8092 Zürich, Switzerland
- INFRAS
Research and Consulting, CH-3012 Berne, Switzerland
| | - Michael Aeschbacher
- Institute
of Biogeochemistry and Pollutant Dynamics, ETH Zürich, CH-8092 Zürich, Switzerland
| | - Michael Sander
- Institute
of Biogeochemistry and Pollutant Dynamics, ETH Zürich, CH-8092 Zürich, Switzerland
| | - Silvio Canonica
- Eawag,
Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland
- . Tel: +41-58-765-5453. Fax: +41-58-765-5210
| |
Collapse
|
35
|
Wang K, Zhu X, Chen B. Multiple roles of humic acid in the photogeneration of reactive bromine species using a chemical probe method. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117658. [PMID: 34438502 DOI: 10.1016/j.envpol.2021.117658] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
Photosensitization of natural organic matter (NOM) is an important natural source of reactive bromine species (RBrS) in the environment. Up to now, quantitative information about RBrS was mainly based on model sensitizers. Whether the behavior of model compounds could represent those of complex NOM remains unknown. In this study, we employed a chemical probe (3,5-dimethyl-1-H-pyrazole) to measure RBrS in humic acid (HA)-containing solutions and investigated their influential factors. The formation rate, decay rate constant, steady-state concentration, and lifetimes of RBrS were 3.87(±0.16) × 10-13 mol L-1·s-1, 1.99(±0.20) × 104 s-1, 2.04(±0.13) × 10-17 mol L-1, and 5.06(±1.05) × 10-5 s, respectively. Measured steady-state concentrations of RBrS were 3-5 orders of magnitude lower than those in model sensitizer system. Results showed that HA drove the RBrS generation, and about 0.12-0.70% of triplet-state HA (3HA*) would be transformed into RBrS. HA structures strongly affected this process. Phenolic-like groups suppressed the formation, while aromatic ketone-like moieties facilitated it. Last, HA also altered the transformation pathways. The contribution of ·OH dependent and direct oxidation pathways was almost equal, while the direct oxidation was predominant in the model system. Thus, careful consideration should be taken into photochemical formation of RBrS in NOM-involved solution, due to their complexity and multiple roles.
Collapse
Affiliation(s)
- Kun Wang
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, 310058, China
| | - Xiangyu Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, 310058, China
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, 310058, China.
| |
Collapse
|
36
|
Cheng Q, Hou X, Wang J, Wu Q, Li Z, Zhang W. Influence of suspended natural sands on the photolysis of ciprofloxacin in water. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
37
|
Felber T, Schaefer T, He L, Herrmann H. Aromatic Carbonyl and Nitro Compounds as Photosensitizers and Their Photophysical Properties in the Tropospheric Aqueous Phase. J Phys Chem A 2021; 125:5078-5095. [PMID: 34096724 DOI: 10.1021/acs.jpca.1c03503] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Secondary organic aerosol formation in the atmospheric aqueous/particulate phase by photosensitized reactions is currently subject to uncertainties. To understand the impact of photosensitized reactions, photophysical and -chemical properties of photosensitizers, kinetic data, and reaction mechanisms of these processes are required. The photophysical properties of acetophenones, benzaldehydes, benzophenones, and naphthalenes were investigated in aqueous solution using laser flash excitation. Quantum yields of excited photosensitizers were determined giving values between 0.06-0.80 at 298 K and pH = 5. Molar absorption coefficients (εmax(3PS*) = (0.8-13) × 104 L mol-1 cm-1), decay rate constants in water (k1st = (9.4 ± 0.5) × 102 to (2.2 ± 0.1) × 105 s-1), and quenching rate constants with oxygen (kq(O2) = (1.7 ± 0.1-4.4 ± 0.4) × 109 L mol-1 s-1) of the excited triplet states were determined at 298 K and pH = 5. Photosensitized reactions of carboxylic acids and alkenes show second-order rate constants in the range of (37 ± 7.0-0.55 ± 0.1) × 104 and (27 ± 5.0-0.04 ± 0.01) × 108 L mol-1 s-1. The results show that different compound classes act differently as a photosensitizer and can be a sink for certain organic compounds in the atmospheric aqueous phase.
Collapse
Affiliation(s)
- Tamara Felber
- Leibniz Institute for Tropospheric Research (TROPOS), Atmospheric Chemistry Department (ACD), Permoserstrasse 15, 04318 Leipzig, Germany
| | - Thomas Schaefer
- Leibniz Institute for Tropospheric Research (TROPOS), Atmospheric Chemistry Department (ACD), Permoserstrasse 15, 04318 Leipzig, Germany
| | - Lin He
- Leibniz Institute for Tropospheric Research (TROPOS), Atmospheric Chemistry Department (ACD), Permoserstrasse 15, 04318 Leipzig, Germany
| | - Hartmut Herrmann
- Leibniz Institute for Tropospheric Research (TROPOS), Atmospheric Chemistry Department (ACD), Permoserstrasse 15, 04318 Leipzig, Germany
| |
Collapse
|
38
|
Remke SC, von Gunten U, Canonica S. Enhanced transformation of aquatic organic compounds by long-lived photooxidants (LLPO) produced from dissolved organic matter. WATER RESEARCH 2021; 190:116707. [PMID: 33373945 DOI: 10.1016/j.watres.2020.116707] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 06/12/2023]
Abstract
Dissolved organic matter (DOM) plays a crucial role in the photochemical transformation of organic contaminants in natural aquatic systems. The present study focuses on the characterization of a specific effect previously observed for electron-rich phenols, consisting in an acceleration of the DOM-photosensitized transformation of target compounds at low concentrations (< 1 µM). This effect was hypothesized to be caused by DOM-derived "long-lived" photooxidants (LLPO). Pseudo-first-order rate constants for the transformation of several phenols, anilines, sulfonamide antibiotics and phenylureas photosensitized by Suwannee River fulvic acid were determined under steady-state irradiation using the UVA and visible wavelengths from a medium-pressure mercury lamp. A significant enhancement (by a factor of 2.4 - 16) of the first-order transformation rate constant of various electron-rich target compounds was observed for an initial concentration of 0.1 μM compared to 5 μM . This effect points to a relevant reactivity of these compounds with LLPO. For phenols and anilines the enhancement effect occurred only above certain standard one-electron oxidation potentials. From these data series the standard one-electron reduction potential of LLPO was estimated to be in the range of 1.0 - 1.3 V versus the standard hydrogen electrode. LLPO are proposed to mainly consist of phenoxyl radicals formed by photooxidation of electron-poor phenolic moieties of the DOM. The plausibility of this hypothesis was successfully tested by studying the photosensitized transformation kinetics of 3,4-dimethoxyphenol in aqueous solutions containing a model photosensitizer (2-acetonaphthone) and a model electron-poor phenol (4-cyanophenol) as DOM surrogates.
Collapse
Affiliation(s)
- Stephanie C Remke
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, CH-8600 Dübendorf, Switzerland; School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), GC A2 454, Station 18, CH-1015 Lausanne, Switzerland
| | - Urs von Gunten
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, CH-8600 Dübendorf, Switzerland; School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), GC A2 454, Station 18, CH-1015 Lausanne, Switzerland
| | - Silvio Canonica
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, CH-8600 Dübendorf, Switzerland.
| |
Collapse
|
39
|
Wu B, Arnold WA, Ma L. Photolysis of atrazine: Role of triplet dissolved organic matter and limitations of sensitizers and quenchers. WATER RESEARCH 2021; 190:116659. [PMID: 33279742 DOI: 10.1016/j.watres.2020.116659] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/13/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
Atrazine, a widely used herbicide, is susceptible to photolysis. The role of triplet excited states of chromophoric dissolved organic matter (3CDOM*) in the photolysis of atrazine, however, is not well understood. The direct photolysis of atrazine under irradiation sources (natural sunlight/environmentally relevant simulated solar light) and its indirect photochemical reactivity with model triplet photosensitizers (benzophenone, 2-acetonaphthone, 3'-methoxy-acetophenone, 4-carboxybenzophenone, rose bengal, methylene blue, and anthraquinone-2-sulphonate) was investigated. The reactivity of the model sensitizers and DOM (Suwannee River natural organic matter, river/lake water, and wastewater effluent), were compared. The direct photolysis quantum yield was determined as 0.0196 mol Einstein-1 in a solar simulator and 0.00437 mol Einstein-1 under natural sunlight. Considerable photosensitization was induced by triplet state (n-π*) model sensitizers, while insignificant effects on atrazine loss were discerned in natural organic matter even when oxygen, a triplet quencher, was removed. The triplet sensitizers benzophenone and 2-acetylnaphthone reacted with L-histidine and 2-propanol that were intended to quench/ scavenge 1O2 and hydroxyl radical •OH, respectively, and benzophenone reacted with NaN3 as a 1O2 scavenger and furfuryl alcohol as a 1O2 trapping agent, indicating quenchers may have unanticipated effects when using model sensitizers. Atrazine loss via reaction with 3DOM* will be relevant only in selected conditions, and this work provides a more comprehensive view on the use of model photosensitizers to mimic triplet 3DOM*.
Collapse
Affiliation(s)
- Bin Wu
- School of Environmental Science and Engineering, Tongji University, Shanghai, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Technology, Tongji University, Shanghai, China; Department of Civil, Environmental, and Geo- Engineering, University of Minnesota - Twin Cities, 500 Pillsbury Drive SE, Minneapolis, MN 55455, United States
| | - William A Arnold
- Department of Civil, Environmental, and Geo- Engineering, University of Minnesota - Twin Cities, 500 Pillsbury Drive SE, Minneapolis, MN 55455, United States
| | - Limin Ma
- School of Environmental Science and Engineering, Tongji University, Shanghai, China.
| |
Collapse
|
40
|
Guo Z, Wang J, Chen X, Cui F, Wang T, Zhou C, Song G, Zhang S, Chen J. Photochemistry of dissolved organic matter extracted from coastal seawater: Excited triplet-states and contents of phenolic moieties. WATER RESEARCH 2021; 188:116568. [PMID: 33137523 DOI: 10.1016/j.watres.2020.116568] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/21/2020] [Accepted: 10/24/2020] [Indexed: 06/11/2023]
Abstract
Coastal seawater constitutes an important ecosystem receiving inputs of organic micropollutants (OMPs) such as sulfa antibiotics from land-based sources or mariculture activities. It is necessary to investigate photodegradation of OMPs in coastal seawaters for assessing their environmental fate and risks. However, effects of coastal seawater dissolved organic matter (S-DOM) on OMPs photodegradation are largely unknown, given that chemical compositions of S-DOM are different from those of freshwater DOM. Herein, photochemical characteristics of S-DOM extracted from Dalian coastal seawaters were investigated by simulating photochemical experiment adopting sulfachloropyridazine as a case. Results show that S-DOM accelerates the photodegradation mainly through excited triplet-state DOM (3DOM*) with an apparent rate constant (4.43 × 108 M-1 s-1) ten folds of that of freshwater DOM, which is mainly due to much lower phenol contents detected in the S-DOM (0.022 mg-Gallic acid mg-C-1). The S-DOM impacted by mariculture can photogenerate more high-energy 3DOM* than those less impacted by mariculture, further contributing to the high 3DOM* reactivity. The study shows that to accurately predict photolytic persistence of OMPs in field water bodies, it is of significance to determine the second-order reaction rate constants between 3DOM* and target OMPs using DOM extracted from relevant water bodies.
Collapse
Affiliation(s)
- Zhongyu Guo
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jieqiong Wang
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Xi Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Feifei Cui
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Tingting Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Chengzhi Zhou
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Guobao Song
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Siyu Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China.
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
41
|
Song C, Zhang KX, Wang XJ, Zhao S, Wang SG. Effects of natural organic matter on the photolysis of tetracycline in aquatic environment: Kinetics and mechanism. CHEMOSPHERE 2021; 263:128338. [PMID: 33297264 DOI: 10.1016/j.chemosphere.2020.128338] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/06/2020] [Accepted: 09/11/2020] [Indexed: 06/12/2023]
Abstract
The residues of tetracycline in environment have raised increasing concern for the deleterious impact on ecological and human health. Natural organic matter (NOM), ubiquitous in natural waters, is unavoidable to encounter tetracycline, which might affect the fate of tetracycline in aquatic environment. In this study, we investigated the effect of natural organic matter (NOM) on the photolytic fate of tetracycline (TC). The photolysis kinetics of TC were evaluated with two representative NOM, tannic acid (TA) and gallic acid (GA). The presence of TA and GA obviously inhibited the removal of TC under UV irradiation with photolysis rate constant at 0.067 h-1 and 0.071 h-1, respectively, which were 32.3% and 28.3% less than that without TA and GA (0.099 h-1). Furthermore, NOM exhibited different impacts on both indirect photolysis and direct photolysis. NOM promoted the formation of hydroxyl radical, induced the generation of triplet-excited state NOM and thus greatly enhanced the indirect photolysis of TC. However, direct photolysis was almost completely inhibited by NOM via inner filter effect and interacting with TC to form ground-state complex with low photoreactive. Moreover, similar intermediates were detected in the presence and absence of NOM, indicating that NOM exhibited limited influence on the degradation pathways of TC. This study reveals the multiple roles of NOM on tetracycline photolysis, contributing to better understand the photolytic fate of antibiotics in natural waters.
Collapse
Affiliation(s)
- Chao Song
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Kai-Xin Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Xiao-Juan Wang
- Shandong Academy for Environmental Planning, Jinan, Shandong, 250101, China
| | - Shan Zhao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Shu-Guang Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China.
| |
Collapse
|
42
|
Leresche F, Ludvíková L, Heger D, von Gunten U, Canonica S. Quenching of an Aniline Radical Cation by Dissolved Organic Matter and Phenols: A Laser Flash Photolysis Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:15057-15065. [PMID: 33200941 DOI: 10.1021/acs.est.0c05230] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Aromatic amines are relevant aquatic organic contaminants whose photochemical transformation is affected by dissolved organic matter (DOM). The goal of this study is to elucidate the underlying mechanism of the inhibitory effect of DOM on such reactions. The selected model aromatic amine, 4-(dimethylamino)benzonitrile (DMABN), was subjected to laser flash photolysis in the presence and absence of various model photosensitizers. The produced radical cation (DMABN•+) was observed to react with several phenols and different types of DOM on a time scale of ∼100 μs. The determined second-order rate constants for the quenching of DMABN•+ by phenols were in the range of (1.4-26) × 108 M-1 s-1 and increased with increasing electron donor character of the aromatic ring substituent. For DOM, quenching rate constants increased with the phenolic content of the DOM. These results indicate the reduction of DMABN•+ to re-form its parent compound as the basic reaction governing the inhibitory effect. In addition, the photosensitized oxidation of the sulfonamide antibiotic sulfadiazine (SDZ) was studied. The observed radical intermediate of SDZ was quenched by 4-methoxyphenol less effectively than DMABN•+, which was attributed to the lower reduction potential of the SDZ-derived radical compared to DMABN•+.
Collapse
Affiliation(s)
- Frank Leresche
- Swiss Federal Institute of Aquatic Science and Technology, Eawag, Überlandstrasse 133, CH-8600 Dübendorf, Switzerland
- School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Lucie Ludvíková
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Dominik Heger
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Urs von Gunten
- Swiss Federal Institute of Aquatic Science and Technology, Eawag, Überlandstrasse 133, CH-8600 Dübendorf, Switzerland
- School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Silvio Canonica
- Swiss Federal Institute of Aquatic Science and Technology, Eawag, Überlandstrasse 133, CH-8600 Dübendorf, Switzerland
| |
Collapse
|
43
|
Modiri Gharehveran M, Hain E, Blaney L, Shah AD. Influence of dissolved organic matter on carbonyl sulfide and carbon disulfide formation from cysteine during sunlight photolysis. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:1852-1864. [PMID: 32966465 DOI: 10.1039/d0em00219d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Carbonyl sulfide (COS) and carbon disulfide (CS2) are important atmospheric gases that are formed from organic sulfur precursors present in natural waters when exposed to sunlight. However, it remains unclear how specific water constituents, such as dissolved organic matter (DOM), affect COS and CS2 formation. To better understand the role of DOM, irradiation experiments were conducted in O2-free synthetic waters containing four different DOM isolates, acquired from freshwater to open ocean sources, and the sulfur-based amino acid, cysteine (CYS). CYS is a known natural precursor of COS and CS2. Results indicated that COS formation did not vary strongly with DOM type, although small impacts were observed on the kinetic patterns. COS formation also increased with increasing CYS concentration but decreased with increasing DOM concentration. Quenching experiments indicated that ˙OH was not involved in the rate-limiting step of COS formation, whereas excited triplet states of DOM (3CDOM*) were plausibly involved, although the quenching agents used to remove 3CDOM* may have reacted with the CYS-derived intermediates as well. CS2 was not formed under any of the experimental conditions. Overall, DOM-containing synthetic waters had a limited to no effect towards forming COS and CS2, especially when compared to the higher concentrations formed in sunlit natural waters, as examined previously. The reasons behind this limited effect need to be explored further but may be due to the additional water quality constituents present in these natural waters. The findings of this study imply that multiple variables beyond DOM govern COS and CS2 photoproduction when moving from freshwaters to open ocean waters.
Collapse
Affiliation(s)
| | - Ethan Hain
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD, USA
| | - Lee Blaney
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD, USA
| | - Amisha D Shah
- Lyles School of Civil Engineering, Purdue University, West Lafayette, Indiana, USA. and Division of Environmental and Ecological Engineering, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
44
|
Gagné KR, Ewers SC, Murphy CJ, Daanen R, Walter Anthony K, Guerard JJ. Composition and photo-reactivity of organic matter from permafrost soils and surface waters in interior Alaska. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:1525-1539. [PMID: 32567618 DOI: 10.1039/d0em00097c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Yedoma permafrost soils are especially susceptible to abrupt thaw due to their exceptional thickness and high ice content. Compared to other mineral soils, yedoma has a high organic carbon content, which has shown to be particularly biolabile. The organic carbon in these deposits needs to be characterised to provide an identification toolkit for detecting and monitoring the thaw, mobilisation and mineralisation of yedoma permafrost. This study characterised organic carbon isolates from thermokarst lakes (either receiving inputs from thaw of original yedoma or refrozen-thermokarst deposits, or lacking recent thaw) during winter and summer seasons within the Goldstream Creek watershed, a discontinuous permafrost watershed in interior Alaska, to identify the extent to which thermokarst-lake environments are impacted by degradation of yedoma permafrost. Waters from lakes of varied age and thermokarst activity, as well as active layer and undisturbed yedoma permafrost soils were isolated and characterised by functional group abundance (multiCP-MAS 13C and SPR-W5-WATERGATE 1H NMR), absorbance and fluorescence, and photobleaching ability. DOM isolated from winter and summer seasons revealed differing composition and photoreactivity, suggesting varied active layer and permafrost influence under differing ground water flow regimes. Water extractable organic matter isolates from permafrost leachates revealed variation in terms of photoreactivity and photolability, with the youngest sampled permafrost isolate being the most photoreactive and photolabile. As temperatures increase, release of permafrost organic matter is inevitable. Obtaining a holistic understanding of DOM composition and photoreactivity will allow for a better prediction of permafrost thaw impacts in the coming decades.
Collapse
Affiliation(s)
- Kristin R Gagné
- Department of Chemistry & Biochemistry, University of Alaska Fairbanks, Fairbanks, Alaska 99775, USA.
| | | | | | | | | | | |
Collapse
|
45
|
Calderaro F, Vione D. Possible Effect of Climate Change on Surface-Water Photochemistry: A Model Assessment of the Impact of Browning on the Photodegradation of Pollutants in Lakes during Summer Stratification. Epilimnion vs. Whole-Lake Phototransformation. Molecules 2020; 25:molecules25122795. [PMID: 32560420 PMCID: PMC7356553 DOI: 10.3390/molecules25122795] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/04/2020] [Accepted: 06/15/2020] [Indexed: 12/28/2022] Open
Abstract
Water browning in lakes (progressive increase of the content of chromophoric dissolved organic matter, CDOM) has the potential to deeply alter the photodegradation kinetics of pollutants during summer stratification. Browning, which takes place as a consequence of climate change in several Nordic environments, causes the thermocline to be shallower, because higher CDOM decreases the penetration of sunlight inside the water column. Using a model approach, it is shown in this paper that pollutants occurring in the epilimnion would be affected differently depending on their main photodegradation pathway(s): almost no change for the direct photolysis, slight decrease in the degradation kinetics by the hydroxyl radicals (•OH, but the resulting degradation would be too slow for the process to be effective during summer stratification), considerable decrease for the carbonate radicals (CO3•−), increase for the excited triplet states of CDOM (3CDOM*) and singlet oxygen (1O2). Because it is difficult to find compounds that are highly reactive with CO3•− and poorly reactive with 3CDOM*, the degradation rate constant of many phenols and anilines would show a minimum with increasing dissolved organic carbon (DOC), because of the combination of decreasing CO3•− and increasing 3CDOM* photodegradation. In contrast, overall photodegradation would always be inhibited by browning when the whole water column (epilimnion + hypolimnion) is considered, either because of slower degradation kinetics in the whole water volume, or even at unchanged overall kinetics, because of unbalanced distribution of photoreactivity within the water column.
Collapse
|
46
|
Jiang J, Zhao H, Xia D, Li X, Qu B. Formation of free radicals by direct photolysis of halogenated phenols (HPs) and effects of DOM: A case study on monobromophenols. JOURNAL OF HAZARDOUS MATERIALS 2020; 391:122220. [PMID: 32050140 DOI: 10.1016/j.jhazmat.2020.122220] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/31/2020] [Accepted: 02/01/2020] [Indexed: 06/10/2023]
Abstract
The free radicals play an important role to understand direct/indirect transformation mechanisms of organic pollutants. However, very few efforts have been made to elucidate the radicals produced by direct photolysis. In this study, the short-lived radicals generated under simulated sunlight irradiation from representative halogenated phenols (HPs), monobromophenols, were investigated by electron paramagnetic resonance (EPR). The results showed that three radicals, carbon-centered radical (C), hydrogen radical (H) and hydroxyl radical (OH), were generated from the direct irradiation of HPs. Compared to other substitutions, halogenated atom at para-position led to the highest production of these radicals which is in accordance with the energies calculated by density functional theory. Based on the analyses of the reactive species and corresponding intermediate adducts, the possible reaction pathways for these radicals were tentatively proposed. Dissolved organic matters (DOM) could enhance the photodegradation of HPs by directly affecting the radicals' formation, mainly due to generation of excited triplet DOM (3DOM*). A positive correlation was found between the concentrations of hydrated electron and the steady state 3DOM* from different DOM. Our findings provided insights into environmental photochemical fate of HPs through their direct photolysis and will help more accurately understand their phototransformation mechanisms in the environment.
Collapse
Affiliation(s)
- Jingqiu Jiang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116023, China
| | - Hongxia Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116023, China.
| | - Deming Xia
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116023, China
| | - Xintong Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116023, China
| | - Baocheng Qu
- College of Marine Technology and Environment, Dalian Ocean University, Dalian 116024, China.
| |
Collapse
|
47
|
McKay G. Emerging investigator series: critical review of photophysical models for the optical and photochemical properties of dissolved organic matter. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:1139-1165. [PMID: 32270849 DOI: 10.1039/d0em00056f] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Optical measurements (absorbance and fluorescence) are widely used to track dissolved organic matter (DOM) quantity and quality in natural and engineered systems. Despite many decades of research on the optical properties of DOM, there is a lack of understanding with regards to the underlying photophysical model that is the basis for these optical properties. This review both summarizes advances to date on the photophysical properties of DOM and seeks to critically evaluate the photophysical models for DOM optical properties. Recent studies have refined the quantitative understanding of DOM photophysical properties such as excited state lifetimes and energies, rates of different photophysical processes, and quantum yields. Considering fundamental models, more clarity is needed on whether DOM photophysical processes are due to a superposition of non-interacting components (superposition model), or whether a portion of optical signals can be ascribed to electronically interacting moieties, for example in the form of electron donor-acceptor complexes (charge transfer model). Multiple studies over more than two decades have provided evidence for the charge transfer model. Questions have been raised, however, about the broad applicability of the charge transfer model. The charge transfer and superposition model are critically reviewed in light of this current research. Recommendations are given for future studies to help clarify the accuracy of these competing photophysical models.
Collapse
Affiliation(s)
- Garrett McKay
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
48
|
Ye Q, Huang Z, Wu P, Wu J, Ma J, Liu C, Yang S, Rehman S, Ahmed Z, Zhu N, Dang Z. Promoting the photogeneration of hydrochar reactive oxygen species based on FeAl layered double hydroxide for diethyl phthalate degradation. JOURNAL OF HAZARDOUS MATERIALS 2020; 388:122120. [PMID: 31962210 DOI: 10.1016/j.jhazmat.2020.122120] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/03/2020] [Accepted: 01/14/2020] [Indexed: 06/10/2023]
Abstract
Improving the photocatalytic capacity of hydrochar to apply in wastewater treatment is of great significance. In this study, a novel heterogeneous photocatalytic material was prepared by compounding hydrochar with FeAl layered double hydroxide (FeAl-LDH). Furthermore, hydrochar was separated into hydrochar carbon matrix (HCM) and dissolved organic matter (DOM) to analyse their contribution in the reactive oxygen species (ROS) generation. The characterization and photocatalytic property of three composites (hydrochar-LDH, HCM-LDH and DOM-LDH) were investigated. The results showed that three composites were successfully synthesized with the formation of nano-sized LDH, graphitic carbon and oxygen vacancies. Persistent free radicals (PFRs) existed in hydrochar and the amount of them increased distinctly with the presence of FeAl-LDH. The degradation efficiency of DEP by hydrochar-LDH, HCM-LDH and DOM-LDH was 5.0, 4.2 and 1.5 times than that of hydrochar within 180 min, respectively. The reasons were proposed as: (i) Both HCM-LDH and DOM-LDH could induce the formation of OH, O2- and 1O2, while HCM-LDH was the main contributor to generate O2- and OH; (ii) HCM-LDH possessed many oxygenated functional groups, which were key factors affecting the formation of ROS; (iii) Fe could enhance the electron transfer process during the photoreaction, promoting the formation of ROS.
Collapse
Affiliation(s)
- Quanyun Ye
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Zhiyan Huang
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Pingxiao Wu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, PR China; Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; Guangdong Environmental Protection Key Laboratory of Solid Waste Treatment and Recycling, Guangzhou 510006, PR China; Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, Guangzhou 510006, PR China.
| | - Jiayan Wu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Jiaxin Ma
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Chenhui Liu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Shanshan Yang
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Saeed Rehman
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Zubair Ahmed
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Nengwu Zhu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, PR China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| |
Collapse
|
49
|
Zhou C, Xie Q, Wang J, Chen X, Niu J, Chen J. Effects of dissolved organic matter derived from freshwater and seawater on photodegradation of three antiviral drugs. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 258:113700. [PMID: 31838398 DOI: 10.1016/j.envpol.2019.113700] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/10/2019] [Accepted: 11/29/2019] [Indexed: 06/10/2023]
Abstract
Dissolved organic matter (DOM) is the most important light absorber that may induce indirect photolytic transformation of organic pollutants in natural waters. In this study, effects of DOM derived from freshwater and seawater on the photodegradation of three antiviral drugs acyclovir, lamivudine and zidovudine were investigated. Results show that the photodegradation of acyclovir is promoted mainly by excited triplet states DOM (3DOM*), and the photodegradation of lamivudine is accelerated by 3DOM*, •OH and 1O2 together; however, the photodegradation of zidovudine is inhibited by DOM mainly via light screening. Compared with DOM from freshwater, promotion effect of DOM extracted from seawater (SDOM) on the photodegradation of acyclovir and lamivudine is weaker, which is attributed to lower productivity of reactive intermediates. On the other hand, inhibitory effect of SDOM on the photodegradation of zidovudine is also weaker, which is due to weaker light screening caused by lower light absorption. Photodegradation half-lives of the three antiviral drugs are predicted to be all more than 20 days in freshwater and seawater bodies of the Yellow River estuarine region. These findings are significant for understanding the phototransformation processes of antiviral drugs and other organic pollutants in estuarine and coastal regions.
Collapse
Affiliation(s)
- Chengzhi Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China; Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Qing Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China
| | - Jieqiong Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China
| | - Xi Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China
| | - Junfeng Niu
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China.
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China
| |
Collapse
|
50
|
Sun S, Jiang J, Zhao H, Wan H, Qu B. Photochemical reaction of tricresyl phosphate (TCP) in aqueous solution: Influencing factors and photolysis products. CHEMOSPHERE 2020; 241:124971. [PMID: 31590024 DOI: 10.1016/j.chemosphere.2019.124971] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/17/2019] [Accepted: 09/24/2019] [Indexed: 06/10/2023]
Abstract
Organophosphate triesters (OPEs) have caused great concern as a class of emerging environmental contaminants due to their widespread use and their toxicity to organisms. However, the phototransformation behavior of OPE is still not fully understood, which is important for understanding their environmental fate. In the present study, the photodegradation of tricresyl phosphate (TCP), one of the most widely detected OPEs in aqueous environments, was investigated including the direct photolysis and in the presence of several natural water factors, NO2-, Fe3+ and humic acid. The degradation process followed the pseudo-first-order kinetics, with rate constant increasing slightly with increasing initial TCP concentration. The presence of NO2- and Fe3+ was observed to promote the photochemical loss of TCP, while humic acid played a negative role on TCP transformation. Electron spin resonance (EPR) analysis showed that carbon-centered radical was produced in the photolysis process of TCP, and hydroxyl radical contributed to the promotion of rate constant for Fe3+ and NO2-. Four photolysis products were tentatively identified by HPLC-LTQ-Orbitrap MS analysis, and the possible degradation pathways of TCP were proposed. These findings provide a meaningful reference for the fate and transformation of OPEs in natural water.
Collapse
Affiliation(s)
- Shibin Sun
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Jingqiu Jiang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Hongxia Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| | - Huihui Wan
- College of Chemical Engineering, Analytical Center, Dalian University of Technology, Dalian, 116024, China
| | - Baocheng Qu
- College of Marine Technology and Environment, Dalian Ocean University, Dalian, 116024, China.
| |
Collapse
|