1
|
Baldasso V, Sayen S, Gomes CAR, Frunzo L, Almeida CMR, Guillon E. Metformin and lamotrigine sorption on a digestate amended soil in presence of trace metal contamination. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133635. [PMID: 38306838 DOI: 10.1016/j.jhazmat.2024.133635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/04/2024]
Abstract
The antidiabetic drug metformin and antiepileptic drug lamotrigine are contaminants of emerging concern that have been detected in biowaste-derived amendments and in the environment, and their fate must be carefully studied. This work aimed to evaluate their sorption behaviour on soil upon digestate application. Experiments were conducted on soil and digestate-amended soil as a function of time to study kinetic processes, and at equilibrium also regarding the influence of trace metals (Pb, Ni, Cr, Co, Cu, Zn) at ratio pharmaceutical/metal 1/1, 1/10, and 1/100. Pharmaceutical desorption experiments were also conducted to assess their potential mobility to groundwater. Results revealed that digestate amendment increased metformin and lamotrigine adsorbed amounts by 210% and 240%, respectively, increasing organic matter content. Metformin adsorption kinetics were best described by Langmuir model and those of lamotrigine by Elovich and intraparticle diffusion models. Trace metals did not significantly affect the adsorption of metformin in amended soil while significantly decreased that of lamotrigine by 12-39%, with exception for Cu2+ that increased both pharmaceuticals adsorbed amounts by 5 - 8%. This study highlighted the influence of digestate amendment on pharmaceutical adsorption and fate in soil, which must be considered in the circular economy scenario of waste-to-resource.
Collapse
Affiliation(s)
- Veronica Baldasso
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Portugal; Chemistry and Biochemistry Department, Faculty of Sciences, University of Porto, Porto, Portugal; Molecular Chemistry Institute of Reims, ICMR UMR CNRS 7312, University of Reims Champagne-Ardenne, Reims, France.
| | - Stéphanie Sayen
- Molecular Chemistry Institute of Reims, ICMR UMR CNRS 7312, University of Reims Champagne-Ardenne, Reims, France.
| | - Carlos A R Gomes
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Portugal; Chemistry and Biochemistry Department, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Luigi Frunzo
- Department of Mathematics and Applications Renato Caccioppoli, University of Naples Federico II, Napoli, Italy
| | - C Marisa R Almeida
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Portugal; Chemistry and Biochemistry Department, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Emmanuel Guillon
- Molecular Chemistry Institute of Reims, ICMR UMR CNRS 7312, University of Reims Champagne-Ardenne, Reims, France
| |
Collapse
|
2
|
Zhang Z, Sangion A, Wang S, Gouin T, Brown T, Arnot JA, Li L. Chemical Space Covered by Applicability Domains of Quantitative Structure-Property Relationships and Semiempirical Relationships in Chemical Assessments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 38263624 PMCID: PMC10882972 DOI: 10.1021/acs.est.3c05643] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
A significant number of chemicals registered in national and regional chemical inventories require assessments of their potential "hazard" concerns posed to humans and ecological receptors. This warrants knowledge of their partitioning and reactivity properties, which are often predicted by quantitative structure-property relationships (QSPRs) and other semiempirical relationships. It is imperative to evaluate the applicability domain (AD) of these tools to ensure their suitability for assessment purpose. Here, we investigate the extent to which the ADs of commonly used QSPRs and semiempirical relationships cover seven partitioning and reactivity properties of a chemical "space" comprising 81,000+ organic chemicals registered in regulatory and academic chemical inventories. Our findings show that around or more than half of the chemicals studied are covered by at least one of the commonly used QSPRs. The investigated QSPRs demonstrate adequate AD coverage for organochlorides and organobromines but limited AD coverage for chemicals containing fluorine and phosphorus. These QSPRs exhibit limited AD coverage for atmospheric reactivity, biodegradation, and octanol-air partitioning, particularly for ionizable organic chemicals compared to nonionizable ones, challenging assessments of environmental persistence, bioaccumulation capability, and long-range transport potential. We also find that a predictive tool's AD coverage of chemicals depends on how the AD is defined, for example, by the distance of a predicted chemical from the centroid of the training chemicals or by the presence or absence of structural features.
Collapse
Affiliation(s)
- Zhizhen Zhang
- School of Public Health, University of Nevada, Reno, Reno, Nevada 89557, United States
| | | | - Shenghong Wang
- School of Public Health, University of Nevada, Reno, Reno, Nevada 89557, United States
| | - Todd Gouin
- TG Environmental Research, Sharnbrook, Bedford MK44 1PL, U.K
| | - Trevor Brown
- ARC Arnot Research & Consulting, Toronto, Ontario M4M 1W4, Canada
| | - Jon A Arnot
- ARC Arnot Research & Consulting, Toronto, Ontario M4M 1W4, Canada
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Li Li
- School of Public Health, University of Nevada, Reno, Reno, Nevada 89557, United States
| |
Collapse
|
3
|
Wang Y, Wang K, Wang X, Zhao Q, Jiang J, Jiang M. Effect of different production methods on physicochemical properties and adsorption capacities of biochar from sewage sludge and kitchen waste: Mechanism and correlation analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132690. [PMID: 37801977 DOI: 10.1016/j.jhazmat.2023.132690] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 09/25/2023] [Accepted: 09/30/2023] [Indexed: 10/08/2023]
Abstract
Different pyrolysis methods, parameters and feedstocks result in biochars with different properties, structures and removal capacities for heavy metals. However, the role of each property on adsorption capacity and corresponding causal relationships remain unclear. Here, we investigated various physicochemical properties of biochar produced via three different methods and two different feedstocks to clarify influences of biomass sources and pyrolysis processes on biochar properties and its heavy metal adsorption performance. Experimental results showed biochars were more aromatic and contained more functional groups after hydrothermal carbonization, while they had developed pores and higher surface areas produced by anaerobic pyrolysis. The inclusion of oxygen resulted in more complete carbonization and higher CEC biochar. Different biochar properties resulted in different adsorption capacities. Biochar produced by aerobic calcination showed higher adsorption efficiency for Cu and Pb. Correlation analysis proved that pH, cation exchange capacity and degree of carbonization positively affected adsorption, while organic matter content and aromaticity were unfavorable for adsorption. Microstructure and components determined biochar macroscopic properties and ultimate adsorption efficiency for metal ions. This study identifies the degree of correlation and pathways of each property on adsorption, which provides guidance for targeted modification of biochar to enhance its performance in heavy metal removal.
Collapse
Affiliation(s)
- Yipeng Wang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Kun Wang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xuchan Wang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Junqiu Jiang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Miao Jiang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
4
|
Zhang Z, Wang S, Brown TN, Sangion A, Arnot JA, Li L. Modeling sorption of environmental organic chemicals from water to soils. WATER RESEARCH X 2024; 22:100219. [PMID: 38596456 PMCID: PMC11002749 DOI: 10.1016/j.wroa.2024.100219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/21/2024] [Accepted: 03/24/2024] [Indexed: 04/11/2024]
Abstract
Reliable estimation of chemical sorption from water to solid phases is an essential prerequisite for reasonable assessments of chemical hazards and risks. However, current fate and exposure models mostly rely on algorithms that lack the capability to quantify chemical sorption resulting from interactions with multiple soil constituents, including amorphous organic matter, carbonaceous organic matter, and mineral matter. Here, we introduce a novel, generic approach that explicitly combines the gravimetric composition of various solid constituents and poly-parameter linear free energy relationships to calculate the solid-water sorption coefficient (Kd) for non-ionizable or predominantly neutral organic chemicals with diverse properties in a neutral environment. Our approach demonstrates an overall statistical uncertainty of approximately 0.9 log units associated with predictions for different types of soil. By applying this approach to estimate the sorption of 70 diverse chemicals from water to two types of soils, we uncover that different chemicals predominantly exhibit sorption onto different soil constituents. Moreover, we provide mechanistic insights into the limitation of relying solely on organic carbon normalized sorption coefficient (KOC) in chemical hazard assessment, as the measured KOC can vary significantly across different soil types, and therefore, a universal cut-off threshold may not be appropriate. This research highlights the importance of considering chemical properties and multiple solid constituents in sorption modeling and offers a valuable theoretical approach for improved chemical hazard and exposure assessments.
Collapse
Affiliation(s)
- Zhizhen Zhang
- School of Public Health, University of Nevada, 1664, N. Virginia Street, Reno, NV 89557-274, United States
| | - Shenghong Wang
- School of Public Health, University of Nevada, 1664, N. Virginia Street, Reno, NV 89557-274, United States
| | - Trevor N. Brown
- ARC Arnot Research & Consulting, Toronto, Ontario M4M 1W4, Canada
| | | | - Jon A. Arnot
- ARC Arnot Research & Consulting, Toronto, Ontario M4M 1W4, Canada
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Li Li
- School of Public Health, University of Nevada, 1664, N. Virginia Street, Reno, NV 89557-274, United States
| |
Collapse
|
5
|
Zhang Z, Sangion A, Wang S, Gouin T, Brown T, Arnot JA, Li L. Hazard vs. exposure: Does it make a difference in identifying chemicals with persistence and mobility concerns? WATER RESEARCH 2023; 245:120610. [PMID: 37717328 DOI: 10.1016/j.watres.2023.120610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/30/2023] [Accepted: 09/09/2023] [Indexed: 09/19/2023]
Abstract
Persistent and mobile (PM) chemicals are considered emerging threats to the environment and drinking water because they can be transported over long distances, penetrate natural and artificial barriers, and resist removal by traditional water treatment procedures. Current chemical regulatory frameworks raise concerns over PM chemicals due to their potential to cause high human exposure through drinking water contamination. However, the criteria used to screen and identify these chemicals often rely on hazard properties related to stability and sorption, such as biodegradation half-lives and organic-carbon-normalized sorption coefficients as respective measures of P and M. Here, we conduct a model-based assessment to examine the consistency between hazard-based and exposure-based approaches in assessing PM chemicals, by evaluating whether chemicals identified as highly P and M are consistently associated with high drinking water exposure potential (DWEP). We discover that chemicals with the top DWEPs tend to be PM chemicals, but the reverse is not always true, because DWEPs are also impacted by volatilization for air-distributed chemicals and advective particle-bound transport for particle-bound chemicals. Our findings suggest that the hazard metrics are better suited for de-prioritizing, as opposed to prioritizing, chemicals that are unlikely to result in significant human exposure through drinking water, as unfavorable values of hazard metrics are a necessary but not sufficient condition for a high DWEP. We also find that distinct mechanisms determine the DWEP in different sources of drinking water: Sorption and stability are more influential on the DWEP of chemicals in groundwater and surface water, respectively, whereas both sorption and stability equally impact water undergoing riverbank filtration. Future studies should focus on optimizing the identification of persistent and mobile chemicals to ensure that exposure potential is taken into consideration.
Collapse
Affiliation(s)
- Zhizhen Zhang
- School of Public Health, University of Nevada, Reno, 1664, N. Virginia Street, Reno, Nevada 89557-274, United States
| | | | - Shenghong Wang
- School of Public Health, University of Nevada, Reno, 1664, N. Virginia Street, Reno, Nevada 89557-274, United States
| | - Todd Gouin
- TG Environmental Research, Sharnbrook, Bedford MK44 1PL, United Kingdom
| | - Trevor Brown
- ARC Arnot Research & Consulting, Toronto, Ontario M4M 1W4, Canada
| | - Jon A Arnot
- ARC Arnot Research & Consulting, Toronto, Ontario M4M 1W4, Canada; Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Li Li
- School of Public Health, University of Nevada, Reno, 1664, N. Virginia Street, Reno, Nevada 89557-274, United States.
| |
Collapse
|
6
|
Chen J, Xu B, Lu L, Zhang Q, Lu T, Farooq U, Chen W, Zhou Q, Qi Z. Insight into the inhibitory roles of ionic liquids in the adsorption of levofloxacin onto clay minerals. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
7
|
Arnold W, Blum A, Branyan J, Bruton TA, Carignan CC, Cortopassi G, Datta S, DeWitt J, Doherty AC, Halden RU, Harari H, Hartmann EM, Hrubec TC, Iyer S, Kwiatkowski CF, LaPier J, Li D, Li L, Muñiz Ortiz JG, Salamova A, Schettler T, Seguin RP, Soehl A, Sutton R, Xu L, Zheng G. Quaternary Ammonium Compounds: A Chemical Class of Emerging Concern. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7645-7665. [PMID: 37157132 PMCID: PMC10210541 DOI: 10.1021/acs.est.2c08244] [Citation(s) in RCA: 56] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 05/10/2023]
Abstract
Quaternary ammonium compounds (QACs), a large class of chemicals that includes high production volume substances, have been used for decades as antimicrobials, preservatives, and antistatic agents and for other functions in cleaning, disinfecting, personal care products, and durable consumer goods. QAC use has accelerated in response to the COVID-19 pandemic and the banning of 19 antimicrobials from several personal care products by the US Food and Drug Administration in 2016. Studies conducted before and after the onset of the pandemic indicate increased human exposure to QACs. Environmental releases of these chemicals have also increased. Emerging information on adverse environmental and human health impacts of QACs is motivating a reconsideration of the risks and benefits across the life cycle of their production, use, and disposal. This work presents a critical review of the literature and scientific perspective developed by a multidisciplinary, multi-institutional team of authors from academia, governmental, and nonprofit organizations. The review evaluates currently available information on the ecological and human health profile of QACs and identifies multiple areas of potential concern. Adverse ecological effects include acute and chronic toxicity to susceptible aquatic organisms, with concentrations of some QACs approaching levels of concern. Suspected or known adverse health outcomes include dermal and respiratory effects, developmental and reproductive toxicity, disruption of metabolic function such as lipid homeostasis, and impairment of mitochondrial function. QACs' role in antimicrobial resistance has also been demonstrated. In the US regulatory system, how a QAC is managed depends on how it is used, for example in pesticides or personal care products. This can result in the same QACs receiving different degrees of scrutiny depending on the use and the agency regulating it. Further, the US Environmental Protection Agency's current method of grouping QACs based on structure, first proposed in 1988, is insufficient to address the wide range of QAC chemistries, potential toxicities, and exposure scenarios. Consequently, exposures to common mixtures of QACs and from multiple sources remain largely unassessed. Some restrictions on the use of QACs have been implemented in the US and elsewhere, primarily focused on personal care products. Assessing the risks posed by QACs is hampered by their vast structural diversity and a lack of quantitative data on exposure and toxicity for the majority of these compounds. This review identifies important data gaps and provides research and policy recommendations for preserving the utility of QAC chemistries while also seeking to limit adverse environmental and human health effects.
Collapse
Affiliation(s)
- William
A. Arnold
- University
of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Arlene Blum
- Green
Science Policy Institute, Berkeley, California 94709, United States
- University
of California, Berkeley, California 94720, United States
| | - Jennifer Branyan
- California
Department of Toxic Substances Control, Sacramento, California 95814, United States
| | - Thomas A. Bruton
- California
Department of Toxic Substances Control, Sacramento, California 95814, United States
| | | | - Gino Cortopassi
- University
of California, Davis, California 95616, United States
| | - Sandipan Datta
- University
of California, Davis, California 95616, United States
| | - Jamie DeWitt
- East
Carolina University, Greenville, North Carolina 27834, United States
| | - Anne-Cooper Doherty
- California
Department of Toxic Substances Control, Sacramento, California 95814, United States
| | - Rolf U. Halden
- Arizona
State University, Tempe, Arizona 85287, United States
| | - Homero Harari
- Icahn
School of Medicine at Mount Sinai, New York, New York 10029, United States
| | | | - Terry C. Hrubec
- Edward Via College of Osteopathic Medicine, Blacksburg, Virginia 24060, United States
| | - Shoba Iyer
- California Office of Environmental Health Hazard Assessment, Oakland, California 94612, United States
| | - Carol F. Kwiatkowski
- Green
Science Policy Institute, Berkeley, California 94709, United States
- North Carolina State University, Raleigh, North Carolina 27695 United States
| | - Jonas LaPier
- Green
Science Policy Institute, Berkeley, California 94709, United States
| | - Dingsheng Li
- University
of Nevada, Reno, Nevada 89557, United States
| | - Li Li
- University
of Nevada, Reno, Nevada 89557, United States
| | | | - Amina Salamova
- Indiana University, Atlanta, Georgia 30322, United States
| | - Ted Schettler
- Science and Environmental Health Network, Bolinas, California 94924, United States
| | - Ryan P. Seguin
- University of Washington, Seattle, Washington 98195, United States
| | - Anna Soehl
- Green
Science Policy Institute, Berkeley, California 94709, United States
| | - Rebecca Sutton
- San Francisco Estuary Institute, Richmond, California 94804, United States
| | - Libin Xu
- University of Washington, Seattle, Washington 98195, United States
| | - Guomao Zheng
- Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
8
|
Köppe T, Jewell KS, Ehlig B, Wick A, Koschorreck J, Ternes TA. Identification and trend analysis of organic cationic contaminants via non-target screening in suspended particulate matter of the German rivers Rhine and Saar. WATER RESEARCH 2023; 229:119304. [PMID: 36459896 DOI: 10.1016/j.watres.2022.119304] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/14/2022] [Accepted: 10/26/2022] [Indexed: 06/17/2023]
Abstract
Non-target screening of suspended particulate matter (SPM), collected from the German rivers Rhine and Saar, was conducted with the goal of identifying organic, permanent cationic contaminants and of estimating their temporal trends over an extended period. Therefore, annual composite samples of SPM, provided by the German Environmental Specimen Bank, were extracted and analyzed with high resolution LC-QToF-MS/MS. To facilitate the identification of substances belonging to the class "permanent cations", prioritization methods were applied utilizing the physicochemical properties of these compounds. These methods include both interactions of the analyte molecules with cation exchange resins and analyzing mass deviations when changing from non-deuterated to deuterated mobile phase solvents during LC-MS analysis. By applying both methods in a combined approach, 123 of the initially detected 2695 features were prioritized, corresponding to a 95% data reduction. This led to the identification of 22 permanent cationic species. The organic dyes Basic Yellow 28 and Fluorescent Brightener 363 as well as two quaternary ammonium compounds (QACs) were detected in environmental samples for the first time to best of or knowledge. The other compounds include additional QACs, as well as quaternary tri-phenylphosphonium compounds (QPC/TPP). In addition to identification, we determined temporal trends of all compounds over a period of 13 years and assessed their ecotoxicological relevance based on estimated concentrations. The two QACs oleyltrimethylammonium and eicosyltrimethylammonium show significant increasing trends in the Rhine SPM and maximum concentrations in the Saar SPM of about 900 and 1400 µg/kg, respectively. In the case of the dyes, constant trends have been observed at the end of the studied period, but also maximum concentrations of 400 µg/kg for Basic Yellow 28 in 2006 and 1000 µg/kg for Fluorescent Brightener 363 in 2015, potentially indicating a strong ecotoxicological risk.
Collapse
Affiliation(s)
- Toni Köppe
- Federal Institute of Hydrology, Am Mainzer Tor 1, 56068 Koblenz, Germany
| | - Kevin S Jewell
- Federal Institute of Hydrology, Am Mainzer Tor 1, 56068 Koblenz, Germany
| | - Björn Ehlig
- Federal Institute of Hydrology, Am Mainzer Tor 1, 56068 Koblenz, Germany
| | - Arne Wick
- Federal Institute of Hydrology, Am Mainzer Tor 1, 56068 Koblenz, Germany
| | - Jan Koschorreck
- Federal Environment Agency (Umweltbundesamt), Colditzstraße 34, 14193, Berlin, Germany
| | - Thomas A Ternes
- Federal Institute of Hydrology, Am Mainzer Tor 1, 56068 Koblenz, Germany.
| |
Collapse
|
9
|
Jansen K, Mohr C, Lügger K, Heller C, Siemens J, Mulder I. Widespread occurrence of quaternary alkylammonium disinfectants in soils of Hesse, Germany. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159228. [PMID: 36208753 DOI: 10.1016/j.scitotenv.2022.159228] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Quaternary alkylammonium compounds (QAACs) are cationic organic compounds with amphiphilic properties that are widely used as surfactants and disinfectants in industry, households and agriculture. Several studies suggest that QAACs co-select for antibiotic resistant microorganisms and thus may contribute to the spread of antibiotic resistance in the environment. Data on QAAC occurrence in soil are scarce and limited to soils that are prone to direct exposure to QAACs. Therefore, we conducted a comprehensive study on the occurrence of QAACs in soils of Hesse, a federal state in Germany, covering an area of 21,115 km2. Sixty-five soil samples that comprised different land uses (arable, grassland, forest, vineyard) and area types (rural, agglomeration) were analysed for concentrations of alkyltrimethylammonium (ATMACs, with alkyl chain lengths C8-C16), benzylalkyldimethylammonium (BACs, C8-C18) and dialkyldimethylammonium compounds (DADMACs, C8-C18) via HPLC-MS/MS after ultrasonic-assisted extraction with acidified acetonitrile. QAACs were detected in 97 % of the soil samples irrespective of land use and area type. The most abundant QAAC homologues were DADMACs > BACs > ATMACs. The highest total QAAC concentrations were detected in alluvial soils influenced by the deposition of suspended particles during flood events, with DADMAC-C16 and -C18 as the dominant homologues. The high abundance of long-chain DADMACs suggests that legacy pollution and accumulation govern QAAC concentrations in soils. The presence of QAACs in forest soils points to a potential input via atmospheric deposition. Our work highlights the widespread occurrence of QAACs in soils of Hesse and the need for more research on their entry paths and fate in the soil ecosystem.
Collapse
Affiliation(s)
- Kai Jansen
- Institute of Soil Science and Soil Conservation, iFZ Research Center for BioSystems, Land Use and Nutrition, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany.
| | - Christian Mohr
- Institute of Soil Science and Soil Conservation, iFZ Research Center for BioSystems, Land Use and Nutrition, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany.
| | - Katrin Lügger
- Hessian Agency for Nature Conservation, Environment and Geology, Rheingaustrasse 186, 65203 Wiesbaden, Germany.
| | - Christian Heller
- Hessian Agency for Nature Conservation, Environment and Geology, Rheingaustrasse 186, 65203 Wiesbaden, Germany.
| | - Jan Siemens
- Institute of Soil Science and Soil Conservation, iFZ Research Center for BioSystems, Land Use and Nutrition, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany.
| | - Ines Mulder
- Institute of Soil Science and Soil Conservation, iFZ Research Center for BioSystems, Land Use and Nutrition, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany.
| |
Collapse
|
10
|
Shahriar A, Hanigan D, Verburg P, Pagilla K, Yang Y. Modeling the fate of ionizable pharmaceutical and personal care products (iPPCPs) in soil-plant systems: pH and speciation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120367. [PMID: 36240970 DOI: 10.1016/j.envpol.2022.120367] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 09/29/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
A model was developed to simulate the pH-dependent speciation and fate of ionizable pharmaceutical and personal care products (iPPCPs) in soils and their plant uptake during thedt application of reclaimed wastewater to agricultural soils. The simulation showed that pH plays an important role in regulating the plant uptake of iPPCPs, i.e., ibuprofen (IBU; with a carboxylic group), triclosan (TCS; phenolic group), and fluoxetine (FXT; amine group) as model compounds. It took 89-487 days for various iPPCPs to reach the steady-state concentrations in soil and plant tissues. The simulated steady-state concentrations of iPPCPs in plant tissues at pH 9 is 2.2-2.3, 2.5-2.6, and 1.07-1.08 times that at pH 5 for IBU, TCS, and FXT, respectively. Assuming sorption only for neutral compounds led to miscalculation of iPPCPs concentrations in plant tissues by up to one and half orders magnitude. Efflux of compounds in soil, lettuce leaf, and soybean pods was primarily contributed by their degradation in soil and dilution due to plant tissue growth. Overall, the results demonstrated the importance of considering pH and speciation of iPPCPs when simulating their fate in the soil-plant system and plant uptake.
Collapse
Affiliation(s)
- Abrar Shahriar
- Department of Civil and Environmental Engineering, University of Nevada, Reno, 1664 N Virginia St, Reno, NV, 89557, USA
| | - David Hanigan
- Department of Civil and Environmental Engineering, University of Nevada, Reno, 1664 N Virginia St, Reno, NV, 89557, USA
| | - Paul Verburg
- Department of Natural Resources and Environmental Science, University of Nevada, Reno, 1664 N Virginia St, Reno, NV, 89557, USA
| | - Krishna Pagilla
- Department of Civil and Environmental Engineering, University of Nevada, Reno, 1664 N Virginia St, Reno, NV, 89557, USA
| | - Yu Yang
- Department of Civil and Environmental Engineering, University of Nevada, Reno, 1664 N Virginia St, Reno, NV, 89557, USA.
| |
Collapse
|
11
|
Fuchsman P, Fetters K, O'Connor A, Bock M, Henning M, Brown L, Mrdjen I, Stanton K. Ecological Risk Analysis for Benzalkonium Chloride, Benzethonium Chloride, and Chloroxylenol in US Disinfecting and Sanitizing Products. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:3095-3115. [PMID: 36349534 PMCID: PMC9827944 DOI: 10.1002/etc.5484] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/16/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Use of three topical antiseptic compounds-benzalkonium chloride (BAC), benzethonium chloride (BZT), and chloroxylenol (PCMX)-has recently increased because of the phaseout of other antimicrobial ingredients (such as triclosan) in soaps and other disinfecting and sanitizing products. Further, use of sanitizing products in general increased during the coronavirus (COVID-19) pandemic. We assessed the environmental safety of BAC, BZT, and PCMX based on best available environmental fate and effects data from the scientific literature and privately held sources. The ecological exposure assessment focused on aquatic systems receiving effluent from wastewater-treatment plants (WWTPs) and terrestrial systems receiving land-applied WWTP biosolids. Recent exposure levels were characterized based on environmental monitoring data supplemented by modeling, while future exposures were modeled based on a hypothetical triclosan replacement scenario. Hazard profiles were developed based on acute and chronic studies examining toxicity to aquatic life (fish, invertebrates, algae, vascular plants) and terrestrial endpoints (plants, soil invertebrates, and microbial functions related to soil fertility). Risks to higher trophic levels were not assessed because these compounds are not appreciably bioaccumulative. The risk analysis indicated that neither BZT nor PCMX in any exposure media is likely to cause adverse ecological effects under the exposure scenarios assessed in the present study. Under these scenarios, total BAC exposures are at least three times less than estimated effect thresholds, while margins of safety for freely dissolved BAC are estimated to be greater than an order of magnitude. Because the modeling did not specifically account for COVID-19 pandemic-related usage, further environmental monitoring is anticipated to understand potential changes in environmental exposures as a result of increased antiseptic use. The analysis presented provides a framework to interpret future antiseptic monitoring results, including monitoring parameters and modeling approaches to address bioavailability of the chemicals of interest. Environ Toxicol Chem 2022;41:3095-3115. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
|
12
|
Arp HPH, Hale SE. Assessing the Persistence and Mobility of Organic Substances to Protect Freshwater Resources. ACS ENVIRONMENTAL AU 2022; 2:482-509. [PMID: 36411866 PMCID: PMC9673533 DOI: 10.1021/acsenvironau.2c00024] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 04/28/2023]
Abstract
Persistent and mobile organic substances are those with the highest propensity to be widely distributed in groundwater and thereby, when emitted at low-levels, to contaminate drinking water extraction points and freshwater environments. To prevent such contamination, the European Commission is in the process of introducing new hazard classes for persistent, mobile, and toxic (PMT) and very persistent and very mobile (vPvM) substances within its key chemical regulations CLP and REACH. The assessment of persistence in these regulations will likely be based on simulated half-life, t 1/2, thresholds; the assessment of mobility will likely be based on organic carbon-water distribution coefficient, K OC, thresholds. This study reviews the use of t 1/2 and K OC to describe persistence and mobility, considering the theory, history, suitability, data limitations, estimation methods, and alternative parameters. For this purpose, t 1/2, K OC, and alternative parameters were compiled for substances registered under REACH, known transformation products, and substances detected in wastewater treatment plant effluent, surface water, bank filtrate, groundwater, raw water, and drinking water. Experimental t 1/2 values were rare and only available for 2.2% of the 14 203 unique chemicals identified. K OC data were only available for a fifth of the substances. Therefore, the usage of alternative screening parameters was investigated to predict t 1/2 and K OC values, to assist weight-of-evidence based PMT/vPvM hazard assessments. Even when considering screening parameters, for 41% of substances, PMT/vPvM assessments could not be made due to data gaps; for 23% of substances, PMT/vPvM assessments were ambiguous. Further effort is needed to close these substantial data gaps. However, when data is available, the use of t 1/2 and K OC is considered fit-for-purpose for defining PMT/vPvM thresholds. Using currently discussed threshold values, between 1.9 and 2.6% of REACH registered substances were identified as PMT/vPvM. Among the REACH registered substances detected in drinking water sources, 24-30% were PMT/vPvM substances.
Collapse
Affiliation(s)
- Hans Peter H. Arp
- Norwegian
Geotechnical Institute (NGI), P.O. Box
3930, Ullevål Stadion, NO-0806 Oslo, Norway
- Department
of Chemistry, Norwegian University of Science
and Technology (NTNU), NO-7491 Trondheim, Norway
- . Tel: +47 950 20 667
| | - Sarah E. Hale
- Norwegian
Geotechnical Institute (NGI), P.O. Box
3930, Ullevål Stadion, NO-0806 Oslo, Norway
| |
Collapse
|
13
|
Li L, Zhang Z, Men Y, Baskaran S, Sangion A, Wang S, Arnot JA, Wania F. Retrieval, Selection, and Evaluation of Chemical Property Data for Assessments of Chemical Emissions, Fate, Hazard, Exposure, and Risks. ACS ENVIRONMENTAL AU 2022; 2:376-395. [PMID: 37101455 PMCID: PMC10125307 DOI: 10.1021/acsenvironau.2c00010] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 04/28/2023]
Abstract
Reliable chemical property data are the key to defensible and unbiased assessments of chemical emissions, fate, hazard, exposure, and risks. However, the retrieval, evaluation, and use of reliable chemical property data can often be a formidable challenge for chemical assessors and model users. This comprehensive review provides practical guidance for use of chemical property data in chemical assessments. We assemble available sources for obtaining experimentally derived and in silico predicted property data; we also elaborate strategies for evaluating and curating the obtained property data. We demonstrate that both experimentally derived and in silico predicted property data can be subject to considerable uncertainty and variability. Chemical assessors are encouraged to use property data derived through the harmonization of multiple carefully selected experimental data if a sufficient number of reliable laboratory measurements is available or through the consensus consolidation of predictions from multiple in silico tools if the data pool from laboratory measurements is not adequate.
Collapse
Affiliation(s)
- Li Li
- School
of Public Health, University of Nevada Reno, Reno, Nevada 89557, United States
- . Phone: +1 (775) 682 7077
| | - Zhizhen Zhang
- School
of Public Health, University of Nevada Reno, Reno, Nevada 89557, United States
| | - Yujie Men
- Department
of Chemical & Environmental Engineering, University of California Riverside, Riverside, California 92521, United States
| | - Sivani Baskaran
- Department
of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
| | - Alessandro Sangion
- Department
of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
- ARC
Arnot Research & Consulting, Toronto, Ontario M4M 1W4, Canada
| | - Shenghong Wang
- School
of Public Health, University of Nevada Reno, Reno, Nevada 89557, United States
| | - Jon A. Arnot
- Department
of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
- ARC
Arnot Research & Consulting, Toronto, Ontario M4M 1W4, Canada
- Department
of Pharmacology and Toxicology, University
of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Frank Wania
- Department
of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
| |
Collapse
|
14
|
Sigmund G, Arp HPH, Aumeier BM, Bucheli TD, Chefetz B, Chen W, Droge STJ, Endo S, Escher BI, Hale SE, Hofmann T, Pignatello J, Reemtsma T, Schmidt TC, Schönsee CD, Scheringer M. Sorption and Mobility of Charged Organic Compounds: How to Confront and Overcome Limitations in Their Assessment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:4702-4710. [PMID: 35353522 PMCID: PMC9022425 DOI: 10.1021/acs.est.2c00570] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Permanently charged and ionizable organic compounds (IOC) are a large and diverse group of compounds belonging to many contaminant classes, including pharmaceuticals, pesticides, industrial chemicals, and natural toxins. Sorption and mobility of IOCs are distinctively different from those of neutral compounds. Due to electrostatic interactions with natural sorbents, existing concepts for describing neutral organic contaminant sorption, and by extension mobility, are inadequate for IOC. Predictive models developed for neutral compounds are based on octanol-water partitioning of compounds (Kow) and organic-carbon content of soil/sediment, which is used to normalize sorption measurements (KOC). We revisit those concepts and their translation to IOC (Dow and DOC) and discuss compound and soil properties determining sorption of IOC under water saturated conditions. Highlighting possible complementary and/or alternative approaches to better assess IOC mobility, we discuss implications on their regulation and risk assessment. The development of better models for IOC mobility needs consistent and reliable sorption measurements at well-defined chemical conditions in natural porewater, better IOC-, as well as sorbent characterization. Such models should be complemented by monitoring data from the natural environment. The state of knowledge presented here may guide urgently needed future investigations in this field for researchers, engineers, and regulators.
Collapse
Affiliation(s)
- Gabriel Sigmund
- Department
of Environmental Geosciences, Centre for Microbiology and Environmental
Systems Science, University of Vienna, 1090 Wien, Austria
| | - Hans Peter H. Arp
- Norwegian
Geotechnical Institute (NGI), P.O. Box 3930 Ullevaal Stadion, N-0806 Oslo, Norway
- Norwegian
University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Benedikt M. Aumeier
- RWTH
Aachen University, Institute of Environmental Engineering, Mies-van-der-Rohe Straße 1, 52074 Aachen, Germany
| | | | - Benny Chefetz
- Department
of Soil and Water Sciences, Institute of Environmental Sciences; Faculty
of Agriculture, Food and Environment, The
Hebrew University of Jerusalem, P.O. Box 12, Rehovot 7610001, Israel
| | - Wei Chen
- College
of Environmental Science and Engineering, Ministry of Education Key
Laboratory of Pollution Processes and Environmental Criteria, Tianjin
Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, P. R. China
| | - Steven T. J. Droge
- Wageningen
Environmental Research, Wageningen University
and Research, P.O. Box 47, 6700AA, Wageningen, Netherlands
| | - Satoshi Endo
- Health
and Environmental Risk Division, National
Institute for Environmental Studies (NIES), Onogawa 16-2, 305-8506 Tsukuba, Ibaraki Japan
| | - Beate I. Escher
- Department
of Cell Toxicology, Helmholtz Centre for
Environmental Research − UFZ, Permoser Strasse 15, DE-04318 Leipzig, Germany
- Environmental
Toxicology, Center for Applied Geoscience, Eberhard Karls University Tübingen, Schnarrenbergstr. 94-96, DE-72076 Tübingen, Germany
| | - Sarah E. Hale
- Norwegian
Geotechnical Institute (NGI), P.O. Box 3930 Ullevaal Stadion, N-0806 Oslo, Norway
| | - Thilo Hofmann
- Department
of Environmental Geosciences, Centre for Microbiology and Environmental
Systems Science, University of Vienna, 1090 Wien, Austria
| | - Joseph Pignatello
- Department
of Environmental Sciences, The Connecticut
Agricultural Experiment Station, New Haven; 123 Huntington St., New Haven, Connecticut 06504-1106, United States
| | - Thorsten Reemtsma
- Department
of Analytical Chemistry, Helmholtz Centre
for Environmental Research − UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
- Institute for Analytical Chemistry, University
of Leipzig, Linnéstrasse
3, 04103 Leipzig, Germany
| | - Torsten C. Schmidt
- Instrumental
Analytical Chemistry and Centre for Water and Environmental Research
(ZWU), University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany
| | | | - Martin Scheringer
- RECETOX, Masaryk University, 625 00 Brno, Czech Republic
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
15
|
Golubeva OY, Alikina YA, Khamova TV, Vladimirova EV, Shamova OV. Aluminosilicate Nanosponges: Synthesis, Properties, and Application Prospects. Inorg Chem 2021; 60:17008-17018. [PMID: 34723488 DOI: 10.1021/acs.inorgchem.1c02122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A simple one-step method is presented for fabricating inorganic nanosponges with a kaolinite [Al2Si2O5(OH)4] structure. The nanosponges were synthesized by the hydrothermal treatment of aluminosilicate gels in an acidic medium (pH = 2.6) at 220 °C without using organic cross-linking agents, such as cyclodextrin or polymers. The formation of the nanosponge morphology was confirmed by scanning electron microscopy, and the assignment of the synthesized aluminosilicates to the kaolinite group was confirmed by X-ray diffraction and infrared spectroscopy. The effect of the synthesis conditions, in particular, the nature (HCl, HF, NaOH, and H2O) and pH of the reaction medium (2.6, 7, and 12), as well as the duration of the synthesis (3, 6, and 12 days), on the morphology of aluminosilicates of the kaolinite group was studied. The sorption capacity of aluminosilicate nanosponges with respect to cationic (e.g., methylene blue) and anionic (e.g., azorubine) dyes in aqueous solutions was studied. The pH sensitivity of the surface ζ potential of the synthesized nanosponges was demonstrated. The dependence of the hemolytic activity (the ability to destroy erythrocytes) of aluminosilicate nanoparticles on the particle morphology (platy, spherical, and nanosponge) has been identified for the first time. Aluminosilicate nanosponges were not found to exhibit hemolytic activity. The prospects of using aluminosilicate nanosponges to prepare innovative functional materials for ecology and medicine applications, in particular, as matrices for drug delivery systems, were identified.
Collapse
Affiliation(s)
- Olga Yu Golubeva
- Laboratory of the Nanostructures Research, Institute of Silicate Chemistry, Russian Academy of Sciences, Adm. Makarova Emb., 2, St. Petersburg 199034, Russia
| | - Yulia A Alikina
- Laboratory of the Nanostructures Research, Institute of Silicate Chemistry, Russian Academy of Sciences, Adm. Makarova Emb., 2, St. Petersburg 199034, Russia
| | - Tamara V Khamova
- Laboratory of the Nanostructures Research, Institute of Silicate Chemistry, Russian Academy of Sciences, Adm. Makarova Emb., 2, St. Petersburg 199034, Russia
| | - Elizaveta V Vladimirova
- Department of General Pathology and Pathological Physiology, Institute of Experimental Medicine, Academic Pavlov Str., 12, St. Petersburg 197376, Russia
| | - Olga V Shamova
- Department of General Pathology and Pathological Physiology, Institute of Experimental Medicine, Academic Pavlov Str., 12, St. Petersburg 197376, Russia
| |
Collapse
|
16
|
Droge ST, Armitage JM, Arnot JA, Fitzsimmons PN, Nichols JW. Biotransformation Potential of Cationic Surfactants in Fish Assessed with Rainbow Trout Liver S9 Fractions. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:3123-3136. [PMID: 34379820 PMCID: PMC9187044 DOI: 10.1002/etc.5189] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/10/2021] [Accepted: 08/05/2021] [Indexed: 05/13/2023]
Abstract
Biotransformation may substantially reduce the extent to which organic environmental contaminants accumulate in fish. Presently, however, relatively little is known regarding the biotransformation of ionized chemicals, including cationic surfactants, in aquatic organisms. To address this deficiency, a rainbow trout liver S9 substrate depletion assay (RT-S9) was used to measure in vitro intrinsic clearance rates (CLint ; ml min-1 g liver-1 ) for 22 cationic surfactants that differ with respect to alkyl chain length and degree of methylation on the charged nitrogen atom. None of the quaternary N,N,N-trimethylalkylammonium compounds exhibited significant clearance. Rapid clearance was observed for N,N-dimethylalkylamines, and slower rates of clearance were measured for N-methylalkylamine analogs. Clearance rates for primary alkylamines were generally close to or below detectable levels. For the N-methylalkylamines and N,N-dimethylalkylamines, the highest CLint values were measured for C10 -C12 homologs; substantially lower clearance rates were observed for homologs containing shorter or longer carbon chains. Based on its cofactor dependency, biotransformation of C12 -N,N-dimethylamine appears to involve one or more cytochrome P450-dependent reaction pathways, and sulfonation. On a molar basis, N-demethylation metabolites accounted for up to 25% of the N,N-dimethylalkylamines removed during the 2-h assay, and up to 55% of the removed N-methylalkylamines. These N-demethylation products possess greater metabolic stability in the RT-S9 assay than the parent structures from which they derive and may contribute to the overall risk of ionizable alkylamines. The results of these studies provide a set of consistently determined CLint values that may be extrapolated to whole trout to inform in silico bioaccumulation assessments. Environ Toxicol Chem 2021;40:3123-3136. © 2021 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Steven T.J. Droge
- Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
| | | | - Jon A. Arnot
- ARC Arnot Research and ConsultingTorontoOntarioCanada
| | - Patrick N. Fitzsimmons
- Great Lakes Toxicology and Ecology Division, National Health and Environmental Effects Research Laboratory, Office of Research and DevelopmentUS Environmental Protection AgencyDuluthMinnesota
| | - John W. Nichols
- Great Lakes Toxicology and Ecology Division, National Health and Environmental Effects Research Laboratory, Office of Research and DevelopmentUS Environmental Protection AgencyDuluthMinnesota
| |
Collapse
|
17
|
Wu J, Zhang W, Li C, Hu E. Effects of Fe(III) and Cu(II) on the sorption of s-triazine herbicides on clay minerals. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126232. [PMID: 34102369 DOI: 10.1016/j.jhazmat.2021.126232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
The effects of Fe(III) and Cu(II) on the sorption of atrazine (AT) and prometryn (PY) on clay minerals were investigated both preloaded and in solution. For smectite, Fe(III) preloading greatly enhanced AT and PY sorption at pH 4.0 and 6.0 but diminished AT sorption at pH 8.0. Cu(II) preloading promoted AT and PY sorption under alkaline conditions but suppressed AT sorption at pH 4.0. The adverse effects were not obvious for PY. While for illite and kaolinite, Fe(III) and Cu(II) had little or promotion effects due to the lower contents of them in these two minerals. In the co-sorption studies, for smectite, AT sorption remained at pH 4.0 and increased at pH 6.0 and 8.0, while PY sorption was inhabited over the pH range of 4.0-8.0 in the presence of Fe(III). AT and PY sorption were not affected by Cu(II) except for PY at pH 8.0, in which case, the sorption was promoted. For illite and kaolinite, Fe(III) and Cu(II) generally enhanced AT and PY sorption.
Collapse
Affiliation(s)
- Jun Wu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Center for Membrane and Water Science & Technology, Zhejiang University of Technology, Hangzhou 310014, China; Zhejiang University of Technology Engineering Design Group Co., Ltd, Hangzhou, China
| | - Wenzhong Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Center for Membrane and Water Science & Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chunping Li
- Zhejiang University of Technology Engineering Design Group Co., Ltd, Hangzhou, China
| | - Erdan Hu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Center for Membrane and Water Science & Technology, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
18
|
Tani K, Watanabe H, Noguchi M, Hiki K, Yamagishi T, Tatarazako N, Yamamoto H. Toxicity assessment of typical polycyclic aromatic hydrocarbons to Daphnia magna and Hyalella azteca in water-only and sediment-water exposure systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 784:147156. [PMID: 34088053 DOI: 10.1016/j.scitotenv.2021.147156] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/09/2021] [Accepted: 04/11/2021] [Indexed: 06/12/2023]
Abstract
While the equilibrium partitioning (EqP) method has been demonstrated to effectively predict the adverse effects of nonionic organic chemicals in sediment on benthic organisms by sediment toxicity tests, only a limited number of studies have been performed both in water-only and whole-sediment toxicity tests using the same species and verified the validity of EqP-based toxicity assessment. To further examine the validity of the EqP method for application in a wide range of hydrophobicity, we conducted sorption/desorption experiments and both water-only and sediment toxicity tests using a popular aquatic crustacean species, Daphnia magna (48 h), and benthic species Hyalella azteca (96 h) for six typical polycyclic aromatic hydrocarbons (PAHs) with three to five rings and an amine derivative: anthracene, phenanthrene, fluoranthene, pyrene, benzo[a]pyrene, dibenzo[a,h]anthracene, and 1-aminopyrene. The linear sorption coefficient was determined and ranged from 2.7 × 102 (phenanthrene) and 1.2 × 104 L/kg (benzo[a]pyrene) highly depending on the hydrophobicity while the aqueous concentrations were stable after 24 h in the desorption test. As result of acute toxicity tests in the water-only exposure system, anthracene and dibenz[a,h]anthracene were found to be nontoxic to both species, while median effect/lethal concentrations (EC50/LC50) were determined as ranging from 0.66 (benzo[a]pyrene) to 330 μg/L (phenanthrene), and from 11 (1-aminopyrene) to 180 μg/L (phenanthrene) for D. magna and H. azteca, respectively. Among these compounds, three PAHs with three, four, and five rings each, and 1-aminopyrene were subjected to sediment-water toxicity tests. In the sediment-water tests, the LC50 of phenanthrene and pyrene was three to six times higher than that of the water-only tests for H. azteca while the EC50 was 1.1 to 2.0 times higher for D. magna. In contrast, the EC50/LC50 of benzo[a]pyrene (BaP) in the sediment-water toxicity test was more than 5 times higher than that in the water-only test for both H. azteca and D. magna. The EC50/LC50 values of 1-aminopyrene were similar in both the sediment-water and the water-only toxicity tests, ranging narrowly from 21 to 28 μg/L and 8.8 to 11 μg/L for D. magna and H. azteca, respectively. The EC50/LC50 based on the body residue (ER50/LR50) was investigated for two of the representative PAHs, pyrene, and BaP. The ER50/LR50 of pyrene in both species was 2.3 and 11 times higher in the water-only toxicity test for D. magna and H. azteca, respectively, while those of BaP in the sediment-water toxicity test were not calculated for the sediment-water toxicity tests, and the highest body concentration in the sediment-water tests was lower than the ER50/LR50 in the water-only toxicity test. Although the experimental results were comparable with the predicted sediment toxicity values based on the EqP method for the selected PAHs in this study, there is a risk of phenanthrene and pyrene being slightly underestimated (1.4-1.9 fold for phenanthrene and 3.7-6.1 fold for pyrene) by the EqP method for H. azteca. These results reaffirm that the bioavailability of poorly water-soluble chemicals is important for sediment toxicity and that the exposure pathway should be further investigated to avoid under- and overestimation via the EqP method.
Collapse
Affiliation(s)
- Kazune Tani
- Department of Natural Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8563, Japan; Center for Health and Environmental Risk Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Haruna Watanabe
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Mana Noguchi
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Kyoshiro Hiki
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Takahiro Yamagishi
- Department of Natural Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8563, Japan; Center for Health and Environmental Risk Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Norihisa Tatarazako
- Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan
| | - Hiroshi Yamamoto
- Department of Natural Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8563, Japan; Center for Health and Environmental Risk Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan.
| |
Collapse
|
19
|
Adsorptive capacity of spray-dried pH-treated bentonite and kaolin powders for ammonium removal. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.02.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Henneberger L, Goss KU. Environmental Sorption Behavior of Ionic and Ionizable Organic Chemicals. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 253:43-64. [PMID: 31748892 DOI: 10.1007/398_2019_37] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Traditionally our tools for environmental risk assessment of organic chemicals have been developed for neutral chemicals. However, many commercial chemicals are ionic or ionizable and require different tools and approaches for their assessment. In recent years this task starts to obtain increasing attention but our understanding for their environmental fate is still far behind that for neutral chemicals. This review first gives an overview on the principles that govern ionic partitioning in environmental systems which are more complex than the simple partition processes of neutral chemicals. Second, a summary of our current knowledge on various topics such as bioaccumulation, sorption in soils, and nonspecific-toxicity reveals that ionic species can actually be quite hydrophobic contrary to commonly held beliefs. Eventually, we discuss existing models for the quantitative prediction of organic ions' sorption in soils and biota. We have to assert that the available model tools are quite restricted in their application range compared to neutral chemicals which is due to the higher complexity of the various ionic sorption processes. In order to further advance our understanding more high-quality sorption data are needed with a focus on multivalent and zwitterionic ions in all partition systems as well as cations in biological matrices.
Collapse
Affiliation(s)
| | - Kai-Uwe Goss
- Helmholtz Centre for Environmental Research UFZ, Leipzig, Germany.
- Institute of Chemistry, University of Halle-Wittenberg, Halle, Germany.
| |
Collapse
|
21
|
Agafonov A, Kudryakova N, Ramenskaya L, Grishina E. The confinement and anion type effect on the physicochemical properties of ionic liquid/halloysite nanoclay ionogels. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.10.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
22
|
Ndabambi M, Kwon JH. Benzalkonium ion sorption to peat and clays: Relative contributions of ion exchange and van der Waals interactions. CHEMOSPHERE 2020; 247:125924. [PMID: 31978661 DOI: 10.1016/j.chemosphere.2020.125924] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/11/2020] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
Due to their use in various domestic and industrial formulations, benzalkonium compounds have been isolated in many environmental matrices. Sorption to soil components has been shown to play a key role in their environmental fate. Whereas sorption of benzalkonium compounds to soils is attributed to cation exchange and van der Waals forces, the relative contributions of these two mechanisms at environmental levels have not been clearly defined. In this study a previously reported algal toxicity assay-based method was employed to determine the distribution coefficients (Kd) of benzalkonium compounds between water and soil components, at environmental concentrations. Cation exchange capacity corrected Kd values for organic matter and clays were all within one order of magnitude. This implies that ion exchange is the dominant mechanism of sorption for benzalkonium compounds. When the sorption data were used to compute sorption energies for four homologues of benzalkonium ions, the magnitude of the free energy change of sorption increased with size of the molecule. The increase in sorption energy could be partly explained by increased energy of hydration with addition of methylene groups to the alkyl chain. A model that predicts sorption coefficients of benzalkonium compounds to soils using organic carbon content and cation exchange capacity was also defined. When tested using an artificial soil, the model estimates were all within one order of magnitude of the experimental values.
Collapse
Affiliation(s)
- Mlamuli Ndabambi
- Division of Environmental Science and Ecological Engineering, Korea University, Anam-ro 145, Seongbuk-gu, Seoul, 02841, Republic of Korea; Department of Civil and Environmental Engineering, Pusan National University, 63 Beon-gil, Busandaehak-ro, Geumjeong-gu, Busan, 46241, Republic of Korea
| | - Jung-Hwan Kwon
- Division of Environmental Science and Ecological Engineering, Korea University, Anam-ro 145, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| |
Collapse
|
23
|
Timmer N, Gore D, Sanders D, Gouin T, Droge STJ. Application of seven different clay types in sorbent-modified biodegradability studies with cationic biocides. CHEMOSPHERE 2020; 245:125643. [PMID: 31877460 DOI: 10.1016/j.chemosphere.2019.125643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 06/10/2023]
Abstract
The cationic surfactants cetyltrimethylammonium bromide (CTAB) and cetylpyridinium chloride (CPC) can exert inhibitory effects on micro-organisms responsible for their biodegradation. However, under environmentally relevant exposure scenarios the presence of and sorption to organic and inorganic matter can lead to significant reduction of inhibitory effects. In our studies we investigated silica gel and seven clays as inert sorbents to mitigate these inhibitory effects in a 28 day manometric respirometry biodegradation test. CTAB was not inhibitory to the used inoculum, but we did observe that seven out of eight sorbents increased maximum attainable biodegradation, and four out of eight decreased the lag phase. The strongly inhibitory effect of CPC was successfully mitigated by most sorbents, with five out of eight allowing >50% biodegradation within 28 days. Results further indicate that bioaccessibility of the sorbed fractions in the stirred manometric test systems was higher than in calmly shaken headspace test systems. Bioaccessibility might also be limited depending on characteristics of test chemical and sorbent type, with montmorillonite and bentonite apparently providing the lowest level of bioaccessibility with CPC. Clay sorbents can thus be used as environmentally relevant sorbents to mitigate potential inhibitory effects of test chemicals, but factors that impede bioaccessibility should be considered. In addition to apparently increased bioaccessibility due to stirring, the automated manometric respirometry test systems give valuable and highly cost-effective insights into lag phase and biodegradation kinetics; information that is especially relevant for test chemicals of gradual biodegradability.
Collapse
Affiliation(s)
- Niels Timmer
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, 3508 TD, the Netherlands; Department Discovery and Environmental Sciences, Charles River Laboratories Den Bosch BV, 's-Hertogenbosch, 5231 DD, the Netherlands
| | - David Gore
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook, MK44 1LQ, Bedfordshire, UK
| | - David Sanders
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook, MK44 1LQ, Bedfordshire, UK
| | - Todd Gouin
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook, MK44 1LQ, Bedfordshire, UK
| | - Steven T J Droge
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, 3508 TD, the Netherlands; Department Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94248, 1090 GE, Amsterdam, the Netherlands.
| |
Collapse
|
24
|
Carter LJ, Wilkinson JL, Boxall ABA. Evaluation of Existing Models to Estimate Sorption Coefficients for Ionisable Pharmaceuticals in Soils and Sludge. TOXICS 2020; 8:toxics8010013. [PMID: 32053896 PMCID: PMC7151744 DOI: 10.3390/toxics8010013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/07/2020] [Accepted: 02/08/2020] [Indexed: 11/16/2022]
Abstract
In order to assess the environmental risk of a pharmaceutical, information is needed on the sorption of the compound to solids. Here we use a high-quality database of measured sorption coefficients, all determined following internationally recognised protocols, to evaluate models that have been proposed for estimating sorption of pharmaceuticals from chemical structure, some of which are already being used for environmental risk assessment and prioritization purposes. Our analyses demonstrate that octanol-water partition coefficient (Kow) alone is not an effective predictor of ionisable pharmaceutical sorption in soils. Polyparameter models based on pharmaceutical characteristics in combination with key soil properties, such as cation exchange capacity, increase model complexity but yield an improvement in the predictive capability of soil sorption models. Nevertheless, as the models included in this analysis were only able to predict a maximum of 71% and 67% of the sorption coefficients for the compounds to within one log unit of the corresponding measured value in soils and sludge, respectively, there is a need for new models to be developed to better predict the sorption of ionisable pharmaceuticals in soil and sludge systems. The variation in sorption coefficients, even for a single pharmaceutical across different solid types, makes this an inherently difficult task, and therefore requires a broad understanding of both chemical and sorbent properties driving the sorption process.
Collapse
|
25
|
Liu Y, Zhang Q, Wu B, Li X, Ma F, Li F, Gu Q. Hematite-facilitated pyrolysis: An innovative method for remediating soils contaminated with heavy hydrocarbons. JOURNAL OF HAZARDOUS MATERIALS 2020; 383:121165. [PMID: 31522067 DOI: 10.1016/j.jhazmat.2019.121165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/04/2019] [Accepted: 09/04/2019] [Indexed: 06/10/2023]
Abstract
As a recalcitrant fraction of petroleum, heavy hydrocarbons (including aromatics, resins, and asphaltenes) can remain in contaminated soils even after decades of weathering, thereby causing serious harm to the soil ecosystem and human health. Pyrolysis is a promising technique for remediating petroleum-contaminated soil. However, this technique still presents some drawbacks, such as high energy consumption and damage to soil properties. Therefore, an innovative method using hematite (Fe2O3) for the catalytic pyrolysis of weathered petroleum-contaminated soil was developed in this study. Compared with soil pyrolyzed without Fe2O3 at 400 °C for 30 min, the residual concentrations of aromatics, resins, and asphaltenes in soil pyrolyzed with 5.0% Fe2O3 were reduced by 67.8%, 52.3%, and 67.9%, respectively. After pyrolysis with 5.0% Fe2O3, the water-holding capacity of soil was considerably increased and the soil became darker and rougher. Scanning electron microscopy analysis showed that many small holes occurred on the surface of the pyrolytic soil. X-ray photoelectron spectrometer analysis showed that a thin layer of graphitic C was formed and deposited on the surface of the pyrolytic soil. We also observed that the wheat germination percentage and biomass yield in the soil pyrolyzed with 5.0% Fe2O3 were even higher than those in clean soil.
Collapse
Affiliation(s)
- Yuqin Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Qian Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Bin Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaodong Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Fujun Ma
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Fasheng Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Qingbao Gu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
26
|
Jolin WC, Richard A, Vasudevan D, Gascón JA, MacKay AA. Aluminosilicate Mineralogy and the Sorption of Organic Cations: Interplay between Electrostatic Barriers and Compound Structural Features. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:1623-1633. [PMID: 31909596 DOI: 10.1021/acs.est.9b06121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Current predictive models of organic cation sorption assume that sorbates interact with all sites on aluminosilicate minerals in the same manner. To examine whether differences in aluminosilicate structure and the resultant changes in electrostatic potential influence the sorption of organic cations, seven smectites were chosen with different proportions of isomorphic substitutions (origin of clay charge) located in octahedral versus tetrahedral layers and with the presence or absence of aluminosilicate interlayers. Sorption coefficients for 14 benzylamine derivatives with systematic differences in compound structures were collected to understand the possible influence of aluminosilicate mineralogy. Benzylamine compounds with methyl group substitution on the charged amine or with electron-donating or -withdrawing ring substituents displayed decreases in cation exchange-normalized sorption coefficients (KCEC), by up to one order of magnitude, between hectorite (100% isomorphic substitution in the octahedral layer) and nontronite (100% isomorphic substitution in the tetrahedral layer). To understand this difference across aluminosilicates, stochastic molecular models of the various aluminosilicate minerals with interlayers were performed. These models showed that negative charge density associated with tetrahedral sites results in high positive electrostatic energy barriers within the interlayer, creating a penalty for compounds with positive charge spread over a larger compound surface area as occurs from primary to quaternary amines. Conversely, clays with charge originating from octahedral sites produce low electrostatic potential barriers within the interlayer, decreasing the penalty for quaternary amine sorption. Trends for nine cationic pharmaceutical compounds, which varied in size, group alkylation, and/or polar substituents, demonstrated similar decreases in KCEC values to aluminosilicate minerals with high electrostatic energy barriers. Overall, aluminosilicate mineralogy was found to exert a large influence (0.5-1 order of magnitude in sorption coefficients) on organic cation sorption. The application of atomistic electrostatic potential mapping of both sorbent and sorbate structures provided insights to explain trends in sorption coefficients that could not be described by the basic electrostatic potential theory or by assuming that sorbate structure moieties yielded additive sorption contributions.
Collapse
Affiliation(s)
- William C Jolin
- Department of Civil and Environmental Engineering , University of Connecticut , Storrs , Connecticut 06269 , United States
| | - Alissa Richard
- Department of Chemistry , University of Connecticut , Storrs , Connecticut 06269 , United States
| | - Dharni Vasudevan
- Department of Chemistry , Bowdoin College , Brunswick , Maine 04011 , United States
| | - José A Gascón
- Department of Chemistry , University of Connecticut , Storrs , Connecticut 06269 , United States
| | - Allison A MacKay
- Department of Civil, Environmental and Geodetic Engineering , The Ohio State University , Columbus , Ohio 43210 , United States
| |
Collapse
|
27
|
Wang W, Qi M, Jia X, Jin J, Zhou Q, Zhang M, Zhou W, Li A. Differential adsorption of zwitterionic PPCPs by multifunctional resins: The influence of the hydrophobicity and electrostatic potential of PPCPs. CHEMOSPHERE 2020; 241:125023. [PMID: 31606573 DOI: 10.1016/j.chemosphere.2019.125023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/09/2019] [Accepted: 09/30/2019] [Indexed: 05/19/2023]
Abstract
Zwitterionic pharmaceuticals and personal care products can interact with adsorbents in different ways due to their various properties. In this work, the effects of hydrophobicity and electrostatic potential were explored through the adsorption of ciprofloxacin (CPX) and tetracycline (TC) onto multifunctional resins. Nonionic surface interaction was dominant for the adsorption on high-surface-area resin GMA10. Thereinto, hydrophobic and π-π interaction dominant for hydrophobic CPX and hydrophilic TC, respectively. Electrostatic interaction played an important role for high-anion-exchange-capacity resin GMA90. Upon their adsorption onto GMA50 resin, the relatively separated positive and negative electrostatic potentials of CPX+- due to the greater distance (∼12.33 Å) between the anionic and cationic groups led to electrostatic attraction and interaction (Ea = 8.64 ± 0.31 kJ/mol) and the vertical orientation of molecule on the surface. However, TC+-0 displayed nonionic surface interaction (Ea = 7.96 ± 0.14 kJ/mol) due to its relatively neutral electrostatic potential arising from the adjacent functional groups. Hence, the surface of GMA50 was covered with TC+-0 molecules adsorbed parallel to the surface, thereby restricting TC+-0 adsorption. Coexisted with monovalent salts, CPX adsorption was facilitated due to the salting-out effect. By contrast, the salting-out effect for TC was extremely weak, and TC adsorption was restrained due to the competitive adsorption of salts.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China; Jiangsu Provincial Key Laboratory of Environmental Engineering, Jiangsu Provincial Academy of Environmental Science, Nanjing, 210036, PR China
| | - Meng Qi
- Jiangsu Provincial Key Laboratory of Environmental Engineering, Jiangsu Provincial Academy of Environmental Science, Nanjing, 210036, PR China
| | - Xiaorui Jia
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Jing Jin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Qing Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China.
| | - Mancheng Zhang
- Jiangsu Provincial Key Laboratory of Environmental Engineering, Jiangsu Provincial Academy of Environmental Science, Nanjing, 210036, PR China.
| | - Weiwei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Aimin Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| |
Collapse
|
28
|
Charge reversal and anion effects during adsorption of metal ions at clay surfaces: Mechanistic aspects and influence factors. Chem Phys 2020. [DOI: 10.1016/j.chemphys.2019.110575] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Hanamoto S, Ogawa F. Predicting the sorption of azithromycin and levofloxacin to sediments from mineral and organic components. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113180. [PMID: 31525559 DOI: 10.1016/j.envpol.2019.113180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/21/2019] [Accepted: 09/04/2019] [Indexed: 05/27/2023]
Abstract
Despite the strong association of azithromycin (AZM), a macrolide antibiotic, and levofloxacin (LVF), a quinolone antibiotic, to sediment, sorption data are scarce. We conducted sorption experiments with eight river sediments, their major clay minerals (illite and chlorite), a highly negatively charged clay mineral (montmorillonite), and an organic-matter-rich soil (Andosol). The sorption of AZM and LVF to the sediments was influenced by the concentration and type of coexisting inorganic cations as much as by reported organic cations. In addition, their linear sorption coefficients (Kd) to sediments were correlated with cation exchange capacity (CEC) but not organic carbon content, so cation exchange is the dominant sorption mechanism. Multiple linear regression analysis showed improved prediction of sediment Kd from CEC contributed by minerals and organic matter for AZM, but not for LVF. Kcec (= Kd/CEC) values of AZM were 2-3 orders of magnitude higher on minerals than on Andosol, but those of LVF ranged within a factor of 4. Therefore, mineral and organic components need to be separated in estimating AZM sorption to sediments. Sediment Kd values of AZM and LVF were satisfactorily predicted by a cation-exchange-based model using individual Kcec values on illite, chlorite, and Andosol (mean absolute error of 0.57 and 0.22 log units, respectively). Kcec values on montmorillonite and chlorite ranged within a factor of about 3 from those of illite for both antibiotics, and Kcec differences by mineral type would generally be negligible in model estimation. Because AZM was sorbed mostly to minerals in sediments, the model and sorption data can be applicable to various soils or sediments. Overall, the trend of LVF sorption corresponds to reported sorption of other organic cations, whereas remarkably higher AZM Kcec to minerals than to Andosol is attributable to its large lactone ring, higher molecular weight, or two charged amines.
Collapse
Affiliation(s)
- Seiya Hanamoto
- Water Quality Team, Water Environment Research Group, Public Works Research Institute (PWRI), 1-6 Minamihara, Tsukuba, Ibaraki, 305-8516, Japan.
| | - Fumiaki Ogawa
- Water Quality Team, Water Environment Research Group, Public Works Research Institute (PWRI), 1-6 Minamihara, Tsukuba, Ibaraki, 305-8516, Japan
| |
Collapse
|
30
|
Kodešová R, Klement A, Golovko O, Fér M, Kočárek M, Nikodem A, Grabic R. Soil influences on uptake and transfer of pharmaceuticals from sewage sludge amended soils to spinach. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 250:109407. [PMID: 31472377 DOI: 10.1016/j.jenvman.2019.109407] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 08/06/2019] [Accepted: 08/13/2019] [Indexed: 05/12/2023]
Abstract
Sewage sludge from wastewater treatment plants, which may contain various contaminants including pharmaceuticals, is often used as a soil amendment. These contaminants may subsequently be taken up by plants. In the present study we examined uptake of select pharmaceuticals from sewage sludge applied to soils by spinach plants. Seven soils were amended with sewage sludge from two wastewater treatment plants (A and B). Concentrations of compounds in plant tissues (roots and leaves) of spinach planted 45 days in these soils under greenhouse conditions were evaluated after harvest. The largest bioaccumulation in the roots and leaves was observed for sertraline (bioaccumulation factors (BAF) of 3.3-37.9 and 1-13.4, respectively), tramadol (1.3-10.0 and 4.8-30.0), and carbamazepine (2.2-17.2 and 6.1-48.8) and its metabolite carbamazepine 10,11-epoxide (not-quantified to 7.3 and 9.3-96.7). Elevated bioaccumulation in spinach roots was also identified for telmisartan (3.0-20.3) and miconazole (4.3-15.1), and leaves for metoprolol acid (not-quantified to 24.3). BAF values resulting from application of sludge B were similar to or moderately higher than BAFs from sludge A. The BAF values of carbamazepine and carbamazepine 10,11-epoxide in all tissues were negatively correlated with soil cation exchange capacity (CEC). This negative correlation between BAF and CEC was also observed for tramadol (A-roots and B-leaves), citalopram (B-roots), and telmisartan (B-roots) or between BAF and clay content for metoprolol acid (A-leaves and B-roots), tramadol (B-roots and A-leaves) and venlafaxine (B-roots). However, in the case of some other compounds (i.e. sertraline, amitriptyline, mirtazapine, metoprolol), uptake and the subsequent translocation and transformation from 3 soils of a higher pH and base cation saturation (Stagnic Chernozem Siltic, Haplic Chernozem and Greyic Phaeozem) significantly differed from 4 soils with a lower pH and base cation saturation (Haplic Luvisol, Haplic Cambisol, Dystric Cambisol and Arenosol Epieutric). Such observations proved strong compound dependent influences of soil conditions on various compounds bioaccumulations in plants and necessity of studying these processes always in diverse soils.
Collapse
Affiliation(s)
- Radka Kodešová
- Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Dept. of Soil Science and Soil Protection, Kamýcká 129, 16500, Prague 6, Czech Republic.
| | - Aleš Klement
- Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Dept. of Soil Science and Soil Protection, Kamýcká 129, 16500, Prague 6, Czech Republic
| | - Oksana Golovko
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Miroslav Fér
- Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Dept. of Soil Science and Soil Protection, Kamýcká 129, 16500, Prague 6, Czech Republic
| | - Martin Kočárek
- Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Dept. of Soil Science and Soil Protection, Kamýcká 129, 16500, Prague 6, Czech Republic
| | - Antonín Nikodem
- Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Dept. of Soil Science and Soil Protection, Kamýcká 129, 16500, Prague 6, Czech Republic
| | - Roman Grabic
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| |
Collapse
|
31
|
Timmer N, Gore D, Sanders D, Gouin T, Droge STJ. Sorbent-modified biodegradation studies of the biocidal cationic surfactant cetylpyridinium chloride. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 182:109417. [PMID: 31302333 DOI: 10.1016/j.ecoenv.2019.109417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/29/2019] [Accepted: 07/03/2019] [Indexed: 06/10/2023]
Abstract
Biodegradability studies for the cationic surfactant cetylpyridinium chloride (CPC) are hampered by inhibitory effects on inoculum at prescribed test concentrations (10-20 mg organic carbon/L). In this study, we used 14C labeled CPC in the 28 d Headspace Test (OECD 310) and demonstrated that CPC was readily biodegradable (10->60% mineralization within a 10 day window) at test concentrations 0.006-0.3 mg/L with CPC as single substrate. Biodegradation efficiency was comparable over this concentration range. CPC inhibited degradation at 1 mg/L and completely suppressed inoculum activity at 3 mg/L. In an extensive sorbent modified biodegradation study we evaluated the balance between CPC bioaccessibility and toxicity. A non-inhibitory concentration of 0.1 mg/L CPC was readily biodegradable with 83% sorbed to SiO2, while biodegradation was slower when 96% was sorbed. SiO2 mitigated inhibitory effects of 1 mg/L CPC, reaching >60% biodegradation within 28 d; inhibitory effects were also mitigated by addition of commercial clay powder (illite) but this was primarily reflected by a reduced lag phase. At 10 mg/L CPC SiO2 was still able to mitigate inhibitory effects, but bioaccessibility seemed limited as only 20% biodegradation was reached. Illite limited bioaccessibility more strongly and was not able to sustain biodegradation at 10 mg/L CPC.
Collapse
Affiliation(s)
- Niels Timmer
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, 3508, TD, the Netherlands
| | - David Gore
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook, MK44 1LQ. Bedfordshire, UK
| | - David Sanders
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook, MK44 1LQ. Bedfordshire, UK
| | - Todd Gouin
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook, MK44 1LQ. Bedfordshire, UK
| | - Steven T J Droge
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, 3508, TD, the Netherlands; Department Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, PO Box 94248, 1090 GE Amsterdam, the Netherlands.
| |
Collapse
|
32
|
Ndabambi M, Kwon JH. Application of an algal growth inhibition assay to determine distribution coefficients of benzalkonium ions between kaolinite and water. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 174:491-497. [PMID: 30856561 DOI: 10.1016/j.ecoenv.2019.03.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 02/23/2019] [Accepted: 03/03/2019] [Indexed: 06/09/2023]
Abstract
Benzalkonium compounds are widely used and found in environmental samples. Due to their amphiphilic nature, it is important to know sorption coefficients to account their bioavailability. However, currently available models describing their partitioning were developed using low molecular weight homologues and it cannot be ascertained whether they are applicable to their higher molecular weight homologues. Reasons for the scarcity of data on highly sorptive compounds include the lack of reliable quantification techniques for analyzing these chemicals at environmentally relevant levels. This study, therefore, reports on an algal growth inhibition assay-based method for the determination of kaolinite/water distribution coefficients for benzalkonium compounds at their environmentally relevant concentration range. Sorption to clay was computed using the difference between median effective concentration determined in a culture with kaolinite and that derived from a culture grown in standard medium. A kinetic model was used to account for uptake into algal cells and to calculate free concentrations. Due to the sensitivity of the algal species, Pseudokirchneriella subcapitata, it was possible to determine distribution coefficients below micromole per liter concentrations. The computed distribution coefficients showed a linear increase with number of carbon atoms in the alkyl chain up to 14. The proposed bioassay-based method should be applicable to determine distribution coefficients for highly hydrophobic chemicals and ionic liquids at a concentration range lower than typical analytical limits.
Collapse
Affiliation(s)
- Mlamuli Ndabambi
- Division of Environmental Science and Ecological Engineering, Korea University, Anam-ro 145, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jung-Hwan Kwon
- Division of Environmental Science and Ecological Engineering, Korea University, Anam-ro 145, Seongbuk-gu, Seoul 02841, Republic of Korea.
| |
Collapse
|
33
|
Timmer N, Gore D, Sanders D, Gouin T, Droge STJ. Toxicity mitigation and bioaccessibility of the cationic surfactant cetyltrimethylammonium bromide in a sorbent-modified biodegradation study. CHEMOSPHERE 2019; 222:461-468. [PMID: 30716549 DOI: 10.1016/j.chemosphere.2019.01.152] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 01/24/2019] [Accepted: 01/25/2019] [Indexed: 06/09/2023]
Abstract
Biodegradation potential of cationic surfactants may be hampered by inhibition of inoculum at concentrations required to accurately measure inorganic carbon. At >0.3 mg/L cetyltrimethylammonium bromide (CTAB) negatively impacted degradation of the reference compound aniline. We used silicon dioxide (SiO2) and illite as inorganic sorbents to mitigate toxicity of CTAB by lowering freely dissolved concentrations. In an OECD Headspace Test we tested whether 16.8 mg/L CTAB was readily biodegradable in presence of two concentrations of SiO2 and illite. SiO2 adsorbed 85% and 98% CTAB, resulting in concentrations of 2.5 and 0.34 mg/L, mineralized to CO2 >60% within 16 and 23 d, respectively. With 89% and 99% sorbed to illite, 60% mineralization was reached within 9 and 23 d, respectively. However, higher sorbent concentrations increased time needed to reach >60% mineralization. Thus, desorption kinetics likely decreased bioaccessibility. It is therefore essential to determine appropriate concentrations of mitigating sorbents to render a Headspace Test based on carbon analysis suitable to determine ready biodegradability of compounds which might inhibit inoculum. This would avoid use of expensive radiolabeled compounds. However, high sorbent concentrations can reduce bioaccessibility and limit degradation kinetics, particularly for relatively toxic substances that require strong mitigation.
Collapse
Affiliation(s)
- Niels Timmer
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht 3508 TD, the Netherlands
| | - David Gore
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, UK
| | - David Sanders
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, UK
| | - Todd Gouin
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, UK
| | - Steven T J Droge
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht 3508 TD, the Netherlands; Department Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94248, 1090 GE Amsterdam, the Netherlands.
| |
Collapse
|
34
|
Carter LJ, Chefetz B, Abdeen Z, Boxall ABA. Emerging investigator series: towards a framework for establishing the impacts of pharmaceuticals in wastewater irrigation systems on agro-ecosystems and human health. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2019; 21:605-622. [PMID: 30932118 DOI: 10.1039/c9em00020h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Use of reclaimed wastewater for agricultural irrigation is seen as an attractive option to meet agricultural water demands of a growing number of countries suffering from water scarcity. However, reclaimed wastewater contains pollutants which are introduced to the agro-environment during the irrigation process. While water reuse guidelines do consider selected classes of pollutants, they do not account for the presence of pollutants of emerging concern such as pharmaceuticals and the potential risks these may pose. Here we use source-pathway-receptor analysis (S-P-R) to develop a holistic framework for evaluating the impacts of pharmaceuticals, present in wastewater used for agricultural irrigation, on human and ecosystem health and evaluate the data availability for the framework components. The developed framework comprised of 34 processes and compartments but a good level of knowledge was available for only five of these suggesting that currently it is not possible to fully establish the impacts of pharmaceuticals in wastewater irrigation systems. To address this, work is urgently needed to understand the fate and transport of pharmaceuticals in arable soil systems and the effects of chronic low-level exposure to these substances on microbes, invertebrates, plants, wildlife and humans. In addition, research pertaining to the fate, uptake and effects of pharmaceutical mixtures and metabolites is lacking as well as data on bio-accessibility of pharmaceuticals after ingestion. Scientific advancements in the five areas prioritised in terms of future research are needed before we are able to fully quantify the agricultural and human health risks associated with reclaimed wastewater use.
Collapse
Affiliation(s)
- Laura J Carter
- School of Geography, Faculty of Environment, University of Leeds, Leeds, LS2 9JT, UK.
| | | | | | | |
Collapse
|
35
|
Kodešová R, Klement A, Golovko O, Fér M, Nikodem A, Kočárek M, Grabic R. Root uptake of atenolol, sulfamethoxazole and carbamazepine, and their transformation in three soils and four plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:9876-9891. [PMID: 30734257 DOI: 10.1007/s11356-019-04333-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 01/22/2019] [Indexed: 05/12/2023]
Abstract
Soils can be contaminated by pharmaceuticals. The aim of this study was to evaluate the impact of soil conditions (influencing sorption and persistence of pharmaceuticals in soils) and plant type on the root uptake of selected pharmaceuticals and their transformation in plant-soil systems. Four plants (lamb's lettuce, spinach, arugula, radish) planted in 3 soils were irrigated for 20 days (26) with water contaminated by one of 3 pharmaceuticals (carbamazepine, atenolol, sulfamethoxazole) or their mixture. The concentrations of pharmaceuticals and their metabolites in soils and plant tissues were evaluated after the harvest. Sulfamethoxazole and atenolol dissipated rapidly from soils. The larger concentrations of both compounds and an atenolol metabolite were found in roots than in leaves. Sulfamethoxazole metabolites were below the limits of quantifications. Carbamazepine was stable in soils, easily uptaken, accumulated, and metabolized in plant leaves. The efficiency of radish and arugula (both family Brassicaceae) in metabolizing was very low contrary to the high and moderate efficiencies of lamb's lettuce and spinach, respectively. Compounds' transformations mostly masked the soil impact on their accumulation in plant tissues. The negative relationships were found between the carbamazepine sorption coefficients and its concentrations in roots of radish, lamb's lettuce, and spinach.
Collapse
Affiliation(s)
- Radka Kodešová
- Faculty of Agrobiology, Food and Natural Resources, Dept. of Soil Science and Soil Protection, Czech University of Life Sciences Prague, Kamýcká 129, 16500, Prague 6, Czech Republic.
| | - Aleš Klement
- Faculty of Agrobiology, Food and Natural Resources, Dept. of Soil Science and Soil Protection, Czech University of Life Sciences Prague, Kamýcká 129, 16500, Prague 6, Czech Republic
| | - Oksana Golovko
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší 728/II, Vodňany, 38925, Czech Republic
| | - Miroslav Fér
- Faculty of Agrobiology, Food and Natural Resources, Dept. of Soil Science and Soil Protection, Czech University of Life Sciences Prague, Kamýcká 129, 16500, Prague 6, Czech Republic
| | - Antonín Nikodem
- Faculty of Agrobiology, Food and Natural Resources, Dept. of Soil Science and Soil Protection, Czech University of Life Sciences Prague, Kamýcká 129, 16500, Prague 6, Czech Republic
| | - Martin Kočárek
- Faculty of Agrobiology, Food and Natural Resources, Dept. of Soil Science and Soil Protection, Czech University of Life Sciences Prague, Kamýcká 129, 16500, Prague 6, Czech Republic
| | - Roman Grabic
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší 728/II, Vodňany, 38925, Czech Republic
| |
Collapse
|
36
|
Hu E, Zhao X, Pan S, Ye Z, He F. Sorption of Non-ionic Aromatic Organics to Mineral Micropores: Interactive Effect of Cation Hydration and Mineral Charge Density. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:3067-3077. [PMID: 30794386 DOI: 10.1021/acs.est.9b00145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The influence of K+ and Ca2+ on the sorption of non-ionic aromatic contaminants (1,4-dinitrobenzene and p-xylene) on a series of microporous zeolite minerals (HZSM-5) with various surface charge densities was investigated. For zeolites with high or low charge density (>1.78 or <0.16 sites/nm2), K+ and Ca2+ had negligible influence on the sorption of organics, which mainly occurred at the hydrophobic nanosites. For zeolites with charge density in the moderate range (0.16-1.78 sites/nm2), the sorption of organics was strongly dependent upon the cation hydration effect. K+ with a lower hydration free energy greatly favored sorption of organics to the micropores compared to Ca2+. Differential scanning calorimetry and X-ray photoelectron spectroscopy results indicated that K+ can reduce the water affinity and promote specific sorption of organics in the zeolites with moderate charge density. The above mechanisms were successfully applied to explain the retention of 1,4-dinitrobenzene and p-xylene on four natural minerals (smectite, illite, kaolinite, and mordenite). This study shed new insights on how cation hydration influences sorption interactions of non-ionic aromatic contaminants at mineral-water interfaces as a function of the mineral charge density.
Collapse
Affiliation(s)
- Erdan Hu
- College of Environment , Zhejiang University of Technology , Hangzhou , Zhejiang 310014 , People's Republic of China
| | - Xinglei Zhao
- College of Environment , Zhejiang University of Technology , Hangzhou , Zhejiang 310014 , People's Republic of China
| | - Shangyue Pan
- College of Environment , Zhejiang University of Technology , Hangzhou , Zhejiang 310014 , People's Republic of China
| | - Ziwei Ye
- College of Environment , Zhejiang University of Technology , Hangzhou , Zhejiang 310014 , People's Republic of China
| | - Feng He
- College of Environment , Zhejiang University of Technology , Hangzhou , Zhejiang 310014 , People's Republic of China
| |
Collapse
|
37
|
Briones RM, Sarmah AK. Insight into the sorption mechanism of metformin and its transformation product guanylurea in pastoral soils and model sorbents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 645:1323-1333. [PMID: 30248856 DOI: 10.1016/j.scitotenv.2018.07.251] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/03/2018] [Accepted: 07/18/2018] [Indexed: 06/08/2023]
Abstract
Single solute sorption mechanisms of metformin (MET) and guanylurea (GUA) were investigated in six soils and three model sorbents (kaolinite, bentonite and humic acid) at varying initial pH and background electrolyte (Ca2+) concentrations. Electrostatic interaction and cation exchange were proposed as mechanisms of MET sorption. At initial solution pH between pKa1 and pKa2, electrostatic interaction is the dominating mechanism of MET sorption. However, as pH approaches pKa1, cation exchange becomes a significant mechanism of sorption as evidenced by the increased distribution coefficient (Kd) values in Matawhero (130-fold) and Nelson (2000-fold) soils with high cation exchange capacities (CEC) and permanently negative charged sites and when equilibrium pH < pKa1 where the divalent cationic form dominates in the solution. Furthermore, results showed higher sorption of MET on bentonite with effective distribution coefficient (Kdeff) value of 14.92 L/kg with high permanent negative charges than on kaolinite (Kdeff = 6.70 L/kg), a variable charge clay. Increased MET sorption at low equilibrium pH on kaolinite (Kdeff = 2.3 × 107 L/kg) and humic acid (Kdeff = 20.86 L/kg) further suggest cation exchange is also possible at pH < pKa1. On the other hand, two lines of evidence suggest cation exchange as an important mechanism of GUA sorption: (a) the positive correlation between cation exchange capacity and Kdeff values and (b) decreased Kdeff values as the Ca2+ concentration in solution was increased in all soils. Biosolids amendment of three soils resulted in contrasting effects on sorption affinities with a decrease for MET and increase for GUA, further confirming sorption mechanisms and significance of solution pH and CEC on the sorption of MET and GUA, respectively.
Collapse
Affiliation(s)
- Rowena M Briones
- Department of Civil & Environmental Engineering, Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Ajit K Sarmah
- Department of Civil & Environmental Engineering, Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
38
|
Kutzner S, Schaffer M, Licha T, Worch E, Börnick H. Sorption of cationic organic substances onto synthetic oxides: Evaluation of sorbent parameters as possible predictors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 643:632-639. [PMID: 29958165 DOI: 10.1016/j.scitotenv.2018.05.393] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/30/2018] [Accepted: 05/31/2018] [Indexed: 06/08/2023]
Abstract
Knowledge on the sorption behavior of cationic organic substances in aquatic systems is vital for their risk assessment due to the increasing detection of such chemicals in the hydrosphere. Their sorption behavior is strongly influenced by sorption processes onto mineral surfaces (e.g., oxides, clays). To contribute to the development of prediction tools, the impact of sorbent characteristics on the sorption strength was studied in a highly-idealized model system. In addition to the properties of the solid phase, the concentration of other ions in direct competition for sorption sites and the molecular structure of the sorbate were changed to separate ion exchange and non-ion exchange processes. The study includes in total 120 systematic column experiments using five extensively characterized synthetic oxides (three silica gels, two aluminum oxides), three probe molecules (two structurally related cationic substances, one neutral compound), and four distinctively different NaCl concentrations. The results show that the concentration of OH groups on the sorbent surface is a meaningful descriptor for the observed variations in sorption capacity onto different oxides. Compound-specific linear correlations were obtained, enabling the prediction of sorption coefficients. In addition, a more complex sorption behavior of organic cations compared to uncharged molecules were observed as demonstrated by the sorption results at different electrolyte concentrations. Thus, the study provides an important step towards a better principal mechanistic understanding of organic cation sorption. However, further work using other sorbents including natural ones and other probe molecules is needed to verify the identified relationships within the scope of developing reliable prediction models for cation sorption.
Collapse
Affiliation(s)
- Susann Kutzner
- Institute of Water Chemistry, Technische Universität Dresden, 01062 Dresden, Germany.
| | - Mario Schaffer
- Geoscience Centre, Department of Applied Geology, Hydrochemistry Group, University of Göttingen, Goldschmidtstr. 3, 37077 Göttingen, Germany; Lower Saxony Water Management, Coastal Defence and Nature Conservation Agency (NLWKN), Hannover-Hildesheim branch, An der Scharlake 39, 31135 Hildesheim, Germany
| | - Tobias Licha
- Geoscience Centre, Department of Applied Geology, Hydrochemistry Group, University of Göttingen, Goldschmidtstr. 3, 37077 Göttingen, Germany
| | - Eckhard Worch
- Institute of Water Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| | - Hilmar Börnick
- Institute of Water Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| |
Collapse
|
39
|
Hollender J, Rothardt J, Radny D, Loos M, Epting J, Huggenberger P, Borer P, Singer H. Comprehensive micropollutant screening using LC-HRMS/MS at three riverbank filtration sites to assess natural attenuation and potential implications for human health. WATER RESEARCH X 2018; 1:100007. [PMID: 31194029 PMCID: PMC6549901 DOI: 10.1016/j.wroa.2018.100007] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/06/2018] [Accepted: 10/25/2018] [Indexed: 05/22/2023]
Abstract
Riverbank filtration (RBF) is used worldwide to produce high quality drinking water. With river water often contaminated by micropollutants (MPs) from various sources, this study addresses the occurrence and fate of such MPs at three different RBF sites with oxic alluvial sediments and short travel times to the drinking water well down to hours. A broad range of MPs with various physico-chemical properties were analysed with detection limits in the low ng L-1 range using solid phase extraction followed by liquid chromatography coupled to tandem high resolution mass spectrometry. Out of the 526 MPs targeted, a total of 123 different MPs were detected above the limit of quantification at the three different RBF sites. Of the 75-96 MPs detected in each river, 43-59% were attenuated during RBF. The remaining total concentrations of the MPs in the raw drinking water accounted to 0.6-1.6 μgL-1 with only a few compounds exceeding 0.1 μgL-1, an often used threshold value. The attenuation was most pronounced in the first meters of infiltration with a full elimination of 17 compounds at all three sites. However, a mixing with groundwater related to regional groundwater flow complicated the characterisation of natural attenuation potentials along the transects. Additional non-target screening at one site revealed similar trends for further non-target components. Overall, a risk assessment of the target and estimated non-target compound concentrations finally indicated during the sampling period no health risk of the drinking water according to current guidelines. Our results demonstrate that monitoring of contamination sources within a catchment and the affected water quality remains important in such vulnerable systems with partially short residence times.
Collapse
Affiliation(s)
- Juliane Hollender
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, 8600 Duebendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, Universitätstrasse 16, ETH Zürich, 8092 Zurich, Switzerland
| | - Judith Rothardt
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, 8600 Duebendorf, Switzerland
| | - Dirk Radny
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, 8600 Duebendorf, Switzerland
| | - Martin Loos
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, 8600 Duebendorf, Switzerland
| | - Jannis Epting
- Applied and Environmental Geology, University of Basel, Bernoullistrasse 32, 4056 Basel, Switzerland
| | - Peter Huggenberger
- Applied and Environmental Geology, University of Basel, Bernoullistrasse 32, 4056 Basel, Switzerland
| | - Paul Borer
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, 8600 Duebendorf, Switzerland
| | - Heinz Singer
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, 8600 Duebendorf, Switzerland
| |
Collapse
|
40
|
Feng X, Wang K, Pan L, Xu T, Zhang H, Fantke P. Measured and Modeled Residue Dynamics of Famoxadone and Oxathiapiprolin in Tomato Fields. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:8489-8495. [PMID: 30028951 DOI: 10.1021/acs.jafc.8b02056] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A reliable analytical method for the simultaneous determination of famoxadone and oxathiapiprolin dissipation kinetics as well as the metabolites of oxathiapiprolin (IN-E8S72 and IN-WR791) in tomato and soil was developed. We studied the dissipation of famoxadone and oxathiapiprolin in tomatoes grown using different kinetic curves in the area of Beijing in 2015 and 2016. Our results show that the most suitable model for two fungicides in 2015 and 2016 was first-order kinetic and second-order kinetic with the half-lives of 3.4 to 5.2 and 2.4 to 3.0 days, respectively. In addition, we applied the dynamic plant uptake model dynamiCROP and combined it with results from the field experiments to investigate the uptake and translocation of famoxadone and oxathiapiprolin in the soil-tomato environment. Modeled and measured results of two years fitted well with R2 values ranging from 0.8072 to 0.9221. The fractions of famoxadone and oxathiapiprolin applied during tomato cultivation that are eventually ingested by humans via residues in crop harvest were finally evaluated and found to be in the range of one part per thousand, that is one gram intake per kilogram applied.
Collapse
Affiliation(s)
- Xiaoxiao Feng
- College of Science , China Agricultural University , Beijing 100193 , P R China
| | - Kai Wang
- Institute of Inorganic and Analytical Chemistry , Johannes Gutenberg University of Mainz , Duesbergweg 10-14 , 55128 Mainz , Germany
| | - Lixiang Pan
- College of Science , China Agricultural University , Beijing 100193 , P R China
| | - Tianheng Xu
- College of Science , China Agricultural University , Beijing 100193 , P R China
| | - Hongyan Zhang
- College of Science , China Agricultural University , Beijing 100193 , P R China
| | - Peter Fantke
- Quantitative Sustainability Assessment Division, Department of Management Engineering , Technical University of Denmark , Bygningstorvet 116 , 2800 Kgs. Lyngby , Denmark
| |
Collapse
|
41
|
Jin J, Feng T, Gao R, Ma Y, Wang W, Zhou Q, Li A. Ultrahigh selective adsorption of zwitterionic PPCPs both in the absence and presence of humic acid: Performance and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2018; 348:117-124. [PMID: 29422194 DOI: 10.1016/j.jhazmat.2018.01.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 12/26/2017] [Accepted: 01/17/2018] [Indexed: 06/08/2023]
Abstract
Since zwitterionic PPCPs could be combined with humic acid (HA) leading to certain contaminants residue in aqueous solution, adsorbents with much stronger binding with zwitterionic PPCPs were needed to avoid this phenomenon. Through comparison of serial magnetic carboxyl modified hypercrosslinked resins including MA10, MA30, MA40 and MA70, MA50 was found to exhibit ultrahigh selective adsorption of zwitterionic PPCPs including tetracycline and quinolone antibiotics due to the remarkable synergistic effects generated from cation exchange interaction and non-ion exchange interaction. To figure out the effect of HA, other five adsorbents including hypercrosslinked resin Q100, aminated hypercrosslinked resin GMA50, anion exchange resin MIEX, wood-based activated carbon F400D and coal-based activated carbon Norit were chosen as comparison to MA50 in adsorption performance of tetracycline (TC) and ciprofloxacin (CPX). It turned out that the percentage of CPX or TC combined with HA in aqueous solution varied greatly for studied adsorbents. There existed serious false-positive adsorption during the adsorption process by some commercial adsorbents such as MIEX and F400D, while MA50 exhibited relatively lower false-positive adsorption, ensuring the maximum safety of effluents. Breakthrough tests showed that MA50 had significant advantages in PPCPs removal at environment concentration, indicating its potential in application for real water.
Collapse
Affiliation(s)
- Jing Jin
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, No. 163 Xianlin Avenue, Nanjing 210023, PR China
| | - Tianyu Feng
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, No. 163 Xianlin Avenue, Nanjing 210023, PR China
| | - Rui Gao
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, No. 163 Xianlin Avenue, Nanjing 210023, PR China
| | - Yan Ma
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, No. 163 Xianlin Avenue, Nanjing 210023, PR China
| | - Wei Wang
- Jiangsu Province Key Laboratory of Environmental Engineering, Jiangsu Provincial Academy of Environmental Science, Nanjing 210036, PR China
| | - Qing Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, No. 163 Xianlin Avenue, Nanjing 210023, PR China.
| | - Aimin Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, No. 163 Xianlin Avenue, Nanjing 210023, PR China
| |
Collapse
|
42
|
Yamamoto H, Takemoto K, Tamura I, Shin-Oka N, Nakano T, Nishida M, Honda Y, Moriguchi S, Nakamura Y. Contribution of inorganic and organic components to sorption of neutral and ionizable pharmaceuticals by sediment/soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:7250-7261. [PMID: 27005278 DOI: 10.1007/s11356-016-6471-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 03/14/2016] [Indexed: 06/05/2023]
Abstract
Our previous study showed that the sorption coefficient of certain polar pharmaceuticals to river sediment, especially particular amines, was unexpectedly high. Thus, we conducted sorption experiments of selected polar pharmaceuticals and pyrene derivatives, including amines, carboxylic acids, and neutral compounds, to model clay minerals, i.e., montmorillonite and kaolin, in addition to silica sands and humic substances. The contribution of each component was roughly estimated by simple fractionation of the individual sorption coefficients. Relatively high sorption coefficients (K d values) were found, especially for amines on clay minerals, which suggest that electrochemical affinity may play an important role. The estimated contribution percentage suggests a relatively large contribution from inorganic constituents, such as clay minerals, for silt loam soil; in contrast, organic components predominantly contribute for sandy river sediments. These findings could be the key to understanding not only the fate and transport but also bioavailability and environmental risks of pharmaceuticals, which are mostly polar and/or ionizable.
Collapse
Affiliation(s)
- Hiroshi Yamamoto
- Faculty of Integrated Arts and Sciences, Tokushima University, 1-1 Minamijosanjima-cho, Tokushima, 770-8502, Japan.
| | - Kohei Takemoto
- Faculty of Integrated Arts and Sciences, Tokushima University, 1-1 Minamijosanjima-cho, Tokushima, 770-8502, Japan
- Research Center for Environmental Quality Management, Kyoto University, 1-1 Yumihama, Otsu, Shiga, Japan
| | - Ikumi Tamura
- Faculty of Integrated Arts and Sciences, Tokushima University, 1-1 Minamijosanjima-cho, Tokushima, 770-8502, Japan
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Norihiro Shin-Oka
- Faculty of Integrated Arts and Sciences, Tokushima University, 1-1 Minamijosanjima-cho, Tokushima, 770-8502, Japan
| | - Takahiro Nakano
- Faculty of Integrated Arts and Sciences, Tokushima University, 1-1 Minamijosanjima-cho, Tokushima, 770-8502, Japan
| | - Masayo Nishida
- Faculty of Integrated Arts and Sciences, Tokushima University, 1-1 Minamijosanjima-cho, Tokushima, 770-8502, Japan
| | - Yuta Honda
- Faculty of Integrated Arts and Sciences, Tokushima University, 1-1 Minamijosanjima-cho, Tokushima, 770-8502, Japan
| | - Shigemi Moriguchi
- Faculty of Integrated Arts and Sciences, Tokushima University, 1-1 Minamijosanjima-cho, Tokushima, 770-8502, Japan
| | - Yudai Nakamura
- Faculty of Integrated Arts and Sciences, Tokushima University, 1-1 Minamijosanjima-cho, Tokushima, 770-8502, Japan
| |
Collapse
|
43
|
Timmer N, Scherpenisse P, Hermens JLM, Droge STJ. Evaluating solid phase (micro-) extraction tools to analyze freely ionizable and permanently charged cationic surfactants. Anal Chim Acta 2017; 1002:26-38. [PMID: 29306411 DOI: 10.1016/j.aca.2017.11.051] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/15/2017] [Accepted: 11/19/2017] [Indexed: 10/18/2022]
Abstract
Working with and analysis of cationic surfactants can be problematic since aqueous concentrations are difficult to control, both when taking environmental aqueous samples as well as performing laboratory work with spiked concentrations. For a selection of 32 amine based cationic surfactants (including C8- to C18-alkylamines, C14-dialkyldimethylammonium, C8-tetraalkylammonium, benzalkonium and pyridinium compounds), the extraction from aqueous samples was studied in detail. Aqueous concentrations were determined using solid phase extraction (SPE; 3 mL/60 mg Oasis WCX-SPE cartridges) with recoveries of ≥80% for 30 compounds, and ≥90% for 16 compounds. Sorption to glassware was evaluated in 120 mL flasks, 40 mL vials and 1.5 mL autosampler vials, using 15 mM NaCl, where the glass binding of simple primary amines and quaternary ammonium compounds increased with alkyl chain length. Sorption to the outside of pipette tips (≤20% of total amount in solution) when sampling aqueous solutions may interfere with accurate measurements. Polyacrylate solid phase microextraction (PA-SPME) fibers with two coating thicknesses (7 and 35 μm) were tested as potential extraction devices. The uptake kinetics, pH-dependence and influence of ionic strength on sorption to PA fibers were studied. Changing medium from 100 mM Na+ to 10 mM Ca2+ decreases Kfw with one order of magnitude. Results indicate that for PA-SPME neutral amines are absorbed rather than adsorbed, although the exact sorption mechanism remains to be elucidated. Further research remains necessary to establish a definitive applicability domain for PA-SPME. However, results indicate that alkyl chain lengths ≥14 carbon atoms and multiple alkyl chains become problematic. A calibration curve should always be measured together with the samples. In conclusion, it seems that for amine based surfactants PA-SPME does not provide the reliability and reproducibility necessary for precise sorption experiments, specifically for alkyl chain lengths beyond 12 carbon atoms.
Collapse
Affiliation(s)
- Niels Timmer
- Institute for Risk Assessment Sciences, Utrecht University, P.O. Box 80177, 3508 TD Utrecht, The Netherlands
| | - Peter Scherpenisse
- Institute for Risk Assessment Sciences, Utrecht University, P.O. Box 80177, 3508 TD Utrecht, The Netherlands
| | - Joop L M Hermens
- Institute for Risk Assessment Sciences, Utrecht University, P.O. Box 80177, 3508 TD Utrecht, The Netherlands
| | - Steven T J Droge
- Institute for Risk Assessment Sciences, Utrecht University, P.O. Box 80177, 3508 TD Utrecht, The Netherlands; Institute for Biodiversity and Ecosystem Dynamics, Department Freshwater and Marine Ecology, P.O. Box 94248, 1090 GE Amsterdam, The Netherlands.
| |
Collapse
|
44
|
Barzen-Hanson KA, Davis SE, Kleber M, Field JA. Sorption of Fluorotelomer Sulfonates, Fluorotelomer Sulfonamido Betaines, and a Fluorotelomer Sulfonamido Amine in National Foam Aqueous Film-Forming Foam to Soil. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:12394-12404. [PMID: 28968065 DOI: 10.1021/acs.est.7b03452] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
During fire-fighter training, equipment testing, and emergency responses with aqueous film-forming foams (AFFFs), milligrams per liter concentrations of anionic, zwitterionic, and cationic per- and polyfluoroalkyl substances (PFASs) enter the environment. Because the behavior of zwitterionic and cationic PFASs in the subsurface is unknown, batch sorption experiments were conducted using National Foam AFFF, which contains anionic fluorotelomer sulfonates (FtSs), zwitterionic fluorotelomer sulfonamido betaines (FtSaBs), and cationic 6:2 fluorotelomer sulfonamido amine (FtSaAm). Sorption of the FtSs, FtSaBs, and 6:2 FtSaAm to six soils with varying organic carbon, effective cation-exchange capacity, and anion-exchange capacity was evaluated to determine sorption mechanisms. Due to the poor recovery of the FtSaBs and 6:2 FtSaAm with published PFAS soil extraction methods, a new soil extraction method was developed to achieve good (90-100%) recoveries. The 6:2 FtSaAm was depleted from the aqueous phase in all but one soil, which is attributed to electrostatic and hydrophobic interactions. Sorption of the FtSs was driven by hydrophobic interactions, while the FtSaBs behave more like cations that strongly associate with the solid phase relative to groundwater. Thus, the sorption mechanisms of the FtSs, FtSaBs, and 6:2 FtSaAm are more complex than expected and cannot be predicted by bulk soil properties.
Collapse
Affiliation(s)
- Krista A Barzen-Hanson
- Department of Chemistry, Oregon State University , 153 Gilbert Hall, Corvallis, Oregon 97331, United States
| | - Shannon E Davis
- Department of Chemistry, Oregon State University , 153 Gilbert Hall, Corvallis, Oregon 97331, United States
- School for the Environment, University of Massachusetts, Boston , 100 William T. Morrissey Boulevard, Boston, Massachusetts 02125, United States
| | - Markus Kleber
- Department of Crop and Soil Science, Oregon State University , 3017 ALS Building, 2750 SW Campus Way, Corvallis, Oregon 97331, United States
| | - Jennifer A Field
- Department of Environmental and Molecular Toxicology, Oregon State University , 1007 ALS Building, 2750 SW Campus Way, Corvallis, Oregon 97331, United States
| |
Collapse
|
45
|
Torresi E, Polesel F, Bester K, Christensson M, Smets BF, Trapp S, Andersen HR, Plósz BG. Diffusion and sorption of organic micropollutants in biofilms with varying thicknesses. WATER RESEARCH 2017; 123:388-400. [PMID: 28686941 DOI: 10.1016/j.watres.2017.06.027] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 06/08/2017] [Accepted: 06/09/2017] [Indexed: 05/27/2023]
Abstract
Solid-liquid partitioning is one of the main fate processes determining the removal of micropollutants in wastewater. Little is known on the sorption of micropollutants in biofilms, where molecular diffusion may significantly influence partitioning kinetics. In this study, the diffusion and the sorption of 23 micropollutants were investigated in novel moving bed biofilm reactor (MBBR) carriers with controlled biofilm thickness (50, 200 and 500 μm) using targeted batch experiments (initial concentration = 1 μg L-1, for X-ray contrast media 15 μg L-1) and mathematical modelling. We assessed the influence of biofilm thickness and density on the dimensionless effective diffusivity coefficient f (equal to the biofilm-to-aqueous diffusivity ratio) and the distribution coefficient Kd,eq (L g-1). Sorption was significant only for eight positively charged micropollutants (atenolol, metoprolol, propranolol, citalopram, venlafaxine, erythromycin, clarithromycin and roxithromycin), revealing the importance of electrostatic interactions with solids. Sorption equilibria were likely not reached within the duration of batch experiments (4 h), particularly for the thickest biofilm, requiring the calculation of the distribution coefficient Kd,eq based on the approximation of the asymptotic equilibrium concentration (t > 4 h). Kd,eq values increased with increasing biofilm thickness for all sorptive micropollutants (except atenolol), possibly due to higher porosity and accessible surface area in the thickest biofilm. Positive correlations between Kd,eq and micropollutant properties (polarity and molecular size descriptors) were identified but not for all biofilm thicknesses, thus confirming the challenge of improving predictive sorption models for positively charged compounds. A diffusion-sorption model was developed and calibrated against experimental data, and estimated f values also increased with increasing biofilm thickness. This indicates that diffusion in thin biofilms may be strongly limited (f ≪ 0.1) by the high biomass density (reduced porosity).
Collapse
Affiliation(s)
- Elena Torresi
- DTU Environment, Technical University of Denmark, Bygningstorvet B115, 2800 Kongens Lyngby, Denmark; Veolia Water Technologies AB, AnoxKaldnes, Klosterängsvägen 11A, SE-226 47 Lund, Sweden.
| | - Fabio Polesel
- DTU Environment, Technical University of Denmark, Bygningstorvet B115, 2800 Kongens Lyngby, Denmark
| | - Kai Bester
- Department of Environmental Science, Århus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Magnus Christensson
- Veolia Water Technologies AB, AnoxKaldnes, Klosterängsvägen 11A, SE-226 47 Lund, Sweden
| | - Barth F Smets
- DTU Environment, Technical University of Denmark, Bygningstorvet B115, 2800 Kongens Lyngby, Denmark
| | - Stefan Trapp
- DTU Environment, Technical University of Denmark, Bygningstorvet B115, 2800 Kongens Lyngby, Denmark
| | - Henrik R Andersen
- DTU Environment, Technical University of Denmark, Bygningstorvet B115, 2800 Kongens Lyngby, Denmark
| | - Benedek Gy Plósz
- DTU Environment, Technical University of Denmark, Bygningstorvet B115, 2800 Kongens Lyngby, Denmark; Department of Chemical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, UK.
| |
Collapse
|
46
|
Jolin WC, Goyetche R, Carter K, Medina J, Vasudevan D, MacKay AA. Predicting Organic Cation Sorption Coefficients: Accounting for Competition from Sorbed Inorganic Cations Using a Simple Probe Molecule. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:6193-6201. [PMID: 28459593 DOI: 10.1021/acs.est.7b01277] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
With the increasing number of emerging contaminants that are cationic at environmentally relevant pH values, there is a need for robust predictive models of organic cation sorption coefficients (Kd). Current predictive models fail to account for the differences in the identity, abundance, and affinity of surface-associated inorganic exchange ions naturally present at negatively charged receptor sites on environmental solids. To better understand how organic cation sorption is influenced by surface-associated inorganic exchange ions, sorption coefficients of 10 organic cations (including eight pharmaceuticals and two simple probe organic amines) were determined for six homoionic forms of the aluminosilicate mineral, montmorillonite. Organic cation sorption coefficients exhibited consistent trends for all compounds across the various homoionic clays with sorption coefficients (Kd) decreasing as follows: KdNa+ > KdNH4+ ≥ KdK+ > KdCa2+ ≥ KdMg2+ > KdAl3+. This trend for competition between organic cations and exchangeable inorganic cations is consistent with the inorganic cation selectivity sequence, determined for exchange between inorganic ions. Such consistent trends in competition between organic and inorganic cations suggested that a simple probe cation, such as phenyltrimethylammonium or benzylamine, could capture soil-to-soil variations in native inorganic cation identity and abundance for the prediction of organic cation sorption to soils and soil minerals. Indeed, sorption of two pharmaceutical compounds to 30 soils was better described by phenyltrimethylammonium sorption than by measures of benzylamine sorption, effective cation exchange capacity alone, or a model from the literature (Droge, S., and Goss, K. Environ. Sci. Technol. 2013, 47, 14224). A hybrid approach integrating structural scaling factors derived from this literature model of organic cation sorption, along with phenyltrimethylammonium Kd values, allowed for estimation of Kd values for more structurally complex organic cations to homoionic montmorillonites and to heteroionic soils (mean absolute error of 0.27 log unit). Accordingly, we concluded that the use of phenyltrimethylammonium as a probe compound was a promising means to account for the identity, affinity, and abundance of natural exchange ions in the prediction of organic cation sorption coefficients for environmental solids.
Collapse
Affiliation(s)
- William C Jolin
- Department of Civil and Environmental Engineering, University of Connecticut , Storrs, Connecticut 06269, United States
| | - Reaha Goyetche
- Department of Chemistry, Bowdoin College , Brunswick, Maine 04011, United States
| | - Katherine Carter
- Department of Chemistry, Bowdoin College , Brunswick, Maine 04011, United States
| | - John Medina
- Department of Chemistry, Bowdoin College , Brunswick, Maine 04011, United States
| | - Dharni Vasudevan
- Department of Chemistry, Bowdoin College , Brunswick, Maine 04011, United States
| | - Allison A MacKay
- Department of Civil, Environmental and Geodetic Engineering, The Ohio State University , Columbus, Ohio 43210, United States
| |
Collapse
|
47
|
Droge STJ, Hermens JLM, Gutsell S, Rabone J, Hodges G. Predicting the phospholipophilicity of monoprotic positively charged amines. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2017; 19:307-323. [PMID: 28218330 DOI: 10.1039/c6em00615a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The sorption affinity of eighty-six charged amine structures to phospholipid monolayers (log KIAM) was determined using immobilized artificial membrane high-performance liquid chromatography (IAM-HPLC). The amine compounds covered the most prevalent types of polar groups, widely ranged in structural complexity, and included forty-seven pharmaceuticals, as well as several narcotics and pesticides. Amine type specific corrective increments were used to align log KIAM data with bilayer membrane sorption coefficients (KMW(IAM)). Using predicted sorption affinities of neutral amines, we evaluated the difference (scaling factor ΔMW) with the measured log KMW(IAM) for cationic amines. The ΔMW values were highly variable, ranging from -2.37 to +2.3 log units. For each amine type, polar amines showed lower ΔMW values than hydrocarbon based amines (CxHyN+). COSMOmic software was used to directly calculate the partitioning coefficient of ionic structures into a phospholipid bilayer (KDMPC-W,cation), including quaternary ammonium compounds. The resulting root mean square error (RMSE) between log KDMPC-W,cation and log KMW(IAM) was 0.83 for all eighty-six polar amines, and 0.47 for sixty-eight CxHyN+ amines. The polar amines were then split into five groups depending on polarity and structural complexity, and corrective increments for each group were defined to improve COSMOmic predictions. Excluding only the group with sixteen complex amine structures (≥4 polar groups, Mw > 400, including several macrolide antibiotics), the resulting RMSE for corrected KDMPC-W,cation values improved to 0.45 log units for the remaining set of 138 polar and CxHyN+ amines.
Collapse
Affiliation(s)
- S T J Droge
- Institute for Risk Assessment Sciences, Utrecht University, Yalelaan 104, 3508 TD Utrecht, The Netherlands
| | - J L M Hermens
- Institute for Risk Assessment Sciences, Utrecht University, Yalelaan 104, 3508 TD Utrecht, The Netherlands
| | - S Gutsell
- Safety and Environmental Assurance Centre, Unilever, Sharnbrook, Bedford, UK
| | - J Rabone
- Safety and Environmental Assurance Centre, Unilever, Sharnbrook, Bedford, UK
| | - G Hodges
- Safety and Environmental Assurance Centre, Unilever, Sharnbrook, Bedford, UK
| |
Collapse
|
48
|
Timmer N, Droge STJ. Sorption of Cationic Surfactants to Artificial Cell Membranes: Comparing Phospholipid Bilayers with Monolayer Coatings and Molecular Simulations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:2890-2898. [PMID: 28187261 PMCID: PMC5343551 DOI: 10.1021/acs.est.6b05662] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
This study reports the distribution coefficient between phospholipid bilayer membranes and phosphate buffered saline (PBS) medium (DMW,PBS) for 19 cationic surfactants. The method used a sorbent dilution series with solid supported lipid membranes (SSLMs). The existing SSLM protocol, applying a 96 well plate setup, was adapted to use 1.5 mL glass autosampler vials instead, which facilitated sampling and circumvented several confounding loss processes for some of the cationic surfactants. About 1% of the phospholipids were found to be detached from the SSLM beads, resulting in nonlinear sorption isotherms for compounds with log DMW values above 4. Renewal of the medium resulted in linear sorption isotherms. DMW values determined at pH 5.4 demonstrated that cationic surfactant species account for the observed DMW,PBS. Log DMW,PBS values above 5.5 are only experimentally feasible with lower LC-MS/MS detection limits and/or concentrated extracts of the aqueous samples. Based on the number of carbon atoms, dialkylamines showed a considerably lower sorption affinity than linear alkylamine analogues. These SSLM results closely overlapped with measurements on a chromatographic tool based on immobilized artificial membranes (IAM-HPLC) and with quantum-chemistry based calculations with COSMOmic. The SSLM data suggest that IAM-HPLC underestimates the DMW of ionized primary and secondary alkylamines by 0.8 and 0.5 log units, respectively.
Collapse
|
49
|
Chen Y, Hermens JLM, Jonker MTO, Arnot JA, Armitage JM, Brown T, Nichols JW, Fay KA, Droge STJ. Which Molecular Features Affect the Intrinsic Hepatic Clearance Rate of Ionizable Organic Chemicals in Fish? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:12722-12731. [PMID: 27934284 DOI: 10.1021/acs.est.6b03504] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Greater knowledge of biotransformation rates for ionizable organic compounds (IOCs) in fish is required to properly assess the bioaccumulation potential of many environmentally relevant contaminants. In this study, we measured in vitro hepatic clearance rates for 50 IOCs using a pooled batch of liver S9 fractions isolated from rainbow trout (Oncorhynchus mykiss). The IOCs included four types of strongly ionized acids (carboxylates, phenolates, sulfonates, and sulfates), three types of strongly ionized bases (primary, secondary, tertiary amines), and a pair of quaternary ammonium compounds (QACs). Included in this test set were several surfactants and a series of beta-blockers. For linear alkyl chain IOC analogues, biotransformation enzymes appeared to act directly on the charged terminal group, with the highest clearance rates for tertiary amines and sulfates and no clearance of QACs. Clearance rates for C12-IOCs were higher than those for C8-IOC analogues. Several analogue series with multiple alkyl chains, branched alkyl chains, aromatic rings, and nonaromatic rings were evaluated. The likelihood of multiple reaction pathways made it difficult to relate all differences in clearance to specific molecular features the tested IOCs. Future analysis of primary metabolites in the S9 assay is recommended to further elucidate biotransformation pathways for IOCs in fish.
Collapse
Affiliation(s)
- Yi Chen
- Institute for Risk Assessment Sciences, Utrecht University , Utrecht, 3508 TD, The Netherlands
| | - Joop L M Hermens
- Institute for Risk Assessment Sciences, Utrecht University , Utrecht, 3508 TD, The Netherlands
| | - Michiel T O Jonker
- Institute for Risk Assessment Sciences, Utrecht University , Utrecht, 3508 TD, The Netherlands
| | - Jon A Arnot
- Department of Physical and Environmental Sciences, University of Toronto Scarborough , Toronto, Ontario M1C 1A4, Canada
- ARC Arnot Research and Consulting , Toronto, Ontario M4M 1W4, Canada
| | - James M Armitage
- Department of Physical and Environmental Sciences, University of Toronto Scarborough , Toronto, Ontario M1C 1A4, Canada
- ARC Arnot Research and Consulting , Toronto, Ontario M4M 1W4, Canada
| | - Trevor Brown
- ARC Arnot Research and Consulting , Toronto, Ontario M4M 1W4, Canada
| | - John W Nichols
- US Environmental Protection Agency , Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, Duluth, Minnesota 55804, United States
| | - Kellie A Fay
- US Environmental Protection Agency , Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, Duluth, Minnesota 55804, United States
| | - Steven T J Droge
- Institute for Risk Assessment Sciences, Utrecht University , Utrecht, 3508 TD, The Netherlands
| |
Collapse
|
50
|
Sorption of organic cations onto silica surfaces over a wide concentration range of competing electrolytes. J Colloid Interface Sci 2016; 484:229-236. [DOI: 10.1016/j.jcis.2016.08.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 08/09/2016] [Accepted: 08/10/2016] [Indexed: 11/21/2022]
|