1
|
Ahmad A, Noor AE, Anwar A, Majeed S, Khan S, Ul Nisa Z, Ali S, Gnanasekaran L, Rajendran S, Li H. Support based metal incorporated layered nanomaterials for photocatalytic degradation of organic pollutants. ENVIRONMENTAL RESEARCH 2024; 260:119481. [PMID: 38917930 DOI: 10.1016/j.envres.2024.119481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 04/22/2024] [Accepted: 06/21/2024] [Indexed: 06/27/2024]
Abstract
An effective approach to producing sophisticated miniaturized and nanoscale materials involves arranging nanomaterials into layered hierarchical frameworks. Nanostructured layered materials are constructed to possess isolated propagation assets, massive surface areas, and envisioned amenities, making them suitable for a variety of established and novel applications. The utilization of various techniques to create nanostructures adorned with metal nanoparticles provides a secure alternative or reinforcement for the existing physicochemical methods. Supported metal nanoparticles are preferred due to their ease of recovery and usage. Researchers have extensively studied the catalytic properties of noble metal nanoparticles using various selective oxidation and hydrogenation procedures. Despite the numerous advantages of metal-based nanoparticles (NPs), their catalytic potential remains incompletely explored. This article examines metal-based nanomaterials that are supported by layers, and provides an analysis of their manufacturing, procedures, and synthesis. This study incorporates both 2D and 3D layered nanomaterials because of their distinctive layered architectures. This review focuses on the most common metal-supported nanocomposites and methodologies used for photocatalytic degradation of organic dyes employing layered nanomaterials. The comprehensive examination of biological and ecological cleaning and treatment techniques discussed in this article has paved the way for the exploration of cutting-edge technologies that can contribute to the establishment of a sustainable future.
Collapse
Affiliation(s)
- Awais Ahmad
- Department of Chemistry, The University of Lahore, Lahore Pakistan
| | - Arsh E Noor
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Aneela Anwar
- Biomedical Engineering Department, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
| | - Saadat Majeed
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Safia Khan
- Shandong Technology Centre of Nanodevices and Integration, School of Microelectronics, Shandong University, Jinan, 250101, China
| | - Zaib Ul Nisa
- Department of Zoology, Government College University Faisalabad, Pakistan.
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan.
| | - Lalitha Gnanasekaran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez 1775, Arica, Chile
| | - Saravanan Rajendran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez 1775, Arica, Chile
| | - Hu Li
- Shandong Technology Centre of Nanodevices and Integration, School of Microelectronics, Shandong University, Jinan, 250101, China
| |
Collapse
|
2
|
Liang L, Chen J, Xiao J, Qiu H. Preparation of GO/COFs composites by interlayer-confined strategy for the adsorption of nitro aromatic pollutants. J Chromatogr A 2024; 1730:465066. [PMID: 38897110 DOI: 10.1016/j.chroma.2024.465066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/06/2024] [Accepted: 06/08/2024] [Indexed: 06/21/2024]
Abstract
With the continuous development of industrialization, the excessive emission of nitro aromatic with strong toxicity, high carcinogenicity and non-degradability has attracted great attention. How to efficiently remove nitro aromatic pollutants is an important research topic. In this work, graphene oxide/covalent organic frameworks (GO/COFs) composites were successfully synthesized via interlayer confinement strategy selecting GO, 2,5-dimethoxybenzene-1,4-dicarboxaldehyde (DMTP) and 1,3,5-tri(4-aminophenyl)benzene (TPB) as raw materials. Due to high specific surface area, hierarchical porous structure and good thermal stability, GO/COFs were utilized to adsorb and remove nitro aromatic hydrocarbons in the water environment. The adsorption behavior of GO/COFs for o-nitrophenol, 1,3-dinitrobenzene and 2,4,6-trinitrophenol were further investigated. The GO/COFs composites showed the strongest adsorption capacity for 2,4,6-trinitrophenol, and the maximum adsorption capacity for 2,4,6-trinitrophenol, o-nitrophenol, and 1,3-dinitrobenzene were 438, 317, and 173 mg g-1, respectively. The experimental results indicated that the GO/COFs composites provided great adsorption capability for nitro aromatic pollutants and can be reused, rendering it an extremely potential adsorbent for organic pollutants.
Collapse
Affiliation(s)
- Li Liang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Jia Chen
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Jing Xiao
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Hongdeng Qiu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China.
| |
Collapse
|
3
|
Zhang Y, Mao H, Ma Q, Chen Z, Wang H, Xu A, Zhang Y. A QSAR prediction model for adsorption of organic contaminants on microplastics: Dubinin-Astakhov plus linear solvation energy relationships. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172801. [PMID: 38679088 DOI: 10.1016/j.scitotenv.2024.172801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/11/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
Numerous pharmaceuticals and personal care products (PPCPs) co-exist with various types of microplastics (MPs) in the environment, making it extremely hard to experimentally measure all their adsorption interactions. Thus, a precise prediction model is on demand. In this study, we combined the commonly used Dubinin-Astakhov (DA) model and the linear solvation energy relationships (LSERs) model to predict the adsorption capacity (Q0) and adsorption affinity (E) of MPs for PPCPs, including the key parameters of MP (specific surface area, oxygen-containing functional groups), and the Kamlet-Taft solvation parameters of organic contaminants. The model was validated with the experimental data of 8 PPCPs and 8 MPs (i.e. pristine and aged PE, PET, PS, PVC) plus some published adsorption data. This new model also indicated that the adsorption of PPCPs on those MPs was primarily governed by hydrophobic interaction and hydrogen bonding. The developed model can predict the adsorption of PPCPs onto MPs with a high accuracy and can also provide insights into the understanding of interaction forces in the adsorption process.
Collapse
Affiliation(s)
- Yunhai Zhang
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Haoran Mao
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Qing Ma
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Zihao Chen
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Hao Wang
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Anlin Xu
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China.
| | - Yongjun Zhang
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China.
| |
Collapse
|
4
|
Ji Y, Xu J, Zhu L. Redox potential model for guiding moderate oxidation of polycyclic aromatic hydrocarbons in soils. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134443. [PMID: 38678701 DOI: 10.1016/j.jhazmat.2024.134443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
In-situ chemical oxidation is an important approach to remediate soils contaminated with persistent organic pollutants, e.g., polycyclic aromatic hydrocarbons (PAHs). However, massive oxidants are added into soils without an explicit model for predicting the redox potential (Eh) during soil remediation, and overdosed oxidants would pose secondary damage by disturbing soil organic matter and acidity. Here, a soil redox potential (Eh) model was first established to quantify the relationship among oxidation parameters, crucial soil properties, and pollutant elimination. The impacts of oxidant types and doses, soil pH, and soil organic carbon contents on soil Eh were systematically clarified in four commonly used oxidation systems (i.e., KMnO4, H2O2, fenton, and persulfate). The relative error of preliminary Eh model was increased from 48-62% to 4-16% after being modified with the soil texture and dissolved organic carbon, and this high accuracy was verified by 12 actual PAHs contaminated soils. Combining the discovered critical oxidation potential (COP) of PAHs, the moderate oxidation process could be regulated by the guidance of the soil Eh model in different soil conditions. Moreover, the product analysis revealed that the hydroxylation of PAHs occurred most frequently when the soil Eh reached their COP, providing a foundation for further microorganism remediation. These results provide a feasible strategy for selecting oxidants and controlling their doses toward moderate oxidation of contaminated soils, which will reduce the consumption of soil organic matter and protect the main structure and function of soil for future utilization. ENVIRONMENTAL IMPLICATIONS: This study provides a novel insight into the moderate chemical oxidation by the Eh model and largely reduces the secondary risks of excessive oxidation and oxidant residual in ISCO. The moderate oxidation of PAHs could be a first step to decrease their toxicity and increase their bioaccessibility, favoring the microbial degradation of PAHs. Controlling the soil Eh with the established model here could be a promising approach to couple moderate oxidation of organic contaminants with microbial degradation. Such an effective and green soil remediation will largely preserve the soil's functional structure and favor the subsequent utilization of remediated soil.
Collapse
Affiliation(s)
- Yanping Ji
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Jiang Xu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Lizhong Zhu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China.
| |
Collapse
|
5
|
Li Z, Gao J, Wang B, Zhang H, Tian Y, Peng R, Yao Q. Ectopic expression of an Old Yellow Enzyme (OYE3) gene from Saccharomyces cerevisiae increases the tolerance and phytoremediation of 2-nitroaniline in rice. Gene 2024; 906:148239. [PMID: 38325666 DOI: 10.1016/j.gene.2024.148239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/27/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
2-nitroaniline (2-NA) is an environmental pollutant and has been extensively used as intermediates in organic synthesis. The presence of 2-NA in the environment is not only harmful for aquatic life but also mutagenic for human beings. In this study, we constructed transgenic rice expressing an Old Yellow Enzyme gene, ScOYE3, from Saccharomyces cerevisiae. The ScOYE3 transgenic plants were comprehensively investigated for their biochemical responses to 2-NA treatment and their 2-NA phytoremediation capabilities. Our results showed that the rice seedlings exposed to 2-NA stress, showed growth inhibition and biomass reduction. However, the transgenic plants exhibited strong tolerance to 2-NA stress compared to wild-type plants. Ectopic expression of ScOYE3 could effectively protect transgenic plants against 2-NA damage, which resulted in less reactive oxygen species accumulation in transgenic plants than that in wild-type plants. Our phytoremediation assay revealed that transgenic plants could eliminate more 2-NA from the medium than wild-type plants. Moreover, omics analysis was performed in order to get a deeper insight into the mechanism of ScOYE3-mediated 2-NA transformation in rice. Altogether, the function of ScOYE3 during 2-NA detoxification was characterized for the first time, which serves as strong theoretical support for the phytoremediation potential of 2-NA by Old Yellow Enzyme genes.
Collapse
Affiliation(s)
- Zhenjun Li
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai 201106, PR China
| | - Jianjie Gao
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai 201106, PR China
| | - Bo Wang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai 201106, PR China
| | - Hao Zhang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai 201106, PR China
| | - Yongsheng Tian
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai 201106, PR China.
| | - Rihe Peng
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai 201106, PR China.
| | - Quanhong Yao
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai 201106, PR China.
| |
Collapse
|
6
|
Baratta M, Nezhdanov AV, Mashin AI, Nicoletta FP, De Filpo G. Carbon nanotubes buckypapers: A new frontier in wastewater treatment technology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171578. [PMID: 38460681 DOI: 10.1016/j.scitotenv.2024.171578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Abstract
Occurrence of contaminants in water is one of the major global concerns humanity is still facing today: most of them are extremely toxic and dangerous for human health, obliging their removal for a proper and correct process of sanitation. Among wastewater treatment technologies, in the view of development of sustainable and environmentally friendly processes, membrane adsorption has proved to be a fast and simple method in the removal of pollutants, offering great contaminants recovery percentages, fast adsorbent regeneration and recycle, and easy scale-up. Due to their large surface area and tunable chemistry, carbon nanotubes (CNTs)-based materials revealed to be extraordinary adsorbents, exceeding by far performances of ordinary organic and inorganic membranes such as polyethersulfone, polyvinylidene fluoride, polytetrafluoroethylene, ceramics, currently employed in membrane technologies for wastewater treatment. In consideration of this, the review aims to summarize recent developments in the field of carbon nanotubes-based materials for pollutants recovery from water through adsorption processes. After a brief introduction concerning what adsorption phenomenon is and how it is performed and governed by using carbon nanotubes-based materials, the review discusses into detail the employment of three common typologies of CNTs-based materials (CNTs powders, CNTs-doped polymeric membranes and CNTs membranes) in adsorption process for the removal of water pollutants. Particularly focus will be devoted on the emergent category of self-standing CNTs membranes (buckypapers), made entirely of carbon nanotubes, exhibiting superior performances than CNTs and CNTs-doped polymeric membranes in terms of preparation strategy, recovery percentages of pollutants and regeneration possibilities. The extremely encouraging results presented in this review aim to support and pave the way to the introduction of alternative and more efficient pathways in wastewater treatment technologies to contrast the problem of water pollution.
Collapse
Affiliation(s)
- Mariafrancesca Baratta
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende, Italy
| | | | - Alexandr Ivanovic Mashin
- Applied Physics & Microelectronics, Lobachevsky State University of Nizhni Novgorod, Nizhni Novgorod 603105, Russia
| | - Fiore Pasquale Nicoletta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Giovanni De Filpo
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende, Italy.
| |
Collapse
|
7
|
Krasley A, Li E, Galeana JM, Bulumulla C, Beyene AG, Demirer GS. Carbon Nanomaterial Fluorescent Probes and Their Biological Applications. Chem Rev 2024; 124:3085-3185. [PMID: 38478064 PMCID: PMC10979413 DOI: 10.1021/acs.chemrev.3c00581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 02/01/2024] [Accepted: 02/09/2024] [Indexed: 03/28/2024]
Abstract
Fluorescent carbon nanomaterials have broadly useful chemical and photophysical attributes that are conducive to applications in biology. In this review, we focus on materials whose photophysics allow for the use of these materials in biomedical and environmental applications, with emphasis on imaging, biosensing, and cargo delivery. The review focuses primarily on graphitic carbon nanomaterials including graphene and its derivatives, carbon nanotubes, as well as carbon dots and carbon nanohoops. Recent advances in and future prospects of these fields are discussed at depth, and where appropriate, references to reviews pertaining to older literature are provided.
Collapse
Affiliation(s)
- Andrew
T. Krasley
- Janelia
Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Eugene Li
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125, United States
| | - Jesus M. Galeana
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125, United States
| | - Chandima Bulumulla
- Janelia
Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Abraham G. Beyene
- Janelia
Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Gozde S. Demirer
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125, United States
| |
Collapse
|
8
|
Dong F, Fu C, Meng Z, Lin Q, Li J, Zeng T, Wang D, Tang J, Song S. A two-stage Fe(VI) oxidation process enhances the removal of bisphenol A for potential application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167879. [PMID: 37865242 DOI: 10.1016/j.scitotenv.2023.167879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/09/2023] [Accepted: 10/14/2023] [Indexed: 10/23/2023]
Abstract
Ferrate (Fe(VI)) has been extensively studied as a green oxidant to treat wastewater. But Fe(VI) oxidation still faces several challenges for application, such as the sensitivity of Fe(VI) to pH and the restrictions on the Fe(VI) utilization efficiency for pollutant elimination at low concentration levels. This study proposed a two-stage Fe(VI) oxidation process to enhance the bisphenol A (BPA) removal for potential applicability, consisting of the adsorption by CNTs of stage I and the degradation by Fe(VI) of stage II. The Fe(VI) utilization efficiency in the two-stage process (0.848) was higher than that in one-stage processes (0.727) and Fe(VI) alone system (0.504) at pH 9. In stage I, the adsorption process had good compliance with the Langmuir isotherm model and pseudo-second-order kinetic model. In stage II, the effective utilization of low-concentration Fe(VI) was 2.45 times more than Fe(VI) alone, and the reduction of reaction volume was beneficial to further enhance utilization. The probe experiments (sulfoxide) and the degradation experiments of other electron-donating/withdrawing pollutants (e.g., atrazine, benzoic acid) demonstrated that Fe(IV) and Fe(V) were major oxidizing species in the two-stage process. The regeneration experiments showed that CNTs still had acceptable adsorption and catalytic capabilities after five cycles. Finally, the intermediate products in the two-stage process were detected and four possible degradation pathways of BPA were proposed. These findings were meaningful for the practical application of Fe(VI) oxidation to overcome the conditional limitation and improve the utilization.
Collapse
Affiliation(s)
- Feilong Dong
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China; Shaoxing Research Institute, Zhejiang University of Technology, Shaoxing 312085, China
| | - Chuyun Fu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Zhu Meng
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Qiufeng Lin
- Department of Earth and Environmental Studies, Montclair State University, Montclair, NJ 07043, United States
| | - Jinzhe Li
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Tao Zeng
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Da Wang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Juntao Tang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Shuang Song
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
9
|
Pérez H, Quintero García OJ, Amezcua-Allieri MA, Rodríguez Vázquez R. Nanotechnology as an efficient and effective alternative for wastewater treatment: an overview. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 87:2971-3001. [PMID: 37387425 PMCID: wst_2023_179 DOI: 10.2166/wst.2023.179] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
The increase in the surface and groundwater contamination due to global population growth, industrialization, proliferation of pathogens, emerging pollutants, heavy metals, and scarcity of drinking water represents a critical problem. Because of this problem, particular emphasis will be placed on wastewater recycling. Conventional wastewater treatment methods may be limited due to high investment costs or, in some cases, poor treatment efficiency. To address these issues, it is necessary to continuously evaluate novel technologies that complement and improve these traditional wastewater treatment processes. In this regard, technologies based on nanomaterials are also being studied. These technologies improve wastewater management and constitute one of the main focuses of nanotechnology. The following review describes wastewater's primary biological, organic, and inorganic contaminants. Subsequently, it focuses on the potential of different nanomaterials (metal oxides, carbon-based nanomaterials, cellulose-based nanomaterials), membrane, and nanobioremediation processes for wastewater treatment. The above is evident from the review of various publications. However, nanomaterials' cost, toxicity, and biodegradability need to be addressed before their commercial distribution and scale-up. The development of nanomaterials and nanoproducts must be sustainable and safe throughout the nanoproduct life cycle to meet the requirements of the circular economy.
Collapse
Affiliation(s)
- Heilyn Pérez
- Centro Nacional de Estudios Avanzados de Instituto Politécnico Nacional, Av Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, Mexico City 07360, Mexico E-mail:
| | - Omar Jasiel Quintero García
- Centro Nacional de Estudios Avanzados de Instituto Politécnico Nacional, Av Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, Mexico City 07360, Mexico
| | - Myriam Adela Amezcua-Allieri
- Gerencia de Transformación de Biomasa, Instituto Mexicano del Petróleo, Eje Central Lázaro Cárdenas Norte 152, colonia San Bartolo Atepehuacan, Mexico City 07730, Mexico
| | - Refugio Rodríguez Vázquez
- Centro Nacional de Estudios Avanzados de Instituto Politécnico Nacional, Av Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, Mexico City 07360, Mexico
| |
Collapse
|
10
|
He H, Zhang R, Zhang P, Wang P, Chen N, Qian B, Zhang L, Yu J, Dai B. Functional Carbon from Nature: Biomass-Derived Carbon Materials and the Recent Progress of Their Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205557. [PMID: 36988448 PMCID: PMC10238227 DOI: 10.1002/advs.202205557] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/27/2023] [Indexed: 06/04/2023]
Abstract
Biomass is considered as a promising source to fabricate functional carbon materials for its sustainability, low cost, and high carbon content. Biomass-derived-carbon materials (BCMs) have been a thriving research field. Novel structures, diverse synthesis methods, and versatile applications of BCMs have been reported. However, there has been no recent review of the numerous studies of different aspects of BCMs-related research. Therefore, this paper presents a comprehensive review that summarizes the progress of BCMs related research. Herein, typical types of biomass used to prepare BCMs are introduced. Variable structures of BCMs are summarized as the performance and properties of BCMs are closely related to their structures. Representative synthesis strategies, including both their merits and drawbacks are reviewed comprehensively. Moreover, the influence of synthetic conditions on the structure of as-prepared carbon products is discussed, providing important information for the rational design of the fabrication process of BCMs. Recent progress in versatile applications of BCMs based on their morphologies and physicochemical properties is reported. Finally, the remaining challenges of BCMs, are highlighted. Overall, this review provides a valuable overview of current knowledge and recent progress of BCMs, and it outlines directions for future research development of BCMs.
Collapse
Affiliation(s)
- Hongzhe He
- Department of Chemical & Biological EngineeringMonash UniversityWellington RoadClaytonVictoria3800Australia
- Energy & Environment Research CenterMonash Suzhou Research InstituteSuzhou Industry ParkSuzhou215123China
| | - Ruoqun Zhang
- Department of Chemical & Biological EngineeringMonash UniversityWellington RoadClaytonVictoria3800Australia
- Energy & Environment Research CenterMonash Suzhou Research InstituteSuzhou Industry ParkSuzhou215123China
| | - Pengcheng Zhang
- Department of Chemical & Biological EngineeringMonash UniversityWellington RoadClaytonVictoria3800Australia
- Energy & Environment Research CenterMonash Suzhou Research InstituteSuzhou Industry ParkSuzhou215123China
| | - Ping Wang
- National Engineering Laboratory for Modern SilkCollege of Textile and Clothing EngineeringSoochow UniversitySuzhou215123China
| | - Ning Chen
- College of Chemistry, Chemical Engineering and Materials ScienceState Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhou215123China
| | - Binbin Qian
- Department of Chemical & Biological EngineeringMonash UniversityWellington RoadClaytonVictoria3800Australia
- Energy & Environment Research CenterMonash Suzhou Research InstituteSuzhou Industry ParkSuzhou215123China
| | - Lian Zhang
- Department of Chemical & Biological EngineeringMonash UniversityWellington RoadClaytonVictoria3800Australia
| | - Jianglong Yu
- Department of Chemical & Biological EngineeringMonash UniversityWellington RoadClaytonVictoria3800Australia
- Energy & Environment Research CenterMonash Suzhou Research InstituteSuzhou Industry ParkSuzhou215123China
| | - Baiqian Dai
- Department of Chemical & Biological EngineeringMonash UniversityWellington RoadClaytonVictoria3800Australia
- Energy & Environment Research CenterMonash Suzhou Research InstituteSuzhou Industry ParkSuzhou215123China
| |
Collapse
|
11
|
Silva PAP, Oréfice RL. Bio-sorbent from castor oil polyurethane foam containing cellulose-halloysite nanocomposite for removal of manganese, nickel and cobalt ions from water. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131433. [PMID: 37146336 DOI: 10.1016/j.jhazmat.2023.131433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/31/2023] [Accepted: 04/15/2023] [Indexed: 05/07/2023]
Abstract
In order to mitigate the contamination of water with heavy metals, caused by mining dam failures in Brumadinho and Mariana in Brazil, eco-friendly bio-based castor oil polyurethane foams, containing a cellulose-halloysite green nanocomposite were prepared. Polyurethane foams containing none (PUF-0), 5%wt (PUF-5), and 10%wt (PUF-10) of the nanocomposite were obtained. The application of the material in aqueous media was verified through an investigation of the efficiency of adsorption, the adsorption capacity, and the adsorption kinetics in pH= 2 and pH= 6.5 for manganese, nickel, and cobalt ions. An increase of 5.47 times in manganese adsorption capacity was found after only 30 min in contact with a solution having this ion at pH= 6.5 for PUF-5 and 11.38 times for PUF-10 when both were compared with PUF-0. Adsorption efficiency was respectively 68.17% at pH= 2 for PUF-5% and 100% for PUF-10 after 120 h, while for the control foam, PUF-0, the adsorption efficiency was only 6.90%.
Collapse
Affiliation(s)
- Philipe Augusto Pocidonio Silva
- Department of Metallurgical, Materials Engineering, Federal University of Minas Gerais (UFMG), Av. Antônio Carlos, 6627 - Campus da UFMG, Pampulha, Belo Horizonte, MG, Brazil
| | - Rodrigo Lambert Oréfice
- Department of Metallurgical, Materials Engineering, Federal University of Minas Gerais (UFMG), Av. Antônio Carlos, 6627 - Campus da UFMG, Pampulha, Belo Horizonte, MG, Brazil.
| |
Collapse
|
12
|
do Nascimento TP, Ladeira KC, Bezerra FDS, Santos MCB, de Souza TSP, Cameron LC, Ferreira MSL, Koblitz MGB. Metabolomic analysis and ecofriendly enrichment of sunflower meal extract. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:1161-1171. [PMID: 36151733 DOI: 10.1002/jsfa.12210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 08/28/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The presence of phenolic compounds in sunflower is well reported in the literature; however, knowledge is scarce when it comes to the composition of other secondary metabolites in this species and their by-products. This work evaluated, for the first time, the phytochemical composition of sunflower meal produced in Brazil. A combination of mixture design and central composite rotatable design 23 models was then applied to maximize the recovery of bioactive compounds using ecologically friendly solvents and concentrating by applying activated carbon, a sustainable adsorbent. The product of this extraction-concentration was also evaluated by an untargeted metabolomic approach using ultra-performance liquid chromatography coupled to mass spectrometry. RESULTS A diverse and abundant profile of phenolic compounds was obtained from Brazilian sunflower meal: in total, 51 natural products were tentatively identified, 35 of which for the first time in sunflower. The sorption capacity of the activated charcoal, in the optimized process conditions, was effective in the separation and concentration of minority secondary metabolites. The ecofriendly extract proved to be enriched in plumberoside, p-coumaric acid, and alkaloids. CONCLUSIONS Investigation of the phytochemical profile of sunflower meal produced in Brazil pointed to several secondary metabolites reported for the first time in sunflower samples, including phenolic compounds, alkaloids, and terpenes. The use of activated charcoal in an alkaline medium as an adsorbent for the concentration of these phytochemicals, from an aqueous extract, generated a potentially cost-effective, ecofriendly extract, enriched in minor metabolites, indicating a possible innovative way to selectively obtain these compounds from sunflower meal. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Talita Pimenta do Nascimento
- Center of Nutritional Biochemistry, Food and Nutrition Graduate Program (PPGAN), Federal University of State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
| | - Karine Campos Ladeira
- Nutrition School, Federal University of State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
| | - Fernanda de Sousa Bezerra
- Center of Nutritional Biochemistry, Food and Nutrition Graduate Program (PPGAN), Federal University of State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
| | - Millena Cristina Barros Santos
- Center of Nutritional Biochemistry, Food and Nutrition Graduate Program (PPGAN), Federal University of State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
- Laboratory of Protein Biochemistry, Center of Innovation in Mass Spectrometry, UNIRIO, Rio de Janeiro, Brazil
| | - Thaiza Serrano Pinheiro de Souza
- Center of Nutritional Biochemistry, Food and Nutrition Graduate Program (PPGAN), Federal University of State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
| | - L C Cameron
- Laboratory of Protein Biochemistry, Center of Innovation in Mass Spectrometry, UNIRIO, Rio de Janeiro, Brazil
| | - Mariana Simões Larraz Ferreira
- Center of Nutritional Biochemistry, Food and Nutrition Graduate Program (PPGAN), Federal University of State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
- Nutrition School, Federal University of State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
- Laboratory of Protein Biochemistry, Center of Innovation in Mass Spectrometry, UNIRIO, Rio de Janeiro, Brazil
| | - Maria Gabriela Bello Koblitz
- Center of Nutritional Biochemistry, Food and Nutrition Graduate Program (PPGAN), Federal University of State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
- Nutrition School, Federal University of State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
- Laboratory of Protein Biochemistry, Center of Innovation in Mass Spectrometry, UNIRIO, Rio de Janeiro, Brazil
| |
Collapse
|
13
|
Aniline and chlorobenzene interaction studies on θ-arsenene nanosheet - a first-principles study. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
14
|
Mbarek WB, Escoda L, Saurina J, Pineda E, Alminderej FM, Khitouni M, Suñol JJ. Nanomaterials as a Sustainable Choice for Treating Wastewater: A Review. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8576. [PMID: 36500069 PMCID: PMC9737022 DOI: 10.3390/ma15238576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 06/15/2023]
Abstract
The removal of dyes from textile effluents utilizing advanced wastewater treatment methods with high efficiency and low cost has received substantial attention due to the rise in pollutants in water. The purpose of this work is to give a comprehensive analysis of the different treatments for removing chemical dyes from textile effluents. The capability and potential of conventional treatments for the degradation of dyeing compounds in aqueous media, as well as the influence of multiple parameters, such as the pH solution, initial dye concentration, and adsorbent dose, are presented in this study. This study is an overview of the scientific research literature on this topic, including nanoreductive and nanophotocatalyst processes, as well as nanoadsorbents and nanomembranes. For the purpose of treating sewage, the special properties of nanoparticles are currently being carefully researched. The ability of nanomaterials to remove organic matter, fungus, and viruses from wastewater is another benefit. Nanomaterials are employed in advanced oxidation techniques to clean wastewater. Additionally, because of their small dimensions, nanoparticles have a wide effective area of contact. Due to this, nanoparticles' adsorption and reactivity are powerful. The improvement of nanomaterial technology will be beneficial for the treatment of wastewater. This report also offers a thorough review of the distinctive properties of nanomaterials used in wastewater treatment, as well as their appropriate application and future possibilities. Since only a few types of nanomaterials have been produced, it is also important to focus on their technological feasibility in addition to their economic feasibility. According to this study, nanoparticles (NPs) have a significant adsorption area, efficient chemical reactions, and electrical conductivity that help treat wastewater effectively.
Collapse
Affiliation(s)
- Wael Ben Mbarek
- Department of Physics, Campus Montilivi s/n, University of Girona, 17003 Girona, Spain
| | - Lluisa Escoda
- Department of Physics, Campus Montilivi s/n, University of Girona, 17003 Girona, Spain
| | - Joan Saurina
- Department of Physics, Campus Montilivi s/n, University of Girona, 17003 Girona, Spain
| | - Eloi Pineda
- Department of Physics, Institute of Energy Technologies, Universitat Politècnica de Catalunya, 08019 Barcelona, Spain
| | - Fahad M. Alminderej
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
| | - Mohamed Khitouni
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
| | - Joan-Josep Suñol
- Department of Physics, Campus Montilivi s/n, University of Girona, 17003 Girona, Spain
| |
Collapse
|
15
|
Hu M, Wu W, Lin D, Yang K. Adsorption of fulvic acid on mesopore-rich activated carbon with high surface area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155918. [PMID: 35577089 DOI: 10.1016/j.scitotenv.2022.155918] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
The loss of dissolved organic matter (DOM), especially fulvic acid (FA), from soil by rainfall and runoff will reduce soil fertility and result in water pollution of DOM. Carbon materials including biochars (BCs) and activated carbons (ACs) are widely suggested for soil remediation and carbon immobilization. However, these suggested carbon materials are dominated by micropores, and largely limiting the adsorption capacity for FA. Therefore, a mesopore-rich activated carbon (KAC) with high surface area was prepared from bamboo chips to investigate the adsorption of FA. This KAC can adsorb FA more than ACs and BCs investigated in this study and reported in previous studies not only because of the high surface area (3108 m2/g), but also the higher mesopore volume proportion (57%). The negative pH effect on adsorption performance of KAC was weaker than that on AC and BC, because of the less polarity of KAC. Moreover, KAC was favorable to adsorb FA fractions with various molecular weights, higher aromaticity and higher polarity. This study indicated that KAC was a promising adsorbent for FA, and revealed the underlying adsorption mechanism of FA on KAC, which are helpful for the carbon immobilization and pollution control in soil.
Collapse
Affiliation(s)
- Min Hu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Wenhao Wu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Daohui Lin
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Kun Yang
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311200, China; Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China.
| |
Collapse
|
16
|
Chandrasekaram K, Alias Y, Mohamad S. Dispersive Membrane Microextraction of Substituted Phenols from Honey Samples and a Brief Outlook on Its Sustainability Using Analytical Eco-Scale and Analytical GREEnness Metric Approach. MEMBRANES 2022; 12:649. [PMID: 35877851 PMCID: PMC9321667 DOI: 10.3390/membranes12070649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022]
Abstract
Honey is part and parcel of our daily nutrition, but in recent times it has been reported to be tainted by the presence of polar substituted phenols purported from the use of pesticides, herbicides, antimicrobial agents, etc. Honey's viscous nature and matrix complexity often result in analytical chemists resorting to derivatization for the detection of polar analytes such as substituted phenols. This study aims to overcome the matrix effect without derivatization and offer a more sustainable solution with notable sensitivity and selectivity using dispersive membrane microextraction alongside high-performance liquid chromatography (DMME-HPLC) with sporopollenin-methylimidazolium-based mixed matrix membrane (Sp-MIM-MMM). The DMME-HPLC approach successfully determined the presence of mono- and disubstituted phenols from unspiked honey samples with concentrations ranging from 7.8 to 154.7 ng/mL. The sustainability of the proposed method was also validated using the Analytical Eco-Scale (AES) and the Analytical GREEnness Metric (AGREE) where an excellent score of 94 and the encouraging score of 0.72 were recorded, respectively.
Collapse
Affiliation(s)
- Kumuthini Chandrasekaram
- University Malaya Centre for Ionic Liquids, University of Malaya, Kuala Lumpur 50603, Malaysia; (Y.A.); (S.M.)
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Yatimah Alias
- University Malaya Centre for Ionic Liquids, University of Malaya, Kuala Lumpur 50603, Malaysia; (Y.A.); (S.M.)
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Sharifah Mohamad
- University Malaya Centre for Ionic Liquids, University of Malaya, Kuala Lumpur 50603, Malaysia; (Y.A.); (S.M.)
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
17
|
Kaliyaraj Selva Kumar A, Compton RG. Understanding Carbon Nanotube Voltammetry: Distinguishing Adsorptive and Thin Layer Effects via "Single-Entity" Electrochemistry. J Phys Chem Lett 2022; 13:5557-5562. [PMID: 35696318 PMCID: PMC9234977 DOI: 10.1021/acs.jpclett.2c01500] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/08/2022] [Indexed: 05/24/2023]
Abstract
Cyclic voltammetry of ensembles of nanotube-modified electrodes fails to distinguish between signals from electroactive material adsorbed on the tubes from those due to a thin-layer response of analyte material occluded in the pores of the ensemble. We demonstrate that the distinction can be clearly made by combining cyclic voltammetry with single-entity measurements and provide proof of concept for the case of b-MWCNTs and the oxidation of 4-hexylresorcinol (HR), where the increased signals seen at the modified electrode are concluded to arise from thin-layer diffusion and not adsorptive effects. The physical insights are generic to porous, conductive composites.
Collapse
|
18
|
Hassani M, Tahghighi A, Rohani M, Hekmati M, Ahmadian M, Ahmadvand H. Robust antibacterial activity of functionalized carbon nanotube- levofloxacine conjugate based on in vitro and in vivo studies. Sci Rep 2022; 12:10064. [PMID: 35710710 PMCID: PMC9203521 DOI: 10.1038/s41598-022-14206-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 06/02/2022] [Indexed: 01/28/2023] Open
Abstract
A new nano-antibiotic was synthesized from the conjugation of multi-walled carbon nanotubes with levofloxacin (MWCNT-LVX) through covalent grafting of drug with surface-modified carbon nanotubes in order to achieve an effective, safe, fast-acting nano-drug with the minimal side effects. This study is the first report on the evaluation of in vitro cell viability and antibacterial activity of nano-antibiotic along in addition to the in vivo antibacterial activity in a burn wound model. The drug-loading and release profile at different pH levels was determined using an ultraviolet–visible spectrometer. MWCNT-LVX was synthesized by a simple, reproducible and cost-effective method for the first time and characterized using various techniques, such as scanning electron microscope, transmission electron microscopy, and Brunauer–Emmett–Teller analysis, and so forth. The noncytotoxic nano-antibiotic showed more satisfactory in vitro antibacterial activity against Staphylococcus aureus compared to Pseudomona aeruginosa. The novel synthetic nano-drug possessed high loading capacity and pH-sensitive release profile; resultantly, it exhibited very potent bactericidal activity in a mouse S. aureus wound infection model compared to LVX. Based on the results, the antibacterial properties of the drug enhanced after conjugating with surface-modified MWCNTs. The nano-antibiotic has great industrialization potential for the simple route of synthesis, no toxicity, proper drug loading and release, low effective dose, and strong activity against wound infections. In virtue of unique properties, MWCNTs can serve as a controlled release and delivery system for drugs. The easy penetration to biological membranes and barriers can also increase the drug delivery at lower doses compared to the main drug alone, which can lead to the reduction of its side effects. Hence, MWCNTs can be considered a promising nano-carrier of LVX in the treatment of skin infections.
Collapse
Affiliation(s)
- Marzieh Hassani
- Medicinal Chemistry Laboratory, Clinical Research Department, Pasteur Institute of Iran, Tehran, Iran.,Department of Medical Biotechnology, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Azar Tahghighi
- Medicinal Chemistry Laboratory, Clinical Research Department, Pasteur Institute of Iran, Tehran, Iran.
| | - Mahdi Rohani
- Department of Microbiology, Pasteur Institute of Iran, Tehran, Iran
| | - Malak Hekmati
- Department of Organic Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maryam Ahmadian
- Department of Biostatistics, School of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Ahmadvand
- Department of Biochemistry, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
19
|
Cui Z, Wen J, Chen J, Xue Y, Feng Y, Duan H, Ji B, Li R. Diameter dependent thermodynamics of adsorption on nanowires: A theoretical and experimental study. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2021.117061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
20
|
|
21
|
Abstract
This study evaluated the efficiency of two biofilter systems, with and without biochar chambers installed, at degrading and removing HCH and its isomers in natural drainage water. The biochar biofilter proved to be 96% efficient at cleaning HCH and its transformation products from drainage water, a significant improvement over classic biofilter that remove, on average, 68% of HCH. Although iron- and sulfur-oxidizing bacteria, such as Gallionella and Sulfuricurvum, were dominant in the biochar bed outflows, they were absent in sediments, which were rich in Simplicispira, Rhodoluna, Rhodoferax, and Flavobacterium. The presence of functional genes involved in the biodegradation of HCH isomers and their byproducts was confirmed in both systems. The high effectiveness of the biochar biofilter displayed in this study should further encourage the use of biochar in water treatment solutions, e.g., for temporary water purification installations during the construction of other long-term wastewater treatment technologies, or even as final solutions at contaminated sites.
Collapse
|
22
|
Mehta M, Sharma M, Pathania K, Jena PK, Bhushan I. Degradation of synthetic dyes using nanoparticles: a mini-review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:49434-49446. [PMID: 34350572 DOI: 10.1007/s11356-021-15470-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 07/09/2021] [Indexed: 05/25/2023]
Abstract
The industrial revolution has marked a strong impact on financial upgradation of several countries, and increase in the industrial establishment globally has direct impact on environment because of the release of unwanted product in air and inside the water bodies. The use of dyes has increased tremendously in various industries ranging from food, leather, textile, paper, cosmetic, pharmaceuticals, etc. The problem has emerged due to disposing of the dyes in the open environment, and mostly it is disposed along with the industrial wastes into the water bodies, which becomes harmful for animals, aquatic life and human health. This review highlights the role of the nanoparticles particularly biosynthesized nanoparticles for eliminating the dyes from the industrial wastewater. There are several methods for the synthesis of nanoparticle including physical, chemical and green synthesis of nanoparticles commonly known as biological method. Among all, the biological method is considered as the rapid, easy, eco-friendly and is being performed at mild conditions. The uses of nanoparticles for removal of dyes from water minimize the hazardous impact and thus considered to be the best approach as far as water quality and safety of environment is concerned.
Collapse
Affiliation(s)
- Malvika Mehta
- School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, 182301, India
| | - Mahima Sharma
- School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, 182301, India
| | - Kamni Pathania
- School of Physics, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, 182301, India
| | - Pabitra Kumar Jena
- School of Economics, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, 182301, India
| | - Indu Bhushan
- School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, 182301, India.
| |
Collapse
|
23
|
Yang K, Yan X, Xu J, Jiang L, Wu W. Sorption of organic compounds by pyrolyzed humic acids. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 781:146646. [PMID: 33794451 DOI: 10.1016/j.scitotenv.2021.146646] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/08/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
Humic acids (HAs) are frequently subjected to pyrolysis and carbonization by wildfires, which could significantly change the sorption of organic contaminants and their environmental risks in natural system. In previous studies, sorption of organic compounds was investigated for HAs pyrolyzed at temperature below 330 °C, but not for HAs pyrolyzed at higher temperature. Therefore, in this study, sorption of 22 typical organic compounds by HAs pyrolyzed at a series of temperatures from 300 to 700 °C was investigated. Sorption of organic compounds was dominated by nonlinear partition for HAs pyrolyzed at low temperature (e.g., 300 and 400 °C) due to the aliphatic and nonporous structures of pyrolyzed humic acids (PyHAs), while it was dominated by pore-filling adsorption for HAs pyrolyzed at high temperature (e.g., 700 °C) due to the aromatic and porous structures of PyHAs. For HAs pyrolyzed at moderate temperature (e.g., 450, 500 and 600 °C), both nonlinear partition and pore-filling adsorption were responsible for the sorption of organic compounds. Meanwhile, the contribution of pore-filling adsorption to overall sorption increased but the contribution of nonlinear partition decreased with the increasing pyrolytic temperature of PyHAs, attributed to the structure change of PyHAs from aliphatic and nonporous to the aromatic and porous. Moreover, with the increasing pyrolytic temperature of PyHAs, sorption affinity of organic compounds increased, while the change of sorption capacity could be explained by the decrease of nonlinear partition and the increase of pore-filling adsorption. The obtained results could help to evaluate the transport, bioavailability and health risks of organic contaminants in the environment.
Collapse
Affiliation(s)
- Kun Yang
- Department of Environmental Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, 866 Yuhangtang Road, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Xinxin Yan
- Department of Environmental Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, 866 Yuhangtang Road, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Jialu Xu
- Department of Environmental Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, 866 Yuhangtang Road, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Ling Jiang
- Department of Environmental Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, 866 Yuhangtang Road, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Wenhao Wu
- Department of Environmental Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, 866 Yuhangtang Road, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, 866 Yuhangtang Road, Hangzhou 310058, China.
| |
Collapse
|
24
|
Dai H, Yuan X, Jiang L, Wang H, Zhang J, Zhang J, Xiong T. Recent advances on ZIF-8 composites for adsorption and photocatalytic wastewater pollutant removal: Fabrication, applications and perspective. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213985] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
25
|
Use of Electrocoagulation for Treatment of Pharmaceutical Compounds in Water/Wastewater: A Review Exploring Opportunities and Challenges. WATER 2021. [DOI: 10.3390/w13152105] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Increasing dependency on pharmaceutical compounds including antibiotics, analgesics, antidepressants, and other drugs has threatened the environment as well as human health. Their occurrence, transformation, and fate in the environment are causing significant concerns. Several existing treatment technologies are there with their pros and cons for the treatment of pharmaceutical wastewater (PWW). Still, electrocoagulation is considered as the modern and decisive technology for treatment. In the EC process, utilizing electricity (AC/DC) and electrodes, contaminants become coagulated with the metal hydroxide and are separated by co-precipitation. The main mechanism is charge neutralization and adsorption of contaminants on the generated flocs. The range of parameters affects the EC process and is directly related to the removal efficiency and its overall operational cost. This process only could be scaled up on the industrial level if process parameters become optimized and energy consumption is reduced. Unfortunately, the removal mechanism of particular pharmaceuticals and complex physiochemical phenomena involved in this process are not fully understood. For this reason, further research and reviews are required to fill the knowledge gap. This review discusses the use of EC for removing pharmaceuticals and focuses on removal mechanism and process parameters, the cost assessment, and the challenges involved in mitigation.
Collapse
|
26
|
Zhao S, Chen F, Zhu X, Liu W, Wu C, Zhang J, Ren S, Yan Z, Cao W, Zhang Q, Li X. An azine-based polymer derived hierarchically porous N-doped carbon for hydrophilic dyes removal. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125299. [PMID: 33930941 DOI: 10.1016/j.jhazmat.2021.125299] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/28/2021] [Accepted: 01/30/2021] [Indexed: 06/12/2023]
Abstract
In this study, a novel hierarchically porous N-doped carbon (HPNC) material was successfully prepared by soft-templating method. The commercial triblock copolymer of Pluronic F127 and a polyazine derived from hydrazine hydrate & glyoxal were used as soft template and precursor, respectively. The obtained materials were fully characterized and tested as a sorbent for the removal of hydrophilic dyes of Methylene blue (MB), Basic Fuchsin (BF), Eosin Y (EY) and Rhodamine B (RB) from their aqueous effluents. According to the characterization results, the synthesized material of HPNC-1000 presented thick fibrous morphology with micron size in diameter, hierarchically porous structure with surface area of 1853 m2/g, pore volume of 1.59 cm3/g and nitrogen content of 4.5 wt%. Adsorption-desorption investigation reveals that synergistic effect of hydrophobic interaction and hydrogen-bonding formation of the dye molecules with the sorbent was most pronounced in the adsorptions. The maximum adsorption capacities for MB, BF, EY and RB reached 0.83, 0.92, 1.23 and 1.83 mmol g-1, respectively. The adsorption processes well fitted by the pseudo first-order kinetic model and the Liu's isotherm. The sorbent can be regenerated by above 90% of the initial adsorption efficiency after six regeneration cycles.
Collapse
Affiliation(s)
- Songlin Zhao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China; Department of Chemistry, School of Pharmaceutical and Materials Engineering, Taizhou University, Taizhou 318000, Zhejiang, China
| | - Fushan Chen
- Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang University, Jiujiang 332005, Jiangxi, China
| | - Xiandi Zhu
- Department of Chemistry, School of Pharmaceutical and Materials Engineering, Taizhou University, Taizhou 318000, Zhejiang, China
| | - Weijun Liu
- Department of Chemistry, School of Pharmaceutical and Materials Engineering, Taizhou University, Taizhou 318000, Zhejiang, China
| | - Chenlin Wu
- Department of Chemistry, School of Pharmaceutical and Materials Engineering, Taizhou University, Taizhou 318000, Zhejiang, China
| | - Jie Zhang
- Department of Chemistry, School of Pharmaceutical and Materials Engineering, Taizhou University, Taizhou 318000, Zhejiang, China
| | - Shibin Ren
- Department of Chemistry, School of Pharmaceutical and Materials Engineering, Taizhou University, Taizhou 318000, Zhejiang, China
| | - Zhengzhong Yan
- Department of Chemistry, School of Pharmaceutical and Materials Engineering, Taizhou University, Taizhou 318000, Zhejiang, China
| | - Wenli Cao
- Department of Chemistry, School of Pharmaceutical and Materials Engineering, Taizhou University, Taizhou 318000, Zhejiang, China
| | - Qunfeng Zhang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| | - Xiaonian Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| |
Collapse
|
27
|
Zhu S, Wang P, Yang XB, Jin C, Qiu R. Coupling experiments with calculations to understand the thermodynamics evolution for the sorption of zwitterionic ciprofloxacin on oxidizing-aged pyrogenic chars in the aquatic system. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125101. [PMID: 33482506 DOI: 10.1016/j.jhazmat.2021.125101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/22/2020] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
Oxidized aging due to the long-term exposure can significantly alter the sorption of pyrogenic chars (i.e., biochar, BC) towards antibiotics, which determined their fates in natural environments. In this study, the sorption of ciprofloxacin (CIP) on the oxidizing-aged BCs was studied linking the experimental thermodynamics and theoretical calculations. Results revealed that Q0 of CIP negatively correlated with their average site energies (Em), while pore-normalized Q0 on aged BCs were 2-6 folds higher than fresh BCs. From competitive sorption, it is proposed that the transformation of CIP± to CIP+ occurred and the π+-π electron donor-acceptor interaction and Coulombic attraction onto the aged BCs played a critical role. These two specific interactions with CIP were thermodynamically improved when aging degree increased and favored the free energies (ΔaG) of sorption by 2-5 kJ mol-1. Based on the identified relationship between experimental ΔOA-ΔG0 with Ea through DFT calculations, the contributions of the specific interactions to antibiotic sorption on aged BCs were quantified. This study provided an in-depth understanding of how the aging process affects the sorption of zwitterionic antibiotics on BCs and also possibilities to predict the fate of antibiotics in the presence of BCs over a long-term period.
Collapse
Affiliation(s)
- Shishu Zhu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Pan Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Xiao-Bao Yang
- Department of Physics, South China University of Technology, Guangzhou 510640, PR China
| | - Chao Jin
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China.
| | - Rongliang Qiu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China.
| |
Collapse
|
28
|
Chen T, Fu C, Liu Y, Pan F, Wu F, You Z, Li J. Adsorption of volatile organic compounds by mesoporous graphitized carbon: Enhanced organophilicity, humidity resistance, and mass transfer. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118464] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
29
|
Tonel MZ, Zanella I, Fagan SB. Theoretical study of small aromatic molecules adsorbed in pristine and functionalised graphene. J Mol Model 2021; 27:193. [PMID: 34057615 DOI: 10.1007/s00894-021-04806-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/25/2021] [Indexed: 10/21/2022]
Abstract
Small aromatic molecules are precursors for several biological systems such as DNA, proteins, drugs, and are also present in several pollutants. The understanding of the interaction of these small aromatic molecules with pristine and functionalised graphene (fGr) can generate different applications. We performed ab initio simulations based on the density functional theory to evaluate the interaction between the aromatic compounds, benzene, benzoic acid, aniline and phenol, with pristine and fGr. The results show that the binding energy for all cases is less than 103.24 kJ/mol (1.07 eV) without substantial modification of the electronic properties, indicating that the interaction occurs through a physical adsorption regime. The results are promising because they suggest that pristine graphene and functionalised graphene are suitable for removing these pollutants, or for carrying molecules for biological applications influenced by π-π and H-bonds interaction.
Collapse
Affiliation(s)
- Mariana Zancan Tonel
- Physics Department, Universidade Franciscana-UFN, Rua dos Andradas, 1614, ZIP, Santa Maria, RS, 97010-032, Brazil.
| | - Ivana Zanella
- Physics Department, Universidade Franciscana-UFN, Rua dos Andradas, 1614, ZIP, Santa Maria, RS, 97010-032, Brazil
| | - Solange Binotto Fagan
- Physics Department, Universidade Franciscana-UFN, Rua dos Andradas, 1614, ZIP, Santa Maria, RS, 97010-032, Brazil
| |
Collapse
|
30
|
Yang B, Wei S, Tang K, Zhai X. Study on the Degradation Performance of 2,4-DCP by Modified Co–Ni–Fe Hydrotalcite. Catal Letters 2021. [DOI: 10.1007/s10562-021-03615-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Bai S, Jin C, Zhu S, Ma F, Wang L, Wen Q. Coating magnetite alters the mechanisms and site energy for sulfonamide antibiotic sorption on biochar. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:125024. [PMID: 33444953 DOI: 10.1016/j.jhazmat.2020.125024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/27/2020] [Accepted: 12/29/2020] [Indexed: 06/12/2023]
Abstract
Magnetite-coating biochar (MBC) is a promising remediator for antibiotic contamination. Accurate models describing the sorption affinity are required to better understand the role of minerals. In this study, the presence of magnetite led to the improvements of oxygen-containing groups (i.e. C˭O) and regulation of π-systems within BC. Based on Dubinin-Ashtakhov (DA) model, the differences of site energy (Em) and sorption heterogeneity (σe*) led to the variances between sorption capacities of sulfonamides (SAs). The positive correlations between Em and the oxygen content or pore volume of MBCs indicated that π-π interactions, H-bonding, and pore-filling may act as the high energy sites. Moreover, σe* was related to the distribution of magnetite on BC and their porosities. These results suggested that compared to BCs, the coating minerals improved the π-interaction assisted H-bonding and proton configuration of antibiotic when sorbing on MBC. The negative correlations between the Em of different SAs with their molecular sizes and solubilities resulted from steric effects and competition with water, which further confirmed the proposed high energy sites on MBCs. This study provided the insightful information of site energy distribution and understanding of fate and transport of organic pollutants on BC when the iron minerals were embedded or coated.
Collapse
Affiliation(s)
- Shanshan Bai
- State Key Laboratory of Urban Water Resource and Environment, School of environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Chao Jin
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Shishu Zhu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China.
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, School of environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Li Wang
- State Key Laboratory of Urban Water Resource and Environment, School of environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Qinxue Wen
- State Key Laboratory of Urban Water Resource and Environment, School of environment, Harbin Institute of Technology, Harbin 150090, PR China
| |
Collapse
|
32
|
Ren L, Lin D, Yang K. Nonlinear partition of nonionic organic compounds into humus-like substance humificated from lignin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 764:142887. [PMID: 33127146 DOI: 10.1016/j.scitotenv.2020.142887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/25/2020] [Accepted: 10/02/2020] [Indexed: 06/11/2023]
Abstract
Nonlinear sorption of nonionic organic compounds (NOCs) by soil organic matter (SOM) is a significant behaviour that affecting their distribution, transport and fate in the environment. Sorption of typical NOCs, including phenols, anilines, nitrobenzenes and polycyclic aromatic hydrocarbons (PAHs) by Lig48, a humus-like substance humificated from lignin (the principal component of plant precursors of SOM), is nonlinear and without desorption hysteresis, and interpreted by nonlinear partition mechanism in this study. The positively linear relationship between sorption capacity and water solubility of NOCs is a distinguish characteristic for their nonlinear partition into Lig48. Moreover, the nonlinear partition capacity of NOCs is mainly dependent on the aromaticity of humus-like substances with a positively linear relationship, while the nonlinear partition affinity is mainly dependent on the polarity of humus-like substances with a negatively linear relationship. Competition between phenols, anilines, nitrobenzenes and PAHs was observed for their nonlinear partition into Lig48. In addition to van der Waals force, specific interactions, i.e., hydrogen-bonding and π-π interactions are responsible for the nonlinear partitioning of NOCs into humus-like substances including Lig48. These novel observations are helpful for understanding the nonlinear sorption of NOCs by SOM and elucidating the migration and transport of NOCs in the environment.
Collapse
Affiliation(s)
- Liufen Ren
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Daohui Lin
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Kun Yang
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China.
| |
Collapse
|
33
|
Meng F, Song M, Chen Y, Wei Y, Song B, Cao Q. Promoting adsorption of organic pollutants via tailoring surface physicochemical properties of biomass-derived carbon-attapulgite. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:11106-11118. [PMID: 33113060 DOI: 10.1007/s11356-020-10974-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
Biomass-derived carbon-attapulgite adsorbent was developed for organic pollutants removal. All the batch assays were performed to evaluate the effects of organic components, contact time, and initial concentration of organic pollutants on the adsorption performance of the as-prepared adsorbent. The samples were characterized via Brunauer-Emmett-Teller (BET), Fourier transform infrared (FTIR), X-ray diffractometer (XRD), and scanning electron microscopy (SEM). The results demonstrated that the acid-treated carbon-attapulgite adsorbent (H-ATP/BC) showed a large specific surface area (237 m2 g-1) and possessed abundant oxygen-containing functional groups and silicon-oxygen bonds (i.e., O-Si-O and O-Si), which provided more active sites and conduced to the adhesive of organic pollutants. Both physical adsorption and chemical adsorption were involved in the adsorption process, and competitive adsorption occurred when two or more target pollutants coexist. Especially, phenol and/or aniline with an aromatic ring were much more likely to adhere to the H-ATP/BC surface than pyridine, and the selectivity order of H-ATP/BC for these pollutants was phenol > aniline > pyridine. From the model fitting, it was observed that the adsorption data could be described well by a pseudo-second-order model and Freundlich isotherms. The theoretical maximum phenol, aniline, and pyridine adsorption capacities of the H-ATP/BC were 14.31 mg g-1, 15.21 mg g-1, and 20.74 mg g-1, respectively. Comparison among the commercial adsorbents price also illustrated that H-ATP/BC could be a promising material for efficient treatment of organic pollutants.Graphical abstract.
Collapse
Affiliation(s)
- Fanyue Meng
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Jiangsu Province Key Laboratory of Environmental Engineering, Nanjing, 210096, Jiangsu, China
| | - Min Song
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Jiangsu Province Key Laboratory of Environmental Engineering, Nanjing, 210096, Jiangsu, China.
| | - Yueyun Chen
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Jiangsu Province Key Laboratory of Environmental Engineering, Nanjing, 210096, Jiangsu, China
| | - Yuexing Wei
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Jiangsu Province Key Laboratory of Environmental Engineering, Nanjing, 210096, Jiangsu, China
| | - Bing Song
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Jiangsu Province Key Laboratory of Environmental Engineering, Nanjing, 210096, Jiangsu, China
| | - Qingqing Cao
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Jiangsu Province Key Laboratory of Environmental Engineering, Nanjing, 210096, Jiangsu, China
| |
Collapse
|
34
|
Krishnapandi A, Muthukutty B, Chen SM, Arul KT, Shiuan HJ, Selvaganapathy M. Bismuth molybdate incorporated functionalized carbon nanofiber as an electrocatalytic tool for the pinpoint detection of organic pollutant in life samples. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 209:111828. [PMID: 33385681 DOI: 10.1016/j.ecoenv.2020.111828] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/07/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
Herein, we fabricated a feasible and accurate sensing platform for the quantification of toxic organic pollutant 2-nitroaniline (2-NA) in water samples through electrocatalyst made up of bismuth molybdate (Bi2MoO6, BMO) functionalized carbon nanofiber (f-CNF) modified electrode. The preparation of BMO/f-CNF composite is of two methods, such as co-precipitation (C-BMO/f-CNF) and ultrasonication method (U-BMO/f-CNF). The physicochemical properties of the composites were characterized by XRD, FTIR, Raman, BET, FE-SEM, and HR-TEM techniques. At U-BMO/f-CNF, the charge transfer resistance was low (Rct = 12.47 Ω) compared to C-BMO/f-CNF because nanosized U-BMO particles correctly aim at the defective sites of the f-CNF surface wall. Further, the electrocatalytic activity of C&U-BMO/f-CNF composites was examined by cyclic voltammetry (CV) and differential pulse voltammetry techniques (DPV) for the electrochemical detection of 2-nitroaniline (2-NA). The U-BMO/f-CNF/GCE shows a higher cathodic current, wide dynamic linear range of 0.01-168.01 µM, and superior electrocatalytic activity with a low detection limit (0.0437 µM) and good sensitivity (0.6857 μA μM-1 cm-2). The excellent selectivity nature of U-BMO/f-CNF/GCE was observed in the presence of various organic pollutants and a few toxic metal cations. The practical applicability such as stability, repeatability towards 2-NA outcomes with accepted results. Besides, the practical viability of as proposed U-BMO/f-CNF sensor was investigated in soil and lake water samples delivers good recovery results. Hence from these analyses, we conclude that U-BMO/f-CNF/GCE potential for the determination of hazardous environmental pollutant 2-NA.
Collapse
Affiliation(s)
- Alagumalai Krishnapandi
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC
| | - Balamurugan Muthukutty
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC
| | - Shen-Ming Chen
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC.
| | - Kumaravelu Thanigai Arul
- Energy and Biophotonic Laboratory, Department of Physics, AMET (Deemed to be University), Kanathur, Chennai, Tamil Nadu 603 112, India
| | - Huang Ji Shiuan
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC
| | | |
Collapse
|
35
|
Song T, Tian W, Qiao K, Zhao J, Chu M, Du Z, Wang L, Xie W. Adsorption Behaviors of Polycyclic Aromatic Hydrocarbons and Oxygen Derivatives in Wastewater on N-Doped Reduced Graphene Oxide. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117565] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
36
|
Gurusamy T, Murugan R, Durairaj A, Ramanujam K. Confinement Catalysis of Non‐covalently Functionalized Carbon Nanotube in Ascorbic Acid Sensing. ELECTROANAL 2020. [DOI: 10.1002/elan.202060119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Tamilselvi Gurusamy
- Clean Energy Lab Department of Chemistry Indian Institute of Technology Madras Chennai 600036 India
| | - Raja Murugan
- Clean Energy Lab Department of Chemistry Indian Institute of Technology Madras Chennai 600036 India
| | - Akalyaa Durairaj
- Clean Energy Lab Department of Chemistry Indian Institute of Technology Madras Chennai 600036 India
| | - Kothandaraman Ramanujam
- Clean Energy Lab Department of Chemistry Indian Institute of Technology Madras Chennai 600036 India
| |
Collapse
|
37
|
Wu W, Lan Y, Zeng Y, Lin D, Yang K. Nonlinear sorption of phenols and anilines by organobentonites: Nonlinear partition and space limitation for partitioning. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 736:139609. [PMID: 32492612 DOI: 10.1016/j.scitotenv.2020.139609] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/15/2020] [Accepted: 05/19/2020] [Indexed: 06/11/2023]
Abstract
Organobentonites, i.e., bentonites coated with surfactants such as cetyltrimethylammonium (CTAB), are superior and low-cost sorbents for removal of organic contaminants from wastewater. Nonlinear sorption of polar organic compounds such as phenols and anilines by organobentonites were widely observed and interpreted by adsorption mechanism. However, in this study, it was observed that the nonlinear sorption of phenols and anilines by CTAB coated bentonites (CTAB-bentonites) should be attributed to nonlinear partition mechanism with the additional space limitation in CTAB-bentonites for nonlinear partitioning, rather than adsorption mechanism. This nonlinear partition mechanism is supported by that (i) organobentonites is a partition medium, identified by the linear isotherms of polycyclic aromatic hydrocarbons (PAHs) and nitrobenzenes; (ii) sorption coefficients (logKd), the ratio of adsorbed amount (qe) to equilibrium concentration (Ce), and Dubinin-Ashtakhov (DA) model fitted sorption capacity (logQ0) of organic compounds, by a given CTAB-bentonite, are positively correlated with their octanol-water distribution coefficients (logKOW) and solubility in octanol (logSo) respectively; (iii) logKd and logQ0 of a given organic compound by CTAB-bentonites are positively correlated with organic carbon contents (foc) of CTAB-bentonites, but not specific surface area. Specific interaction (i.e., hydrogen-bonding interaction), in addition to van der Waals force, is responsible for the nonlinear partitioning of phenols and anilines into CTAB-bentonites, because of the positively linear relationship between DA model fitted sorption affinity (E) and hydrogen-bonding donor parameter (αm) of organic compounds. These results could help the recognizing of the nonlinear sorption behaviors of organic compounds by organobentonites and promote their environmental applications in wastewater treatment.
Collapse
Affiliation(s)
- Wenhao Wu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Yuan Lan
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Yaxiong Zeng
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Daohui Lin
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Kun Yang
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China.
| |
Collapse
|
38
|
Xu L, Wu J, Zhou W, Jiang F, Zhang H, Wang R, Liang A, Xu J, Duan X. Using nitroaromatic fused-heterocycle molecules as nitrogen source to hugely boost the capacitance performance of graphene. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136703] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
39
|
Hydroquinone-modified hyper-crosslinked polymer and its adsorption of aniline. CHEMICAL ENGINEERING JOURNAL ADVANCES 2020. [DOI: 10.1016/j.ceja.2020.100004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
40
|
A low-cost crosslinked polystyrene derived from environmental wastes for adsorption of phenolic compounds from aqueous solution. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113641] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
41
|
Han W, Wang H, Xia K, Chen S, Yan P, Deng T, Zhu W. Superior nitrogen-doped activated carbon materials for water cleaning and energy storing prepared from renewable leather wastes. ENVIRONMENT INTERNATIONAL 2020; 142:105846. [PMID: 32585500 DOI: 10.1016/j.envint.2020.105846] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 05/10/2020] [Accepted: 05/10/2020] [Indexed: 06/11/2023]
Abstract
The fabrication of nitrogen-doped activated carbons (N-ACs) from leather solid wastes (LSW), a huge underutilized bioresource, by different activation methods was investigated. N-AC prepared by KOH activation (named KNAC) exhibited superior physical and chemical properties with much higher BET surface area (2247 m2 g-1) and more abundant hierarchical micropores than those activated by nano-CaCO3 (CNAC) or by direct carbonization (NNAC). KOH activation decreased the total nitrogen content in KNAC, but it increased the ratio of surface nitrogen species. KOH activation also significantly promoted the conversion of nitrogen species in the carbon material to pyridinic N. Potential applications of the prepared N-ACs were evaluated, and they were tested as adsorbents to remove phenols from water and as the anodes of lithium batteries. The high surface area, abundant micropores, and plentiful surface pyridinic N guaranteed KNAC a superior nitrogen-doped activated carbon that could serve as an excellent adsorbent to remove phenols (282 mg/g) from waste water as well as an outstanding electrode material with a high and stable charge/discharge capacity (533.54 mAh g-1 after 150th cycle). The strategy of LSW conversion to versatile N-ACs turns waste into treasure and could promote the sustainable development of our society.
Collapse
Affiliation(s)
- Wanying Han
- College of Biomass Sciences and Engineering/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Hongliang Wang
- College of Biomass Sciences and Engineering/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China.
| | - Kedong Xia
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453000, China
| | - Shanshuai Chen
- College of Biomass Sciences and Engineering/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Puxiang Yan
- College of Biomass Sciences and Engineering/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Tiansheng Deng
- Shanxi Engineering Research Center of Biorefinery, Institute of Coal Chemistry, Chinese Academy of Sciences, 27 South Taoyuan Road, Taiyuan 030001, China
| | - Wanbin Zhu
- College of Biomass Sciences and Engineering/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
42
|
Polyfunctional Conjugated Microporous Polymers for Applications in Direct C-H Arylation of Unactivated Arenes and Aqueous Adsorption of Aromatic Amines. Chem Res Chin Univ 2020. [DOI: 10.1007/s40242-020-0208-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
43
|
Jia L, Shi J, Long C, Lian F, Xing B. VOCs adsorption on activated carbon with initial water vapor contents: Adsorption mechanism and modified characteristic curves. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 731:139184. [PMID: 32402907 DOI: 10.1016/j.scitotenv.2020.139184] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/26/2020] [Accepted: 05/01/2020] [Indexed: 06/11/2023]
Abstract
In practice, regeneration of adsorbent is always achieved by heating with hot steam, leaving some water in the adsorbent bed, which may negatively affect the VOCs adsorption. In this research, adsorption isotherms of 12 VOCs (ketones, alkanes, alcohols, halohydrocarbons, and aromatic hydrocarbons) on granular activated carbon (GAC) with different initial water contents (IWC) were conducted. Adsorption interactions between VOCs and GAC at different IWC were investigated using the combination of Linear Solvation Energy Relationship (LSER) and Dubinin-Radushkevich (DR) equation. The results showed that initial water vapor could reduce adsorption capacities and partition coefficient of 12 VOCs, especially at low VOCs concentration. According to LSER, electron acceptor ability (∑β2H) and dispersive force (log10L16) of VOCs played major roles during adsorption. For VOCs with approximate ∑β2H value in the same series, the negative influence of IWC was less obvious for VOCs with higher log10L16, while for VOCs with similar log10L16 value in different series, the negative influence of IWC was more significant for VOCs with higher ∑β2H. Furthermore, characteristic curves of 12 VOCs onto dry GAC, i.e., the plots of adsorbed volume (qv) vs adsorption potential density (ε/Vm), fell essentially onto a single curve with a high correlation coefficient, while on GAC with IWC, characteristic curves of 12 VOCs had obvious discrepancy. Considering the effect of IWC, the contribution percentage of dispersive force (Wd) to VOCs adsorption was introduced to modify adsorbed volume (qv) in DR equation and Wd·qv was used instead of qv. Then, the integrative characteristic adsorption curves of 12 VOCs on GAC with initial water could be modified well and they showed better superposition with higher fitting coefficient of DR equation. The results are meaningful to estimate adsorption capacities for other VOCs adsorption onto GAC within the range of IWC in this study.
Collapse
Affiliation(s)
- Lijuan Jia
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China; Department of Applied Chemistry, Yuncheng University, 1155 Fudan West Street, Yuncheng 044000, China; Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| | - Jialu Shi
- Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, School of Environment, Henan Normal University, Xinxiang 453007, China
| | - Chao Long
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China.
| | - Fei Lian
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
44
|
El Ouahedy N, Zbair M, Ojala S, Brahmi R, Pirault-Roy L. Porous carbon materials derived from olive kernels: application in adsorption of organic pollutants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:29967-29982. [PMID: 32440882 DOI: 10.1007/s11356-020-09268-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
Adsorption of organic pollutants (OPs), bisphenol A, and diuron, from aqueous solutions onto porous carbon materials (CMs) prepared from olive kernels, have been investigated. The effects of initial pH, initial OP concentration, temperature, and contact time on the adsorption capacity were studied. The adsorption of bisphenol A and diuron onto CMs was found to be optimal at pH 5.6 and 6.9, respectively. It was noticed that the adsorption of those organic pollutants from aqueous solution declined with increasing temperature and the process is exothermic. The rate of adsorption followed the second order kinetic equation. The equilibrium results showed that Langmuir model fits well with the data. The maximum adsorption capacities obtained using the best CM were 476 and 434 mg g-1 for BPA and diuron, respectively. The results showed that CMs made from olive kernels are an excellent and inexpensive biomass waste-derived sorbent. Graphical abstract.
Collapse
Affiliation(s)
- Nadia El Ouahedy
- Laboratory of Coordination and Analytical Chemistry (LCCA), University Chouaïb Doukkali, El Jadida, Morocco
- Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Université de Poitiers UMR 7285 CNRS, 4, Rue M. Brunet, 86073, Poitiers Cedex 9, France
| | - Mohamed Zbair
- Environmental and Chemical Engineering, Faculty of Technology, University of Oulu, Oulu, Finland
| | - Satu Ojala
- Environmental and Chemical Engineering, Faculty of Technology, University of Oulu, Oulu, Finland
| | - Rachid Brahmi
- Laboratory of Coordination and Analytical Chemistry (LCCA), University Chouaïb Doukkali, El Jadida, Morocco
| | - Laurence Pirault-Roy
- Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Université de Poitiers UMR 7285 CNRS, 4, Rue M. Brunet, 86073, Poitiers Cedex 9, France.
| |
Collapse
|
45
|
Sanchez Ramirez DO, Periolatto M, Carletto RA, Varesano A, Vineis C, Tonetti C, Bongiovanni R. Cr (VI) adsorption from aqueous solutions on grafted chitosan. CAN J CHEM ENG 2020. [DOI: 10.1002/cjce.23723] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Diego O. Sanchez Ramirez
- Istituto di Sistemi e Tecnologie Industriali Intelligenti per il Manufatturiero Avanzato (STIIMA)Dipartamento di Ingegneria ICT e Tecnologie per l'Energie e i Trasporti (DIITET)‐National Research Council of Italy Biella Italy
| | - Monica Periolatto
- Politecnico di Torino – Dipartimento di Scienza Applicata e Tecnologia Turin Italy
| | - Riccardo A. Carletto
- Istituto di Sistemi e Tecnologie Industriali Intelligenti per il Manufatturiero Avanzato (STIIMA)Dipartamento di Ingegneria ICT e Tecnologie per l'Energie e i Trasporti (DIITET)‐National Research Council of Italy Biella Italy
| | - Alessio Varesano
- Istituto di Sistemi e Tecnologie Industriali Intelligenti per il Manufatturiero Avanzato (STIIMA)Dipartamento di Ingegneria ICT e Tecnologie per l'Energie e i Trasporti (DIITET)‐National Research Council of Italy Biella Italy
| | - Claudia Vineis
- Istituto di Sistemi e Tecnologie Industriali Intelligenti per il Manufatturiero Avanzato (STIIMA)Dipartamento di Ingegneria ICT e Tecnologie per l'Energie e i Trasporti (DIITET)‐National Research Council of Italy Biella Italy
| | - Cinzia Tonetti
- Istituto di Sistemi e Tecnologie Industriali Intelligenti per il Manufatturiero Avanzato (STIIMA)Dipartamento di Ingegneria ICT e Tecnologie per l'Energie e i Trasporti (DIITET)‐National Research Council of Italy Biella Italy
| | - Roberta Bongiovanni
- Politecnico di Torino – Dipartimento di Scienza Applicata e Tecnologia Turin Italy
| |
Collapse
|
46
|
Abodif A, Meng L, MA S, Ahmed ASA, Belvett N, Wei ZZ, Ning D. Mechanisms and Models of Adsorption: TiO 2-Supported Biochar for Removal of 3,4-Dimethylaniline. ACS OMEGA 2020; 5:13630-13640. [PMID: 32566828 PMCID: PMC7301375 DOI: 10.1021/acsomega.0c00619] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 05/19/2020] [Indexed: 05/09/2023]
Abstract
Here, 3,4-dimethylaniline (3,4-DMA) was selected as a representative organic substance of aniline compounds. A biochar-titanium dioxide (BC-TiO2) composite was prepared by the sol-gel method to investigate its adsorption ability toward the 3,4-DMA compound. Simultaneously, the prepared composite's adsorption ability and physical and physicochemical properties were also investigated. The isotherm studies confirmed that the adsorption of 3,4-DMA on both BC and BC-TiO2 composite agrees with the Langmuir and Toth adsorption models, which means the formation of a monolayer of 3,4-DMA on the surface. The maximum adsorption capacity of 3,4-DMA was 322.58 mg g-1 and 285.71mg g-1 for BC and BC-TiO2, respectively. Furthermore, the adsorption kinetics reveals that the adsorption process of 3,4-DMA on BC and the BC-TiO2 composite is controlled by the pseudo-second-order kinetic model with an R 2 of 0.99.
Collapse
Affiliation(s)
- Ahmed
M. Abodif
- School
of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China
- Civil
Engineering Depeartment, El-Minya High Institute
for Engineering and Technology, El-Minia 61111, Egypt
| | - Li Meng
- School
of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China
| | - Sanjrani MA
- School
of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Abdelaal S. A. Ahmed
- Chemistry
Department, Faculty of Science, Al-Azhar
University, Assiut 71524, Egypt
| | - Norville Belvett
- School
of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China
| | - Zhan Zhi Wei
- School
of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China
| | - Du Ning
- School
of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
47
|
Ge X, Wu Z, Manzoli M, Wu Z, Cravotto G. Feasibility and the Mechanism of Desorption of Phenolic Compounds from Activated Carbons. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c01402] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xinyu Ge
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Turin 10125, Italy
| | - Zhilin Wu
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Turin 10125, Italy
- Nanjing Institute of Environmental Science of the Ministry of Environment Protection of China, Nanjing 210042, China
| | - Maela Manzoli
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Turin 10125, Italy
| | - Zhansheng Wu
- School of Environmental and Chemical Engineering, Xi’an Polytechnic University, Xi’an 710048, China
| | - Giancarlo Cravotto
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Turin 10125, Italy
| |
Collapse
|
48
|
Zeng X, Huang J. Anisole-modified hyper-cross-linked resins for efficient adsorption of aniline from aqueous solution. J Colloid Interface Sci 2020; 569:177-183. [DOI: 10.1016/j.jcis.2020.02.082] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 01/27/2023]
|
49
|
Tian W, Sun H, Duan X, Zhang H, Ren Y, Wang S. Biomass-derived functional porous carbons for adsorption and catalytic degradation of binary micropollutants in water. JOURNAL OF HAZARDOUS MATERIALS 2020; 389:121881. [PMID: 31852591 DOI: 10.1016/j.jhazmat.2019.121881] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/04/2019] [Accepted: 12/10/2019] [Indexed: 06/10/2023]
Abstract
The biomass, bottlebrush flower, is exploited for the preparation of functionalized porous carbons by one-pot thermal activation using NaHCO3 and dicyandiamide. An intensified cross-linking effect among the precursors boosts pore (especially mesopore) formation in the pyrolysis process, producing N-doped porous carbons (NPCs) with a large specific surface area (SSA, up to 2025 m2 g-1). The biomass-derived carbon samples turn out to be highly effective in adsorption, and catalytic activation of peroxymonosulfate for degradation of aqueous phenol and p-hydroxybenzoic acid (HBA) in single and binary systems. The effects of N content, porous structure, and trace Ni species on the adsorptive and catalytic behavior of carbon are investigated. It is found that the porous structure plays a more critical role in adsorption than surface N functionality, while the contributions of various reactive species for phenol and HBA degradation are different.
Collapse
Affiliation(s)
- Wenjie Tian
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Hongqi Sun
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027, Australia
| | - Xiaoguang Duan
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Huayang Zhang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Yongxiang Ren
- Key Laboratory of Northwestern Water Resource and Environment Ecology of Ministry of Education, Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Shaobin Wang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
50
|
Bin-Dahman OA, Saleh TA. Synthesis of carbon nanotubes grafted with PEG and its efficiency for the removal of phenol from industrial wastewater. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.enmm.2020.100286] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|