1
|
Kim H, Kim SD. Pesticides in wastewater treatment plant effluents in the Yeongsan River Basin, Korea: Occurrence and environmental risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174388. [PMID: 38969125 DOI: 10.1016/j.scitotenv.2024.174388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/03/2024] [Accepted: 06/28/2024] [Indexed: 07/07/2024]
Abstract
Pesticides are among the main drivers posing risks to aquatic environments, with effluents from wastewater treatment plants (WWTPs) serving as a major source. This study aimed to identify the primary pesticides for which there was a risk of release into aquatic environments through WWTP effluents, thereby enabling more effective contamination management in public water bodies. In this study, monitoring, risk assessment, and risk-based prioritization of 87 pesticides in effluents from three WWTPs in the Yeongsan River Basin, Korea, were conducted. A total of 59 pesticides were detected at concentrations from 0.852 ng/L to 82.044 μg/L and exhibited variable patterns across different WWTP locations. An environmental risk assessment based on the risk quotient (RQ) of individual pesticides identified 13 substances implicated in significant ecotoxicological risks, as they exceeded RQ values of 1 at least once. An optimized risk (RQf)-based prioritization, considering the frequency of the measured environmental concentration (MEC) exceeding the predicted environmental concentration (PNEC), was conducted to identify pesticides that potentially posed risks and thus should be managed as a priority. Four pesticides had an RQf value >1; metribuzin exhibited the highest RQf value of 4.951, followed by 3-phenoxybenzoic acid, atrazin-2-hydroxy, and atrazine. Additionally, five pesticides (terbuthylazine, methabenzthiazuron, diuron, thiacloprid, and fipronil) and another four pesticides (propazine, imidacloprid, hexaconazole, and hexazione) had RQf values >0.1 and > 0.01, respectively. By calculating the contributions of individual pesticides to the RQf of these mixtures (RQf, mix) based on the concentration addition model, it was determined that >95 % of the sum of RQf, mix was driven by the top seven pesticides. These findings highlight the importance of prioritizing pesticides for effective management of contamination sources.
Collapse
Affiliation(s)
- Hyewon Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-Gwagiro, Gwangju 61005, Republic of Korea
| | - Sang Don Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-Gwagiro, Gwangju 61005, Republic of Korea.
| |
Collapse
|
2
|
Bernier-Turpin G, Thiebault T, Alliot F, Mebold E, Guérin-Rechdaoui S, Oliveira M, Le Roux J, Moilleron R. Target and non-target screening of biomarkers in wastewater: towards a unique analytical methodology for sample preparation. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6241-6256. [PMID: 39211955 DOI: 10.1039/d4ay00843j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
This study aims to optimize a single preparation methodology based on solid-phase extraction (SPE) that could fit both target and non-target screening of organic biomarkers in raw wastewater, allowing the cross-comparison of results obtained from a same dataset. The efficiency of SPE sorbents used alone (HLB) or in combination in a multilayer cartridge was evaluated based on (i) the extraction recovery and matrix effect in environmental samples (surface water and wastewater) for a list of biomarkers (pharmaceuticals, licit and illicit drugs, artificial sweeteners, isoprostanes, polyphenols) and (ii) a number of detected features and their intensity in HRMS. The selected method uses a combination of three SPE sorbents mixed together (HLB, X-AW and X-CW) and seems to take full advantage of each, providing satisfactory validation parameters (recovery, instrumental limit of detection, linearity range and limit of quantification) over a large range of physico-chemical properties while ensuring promising results for non-target screening applications. Of the 65 targeted compounds, nearly all of them (47) were detected in wastewater influent samples with concentration above the limit of quantification, while at the same time over 10 000 features were recorded according to the high resolution mass spectrometry (HRMS) fingerprint, holding out the promise that a common protocol for these two analyses, with their very contrasting constraints and objectives, is possible.
Collapse
Affiliation(s)
- Gauthier Bernier-Turpin
- Leesu - Univ Paris Est Creteil, Ecole des Ponts, Creteil, F-94010, France.
- METIS, Sorbonne Univ, CNRS, EPHE, PSL Univ, UMR 7619, F-75005 Paris, France
| | - Thomas Thiebault
- METIS, Sorbonne Univ, CNRS, EPHE, PSL Univ, UMR 7619, F-75005 Paris, France
| | - Fabrice Alliot
- METIS, Sorbonne Univ, CNRS, EPHE, PSL Univ, UMR 7619, F-75005 Paris, France
| | | | | | | | - Julien Le Roux
- Leesu - Univ Paris Est Creteil, Ecole des Ponts, Creteil, F-94010, France.
| | - Régis Moilleron
- Leesu - Univ Paris Est Creteil, Ecole des Ponts, Creteil, F-94010, France.
| |
Collapse
|
3
|
Clarke BO. The Role of Mass Spectrometry in Protecting Public Health and the Environment from Synthetic Chemicals. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:2248-2255. [PMID: 39165229 DOI: 10.1021/jasms.4c00164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Mass spectrometry (MS) has dramatically transformed environmental protection by facilitating the precise quantification and identification of pollutants. This review charts the evolution of environmental chemistry, intertwining it with advancements in analytical chemistry and MS technologies. It specifically focuses on the role of MS in studying persistent organic pollutants like organochlorine pesticides, polychlorinated biphenyls (PCBs), brominated fire retardants (BFRs), and perfluoroalkyl and polyfluoroalkyl substances (PFAS), marking significant milestones and their implications. Notably, the adoption of gas chromatography with MS in the 1970s and liquid chromatography with MS in the late 1990s profoundly expanded scientists' ability to detect complex pollutant mixtures. Over the past 50 years, the proliferation of potential pollutants has surged, necessitating more sophisticated analysis techniques, such as high-resolution mass spectrometry-nontargeted analysis (HRMS-NTA) and suspect screening. While HRMS promises to enhance the characterization of new environmental pollutants, a significant shift in chemical management strategies remains imperative. Despite technological advances, MS alone is insufficient to mitigate the risks from the continuous emergence of novel chemicals, with many potentially already present in the environment and bioaccumulating in humans.
Collapse
Affiliation(s)
- Bradley O Clarke
- Australian Laboratory for Emerging Contaminants, School of Chemistry, University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
4
|
Zhang Y, Liu F, Li XQ, Gao Y, Li KC, Zhang QH. Retention time dataset for heterogeneous molecules in reversed-phase liquid chromatography. Sci Data 2024; 11:946. [PMID: 39209861 PMCID: PMC11362277 DOI: 10.1038/s41597-024-03780-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Quantitative structure-property relationships have been extensively studied in the field of predicting retention times in liquid chromatography (LC). However, making transferable predictions is inherently complex because retention times are influenced by both the structure of the molecule and the chromatographic method used. Despite decades of development and numerous published machine learning models, the practical application of predicting small molecule retention time remains limited. The resulting models are typically limited to specific chromatographic conditions and the molecules used in their training and evaluation. Here, we have developed a comprehensive dataset comprising over 10,000 experimental retention times. These times were derived from 30 different reversed-phase liquid chromatography methods and pertain to a collection of 343 small molecules representing a wide range of chemical structures. These chromatographic methods encompass common LC setups for studying the retention behavior of small molecules. They offer a wide range of examples for modeling retention time with different LC setups.
Collapse
Affiliation(s)
- Yan Zhang
- Key Laboratory of Groundwater Conservation of MWR, China University of Geosciences, Beijing, 100083, People's Republic of China
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing, 100029, People's Republic of China
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Beijing, 100029, China
| | - Fei Liu
- Key Laboratory of Groundwater Conservation of MWR, China University of Geosciences, Beijing, 100083, People's Republic of China.
| | - Xiu Qin Li
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing, 100029, People's Republic of China
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Beijing, 100029, China
| | - Yan Gao
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing, 100029, People's Republic of China
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Beijing, 100029, China
| | - Kang Cong Li
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing, 100029, People's Republic of China
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Beijing, 100029, China
| | - Qing He Zhang
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing, 100029, People's Republic of China.
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Beijing, 100029, China.
| |
Collapse
|
5
|
Hupatz H, Rahu I, Wang WC, Peets P, Palm EH, Kruve A. Critical review on in silico methods for structural annotation of chemicals detected with LC/HRMS non-targeted screening. Anal Bioanal Chem 2024:10.1007/s00216-024-05471-x. [PMID: 39138659 DOI: 10.1007/s00216-024-05471-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 08/15/2024]
Abstract
Non-targeted screening with liquid chromatography coupled to high-resolution mass spectrometry (LC/HRMS) is increasingly leveraging in silico methods, including machine learning, to obtain candidate structures for structural annotation of LC/HRMS features and their further prioritization. Candidate structures are commonly retrieved based on the tandem mass spectral information either from spectral or structural databases; however, the vast majority of the detected LC/HRMS features remain unannotated, constituting what we refer to as a part of the unknown chemical space. Recently, the exploration of this chemical space has become accessible through generative models. Furthermore, the evaluation of the candidate structures benefits from the complementary empirical analytical information such as retention time, collision cross section values, and ionization type. In this critical review, we provide an overview of the current approaches for retrieving and prioritizing candidate structures. These approaches come with their own set of advantages and limitations, as we showcase in the example of structural annotation of ten known and ten unknown LC/HRMS features. We emphasize that these limitations stem from both experimental and computational considerations. Finally, we highlight three key considerations for the future development of in silico methods.
Collapse
Affiliation(s)
- Henrik Hupatz
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius Väg 16, 114 18, Stockholm, Sweden
- Stockholm University Center for Circular and Sustainable Systems (SUCCeSS), Stockholm University, 106 91, Stockholm, Sweden
| | - Ida Rahu
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius Väg 16, 114 18, Stockholm, Sweden.
| | - Wei-Chieh Wang
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius Väg 16, 114 18, Stockholm, Sweden
| | - Pilleriin Peets
- Institute of Biodiversity, Faculty of Biological Science, Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Emma H Palm
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6 Avenue du Swing, 4367, Belvaux, Luxembourg
| | - Anneli Kruve
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius Väg 16, 114 18, Stockholm, Sweden.
- Stockholm University Center for Circular and Sustainable Systems (SUCCeSS), Stockholm University, 106 91, Stockholm, Sweden.
- Department of Environmental Science, Stockholm University, Svante Arrhenius Väg 8, 114 18, Stockholm, Sweden.
| |
Collapse
|
6
|
Mitra S, Saran RK, Srivastava S, Rensing C. Pesticides in the environment: Degradation routes, pesticide transformation products and ecotoxicological considerations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 935:173026. [PMID: 38750741 DOI: 10.1016/j.scitotenv.2024.173026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/30/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024]
Abstract
Among rising environmental concerns, emerging contaminants constitute a variety of different chemicals and biological agents. The composition, residence time in environmental media, chemical interactions, and toxicity of emerging contaminants are not fully known, and hence, their regulation becomes problematic. Some of the important groups of emerging contaminants are pesticides and pesticide transformation products (PTPs), which present a considerable obstacle to maintaining and preserving ecosystem health. This review article aims to thoroughly comprehend the occurrence, fate, and ecotoxicological importance of pesticide transformation products (PTPs). The paper provides an overview of pesticides and PTPs as contaminants of emerging concern and discusses the modes of degradation of pesticides, their properties and associated risks. The degradation of pesticides, however, does not lead to complete destruction but can instead lead to the generation of PTPs. The review discusses the properties and toxicity of PTPs and presents the methods available for their detection. Moreover, the present study examines the existing regulatory framework and suggests the need for the development of new technologies for easy, routine detection of PTPs to regulate them effectively in the environment.
Collapse
Affiliation(s)
- Suchitra Mitra
- Indian Institute of Science Education and Research, Kolkata 741245, WB, India
| | - R K Saran
- Department of Microbiology, Maharaja Ganga Singh University, Bikaner, Rajasthan, India
| | - Sudhakar Srivastava
- Plant Stress Biology Laboratory, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi 221005, UP, India.
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resource and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| |
Collapse
|
7
|
Musatadi M, Alvarez-Mora I, Baciero-Hernandez I, Prieto A, Anakabe E, Olivares M, Etxebarria N, Zuloaga O. Sample preparation for suspect screening of persistent, mobile and toxic substances and their phase II metabolites in human urine by mixed-mode liquid chromatography. Talanta 2024; 271:125698. [PMID: 38262128 DOI: 10.1016/j.talanta.2024.125698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/02/2024] [Accepted: 01/17/2024] [Indexed: 01/25/2024]
Abstract
Persistent, mobile and toxic substances have drawn attention nowadays due to their particular properties, but they are overlooked in human monitorization works, limiting the knowledge of the human exposome. In that sense, human urine is an interesting matrix since not only parent compounds are eliminated, but also their phase II metabolites that could act as biomarkers. In this work, 11 sample preparation procedures involving preconcentration were tested to ensure maximum analytical coverage in human urine using mixed-mode liquid chromatography coupled with high-resolution tandem mass spectrometry. The optimized procedure consisted of a combination of solid-phase extraction and salt-assisted liquid-liquid extraction and it was employed for suspect screening. Additionally, a non-discriminatory dilute-and-shoot approach was also evaluated. After evaluating the workflow in terms of limits of identification and type II errors (i.e., false negatives), a pooled urine sample was analysed. From a list of 1450 suspects and in-silico simulated 1568 phase II metabolites (i.e. sulphates, glucuronides, and glycines), 44 and 14 substances were annotated, respectively. Most of the screened suspects were diverse industrial chemicals, but biocides, natural products and pharmaceuticals were also detected. Lastly, the complementarity of the sample preparation procedures, columns, and analysis conditions was assessed. As a result, dilute-and-shoot and the Acclaim Trinity P1 column at pH = 3 (positive ionization) and pH = 7 (negative ionization) allowed the maximum coverage since almost 70 % of the total suspects could be screened using those conditions.
Collapse
Affiliation(s)
- Mikel Musatadi
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), 48940, Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology, University of the Basque Country (UPV/EHU), 48620, Plentzia, Basque Country, Spain.
| | - Iker Alvarez-Mora
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), 48940, Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology, University of the Basque Country (UPV/EHU), 48620, Plentzia, Basque Country, Spain
| | - Ines Baciero-Hernandez
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), 48940, Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology, University of the Basque Country (UPV/EHU), 48620, Plentzia, Basque Country, Spain
| | - Ailette Prieto
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), 48940, Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology, University of the Basque Country (UPV/EHU), 48620, Plentzia, Basque Country, Spain
| | - Eneritz Anakabe
- Department of Organic and Inorganic Chemistry, University of the Basque Country (UPV/EHU), 48940, Leioa, Basque Country, Spain
| | - Maitane Olivares
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), 48940, Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology, University of the Basque Country (UPV/EHU), 48620, Plentzia, Basque Country, Spain
| | - Nestor Etxebarria
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), 48940, Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology, University of the Basque Country (UPV/EHU), 48620, Plentzia, Basque Country, Spain
| | - Olatz Zuloaga
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), 48940, Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology, University of the Basque Country (UPV/EHU), 48620, Plentzia, Basque Country, Spain
| |
Collapse
|
8
|
Zhang Y, Liu F, Li XQ, Gao Y, Li KC, Zhang QH. Generic and accurate prediction of retention times in liquid chromatography by post-projection calibration. Commun Chem 2024; 7:54. [PMID: 38459241 PMCID: PMC10923921 DOI: 10.1038/s42004-024-01135-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 02/21/2024] [Indexed: 03/10/2024] Open
Abstract
Retention time predictions from molecule structures in liquid chromatography (LC) are increasingly used in MS-based targeted and untargeted analyses, providing supplementary evidence for molecule annotation and reducing experimental measurements. Nevertheless, different LC setups (e.g., differences in gradient, column, and/or mobile phase) give rise to many prediction models that can only accurately predict retention times for a specific chromatographic method (CM). Here, a generic and accurate method is present to predict retention times across different CMs, by introducing the concept of post-projection calibration. This concept builds on the direct projections of retention times between different CMs and uses 35 external calibrants to eliminate the impact of LC setups on projection accuracy. Results showed that post-projection calibration consistently achieved a median projection error below 3.2% of the elution time. The ranking results of putative candidates reached similar levels among different CMs. This work opens up broad possibilities for coordinating retention times between different laboratories and developing extensive retention databases.
Collapse
Affiliation(s)
- Yan Zhang
- Key Laboratory of Groundwater Conservation of MWR, China University of Geosciences, Beijing, 100083, People's Republic of China
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing, 100029, People's Republic of China
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Beijing, 100029, China
| | - Fei Liu
- Key Laboratory of Groundwater Conservation of MWR, China University of Geosciences, Beijing, 100083, People's Republic of China.
| | - Xiu Qin Li
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing, 100029, People's Republic of China
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Beijing, 100029, China
| | - Yan Gao
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing, 100029, People's Republic of China
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Beijing, 100029, China
| | - Kang Cong Li
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing, 100029, People's Republic of China
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Beijing, 100029, China
| | - Qing He Zhang
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing, 100029, People's Republic of China.
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Beijing, 100029, China.
| |
Collapse
|
9
|
Prasanthkumar KP, Valayankadan F, Aravindakumar CT, P A, Babu A, Alvarez-Idaboy JR. Identifying the Transients and Transformation Products in Hydroxyl Radical-Methimazole Reactions Using DFT and UPLC-Q-TOF MS/MS Approaches. J Phys Chem B 2024; 128:1448-1460. [PMID: 38320124 DOI: 10.1021/acs.jpcb.3c07913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Oxidative reactions of the hydroxyl radical (·OH) with methimazole (MMI), an antithyroid drug, are crucial for understanding its fate in oxidizing environments. By synergistically integrating density functional theory and ultraperformance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (UPLC-Q-TOF MS/MS) techniques, we elucidated the transients and transformation products (TPs) arising from the ·OH-MMI reactions. We probed two hydrogen-atom abstraction (HA) reactions, three radical adduct formation reactions, and single electron transfer (SET) at the M06-2X/6-311++G(d,p)/SMD(water) level. All proposed reaction channels, except for HA from the methyl group and SET, were found to be barrier-free. SET is the dominant oxidation pathway, accounting for 44% of oxidations, as determined by branching ratio analysis. The selenium analogue, MSeI, exhibited minor reactivity differences compared to MMI, yet its overall patterns resembled those of ·OH-MMI reactions. TPs were generated experimentally by reacting MMI with ·OH produced by UV-photolysis of H2O2. Eight TPs were identified from an approximately 24% degradation of MMI using UPLC-Q-TOF MS/MS analysis, and an additional two TPs were identified from the approximately 52% degraded MMI sample. The exact identities of all of the TPs were established through their corresponding fragmentation patterns. This study elucidates the drug's susceptibility to free radical species under physiologically relevant conditions.
Collapse
Affiliation(s)
- Kavanal P Prasanthkumar
- Post Graduate and Research Department of Chemistry, Maharaja's College, Ernakulam 682 011, India
| | - Faseelath Valayankadan
- Post Graduate and Research Department of Chemistry, Maharaja's College, Ernakulam 682 011, India
| | - Charuvila T Aravindakumar
- School of Environmental Sciences, Mahatma Gandhi University, Kottayam 686 560, India
- Inter-University Instrumentation Centre, Mahatma Gandhi University, Kottayam 686 560, India
| | - Arun P
- Inter-University Instrumentation Centre, Mahatma Gandhi University, Kottayam 686 560, India
| | - Aswathy Babu
- Post Graduate and Research Department of Chemistry, Maharaja's College, Ernakulam 682 011, India
| | - Juan R Alvarez-Idaboy
- Departamento de Física y Química Teórica, Facultad de Química, Universidad Nacional Autónoma de México, México D. F. 04510, Mexico
| |
Collapse
|
10
|
Partington JM, Rana S, Szabo D, Anumol T, Clarke BO. Comparison of high-resolution mass spectrometry acquisition methods for the simultaneous quantification and identification of per- and polyfluoroalkyl substances (PFAS). Anal Bioanal Chem 2024; 416:895-912. [PMID: 38159142 DOI: 10.1007/s00216-023-05075-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 11/02/2023] [Accepted: 11/23/2023] [Indexed: 01/03/2024]
Abstract
Simultaneous identification and quantification of per- and polyfluoroalkyl substances (PFAS) were evaluated for three quadrupole time-of-flight mass spectrometry (QTOF) acquisition methods. The acquisition methods investigated were MS-Only, all ion fragmentation (All-Ions), and automated tandem mass spectrometry (Auto-MS/MS). Target analytes were the 25 PFAS of US EPA Method 533 and the acquisition methods were evaluated by analyte response, limit of quantification (LOQ), accuracy, precision, and target-suspect screening identification limit (IL). PFAS LOQs were consistent across acquisition methods, with individual PFAS LOQs within an order of magnitude. The mean and range for MS-Only, All-Ions, and Auto-MS/MS are 1.3 (0.34-5.1), 2.1 (0.49-5.1), and 1.5 (0.20-5.1) pg on column. For fast data processing and tentative identification with lower confidence, MS-Only is recommended; however, this can lead to false-positives. Where high-confidence identification, structural characterisation, and quantification are desired, Auto-MS/MS is recommended; however, cycle time should be considered where many compounds are anticipated to be present. For comprehensive screening workflows and sample archiving, All-Ions is recommended, facilitating both quantification and retrospective analysis. This study validated HRMS acquisition approaches for quantification (based upon precursor data) and exploration of identification workflows for a range of PFAS compounds.
Collapse
Affiliation(s)
- Jordan M Partington
- Australian Laboratory for Emerging Contaminants, School of Chemistry, University of Melbourne, Victoria, 3010, Australia
| | - Sahil Rana
- Australian Laboratory for Emerging Contaminants, School of Chemistry, University of Melbourne, Victoria, 3010, Australia
| | - Drew Szabo
- Australian Laboratory for Emerging Contaminants, School of Chemistry, University of Melbourne, Victoria, 3010, Australia
- Department of Materials and Environmental Chemistry, Stockholm University, 11418, Stockholm, Sweden
| | - Tarun Anumol
- Agilent Technologies Inc, Wilmington, DE, 19808, USA
| | - Bradley O Clarke
- Australian Laboratory for Emerging Contaminants, School of Chemistry, University of Melbourne, Victoria, 3010, Australia.
| |
Collapse
|
11
|
Koronaiou LA, Nannou C, Evgenidou E, Panagopoulos Abrahamsson D, Lambropoulou DA. Photo-assisted transformation of furosemide: Exploring transformation pathways, structure database and suspect and non-target workflows for comprehensive screening of unknown transformation products in wastewaters and landfill leachates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166599. [PMID: 37640083 DOI: 10.1016/j.scitotenv.2023.166599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/24/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023]
Abstract
In recent years, transformation products-(TPs) of pharmaceuticals in the environment have received considerable attention. In this context, here, a customized overview of transformation of Furosemide-(FRS) in aqueous matrices treated by photo-oxidation is provided as a proof of concept. Hence, the primary goal of the study was to display an integrated strategy by combining the target (parent-molecule) and suspect screening-(SS) approaches (TPs) in order to build an in-house High-Resolution mass spectrometry (HRMS) database able to provide reference information (chromatographic/spectral) for environmental investigations in complex matrices (wastewaters/landfill leachates). Data analysis was performed by optimizing a SS workflow. Additional confirmation for the proposed structural elucidation was provided by correlating retention time to the proposed structure employing three prediction models. This approach was applied for the tentative identification of 35 TPs of FRS, 28 of which are reported herein for the first time. Finally, SS and non-target analysis (NTA) have been successfully applied for retrospective screening of FRS and its TPs in real samples. The findings demonstrated that SS allows the proper identification of TPs of FRS in complex matrices proving its outstanding importance compared to NTA. In total, six TPs were identified by SS with potential ecotoxicological implications for two of them according to in silico risk assessment.
Collapse
Affiliation(s)
- Lelouda-Athanasia Koronaiou
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, Thessaloniki GR-57001, Greece
| | - Christina Nannou
- Department of Chemistry, International Hellenic University, Kavala GR-65404, Greece
| | - Eleni Evgenidou
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, Thessaloniki GR-57001, Greece
| | | | - Dimitra A Lambropoulou
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, Thessaloniki GR-57001, Greece.
| |
Collapse
|
12
|
Hu J, Lyu Y, Chen H, Li S, Sun W. Suspect and Nontarget Screening Reveal the Underestimated Risks of Antibiotic Transformation Products in Wastewater Treatment Plant Effluents. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:17439-17451. [PMID: 37930269 DOI: 10.1021/acs.est.3c05008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Antibiotics are anthropogenic contaminants with a global presence and of deep concern in aquatic environments, while less is known about the occurrence and risks of their transformation products (TPs). Herein, we developed a comprehensive suspect and nontarget screening workflow based on high-resolution mass spectrometry to identify unknown antibiotic TPs in wastewater treatment plant effluents. We identified 211 compounds (35 parent antibiotics and 176 TPs) at confidence levels of ≥3 and 107 TPs originated from macrolides. TPs were quantified by 17 TPs standards and semiquantified by the predicted response factors and accounted for 55.6-95.1% (76.7% on average) of the total concentrations of parents and TPs. 22.2%, 63.1%, and 18.8% of the identified TPs were estimated to be more persistent, mobile, and toxic than their parent antibiotics, respectively. Further ecological risk assessment based on concentrations and toxicity to aquatic organisms revealed that the cumulative risks of TPs were generally higher than those of parents. Despite the newly formed N-oxide TPs, the tertiary treatment process (mainly ozonation) could decrease the averaged 20.3% of concentrations and 36.2% of the risks of antibiotic-related compounds. This study highlights the necessity to include antibiotic TPs in environmental scrutiny and risk assessment of antibiotics in different aquatic environments.
Collapse
Affiliation(s)
- Jingrun Hu
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China
| | - Yitao Lyu
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China
| | - Huan Chen
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, South Carolina 29634, United States
| | - Si Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Weiling Sun
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China
| |
Collapse
|
13
|
Letourneau DR, Marzullo BP, Alexandridou A, Barrow MP, O'Connor PB, Volmer DA. Characterizing lignins from various sources and treatment processes after optimized sample preparation techniques and analysis via ESI-HRMS and custom mass defect software tools. Anal Bioanal Chem 2023; 415:6663-6675. [PMID: 37714972 PMCID: PMC10598097 DOI: 10.1007/s00216-023-04942-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/17/2023]
Abstract
Sample preparation of complex, natural mixtures such as lignin prior to mass spectrometry analysis, however minimal, is a critical step in ensuring accurate and interference-free results. Modern shotgun-MS techniques, where samples are directly injected into a high-resolution mass spectrometer (HRMS) with no prior separation, usually still require basic sample pretreatment such as filtration and appropriate solvents for full dissolution and compatibility with atmospheric pressure ionization interfaces. In this study, sample preparation protocols have been established for a unique sample set consisting of a wide variety of degraded lignin samples from numerous sources and treatment processes. The samples were analyzed via electrospray (ESI)-HRMS in negative and positive ionization modes. The resulting information-rich HRMS datasets were then transformed into the mass defect space with custom R scripts as well as the open-source Constellation software as an effective way to visualize changes between the samples due to the sample preparation and ionization conditions as well as a starting point for comprehensive characterization of these varied sample sets. Optimized conditions for the four investigated lignins are proposed for ESI-HRMS analysis for the first time, giving an excellent starting point for future studies seeking to better characterize and understand these complex mixtures.
Collapse
Affiliation(s)
- Dane R Letourneau
- Department of Chemistry, Humboldt University Berlin, 12489, Berlin, Germany
| | - Bryan P Marzullo
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | | | - Mark P Barrow
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Peter B O'Connor
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Dietrich A Volmer
- Department of Chemistry, Humboldt University Berlin, 12489, Berlin, Germany.
| |
Collapse
|
14
|
Li T, Lü F, Zhang H, Xu Q, He PJ. Nontarget Insights into the Fate of Cl-/Br-Containing DOM in Leachate during Membrane Treatment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:16033-16042. [PMID: 37822265 DOI: 10.1021/acs.est.3c04422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Halogenated organic compounds in wastewater are persistent and bioaccumulative contaminants of great concern, but few are known at the molecular level. Herein, we focus on nontarget screening of halogenated dissolved organic matter (DOM) in highly concentrated organic matrices of waste leachates and their concentrates. Solid-phase extraction (SPE) was optimized before capturing halogenated signatures via HaloSeeker 2.0 software on mining full-scan high-resolution mass spectrometry (HRMS) fingerprints. This study identified 438 Cl-/Br-containing DOM formulas in 21 leachates and membrane concentrates. Among them, 334 formulas were achieved via SPE with mixed-sorbent cartridges (mixed-SPE), surpassing the 164 formulas achieved through Bond Elut PPL cartridges (PPL-SPE). Herein, only four samples identified via PPL-SPE exhibited a resolution of >50% for extracted Cl-/Br-containing DOM by either SPE. The halogenated DOM constituted 6.87% of the total DOM mass features. Nevertheless, more abundant adsorbable organic halogens deciphered waste leachates and highly concentrated waste streams as reservoirs for halogenated contaminants. Remarkably, 75.7-98.1% of Cl-/Br-containing DOM in primary membrane concentrates remained stable through the secondary membrane treatment, indicating the persistence of these unknown contaminants even post-treatment.
Collapse
Affiliation(s)
- Tianqi Li
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, PR China
| | - Fan Lü
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, PR China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Hua Zhang
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, PR China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Qiyong Xu
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, PR China
| | - Pin-Jing He
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, PR China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| |
Collapse
|
15
|
Ruan T, Li P, Wang H, Li T, Jiang G. Identification and Prioritization of Environmental Organic Pollutants: From an Analytical and Toxicological Perspective. Chem Rev 2023; 123:10584-10640. [PMID: 37531601 DOI: 10.1021/acs.chemrev.3c00056] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Exposure to environmental organic pollutants has triggered significant ecological impacts and adverse health outcomes, which have been received substantial and increasing attention. The contribution of unidentified chemical components is considered as the most significant knowledge gap in understanding the combined effects of pollutant mixtures. To address this issue, remarkable analytical breakthroughs have recently been made. In this review, the basic principles on recognition of environmental organic pollutants are overviewed. Complementary analytical methodologies (i.e., quantitative structure-activity relationship prediction, mass spectrometric nontarget screening, and effect-directed analysis) and experimental platforms are briefly described. The stages of technique development and/or essential parts of the analytical workflow for each of the methodologies are then reviewed. Finally, plausible technique paths and applications of the future nontarget screening methods, interdisciplinary techniques for achieving toxicant identification, and burgeoning strategies on risk assessment of chemical cocktails are discussed.
Collapse
Affiliation(s)
- Ting Ruan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengyang Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haotian Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingyu Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
16
|
Chaka B, Osano AM, Wesley ON, Forbes PBC. Seasonal variation in pesticide residue occurrences in surface waters found in Narok and Bomet Counties, Kenya. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1050. [PMID: 37589911 DOI: 10.1007/s10661-023-11629-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/22/2023] [Indexed: 08/18/2023]
Abstract
Narok and Bomet are agricultural counties in Kenya which depend on flowing surface waters for farming activities. Agrochemicals have frequently been used to increase agricultural produce in this region. Occasionally, appropriate pesticide utilization measures are not followed. These surface waters are also consumed domestically by humans, livestock, and wild animals thus posing safety concerns to them. The current study sought to evaluate the levels and nature of pesticide residues found in surface waters in the dry and wet seasons of these counties. Eight water samples were collected in July (dry season) and October (wet season) at four different river sites in each of the two counties predetermined by the agricultural activity of its proximate environs. Pesticides extracted by solid phase extraction were analyzed by gas chromatography-mass spectrometry. At least 38 different pesticides were detected in the two counties with the highest concentration being recorded for chlorpyrifos and piperidine in Narok and Bomet counties, respectively. The pesticides chlorpyrifos, cypermethrin, cyfluthrin, and cyhalothrin were more prevalent in Narok County while triazine, semicarbazone, and epinephrine were more prevalent in Bomet County. There were significantly more pesticides detected during the wet season (P ≤ 0.05). Out of the nine prevalent pesticides detected, four of them posed serious ecotoxicology concerns with risk quotients above 1.0 (high risk); thus, there is a need for more government policy interventions in deterring farming near riparian lands and in training of famers regarding best practice for pesticide applications.
Collapse
Affiliation(s)
- Bakari Chaka
- Department of Mathematics and Physical Sciences, Maasai Mara University, P.O. Box 861-20500, Narok, Kenya
| | - Aloys M Osano
- Department of Mathematics and Physical Sciences, Maasai Mara University, P.O. Box 861-20500, Narok, Kenya.
| | - Omwoyo N Wesley
- Department of Mathematics and Physical Sciences, Maasai Mara University, P.O. Box 861-20500, Narok, Kenya
| | - Patricia B C Forbes
- Department of Chemistry, Faculty of Agriculture and Natural Sciences, University of Pretoria, Pretoria, 0002, South Africa
| |
Collapse
|
17
|
Trostel L, Coll C, Fenner K, Hafner J. Combining predictive and analytical methods to elucidate pharmaceutical biotransformation in activated sludge. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:1322-1336. [PMID: 37539453 DOI: 10.1039/d3em00161j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
While man-made chemicals in the environment are ubiquitous and a potential threat to human health and ecosystem integrity, the environmental fate of chemical contaminants such as pharmaceuticals is often poorly understood. Biodegradation processes driven by microbial communities convert chemicals into transformation products (TPs) that may themselves have adverse ecological effects. The detection of TPs formed during biodegradation has been continuously improved thanks to the development of TP prediction algorithms and analytical workflows. Here, we contribute to this advance by (i) reviewing past applications of TP identification workflows, (ii) applying an updated workflow for TP prediction to 42 pharmaceuticals in biodegradation experiments with activated sludge, and (iii) benchmarking 5 different pathway prediction models, comprising 4 prediction models trained on different datasets provided by enviPath, and the state-of-the-art EAWAG pathway prediction system. Using the updated workflow, we could tentatively identify 79 transformation products for 31 pharmaceutical compounds. Compared to previous works, we have further automatized several steps that were previously performed by hand. By benchmarking the enviPath prediction system on experimental data, we demonstrate the usefulness of the pathway prediction tool to generate suspect lists for screening, and we propose new avenues to improve their accuracy. Moreover, we provide a well-documented workflow that can be (i) readily applied to detect transformation products in activated sludge and (ii) potentially extended to other environmental studies.
Collapse
Affiliation(s)
- Leo Trostel
- Department of Environmental Chemistry, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf, 8600, Zürich, Switzerland.
| | - Claudia Coll
- Department of Environmental Chemistry, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf, 8600, Zürich, Switzerland.
| | - Kathrin Fenner
- Department of Environmental Chemistry, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf, 8600, Zürich, Switzerland.
- Department of Chemistry, University of Zürich, 8057 Zürich, Switzerland
| | - Jasmin Hafner
- Department of Environmental Chemistry, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf, 8600, Zürich, Switzerland.
- Department of Chemistry, University of Zürich, 8057 Zürich, Switzerland
| |
Collapse
|
18
|
Hou R, Zhang S, Huang Q, Lin L, Li H, Li J, Liu S, Sun C, Xu X. Role of Gastrointestinal Microbiota from Crucian Carp in Microbial Transformation and Estrogenicity Modification of Novel Plastic Additives. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:11476-11488. [PMID: 37462611 DOI: 10.1021/acs.est.3c03595] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Ingestion is a major exposure route for hydrophobic organic pollutants in fish, but the microbial transformation and estrogenic modification of the novel plastic additives by the gut microbiota of fish remain obscure. Using an in vitro approach, we provide evidence that structure-related transformation of various plastic additives by the gastric and intestinal (GI) microbiota from crucian carp, with the degradation ratio of bisphenols and triphenyl phosphate faster than those of brominated compounds. The degradation kinetics for these pollutants could be limited by oxygen and cometabolic substrates (i.e., glucose). The fish GI microbiota could utilize the vast majority of carbon sources in a Biolog EcoPlate, suggesting their high metabolic potential and ability to transform various organic compounds. Unique microorganisms associated with transformation of the plastic additives including genera of Citrobacter, Klebsiella, and some unclassified genera in Enterobacteriaceae were identified by combining high-throughput genetic analyses and metagenomic analyses. Through identification of anaerobic transformation products by high-resolution mass spectrometry, alkyl-cleavage was found the common transformation mechanism, and hydrolysis was the major pathway for ester-containing pollutants. After anaerobic incubation, the estrogenic activities of triphenyl phosphate and bisphenols A, F, and AF declined, whereas that of bisphenol AP increased.
Collapse
Affiliation(s)
- Rui Hou
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Siqi Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianyi Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lang Lin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Hengxiang Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Sanya Institute of Ocean Eco-Environmental Engineering, Sanya 572100, China
| | - Jingxi Li
- Key Laboratory of Marine Eco-environmental Science and Technology, Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Shan Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Sanya Institute of Ocean Eco-Environmental Engineering, Sanya 572100, China
| | - Chengjun Sun
- Key Laboratory of Marine Eco-environmental Science and Technology, Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Xiangrong Xu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Sanya Institute of Ocean Eco-Environmental Engineering, Sanya 572100, China
| |
Collapse
|
19
|
Lee HJ, Oh JE. Target and suspect screening of (new) psychoactive substances in South Korean wastewater by LC-HRMS. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162613. [PMID: 36871726 DOI: 10.1016/j.scitotenv.2023.162613] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
New psychoactive substances (NPS) are a type of abused drug designed to mimic the effects of the currently known illicit drugs, whose structures are constantly changing to escape surveillance. The quick identification of NPS use in the community therefore demands immediate action. This study aimed to develop a target and suspect screening method using LC-HRMS to identify NPS in wastewater samples. An in-house database of 95 traditional and NPS was built using the reference standards, and an analytical method was developed. Wastewater samples were collected from 29 wastewater treatment plants (WWTP) across South Korea, representing 50 % of the total population. The psychoactive substances in waste water samples were screened using in-house database and developed analytical methods. A total of 14 substances were detected in the target analysis, including three NPS (N-methyl-2-AI, 25E-NBOMe, and 25D-NBOMe) and 11 traditional psychoactive substances and their metabolites (zolpidem phenyl-4-COOH, ephedrine, ritalinic acid, tramadol, phenmetrazine, phendimetrazine, phentermine, methamphetamine, codeine, morphine, and ketamine). Out of these, N-methyl-2-AI, zolpidem phenyl-4-COOH, ephedrine, ritalinic acid, tramadol, phenmetrazine, and phendimetrazine were detected with a detection frequency of over 50 %. Primarily, N-methyl-2-Al was detected in all the wastewater samples. Additionally, four NPSs (amphetamine-N-propyl, benzydamine, isoethcathinone, methoxyphenamine) were tentatively identified at level 2b in a suspect screening analysis. This is the most comprehensive study to investigate NPS using target and suspect analysis methods at the national level. This study raises a need for continuous monitoring of NPS in South Korea.
Collapse
Affiliation(s)
- Heon-Jun Lee
- Department of Civil and Environmental Engineering, Pusan National University, Busan, Republic of Korea
| | - Jeong-Eun Oh
- Institute for Environmental and Energy, Pusan National University, Busan, Republic of Korea; Department of Civil and Environmental Engineering, Pusan National University, Busan, Republic of Korea.
| |
Collapse
|
20
|
Zuo W, Wu Z, Xiong H, Zhou H, Wang C, Li J. Simultaneous determination of the nematicide fluensulfone and its two major metabolites in soils by ultra-high performance liquid chromatography-tandem mass spectrometry. J Chromatogr A 2023; 1702:464096. [PMID: 37245354 DOI: 10.1016/j.chroma.2023.464096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 05/10/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
A fast and sensitive method for simultaneously detecting nonfumigant nematicide fluensulfone (FSF) and its two major metabolites [3,4,4-trifluorobut-3-ene-1-sulfonic acid (BSA) and 5‑chloro-1,3-thiazole-2-sulfonic acid (TSA)] in different types of agricultural soils (black soil, krasnozem, sierozem) was established and validated through ultra-high performance liquid chromatography-tandem mass spectrometry. The samples were prepared by a modified quick, easy, cheap, effective, rugged, and safe method. The soil samples were firstly extracted with acetonitrile/water (4/1) and then purified with multi-walled carbon nanotubes (MWCNTs). Parameters influencing purification efficiency and recoveries, such as the type and the amount of sorbent were evaluated and compared. The overall average recoveries of three target analytes in soils were in the range of 73.1%-113.9% and the relative standard deviations (including intra-day and inter-day precision) were less than 12.7%. The limit of quantification was 5 μg/kg for all three compounds. The established method was successfully applied to examine the degradation of FSF and the formation of its two major metabolites in three different types of soil, indicating its efficacy in investigating the environmental behavior of FSF in agricultural soil system.
Collapse
Affiliation(s)
- Wei Zuo
- Citrus Research Institute, Southwest University, Chongqing 400712, China; Laboratory of Citrus Quality and Safety Risk Assessment for Citrus Products, Ministry of Agriculture and Rural Affairs, Chongqing 400712, China; Quality Supervision and Testing Center for Citrus and Seedling, Ministry of Agriculture and Rural Affairs, Chongqing 400712, China
| | - Zhi Wu
- Citrus Research Institute, Southwest University, Chongqing 400712, China; Laboratory of Citrus Quality and Safety Risk Assessment for Citrus Products, Ministry of Agriculture and Rural Affairs, Chongqing 400712, China; Quality Supervision and Testing Center for Citrus and Seedling, Ministry of Agriculture and Rural Affairs, Chongqing 400712, China
| | - Huan Xiong
- Citrus Research Institute, Southwest University, Chongqing 400712, China; Laboratory of Citrus Quality and Safety Risk Assessment for Citrus Products, Ministry of Agriculture and Rural Affairs, Chongqing 400712, China; Quality Supervision and Testing Center for Citrus and Seedling, Ministry of Agriculture and Rural Affairs, Chongqing 400712, China
| | - Huyi Zhou
- Citrus Research Institute, Southwest University, Chongqing 400712, China; Laboratory of Citrus Quality and Safety Risk Assessment for Citrus Products, Ministry of Agriculture and Rural Affairs, Chongqing 400712, China; Quality Supervision and Testing Center for Citrus and Seedling, Ministry of Agriculture and Rural Affairs, Chongqing 400712, China
| | - Chengqiu Wang
- Citrus Research Institute, Southwest University, Chongqing 400712, China; Laboratory of Citrus Quality and Safety Risk Assessment for Citrus Products, Ministry of Agriculture and Rural Affairs, Chongqing 400712, China; Quality Supervision and Testing Center for Citrus and Seedling, Ministry of Agriculture and Rural Affairs, Chongqing 400712, China
| | - Jing Li
- Citrus Research Institute, Southwest University, Chongqing 400712, China; Laboratory of Citrus Quality and Safety Risk Assessment for Citrus Products, Ministry of Agriculture and Rural Affairs, Chongqing 400712, China; Quality Supervision and Testing Center for Citrus and Seedling, Ministry of Agriculture and Rural Affairs, Chongqing 400712, China.
| |
Collapse
|
21
|
Kim JY, Jeon J, Kim SD. Prioritization of pharmaceuticals and personal care products in the surface waters of Korea: Application of an optimized risk-based methods. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115024. [PMID: 37201424 DOI: 10.1016/j.ecoenv.2023.115024] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 05/20/2023]
Abstract
The occurrence of PPCPs in aquatic environments and their potential adverse effects on aquatic organisms have raised worldwide concerns. To address this issue, a study was conducted to analyze 137 selected PPCPs in Korean surface waters, and an optimized risk-based prioritization was performed. The results revealed that 120 PPCPs were detected, with 98 quantified at concentrations ranging from few ng/L to 42,733 ng/L for metformin. The 95% upper confidence limit (UCL95) of the mean value of the measured environmental concentration (MEC) for Metformin was about eight times higher than the second highest compound, dimethyl phthalate, indicating that antidiabetic groups had the highest concentration among the therapeutic groups. An optimized risk-based prioritization was then assessed based on the multiplication of two indicators, the Frequency of Exceedance and the Extent of Exceedance of Predicted No-Effect Concentrations (PNECs), which can be calculated using the traditional risk quotient (RQ) approach. The study found that clotrimazole had the highest risk quotient value of 17.4, indicating a high risk to aquatic organisms, with seven and 13 compounds showing RQ values above 1 and 0.1, respectively. After considering the frequency of exceedance, clotrimazole still had the highest novel risk quotient (RQf) value of 17.4, with 99.6% of its MECs exceeding PNECs. However, the number of compounds with RQf values above 1 decreased from seven to five, with cetirizine and flubendazole being excluded. Furthermore, only 10 compounds exhibited RQf values above 0.1. The study also observed significant differences in the results between risk-based and exposure-based prioritization methods, with only five compounds, cetirizine, olmesartan, climbazole, sulfapyridine, and imidacloprid, identified in both methods. This finding highlights the importance of considering multiple methods for prioritizing chemicals, as different approaches may yield different results.
Collapse
Affiliation(s)
- Jun Yub Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-Gwagiro, Gwangju 61005, Republic of Korea
| | - Junho Jeon
- Department of Environmental Engineering, Changwon National University, Changwon, Gyeongsangnamdo 51140, Republic of Korea; School of Smart and Green Engineering, Changwon National University, Changwon, Gyeongsangnamdo 51140, Republic of Korea
| | - Sang Don Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-Gwagiro, Gwangju 61005, Republic of Korea.
| |
Collapse
|
22
|
González-Rubio S, Caballero-Casero N, Ballesteros-Gómez A, Cuervo D, Muñoz G, Rubio S. Supramolecular solvents for making comprehensive liquid-liquid microextraction in multiclass screening methods for drugs of abuse in urine based on liquid chromatography-high resolution mass spectrometry. J Chromatogr A 2023; 1701:464061. [PMID: 37187096 DOI: 10.1016/j.chroma.2023.464061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/17/2023]
Abstract
Multiclass screening methods involving hundreds of structurally unrelated compounds are becoming essential in many control labs and research areas. Accurate mass screening of a theoretically unlimited number of chemicals can be undertaken using liquid chromatography coupled to high resolution mass spectrometry (LCHRMS), but the lack of comprehensive sample treatments hinders this unlimited potential. In this research, the capability of supramolecular solvents (SUPRAS) for making comprehensive liquid-liquid microextraction (LLME) in multiclass screening methods based on LCHRMS was firstly explored. For this purpose, a SUPRAS made up of 1,2-hexanediol, sodium sulphate and water was synthesized directly in the urine and applied to compound extraction and interference removal in the screening of eighty prohibited substances in sports by LC-electrospray ionization-time of flight mass spectrometry. Selected substances included a wide range of polarities (log P from -2.4 to 9.2) and functionalities (e.g. alcohol, amine, amide, carboxyl, ether, ester, ketone, sulfonyl, etc.). No interfering peaks were observed for any of the 80 substances investigated. Around 84-93% of drugs were efficiently extracted (recoveries 70-120%) and 83-94% of the analytes did not show matrix effects (±20%) in the ten tested urines. Method detection limits for the drugs were in the interval 0.002-12.9 ng mL-1, which are in accordance with the Minimum Required Performance Levels values established by the World Anti-Doping Agency. The applicability of the method was evaluated by the screening of thirty-six blinded and anonymized urine samples, previously analyzed by gas or liquid chromatography-triple quadrupole. Seven of the samples lead to an adverse analytical finding in line with the results obtained by the conventional methods. This research proves that LLME based on SUPRAS constitutes an efficient, economic, and simple sample treatment in multiclass screening methods, an application that is unaffordable for conventional organic solvents.
Collapse
Affiliation(s)
- Soledad González-Rubio
- Department of Analytical Chemistry, Instituto Químico para la Energía y el Medioambiente, Marie Curie Building (Annex), Campus of Rabanales, Universidad de Córdoba, Córdoba 14071, Spain
| | - Noelia Caballero-Casero
- Department of Analytical Chemistry, Instituto Químico para la Energía y el Medioambiente, Marie Curie Building (Annex), Campus of Rabanales, Universidad de Córdoba, Córdoba 14071, Spain.
| | - Ana Ballesteros-Gómez
- Department of Analytical Chemistry, Instituto Químico para la Energía y el Medioambiente, Marie Curie Building (Annex), Campus of Rabanales, Universidad de Córdoba, Córdoba 14071, Spain
| | - Darío Cuervo
- Doping Control Laboratory. Institute of Health Carlos III, C/ Pintor el Greco S/N, Madrid 28040, Spain
| | - Gloria Muñoz
- Doping Control Laboratory. Institute of Health Carlos III, C/ Pintor el Greco S/N, Madrid 28040, Spain
| | - Soledad Rubio
- Department of Analytical Chemistry, Instituto Químico para la Energía y el Medioambiente, Marie Curie Building (Annex), Campus of Rabanales, Universidad de Córdoba, Córdoba 14071, Spain
| |
Collapse
|
23
|
Man Y, Wu C, Yu B, Mao L, Zhu L, Zhang L, Zhang Y, Jiang H, Yuan S, Zheng Y, Liu X. Abiotic transformation of kresoxim-methyl in aquatic environments: Structure elucidation of transformation products by LC-HRMS and toxicity assessment. WATER RESEARCH 2023; 233:119723. [PMID: 36801572 DOI: 10.1016/j.watres.2023.119723] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
In this study, abiotic transformation of an important strobilurin fungicide, kresoxim-methyl, was investigated under controlled laboratory conditions for the first time by studying its kinetics of hydrolysis and photolysis, degradation pathways and toxicity of possibly formed transformation products (TPs). The results indicated that kresoxim-methyl showed a fast degradation in pH9 solutions with DT50 of 0.5 d but relatively stable under neutral or acidic environments in the dark. It was prone to photochemical reactions under simulated sunlight, and the photolysis behavior was easily affected by different natural substances such as humic acid (HA), Fe3+and NO3-which are ubiquitous in natural water, showing the complexity of degradation mechanisms and pathways of this chemical compound. The potential multiple photo-transformation pathways via photoisomerization, hydrolyzation of methyl ester, hydroxylation, cleavage of oxime ether and cleavage of benzyl ether were observed. 18 TPs generated from these transformations were structurally elucidated based on an integrated workflow combining suspect and nontarget screening by high resolution mass spectrum (HRMS), and two of them were confirmed with reference standards. Most of TPs, as far as we know, have never been described before. The in-silico toxicity assessment showed that some of TPs were still toxic or very toxic to aquatic organisms, although they exhibit lower aquatic toxicity compared to the parent compound. Therefore, the potential hazards of the TPs of kresoxim-methyl merits further evaluation.
Collapse
Affiliation(s)
- Yanli Man
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Chi Wu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Bochi Yu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Liangang Mao
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Lizhen Zhu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Lan Zhang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yanning Zhang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Hongyun Jiang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Shankui Yuan
- Environment Division, Institute for the Control of Agrochemicals, Ministry of Agriculture and Rural Affairs, Beijing, 100125, China
| | - Yongquan Zheng
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Xingang Liu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
24
|
Chen X, Huang N, Wang W, Wang Q, Hu HY. Enrichment and analysis methods for trace dissolved organic carbon in reverse osmosis effluent: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161393. [PMID: 36621505 DOI: 10.1016/j.scitotenv.2023.161393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/31/2022] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
Reverse osmosis (RO) is an essential unit for producing high-quality ultrapure water. The increasingly severe water shortage and water quality deterioration result in reclaimed water as an alternative source for ultrapure water production. However, when using reclaimed water as water sources, the dissolved organic carbon (DOC) in RO permeate exhibits higher concentration and more sophisticated components than when using clean water sources, thus affecting the effluent quality of ultrapure water and the effectiveness of subsequent treatment processes. To optimize the treatment processes, it is crucial to analyze the components of DOC. This review summarizes the enrichment and analysis methods of trace organic matter, and provides recommendations for the analysis and characterization of DOC in RO permeate. The study summarizes the operating conditions and enrichment properties of different enrichment methods, including solid-phase extraction, liquid-liquid extraction, purge-and-trap, lyophilization and rotary evaporation for low-concentration organic compounds, compares the applicability and limitations of different enrichment methods, and proposes the principles for the selection of enrichment methods. In this review, we discuss the application of mass spectrometry (including Fourier transform ion cyclotron resonance mass spectrometry) in the analysis of DOC components, and focus on data processing as the key procedure in analysis of DOC in RO permeate. Despite the advantages of mass spectrometry, an applicable workflow and open-source database are required to improve the reliability of the analysis. The treatability properties of DOC are suggested to be determined by analyzing the component characteristics or in combination with common removal techniques. This study provides theoretical support for a comprehensive analysis of DOC in RO permeates to improve the removal effect.
Collapse
Affiliation(s)
- Xiaowen Chen
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Nan Huang
- Department of Environmental Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, PR China.
| | - Wenlong Wang
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Qi Wang
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Hong-Ying Hu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| |
Collapse
|
25
|
Fu L, Bin L, Luo Z, Huang Z, Li P, Huang S, Nyobe D, Fu F, Tang B. Spectral change of dissolved organic matter after extracted by solid-phase extraction and its feasibility in predicting the acute toxicity of polar organic pollutants in textile wastewater. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130344. [PMID: 36444059 DOI: 10.1016/j.jhazmat.2022.130344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/03/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
Spectroscopic parameters can be used as proxies to effectively trace the occurrence of organic trace contaminants, but their suitability for predicting the toxicity of discharged industrial wastewater with similar spectra is still unknown. In this study, the organic contaminants in treated textile wastewater were subdivided and extracted by four commonly-used solid-phase extraction (SPE) cartridges, and the resulting spectral change and toxicity of textile effluent were analyzed and compared. After SPE, the spectra of the percolates from the four cartridges showed obvious differences with respect to the substances causing the spectral changes and being more readily adsorbed by the WAX cartridges. Non-target screening results showed source differences in organic micropollutants, which were one of the main contributors leading to their spectral properties and spectral variations after SPE in the effluents. Two fluorescence parameters (C1 and humic-like) identified by the excitation emission matrix-parallel factor analysis (EEM-PARAFAC) were closely correlated to the toxicity endpoints for Scenedesmus obliquus (inhibition ratios of cell growth and Chlorophyll-a synthesis), which can be applied to quantitatively predict the change of toxicity effect caused by polar organic pollutants. The results would provide novel insights into the spectral feature analysis and toxicity prediction of the residual DOM in industrial wastewater.
Collapse
Affiliation(s)
- Lingfang Fu
- School of Environmental Science and Engineering, Guangdong University of Technology; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou 510006, P.R. China; National Key Laboratory of Water Environmental Simulation and Pollution Control, Guangdong Key Laboratory of Water and Air Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environmental of the People's Republic of China, Guangzhou 510535, China
| | - Liying Bin
- School of Environmental Science and Engineering, Guangdong University of Technology; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou 510006, P.R. China
| | - Zhaobo Luo
- School of Environmental Science and Engineering, Guangdong University of Technology; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou 510006, P.R. China
| | - Zehong Huang
- School of Environmental Science and Engineering, Guangdong University of Technology; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou 510006, P.R. China
| | - Ping Li
- School of Environmental Science and Engineering, Guangdong University of Technology; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou 510006, P.R. China
| | - Shaosong Huang
- School of Environmental Science and Engineering, Guangdong University of Technology; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou 510006, P.R. China
| | - Dieudonne Nyobe
- School of Environmental Science and Engineering, Guangdong University of Technology; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou 510006, P.R. China
| | - Fenglian Fu
- School of Environmental Science and Engineering, Guangdong University of Technology; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou 510006, P.R. China
| | - Bing Tang
- School of Environmental Science and Engineering, Guangdong University of Technology; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou 510006, P.R. China.
| |
Collapse
|
26
|
Oltramare C, Weiss FT, Staudacher P, Kibirango O, Atuhaire A, Stamm C. Pesticides monitoring in surface water of a subsistence agricultural catchment in Uganda using passive samplers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:10312-10328. [PMID: 36074287 PMCID: PMC9898397 DOI: 10.1007/s11356-022-22717-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Pesticides are intensely used in the agricultural sector worldwide including smallholder farming. Poor pesticide use practices in this agronomic setting are well documented and may impair the quality of water resources. However, empirical data on pesticide occurrence in water bodies of tropical smallholder agriculture is scarce. Many available data are focusing on apolar organochlorine compounds which are globally banned. We address this gap by studying the occurrence of a broad range of more modern pesticides in an agricultural watershed in Uganda. During 2.5 months of the rainy season in 2017, three passive sampler systems were deployed at five locations in River Mayanja to collect 14 days of composite samples. Grab samples were taken from drinking water resources. In these samples, 27 compounds out of 265 organic pesticides including 60 transformation products were detected. In the drinking water resources, we detected eight pesticides and two insecticide transformation products in low concentrations between 1 and 50 ng/L. Also, in the small streams and open fetch ponds, detected concentrations were generally low with a few exceptions for the herbicide 2,4-D and the fungicide carbendazim exceeding 1 ug/L. The widespread occurrence of chlorpyrifos posed the largest risk for macroinvertebrates. The extensive detection of this compound and its transformation product 3,4,5-trichloro-2-pyridinol was unexpected and called for a better understanding of the use and fate of this pesticide.
Collapse
Affiliation(s)
- Christelle Oltramare
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, 1066, Epalinges-Lausanne, Switzerland
| | - Frederik T Weiss
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland
- Department of Environmental Systems Science, ETH Zürich, 8092, Zurich, Switzerland
| | - Philipp Staudacher
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland
| | - Oscar Kibirango
- Directorate of Government Analytical Laboratory (DGAL), Ministry of Internal Affairs, Kampala, Uganda
| | - Aggrey Atuhaire
- Uganda National Association of Community and Occupational Health (UNACOH), Kampala, Uganda
| | - Christian Stamm
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland.
| |
Collapse
|
27
|
Beretsou VG, Nika MC, Manoli K, Michael C, Sui Q, Lundy L, Revitt DM, Thomaidis NS, Fatta-Kassinos D. Multiclass target analysis of contaminants of emerging concern including transformation products, soil bioavailability assessment and retrospective screening as tools to evaluate risks associated with reclaimed water reuse. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158391. [PMID: 36049679 DOI: 10.1016/j.scitotenv.2022.158391] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/25/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
The occurrence of 200 multiclass contaminants of emerging concern (CECs) encompassing 168 medicinal products and transformation products (TPs), 5 artificial sweeteners, 12 industrial chemicals, and 15 other compounds was investigated in influent and effluent wastewater samples collected during 7 consecutive days from 5 wastewater treatment plants (WWTPs) located in Cyprus. The methodology included a generic solid-phase extraction protocol using mixed-bed cartridges followed by Ultra-High Performance Liquid Chromatography coupled with Quadrupole-Time of Flight Mass Spectrometry (UHPLC-QTOF-MS) analysis. A total of 63 CECs were detected at least in one sample, with 52 and 55 out of the 200 compounds detected in influents and effluents, respectively. Ten (10) out of the 24 families of parent compounds and associated TPs were found in the wastewater samples (influent or effluent). 1-H-benzotriazole, carbamazepine, citalopram, lamotrigine, sucralose, tramadol, and venlafaxine (>80 % frequency of appearance in effluents) were assessed with respect to their bioavailability in soil as part of different scenarios of irrigation with reclaimed water following a qualitative approach. A high score of 12 (high probability) was predicted for 2 scenarios, a low score of 3 (rare occasions) for 2 scenarios, while the rest 28 scenarios had scores 5-8 (unlikely or limited possibility) and 9-11 (possibly). Retrospective screening was performed with the use of a target database of 2466 compounds and led to the detection of 158 additional compounds (medicinal products (65), medicinal products TPs (15), illicit drugs (7), illicit drugs TPs (3), industrial chemicals (11), plant protection products (25), plant protection products TPs (10), and various other compounds (22). This work aspires to showcase how the presence of CECs in wastewater could be investigated and assessed at WWTP level, including an expert-based methodology for assessing the soil bioavailability of CECs, with the aim to develop sustainable practices and enhance reclaimed water reuse.
Collapse
Affiliation(s)
- Vasiliki G Beretsou
- Department of Civil and Environmental Engineering, School of Engineering, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus; Nireas-International Water Research Center, School of Engineering, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
| | - Maria-Christina Nika
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Kyriakos Manoli
- Nireas-International Water Research Center, School of Engineering, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
| | - Costas Michael
- Nireas-International Water Research Center, School of Engineering, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
| | - Qian Sui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Lian Lundy
- Middlesex University, Department of Natural Sciences, School of Science and Technology, London NW4 4BT, United Kingdom
| | - D Michael Revitt
- Middlesex University, Department of Natural Sciences, School of Science and Technology, London NW4 4BT, United Kingdom
| | - Nikolaos S Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece.
| | - Despo Fatta-Kassinos
- Department of Civil and Environmental Engineering, School of Engineering, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus; Nireas-International Water Research Center, School of Engineering, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus.
| |
Collapse
|
28
|
Alygizakis N, Giannakopoulos T, Τhomaidis NS, Slobodnik J. Detecting the sources of chemicals in the Black Sea using non-target screening and deep learning convolutional neural networks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157554. [PMID: 35878861 DOI: 10.1016/j.scitotenv.2022.157554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
The Black Sea is an important ecosystem, which is affected by various anthropogenic pressures, such as shipping activities and wastewater inputs from large coastal cities. Significant loads of chemical pollutants are being continuously brought in by major European rivers. This study investigated the spatial distribution of chemicals in the Ukrainian shelf (the northwestern part of the Black Sea) and their main sources. Chemical occurrence data used in the study was generated within the Joint Black Sea Surveys (JBSS), which took place in 2016 and 2017 as a part of the EU/UNDP EMBLAS II project (www.emblasproject.org). During the JBSS, seawater samples were analyzed by a non-target screening workflow using liquid chromatography high-resolution mass spectrometry (LC-HRMS). Open-source algorithms were applied to generate a combined dataset of 30,489 detected chemical signals and their intensities. Out of these, 35 compounds were tentatively identified by the application of a non-target screening identification workflow based on automated matching of their mass spectra against those in available mass spectral libraries. The dataset was used to generate images, representing spatial distribution of each of the signals. These images were then used as an input to a deep learning convolutional neural network classification model. The study resulted in the development of an open-source end-to-end workflow for the estimation of the pollution load by chemicals contributed by the two major inflowing rivers (Danube and Dnieper) and other, so far unidentified, sources. A dedicated dashboard was built to facilitate data visualization per detected signal/compound. The presented model proved to be especially useful at the prioritization of signals of unknown compounds, which is of key importance for the follow up structure elucidation efforts of bulky non-target screening data. The deep learning approach for peak prioritization of unknown chemicals in the environment has been used for the first time.
Collapse
Affiliation(s)
- Nikiforos Alygizakis
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; Environmental Institute, Okružná 784/42, 97241 Koš, Slovak Republic.
| | | | - Nikolaos S Τhomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece.
| | | |
Collapse
|
29
|
Rana S, Marchiandi J, Partington JM, Szabo D, Heffernan AL, Symons RK, Xie S, Clarke BO. Identification of novel polyfluoroalkyl substances in surface water runoff from a chemical stockpile fire. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120055. [PMID: 36055454 DOI: 10.1016/j.envpol.2022.120055] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
In 2018, over 30,000 L of fluorine-free firefighting foam was used to extinguish an industrial warehouse fire of uncharacterized chemical and industrial waste. Contaminated firewater and runoff were discharged to an adjacent freshwater creek in Melbourne, Australia. In this study, we applied nontarget analysis using liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QToF-MS) to 15 surface water samples to investigate the presence of legacy, novel and emerging per-and polyfluoroalkyl substances (PFAS). We identified six novel and emerging fluorotelomer-based fluorosurfactants in the Australian environment for the first time, including: fluorotelomer sulfonamido betaines (FTABs or FTSA-PrB), fluorotelomer thioether amido sulfonic acids (FTSASs), and fluorotelomer sulfonyl amido sulfonic acids (FTSAS-So). Legacy PFAS including C6-C8 perfluoroalkyl sulfonic acids, C4-C10 perfluoroalkyl carboxylic acids, and perfluoro-4-ethylcyclohexanesulfonate were also detected in surface water. Of note, we report the first environmental detection of ethyl 2-ethenyl-2-fluoro-1-(trifluoromethyl) cyclopropane-1-carboxylate. Analysis of several Class B certified fluorine-free foam formulations allowed for use in Australia revealed that there was no detectable PFAS. Patterns in the homologue profiles of fluorotelomers detected in surface water are consistent with environments impacted by fluorinated aqueous film-forming foams. These results provide strong evidence that firewater runoff of stockpiled fluorinated firefighting foam was the dominant source of detectable PFAS to the surrounding environment.
Collapse
Affiliation(s)
- Sahil Rana
- School of Chemistry, Australian Laboratory for Emerging Contaminants (ALEC), The University of Melbourne, Grattan Street, Melbourne, VIC, 3010, Australia; Eurofins Environment Testing Australia, Melbourne, VIC, Australia
| | - Jaye Marchiandi
- School of Chemistry, Australian Laboratory for Emerging Contaminants (ALEC), The University of Melbourne, Grattan Street, Melbourne, VIC, 3010, Australia
| | - Jordan M Partington
- School of Chemistry, Australian Laboratory for Emerging Contaminants (ALEC), The University of Melbourne, Grattan Street, Melbourne, VIC, 3010, Australia
| | - Drew Szabo
- School of Chemistry, Australian Laboratory for Emerging Contaminants (ALEC), The University of Melbourne, Grattan Street, Melbourne, VIC, 3010, Australia
| | - Amy L Heffernan
- Eurofins Environment Testing Australia, Melbourne, VIC, Australia
| | - Robert K Symons
- Eurofins Environment Testing Australia, Melbourne, VIC, Australia
| | - Shay Xie
- Eurofins Environment Testing Australia, Melbourne, VIC, Australia
| | - Bradley O Clarke
- School of Chemistry, Australian Laboratory for Emerging Contaminants (ALEC), The University of Melbourne, Grattan Street, Melbourne, VIC, 3010, Australia.
| |
Collapse
|
30
|
Tenorio R, Maizel AC, Schaefer CE, Higgins CP, Strathmann TJ. Application of High-Resolution Mass Spectrometry to Evaluate UV-Sulfite-Induced Transformations of Per- and Polyfluoroalkyl Substances (PFASs) in Aqueous Film-Forming Foam (AFFF). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:14774-14787. [PMID: 36162863 DOI: 10.1021/acs.est.2c03228] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
UV-sulfite has been shown to effectively degrade per- and polyfluoroalkyl substances (PFASs) in single-solute experiments. We recently reported treatment of 15 PFASs, including perfluoroalkyl sulfonic acids (PFSAs), perfluoroalkyl carboxylic acids (PFCAs), and fluorotelomer sulfonic acids (FTSs), detected in aqueous film-forming foam (AFFF) using high-resolution liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) targeted analysis. Here, we extend the analysis within those original reaction solutions to include the wider set of PFASs in AFFF for which reactivity is largely unknown by applying recently established LC-QTOF-MS suspect screening and semiquantitative analysis protocols. Sixty-eight additional PFASs were detected (15 targeted + 68 suspect screening = 83 PFASs) with semiquantitative analysis, and their behavior was binned on the basis of (1) detection in untreated AFFF, (2) PFAS photogeneration, and (3) reactivity. These 68 structures account for an additional 20% of the total fluorine content in the AFFF (targeted + suspect screening = 57% of total fluorine content). Structure-reactivity trends were also revealed. During treatment, transformations of highly reactive structures containing sulfonamide (-SO2N-) and reduced sulfur groups (e.g., -S- and -SO-) adjacent to the perfluoroalkyl [F(CF2)n-] or fluorotelomer [F(CF2)n(CH2)2-] chain are likely sources of PFCA, PFSA, and FTS generation previously reported during the early stages of reactions. The results also show the character of headgroup moieties adjacent to the F(CF2)n-/F(CF2)n(CH2)2- chain (e.g., sulfur oxidation state, sulfonamide type, and carboxylic acids) and substitution along the F(CF2)n- chain (e.g., H-, ketone, and ether) together may determine chain length-dependent reactivity trends. The results highlight the importance of monitoring PFASs outside conventional targeted analytical methodologies.
Collapse
Affiliation(s)
- Raul Tenorio
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 North Mathews Avenue, Urbana, Illinois 61801, United States
- Department of Civil and Environmental Engineering, Colorado School of Mines, 1500 Illinois Street, Golden, Colorado 80401, United States
| | - Andrew C Maizel
- Department of Civil and Environmental Engineering, Colorado School of Mines, 1500 Illinois Street, Golden, Colorado 80401, United States
- Institute for Soft Matter Synthesis and Metrology, Georgetown University, Washington, D.C. 20057, United States
| | - Charles E Schaefer
- CDM Smith, 110 Fieldcrest Avenue, Edison, New Jersey 08837, United States
| | - Christopher P Higgins
- Department of Civil and Environmental Engineering, Colorado School of Mines, 1500 Illinois Street, Golden, Colorado 80401, United States
| | - Timothy J Strathmann
- Department of Civil and Environmental Engineering, Colorado School of Mines, 1500 Illinois Street, Golden, Colorado 80401, United States
| |
Collapse
|
31
|
Rocco K, Margoum C, Richard L, Coquery M. Enhanced database creation with in silico workflows for suspect screening of unknown tebuconazole transformation products in environmental samples by UHPLC-HRMS. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129706. [PMID: 35961075 DOI: 10.1016/j.jhazmat.2022.129706] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/12/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
The search and identification of organic contaminants in agricultural watersheds has become a crucial effort to better characterize watershed contamination by pesticides. The past decade has brought a more holistic view of watershed contamination via the deployment of powerful analytical strategies such as non-target and suspect screening analysis that can search more contaminants and their transformation products. However, suspect screening analysis remains broadly confined to known molecules, primarily due to the lack of analytical standards and suspect databases for unknowns such as pesticide transformation products. Here we developed a novel workflow by cross-comparing the results of various in silico prediction tools against literature data to create an enhanced database for suspect screening of pesticide transformation products. This workflow was applied on tebuconazole, used here as a model pesticide, and resulted in a suspect screening database counting 291 transformation products. The chromatographic retention times and tandem mass spectra were predicted for each of these compounds using 6 models based on multilinear regression and more complex machine-learning algorithms. This comprehensive approach to the investigation and identification of tebuconazole transformation products was retrospectively applied on environmental samples and found 6 transformation products identified for the first time in river water samples.
Collapse
Affiliation(s)
- Kevin Rocco
- INRAE, UR RiverLy, 69625 Villeurbanne, France.
| | | | | | | |
Collapse
|
32
|
Nikolopoulou V, Aalizadeh R, Nika MC, Thomaidis NS. TrendProbe: Time profile analysis of emerging contaminants by LC-HRMS non-target screening and deep learning convolutional neural network. JOURNAL OF HAZARDOUS MATERIALS 2022; 428:128194. [PMID: 35033918 DOI: 10.1016/j.jhazmat.2021.128194] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/08/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
Peak prioritization is one of the key steps in non-target screening of environmental samples to direct the identification efforts to relevant and important features. Occurrence of chemicals is sometimes a function of time and their presence in consecutive days (trend) reveals important aspects such as discharges from agricultural, industrial or domestic activities. This study presents a validated computational framework based on deep learning conventional neural network to classify trends of chemicals over 30 consecutive days of sampling in two sampling sites (upstream and downstream of a river). From trend analysis and factor analysis, the chemicals could be classified into periodic, spill, increasing, decreasing and false trend. The developed method was validated with list of 42 reference standards (target screening) and applied to samples. 25 compounds were selected by the deep learning and identified via non-target screening. Three classes of surfactants were identified for the first time in river water and two of them were never reported in the literature. Overall, 21 new homologous series of the newly identified surfactants were tentatively identified. The aquatic toxicity of the identified compounds was estimated by in silico tools and a few compounds along with their homologous series showed potential risk to aquatic environment.
Collapse
Affiliation(s)
- Varvara Nikolopoulou
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Reza Aalizadeh
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece.
| | - Maria-Christina Nika
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Nikolaos S Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece.
| |
Collapse
|
33
|
Anagnostopoulou K, Nannou C, Evgenidou E, Lambropoulou D. Overarching issues on relevant pesticide transformation products in the aquatic environment: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152863. [PMID: 34995614 DOI: 10.1016/j.scitotenv.2021.152863] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
The intensification of agricultural production during the last decades has forced the rapid increase in the use of pesticides that finally end up in the aquatic environment. Albeit well-documented, pesticides continue to raise researchers' attention, because of their potential adverse impacts on the environment and, inevitably, humans. Once entering the aquatic bodies, pesticides undergo biotic and abiotic processes, resulting in transformation products (TPs) that sometimes are even more toxic than the parent compounds. A substantial shift of the scientific interest in the TPs of pesticides has been observed since their environmental fate, occurrence and toxicity is still in its formative stage. In an ongoing effort to expand the existing knowledge on the topic, several interesting works have been performed mostly in European countries, such as France, Germany, Italy, Switzerland, Greece, and Spain that counts the highest number of relevant publications. Pesticide TPs have been also studied to a lesser extent in Asia, North and South America. To this end, the main objective of this review is to delineate the global occurrence, fate, toxicity as well as the analytical challenges related to pesticide TPs in surface, ground, and wastewaters, with the view to contribute to a better understanding of the environmental problems related with TPs formation. The concentration levels of the TPs, ranging from the low ng/L to high μg/L scale and distributed worldwide. Ultimately, an attempt to predict the acute and chronic toxicity of TPs has been carried out with the aid of an in-silico approach based on ECOSAR, revealing increased chronic toxicity for the majority of the identified TPs, despite the change they underwent, while a small portion of them presented serious acute toxicity values.
Collapse
Affiliation(s)
- Kyriaki Anagnostopoulou
- Department of Chemistry, Aristotle University of Thessaloniki, GR 54124 Thessaloniki, Greece
| | - Christina Nannou
- Department of Chemistry, Aristotle University of Thessaloniki, GR 54124 Thessaloniki, Greece; Centre for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, Thessaloniki, 10th km Thessaloniki-Thermi Rd, GR 57001, Greece
| | - Eleni Evgenidou
- Department of Chemistry, Aristotle University of Thessaloniki, GR 54124 Thessaloniki, Greece; Centre for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, Thessaloniki, 10th km Thessaloniki-Thermi Rd, GR 57001, Greece
| | - Dimitra Lambropoulou
- Department of Chemistry, Aristotle University of Thessaloniki, GR 54124 Thessaloniki, Greece; Centre for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, Thessaloniki, 10th km Thessaloniki-Thermi Rd, GR 57001, Greece.
| |
Collapse
|
34
|
Rich SL, Zumstein MT, Helbling DE. Identifying Functional Groups that Determine Rates of Micropollutant Biotransformations Performed by Wastewater Microbial Communities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:984-994. [PMID: 34939795 DOI: 10.1021/acs.est.1c06429] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The goal of this research was to identify functional groups that determine rates of micropollutant (MP) biotransformations performed by wastewater microbial communities. To meet this goal, we performed a series of incubation experiments seeded with four independent wastewater microbial communities and spiked them with a mixture of 40 structurally diverse MPs. We collected samples over time and used high-resolution mass spectrometry to estimate biotransformation rate constants for each MP in each experiment and to propose structures of 46 biotransformation products. We then developed random forest models to classify the biotransformation rate constants based on the presence of specific functional groups or observed biotransformations. We extracted classification importance metrics from each random forest model and compared them across wastewater microbial communities. Our analysis revealed 30 functional groups that we define as either biotransformation promoters, biotransformation inhibitors, structural features that can be biotransformed based on uncharacterized features of the wastewater microbial community, or structural features that are not rate-determining. Our experimental data and analysis provide novel insights into MP biotransformations that can be used to more accurately predict MP biotransformations or to inform the design of new chemical products that may be more readily biodegradable during wastewater treatment.
Collapse
Affiliation(s)
- Stephanie L Rich
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Michael T Zumstein
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
- Division of Environmental Geosciences, Centre for Microbiology and Environmental Systems Science, University of Vienna, Wien 1090 Austria
| | - Damian E Helbling
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
35
|
Sieira BJ, Rodil R, Cela R, Quintana JB, Montes R. Transformation products of the high-volume production chemicals 1-vinyl-2-pyrrolidinone and 2-piperazin-1-ylethanamine formed by UV photolysis. CHEMOSPHERE 2022; 287:132394. [PMID: 34592213 DOI: 10.1016/j.chemosphere.2021.132394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/07/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
This work investigates the reaction of 1-vinyl-2-pyrrolidinone (VP) and 2-piperazin-1-yletanamine (PPE) under UV radiation. Both substances are high-volume production chemicals (production >1000 tons/year) widely used in polymers, coatings and a wide array of applications, which have been classified as mobile chemicals and which can then lead to the formation of persistent and mobile transformation products (TPs). Thus, their reaction with UV light was studied by means of liquid chromatography-quadrupole-time-of-flight-mass spectrometry (LC-QTOF-MS). Both compounds presented a high reactivity, the VP quantum yield was 0.28 mol/E; whereas, PPE had a quantum yield notably higher than 1 (16 mol/E). Five and 7 TPs were identified for VP and PPE, respectively. Some of them had been already reported in literature due to sunlight photodegradation or other oxidation processes, but most of them are reported here for the first time. Finally, the acute and chronical toxicity of precursors and TPs were estimated using two quantitative structure-activity relationship (QSAR) software tools which led to some discrepancies in the estimations, pointing to the need for experimental toxicity assays for these compounds.
Collapse
Affiliation(s)
- Benigno José Sieira
- Department of Analytical Chemistry, Institute of Research on Chemical and Biological Analysis (IAQBUS), Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Rosario Rodil
- Department of Analytical Chemistry, Institute of Research on Chemical and Biological Analysis (IAQBUS), Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain.
| | - Rafael Cela
- Department of Analytical Chemistry, Institute of Research on Chemical and Biological Analysis (IAQBUS), Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - José Benito Quintana
- Department of Analytical Chemistry, Institute of Research on Chemical and Biological Analysis (IAQBUS), Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain.
| | - Rosa Montes
- Department of Analytical Chemistry, Institute of Research on Chemical and Biological Analysis (IAQBUS), Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain.
| |
Collapse
|
36
|
Alygizakis N, Galani A, Rousis NI, Aalizadeh R, Dimopoulos MA, Thomaidis NS. Change in the chemical content of untreated wastewater of Athens, Greece under COVID-19 pandemic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 799:149230. [PMID: 34364275 PMCID: PMC8321698 DOI: 10.1016/j.scitotenv.2021.149230] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 04/14/2023]
Abstract
COVID-19 pandemic spread rapidly worldwide with unanticipated effects on mental health, lifestyle, stability of economies and societies. Although many research groups have already reported SARS-CoV-2 surveillance in untreated wastewater, only few studies evaluated the implications of the pandemic on the use of chemicals by influent wastewater analysis. Wide-scope target and suspect screening were used to monitor the effects of the pandemic on the Greek population through wastewater-based epidemiology. Composite 24 h influent wastewater samples were collected from the wastewater treatment plant of Athens during the first lockdown and analyzed by liquid chromatography mass spectrometry. A wide range of compounds was investigated (11,286), including antipsychotic drugs, illicit drugs, tobacco compounds, food additives, pesticides, biocides, surfactants and industrial chemicals. Mass loads of chemical markers were estimated and compared with the data obtained under non-COVID-19 conditions (campaign 2019). The findings revealed increases in surfactants (+196%), biocides (+152%), cationic quaternary ammonium surfactants (used as surfactants and biocides) (+331%), whereas the most important decreases were estimated for tobacco (-33%) and industrial chemicals (-52%). The introduction of social-restriction measures by the government affected all aspects of life.
Collapse
Affiliation(s)
- Nikiforos Alygizakis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece.
| | - Aikaterini Galani
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Nikolaos I Rousis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Reza Aalizadeh
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Meletios-Athanasios Dimopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 15528 Athens, Greece
| | - Nikolaos S Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece.
| |
Collapse
|
37
|
Shen D, Lu Z, Zhong J, Zhang S, Ye Q, Wang W, Gan J. Combination of high specific activity carbon-14 labeling and high resolution mass spectrometry to study pesticide metabolism in crops: Metabolism of cycloxaprid in rice. ENVIRONMENT INTERNATIONAL 2021; 157:106879. [PMID: 34543936 DOI: 10.1016/j.envint.2021.106879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/02/2021] [Accepted: 09/11/2021] [Indexed: 06/13/2023]
Abstract
The study of pesticide metabolism in crops is critical for assessing the mode of action and environmental risks of pesticides. However, the study of pesticide metabolism in crops is usually complicated and it is often a daunting challenge to accurately screen the metabolites of novel pesticides in complex matrices. This study demonstrated a combined use of high-specific activity carbon-14 labeling and high-resolution mass spectrometry (HSA-14C-HRMS) for metabolism profiling of a novel neonicotinoid cycloxaprid in rice. By generating the characteristic radioactive peaks on the liquid chromatogram, the use of 14C can eliminate the severe interference of complex matrices and quickly probe target compounds; by producing ion pairs with unique abundance ratios on HRMS, high-specific activity labeling can effectively exclude false matrix positives and promote the elucidation of metabolite structure. The structures of 15 metabolites were identified, three of which were further confirmed by authentic standards. Based on these metabolites, a metabolic profile of cycloxaprid was established, which includes denitrification, demethylation, imidazolidine hydroxylation and ring cleavage olefin formation, oxidation and carboxylation reactions. The strategy of combining high-specific activity 14C labeling and HRMS offers unique advantages and provides a powerful solution for profiling unknown metabolites of novel pesticides in complex matrices, especially when traditional non-labeling methods are not feasible.
Collapse
Affiliation(s)
- Dahang Shen
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Zhijiang Lu
- Department of Environmental Science and Geology, Wayne State University, Detroit, MI 48202, USA
| | - Jiayin Zhong
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Sufen Zhang
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Qingfu Ye
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Wei Wang
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, China.
| | - Jay Gan
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
| |
Collapse
|
38
|
Günthardt BF, Hollender J, Scheringer M, Hungerbühler K, Nanusha MY, Brack W, Bucheli TD. Aquatic occurrence of phytotoxins in small streams triggered by biogeography, vegetation growth stage, and precipitation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 798:149128. [PMID: 34325139 DOI: 10.1016/j.scitotenv.2021.149128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/14/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
Toxic plant secondary metabolites (PSMs), so-called phytotoxins, occur widely in plant species. Many of these phytotoxins have similar mobility, persistence, and toxicity properties in the environment as anthropogenic micropollutants, which increasingly contaminate surface waters. Although recent case studies have shown the aquatic relevance of phytotoxins, the overall exposure remains unknown. Therefore, we performed a detailed occurrence analysis covering 134 phytotoxins from 27 PSM classes. Water samples from seven small Swiss streams with catchment areas from 1.7 to 23 km2 and varying land uses were gathered over several months to investigate seasonal impacts. They were complemented with samples from different biogeographical regions to cover variations in vegetation. A broad SPE-LC-HRMS/MS method was applied with limits of detection below 5 ng/L for over 80% of the 134 included phytotoxins. In total, we confirmed 39 phytotoxins belonging to 13 PSM classes, which corresponds to almost 30% of all included phytotoxins. Several alkaloids were regularly detected in the low ng/L-range, with average detection frequencies of 21%. This is consistent with the previously estimated persistence and mobility properties that indicated a high contamination potential. Coumarins were previously predicted to be unstable, however, detection frequencies were around 89%, and maximal concentrations up to 90 ng/L were measured for fraxetin produced by various trees. Overall, rainy weather conditions at full vegetation led to the highest total phytotoxin concentrations, which might potentially be most critical for aquatic organisms.
Collapse
Affiliation(s)
- Barbara F Günthardt
- Environmental Analytics, Agroscope, Reckenholzstrasse 191, 8046 Zürich, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Universitätsstrasse 16, 8092 Zürich, Switzerland; Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Juliane Hollender
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Universitätsstrasse 16, 8092 Zürich, Switzerland; Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Martin Scheringer
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Universitätsstrasse 16, 8092 Zürich, Switzerland; Masaryk University, RECETOX, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Konrad Hungerbühler
- Institute for Chemical and Bioengineering, ETH Zürich, Wolfgang-Pauli-Strasse 10, 8093 Zürich, Switzerland
| | - Mulatu Y Nanusha
- Helmholtz Centre for Environmental Research - UFZ, Department of Effect-Directed Analysis, Permoserstrasse 15, 04318 Leipzig, Germany; Goethe University Frankfurt,Max-von-Laue Str. 13, 60438 Frankfurt (Main), Germany
| | - Werner Brack
- Helmholtz Centre for Environmental Research - UFZ, Department of Effect-Directed Analysis, Permoserstrasse 15, 04318 Leipzig, Germany; Goethe University Frankfurt,Max-von-Laue Str. 13, 60438 Frankfurt (Main), Germany
| | - Thomas D Bucheli
- Environmental Analytics, Agroscope, Reckenholzstrasse 191, 8046 Zürich, Switzerland.
| |
Collapse
|
39
|
Evaluation of Sample Preparation Methods for Non-Target Screening of Organic Micropollutants in Urban Waters Using High-Resolution Mass Spectrometry. Molecules 2021; 26:molecules26237064. [PMID: 34885646 PMCID: PMC8659043 DOI: 10.3390/molecules26237064] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 02/02/2023] Open
Abstract
Non-target screening (NTS) has gained interest in recent years for environmental monitoring purposes because it enables the analysis of a large number of pollutants without predefined lists of molecules. However, sample preparation methods are diverse, and few have been systematically compared in terms of the amount and relevance of the information obtained by subsequent NTS analysis. The goal of this work was to compare a large number of sample extraction methods for the unknown screening of urban waters. Various phases were tested for the solid-phase extraction of micropollutants from these waters. The evaluation of the different phases was assessed by statistical analysis based on the number of detected molecules, their range, and physicochemical properties (molecular weight, standard recoveries, polarity, and optical properties). Though each cartridge provided its own advantages, a multilayer cartridge combining several phases gathered more information in one single extraction by benefiting from the specificity of each one of its layers.
Collapse
|
40
|
Jacob P, Wang R, Ching C, Helbling DE. Evaluation, optimization, and application of three independent suspect screening workflows for the characterization of PFASs in water. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:1554-1565. [PMID: 34550138 DOI: 10.1039/d1em00286d] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Suspect screening is a valuable tool for characterizing per- and polyfluoroalkyl substances (PFASs) in environmental media. Although a variety of data mining tools have been developed and applied for suspect screening of PFAS, few suspect screening workflows have undergone a comprehensive performance evaluation or optimization. The goals of this research were to: (1) evaluate and optimize three independent suspect screening workflows for the detection of PFASs in water samples; and (2) apply the optimized suspect screening workflows to an environmental sample to determine the extent to which suspect screening results converge. We evaluated and optimized suspect screening workflows using Compound Discoverer v3.2, enviMass v4.2, and FluoroMatch v2.4 using test samples containing 33 target PFASs. The average sensitivity (Sen) and selectivity (Sel) for each workflow across the test samples was: Compound Discoverer Sen = 71%, Sel = 85%; enviMass Sen = 89%, Sel = 80%; FluoroMatch Sen = 51%, Sel = 82%. We then applied the optimized workflows to a contaminated groundwater sample containing an unknown number of PFASs. Each workflow managed to annotate unique PFASs that were not annotated by the other workflows including 2 by Compound Discoverer and 19 each by enviMass and FluoroMatch. Thirty-two enviMass hits and 28 of the Compound Discoverer and FluoroMatch hits were annotated by at least one of the other workflows. Sixteen PFASs were annotated by all three of the optimized workflows. This work provides a basis for conducting suspect screening for PFASs that will lead to more consistent reporting of suspect screening data.
Collapse
Affiliation(s)
- Paige Jacob
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA.
| | - Ri Wang
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA.
| | - Casey Ching
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA.
| | - Damian E Helbling
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
41
|
Zhang Y, Zhang H, Wang J, Yu Z, Li H, Yang M. Suspect and target screening of emerging pesticides and their transformation products in an urban river using LC-QTOF-MS. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 790:147978. [PMID: 34102441 DOI: 10.1016/j.scitotenv.2021.147978] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/27/2021] [Accepted: 05/19/2021] [Indexed: 06/12/2023]
Abstract
This study sheds light on the occurrence of emerging pesticides and their transformation products (TPs) in an urban river in Beijing that is mainly supplemented with treated wastewater. To this end, suspect and non-target screening was conducted using a database of 557 commercial pesticides and over 1400 predicted TPs. Finally, 30 pesticides and 20 TPs were identified, with 12 pesticides and 10 TPs detected in all samples. Eleven pesticides and 17 TPs were detected in Beijing for the first time. Among these, 18 compounds were confirmed using authentic standards. Concentrations of the confirmed and suspected compounds were determined by quantification and semi-quantification, respectively, based on 18 authentic standards. Fungicides and their TPs constituted the largest group and exhibited the highest total concentration (26 compounds; 52.2 μg/L), followed by insecticides (14 compounds; 51.3 μg/L) and herbicides (10 compounds; 24.5 μg/L). DEET, carbendazim, prometryn, ω-carboxylic acid, 2-aminobenzimidazole, metolachlor TP, hexaconazole TP, metalaxyl TP, and azoxystrobin TP exhibited relatively high mean concentration (>100 ng/L). Among the 20 TPs, approximately 65% showed higher concentrations than their parent compounds. Correlation analysis revealed that 6 pesticides and 10 TPs in the river were mainly contributed by the discharge from a wastewater treatment plant. Although a majority of the emerging pesticides had low toxicity, 10 pesticides exhibited high risks to aquatic systems, especially invertebrates.
Collapse
Affiliation(s)
- Yangping Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, 100085, China; Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haifeng Zhang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Beijing 100085, China.
| | - Juan Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Beijing 100085, China
| | - Zhiyong Yu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Beijing 100085, China
| | - Hongyan Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Beijing 100085, China
| | - Min Yang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Beijing 100085, China; Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
42
|
Nika MC, Aalizadeh R, Thomaidis NS. Non-target trend analysis for the identification of transformation products during ozonation experiments of citalopram and four of its biodegradation products. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126401. [PMID: 34182420 DOI: 10.1016/j.jhazmat.2021.126401] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/25/2021] [Accepted: 06/11/2021] [Indexed: 06/13/2023]
Abstract
During ozonation in wastewater treatment plants, ozone reacts with emerging pollutants, which are partially removed through the secondary treatment, as long as, with their biotransformation products, triggering the formation of ozonation transformation products (TPs). Although the transformation of parent compounds (PCs) and their metabolites has been reported in the literature, the probable transformation of biotransformation products has not been investigated so far. This study evaluates the fate of citalopram (CTR) and four of its biotransformation products (DESCTR, CTRAM, CTRAC and CTROXO) during ozonation experiments. A Gaussian curve-based trend analysis was performed for the first time for the automated detection of TPs in ozone concentrations ranging from 0.06 to 12 mg/L. In total 46 ozonation TPs were detected; 7 TPs of CTR, 10 of DESCTR, 9 of CTRAM, 12 of CTRAC and 8 of CTROXO and were structurally elucidated based on their high resolution tandem mass spectra interpretation and tandem mass spectra similarity with the respective PC. Results have demonstrated that the examined compounds follow common transformation pathways in reaction with ozone and that common TPs were formed through the ozonation of different structurally-alike compounds. Moreover, the toxicity of the identified TPs was predicted with an in-house risk assessment program.
Collapse
Affiliation(s)
- Maria-Christina Nika
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece.
| | - Reza Aalizadeh
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Nikolaos S Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece.
| |
Collapse
|
43
|
Aalizadeh R, Alygizakis NA, Schymanski EL, Krauss M, Schulze T, Ibáñez M, McEachran AD, Chao A, Williams AJ, Gago-Ferrero P, Covaci A, Moschet C, Young TM, Hollender J, Slobodnik J, Thomaidis NS. Development and Application of Liquid Chromatographic Retention Time Indices in HRMS-Based Suspect and Nontarget Screening. Anal Chem 2021; 93:11601-11611. [PMID: 34382770 DOI: 10.1021/acs.analchem.1c02348] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There is an increasing need for comparable and harmonized retention times (tR) in liquid chromatography (LC) among different laboratories, to provide supplementary evidence for the identity of compounds in high-resolution mass spectrometry (HRMS)-based suspect and nontarget screening investigations. In this study, a rigorously tested, flexible, and less system-dependent unified retention time index (RTI) approach for LC is presented, based on the calibration of the elution pattern. Two sets of 18 calibrants were selected for each of ESI+ and ESI-based on the maximum overlap with the retention times and chemical similarity indices from a total set of 2123 compounds. The resulting calibration set, with RTI set to range between 1 and 1000, was proposed as the most appropriate RTI system after rigorous evaluation, coordinated by the NORMAN network. The validation of the proposed RTI system was done externally on different instrumentation and LC conditions. The RTI can also be used to check the reproducibility and quality of LC conditions. Two quantitative structure-retention relationship (QSRR)-based models were built based on the developed RTI systems, which assist in the removal of false-positive annotations. The applicability domains of the QSRR models allowed completing the identification process with higher confidence for substances within the domain, while indicating those substances for which results should be treated with caution. The proposed RTI system was used to improve confidence in suspect and nontarget screening and increase the comparability between laboratories as demonstrated for two examples. All RTI-related calculations can be performed online at http://rti.chem.uoa.gr/.
Collapse
Affiliation(s)
- Reza Aalizadeh
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 157 71 Athens, Greece
| | - Nikiforos A Alygizakis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 157 71 Athens, Greece.,Environmental Institute, Okružná 784/42, 97241 Koš, Slovak Republic
| | - Emma L Schymanski
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6 Avenue du Swing, L-4367 Belvaux, Luxembourg.,Eawag: Swiss Federal Institute for Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Martin Krauss
- Department Effect-Directed Analysis, Helmholtz-Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Tobias Schulze
- Department Effect-Directed Analysis, Helmholtz-Centre for Environmental Research-UFZ, Leipzig, Germany
| | - María Ibáñez
- Research Institute for Pesticides and Water, University Jaume I, Castellón 12071, Spain
| | - Andrew D McEachran
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Mail Drop, D143-02, 109 T.W. Alexander Dr., Research Triangle Park, North Carolina 27711, United States
| | - Alex Chao
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Mail Drop, D143-02, 109 T.W. Alexander Dr., Research Triangle Park, North Carolina 27711, United States
| | - Antony J Williams
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Mail Drop, D143-02, 109 T.W. Alexander Dr., Research Triangle Park, North Carolina 27711, United States
| | - Pablo Gago-Ferrero
- Institute of Environmental Assessment and Water Research (IDAEA) Severo Ochoa Excellence Center, Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain.,Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), P. O. Box 7050, SE-750 07 Uppsala, Sweden
| | - Adrian Covaci
- Toxicological Center, University of Antwerp, 2610 Wilrijk, Belgium
| | - Christoph Moschet
- Department of Civil and Environmental Engineering, University of California, Davis, California 95616, United States
| | - Thomas M Young
- Department of Civil and Environmental Engineering, University of California, Davis, California 95616, United States
| | - Juliane Hollender
- Eawag: Swiss Federal Institute for Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland.,Institute of Biogeochemistry and Pollutant Dynamics, IBP, ETH Zurich, 8092 Zurich, Switzerland
| | | | - Nikolaos S Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 157 71 Athens, Greece
| |
Collapse
|
44
|
Menger F, Boström G, Jonsson O, Ahrens L, Wiberg K, Kreuger J, Gago-Ferrero P. Identification of Pesticide Transformation Products in Surface Water Using Suspect Screening Combined with National Monitoring Data. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:10343-10353. [PMID: 34291901 PMCID: PMC8383268 DOI: 10.1021/acs.est.1c00466] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/21/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
Pesticides are widespread anthropogenic chemicals and well-known environmental contaminants of concern. Much less is known about transformation products (TPs) of pesticides and their presence in the environment. We developed a novel suspect screening approach for not well-explored pesticides (n = 16) and pesticide TPs (n = 242) by integrating knowledge from national monitoring with high-resolution mass spectrometry data. Weekly time-integrated samples were collected in two Swedish agricultural streams using the novel Time-Integrating, MicroFlow, In-line Extraction (TIMFIE) sampler. The integration of national monitoring data in the screening approach increased the number of prioritized compounds approximately twofold (from 23 to 42). Ultimately, 11 pesticide TPs were confirmed by reference standards and 12 TPs were considered tentatively identified with varying levels of confidence. Semiquantification of the newly confirmed TPs indicated higher concentrations than their corresponding parent pesticides in some cases, which highlights concerns related to (unknown) pesticide TPs in the environment. Some TPs were present in the environment without co-occurrence of their corresponding parent compounds, indicating higher persistency or mobility of the identified TPs. This study showcased the benefits of integrating monitoring knowledge in this type of studies, with advantages for suspect screening performance and the possibility to increase relevance of future monitoring programs.
Collapse
Affiliation(s)
- Frank Menger
- Department
of Aquatic Sciences and Assessment, Swedish
University of Agricultural Sciences (SLU), SE-75007 Uppsala, Sweden
| | - Gustaf Boström
- Department
of Aquatic Sciences and Assessment, Swedish
University of Agricultural Sciences (SLU), SE-75007 Uppsala, Sweden
| | - Ove Jonsson
- Department
of Aquatic Sciences and Assessment, Swedish
University of Agricultural Sciences (SLU), SE-75007 Uppsala, Sweden
| | - Lutz Ahrens
- Department
of Aquatic Sciences and Assessment, Swedish
University of Agricultural Sciences (SLU), SE-75007 Uppsala, Sweden
| | - Karin Wiberg
- Department
of Aquatic Sciences and Assessment, Swedish
University of Agricultural Sciences (SLU), SE-75007 Uppsala, Sweden
| | - Jenny Kreuger
- Department
of Aquatic Sciences and Assessment, Swedish
University of Agricultural Sciences (SLU), SE-75007 Uppsala, Sweden
| | - Pablo Gago-Ferrero
- Department
of Environmental Chemistry, Institute of Environmental Assessment
and Water Research—Severo Ochoa Excellence Center (IDAEA), Spanish Council of Scientific Research (CSIC), Jordi Girona 18−26, 08034 Barcelona, Spain
- Catalan
Institute for Water Research (ICRA), Carrer Emili Grahit 101, 17003 Girona, Spain
| |
Collapse
|
45
|
Im JK, Kim SH, Kim YS, Yu SJ. Spatio-Temporal Distribution and Influencing Factors of Human and Veterinary Pharmaceuticals in the Tributary Surface Waters of the Han River Watershed, South Korea. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18157969. [PMID: 34360259 PMCID: PMC8345536 DOI: 10.3390/ijerph18157969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/25/2021] [Accepted: 07/27/2021] [Indexed: 11/16/2022]
Abstract
Human and veterinary pharmaceuticals are being increasingly used for disease treatment; hence, their distribution and factors influencing them in the aquatic environment need to be investigated. This study observed the effect of human and animal populations, usage, purchasing criteria (prescription vs. non-prescription), and land use to identify the spatio-temporal distribution of eight pharmaceuticals at twenty-four sites of the tributaries of the Han River watershed. In rural areas, the mean concentration (detection frequency) of non-prescription pharmaceuticals (NPPs) was higher (lower) compared to that of prescription pharmaceuticals (PPs); in urban areas, a reverse trend was observed. Pharmaceutical concentrations in urban and rural areas were mainly affected by wastewater treatment plants (WWTPs) and non-point sources, respectively; concentrations were higher downstream (4.9 times) than upstream of the WWTPs. The concentration distribution (according to the target) was as follows: human–veterinary > human > veterinary. Correlation between total concentration and total usage of the pharmaceuticals was high, except for NPPs. Most livestock and land use (except cropland) were significantly positively correlated with pharmaceutical concentrations. Concentrations were mainly higher (1.5 times) during cold seasons than during warm seasons. The results of this study can assist policymakers in managing pharmaceutical pollutants while prioritizing emerging pollutants.
Collapse
|
46
|
Fabregat-Safont D, Ibáñez M, Bijlsma L, Hernández F, Waichman AV, de Oliveira R, Rico A. Wide-scope screening of pharmaceuticals, illicit drugs and their metabolites in the Amazon River. WATER RESEARCH 2021; 200:117251. [PMID: 34087513 DOI: 10.1016/j.watres.2021.117251] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/29/2021] [Accepted: 05/11/2021] [Indexed: 05/24/2023]
Abstract
Only a limited number of households in the Amazon are served by sewage collection or treatment facilities, suggesting that there might be a significant emission of pharmaceuticals and other wastewater contaminants into freshwater ecosystems. In this work, we performed a wide-scope screening to assess the occurrence of pharmaceuticals, illicit drugs and their metabolites in freshwater ecosystems of the Brazilian Amazon. Our study included 40 samples taken along the Amazon River, in three of its major tributaries, and in small tributaries crossing four important urban areas (Manaus, Santarém, Macapá, Belém). More than 900 compounds were investigated making use of target and suspect screening approaches, based on liquid chromatography coupled to high-resolution mass spectrometry with ion mobility separation. Empirical collision-cross section (CCS) values were used to help and confirm identifications in target screening, while in the suspect screening approach CCS values were predicted using Artificial Neural Networks to increase the confidence of the tentative identification. In this way, 51 compounds and metabolites were identified. The highest prevalence was found in streams crossing the urban areas of Manaus, Macapá and Belém, with some samples containing up to 30 - 40 compounds, while samples taken in Santarém showed a lower number (8 - 11), and the samples taken in the main course of the Amazon River and its tributaries contained between 1 and 7 compounds. Most compounds identified in areas with significant urban impact belonged to the analgesics and antihypertensive categories, followed by stimulants and antibiotics. Compounds such as caffeine, cocaine and its metabolite benzoylecgonine, and cotinine (the metabolite of nicotine), were also detected in areas with relatively low anthropogenic impact and showed the highest total prevalence. This study supports the need to improve the sanitation system of urban areas in the Brazilian Amazon and the development of follow-up studies aimed at quantifying exposure levels and risks for Amazonian freshwater biodiversity.
Collapse
Affiliation(s)
- David Fabregat-Safont
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water (IUPA), University Jaume I, Avda. Sos Baynat s/n, 12071, Castellón, Spain
| | - María Ibáñez
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water (IUPA), University Jaume I, Avda. Sos Baynat s/n, 12071, Castellón, Spain
| | - Lubertus Bijlsma
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water (IUPA), University Jaume I, Avda. Sos Baynat s/n, 12071, Castellón, Spain
| | - Félix Hernández
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water (IUPA), University Jaume I, Avda. Sos Baynat s/n, 12071, Castellón, Spain
| | - Andrea V Waichman
- Federal University of the Amazon, Institute of Biological Sciences, Av. Rodrigo Otávio Jordão Ramos 3000, Manaus 69077-000, Brazil
| | - Rhaul de Oliveira
- University of Campinas, School of Technology, Rua Paschoal Marmo 1888 - Jd. Nova Itália, Limeira 13484-332, Brazil
| | - Andreu Rico
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Av. Punto Com 2, Alcalá de Henares 28805, Madrid, Spain; Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, c/ Catedrático José Beltrán 2, 46980, Paterna, Valencia, Spain.
| |
Collapse
|
47
|
Li X, Li B, Chen M, Yan M, Cao X, Yin J, Zhang Z. Preparation of magnetic zeolitic imidazolate framework-8 for magnetic solid-phase extraction of strobilurin fungicides from environmental water samples. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:2943-2950. [PMID: 34110334 DOI: 10.1039/d1ay00645b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this paper, magnetic zeolitic imidazolate framework-8 composites were synthesized by a simple in situ method and then used for the first time as an adsorbent in magnetic solid-phase extraction for extracting multiple strobilurin fungicides. The magnetic composites were characterized in detail. The results showed that Fe3O4 nanoparticles were attached on the surface of zeolitic imidazolate framework-8 with a uniform particle size of 150-200 nm and that the magnetic composites possessed a perfect molecular transfer rate towards strobilurin fungicides. The parameters of the magnetic solid-phase extraction process, including solution pH, adsorption time, solution volume, elution solvent, and elution volume, were investigated. Under the optimum conditions, the recoveries of all five fungicides fell within the range 80.8-109.0% with spiking levels of 10, 20 and 50 ng mL-1. A magnetic solid-phase extraction-high performance liquid chromatography-tandem mass spectrometry method based on the magnetic composites was established and confirmed to be simple, time-efficient and highly sensitive.
Collapse
Affiliation(s)
- Xinyi Li
- College of Life Science, Yantai University, Yantai 264005, P. R. China.
| | - Bingzhi Li
- College of Life Science, Yantai University, Yantai 264005, P. R. China.
| | - Min Chen
- Yantai Academy of Agricultural Sciences, Yantai, 265500, P. R. China
| | - Mengmeng Yan
- Institution of Quality Standard Testing Technology for Agro-Product, Shandong Academy of Agricultural Science, Jinan 250100, P. R. China
| | - Xiaolin Cao
- College of Life Science, Yantai University, Yantai 264005, P. R. China.
| | - Jungang Yin
- College of Life Science, Yantai University, Yantai 264005, P. R. China.
| | - Ziping Zhang
- College of Life Science, Yantai University, Yantai 264005, P. R. China.
| |
Collapse
|
48
|
Black GP, He G, Denison MS, Young TM. Using Estrogenic Activity and Nontargeted Chemical Analysis to Identify Contaminants in Sewage Sludge. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:6729-6739. [PMID: 33909413 PMCID: PMC8378343 DOI: 10.1021/acs.est.0c07846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Diverse organic compounds, many derived from consumer products, are found in sewage sludge worldwide. Understanding which of these poses the most significant environmental threat following land application can be investigated through a variety of predictive and cell-based toxicological techniques. Nontargeted analysis using high-resolution mass spectrometry with predictive estrogenic activity modeling was performed on sewage sludge samples from 12 wastewater treatment plants in California. Diisobutyl phthalate and dextrorphan were predicted to exhibit estrogenic activity and identified in >75% of sludge samples, signifying their universal presence and persistence. Additionally, the application of an estrogen-responsive cell bioassay revealed reductions in agonistic activity during mesophilic and thermophilic treatment but significant increases in antagonism during thermophilic treatment, which warrants further research. Ten nontarget features were identified (metoprolol, fenofibric acid, erythrohydrobupropion, oleic acid, mestranol, 4'-chlorobiphenyl-2,3-diol, medrysone, scillarenin, sudan I, and N,O-didesmethyltramadol) in treatment set samples and are considered to have influenced the in vitro estrogenic activity observed. The combination of predictive and in vitro estrogenicity with nontargeted analysis has led to confirmation of 12 estrogen-active contaminants in California sewage sludge and has highlighted the importance of evaluating both agonistic and antagonistic responses when evaluating the bioactivity of complex samples.
Collapse
Affiliation(s)
- Gabrielle P. Black
- Agricultural & Environmental Chemistry Graduate Group, University of California, Davis
| | - Guochun He
- Department of Environmental Toxicology, University of California, Davis
| | | | - Thomas M. Young
- Agricultural & Environmental Chemistry Graduate Group, University of California, Davis
- Department of Civil & Environmental Engineering, University of California, Davis
| |
Collapse
|
49
|
Bride E, Heinisch S, Bonnefille B, Guillemain C, Margoum C. Suspect screening of environmental contaminants by UHPLC-HRMS and transposable Quantitative Structure-Retention Relationship modelling. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124652. [PMID: 33277075 DOI: 10.1016/j.jhazmat.2020.124652] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 10/02/2020] [Accepted: 11/20/2020] [Indexed: 06/12/2023]
Abstract
A Quantitative Structure-Retention Relationship (QSRR) model is proposed and aims at increasing the confidence level associated to the identification of organic contaminants by Ultra-High Performance Liquid Chromatography hyphenated to High Resolution Mass Spectrometry (UHPLC-HRMS) in environmental samples under a suspect screening approach. The model was built from a selection of 8 easily accessible physicochemical descriptors, and was validated from a set of 274 organic compounds commonly found in environmental samples. The proposed predictive figure approach is based on the mobile phase composition at solute elution (expressed as % acetonitrile), that has the major advantage of making the model reusable by other laboratories, since the elution composition is independent of both the column geometry and the UHPLC-system. The model quality was assessed and was altered neither by the columns from different lots, nor by the complex matrices of environmental water samples. Then, the solute retention of any organic compound present in water samples is expected to be predicted within ± 14.3% acetonitrile by our model. Solute retention can therefore be used as a supplementary tool for the identification of environmental contaminants by UHPLC-HRMS, in addition to mass spectrometry data already used in the suspect screening approach.
Collapse
Affiliation(s)
- Eloi Bride
- INRAE, UR RiverLy, F-69625 Villeurbanne, France
| | - Sabine Heinisch
- Université de Lyon, Institut des Sciences Analytiques, UMR 5280, CNRS, F-69100 Villeurbanne, France
| | | | | | | |
Collapse
|
50
|
Espinosa-Barrera PA, Delgado-Vargas CA, Martínez-Pachón D, Moncayo-Lasso A. Using computer tools for the evaluation of biodegradability, toxicity, and activity on the AT1 receptor of degradation products identified in the removal of valsartan by using photo-electro-Fenton process. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:23984-23994. [PMID: 33405147 DOI: 10.1007/s11356-020-11949-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
This work deals with the theoretical approach of biodegradability, lipophilicity, and physiological activity of VAL and four degradation products (DPs) detected after 20 min of the photo-electro-Fenton (PEF) process. The biodegradability calculation, taking into account the change in the theoretical oxygen demand, showed that the four DPs had a more negative value than VAL, indicating that they are more susceptible to oxidation. However, these results do not imply more accessible biotransformation pathways than VAL, as observed using the EAWAG-BBD program, through which neutral biotransformation pathway prediction for VAL and DPs was made. Subsequently, by calculating the theoretical lipophilicity of the molecules (log P), the theoretical toxicity of the DPs was proposed, where the DPs had log P values between 1 and 3, lower values than those of VAL (log P = 4), indicating that DPs could be less toxic than the original compound (VAL). Both results suggest that VAL degradation (by photo-electro-Fenton process proposed) yields a positive effect on the environment. Finally, when molecular dynamic simulations were carried out, it was observed that DP1, DP2, and DP3 maintained similar interactions to those of VAL with the binding site of the AT1R. DP4 did not show any interaction. These results indicated that, despite the presence of DPs, generated after 20 min of the treatment, they could not exert a physiological activity in any organism the same way that does VAL.
Collapse
Affiliation(s)
- Paula Andrea Espinosa-Barrera
- Grupo de Investigación en Ciencias Biológicas y Químicas, Facultad de Ciencias, Universidad Antonio Nariño, Bogota D.C., Colombia
| | - Carlos Andrés Delgado-Vargas
- Grupo de Investigación en Ciencias Biológicas y Químicas, Facultad de Ciencias, Universidad Antonio Nariño, Bogota D.C., Colombia
| | - Diana Martínez-Pachón
- Grupo de Investigación en Ciencias Biológicas y Químicas, Facultad de Ciencias, Universidad Antonio Nariño, Bogota D.C., Colombia.
| | - Alejandro Moncayo-Lasso
- Grupo de Investigación en Ciencias Biológicas y Químicas, Facultad de Ciencias, Universidad Antonio Nariño, Bogota D.C., Colombia.
| |
Collapse
|