1
|
Anguita-Ruiz A, Vatanparast H, Walsh C, Barbara G, Natoli S, Eisenhauer B, Ramirez-Mayans J, Anderson GH, Guerville M, Ligneul A, Gil A. Alternative biological functions of lactose: a narrative review. Crit Rev Food Sci Nutr 2025:1-14. [PMID: 40013417 DOI: 10.1080/10408398.2025.2470394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Lactose, commonly known as "milk sugar," offers various health benefits beyond its role as an energy source. As a precursor for essential molecules, lactose impacts calcium absorption, has low cariogenicity, affects satiety, enhances athletic performance, and potentially functions as a prebiotic for gut health. However, not all individuals can digest lactose, with a minority of the population exhibiting gastrointestinal symptoms after its consumption. The ability to digest lactose during adulthood is a genetically conferred trait known as lactase persistence, which is also likely affected by epigenetic alterations and other endogenous factors. In the present review, we highlight the multifaceted health effects of lactose, including its impact on calcium absorption, its low cariogenicity, its role in satiety control, its ability to enhance athletic performance, and its potential benefits as a prebiotic for gut health. Since these benefits are inherently dependent on lactose intake trends and the digestion capacity of populations, we also present the latest available information on the current trends in lactose consumption around the world. Overall, the gathered evidence suggests that moderate lactose consumption is recommended, as it can foster multiple lifelong health benefits.
Collapse
Affiliation(s)
- Augusto Anguita-Ruiz
- ISGlobal, Barcelona, Spain
- CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, Madrid, Spain
| | - Hassan Vatanparast
- College of Pharmacy and Nutrition, and School of Public Health, University of Saskatchewan, Saskatoon, Canada
| | - Corinna Walsh
- Department of Nutrition and Dietetics, University of the Free State, South Africa
| | - Giovanni Barbara
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- IRCCS Azienda Ospedaliero Universitaria di Bologna, Bologna, Italy
| | | | | | - Jaime Ramirez-Mayans
- Department of Gastroenterology and Nutrition of the National Institute of Pediatrics and Private Practice, University of Mexico, Mexico
| | - G Harvey Anderson
- Nutritional Sciences and Physiology, Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Canada
| | | | | | - Angel Gil
- CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, Madrid, Spain
- Department of Biochemistry and Molecular Biology, II University of Granada, University of Granada, Granada, Spain
- Institute of Nutrition and Food Technology "José Mataix," Biomedical Research Center, University of Granada, Granada, Spain
- Biosanitary Research Institute IBS.GRANADA, Granada University Hospital Complex, Granada, Spain
| |
Collapse
|
2
|
Stumpff F, Manneck D. Prebiotics as modulators of colonic calcium and magnesium uptake. Acta Physiol (Oxf) 2025; 241:e14262. [PMID: 39803707 PMCID: PMC11726438 DOI: 10.1111/apha.14262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/23/2024] [Accepted: 01/01/2025] [Indexed: 01/16/2025]
Abstract
Ca2+ and Mg2+ are essential nutrients, and deficiency can cause serious health problems. Thus, lack of Ca2+ and Mg2+ can lead to osteoporosis, with incidence rising both in absolute and age-specific terms, while Mg2+ deficiency is associated with type II diabetes. Prevention via vitamin D or estrogen is controversial, and the bioavailability of Ca2+ and Mg2+ from supplements is significantly lower than that from milk products. Problems are likely to increase as populations age and the number of people on vegan diets surges. Developing new therapeutic strategies requires a better understanding of the molecular mechanisms involved in absorption by intestinal epithelia. The vitamin-D dependent, active pathway for the uptake of Ca2+ from the upper small intestine involving TRPV6 is highly efficient but only accounts for about 20% of total uptake. Instead, most Ca2+ uptake is thought to occur via passive paracellular diffusion across the ileum, although sufficiently high luminal concentrations are difficult to achieve.. Interestingly, colon and caecum also have a considerable capacity for the active absorption of Ca2+ and Mg2+, the molecular mechanisms of which are unclear. Intriguingly, stimulating fermentation by prebiotics enhances colonic absorption, which can rise from ~10% to ~30% of the total. Notably, fermentation releases protons, which inhibits channels highly selective for Ca2+ and Mg2+ (TRPV6 and TRPM6/TRPM7). Conversely, the non-selective cation channel TRPV3 is stimulated by both intracellular acidification and by numerous herbal compounds. Spicy, fiber-rich food, as traditionally consumed in many cultures, might enhance the uptake of Ca2+ and Mg2+ via this pathway.
Collapse
Affiliation(s)
- Friederike Stumpff
- Institute for Molecular MedicineHealth and Medical University PotsdamPotsdamGermany
| | - David Manneck
- Institute for Molecular MedicineHealth and Medical University PotsdamPotsdamGermany
| |
Collapse
|
3
|
Qi P, Xie R, Liu H, Zhang Z, Cheng Y, Ma J, Wan K, Xie X. Mechanisms of gut homeostasis regulating Th17/Treg cell balance in PMOP. Front Immunol 2024; 15:1497311. [PMID: 39735544 PMCID: PMC11671525 DOI: 10.3389/fimmu.2024.1497311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 11/25/2024] [Indexed: 12/31/2024] Open
Abstract
Postmenopausal osteoporosis (PMOP) is a metabolic bone disease driven by estrogen deficiency, primarily manifesting as reduced bone mass and heightened fracture risk. Its development is intricately linked to the balance between Th17 and Treg cells. Recent studies have highlighted the significant role of gut homeostasis in PMOP. The gut microbiota profoundly impacts bone health by modulating the host's immune system, metabolic pathways, and endocrine functions. In particular, the regulation of Th17 and Treg cell balance by gut homeostasis plays a pivotal role in the onset and progression of PMOP. Th17 cells secrete pro-inflammatory cytokines that stimulate osteoclast activity, accelerating bone resorption, while Treg cells counteract this process through anti-inflammatory mechanisms, preserving bone mass. The gut microbiota and its metabolites can influence Th17/Treg equilibrium, thereby modulating bone metabolism. Furthermore, the integrity of the gut barrier is critical for systemic immune stability, and its disruption can lead to immune dysregulation and metabolic imbalances. Thus, targeting gut homeostasis to restore Th17/Treg balance offers a novel therapeutic avenue for the prevention and treatment of PMOP.
Collapse
Affiliation(s)
- Peng Qi
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | | | - Hao Liu
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Zixuan Zhang
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Yuan Cheng
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Jilong Ma
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Kangwei Wan
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - XingWen Xie
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Lanzhou, China
| |
Collapse
|
4
|
Li S, Mu R, Zhu Y, Zhao F, Qiu Q, Si H, Wright ADG, Li Z. Shifts in the microbial community and metabolome in rumen ecological niches during antler growth. Comput Struct Biotechnol J 2024; 23:1608-1618. [PMID: 38680874 PMCID: PMC11047195 DOI: 10.1016/j.csbj.2024.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/29/2024] [Accepted: 04/07/2024] [Indexed: 05/01/2024] Open
Abstract
Antlers are hallmark organ of deer, exhibiting a relatively high growth rate among mammals, and requiring large amounts of nutrients to meet its development. The rumen microbiota plays key roles in nutrient metabolism. However, changes in the microbiota and metabolome in the rumen during antler growth are largely unknown. We investigated rumen microbiota (liquid, solid, ventral epithelium, and dorsal epithelium) and metabolic profiles of sika deer at the early (EG), metaphase (MG) and fast growth (FG) stages. Our data showed greater concentrations of acetate and propionate in the rumens of sika deer from the MG and FG groups than in those of the EG group. However, microbial diversity decreased during antler growth, and was negatively correlated with short-chain fatty acid (SCFA) levels. Prevotella, Ruminococcus, Schaedlerella and Stenotrophomonas were the dominant bacteria in the liquid, solid, ventral epithelium, and dorsal epithelium fractions. The proportions of Stomatobaculum, Succiniclasticum, Comamonas and Anaerotruncus increased significantly in the liquid or dorsal epithelium fractions. Untargeted metabolomics analysis revealed that the metabolites also changed significantly, revealing 237 significantly different metabolites, among which the concentrations of γ-aminobutyrate and creatine increased during antler growth. Arginine and proline metabolism and alanine, aspartate and glutamate metabolism were enhanced. The co-occurrence network results showed that the associations between the rumen microbiota and metabolites different among the three groups. Our results revealed that the different rumen ecological niches were characterized by distinct microbiota compositions, and the production of SCFAs and the metabolism of specific amino acids were significantly changed during antler growth.
Collapse
Affiliation(s)
- Songze Li
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Ruina Mu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Yuhang Zhu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Fei Zhao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Qiang Qiu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710100, China
| | - Huazhe Si
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Jilin Agricultural University, Changchun 130118, China
| | | | - Zhipeng Li
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
5
|
Mehta M, Hodgson E, Reimer RA, Gabel L. Gut microbiome-targeted therapies and bone health across the lifespan: a scoping review. Crit Rev Food Sci Nutr 2024:1-14. [PMID: 39216013 DOI: 10.1080/10408398.2024.2397459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Emerging evidence suggests that bone turnover is influenced by the gut microbiome through critical bone signaling pathways. The purpose of this scoping review is to examine prebiotic, probiotic, and synbiotic interventions on bone outcomes in humans across the lifespan. PubMed, Scopus, and EBSCOhost were searched until January 2023 to identify clinical trials examining bone mineral density (BMD) or bone mineral content (BMC) with gut microbiome interventions. Of three prebiotic interventions, one reported higher areal BMD (aBMD) in adolescents. In two studies in postmenopausal women, no changes in aBMD were observed despite decreased biomarkers of bone resorption. Probiotic interventions in perimenopausal or postmenopausal women demonstrated increased aBMD or attenuated bone loss in various bone regions. All studies observed attenuated bone loss (n = 4) or increased aBMD (n = 1). One study assessed a synbiotic intervention on aBMD and observed decreased biomarkers of bone resorption but no changes in aBMD. Results suggest potential for microbiome-targeted therapies (prebiotics, probiotics and synbiotics) to attenuate bone loss. However, changes in biomarkers of bone turnover were not always accompanied by changes in bone mineralization. Future studies should utilize longer duration interventions to investigate the influence of prebiotic, probiotic, and synbiotic interventions across diverse age, sex, and ethnic cohorts.
Collapse
Affiliation(s)
- Maahika Mehta
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Erin Hodgson
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Raylene A Reimer
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Leigh Gabel
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
| |
Collapse
|
6
|
Cecchi N, Romanelli R, Ricevuti F, Carbone MG, Dinardo M, Cesarano E, De Michele A, Messere G, Morra S, Scognamiglio A, Spagnuolo MI. Bioactives in Oral Nutritional Supplementation: A Pediatric Point of View. Nutrients 2024; 16:2067. [PMID: 38999815 PMCID: PMC11243142 DOI: 10.3390/nu16132067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND Oral nutritional supplements (ONSs) are crucial for supporting the nutritional needs of pediatric populations, particularly those with medical conditions or dietary deficiencies. Bioactive compounds within ONSs play a pivotal role in enhancing health outcomes by exerting various physiological effects beyond basic nutrition. However, the comprehensive understanding of these bioactives in pediatric ONSs remains elusive. OBJECTIVE This systematic narrative review aims to critically evaluate the existing literature concerning bioactive compounds present in oral nutritional supplements from a pediatric standpoint, focusing on their types, sources, bioavailability, physiological effects, and clinical implications. METHODS A systematic search was conducted across the major academic databases, including PubMed, Scopus, and Web of Science, employing predefined search terms related to oral nutritional supplements, bioactives, and pediatrics. Studies published between 2013 and 2024 were considered eligible for inclusion. Data extraction and synthesis were performed according to the PRISMA guidelines. RESULTS The initial search yielded 558 of articles, of which 72 met the inclusion criteria. The included studies encompassed a diverse range of bioactive compounds present in pediatric ONS formulations, including, but not limited to, vitamins, minerals, amino acids, prebiotics, probiotics, and phytonutrients. These bioactives were sourced from various natural and synthetic origins and were found to exert beneficial effects on growth, development, immune function, gastrointestinal health, cognitive function, and overall well-being in pediatric populations. However, variations in bioavailability, dosing, and clinical efficacy were noted across different compounds and formulations. CONCLUSIONS Bioactive compounds in oral nutritional supplements offer promising avenues for addressing the unique nutritional requirements and health challenges faced by pediatric populations. However, further research is warranted to elucidate the optimal composition, dosage, and clinical applications of these bioactives in pediatric ONS formulations. A deeper understanding of these bioactive compounds and their interplay with pediatric health may pave the way for personalized and effective nutritional interventions in pediatric clinical practice.
Collapse
Affiliation(s)
- Nicola Cecchi
- Clinical Nutrition Unit, A.O.R.N. Santobono-Pausilipon Children's Hospital, 80129 Naples, Italy
| | - Roberta Romanelli
- Clinical Nutrition Unit, A.O.R.N. Santobono-Pausilipon Children's Hospital, 80129 Naples, Italy
| | - Flavia Ricevuti
- Clinical Nutrition Unit, A.O.R.N. Santobono-Pausilipon Children's Hospital, 80129 Naples, Italy
| | - Maria Grazia Carbone
- Clinical Nutrition Unit, A.O.R.N. Santobono-Pausilipon Children's Hospital, 80129 Naples, Italy
| | - Michele Dinardo
- Clinical Nutrition Unit, A.O.R.N. Santobono-Pausilipon Children's Hospital, 80129 Naples, Italy
| | - Elisabetta Cesarano
- Clinical Nutrition Unit, A.O.R.N. Santobono-Pausilipon Children's Hospital, 80129 Naples, Italy
| | - Alfredo De Michele
- Clinical Nutrition Unit, A.O.R.N. Santobono-Pausilipon Children's Hospital, 80129 Naples, Italy
| | - Giovanni Messere
- Clinical Nutrition Unit, A.O.R.N. Santobono-Pausilipon Children's Hospital, 80129 Naples, Italy
| | - Salvatore Morra
- Clinical Nutrition Unit, A.O.R.N. Santobono-Pausilipon Children's Hospital, 80129 Naples, Italy
| | - Armando Scognamiglio
- Clinical Nutrition Unit, A.O.R.N. Santobono-Pausilipon Children's Hospital, 80129 Naples, Italy
| | | |
Collapse
|
7
|
Li ZX, Zhuo JL, Yang N, Gao MB, Qu ZH, Han T. Effect of Lycium barbarum polysaccharide on osteoblast proliferation and differentiation in postmenopausal osteoporosis. Int J Biol Macromol 2024; 271:132415. [PMID: 38759858 DOI: 10.1016/j.ijbiomac.2024.132415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/07/2024] [Accepted: 05/14/2024] [Indexed: 05/19/2024]
Abstract
OBJECTIVE We aimed to investigate the effect of Lycium barbarum polysaccharide (LBP) on the proliferation and differentiation of osteoblasts in postmenopausal individuals with osteoporosis using in vitro cell experiments. METHODS We assessed the effect of long-term LBP consumption on the intestinal metabolites of individuals using a simulation of the human intestinal microbiota ecosystem. We also tested the capacity of LBP in proliferating MC3T3-E1 cells using the cell counting kit-8 (CCK-8) method and analyzed the effect of intestinal metabolites on the osteogenic differentiation of MC3T3-E1 cells by testing bone metabolism viability with relevant indicators. RESULTS The level of short-chain fatty acids (SCFAs) significantly increased (p < 0.05), and the concentrations of acetic acid, propionic acid, and butyric acid all showed an upward trend after the treatment using LBP. At appropriate concentrations, the fermentation supernatant can enhance osteoblast proliferation by significantly increasing the active expression of bone-alkaline phosphatase (B-ALP) and osteocalcin (OCN) in osteoblasts (p < 0.05). CONCLUSION By modulating the metabolites of intestinal microbiota, production of SCFAs, the prebiotic properties of LBP can enhance osteoblast differentiation through in vitro simulation experiment and cell-based assay.
Collapse
Affiliation(s)
- Zi-Xiang Li
- Department of Clinical Nutrition, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jia-Lu Zhuo
- Department of Clinical Nutrition, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Ning Yang
- Department of Clinical Nutrition, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Ming-Bo Gao
- Department of Clinical Nutrition, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Zhi-Hua Qu
- Department of Clinical Nutrition, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Ting Han
- Department of Clinical Nutrition, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| |
Collapse
|
8
|
Yang K, Chen Y, Wang M, Zhang Y, Yuan Y, Hou H, Mao YH. The Improvement and Related Mechanism of Microecologics on the Sports Performance and Post-Exercise Recovery of Athletes: A Narrative Review. Nutrients 2024; 16:1602. [PMID: 38892536 PMCID: PMC11174581 DOI: 10.3390/nu16111602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
The diversity and functionality of gut microbiota may play a crucial role in the function of human motor-related systems. In addition to traditional nutritional supplements, there is growing interest in microecologics due to their potential to enhance sports performance and facilitate post-exercise recovery by modulating the gut microecological environment. However, there is a lack of relevant reviews on this topic. This review provides a comprehensive overview of studies investigating the effects of various types of microecologics, such as probiotics, prebiotics, synbiotics, and postbiotics, on enhancing sports performance and facilitating post-exercise recovery by regulating energy metabolism, mitigating oxidative-stress-induced damage, modulating immune responses, and attenuating bone loss. Although further investigations are warranted to elucidate the underlying mechanisms through which microecologics exert their effects. In summary, this study aims to provide scientific evidence for the future development of microecologics in athletics.
Collapse
Affiliation(s)
- Keer Yang
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China; (K.Y.); (Y.C.); (M.W.); (Y.Z.); (Y.Y.); (H.H.)
| | - Yonglin Chen
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China; (K.Y.); (Y.C.); (M.W.); (Y.Z.); (Y.Y.); (H.H.)
| | - Minghan Wang
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China; (K.Y.); (Y.C.); (M.W.); (Y.Z.); (Y.Y.); (H.H.)
| | - Yishuo Zhang
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China; (K.Y.); (Y.C.); (M.W.); (Y.Z.); (Y.Y.); (H.H.)
| | - Yu Yuan
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China; (K.Y.); (Y.C.); (M.W.); (Y.Z.); (Y.Y.); (H.H.)
| | - Haoyang Hou
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China; (K.Y.); (Y.C.); (M.W.); (Y.Z.); (Y.Y.); (H.H.)
| | - Yu-Heng Mao
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China; (K.Y.); (Y.C.); (M.W.); (Y.Z.); (Y.Y.); (H.H.)
- Guangdong Key Laboratory of Human Sports Performance Science, Guangzhou Sport University, Guangzhou 510500, China
| |
Collapse
|
9
|
Islam P, Ice JA, Alake SE, Adedigba P, Hatter B, Robinson K, Clarke SL, Ford Versypt AN, Ritchey J, Lucas EA, Smith BJ. Fructooligosaccharides act on the gut-bone axis to improve bone independent of Tregs and alter osteocytes in young adult C57BL/6 female mice. JBMR Plus 2024; 8:ziae021. [PMID: 38562914 PMCID: PMC10982850 DOI: 10.1093/jbmrpl/ziae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/15/2023] [Accepted: 01/20/2024] [Indexed: 04/04/2024] Open
Abstract
Targeting the gut-bone axis with probiotics and prebiotics is considered as a promising strategy to reduce the risk of osteoporosis. Gut-derived short chain fatty acids (SCFA) mediate the effects of probiotics on bone via Tregs, but it is not known whether prebiotics act through a similar mechanism. We investigated how 2 different prebiotics, tart cherry (TC) and fructooligosaccharide (FOS), affect bone, and whether Tregs are required for this response. Eight-wk-old C57BL/6 female mice were fed with diets supplemented with 10% w/w TC, FOS, or a control diet (Con; AIN-93M) diet, and they received an isotype control or CD25 Ab to suppress Tregs. The FOS diet increased BMC, density, and trabecular bone volume in the vertebra (~40%) and proximal tibia (~30%) compared to the TC and control diets (Con), irrespective of CD25 treatment. Both prebiotics increased (P < .01) fecal SCFAs, but the response was greater with FOS. To determine how FOS affected bone cells, we examined genes involved in osteoblast and osteoclast differentiation and activity as well as genes expressed by osteocytes. The FOS increased the expression of regulators of osteoblast differentiation (bone morphogenetic protein 2 [Bmp2], Wnt family member 10b [Wnt10b] and Osterix [Osx]) and type 1 collagen). Osteoclasts regulators were unaltered. The FOS also increased the expression of genes associated with osteocytes, including (Phex), matrix extracellular phosphoglycoprotein (Mepe), and dentin matrix acidic phosphoprotein 1 (Dmp-1). However, Sost, the gene that encodes for sclerostin was also increased by FOS as the number and density of osteocytes increased. These findings demonstrate that FOS has a greater effect on the bone mass and structure in young adult female mice than TC and that its influence on osteoblasts and osteocytes is not dependent on Tregs.
Collapse
Affiliation(s)
- Proapa Islam
- Nutritional Sciences Department, Oklahoma State University, Stillwater, OK 74078, USA
| | - John A Ice
- Nutritional Sciences Department, Oklahoma State University, Stillwater, OK 74078, USA
| | - Sanmi E Alake
- Nutritional Sciences Department, Oklahoma State University, Stillwater, OK 74078, USA
| | - Pelumi Adedigba
- Indiana Center for Musculoskeletal Health, Indiana School of Medicine, Indianapolis, IN 46202, USA
| | - Bethany Hatter
- Nutritional Sciences Department, Oklahoma State University, Stillwater, OK 74078, USA
| | - Kara Robinson
- Nutritional Sciences Department, Oklahoma State University, Stillwater, OK 74078, USA
| | - Stephen L Clarke
- Nutritional Sciences Department, Oklahoma State University, Stillwater, OK 74078, USA
| | - Ashlee N Ford Versypt
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, NY 14260, USA
| | - Jerry Ritchey
- Veterinary Pathobiology Department, Oklahoma State University, Stillwater, OK 74078, USA
| | - Edralin A Lucas
- Nutritional Sciences Department, Oklahoma State University, Stillwater, OK 74078, USA
| | - Brenda J Smith
- Indiana Center for Musculoskeletal Health, Indiana School of Medicine, Indianapolis, IN 46202, USA
- Department of Obstetrics and Gynecology, Indiana School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
10
|
Han D, Wang W, Gong J, Ma Y, Li Y. Microbiota metabolites in bone: Shaping health and Confronting disease. Heliyon 2024; 10:e28435. [PMID: 38560225 PMCID: PMC10979239 DOI: 10.1016/j.heliyon.2024.e28435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/16/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024] Open
Abstract
The intricate interplay between the gut microbiota and bone health has become increasingly recognized as a fundamental determinant of skeletal well-being. Microbiota-derived metabolites play a crucial role in dynamic interaction, specifically in bone homeostasis. In this sense, short-chain fatty acids (SCFAs), including acetate, propionate, and butyrate, indirectly promote bone formation by regulating insulin-like growth factor-1 (IGF-1). Trimethylamine N-oxide (TMAO) has been found to increase the expression of osteoblast genes, such as Runt-related transcription factor 2 (RUNX2) and bone morphogenetic protein-2 (BMP2), thus enhancing osteogenic differentiation and bone quality through BMP/SMADs and Wnt signaling pathways. Remarkably, in the context of bone infections, the role of microbiota metabolites in immune modulation and host defense mechanisms potentially affects susceptibility to infections such as osteomyelitis. Furthermore, ongoing research elucidates the precise mechanisms through which microbiota-derived metabolites influence bone cells, such as osteoblasts and osteoclasts. Understanding the multifaceted influence of microbiota metabolites on bone, from regulating homeostasis to modulating susceptibility to infections, has the potential to revolutionize our approach to bone health and disease management. This review offers a comprehensive exploration of this evolving field, providing a holistic perspective on the impact of microbiota metabolites on bone health and diseases.
Collapse
Affiliation(s)
- Dong Han
- Department of Trauma Orthopedics, Yantaishan Hospital, Yantai 264000, China
| | - Weijiao Wang
- Department of Otolaryngology, Yantaishan Hospital, Yantai 264000, China
| | - Jinpeng Gong
- Department of Trauma Orthopedics, Yantaishan Hospital, Yantai 264000, China
| | - Yupeng Ma
- Department of Trauma Orthopedics, Yantaishan Hospital, Yantai 264000, China
| | - Yu Li
- Department of Trauma Orthopedics, Yantaishan Hospital, Yantai 264000, China
| |
Collapse
|
11
|
Cook CV, Lighty AM, Smith BJ, Ford Versypt AN. A review of mathematical modeling of bone remodeling from a systems biology perspective. FRONTIERS IN SYSTEMS BIOLOGY 2024; 4:1368555. [PMID: 40012834 PMCID: PMC11864782 DOI: 10.3389/fsysb.2024.1368555] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Bone remodeling is an essential, delicately balanced physiological process of coordinated activity of bone cells that remove and deposit new bone tissue in the adult skeleton. Due to the complex nature of this process, many mathematical models of bone remodeling have been developed. Each of these models has unique features, but they have underlying patterns. In this review, the authors highlight the important aspects frequently found in mathematical models for bone remodeling and discuss how and why these aspects are included when considering the physiology of the bone basic multicellular unit, which is the term used for the collection of cells responsible for bone remodeling. The review also emphasizes the view of bone remodeling from a systems biology perspective. Understanding the systemic mechanisms involved in remodeling will help provide information on bone pathology associated with aging, endocrine disorders, cancers, and inflammatory conditions and enhance systems pharmacology. Furthermore, some features of the bone remodeling cycle and interactions with other organ systems that have not yet been modeled mathematically are discussed as promising future directions in the field.
Collapse
Affiliation(s)
- Carley V. Cook
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Ariel M. Lighty
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Brenda J. Smith
- Indiana Center for Musculoskeletal Health, School of Medicine, Indiana University, Indianapolis, IN, United States
- Department of Obstetrics and Gynecology, School of Medicine, Indiana University, Indianapolis, IN, United States
| | - Ashlee N. Ford Versypt
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, United States
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, United States
- Institute for Artificial Intelligence and Data Science, University at Buffalo, The State University of New York, Buffalo, NY, United States
| |
Collapse
|
12
|
Meeusen E, Cao L, Delsing DJ, Groeneveld A, Heerikhuisen M, Schuren F, Boltje TJ. Gram-scale chemical synthesis of galactosyllactoses and their impact on infant gut microbiota in vitro. Org Biomol Chem 2024; 22:2091-2097. [PMID: 38363206 PMCID: PMC10917138 DOI: 10.1039/d3ob02069j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/14/2024] [Indexed: 02/17/2024]
Abstract
Galactooligosaccharides (GOS) are widely used as a supplement in infant nutrition to mimic the beneficial effects found in prebiotic human milk oligosaccharides (HMOs). However, the complexity of the GOS mixture makes it challenging to ascertain which of the GOS components contribute most to their health benefits. Galactosyllactoses (GLs) are lactose-based trisaccharides containing a β-galactopyranosyl residue at the 3'-position (3'galactosyllactose, 3'-GL), 4'-position (4'-galactosyllactose, 4'-GL), or the 6'-position (6'-galactosyllactose, 6'-GL). These GLs are of particular interest as they are present in both GOS mixtures and human milk at early stages of lactation. However, research on the potential health benefits of these individual GLs has been limited. Gram quantities are needed to assess their health benefits but these GLs are not readily available at this scale. In this study, we report the gram-scale chemical synthesis of 3'-GL, 4'-GL, and 6'-GL. All three galactosyllactoses were obtained on a gram scale in good purity from cheap and commercially available lactose. Furthermore, in vitro incubation of GLs with infant faecal microbiota demonstrates that the GLs were able to increase the abundance of Bifidobacterium and stimulate short chain fatty acid production.
Collapse
Affiliation(s)
- Evy Meeusen
- Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands.
| | - Linqiu Cao
- FrieslandCampina N.V., Amersfoort, The Netherlands
| | | | | | - Margreet Heerikhuisen
- Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Frank Schuren
- Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Thomas J Boltje
- Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands.
| |
Collapse
|
13
|
Zhao X, He W, Jakobsen LMA, Zachariassen LF, Hansen AK, Rasmussen MK, Bertram HC. Inulin Supplementation Modulates the Hepatic Transcriptome, Metabolome, and Ferritin Content in Ovariectomized Rats. Mol Nutr Food Res 2023; 67:e2300372. [PMID: 37849247 DOI: 10.1002/mnfr.202300372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/27/2023] [Indexed: 10/19/2023]
Abstract
SCOPE Liver is an important metabolic organ regulating whole-body homeostasis. This study aims to investigate how prebiotic-induced changes in the metabolic activity of the gut microbiome (GM) and dietary calcium depletion modulates the hepatic metabolome and transcriptome. METHODS AND RESULTS The serum metabolome, liver metabolome, and transcriptome are determined on samples from ovariectomized (OVX) rats fed a control diet (Control, n = 7), a control diet supplemented with 5% w/w inulin (Inulin, n = 7), or a calcium-deficient diet (CaDef, n = 7). Inulin fortification is associated with higher serum concentrations of acetate, 3-hydroxybutyrate, and reduced concentration of dimethyl sulfone, revealing that changes in the metabolic activity of the GM are reflected in circulating metabolites. Metabolomics also reveal that the inulin-fortified diet results in lower concentrations of hepatic glutamate, serine, and hypoxanthine while transcriptomics reveal accompanying effects on the hepatic expression of ferric iron binding-related genes. Inulin fortification also induces effects on the hepatic expression of genes involved in olfactory transduction, suggesting that prebiotics regulate liver function through yet unidentified mechanisms involving olfactory receptors. CONCLUSION Inulin ingestion impacts hepatic gene expression and is associated with an upregulation of ferritin synthesis-related genes and liver ferritin content.
Collapse
Affiliation(s)
- Xiaorui Zhao
- Department of Food Science, Aarhus University, Agro Food Park 48, DK-8200, Aarhus N, Denmark
| | - Weiwei He
- Department of Food Science, Aarhus University, Agro Food Park 48, DK-8200, Aarhus N, Denmark
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanjing Road E. 235, Nanchang, 330047, China
| | - Louise M A Jakobsen
- Department of Food Science, Aarhus University, Agro Food Park 48, DK-8200, Aarhus N, Denmark
| | - Line F Zachariassen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, Frederiksberg C, 1870, Denmark
| | - Axel K Hansen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, Frederiksberg C, 1870, Denmark
| | - Martin Krøyer Rasmussen
- Department of Food Science, Aarhus University, Agro Food Park 48, DK-8200, Aarhus N, Denmark
| | - Hanne Christine Bertram
- Department of Food Science, Aarhus University, Agro Food Park 48, DK-8200, Aarhus N, Denmark
| |
Collapse
|
14
|
Chargo NJ, Schepper JD, Rios‐Arce N, Kang HJ, Gardinier JD, Parameswaran N, McCabe LR. Lactobacillus Reuteri 6475 Prevents Bone Loss in a Clinically Relevant Oral Model of Glucocorticoid-Induced Osteoporosis in Male CD-1 Mice. JBMR Plus 2023; 7:e10805. [PMID: 38130770 PMCID: PMC10731127 DOI: 10.1002/jbm4.10805] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/06/2023] [Accepted: 07/28/2023] [Indexed: 12/23/2023] Open
Abstract
Glucocorticoids (GCs) are commonly used anti-inflammatory medications with significant side effects, including glucocorticoid-induced osteoporosis (GIO). We have previously demonstrated that chronic subcutaneous GC treatment in mice leads to gut barrier dysfunction and trabecular bone loss. We further showed that treating with probiotics or barrier enhancers improves gut barrier function and prevents GIO. The overall goal of this study was to test if probiotics could prevent GC-induced gut barrier dysfunction and bone loss in a clinically relevant oral-GC model of GIO. Eight-week-old male CD-1 mice were treated with vehicle or corticosterone in the drinking water for 4 weeks and administered probiotics Lactobacillus reuteri ATCC 6475 (LR 6475) or VSL#3 thrice weekly via oral gavage. As expected, GC treatment led to significant gut barrier dysfunction (assessed by measuring serum endotoxin levels) and bone loss after 4 weeks. Serum endotoxin levels significantly and negatively correlated with bone volume. Importantly, LR 6475 treatment effectively prevented both GC-induced increase in serum endotoxin and trabecular bone loss. VSL#3 had intermediate results, not differing from either control or GC-treated animals. GC-induced reductions in femur length, cortical thickness, and cortical area were not affected by probiotic treatment. Taken together, these results are the first to demonstrate that LR 6475 effectively prevents the detrimental effects of GC treatment on gut barrier, which correlates with enhanced trabecular bone health in an oral mouse model of GIO. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Nicholas J Chargo
- Department of PhysiologyMichigan State UniversityEast LansingMIUSA
- College of Osteopathic MedicineMichigan State UniversityEast LansingMIUSA
| | | | - Naoimy Rios‐Arce
- Department of PhysiologyMichigan State UniversityEast LansingMIUSA
| | - Ho Jun Kang
- Department of PhysiologyMichigan State UniversityEast LansingMIUSA
| | | | - Narayanan Parameswaran
- Department of PhysiologyMichigan State UniversityEast LansingMIUSA
- College of Human MedicineMichigan State UniversityEast LansingMIUSA
| | - Laura R McCabe
- Department of PhysiologyMichigan State UniversityEast LansingMIUSA
- College of Osteopathic MedicineMichigan State UniversityEast LansingMIUSA
| |
Collapse
|
15
|
Wu M, Chen C, Lei H, Cao Z, Zhang C, Du R, Zhang C, Song Y, Qin M, Zhou J, Lu Y, Wang X, Zhang L. Dietary Isoquercetin Ameliorates Bone Loss via Restoration of the Gut Microbiota and Lipopolysaccharide-Triggered Inflammatory Status in Ovariectomy Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15981-15990. [PMID: 37852299 DOI: 10.1021/acs.jafc.3c00205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Osteoporosis is one of the skeletal degenerative diseases accompanied by bone loss and microstructure disruption. Given that the gut-bone signaling axis highly contributes to bone health, here, dietary isoquercetin (IQ) was shown to effectively improve postmenopausal osteoporosis (PMO) in an ovariectomy (OVX) mouse model through the modulation of the gut-bone cross-talk. An in vivo study showed that OVX induced striking disruption of the microbial community, subsequently causing gut leakage and gut barrier dysfunction. As a result, lipopolysaccharide (LPS)-triggered inflammatory cytokines released from the intestine to bone marrow were determined to be associated with bone loss in OVX mice. Long-term dietary IQ effectively improved microbial community and gut barrier function in the OVX mice and thus markedly improved bone loss and host inflammatory status by repressing the NF-κB signaling pathway. An in vitro study further revealed that IQ treatments dose-dependently inhibited LPS-induced inflammation and partly promoted the proliferation and differentiation of osteoblasts. These results provide new evidence that dietary IQ has the potential for osteoporosis treatment.
Collapse
Affiliation(s)
- Mengjing Wu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, CAS, Wuhan 430071, China
- College of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Chuan Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, CAS, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hehua Lei
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, CAS, Wuhan 430071, China
| | - Zheng Cao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, CAS, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cui Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, CAS, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruichen Du
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, CAS, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ce Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, CAS, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuchen Song
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, CAS, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengyu Qin
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, CAS, Wuhan 430071, China
- College of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Jinlin Zhou
- Golden Health (Guangdong) Biotechnology Co., Ltd, Foshan 528225, China
- Engineering Research Academy of High Value Utilization of Green Plants, Meizhou 514021, China
| | - Yujing Lu
- Golden Health (Guangdong) Biotechnology Co., Ltd, Foshan 528225, China
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Xian Wang
- College of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Limin Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, CAS, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
16
|
Yu X, Ma F, Dai H, Liu J, Hashem NM, Sun P. Effects of Different Galacto-Oligosaccharide Supplementation on Growth Performance, Immune Function, Serum Nutrients, and Appetite-Related Hormones in Holstein Calves. Animals (Basel) 2023; 13:3366. [PMID: 37958121 PMCID: PMC10649109 DOI: 10.3390/ani13213366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Our previous study showed that early supplementation with 10 g/(d·head) of galacto-oligosaccharides (GOS) in newborn Holstein dairy calves reduced the incidence of diarrhea and improved growth performance and mineral absorption. Since the dose of 10 g/(d·head) was the lowest by dose screening in our previous study, the present study was designed to investigate whether a lower amount of GOS has similar effects on growth performance, immune function, serum nutrients in newborn Holstein heifer calves, and to further investigate its effect on appetite-related hormones. Twenty-eight healthy newborn (1 day of age) Holstein heifers with similar average body weight (41.18 ± 1.90 kg) were randomly divided into four groups (n = 7): the control group (CON group), which received heated raw milk, and three experimental groups, which received heated raw milk supplemented with 2.5 (GOS2.5 group), 5 (GOS5 group), and 10 g/(d·head) (GOS10 group) GOS. All heifer calves were fed the same starter for 28 d. Supplementation with GOS linearly increased the final body weight, average daily gain, and feed efficiency in heifer calves (p < 0.01). Compared with the control group, the average daily gain and feed efficiency of heifer calves were significantly higher in the GOS5 and GOS10 groups than in the control group (p < 0.05). Furthermore, supplementation with GOS quadratically enhanced the starter and total average daily feed intake of the heifers (p < 0.01), especially in the GOS2.5 and GOS5 groups, (p < 0.05 vs. CON). The serum concentration of immunoglobulin A was linearly increased by GOS supplementation (p < 0.05), and the levels in the GOS5 and GOS10 groups were significantly higher than those in the CON group. Meanwhile, GOS linearly decreased serum interleukin-1β and interleukin-6 concentrations (p < 0.05). The serum concentration of triglycerides was also linearly decreased (p < 0.05), whereas total protein and blood urea nitrogen were linearly increased (p < 0.05). Supplementation with GOS linearly decreased the serum concentration of leptin (p < 0.05) but increased cholecystokinin and glucagon-like peptide-1 (p < 0.05). Increasing doses of GOS linearly improved serum calcium and copper concentrations (p < 0.01) and quadratically enhanced the concentration of magnesium, which peaked in the GOS5 group (p < 0.05). In conclusion, GOS supplementation reduced the incidence of diarrhea and improved the growth performance and immune function of Holstein heifer calves.
Collapse
Affiliation(s)
- Xin Yu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fengtao Ma
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Haonan Dai
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Junhao Liu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Nesrein M. Hashem
- Department of Animal and Fish Production, Faculty of Agriculture, Alexandria University, Alexandria 21545, Egypt;
| | - Peng Sun
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
17
|
Xiang T, Deng Z, Yang C, Tan J, Dou C, Luo F, Chen Y. Bile acid metabolism regulatory network orchestrates bone homeostasis. Pharmacol Res 2023; 196:106943. [PMID: 37777075 DOI: 10.1016/j.phrs.2023.106943] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/18/2023] [Accepted: 09/28/2023] [Indexed: 10/02/2023]
Abstract
Bile acids (BAs), synthesized in the liver and modified by the gut microbiota, have been widely appreciated not only as simple lipid emulsifiers, but also as complex metabolic regulators and momentous signaling molecules, which play prominent roles in the complex interaction among several metabolic systems. Recent studies have drawn us eyes on the diverse physiological functions of BAs, to enlarge the knowledge about the "gut-bone" axis due to the participation about the gut microbiota-derived BAs to modulate bone homeostasis at physiological and pathological stations. In this review, we have summarized the metabolic processes of BAs and highlighted the crucial roles of BAs targeting bile acid-activated receptors, promoting the proliferation and differentiation of osteoblasts (OBs), inhibiting the activity of osteoclasts (OCs), as well as reducing articular cartilage degradation, thus facilitating bone repair. In addition, we have also focused on the bidirectional effects of BA signaling networks in coordinating the dynamic balance of bone matrix and demonstrated the promising effects of BAs on the development or treatment for pathological bone diseases. In a word, further clinical applications targeting BA metabolism or modulating gut metabolome and related derivatives may be developed as effective therapeutic strategies for bone destruction diseases.
Collapse
Affiliation(s)
- Tingwen Xiang
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; College of Basic Medical Science, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Zihan Deng
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Chuan Yang
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jiulin Tan
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Ce Dou
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Fei Luo
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Yueqi Chen
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| |
Collapse
|
18
|
Han Q, Chen ZJ, Du Y. Dietary supplementation for female infertility: Recent advances in the nutritional therapy for premature ovarian insufficiency. Front Microbiol 2022; 13:1001209. [PMID: 36466679 PMCID: PMC9712792 DOI: 10.3389/fmicb.2022.1001209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 11/01/2022] [Indexed: 08/27/2023] Open
Abstract
Premature ovarian insufficiency (POI) ranks top in the reproductive disorders that may impair multiple functioning systems, reduce the quality of life and ultimately deprive patients of their fertility among women. Symptoms can be partially alleviated by present hormone replacement therapy that cannot improve conception or decrease occurrence rates of systemic complication. Nutritional dietary supplements are attracting more and more attention because of their safety, bioavailability, and efficacy for well-being. Nutrients in the daily food are composed of carbohydrates, fat and lipoprotein, protein and polypeptide, vitamins, and vegetable or fruits containing phytoestrogens. These are functional nutrients due to the proliferative, anti-inflammatory, anti-oxidant, and mitochondria-protective potential during the course of menopause. Apart from dietary nutrients, microbe-related nutritional substances, including probiotics, prebiotics and the combination-synbiotics, display high potential as well in supporting estrous cycle, ovarian viability and modulating other vital reproductive functions. The present review will discuss dietary and microbial nutrients and their roles and applications in the living body based upon animal or human research, evaluate possible effect mechanisms from molecular, cellular and tissue levels, and provide insights into nutritional therapy for prolonging reproductive lifespan in female patients.
Collapse
Affiliation(s)
- Qixin Han
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
| | - Yanzhi Du
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| |
Collapse
|
19
|
Mei Z, Yuan J, Li D. Biological activity of galacto-oligosaccharides: A review. Front Microbiol 2022; 13:993052. [PMID: 36147858 PMCID: PMC9485631 DOI: 10.3389/fmicb.2022.993052] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
Galacto-oligosaccharides (GOS) are oligosaccharides formed by β-galactosidase transgalactosylation. GOS is an indigestible food component that can pass through the upper gastrointestinal tract relatively intact and ferment in the colon to produce short-chain fatty acids (SCFAs) that further regulate the body’s intestinal flora. GOS and other prebiotics are increasingly recognized as useful food tools for regulating the balance of colonic microbiota-human health. GOS performed well compared to other oligosaccharides in regulating gut microbiota, body immunity, and food function. This review summarizes the sources, classification, preparation methods, and biological activities of GOS, focusing on the introduction and summary of the effects of GOS on ulcerative colitis (UC), to gain a comprehensive understanding of the application of GOS.
Collapse
Affiliation(s)
- Zhaojun Mei
- Department of Pediatrics, Luzhou Maternal and Child Health Hospital, Luzhou Second People’s Hospital, Luzhou, China
| | - Jiaqin Yuan
- Department of Orthopedics, The Second People’s Hospital of Yibin, Yibin, China
| | - Dandan Li
- University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Dandan Li,
| |
Collapse
|
20
|
Supplementation with galacto-oligosaccharides in early life persistently facilitates the microbial colonization of the rumen and promotes growth of preweaning Holstein dairy calves. ANIMAL NUTRITION 2022; 10:223-233. [PMID: 35785255 PMCID: PMC9207549 DOI: 10.1016/j.aninu.2022.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 03/18/2022] [Accepted: 04/10/2022] [Indexed: 11/20/2022]
Abstract
We aimed to determine the effects of dietary supplementation with galacto-oligosaccharides (GOS) on the growth performance, serum parameters, and the rumen microbial colonization and fermentation of pre-weaning dairy calves. The study comprised 2 phases of 28 and 42 d, respectively. During phase 1, 24 newborn female Holstein dairy calves were randomly allocated to consume a diet supplemented with 10 g/d GOS (GOS, n = 12) or not (CON, n = 12). Thereafter, during phase 2, the GOS group was further divided into 2 groups: one that continued to consume GOS (GOSC, n = 6) and one that no longer consumed GOS (GOSS, n = 6), alongside the CON group. Galacto-oligosaccharides increased the average daily gain (ADG), body weight, feed efficiency, and serum high-density lipoprotein-cholesterol concentration of dairy calves during phase 1 (P < 0.05). Supplementation with GOS for the entire study reduced the incidence of diarrhea and increased the serum total protein and Ca concentrations (P < 0.05) compared with the CON group. The effect of GOS supplementation persisted after it was stopped because the ADG and final body weight of the GOSS group were higher than those of the CON group (P < 0.05). Furthermore, the GOSS group showed a persistently lower incidence of diarrhea and greater colonization of the rumen with probiotics, at the expense of less beneficial bacteria, which would promote ruminal fermentation and microbial protein synthesis. These findings provide a theoretical basis for the rational application of prebiotics and have important practical implications for the design of early life dietary interventions in dairy calf rearing.
Collapse
|
21
|
Zhang N, Jin M, Wang K, Zhang Z, Shah NP, Wei H. Functional oligosaccharide fermentation in the gut: Improving intestinal health and its determinant factors-A review. Carbohydr Polym 2022; 284:119043. [PMID: 35287885 DOI: 10.1016/j.carbpol.2021.119043] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 12/17/2022]
Abstract
The human intestine is characterized by an abundance of nutrients and a complex microbiota that make crucial contributions to overall health. These nutrients facilitate the adaptation of resident commensals to extreme environments and the development of a robust ecological network in host species. Long-term deprivation of microbiota-accessible carbohydrates (MACs) in the gut results in a loss of bacterial diversity, disruption of intestinal barrier function, and inflammatory diseases. Functional oligosaccharides are excellent MACs possessing important prebiotic properties for intestinal health through their fermentation in the gut. Its mechanism of action is predominantly attributed to acting as carbon sources for specific probiotics, promoting short-chain fatty acids production, and regulating the gut microbiota. In this review, we describe the source and structural characteristics of functional oligosaccharides, provide a framework for strategies to improve intestinal health by oligosaccharide fermentation and discuss structural determinants influencing the functional properties of oligosaccharides.
Collapse
Affiliation(s)
- Na Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Mingliang Jin
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Kaiming Wang
- Department of Physiology, CEGIIR, University of Alberta, Edmonton T6G 2E1, Alberta, Canada
| | - Zhihong Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China; Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, Jiangxi, China.
| | - Nagendra P Shah
- Food and Nutritional Science, School of Biological Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Hua Wei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China; Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, Jiangxi, China
| |
Collapse
|
22
|
Chen Y, Wang X, Zhang C, Liu Z, Li C, Ren Z. Gut Microbiota and Bone Diseases: A Growing Partnership. Front Microbiol 2022; 13:877776. [PMID: 35602023 PMCID: PMC9121014 DOI: 10.3389/fmicb.2022.877776] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/19/2022] [Indexed: 12/12/2022] Open
Abstract
Gut microbiota is key to human health and disease. Convincing studies have demonstrated that dysbiosis in the commensal gut microbiota is associated with intestinal and extra-intestinal diseases. Recent explorations have significantly contributed to the understanding of the relationship between gut microbiota and bone diseases (osteoporosis, osteoarthritis, rheumatoid arthritis, and bone cancer). Gut microbiota and its metabolites may become associated with the development and progression of bone disorders owing to their critical role in nutrient absorption, immunomodulation, and the gut-brain-bone axis (regulation hormones). In this work, we review the recent developments addressing the effect of gut microbiota modulation on skeletal diseases and explore a feasible preventive approach and therapy for bone diseases.
Collapse
Affiliation(s)
- Yu Chen
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xin Wang
- Department of Orthopaedic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Chunlei Zhang
- Bone Tumour and Bone Disease Department II, Zhengzhou Orthopaedic Hospital, Zhengzhou, China
| | - Zhiyong Liu
- Department of Orthopaedic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Chao Li
- Department of Orthopaedic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhigang Ren
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
23
|
Inczefi O, Bacsur P, Resál T, Keresztes C, Molnár T. The Influence of Nutrition on Intestinal Permeability and the Microbiome in Health and Disease. Front Nutr 2022; 9:718710. [PMID: 35548572 PMCID: PMC9082752 DOI: 10.3389/fnut.2022.718710] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 02/22/2022] [Indexed: 01/09/2023] Open
Abstract
The leakage of the intestinal barrier and the disruption of the gut microbiome are increasingly recognized as key factors in different pathophysiological conditions, such as irritable bowel syndrome (IBS), inflammatory bowel disease (IBD), chronic liver diseases, obesity, diabetes mellitus, types of cancer, and neuropsychiatric disorders. In this study, the mechanisms leading to dysbiosis and "leaky gut" are reviewed, and a short summary of the current knowledge regarding different diseases is provided. The simplest way to restore intestinal permeability and the microbiota could be ideal nutrition. Further therapeutic options are also available, such as the administration of probiotics or postbiotics or fecal microbiota transplantation.
Collapse
Affiliation(s)
- Orsolya Inczefi
- Department of Gastroenterology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Péter Bacsur
- Department of Gastroenterology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Tamás Resál
- Department of Gastroenterology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Csilla Keresztes
- Department for Medical Communication and Translation Studies, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Tamás Molnár
- Department of Gastroenterology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary,*Correspondence: Tamás Molnár,
| |
Collapse
|
24
|
Microbial Composition of a Traditional Fermented Wheat Preparation—Nishasta and Its Role in the Amelioration of Retinoic Acid-Induced Osteoporosis in Rats. FERMENTATION 2022. [DOI: 10.3390/fermentation8040182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Fermented foods have a long history of human use. The purpose of this study was to characterize the microbial composition of a traditional fermented wheat preparation—Nishasta— and to explore its effect in retinoic acid-induced osteoporosis in Wistar rats. The sample was suspended in sterile water (10% w/v), mixed thoroughly, filtered, and gradually diluted. Aliquots of dilutions were cultured in MRS (DeMan–Rogosa–Sharpe) medium, and colonies with similar morphologies were subjected to DNA extraction. The 16S rRNA gene of the isolates was amplified by polymerase chain reaction, checked by agarose gel electrophoresis, and finally identified by sequencing. Anti-osteoporosis screening of Nishasta was carried out in female Wistar rats using retinoic acid as an inducer (70 mg/kg, p.o. once a day for 14 days). Its effect on bone health parameters was determined. The bone metabolism markers such as hydroxyproline (HOP), tartrate-resistant acid phosphatase (TRACP), and alkaline phosphatase (ALP) were evaluated. The results of microbial characterization revealed the presence of ten clones of Lactobacillus plantarum in the fermented preparation with L. plantarum NF3 as the predominant strain. The average microbial count was 2.4 × 103 CFU/g. Retinoic acid administration led to a marked disorder of various bone health markers in rats. It also increased the levels of urine calcium and phosphorus, indicating increased bone destruction. Treatment with fermented wheat (at 200, 100, and 50 mg/kg doses, p.o. daily for 42 days after the induction of osteoporosis) improved bone mineral density in a dose-dependent manner. It also improved the bone microstructure and reduced the levels of ALP, TRACP, and HOP. Micro-CT revealed that it reduced trabecular separation and increased the percent bone volume, trabecular numbers, trabecular thickness, and bone mineral density in the rats. The results showed that the fermented wheat promoted bone formation and prevented bone resorption. Our findings clearly established the effectiveness of Nishasta against osteoporosis in Wistar rats that can be partly attributed to the improved gut calcium absorption and microbiota composition.
Collapse
|
25
|
Orwoll ES, Parimi N, Wiedrick J, Lapidus J, Napoli N, Wilkinson JE, Huttenhower C, Langsetmo L, Kiel DP. Analysis of the Associations Between the Human Fecal Microbiome and Bone Density, Structure, and Strength: The Osteoporotic Fractures in Men (MrOS) Cohort. J Bone Miner Res 2022; 37:597-607. [PMID: 35119137 PMCID: PMC9605688 DOI: 10.1002/jbmr.4518] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/27/2021] [Accepted: 01/13/2022] [Indexed: 11/08/2022]
Abstract
In preclinical models, the composition and function of the gut microbiota have been linked to bone growth and homeostasis, but there are few available data from studies of human populations. In a hypothesis-generating experiment in a large cohort of community-dwelling older men (n = 831; age range, 78-98 years), we explored the associations between fecal microbial profiles and bone density, microarchitecture, and strength measured with total hip dual-energy X-ray absorptiometry (DXA) and high-resolution peripheral quantitative computed tomography (HRpQCT) (distal radius, distal and diaphyseal tibia). Fecal samples were collected and the 16S rRNA gene V4 hypervariable region sequenced. Sequences were bioinformatically processed through the DADA2 pipeline and then taxonomically assigned using SILVA. Generalized linear models as implemented in microbiome multivariable association with linear models (MaAsLin 2) were used to test for associations between skeletal measures and specific microbial genera. The abundances of four bacterial genera were weakly associated with bone density, structure, or strength (false discovery rate [FDR] ≤ 0.05), and the measured directions of associations of genera were generally consistent across multiple bone measures, supporting a role for microbiota on skeletal homeostasis. However, the associated effect sizes were small (log2 fold change < ±0.35), limiting power to confidently identify these associations even with high resolution skeletal imaging phenotypes, and we assessed the resulting implications for the design of future cohort-based studies. As in analogous examples from genomewide association studies, we find that larger cohort sizes will likely be needed to confidently identify associations between the fecal microbiota and skeletal health relying on 16S sequencing. Our findings bolster the view that the gut microbiome is associated with clinically important measures of bone health, while also indicating the challenges in the design of cohort-based microbiome studies. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Eric S Orwoll
- Department of Medicine, Oregon Health & Sciences University, Portland, OR, USA
| | - Neeta Parimi
- San Francisco Coordinating Center, San Francisco, CA, USA
| | - Jack Wiedrick
- Biostatistics & Design Program, Oregon Health & Science University, Portland, OR, USA
| | - Jodi Lapidus
- Biostatistics & Design Program, Oregon Health & Science University, Portland, OR, USA.,Oregon Health & Science University - Portland State University School of Public Health, Portland, OR, USA
| | - Nicola Napoli
- Department of Medicine, Unit of Endocrinology and Diabetes, Campus Bio-Medico University of Rome, Rome, Italy.,Division of Bone and Mineral Diseases, Washington University, St Louis, MO, USA
| | - Jeremy E Wilkinson
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Curtis Huttenhower
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Lisa Langsetmo
- School of Public Health, University of Minnesota, Twin Cities, Minneapolis, MN, USA
| | - Douglas P Kiel
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew Senior Life, Boston, MA, USA.,Department of Medicine, Beth Israel Deaconess Medical Center & Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT & Harvard, Cambridge, MA, USA
| |
Collapse
|
26
|
Wu KC, Cao S, Weaver CM, King NJ, Patel S, Kingman H, Sellmeyer DE, McCauley K, Li D, Lynch SV, Kim TY, Black DM, Shafer MM, Özçam M, Lin DL, Rogers SJ, Stewart L, Carter JT, Posselt AM, Schafer AL. Prebiotic to Improve Calcium Absorption in Postmenopausal Women After Gastric Bypass: A Randomized Controlled Trial. J Clin Endocrinol Metab 2022; 107:1053-1064. [PMID: 34888663 PMCID: PMC8947782 DOI: 10.1210/clinem/dgab883] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT The adverse skeletal effects of Roux-en-Y gastric bypass (RYGB) are partly caused by intestinal calcium absorption decline. Prebiotics, such as soluble corn fiber (SCF), augment colonic calcium absorption in healthy individuals. OBJECTIVE We tested the effects of SCF on fractional calcium absorption (FCA), biochemical parameters, and the fecal microbiome in a post-RYGB population. METHODS Randomized, double-blind, placebo-controlled trial of 20 postmenopausal women with history of RYGB a mean 5 years prior; a 2-month course of 20 g/day SCF or maltodextrin placebo was taken orally. The main outcome measure was between-group difference in absolute change in FCA (primary outcome) and was measured with a gold standard dual stable isotope method. Other measures included tolerability, adherence, serum calciotropic hormones and bone turnover markers, and fecal microbial composition via 16S rRNA gene sequencing. RESULTS Mean FCA ± SD at baseline was low at 5.5 ± 5.1%. Comparing SCF to placebo, there was no between-group difference in mean (95% CI) change in FCA (+3.4 [-6.7, +13.6]%), nor in calciotropic hormones or bone turnover markers. The SCF group had a wider variation in FCA change than placebo (SD 13.4% vs 7.0%). Those with greater change in microbial composition following SCF treatment had greater increase in FCA (r2 = 0.72, P = 0.05). SCF adherence was high, and gastrointestinal symptoms were similar between groups. CONCLUSION No between-group differences were observed in changes in FCA or calciotropic hormones, but wide CIs suggest a variable impact of SCF that may be due to the degree of gut microbiome alteration. Daily SCF consumption was well tolerated. Larger and longer-term studies are warranted.
Collapse
Affiliation(s)
- Karin C Wu
- Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
- Endocrine Research Unit, San Francisco Veterans Affairs Health Care System, San Francisco, CA 94121, USA
| | - Sisi Cao
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA
- Department of Human Sciences, the Ohio State University, Columbus, OH 43210, USA
| | - Connie M Weaver
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA
| | - Nicole J King
- Endocrine Research Unit, San Francisco Veterans Affairs Health Care System, San Francisco, CA 94121, USA
| | - Sheena Patel
- California Pacific Medical Center Research Institute, San Francisco, CA 94107, USA
| | - Hillary Kingman
- Endocrine Research Unit, San Francisco Veterans Affairs Health Care System, San Francisco, CA 94121, USA
| | - Deborah E Sellmeyer
- Department of Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Kathryn McCauley
- Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Danny Li
- Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Susan V Lynch
- Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Tiffany Y Kim
- Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
- Endocrine Research Unit, San Francisco Veterans Affairs Health Care System, San Francisco, CA 94121, USA
| | - Dennis M Black
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA 94143, USA
| | - Martin M Shafer
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Mustafa Özçam
- Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Din L Lin
- Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Stanley J Rogers
- Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Lygia Stewart
- Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA
- Surgical Services, San Francisco Veterans Affairs Health Care System, San Francisco, CA 94121, USA
| | - Jonathan T Carter
- Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Andrew M Posselt
- Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Anne L Schafer
- Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
- Endocrine Research Unit, San Francisco Veterans Affairs Health Care System, San Francisco, CA 94121, USA
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
27
|
You K, Yang L, Shen J, Liu B, Guo Y, Chen T, Li G, Lu H. Relationship between Gut Microbiota and Bone Health. Mini Rev Med Chem 2022; 22:2406-2418. [PMID: 35249483 DOI: 10.2174/1389557522666220304230920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/16/2021] [Accepted: 12/14/2021] [Indexed: 11/22/2022]
Abstract
Gut microbiota (GM) are microorganisms that live in the host gastrointestinal tract, and their abundance varies throughout the host's life. With the development of sequencing technology, the role of GM in various diseases has been increasingly elucidated. Unlike earlier studies on orthopedic diseases, this review elucidates the correlation between GM health and bone health, and discusses the potential mechanism of GM effects on host metabolism, inflammation, and ability to induce or aggravate some common orthopedic diseases such as osteoarthritis, osteoporosis, rheumatoid arthritis, etc. Finally, the prospective methods of GM manipulation and evaluation of potential GM-targeting strategies in the diagnosis and treatment of orthopedic diseases are reviewed.
Collapse
Affiliation(s)
- Ke You
- Department of Spine Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangdong, China
| | - Lianjun Yang
- Department of Spine Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangdong, China
| | - Jun Shen
- Department of Spine Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangdong, China
| | - Bin Liu
- Department of Spine Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangdong, China
| | - Yuanqing Guo
- Department of Spine Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangdong, China
| | - Tao Chen
- Department of Spine Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangdong, China
| | - Guowei Li
- Department of Spine Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangdong, China
| | - Hai Lu
- Department of Spine Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangdong, China
| |
Collapse
|
28
|
de Sire A, de Sire R, Curci C, Castiglione F, Wahli W. Role of Dietary Supplements and Probiotics in Modulating Microbiota and Bone Health: The Gut-Bone Axis. Cells 2022; 11:cells11040743. [PMID: 35203401 PMCID: PMC8870226 DOI: 10.3390/cells11040743] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/04/2022] [Accepted: 02/09/2022] [Indexed: 02/04/2023] Open
Abstract
Osteoporosis is characterized by an alteration of bone microstructure with a decreased bone mineral density, leading to the incidence of fragility fractures. Around 200 million people are affected by osteoporosis, representing a major health burden worldwide. Several factors are involved in the pathogenesis of osteoporosis. Today, altered intestinal homeostasis is being investigated as a potential additional risk factor for reduced bone health and, therefore, as a novel potential therapeutic target. The intestinal microflora influences osteoclasts’ activity by regulating the serum levels of IGF-1, while also acting on the intestinal absorption of calcium. It is therefore not surprising that gut dysbiosis impacts bone health. Microbiota alterations affect the OPG/RANKL pathway in osteoclasts, and are correlated with reduced bone strength and quality. In this context, it has been hypothesized that dietary supplements, prebiotics, and probiotics contribute to the intestinal microecological balance that is important for bone health. The aim of the present comprehensive review is to describe the state of the art on the role of dietary supplements and probiotics as therapeutic agents for bone health regulation and osteoporosis, through gut microbiota modulation.
Collapse
Affiliation(s)
- Alessandro de Sire
- Physical Medicine and Rehabilitation Unit, Department of Medical and Surgical Sciences, University of Catanzaro “Magna Graecia”, 88100 Catanzaro, Italy
- Correspondence: (A.d.S.); (W.W.)
| | - Roberto de Sire
- Gastroenterology Unit, Department of Clinical Medicine and Surgery, University Federico II of Naples, 80126 Naples, Italy; (R.d.S.); (F.C.)
| | - Claudio Curci
- Physical Medicine and Rehabilitation Unit, Department of Neurosciences, ASST Carlo Poma, 46100 Mantova, Italy;
| | - Fabiana Castiglione
- Gastroenterology Unit, Department of Clinical Medicine and Surgery, University Federico II of Naples, 80126 Naples, Italy; (R.d.S.); (F.C.)
| | - Walter Wahli
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, Singapore 308232, Singapore
- Toxalim Research Center in Food Toxicology (UMR 1331), French National Research Institute for Agriculture, Food, and the Environment (INRAE), F-31300 Toulouse, France
- Center for Integrative Genomics, University of Lausanne, Le Génopode, CH-1015 Lausanne, Switzerland
- Correspondence: (A.d.S.); (W.W.)
| |
Collapse
|
29
|
Rizzoli R, Biver E, Brennan-Speranza TC. Nutritional intake and bone health. Lancet Diabetes Endocrinol 2021; 9:606-621. [PMID: 34242583 DOI: 10.1016/s2213-8587(21)00119-4] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 12/12/2022]
Abstract
Osteoporotic or fragility fractures affect one in two women and one in five men who are older than 50. These events are associated with substantial morbidity, increased mortality, and an impaired quality of life. Recommended general measures for fragility fracture prevention include a balanced diet with an optimal protein and calcium intake and vitamin D sufficiency, together with regular weight-bearing physical exercise. In this narrative Review, we discuss the role of nutrients, foods, and dietary patterns in maintaining bone health. Much of this information comes from observational studies. Bone mineral density, microstructure-estimated bone strength, and trabecular and cortical microstructure are positively associated with total protein intake. Several studies indicate that fracture risk might be lower with a higher dietary protein intake, provided that the calcium supply is sufficient. Dairy products are a valuable source of these two nutrients. Hip fracture risk appears to be lower in consumers of dairy products, particularly fermented dairy products. Consuming less than five servings per day of fruit and vegetables is associated with a higher hip fracture risk. Adherence to a Mediterranean diet or to a prudent diet is associated with a lower fracture risk. These various nutrients and dietary patterns influence gut microbiota composition or function, or both. The conclusions of this Review emphasise the importance of a balanced diet including minerals, protein, and fruit and vegetables for bone health and in the prevention of fragility fractures.
Collapse
Affiliation(s)
- René Rizzoli
- Service of Bone Diseases, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland.
| | - Emmanuel Biver
- Service of Bone Diseases, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Tara C Brennan-Speranza
- School of Medical Sciences and School of Public Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
30
|
Lu L, Chen X, Liu Y, Yu X. Gut microbiota and bone metabolism. FASEB J 2021; 35:e21740. [PMID: 34143911 DOI: 10.1096/fj.202100451r] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 02/05/2023]
Abstract
Osteoporosis is the most common metabolic skeletal disease. It is characterized by the deterioration of the skeletal microarchitecture and bone loss, leading to ostealgia, and even bone fractures. Accumulating evidence has indicated that there is an inextricable relationship between the gut microbiota (GM) and bone homeostasis involving host-microbiota crosstalk. Any perturbation of the GM can play an initiating and reinforcing role in disrupting the bone remodeling balance during the development of osteoporosis. Although the GM is known to influence bone metabolism, the mechanisms associated with these effects remain unclear. Herein, we review the current knowledge of how the GM affects bone metabolism in health and disease, summarize the correlation between pathogen-associated molecular patterns of GM structural components and bone metabolism, and discuss the potential mechanisms underlying how GM metabolites regulate bone turnover. Deciphering the complicated relationship between the GM and bone health will provide new insights into the prevention and treatment of osteoporosis.
Collapse
Affiliation(s)
- Lingyun Lu
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China.,Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoxuan Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi Liu
- Department of Rheumatology and Immunology, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xijie Yu
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
31
|
Zhang YW, Li YJ, Lu PP, Dai GC, Chen XX, Rui YF. The modulatory effect and implication of gut microbiota on osteoporosis: from the perspective of "brain-gut-bone" axis. Food Funct 2021; 12:5703-5718. [PMID: 34048514 DOI: 10.1039/d0fo03468a] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Osteoporosis (OP) is a kind of systemic metabolic disease characterized by decreased bone mass and destruction of the bone microstructure. In recent years, it has become an expected research trend to explore the cross-linking relationship in the pathogenesis process of OP so as to develop reasonable and effective intervention strategies. With the further development of intestinal microbiology and the profound exploration of the gut microbiota (GM), it has been further revealed that the "brain-gut" axis may be a potential target for the bone, thereby affecting the occurrence and progression of OP. Hence, based on the concept of "brain-gut-bone" axis, we look forward to deeply discussing and summarizing the cross-linking relationship of OP in the next three parts, including the "brain-bone" connection, "gut-bone" connection, and "brain-gut" connection, so as to provide an emerging thought for the prevention strategies and mechanism researches of OP.
Collapse
Affiliation(s)
- Yuan-Wei Zhang
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China. and Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China and School of Medicine, Southeast University, Nanjing, Jiangsu, China and Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, China and Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Ying-Juan Li
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China and Department of Geriatrics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Pan-Pan Lu
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China. and Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China and School of Medicine, Southeast University, Nanjing, Jiangsu, China and Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, China and Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Guang-Chun Dai
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China. and Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China and School of Medicine, Southeast University, Nanjing, Jiangsu, China and Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, China and Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Xiang-Xu Chen
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China. and Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China and School of Medicine, Southeast University, Nanjing, Jiangsu, China and Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, China and Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Yun-Feng Rui
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China. and Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China and School of Medicine, Southeast University, Nanjing, Jiangsu, China and Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, China and Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
32
|
Nutritional and therapeutic approaches for protecting human gut microbiota from psychotropic treatments. Prog Neuropsychopharmacol Biol Psychiatry 2021; 108:110182. [PMID: 33232785 DOI: 10.1016/j.pnpbp.2020.110182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/05/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023]
Abstract
Emerging evidence highlighted the essential role played by the microbiota-gut-brain axis in maintaining human homeostasis, including nutrition, immunity, and metabolism. Much recent work has linked the gut microbiota to many psychiatric and neurodegenerative disorders such as depression, schizophrenia, and Alzheimer's disease. Shared gut microbiota alterations or dysbiotic microbiota have been identified in these separate disorders relative to controls. Much attention has focused on the bidirectional interplay between the gut microbiota and the brain, establishing gut dysbiotic status as a critical factor in psychiatric disorders. Still, the antibiotic-like effect of psychotropic drugs, medications used for the treatment of these disorders, on gut microbiota is largely neglected. In this review, we summarize the current findings on the impact of psychotropics on gut microbiota and how their antimicrobial potency can trigger dysbiosis. We also discuss the potential therapeutic strategies, including probiotics, prebiotics, and fecal transplantation, to attenuate the dysbiosis related to psychotropics intake.
Collapse
|
33
|
Tu Y, Yang R, Xu X, Zhou X. The microbiota-gut-bone axis and bone health. J Leukoc Biol 2021; 110:525-537. [PMID: 33884666 DOI: 10.1002/jlb.3mr0321-755r] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/16/2021] [Accepted: 04/05/2021] [Indexed: 02/05/2023] Open
Abstract
The gastrointestinal tract is colonized by trillions of microorganisms, consisting of bacteria, fungi, and viruses, known as the "second gene pool" of the human body. In recent years, the microbiota-gut-bone axis has attracted increasing attention in the field of skeletal health/disorders. The involvement of gut microbial dysbiosis in multiple bone disorders has been recognized. The gut microbiota regulates skeletal homeostasis through its effects on host metabolism, immune function, and hormonal secretion. Owing to the essential role of the gut microbiota in skeletal homeostasis, novel gut microbiota-targeting therapeutics, such as probiotics and prebiotics, have been proven effective in preventing bone loss. However, more well-controlled clinical trials are still needed to evaluate the long-term efficacy and safety of these ecologic modulators in the treatment of bone disorders.
Collapse
Affiliation(s)
- Ye Tu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Ran Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Xin Xu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| |
Collapse
|
34
|
Ai T, Hao L, Shang L, Wang L, Li B, Li J. Konjac Oligosaccharides Modulate the Gut Environment and Promote Bone Health in Calcium-Deficient Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4412-4422. [PMID: 33832226 DOI: 10.1021/acs.jafc.0c07839] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This study aimed to investigate the beneficial effect of konjac oligosaccharides (KOS) on bone health in calcium-deficient mice. During the experimental period, low-calcium diet-fed mice were administered with calcium chloride to simulate daily calcium supplementation. Meanwhile, different levels of KOS intervened by adding them into the diet. After 8 weeks, the calcium balance status, bone mass parameters, and gut environment modulation were evaluated. The results showed that dietary KOS intervention alleviated the negative calcium balance, significantly promoted the trabecular number and cortical thickness, and remarkably enhanced the skeletal mechanical strength. Moreover, Pearson's correlation analysis among significantly changed gut microbiota, gut metabolites, and relevant physiological indexes showed that the microbial genera of Lactobacillus, Bifidobacterium, Mucispirillum, Alistipes, and unidentified Clostridia and gut metabolites of kynurenine and testosterone were significantly associated with increased bone mass. These findings provided a new insight into the effect of prebiotics on bone health.
Collapse
Affiliation(s)
- Tingyang Ai
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Lulu Hao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Longchen Shang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Ling Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Jing Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| |
Collapse
|
35
|
Production of high-purity galacto-oligosaccharides (GOS) by Lactobacillus-derived β-galactosidase. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03727-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Gao H, Zhou Z. Effect of Xylo-Oligosaccharides Supplementation by Drinking Water on the Bone Properties and Related Calcium Transporters in Growing Mice. Nutrients 2020; 12:nu12113542. [PMID: 33228037 PMCID: PMC7699350 DOI: 10.3390/nu12113542] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/15/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022] Open
Abstract
Xylo-oligosaccharides (XOS), non-digestible oligosaccharides, have the potential to regulate intestinal microorganisms, and thus, improve host health, but little evidence exists for the prebiotic effects on bone health. This study evaluates the dose-response effect of XOS supplementation on bone properties, the morphology of the intestine, cecum pH, and cecum wall weight, as well as the related calcium transporters. Ninety-six 28-day-old male mice were randomized into one of four groups, fed the same commercial diet, and given different types of deionized water containing 0, 1, 2, or 4% XOS by concentration for 30 days. Eight mice were randomly selected to accomplish particular tasks every 10 days. No significant differences in serum Ca and P levels and growth performance were observed among the four studied groups. XOS intervention significantly decreased cecum pH and increased cecum wall weight in a dose-dependent manner. At the late growth stage, compared with 0% XOS, the bone mineral density (BMD) and bone-breaking strength in 4% XOS were significantly higher. The bone crystallinity with 4% XOS, measured by Raman spectrum, was significantly enhanced compared to that with 0% XOS during later growth. The villus height and villus height to crypt depth (VH:CD) were enhanced with an increase of XOS concentration during the later stage of growth. The expression of transient receptor potential vanillin receptor 6 (TRPV6) and Na+/Ca2+ exchanger 1 (NCX1) in the duodenum were enhanced by XOS supplementation. XOS exerted a positive influence on bone properties by decreasing the cecum pH, increasing the cecum wall and villus structure, and upregulating the expression of related calcium transporters.
Collapse
|
37
|
Cao S, Cladis DP, Weaver CM. Use of Calcium Isotopic Tracers To Determine Factors That Perturb Calcium Metabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12886-12892. [PMID: 32299214 DOI: 10.1021/acs.jafc.0c01641] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Calcium plays an important role in maintaining bone health. Ensuring adequate calcium intake throughout life is essential for reaching greater peak bone mass in young adulthood and lowering osteoporotic fracture risk when aging. Calcium homeostasis involves a complex interaction between three organ systems: intestine, kidney, and bone. Metabolic balance plus kinetic studies using calcium isotopic tracers can estimate calcium metabolism parameters and pinpoint how organs and processes are perturbed by internal and external modifiers. Both modifiable factors (e.g., vitamin D supplementations and dietary bioactives) and non-modifiable factors (e.g., age, sex, and race) influence calcium utilization. Current evidence suggests that prebiotic fibers may offer an alternative approach to enhance calcium absorption through altering gut microbiota to ultimately improve bone health.
Collapse
Affiliation(s)
- Sisi Cao
- Department of Nutrition Science, Purdue University, West Lafayette, Indiana 47907, United States
| | - Dennis P Cladis
- Department of Food Science, Purdue University, West Lafayette, Indiana 47907, United States
| | - Connie M Weaver
- Department of Food Science, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
38
|
Liu X, Fan J, Hu J, Li F, Yi R, Tan F, Zhao X. Lactobacillus Fermentum ZS40 prevents secondary osteoporosis in Wistar Rat. Food Sci Nutr 2020; 8:5182-5191. [PMID: 32994978 PMCID: PMC7500759 DOI: 10.1002/fsn3.1824] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/21/2020] [Accepted: 07/24/2020] [Indexed: 12/02/2022] Open
Abstract
Using retinoic acid to inducer, we successfully established a rat model of secondary osteoporosis and verified the preventive effect of Lactobacillus fermentum ZS40 (ZS40) on secondary osteoporosis. Serum biochemical indicators showed that ZS40 can effectively slow down bone resorption caused by retinoic acid, increase blood content of calcium, phosphorus, bone alkaline phosphatase, bone gla protein, and insulin-like growth factor 1, and decrease blood content of tartrate-resistant acid phosphatase (TRAP) 5b. qRT-PCR results showed that ZS40 could upregulate mRNA expressions of β-catenin, Wnt10b, Lrp5, Lrp6, Runx2, ALP, RANKL, and OPG, and downregulate mRNA expression of DKK1, RANK, TRACP, and CTSK in the rats' spinal cord. Results following TRAP staining showed that ZS40 could slow down retinoic acid-induced formation of osteoclasts. Micro-CT results showed that ZS40 could reduce Tb.Sp, increase BV/TV, Tb.N, Tb.Th, and ultimately increase bone mineral density of rats in vivo. These findings indicate that ZS40 might have a potential role in preventing retinoic acid-induced secondary osteoporosis in vivo.
Collapse
Affiliation(s)
- Xinhong Liu
- Chongqing Collaborative Innovation Center for Functional FoodChongqing University of EducationChongqingChina
- Chongqing Engineering Research Center of Functional FoodChongqing University of EducationChongqingChina
- Chongqing Engineering Laboratory for ResearchDevelopment of Functional FoodChongqing University of EducationChongqingChina
- College of Biological and Chemical EngineeringChongqing University of EducationChongqingChina
| | - Jian‐Bo Fan
- Department of OrthopedicsChengdu Qingbaijiang District Traditional Chinese Medicine HospitalChengduChina
| | - Jing Hu
- Chongqing Collaborative Innovation Center for Functional FoodChongqing University of EducationChongqingChina
- Chongqing Engineering Research Center of Functional FoodChongqing University of EducationChongqingChina
- Chongqing Engineering Laboratory for ResearchDevelopment of Functional FoodChongqing University of EducationChongqingChina
| | - Fang Li
- Chongqing Collaborative Innovation Center for Functional FoodChongqing University of EducationChongqingChina
- Chongqing Engineering Research Center of Functional FoodChongqing University of EducationChongqingChina
- Chongqing Engineering Laboratory for ResearchDevelopment of Functional FoodChongqing University of EducationChongqingChina
- College of Biological and Chemical EngineeringChongqing University of EducationChongqingChina
| | - Ruokun Yi
- Chongqing Collaborative Innovation Center for Functional FoodChongqing University of EducationChongqingChina
- Chongqing Engineering Research Center of Functional FoodChongqing University of EducationChongqingChina
- Chongqing Engineering Laboratory for ResearchDevelopment of Functional FoodChongqing University of EducationChongqingChina
| | - Fang Tan
- Department of Public HealthOur Lady of Fatima UniversityValenzuela CityPhilippines
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional FoodChongqing University of EducationChongqingChina
- Chongqing Engineering Research Center of Functional FoodChongqing University of EducationChongqingChina
- Chongqing Engineering Laboratory for ResearchDevelopment of Functional FoodChongqing University of EducationChongqingChina
| |
Collapse
|
39
|
Rutkiewicz M, Wanarska M, Bujacz A. Mapping the Transglycosylation Relevant Sites of Cold-Adapted β-d-Galactosidase from Arthrobacter sp. 32cB. Int J Mol Sci 2020; 21:E5354. [PMID: 32731412 PMCID: PMC7432029 DOI: 10.3390/ijms21155354] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 11/16/2022] Open
Abstract
β-Galactosidase from Arthrobacter sp. 32cB (ArthβDG) is a cold-adapted enzyme able to catalyze hydrolysis of β-d-galactosides and transglycosylation reaction, where galactosyl moiety is being transferred onto an acceptor larger than a water molecule. Mutants of ArthβDG: D207A and E517Q were designed to determine the significance of specific residues and to enable formation of complexes with lactulose and sucrose and to shed light onto the structural basis of the transglycosylation reaction. The catalytic assays proved loss of function mutation E517 into glutamine and a significant drop of activity for mutation of D207 into alanine. Solving crystal structures of two new mutants, and new complex structures of previously presented mutant E441Q enables description of introduced changes within active site of enzyme and determining the importance of mutated residues for active site size and character. Furthermore, usage of mutants with diminished and abolished enzymatic activity enabled solving six complex structures with galactose, lactulose or sucrose bounds. As a result, not only the galactose binding sites were mapped on the enzyme's surface but also the mode of lactulose, product of transglycosylation reaction, and binding within the enzyme's active site were determined and the glucopyranose binding site in the distal of active site was discovered. The latter two especially show structural details of transglycosylation, providing valuable information that may be used for engineering of ArthβDG or other analogous galactosidases belonging to GH2 family.
Collapse
Affiliation(s)
- Maria Rutkiewicz
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz, Poland;
- Macromolecular Structure and Interaction, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Marta Wanarska
- Department of Molecular Biotechnology and Microbiology, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland;
| | - Anna Bujacz
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz, Poland;
| |
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW Calcium and vitamin D supplementation is recommended for patients at high risk of fracture and/or for those receiving pharmacological osteoporosis treatments. Probiotics are micro-organisms conferring a health benefit on the host when administered in adequate amounts, likely by influencing gut microbiota (GM) composition and/or function. GM has been shown to influence various determinants of bone health. RECENT FINDINGS In animal models, probiotics prevent bone loss associated with estrogen deficiency, diabetes, or glucocorticoid treatments, by modulating both bone resorption by osteoclasts and bone formation by osteoblast. In humans, they interfere with 25-hydroxyvitamin D levels, and calcium intake and absorption, and slightly decrease bone loss in elderly postmenopausal women, in a quite similar magnitude as observed with calcium ± vitamin D supplements. A dietary source of probiotics is fermented dairy products which can improve calcium balance, prevent secondary hyperparathyroidism, and attenuate age-related increase of bone resorption and bone loss. Additional studies are required to determine whether probiotics or any other interventions targeting GM and its metabolites may be adjuvant treatment to calcium and vitamin D or anti-osteoporotic drugs in the general management of patients with bone fragility.
Collapse
Affiliation(s)
- René Rizzoli
- Service of Bone Diseases, Geneva University Hospitals and Faculty of Medicine, 1211, Geneva 14, Switzerland.
| | - Emmanuel Biver
- Service of Bone Diseases, Geneva University Hospitals and Faculty of Medicine, 1211, Geneva 14, Switzerland
| |
Collapse
|
41
|
Behera J, Ison J, Tyagi SC, Tyagi N. The role of gut microbiota in bone homeostasis. Bone 2020; 135:115317. [PMID: 32169602 PMCID: PMC8457311 DOI: 10.1016/j.bone.2020.115317] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/27/2020] [Accepted: 03/10/2020] [Indexed: 02/08/2023]
Abstract
The gut microbiota (GM) is referred to as the second gene pool of the human body and a commensal, symbiotic, and pathogenic microorganism living in our intestines. The knowledge of the complex interaction between intestinal microbiota and health outcomes is a novel and rapidly expanding the field. Earlier studies have reported that the microbial communities affect the cellular responses and shape many aspects of physiology and pathophysiology within the body, including muscle and bone metabolism (formation and resorption). GM influences the skeletal homeostasis via affecting the host metabolism, immune function, hormone secretion, and the gut-brain axis. The premise of this review is to discuss the role of GM on bone homeostasis and skeletal muscle mass function. This review also opens up new perspectives for pathophysiological studies by establishing the presence of a 'microbiota-skeletal' axis and raising the possibility of innovative new treatments for skeletal development.
Collapse
Affiliation(s)
- Jyotirmaya Behera
- Bone Biology Laboratory, Department of Physiology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Jessica Ison
- Bone Biology Laboratory, Department of Physiology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Suresh C Tyagi
- Bone Biology Laboratory, Department of Physiology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Neetu Tyagi
- Bone Biology Laboratory, Department of Physiology, School of Medicine, University of Louisville, Louisville, KY 40202, USA.
| |
Collapse
|
42
|
Quintero-García M, Gutiérrez-Cortez E, Rojas-Molina A, Mendoza-Ávila M, Del Real A, Rubio E, Jiménez-Mendoza D, Rojas-Molina I. Calcium Bioavailability of Opuntia ficus-indica Cladodes in an Ovariectomized Rat Model of Postmenopausal Bone Loss. Nutrients 2020; 12:E1431. [PMID: 32429103 PMCID: PMC7284886 DOI: 10.3390/nu12051431] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/08/2020] [Accepted: 05/12/2020] [Indexed: 01/01/2023] Open
Abstract
Osteoporosis is a disease of the skeletal system characterized by low bone mass and bone weakening, which increase the risk of fracture. This disease is associated with menopause because hypoestrogenism induces the maturation and activation of osteoclasts. In addition, a low dietary intake of calcium leads to low bone mineral density and postmenopausal osteoporosis. The objectives of this work were to determine calcium bioavailability of Opuntia ficus-indica cladodes at a late maturity stage and to assess its contribution in improving bone health in an ovariectomized rat model. Two-month-old Wistar female rats (n = 35) were used and distributed in seven experimental groups: (i) control group (Crtl), (ii) sham group (SH), (iii) ovariectomized group (OVX), (iv) ovariectomized group supplemented with calcium citrate (CCa), (v) ovariectomized group supplemented with O. ficus-indica powder (NI), (vi) ovariectomized group supplemented with soluble fiber from O. ficus-indica (FS) and (vii) ovariectomized group supplemented with insoluble fiber from O. ficus-indica (FI). Our results showed that calcium in the soluble fiber of O. ficus-indica is bioavailable and contributes to improve the physical, densitometric, biomechanical and microstructural properties of bones in ovariectomized rats. These findings indicated that O. ficus-indica cladodes at a late maturity stage represent a good source of bioavailable calcium and consumption of these cladodes might be beneficial for the prevention of osteoporosis and other bone diseases.
Collapse
Affiliation(s)
- Michelle Quintero-García
- Programa de Maestría en Ciencias Químico Biológicas, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro C.P. 76010, Mexico;
- Laboratorio de Química Medicinal, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro C.P. 76010, Mexico;
| | - Elsa Gutiérrez-Cortez
- Laboratorio de procesos de transformación y tecnologías emergentes en alimentos, Facultad de Estudios Superiores-Cuautitlán, Universidad Nacional Autónoma de México, Km 2.5 Carretera Cuautitlán–Teoloyucan, San Sebastián Xhala, Cuautitlán-Izcalli C.P. 54714, Mexico;
| | - Alejandra Rojas-Molina
- Laboratorio de Química Medicinal, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro C.P. 76010, Mexico;
| | - Monsserrat Mendoza-Ávila
- Programa de Maestría en Ciencias de la Nutrición Humana, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av. de las Ciencias S/N, Juriquilla C.P. 76230, Querétaro, Mexico;
| | - Alicia Del Real
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Juriquilla C.P. 7600, Querétaro, Mexico;
| | - Efraín Rubio
- Centro Universitario de Vinculación y Transferencia de Tecnología, Benemérita Universidad Autónoma de Puebla, Centro Universitario, Col. San Manuel S/N, Puebla C.P. 72540, Mexico;
| | - Daniel Jiménez-Mendoza
- Departamento de Ingeniería Física, División de Ciencias e Ingenierías, Universidad de Guanajuato, Campus León, Lomas del Bosque 103, Col. Lomas del Campestre, León C.P. 37150, Guanajuato, Mexico;
- Departamento de Ingeniería Electromecánica, Tecnológico Nacional de México/ITS de Purísima del Rincón. Blvd. Del Valle 2301, Col. Guardarrayas, Purísima del Rincón C.P. 36413, Guanajuato, Mexico
| | - Isela Rojas-Molina
- Laboratorio de Química Medicinal, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro C.P. 76010, Mexico;
| |
Collapse
|
43
|
Fan Z, Yang B, Ross RP, Stanton C, Shi G, Zhao J, Zhang H, Chen W. Protective effects of Bifidobacterium adolescentis on collagen-induced arthritis in rats depend on timing of administration. Food Funct 2020; 11:4499-4511. [PMID: 32383727 DOI: 10.1039/d0fo00077a] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Emerging studies have addressed the role of probiotics in inflammation modulation via modifying gut microbiota. Perturbed gut microbiota is recognized as a pivotal trigger in the pathogenesis of rheumatoid arthritis (RA), and manipulating gut microbiota at the early phase may be helpful to alleviate the disease based on the fact that dysbiosis occurred prior to clinical arthritis. The current study compared the effects of preventive and therapeutic treatment with Bifidobacterium adolescentis on collagen induced arthritis (CIA) in rats. Early B. adolescentis administration before CIA modelling performed better than late B. adolescentis treatment in reducing the clinical symptoms, rebalancing the pro- and anti-inflammatory responses and maintaining the fecal concentration of short chain fatty acids (SCFAs), as well as restoring the intestinal dysbiosis. Preventive B. adolescentis treatment restored the gut microbiota to a normal level while late B. adolescentis fed rats showed clearly different gut microbial profiles. In addition, there were slight discrepancies between early- and late- treatment of B. adolescentis in the production of specific auto-antibodies and tight junction proteins. All those results highlighted that early treatment of probiotics in arthritis might be a better timing for alleviating arthritis.
Collapse
Affiliation(s)
- Zhexin Fan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Paiva IHR, Duarte-Silva E, Peixoto CA. The role of prebiotics in cognition, anxiety, and depression. Eur Neuropsychopharmacol 2020; 34:1-18. [PMID: 32241688 DOI: 10.1016/j.euroneuro.2020.03.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/18/2020] [Accepted: 03/06/2020] [Indexed: 12/13/2022]
Abstract
The disruption of the gut microbial composition, defined as dysbiosis, has been associated with many neurological disorders with inflammatory components. The alteration of the gut microbiota leads to an increase in pro-inflammatory cytokines that are associated with metabolic diseases (such as obesity and type 2 diabetes), autoimmune arthritis, and neuropsychiatric diseases. Prebiotics are defined as non-digestible carbohydrates and promote the growth of beneficial bacteria such as bifidobacteria and lactobacillus, exert beneficial effects on improving dysbiosis and its associated inflammatory state. Preclinical and clinical data indicated that some prebiotics also have positive impacts on the central nervous system (CNS) due to the modulation of neuroinflammation and thus may have a key role in the modulation of cognitive impairment, anxiety, and depression. The present manuscript reviews the state-of-art of the effects of prebiotics in cognitive impairment, anxiety, and depressive disorders. Data from clinical studies are still scarce, and further clinical trials are needed to corroborate the potential therapeutic cognitive, antidepressant, and anxiolytic of prebiotics. Prebiotics may provide patients suffering from cognitive deficits, depression, and anxiety with a new tool to minimize disease symptoms and increase the quality of life.
Collapse
Affiliation(s)
- Igor Henrique R Paiva
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Avenida Professor Moraes Rego, s/n, Cidade Universitária, 50.670-420 Recife, PE, Brazil; Postgraduate Program in Biological Sciences (PPGCB), Federal University of Pernambuco (UFPE), Brazil
| | - Eduardo Duarte-Silva
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Avenida Professor Moraes Rego, s/n, Cidade Universitária, 50.670-420 Recife, PE, Brazil; Postgraduate Program in Biosciences and Biotechnology for Health (PPGBBS), Oswaldo Cruz Foundation (FIOCRUZ-PE)/Aggeu Magalhães Institute (IAM), Recife, PE, Brazil
| | - Christina Alves Peixoto
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Avenida Professor Moraes Rego, s/n, Cidade Universitária, 50.670-420 Recife, PE, Brazil; National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.
| |
Collapse
|
45
|
Lawenius L, Scheffler JM, Gustafsson KL, Henning P, Nilsson KH, Colldén H, Islander U, Plovier H, Cani PD, de Vos WM, Ohlsson C, Sjögren K. Pasteurized Akkermansia muciniphila protects from fat mass gain but not from bone loss. Am J Physiol Endocrinol Metab 2020; 318:E480-E491. [PMID: 31961709 PMCID: PMC7191407 DOI: 10.1152/ajpendo.00425.2019] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 02/07/2023]
Abstract
Probiotic bacteria can protect from ovariectomy (ovx)-induced bone loss in mice. Akkermansia muciniphila is considered to have probiotic potential due to its beneficial effect on obesity and insulin resistance. The purpose of the present study was to determine if treatment with pasteurized Akkermansia muciniphila (pAkk) could prevent ovx-induced bone loss. Mice were treated with vehicle or pAkk for 4 wk, starting 3 days before ovx or sham surgery. Treatment with pAkk reduced fat mass accumulation confirming earlier findings. However, treatment with pAkk decreased trabecular and cortical bone mass in femur and vertebra of gonadal intact mice and did not protect from ovx-induced bone loss. Treatment with pAkk increased serum parathyroid hormone (PTH) levels and increased expression of the calcium transporter Trpv5 in kidney suggesting increased reabsorption of calcium in the kidneys. Serum amyloid A 3 (SAA3) can suppress bone formation and mediate the effects of PTH on bone resorption and bone loss in mice and treatment with pAkk increased serum levels of SAA3 and gene expression of Saa3 in colon. Moreover, regulatory T cells can be protective of bone and pAkk-treated mice had decreased number of regulatory T cells in mesenteric lymph nodes and bone marrow. In conclusion, treatment with pAkk protected from ovx-induced fat mass gain but not from bone loss and reduced bone mass in gonadal intact mice. Our findings with pAkk differ from some probiotics that have been shown to protect bone mass, demonstrating that not all prebiotic and probiotic factors have the same effect on bone.
Collapse
Affiliation(s)
- Lina Lawenius
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Julia M Scheffler
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Karin L Gustafsson
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Petra Henning
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Karin H Nilsson
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Hannah Colldén
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Ulrika Islander
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Hubert Plovier
- Université Catholique de Louvain, Louvain Drug Research Institute, WELBIO (Walloon Excellence in Life Sciences and BIOtechnology), Metabolism and Nutrition Research Group, Brussels, Belgium
| | - Patrice D Cani
- Université Catholique de Louvain, Louvain Drug Research Institute, WELBIO (Walloon Excellence in Life Sciences and BIOtechnology), Metabolism and Nutrition Research Group, Brussels, Belgium
| | - Willem M de Vos
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Claes Ohlsson
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Klara Sjögren
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
46
|
The Interplay between Immune System and Microbiota in Osteoporosis. Mediators Inflamm 2020; 2020:3686749. [PMID: 32184701 PMCID: PMC7061131 DOI: 10.1155/2020/3686749] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/27/2020] [Accepted: 02/04/2020] [Indexed: 01/04/2023] Open
Abstract
Osteoporosis is a disease characterized by low bone mass and alterations of bone microarchitecture, with an increased risk of fractures. It is a multifactorial disorder that is more frequent in postmenopausal women but can be associated to other diseases (inflammatory and metabolic diseases). At present, several options are available to treat osteoporosis trying to block bone reabsorption and reduce the risk of fracture. Anyway, these drugs have safety and tolerance problems in long-term treatment. Recently, gut microbiota has been highlighted to have strong influence on bone metabolism, becoming a potential new target to modify bone mineral density. Such evidences are mainly based on mouse models, showing an involvement in modulating the interaction between the immune system and bone cells. Germ-free mice represent a basic model to understand the interaction between microbiota, immune system, and bone cells, even though data are controversial. Anyway, such models have unequivocally demonstrated a connection between such systems, even if the mechanism is unclear. Gut microbiota is a complex system that influences calcium and vitamin D absorption and modulates gut permeability, hormonal secretion, and immune response. A key role is played by the T helper 17 lymphocytes, TNF, interleukin 17, and RANK ligand system. Other important pathways include NOD1, NOD2, and Toll-like receptor 5. Prebiotics and probiotics are a wide range of substances and germs that can influence and modify microbiota. Several studies demonstrated actions by different prebiotics and probiotics in different animals, differing according to sex, age, and hormonal status. Data on the effects on humans are poor and controversial. Gut microbiota manipulation appears a possible strategy to prevent and treat osteopenia and/or osteoporosis as well as other possible bone alterations, even though further clinical studies are necessary to identify correct procedures in humans.
Collapse
|
47
|
Xing YY, Li KN, Xu YQ, Wu YZ, Shi LL, Guo SW, Yan SM, Jin X, Shi BL. Effects of galacto-oligosaccharide on growth performance, feacal microbiota, immune response and antioxidant capability in weaned piglets. JOURNAL OF APPLIED ANIMAL RESEARCH 2020. [DOI: 10.1080/09712119.2020.1732394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Yuan-yuan Xing
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
| | - Ke-nan Li
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
| | - Yuan-qing Xu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
| | - Ying-zhao Wu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
| | - Lu-lu Shi
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
| | - Shi-wei Guo
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
| | - Su-mei Yan
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
| | - Xiao Jin
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
| | - Bin-lin Shi
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
| |
Collapse
|
48
|
Guo D, Liu W, Zhang X, Zhao M, Zhu B, Hou T, He H. Duck Egg White–Derived Peptide VSEE (Val‐Ser‐Glu‐Glu) Regulates Bone and Lipid Metabolisms by Wnt/β‐Catenin Signaling Pathway and Intestinal Microbiota. Mol Nutr Food Res 2019; 63:e1900525. [DOI: 10.1002/mnfr.201900525] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/30/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Danjun Guo
- College of Food Science and TechnologyHuazhong Agricultural University Wuhan 430070 China
| | - Weiwei Liu
- College of Food Science and TechnologyHuazhong Agricultural University Wuhan 430070 China
| | - Xing Zhang
- College of Food Science and TechnologyHuazhong Agricultural University Wuhan 430070 China
| | - Mengge Zhao
- College of Food Science and TechnologyHuazhong Agricultural University Wuhan 430070 China
| | - Biyang Zhu
- College of Food Science and TechnologyHuazhong Agricultural University Wuhan 430070 China
| | - Tao Hou
- College of Food Science and TechnologyHuazhong Agricultural University Wuhan 430070 China
| | - Hui He
- College of Food Science and TechnologyHuazhong Agricultural University Wuhan 430070 China
| |
Collapse
|
49
|
Lactobacillus paracasei HII01, xylooligosaccharide and synbiotics improve tibial microarchitecture in obese-insulin resistant rats. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
50
|
Zaiss MM, Jones RM, Schett G, Pacifici R. The gut-bone axis: how bacterial metabolites bridge the distance. J Clin Invest 2019; 129:3018-3028. [PMID: 31305265 DOI: 10.1172/jci128521] [Citation(s) in RCA: 221] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The gut microbiome is a key regulator of bone health that affects postnatal skeletal development and skeletal involution. Alterations in microbiota composition and host responses to the microbiota contribute to pathological bone loss, while changes in microbiota composition that prevent, or reverse, bone loss may be achieved by nutritional supplements with prebiotics and probiotics. One mechanism whereby microbes influence organs of the body is through the production of metabolites that diffuse from the gut into the systemic circulation. Recently, short-chain fatty acids (SCFAs), which are generated by fermentation of complex carbohydrates, have emerged as key regulatory metabolites produced by the gut microbiota. This Review will focus on the effects of SCFAs on the musculoskeletal system and discuss the mechanisms whereby SCFAs regulate bone cells.
Collapse
Affiliation(s)
- Mario M Zaiss
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | | | - Georg Schett
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Roberto Pacifici
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University, Atlanta, Georgia, USA.,Immunology and Molecular Pathogenesis Program, Emory University, Atlanta, Georgia, USA
| |
Collapse
|