1
|
Jimenez-Sanchez M, Celiberto LS, Yang H, Sham HP, Vallance BA. The gut-skin axis: a bi-directional, microbiota-driven relationship with therapeutic potential. Gut Microbes 2025; 17:2473524. [PMID: 40050613 PMCID: PMC11901370 DOI: 10.1080/19490976.2025.2473524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/20/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
This review explores the emerging term "gut-skin axis" (GSA), describing the bidirectional signaling that occurs between the skin and the gastrointestinal tract under both homeostatic and disease conditions. Central to GSA communication are the gut and skin microbiota, the microbial communities that colonize these barrier surfaces. By influencing diverse host pathways, including innate immune, vitamin D receptor, and Aryl hydrocarbon receptor signaling, a balanced microbiota contributes to both tissue homeostasis and host defense. In contrast, microbiota imbalance, or dysbiosis at one site, can lead to local barrier dysfunction, resulting in the activation of signaling pathways that can disrupt tissue homeostasis at the other site, potentially leading to inflammatory skin conditions such as atopic dermatitis and psoriasis, or gut diseases like Inflammatory Bowel Disease. To date, most research on the GSA has examined the impact of the gut microbiota and diet on skin health, but recent studies show that exposing the skin to ultraviolet B-light can beneficially modulate both the gut microbiome and intestinal health. Thus, despite the traditional focus of clinicians and researchers on these organ systems as distinct, the GSA offers new opportunities to better understand the pathogenesis of cutaneous and gastrointestinal diseases and promote health at both sites.
Collapse
Affiliation(s)
- Maira Jimenez-Sanchez
- Department of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, Canada
| | - Larissa S. Celiberto
- Department of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, Canada
| | - Hyungjun Yang
- Department of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, Canada
| | - Ho Pan Sham
- Department of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, Canada
| | - Bruce A. Vallance
- Department of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, Canada
| |
Collapse
|
2
|
He B, Wei Y, Wang Y, Zhong Y, Fan M, Gong Q, Lu S, Hassan MU, Li X. Silicon application improves tomato yield and nutritional quality. BMC PLANT BIOLOGY 2025; 25:252. [PMID: 39994511 PMCID: PMC11852564 DOI: 10.1186/s12870-025-06249-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 02/12/2025] [Indexed: 02/26/2025]
Abstract
BACKGROUND Silicon (Si) is a beneficial nutrient well-known for its functions in enhancing plant resistance to abiotic and biotic stresses. How Si application affects tomato yield and quality and underlying physiological mechanisms remain largely unclear. RESULTS Our pot experiment showed that Si application (45 kg ha⁻¹ Na₂SiO₃) significantly promoted accumulation of nitrogen, phosphorus, potassium, and Si in the shoot of soil-cultured tomato in the greenhouse. Such improved mineral nutrition favored Si-applied plant performance in terms of plant height, stem diameter, single fruit weight, and yield, as indicated by significant increases of 11.34%, 53.57%, 62.12%, and 33.81%, respectively, when compared to the control (0 kg ha⁻¹ Na₂SiO₃). Higher catalase and superoxide dismutase activities in contrast to lower concentrations of hydrogen peroxide and malondialdehyde in the fruit suggested that Si application facilitated plant health. Importantly, Si upregulated expression of phytoene synthase and carotenoid isomerase and enhanced corresponding enzyme activities, resulting in higher lycopene concentrations in the fruit. Si also stimulated expression of vitamin C synthesis genes (GDP-D-mannose-3', 5'-isomerase, GDP-L-galactose phosphorylase, dehydroascorb-ate reductase, and monodehydroascorbate reductase) for higher levels of vitamin C accumulation. CONCLUSION Si promoted tomato health, yield, and nutritional quality at the physiological and molecular level, favoring quality fruit production towards sustainable agricultural development.
Collapse
Affiliation(s)
- Boyi He
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Yuxuan Wei
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Yongqi Wang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Yanting Zhong
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Meng Fan
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Qinyi Gong
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Sibo Lu
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Mahmood Ul Hassan
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
- Department of Ecology and Ecological Engineering, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Xuexian Li
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
3
|
Görüşük EM, Lalikoglu M, Aşçı YS, Bener M, Bekdeşer B, Apak R. Novel tributyl phosphate-based deep eutectic solvent: Application in microwave assisted extraction of carotenoids. Food Chem 2024; 459:140418. [PMID: 39024868 DOI: 10.1016/j.foodchem.2024.140418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/25/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024]
Abstract
A contribution to the use of deep eutectic solvents (DES) and microwave-assisted extraction (MAE) was made for bioactive compounds recovery, especially those with lipophilic character, from tomato and carrot samples rich in carotenoids. For the first time, a novel deep eutectic solvent was synthesized, comprising tributyl phosphate (TBP) as a hydrogen bond acceptor and acetic acid (AcOH) as a hydrogen bond donor. The total antioxidant capacity (TAC) of tomato and carrot extracts obtained by MAE, in which optimization of operational parameters and modeling were made with the use of Box-Behnken design of the response surface methodology (RSM), was evaluated using the Cupric Reducing Antioxidant Capacity (CUPRAC) method. For the highest TAC, operational parameters that best suit the MAE procedure were set at 80 °C, 35 min, and 25 mL/2.0 g. The TAC values of extracts obtained by MAE using TBP:AcOH, 1:2 (mol/mol) were examined against those of extracts acquired by classical solvent extraction using a mixture of hexane, ethanol and acetone (H:E:A, 2:1:1 (v/v/v)) mixture. TAC of extracts in DES varied between 5.10 and 0.71 lycopene equivalents (mmol LYC kg-1). The highest extraction yield comparable to conventional organic solvents was obtained with TBP:AcOH (1:2). It was observed that, in addition to lipophilic antioxidants, some hydrophilic antioxidant compounds were partially extracted with the proposed DES. Moreover, the extracted antioxidant compounds were identified and quantified by HPLC analysis. The proposed DES and MAE process will find potential application for hydrophobic antioxidant extraction from tomatoes and carrots on an industrial scale after further studies.
Collapse
Affiliation(s)
- Emine Münevver Görüşük
- Institute of Graduate Studies and Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, 34320, Istanbul, Türkiye
| | - Melisa Lalikoglu
- Istanbul University, Faculty of Science, Department of Chemistry, Fatih 34134, Istanbul, Türkiye
| | - Yavuz Selim Aşçı
- Istanbul University, Faculty of Science, Department of Chemistry, Fatih 34134, Istanbul, Türkiye
| | - Mustafa Bener
- Istanbul University, Faculty of Science, Department of Chemistry, Fatih 34134, Istanbul, Türkiye
| | - Burcu Bekdeşer
- Istanbul University-Cerrahpaşa, Faculty of Engineering, Department of Chemistry, Avcilar 34320, Istanbul, Türkiye.
| | - Reşat Apak
- Istanbul University-Cerrahpaşa, Faculty of Engineering, Department of Chemistry, Avcilar 34320, Istanbul, Türkiye; Turkish Academy of Sciences (TUBA), 06690 Çankaya, Ankara, Turkey.
| |
Collapse
|
4
|
Faria-Silva C, Eleutério CV, Simões P, Carvalheiro M, Simões S. A new method for quantification of tomatine-enriched extracts. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:8561-8565. [PMID: 39031650 DOI: 10.1002/jsfa.13683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 04/22/2024] [Accepted: 06/10/2024] [Indexed: 07/22/2024]
Abstract
BACKGROUND Green tomato extracts, an agro-food industry waste, are rich in the glycoalkaloid tomatine, which presents activity against several diseases. High-performance liquid chromatography (HPLC) with ultraviolet (UV) detection is one of the most used techniques for quantification of bioactive compounds. The aim of this study was to optimize and validate a selective HPLC method with diode array detector (DAD) for the quantitative analysis of tomatine extracted from green tomatoes by subcritical water. RESULTS Chromatographic runs were performed on a InertSustain Phenyl (250 mm × 4.6 mm, 5 μm) analytical column, at a wavelength of 205 nm. A concentration range of 50-580 μg mL-1 was used. The validation process was performed considering the linearity, precision, trueness, limit of detection (LOD) and limit of quantitation (LOQ) of the method. The selected mobile phase composed of acetonitrile and a solution of 20 mmol L-1 potassium dihydrogen phosphate (KH2PO4) pH 3, resulted in suitable retention times and a standard calibration curve with adequate linearity (R2 = 0.9999). The method trueness was evaluated by the recovery assay, obtaining a mean recovery of 105% and the precisions were 1.4% and 0.9% (percentage relative standard deviation, RSD%) for the tomatine standard and extract samples, respectively. The inter-day variability was 2.7-9.0% (RSD%) for the standards and 6.9% (RSD%) for extract. The LOD and the LOQ of the method were determined at 8.0 and 24.1 μg mL-1, respectively. CONCLUSION The herein described method was successfully used for the quantification of tomatine in a tomato-derived extract. Furthermore, the method constitutes a simple and rapid analytical approach able to be used as a routine protocol. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Catarina Faria-Silva
- iMed.ULisboa, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, NOVA University, Caparica, Portugal
| | - Carla V Eleutério
- iMed.ULisboa, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Pedro Simões
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, NOVA University, Caparica, Portugal
| | | | - Sandra Simões
- iMed.ULisboa, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
5
|
Lin TL, So EC, Wu SN. Exploring the Effects of Tomatidine ((3β, 5α, 22β, and 25β)-Spirosolan-3-ol) on Voltage-gated Na+ currents: Insights Into Its Ionic Mechanisms of Action on Current Magnitude, Gating, and Frequency Dependence. JOURNAL OF PHYSIOLOGICAL INVESTIGATION 2024; 67:298-311. [PMID: 39641137 DOI: 10.4103/ejpi.ejpi-d-24-00076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/15/2024] [Indexed: 12/07/2024]
Abstract
ABSTRACT Tomatidine, a major tomato glycoalkaloid, is effective for the prevention of skeletal muscle wasting and enhancing mitophagy. However, its effects on transmembrane ionic currents are not well explored. In this study, we explored the interactions between tomatidine and Na+ current. GH3 or Neuro-2a cells were used for recording the ion currents employing modified patch-clamp technique under whole-cell configuration. Tomatidine increased both the peak, (transient Na+ current [INa (T)]) and sustained (late Na+ current [INa (L)]) components of voltage-gated Na+ current (INa) in a concentration-dependent manner, with the concentration required for 50% stimulation values of 43.3 μM and 3.1 μM, respectively. The steady-state current-voltage relationship of INa (T) remained unchanged; however, the steady-state inactivation curve of INa (T) in the presence of 3 μM tomatidine was shifted to less depolarized potential by around 6 mV. Tomatidine enhanced the window INa (window Na+ current [INa (W)]), which were attenuated by the ranolazine (Ran) and carbamazepine (CBZ). During a train of depolarizing pulses, tomatidine slowed the exponential decay of INa (T), and this effect was reversed by Ran or dapagliflozin. Tomatidine increased both fast and slow recovery time constants from INa (T) block, affecting the recovery time course. Tomatidine increased the amplitude of persistent Na+ current in response to a sinusoidal waveform. In neuro-2a cells, tomatidine increased INa (T) amplitude and slowed its inactivation, with this effect being attenuated by Ran or CBZ. In conclusion, tomatidine enhanced magnitude and modified its gating behaviors.
Collapse
Affiliation(s)
- Tso-Lin Lin
- Department of Paediatrics, An Nan Hospital, China Medical University, Tainan, Taiwan
| | - Edmund Cheung So
- Department of Anaesthesia, An Nan Hospital, China Medical University, Tainan, Taiwan
- Department of Cell Biology and Anatomy, National Cheng Kung University Medical College, Tainan, Taiwan
- Department of Anaesthesiology, University of Hong Kong, Hong Kong
| | - Sheng-Nan Wu
- Department of Physiology, National Cheng Kung University Medical College, Tainan, Taiwan
- Institute of Basic Medical Sciences, National Cheng Kung University Medical College, Tainan, Taiwan
- Department of Medical Education and Research, An Nan Hospital, China Medical University, Tainan, Taiwan
| |
Collapse
|
6
|
Bhoomika S, Salunkhe SR, Sakthi AR, Saraswathi T, Manonmani S, Raveendran M, Sudha M. CRISPR-Cas9: Unraveling Genetic Secrets to Enhance Floral and Fruit Traits in Tomato. Mol Biotechnol 2024:10.1007/s12033-024-01290-8. [PMID: 39377911 DOI: 10.1007/s12033-024-01290-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/17/2024] [Indexed: 10/09/2024]
Abstract
Tomato, a globally consumed vegetable, possesses vast genetic diversity, making it suitable for genetic manipulation using various genetic improvement techniques. Tomatoes are grown extensively for their market value and health benefits, primarily contributed by enhanced yield and nutritional value respectively, influenced by floral and fruit traits. Floral morphology is maintained by genes involved in meristem size control, regulation of inflorescence transition, and pollen development. SP (SELF-PRUNING) and SP5G (SELF-PRUNING 5G) determine growth habit and flowering time. RIN (RIPENING INHIBITOR) and PG (POLYGALACTURONASE) are responsible for the shelf life of fruits. In addition to this, nutrition-enriched tomatoes have been developed in recent times. In this review, we comprehensively discuss the major genes influencing floral morphology, flowering time, fruit size, fruit shape, shelf life, and nutritional value, ultimately resulting in enhanced yield. Additionally, we address the advances in CRISPR/Cas9 applied for the genetic improvement of tomatoes along with prospects of areas in which research development in terms of tomato genetic improvement has to be advanced.
Collapse
Affiliation(s)
- S Bhoomika
- Department of Plant Biotechnology, Centre of Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Shubham Rajaram Salunkhe
- Department of Plant Biotechnology, Centre of Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - A R Sakthi
- Department of Plant Biotechnology, Centre of Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - T Saraswathi
- Department of Medicinal and Aromatic Crops, Horticultural College and Research Institute, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - S Manonmani
- Department of Rice, Centre of Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - M Raveendran
- Department of Plant Biotechnology, Centre of Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - M Sudha
- Department of Plant Biotechnology, Centre of Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India.
| |
Collapse
|
7
|
Ghosh S, Das SK, Sinha K, Ghosh B, Sen K, Ghosh N, Sil PC. The Emerging Role of Natural Products in Cancer Treatment. Arch Toxicol 2024; 98:2353-2391. [PMID: 38795134 DOI: 10.1007/s00204-024-03786-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/08/2024] [Indexed: 05/27/2024]
Abstract
The exploration of natural products as potential agents for cancer treatment has garnered significant attention in recent years. In this comprehensive review, we delve into the diverse array of natural compounds, including alkaloids, carbohydrates, flavonoids, lignans, polyketides, saponins, tannins, and terpenoids, highlighting their emerging roles in cancer therapy. These compounds, derived from various botanical sources, exhibit a wide range of mechanisms of action, targeting critical pathways involved in cancer progression such as cell proliferation, apoptosis, angiogenesis, and metastasis. Through a meticulous examination of preclinical and clinical studies, we provide insights into the therapeutic potential of these natural products across different cancer types. Furthermore, we discuss the advantages and challenges associated with their use in cancer treatment, emphasizing the need for further research to optimize their efficacy, pharmacokinetics, and delivery methods. Overall, this review underscores the importance of natural products in advancing cancer therapeutics and paves the way for future investigations into their clinical applications.
Collapse
Affiliation(s)
- Sumit Ghosh
- Department of Zoology, Ramakrishna Mission Vidyamandira, Belur Math, Howrah, 711202, India
- Division of Molecular Medicine, Bose Institute, Kolkata, 700054, India
| | - Sanjib Kumar Das
- Department of Zoology, Jhargram Raj College, Jhargram, 721507, India
| | - Krishnendu Sinha
- Department of Zoology, Jhargram Raj College, Jhargram, 721507, India.
| | - Biswatosh Ghosh
- Department of Zoology, Bidhannagar College, Kolkata, 700064, India
| | - Koushik Sen
- Department of Zoology, Jhargram Raj College, Jhargram, 721507, India
| | - Nabanita Ghosh
- Department of Zoology, Maulana Azad College, Kolkata, 700013, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, Kolkata, 700054, India.
| |
Collapse
|
8
|
Wang F, Liang L, Yu M, Wang W, Badar IH, Bao Y, Zhu K, Li Y, Shafi S, Li D, Diao Y, Efferth T, Xue Z, Hua X. Advances in antitumor activity and mechanism of natural steroidal saponins: A review of advances, challenges, and future prospects. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155432. [PMID: 38518645 DOI: 10.1016/j.phymed.2024.155432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 01/11/2024] [Accepted: 02/06/2024] [Indexed: 03/24/2024]
Abstract
BACKGROUND Cancer, the second leading cause of death worldwide following cardiovascular diseases, presents a formidable challenge in clinical settings due to the extensive toxic side effects associated with primary chemotherapy drugs employed for cancer treatment. Furthermore, the emergence of drug resistance against specific chemotherapeutic agents has further complicated the situation. Consequently, there exists an urgent imperative to investigate novel anticancer drugs. Steroidal saponins, a class of natural compounds, have demonstrated notable antitumor efficacy. Nonetheless, their translation into clinical applications has remained unrealized thus far. In light of this, we conducted a comprehensive systematic review elucidating the antitumor activity, underlying mechanisms, and inherent limitations of steroidal saponins. Additionally, we propose a series of strategic approaches and recommendations to augment the antitumor potential of steroidal saponin compounds, thereby offering prospective insights for their eventual clinical implementation. PURPOSE This review summarizes steroidal saponins' antitumor activity, mechanisms, and limitations. METHODS The data included in this review are sourced from authoritative databases such as PubMed, Web of Science, ScienceDirect, and others. RESULTS A comprehensive summary of over 40 steroidal saponin compounds with proven antitumor activity, including their applicable tumor types and structural characteristics, has been compiled. These steroidal saponins can be primarily classified into five categories: spirostanol, isospirostanol, furostanol, steroidal alkaloids, and cholestanol. The isospirostanol and cholestanol saponins are found to have more potent antitumor activity. The primary antitumor mechanisms of these saponins include tumor cell apoptosis, autophagy induction, inhibition of tumor migration, overcoming drug resistance, and cell cycle arrest. However, steroidal saponins have limitations, such as higher cytotoxicity and lower bioavailability. Furthermore, strategies to address these drawbacks have been proposed. CONCLUSION In summary, isospirostanol and cholestanol steroidal saponins demonstrate notable antitumor activity and different structural categories of steroidal saponins exhibit variations in their antitumor signaling pathways. However, the clinical application of steroidal saponins in cancer treatment still faces limitations, and further research and development are necessary to advance their potential in tumor therapy.
Collapse
Affiliation(s)
- Fengge Wang
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, Heilongjiang, 150040, PR China
| | - Lu Liang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR, PR China
| | - Ma Yu
- School of Life Science and Engineering, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, 621010, Sichuan, PR China
| | - Wenjie Wang
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, Heilongjiang, 150040, PR China
| | - Iftikhar Hussain Badar
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, PR China; Department of Meat Science and Technology, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| | - Yongping Bao
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7UQ, United Kingdom
| | - Kai Zhu
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, Heilongjiang, 150040, PR China
| | - Yanlin Li
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, Heilongjiang, 150040, PR China
| | - Saba Shafi
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, Heilongjiang, 150040, PR China
| | - Dangdang Li
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, Heilongjiang, 150040, PR China
| | - Yongchao Diao
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, Heilongjiang, 150040, PR China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz 55128, Germany.
| | - Zheyong Xue
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, Heilongjiang, 150040, PR China.
| | - Xin Hua
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, Heilongjiang, 150040, PR China.
| |
Collapse
|
9
|
Piccolo V, Maisto M, Schiano E, Iannuzzo F, Keivani N, Manuela Rigano M, Santini A, Novellino E, Carlo Tenore G, Summa V. Phytochemical investigation and antioxidant properties of unripe tomato cultivars (Solanum lycopersicum L.). Food Chem 2024; 438:137863. [PMID: 37980871 DOI: 10.1016/j.foodchem.2023.137863] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 09/10/2023] [Accepted: 10/24/2023] [Indexed: 11/21/2023]
Abstract
Unripe tomatoes are among the main waste produced during tomato cultivation and processing. In this study, unripe tomatoes from seven different Italian cultivars have been investigated to evaluate their nutraceutical potential. Phytochemical investigation allowed shedding light on the identification of seventy-five bioactive compounds. The highest amount of polyphenolic and glycoalkaloids along with the high level of antioxidant activities was found in the Datterini tomatoes variety. The peculiarity of this variety is the high chlorogenic acid content, being ten times higher compared to the other cultivars examined. Moreover, the total α-tomatine amount has been found substantially higher (34.699 ± 1.101 mg/g dry weight) with respect to the other tomato varieties analyzed. Furthermore, the cultivars metabolomic profiles were investigated with the PCA approach. Based on Datterini cultivar's metabolomic profile, its waste-recovery could represent a good option for further added value products in pharmaceutical and nutraceutical areas with a high α-tomatine content.
Collapse
Affiliation(s)
- Vincenzo Piccolo
- Department of Pharmacy, School of Medicine and Surgery, University of Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| | - Maria Maisto
- Department of Pharmacy, School of Medicine and Surgery, University of Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| | - Elisabetta Schiano
- Department of Pharmacy, School of Medicine and Surgery, University of Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| | - Fortuna Iannuzzo
- Department of Pharmacy, School of Medicine and Surgery, University of Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| | - Niloufar Keivani
- Department of Pharmacy, School of Medicine and Surgery, University of Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| | - Maria Manuela Rigano
- Department of Agricultural Sciences, University of Napoli Federico II, Via Università 100, 80055 Portici, Italy
| | - Antonello Santini
- Department of Pharmacy, School of Medicine and Surgery, University of Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| | - Ettore Novellino
- Department of Medicine and Surgery, University Cattolica del Sacro Cuore, Largo Francesco Vito, 00168 Roma, Italy
| | - Gian Carlo Tenore
- Department of Pharmacy, School of Medicine and Surgery, University of Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| | - Vincenzo Summa
- Department of Pharmacy, School of Medicine and Surgery, University of Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy.
| |
Collapse
|
10
|
Xu B, Huang M, Qi H, Xu H, Cai L. Tomatidine activates autophagy to improve lung injury and inflammation in sepsis by inhibiting NF-κB and MAPK pathways. Mol Genet Genomics 2024; 299:14. [PMID: 38400847 DOI: 10.1007/s00438-024-02109-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/29/2023] [Indexed: 02/26/2024]
Abstract
Sepsis-induced acute lung injury (ALI) is a life-threatening medical condition with high mortality and morbidity. Autophagy is involved in the pathophysiological process of sepsis-induced ALI, including inflammation, which indicates that regulating autophagy may be beneficial for this disease. Tomatidine, a natural compound abundant in unripe tomatoes, has been reported to have anti-inflammatory, anti-tumorigenic, and lipid-lowering effects. However, the biological functions and mechanisms of tomatidine in sepsis-induced ALI remain unknown. The principal objective of this study was to investigate the effect of tomatidine on sepsis-induced ALI. Cecal ligation and puncture (CLP) was used to induce septic lung injury in mice, and 10 mg/kg tomatidine was intraperitoneally injected into mice 2 h after the operation. The results of hematoxylin and eosin staining and assessment of lung edema and total protein levels in bronchoalveolar lavage fluid (BALF) demonstrated that tomatidine alleviated CLP-induced severe lung injuries such as hemorrhage, infiltration of inflammatory cells, and interstitial and alveolar edema in mice. Additionally, the levels of proinflammatory cytokines in BALF and lung tissues were measured by enzyme-linked immunosorbent assay (ELISA), and the results showed that tomatidine inhibited CLP-induced inflammatory damage to lungs. Moreover, the results of western blotting showed that tomatidine promoted autophagy during CLP-induced ALI. Mechanistically, immunofluorescence staining and western blotting were used to measure the protein levels of TLR4, phosphorylated NF-κB, phosphorylated IκBα, and phosphorylated MAPKs, showing that tomatidine inactivated NF-κB and MAPK signaling in lung tissues of CLP-induced ALI mice. In conclusion, tomatidine exerts protective effects against sepsis-induced severe damage to the lungs by inhibiting inflammation and activating autophagy in CLP-treated mice through inactivating the NF-κB and MAPK pathways, which may be an effective candidate for treating septic ALI.
Collapse
Affiliation(s)
- Bo Xu
- Department of Emergency Medicine, The First Affiliated Hospital of Bengbu Medical College, 287 Changhuai Road, Bengbu, Anhui, 230000, China.
| | - Min Huang
- Department of Infectious Diseases, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 230000, China
| | - Hang Qi
- Department of Emergency Medicine, The First Affiliated Hospital of Bengbu Medical College, 287 Changhuai Road, Bengbu, Anhui, 230000, China
| | - Hongzhou Xu
- Department of Emergency Medicine, The First Affiliated Hospital of Bengbu Medical College, 287 Changhuai Road, Bengbu, Anhui, 230000, China
| | - Liang Cai
- Department of Emergency Medicine, The First Affiliated Hospital of Bengbu Medical College, 287 Changhuai Road, Bengbu, Anhui, 230000, China
| |
Collapse
|
11
|
Piccolo V, Pastore A, Maisto M, Keivani N, Tenore GC, Stornaiuolo M, Summa V. Agri-Food Waste Recycling for Healthy Remedies: Biomedical Potential of Nutraceuticals from Unripe Tomatoes ( Solanum lycopersicum L.). Foods 2024; 13:331. [PMID: 38275698 PMCID: PMC10815480 DOI: 10.3390/foods13020331] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
Unripe tomatoes represent an agri-food waste resulting from industrial by-processing products of tomatoes, yielding products with a high content of bioactive compounds with potential nutraceutical properties. The food-matrix biological properties are attributed to the high steroidal glycoalkaloid (SGA) content. Among them, α-tomatine is the main SGA reported in unripe green tomatoes. This review provides an overview of the main chemical and pharmacological features of α-tomatine and green tomato extracts. The extraction processes and methods employed in SGA identification and the quantification are discussed. Special attention was given to the methods used in α-tomatine qualitative and quantitative analyses, including the extraction procedures and the clean-up methods applied in the analysis of Solanum lycopersicum L. extracts. Finally, the health-beneficial properties and the pharmacokinetics and toxicological aspects of SGAs and α-tomatine-containing extracts are considered in depth. In particular, the relevant results of the main in vivo and in vitro studies reporting the therapeutic properties and the mechanisms of action were described in detail.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Vincenzo Summa
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano, 49, 80131 Naples, Italy; (V.P.); (A.P.); (M.M.); (N.K.); (G.C.T.); (M.S.)
| |
Collapse
|
12
|
Luta G, Balan D, Stanca M, Jerca O, Jurcoane S, Niculescu M, Gaidau C, Stanculescu IR. Innovative Protein Gel Treatments to Improve the Quality of Tomato Fruit. Gels 2023; 10:10. [PMID: 38275848 PMCID: PMC10815011 DOI: 10.3390/gels10010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
This study aims to establish the effect of biostimulatory protein gels on the quality of tomato. One of the most consumed vegetables, tomato (Lycopersicon esculentum Mill.) is a rich source of healthy constituents. Two variants of protein gels based on bovine gelatin and keratin hydrolysates obtained from leather industry byproducts were used for periodical application on the tomato plant roots in the early stage of vegetation. The gels were characterized by classical physicochemical methods and protein secondary structure was obtained by FTIR band deconvolution. After ripening, tomato was analyzed regarding its content of quality indicators (sugars and organic acids) and antioxidants (lycopene, β-carotene, vitamin C, polyphenols). The results emphasized the positive effects of the protein gels on the quality parameters of tomato fruit. An increase of 10% of dry matter and of 30% (in average) in the total soluble sugars was noted after biostimulant application. Also, lycopene and vitamin C recorded higher values (by 1.44 and 1.29 times, respectively), while β-carotene showed no significant changes. The biostimulant activity of protein gels was correlated with their amino acid composition. Plant biostimulants are considered an ecological alternative to conventional treatments for improving plant growth, and also contributing to reduce the intake of chemical fertilizers.
Collapse
Affiliation(s)
- Gabriela Luta
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Mărăsti Blvd, 011464 Bucharest, Romania; (G.L.); (S.J.)
| | - Daniela Balan
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Mărăsti Blvd, 011464 Bucharest, Romania; (G.L.); (S.J.)
| | - Maria Stanca
- Leather Research Department, Division Leather and Footwear Research Institute, Research and Development National Institute for Textiles and Leather, 93, Ion Minulescu Str., 031215 Bucharest, Romania (C.G.)
| | - Ovidiu Jerca
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Mărăsti Blvd, 011464 Bucharest, Romania; (G.L.); (S.J.)
| | - Stefana Jurcoane
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Mărăsti Blvd, 011464 Bucharest, Romania; (G.L.); (S.J.)
| | - Mihaela Niculescu
- Leather Research Department, Division Leather and Footwear Research Institute, Research and Development National Institute for Textiles and Leather, 93, Ion Minulescu Str., 031215 Bucharest, Romania (C.G.)
| | - Carmen Gaidau
- Leather Research Department, Division Leather and Footwear Research Institute, Research and Development National Institute for Textiles and Leather, 93, Ion Minulescu Str., 031215 Bucharest, Romania (C.G.)
| | - Ioana Rodica Stanculescu
- Department of Analytical and Physical Chemistry, University of Bucharest, 4-12 Regina Elisabeta Bd., 030018 Bucharest, Romania;
- “Horia Hulubei” National Institute of Research and Development for Physics and Nuclear Engineering, 30 Reactorului Str., 077125 Magurele, Romania
| |
Collapse
|
13
|
More SB, Mohan M, Kulkarni P, Ahire KC. Lycopene attenuates silver nanoparticle-induced liver injury in albino mice. J Biochem Mol Toxicol 2023; 37:e23500. [PMID: 37555715 DOI: 10.1002/jbt.23500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/20/2023] [Accepted: 07/31/2023] [Indexed: 08/10/2023]
Abstract
Lycopene is a carotenoid widely used for its dominant antioxidant properties and beneficial health effects. Silver nanoparticles (AgNP) have gained attention for use in many medicinal and consumer products, leading to animal, human, and environmental exposure. This study investigated the dose-dependent effects of lycopene on AgNP-induced hepatotoxicity in albino mice. The four experimental groups, comprising eight albino mice each, were as follows: Group I, vehicle control (C); Group II, AgNP-treated (5 mg/kg/day) (AgNP); Group III, AgNP/lycopene-treated (5 + 10 mg/kg/day) (AgNP + LP10); and Group IV, AgNP/lycopene-treated (5 + 100 mg/kg/day) (AgNP + LP100). All solutions were orally administered to the mice once in a day for consecutive 14 days. The levels of serum aspartate transaminase, alanine transaminase, alkaline phosphatase, and total bilirubin were significantly higher in the AgNP-treated group than in the control group but significantly lower in the AgNP + LP100 group than in the AgNP-treated group. A significant decrease in reduced glutathione level and superoxide dismutase activity and an increase in lipid peroxidation were observed in the AgNP-treated group; these were significantly suppressed in the AgNP+LP100 as compared to AgNP-treated group. Histopathological examination showed substantial morphological alterations in hepatic tissues in the AgNP, which were adequately improved in the low and high dose lycopene-treated groups. The dose of 100 mg/kg/day of lycopene was more effective than 10 mg/kg/day, as pretreatment with high dose lycopene significantly diminished the adverse changes occurred due to AgNP in liver weight, hepatic architecture, serum functional markers, and antioxidant markers. Thus, present study shows that pretreatment with lycopene offers protection against AgNP-induced hepatotoxicity and oxidative stress.
Collapse
Affiliation(s)
- Sonal B More
- Department of Pharmacology, MGV Pharmacy College, Nashik, India
| | - Mahalaxmi Mohan
- Department of Pharmacology, MGV Pharmacy College, Nashik, India
| | - Prayrna Kulkarni
- Department of Zoology, Savitribai Phule Pune University, Pune, India
| | - Kedar C Ahire
- Department of Zoology, Savitribai Phule Pune University, Pune, India
| |
Collapse
|
14
|
Wang HR, Li MZ, Cui JG, Zhang H, Zhao Y, Li JL. Lycopene Prevents Phthalate-Induced Cognitive Impairment via Modulating Ferroptosis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16727-16738. [PMID: 37871231 DOI: 10.1021/acs.jafc.3c04801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is frequently used as a plasticizer in industrial and agricultural products. DEHP can cause severe neurotoxicity, such as impaired learning and memory function. Lycopene (LYC) as a carotenoid exerts excellent antioxidant capacity and therapeutic effects in neurodegenerative diseases. However, whether LYC can prevent the cognitive impairment induced by DEHP and the specific mechanisms are unclear. In the present study, the behavioral test results suggested that LYC alleviated the learning and memory impairment induced by DEHP. The histopathological data revealed that LYC attenuated DEHP-induced disordered arrangement of the neurons in the CA1 and CA3 regions of the hippocampus tissue. Moreover, LYC inhibited the occurrence of DEHP-induced ferroptosis via regulating iron metabolism, inhibiting lipid peroxidation, and activating the cysteine transporter and nuclear factor erythroid 2-related factor 2/heme oxygenase-1 (NrF2/HO-1) signaling pathway. Overall, the study contributes novel perspectives into the potential mechanisms of LYC preventing phthalate-induced cognitive impairment in the hippocampus.
Collapse
Affiliation(s)
- Hao-Ran Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Mu-Zi Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Jia-Gen Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Hao Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Yi Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, P.R. China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, P.R. China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| |
Collapse
|
15
|
Santonocito D, Campisi A, Pellitteri R, Sposito G, Basilicata MG, Aquino G, Pepe G, Sarpietro MG, Pittalà MGG, Schoubben A, Pignatello R, Puglia C. Lipid Nanoparticles Loading Steroidal Alkaloids of Tomatoes Affect Neuroblastoma Cell Viability in an In Vitro Model. Pharmaceutics 2023; 15:2573. [PMID: 38004552 PMCID: PMC10675799 DOI: 10.3390/pharmaceutics15112573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Tomato by-products represent a good source of phytochemical compounds with health properties, such as the steroidal glycoalkaloid α-tomatine (α-TM) and its aglycone tomatidine (TD). Both molecules have numerous beneficial properties, such as potential anticancer activity. Unfortunately, their therapeutic application is limited due to stability and bioavailability issues. Therefore, a valid strategy seems to be their encapsulation into Solid Lipid Nanoparticles (SLN). The nanoformulations containing α-TM (α-TM-SLN) and TD (TD-SLN) were prepared by solvent-diffusion technique and subsequently characterized in terms of technological parameters (particle size, polydispersity index, zeta potential, microscopy, and calorimetric studies). To assess the effect of α-TM and TD on the percentage of cellular viability in Olfactory Ensheathing Cells (OECs), a peculiar glial cell type of the olfactory system used as normal cells, and in SH-SY5Y, a neuroblastoma cancer cell line, an MTT test was performed. In addition, the effects of empty, α-TM-SLN, and TD-SLN were tested. Our results show that the treatment of OECs with blank-SLN, free α-TM (0.25 µg/mL), and TD (0.50 µg/mL) did not induce any significant change in the percentage of cell viability when compared with the control. In contrast, in SH-SY5Y-treated cells, a significant decrease in the percentage of cell viability when compared with the control was found. In particular, the effect appeared more evident when SH-SY5Y cells were exposed to α-TM-SLN and TD-SLN. No significant effect in blank-SLN-treated SH-SY5T cells was observed. Therefore, SLN is a promising approach for the delivery of α-TM and TD.
Collapse
Affiliation(s)
- Debora Santonocito
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (A.C.); (G.S.); (M.G.S.); (R.P.)
- NANOMED-Research Center on Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95125 Catania, Italy
| | - Agatina Campisi
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (A.C.); (G.S.); (M.G.S.); (R.P.)
| | - Rosalia Pellitteri
- Institute for Biomedical Research and Innovation (IRIB), National Research Council, Via P. Gaifami 18, 95126 Catania, Italy;
| | - Giovanni Sposito
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (A.C.); (G.S.); (M.G.S.); (R.P.)
| | - Manuela Giovanna Basilicata
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084 Fisciano, SA, Italy; (M.G.B.); (G.A.); (G.P.)
| | - Giovanna Aquino
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084 Fisciano, SA, Italy; (M.G.B.); (G.A.); (G.P.)
- PhD Program in Drug Discovery and Development, University of Salerno, 84084 Fisciano, SA, Italy
| | - Giacomo Pepe
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084 Fisciano, SA, Italy; (M.G.B.); (G.A.); (G.P.)
| | - Maria Grazia Sarpietro
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (A.C.); (G.S.); (M.G.S.); (R.P.)
| | | | - Aurelie Schoubben
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy;
| | - Rosario Pignatello
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (A.C.); (G.S.); (M.G.S.); (R.P.)
- NANOMED-Research Center on Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95125 Catania, Italy
| | - Carmelo Puglia
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (A.C.); (G.S.); (M.G.S.); (R.P.)
- NANOMED-Research Center on Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95125 Catania, Italy
| |
Collapse
|
16
|
Mukherjee D, Chakraborty S, Bercz L, D’Alesio L, Wedig J, Torok MA, Pfau T, Lathrop H, Jasani S, Guenther A, McGue J, Adu-Ampratwum D, Fuchs JR, Frankel TL, Pietrzak M, Culp S, Strohecker AM, Skardal A, Mace TA. Tomatidine targets ATF4-dependent signaling and induces ferroptosis to limit pancreatic cancer progression. iScience 2023; 26:107408. [PMID: 37554459 PMCID: PMC10405072 DOI: 10.1016/j.isci.2023.107408] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/19/2023] [Accepted: 07/13/2023] [Indexed: 08/10/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with high metastasis and therapeutic resistance. Activating transcription factor 4 (ATF4), a master regulator of cellular stress, is exploited by cancer cells to survive. Prior research and data reported provide evidence that high ATF4 expression correlates with worse overall survival in PDAC. Tomatidine, a natural steroidal alkaloid, is associated with inhibition of ATF4 signaling in multiple diseases. Here, we discovered that in vitro and in vivo tomatidine treatment of PDAC cells inhibits tumor growth. Tomatidine inhibited nuclear translocation of ATF4 and reduced the transcriptional binding of ATF4 with downstream promoters. Tomatidine enhanced gemcitabine chemosensitivity in 3D ECM-hydrogels and in vivo. Tomatidine treatment was associated with induction of ferroptosis signaling validated by increased lipid peroxidation, mitochondrial biogenesis, and decreased GPX4 expression in PDAC cells. This study highlights a possible therapeutic approach utilizing a plant-derived metabolite, tomatidine, to target ATF4 activity in PDAC.
Collapse
Affiliation(s)
- Debasmita Mukherjee
- The James Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
- Molecular, Cellular and Developmental Biology Program, The Ohio State University, Columbus, OH 43210, USA
| | - Srija Chakraborty
- The James Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Lena Bercz
- The James Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Liliana D’Alesio
- The James Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Jessica Wedig
- The James Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
- Molecular, Cellular and Developmental Biology Program, The Ohio State University, Columbus, OH 43210, USA
| | - Molly A. Torok
- The James Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Timothy Pfau
- The James Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Hannah Lathrop
- The James Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Shrina Jasani
- The James Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Abigail Guenther
- The James Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Jake McGue
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Daniel Adu-Ampratwum
- Division of Medicinal Chemistry & Pharmacognosy, The Ohio State University, Columbus, OH 43210, USA
| | - James R. Fuchs
- Division of Medicinal Chemistry & Pharmacognosy, The Ohio State University, Columbus, OH 43210, USA
| | | | - Maciej Pietrzak
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA
| | - Stacey Culp
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA
| | - Anne M. Strohecker
- The James Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
- Department of Cancer Biology & Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Aleksander Skardal
- The James Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Thomas A. Mace
- The James Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
- Department of Internal Medicine, Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
17
|
Patel AH, Sharma HP, Vaishali. Physiological functions, pharmacological aspects and nutritional importance of green tomato- a future food. Crit Rev Food Sci Nutr 2023; 64:9711-9739. [PMID: 37267154 DOI: 10.1080/10408398.2023.2212766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Green tomatoes contain significant levels of steroidal glycoalkoids (SGA) such as α-tomatine and green pigment chlorophyll. Tomatine is an admixture of two glycoalkoids; alpha tomatine and dehydrotomatine reported various health beneficial biological activities. Moreover, a hydrolyzed product of tomatine also contributes to age-related atrophy, and muscle weakness and helps the elderly recover from illness and injuries related to age. However, there is a lack of evidence regarding the absorption of tomatine in the human body concerning proposed biological activity, which should be an area of interest in the future. Once, the absorption study is established compounds concentrated in green tomatoes are potentially involved as protective compounds for several diseases and also used for functional food. To facilitate the use of green tomatoes in food processing, this comprehensive review provides data on the nutritional value of green tomatoes, with emphasis on the evolution of the physiological chemistry, analytical, medicinal, and pharmacological effects of the α-tomatine and chlorophyll in an experimental model. The broad aim of this review is to evaluate the health benefits of green tomatoes in addition to their nutritional value and to study the several features of the role of α-tomatine and chlorophyll in human health.
Collapse
Affiliation(s)
- Arpit H Patel
- College of Food Processing Technology and Bio-energy, Anand Agricultural University, Anand, India
| | - Harsh P Sharma
- Food Science and Technology, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, India
| | - Vaishali
- Food Engineerng, National PG College, Gorakhpur, India
| |
Collapse
|
18
|
Abdallah OI, Abd El-Hamid RM, Ahmed NS, Saleh SM, Alminderej FM. Terminal Residues and Risk Assessment of Spiromesifen and Spirodiclofen in Tomato Fruits. PLANTS (BASEL, SWITZERLAND) 2023; 12:1493. [PMID: 37050119 PMCID: PMC10097050 DOI: 10.3390/plants12071493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
Insecticides are important to increase crop yields, but their overuse has damaged the environment and endangered human health. In this study, residues of spiromesifen and spirodiclofen were determined in tomato fruit using a simple and efficient analytical procedure based on acetonitrile extraction, extract dilution, and UPLC-MS/MS. The linearity range was 1-100 µg/kg and 0.5-100 µg/kg, and the correlation coefficient (R2) and residuals were ≥0.9991 and ≤16.4%, respectively. The limit of determination (LOD) was 0.26 and 0.08 µg/kg, while the limit of quantification (LOQ) was verified at 5 µg/kg. The relative standard deviation of spiked replicates at 5 µg/kg analyzed in one day (RSDr, n = 6) was ≤8.35%, and within three different days (RSDR, n = 18) it was ≤15.85%, with recoveries exceeding 91.34%. The method recovery test showed a satisfactory value of 89.23-97.22% with an RSD of less than 12.88%. The matrix effect was determined after a 4-fold dilution of the raw extract and was -9.8% and -7.2%, respectively. The validated method was used to study the dissipation behavior of the tested analytes in tomato fruit under field conditions. First-order kinetics best described the dissipation rates. The calculated half-lives were 1.49-1.83 and 1.91-2.38 days for spiromesifen and spirodiclofen, respectively, after application of the authorized and doubled authorized doses, indicating that spiromesifen dissipated more rapidly than spirodiclofen. The final residue concentrations of spiromesifen and spirodiclofen were 0.307-0.751 mg/kg and 0.101-0.398 mg/kg, respectively, after two or three applications, and were below the European Union (EU) maximum residue limits. The chronic risk assessment indicates that both insecticides are safe for adult consumers.
Collapse
Affiliation(s)
- Osama I. Abdallah
- Department of Pesticide Residues and Environmental Pollution, Central Agricultural Pesticide Laboratory (CAPL), Agricultural Research Center (ARC), Giza 12618, Egypt
| | - Rania M. Abd El-Hamid
- Department of Pesticide Residues and Environmental Pollution, Central Agricultural Pesticide Laboratory (CAPL), Agricultural Research Center (ARC), Giza 12618, Egypt
| | - Nevein S. Ahmed
- Department of Pesticide Residues and Environmental Pollution, Central Agricultural Pesticide Laboratory (CAPL), Agricultural Research Center (ARC), Giza 12618, Egypt
| | - Sayed M. Saleh
- Department of Chemistry, College of Science, Qassim University, Buraidah 52571, Saudi Arabia
- Chemistry Branch, Department of Science and Mathematics, Faculty of Petroleum and Mining Engineering, Suez University, Suez 43721, Egypt
| | - Fahad M. Alminderej
- Department of Chemistry, College of Science, Qassim University, Buraidah 52571, Saudi Arabia
| |
Collapse
|
19
|
Cuevas-Cianca SI, Romero-Castillo C, Gálvez-Romero JL, Juárez ZN, Hernández LR. Antioxidant and Anti-Inflammatory Compounds from Edible Plants with Anti-Cancer Activity and Their Potential Use as Drugs. Molecules 2023; 28:molecules28031488. [PMID: 36771154 PMCID: PMC9920972 DOI: 10.3390/molecules28031488] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/28/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
Food is our daily companion, performing numerous beneficial functions for our bodies. Many of them can help to alleviate or prevent ailments and diseases. In this review, an extensive bibliographic search is conducted in various databases to update information on unprocessed foods with anti-inflammatory and antioxidant properties that can aid in treating diseases such as cancer. The current state of knowledge on inflammatory processes involving some interleukins and tumor necrosis factor-alpha (TNF-α) is reviewed. As well as unprocessed foods, which may help reduce inflammation and oxidative stress, both of which are important factors in cancer development. Many studies are still needed to take full advantage of the food products we use daily.
Collapse
Affiliation(s)
- Sofía Isabel Cuevas-Cianca
- Department of Chemical Biological Sciences, Universidad de las Américas Puebla, Ex Hacienda Sta. Catarina Mártir S/N, San Andrés Cholula 72810, Mexico
| | - Cristian Romero-Castillo
- Biotechnology Faculty, Deanship of Biological Sciences, Universidad Popular Autónoma del Estado de Puebla, 21 Sur 1103 Barrio Santiago, Puebla 72410, Mexico
- Chemistry Area, Deanship of Biological Sciences, Universidad Popular Autónoma del Estado de Puebla, 21 Sur 1103 Barrio Santiago, Puebla 72410, Mexico
| | - José Luis Gálvez-Romero
- ISSTE Puebla Hospital Regional, Boulevard 14 Sur 4336, Colonia Jardines de San Manuel, Puebla 72570, Mexico
| | - Zaida Nelly Juárez
- Chemistry Area, Deanship of Biological Sciences, Universidad Popular Autónoma del Estado de Puebla, 21 Sur 1103 Barrio Santiago, Puebla 72410, Mexico
- Correspondence: (Z.N.J.); (L.R.H.)
| | - Luis Ricardo Hernández
- Department of Chemical Biological Sciences, Universidad de las Américas Puebla, Ex Hacienda Sta. Catarina Mártir S/N, San Andrés Cholula 72810, Mexico
- Correspondence: (Z.N.J.); (L.R.H.)
| |
Collapse
|
20
|
Dhillon VS, Deo P, Fenech M. Effect of Selenium and Lycopene on Radiation Sensitivity in Prostate Cancer Patients Relative to Controls. Cancers (Basel) 2023; 15:cancers15030979. [PMID: 36765936 PMCID: PMC9913686 DOI: 10.3390/cancers15030979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/28/2023] [Accepted: 02/02/2023] [Indexed: 02/05/2023] Open
Abstract
Almost half of prostate cancer (PC) patients receive radiation therapy as primary curative treatment. In spite of advances in our understanding of both nutrition and the genomics of prostate cancer, studies on the effects of nutrients on the radiation sensitivity of PC patients are lacking. We tested the hypothesis that low plasma levels of selenium and lycopene have detrimental effects on ionising radiation-induced DNA damage in prostate cancer patients relative to healthy individuals. The present study was performed in 106 PC patients and 132 age-matched controls. We found that the radiation-induced micronucleus (MN) and nuclear buds (NBuds) frequencies were significantly higher in PC patients with low selenium (p = 0.008 and p = 0.0006 respectively) or low lycopene (p = 0.007 and p = 0.0006 respectively) levels compared to the controls. The frequency of NBuds was significantly higher (p < 0.0001) in PC patients who had low levels of both selenium and lycopene compared to (i) controls with low levels of both selenium and lycopene and (ii) PC patients with high levels of both selenium and lycopene (p = 0.0001). Our results support the hypothesis that low selenium and lycopene levels increase the sensitivity to radiation-induced DNA damage and suggest that nutrition-based treatment strategies are important to minimise the DNA-damaging effects in PC patients receiving radiotherapy.
Collapse
Affiliation(s)
- Varinderpal S. Dhillon
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia
- Correspondence: (V.S.D.); (M.F.)
| | - Permal Deo
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia
| | - Michael Fenech
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia
- Genome Health Foundation, North Brighton 5048, Australia
- Correspondence: (V.S.D.); (M.F.)
| |
Collapse
|
21
|
Haque A, Ahmad S, Azad ZRAA, Adnan M, Ashraf SA. Incorporating dietary fiber from fruit and vegetable waste in meat products: a systematic approach for sustainable meat processing and improving the functional, nutritional and health attributes. PeerJ 2023; 11:e14977. [PMID: 36890873 PMCID: PMC9988266 DOI: 10.7717/peerj.14977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 02/08/2023] [Indexed: 03/06/2023] Open
Abstract
Background Every year, the food business produces a sizeable amount of waste, including the portions of fruits and vegetables that are inedible, and those that have reached a stage where they are no longer suitable for human consumption. These by-products comprise of components such as natural antioxidants (polyphenols, carotenoid etc.), dietary fiber, and other trace elements, which can provide functionality to food. Due to changing lifestyles, there is an increased demand for ready-to-eat products like sausages, salami, and meat patties. In this line, meat products like buffalo meat sausages and patties are also gaining the interest of consumers because of their rich taste. Meat, however, has a high percentage of fat and is totally deprived of dietary fiber, which poses severe health problems like cardiovascular (CV) and gastrointestinal diseases. The health-conscious consumer is becoming increasingly aware of the importance of balancing flavor and nutrition. Therefore, to overcome this problem, several fruit and vegetable wastes from their respective industries can be successfully incorporated into meat products that provide dietary fiber and play the role of natural antioxidants; this will slow down lipid oxidation and increase the shelf-life of meat products. Methodology Extensive literature searches have been performed using various scientific search engines. We collected relevant and informative data from subject-specific and recent literature on sustainable food processing of wasted food products. We also looked into the various applications of waste fruit and vegetable products, including cereals, when they are incorporated into meat and meat products. All relevant searches meeting the criteria were included in this review, and exclusion criteria were also set. Results The pomace and peels of fruits like grapes, pomegranates, cauliflower, sweet lime, and other citrus are some of the most commonly used fruit and vegetable by-products. These vegetable by-products help inhibit oxidation (of both lipids and proteins) and the growth of pathogenic and spoilage bacteria, all without altering the consumer's acceptability of the product on a sensory level. When included in meat products, these by-products have the potential to improve the overall product quality and lengthen its shelf-life under certain circumstances. Conclusion Cost-effective and easily accessible by-products from the fruit and vegetable processing industries can be used in meat products to enhance their quality features (physicochemical, microbial, sensory, and textural aspects) and health benefits. Additionally, this will provides environmental food sustainability by lowering waste disposal and improving the food's functional efficacy.
Collapse
Affiliation(s)
- Abdul Haque
- Department of Post-Harvest Engineering and Technology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, Uttar Pardesh, India
| | - Saghir Ahmad
- Department of Post-Harvest Engineering and Technology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, Uttar Pardesh, India
| | - Z R A A Azad
- Department of Post-Harvest Engineering and Technology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, Uttar Pardesh, India
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha'il, Ha'il, Saudi Arabia
| | - Syed Amir Ashraf
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Ha'il, Ha'il, Saudi Arabia
| |
Collapse
|
22
|
Do porcupines self-medicate? The seasonal consumption of plants with antiparasitic properties coincides with that of parasite infections in Hystrix cristata of Central Italy. EUR J WILDLIFE RES 2022. [DOI: 10.1007/s10344-022-01620-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
23
|
Chowański S, Winkiel M, Szymczak-Cendlak M, Marciniak P, Mańczak D, Walkowiak-Nowicka K, Spochacz M, Bufo SA, Scrano L, Adamski Z. Solanaceae glycoalkaloids: α-solanine and α-chaconine modify the cardioinhibitory activity of verapamil. PHARMACEUTICAL BIOLOGY 2022; 60:1317-1330. [PMID: 35811507 PMCID: PMC9275482 DOI: 10.1080/13880209.2022.2094966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/09/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
CONTEXT Solanaceae glycoalkaloids (SGAs) possess cardiomodulatory activity. OBJECTIVE This study investigated the potential interaction between verapamil and glycoalkaloids. MATERIAL AND METHODS The cardioactivity of verapamil and glycoalkaloids (α-solanine and α-chaconine) was tested in adult beetle (Tenebrio molitor) myocardium in vitro using microdensitometric methods. The myocardium was treated with pure substances and mixtures of verapamil and glycoalkaloids for 9 min with saline as a control. Two experimental variants were used: simultaneous application of verapamil and glycoalkaloids or preincubation of the myocardium with one of the compounds followed by perfusion with a verapamil solution. We used 9 × 10-6-5 × 10-5 M and 10-9-10-5 M concentration for verapamil and glycoalkaloids, respectively. RESULTS Verapamil, α-solanine and α-chaconine showed cardioinhibitory activity with IC50 values equal to 1.69 × 10-5, 1.88 × 10-7 and 7.48 × 10-7 M, respectively. When the glycoalkaloids were applied simultaneously with verapamil, an antagonistic effect was observed with a decrease in the maximal inhibitory effect and prolongation of t50 and the recovery time characteristic of verapamil. We also confirmed the expression of two transcript forms of the gene that encodes the α1 subunit of L-type calcium channels in the myocardium and brain with equal transcription levels of both forms in the myocardium and significant domination of the shorter form in the brain of the insect species tested. DISCUSSION AND CONCLUSIONS The results show that attention to the composition of the daily diet during therapy with various drugs is particularly important. In subsequent studies, the nature of interaction between verapamil and SGAs on the molecular level should be checked, and whether this interaction decreases the efficiency of cardiovascular therapy with verapamil in humans.
Collapse
Affiliation(s)
- Szymon Chowański
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Magdalena Winkiel
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Monika Szymczak-Cendlak
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Paweł Marciniak
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Dominika Mańczak
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Karolina Walkowiak-Nowicka
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Marta Spochacz
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
- Laboratory of Electron and Confocal Microscopy, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Sabino A. Bufo
- Department of Sciences, University of Basilicata, Potenza, Italy
- Department of Geography, Environmental Management and Energy Studies, University of Johannesburg, Johannesburg, South Africa
| | - Laura Scrano
- Department of Sciences, University of Basilicata, Potenza, Italy
- Department of European Culture, University of Basilicata, Matera, Italy
| | - Zbigniew Adamski
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
- Laboratory of Electron and Confocal Microscopy, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
24
|
Baz L, Algarni S, Al-thepyani M, Aldairi A, Gashlan H. Lycopene Improves Metabolic Disorders and Liver Injury Induced by a Hight-Fat Diet in Obese Rats. Molecules 2022; 27:7736. [PMID: 36431836 PMCID: PMC9699056 DOI: 10.3390/molecules27227736] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/04/2022] [Accepted: 11/06/2022] [Indexed: 11/12/2022] Open
Abstract
Epidemiological studies have shown that the consumption of a high-fat diet (HFD) is positively related to the development of obesity. Lycopene (LYC) can potentially combat HFD-induced obesity and metabolic disorders in rats. This study aimed to investigate the effect of LYC on metabolic syndrome and assess its anti-inflammatory and antioxidant effects on the liver and adipose tissue in rats fed an HFD. Thirty-six male Wistar albino rats were divided into three groups. Group Ι (the control group) was fed a normal diet, group ΙΙ (HFD) received an HFD for 16 weeks, and group ΙΙΙ (HFD + LYC) received an HFD for 12 weeks and then LYC (25 mg/kg b.wt) was administered for four weeks. Lipid peroxidation, antioxidants, lipid profile, liver function biomarkers, and inflammatory markers were determined. The results showed that long-term consumption of an HFD significantly increased weight gain, liver weight, and cholesterol and triglyceride levels. Rats on an HFD displayed higher levels of lipid peroxidation and inflammatory markers. Moreover, liver and white adipose tissue histopathological investigations showed that LYC treatment mended the damaged tissue. Overall, LYC supplementation successfully reversed HFD-induced changes and shifts through its antioxidant and anti-inflammatory activity. Therefore, LYC displayed a therapeutic potential to manage obesity and its associated pathologies.
Collapse
Affiliation(s)
- Lina Baz
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Salha Algarni
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mona Al-thepyani
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Chemistry, College of Science and Art, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| | - Abdullah Aldairi
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 24211, Saudi Arabia
| | - Hana Gashlan
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
25
|
Ngo TH, Park J, Jo YD, Jin CH, Jung CH, Nam B, Han AR, Nam JW. Content of Two Major Steroidal Glycoalkaloids in Tomato ( Solanum lycopersicum cv. Micro-Tom) Mutant Lines at Different Ripening Stages. PLANTS (BASEL, SWITZERLAND) 2022; 11:2895. [PMID: 36365348 PMCID: PMC9654965 DOI: 10.3390/plants11212895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/27/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Esculeoside A and tomatine are two major steroidal alkaloids in tomato fruit (Solanum lycopersicum) that exhibit anti-inflammatory, anticancer, and anti-hyperlipidemia activities. Tomatine contained in immature tomato fruit is converted to esculeoside A as the fruit matures. To develop new tomato varieties based on the content analysis of functional secondary metabolites, 184 mutant lines were generated from the original cultivar (S. lycopersicum cv. Micro-Tom) by radiation breeding. Ultra-performance liquid chromatography coupled with evaporative light scattering detector was used to identify the mutant lines with good traits by analyzing tomatine and esculeoside A content. Compared with the original cultivar, candidates for highly functional cultivars with high esculeoside A content were identified in the mature fruit of the mutant lines. The mutant lines with low and high tomatine content at an immature stage were selected as edible cultivars due to toxicity reduction and as a source of tomatine with various pharmacological activities, respectively. During the process of ripening from green to red tomatoes, the rate of conversion of tomatine to esculeoside A was high in the green tomatoes with a low tomatine content, whereas green tomatoes with a high tomatine content exhibited a low conversion rate. Using methanol extracts prepared from unripe and ripe fruits of the original cultivar and its mutant lines and two major compounds, we examined their cytotoxicity against FaDu human hypopharynx squamous carcinoma cells. Only tomatine exhibited cytotoxicity with an IC50 value of 5.589 μM, whereas the other samples did not exhibit cytotoxicity. Therefore, radiation breeding represents a useful tool for developing new cultivars with high quality, and metabolite analysis is applicable for the rapid and objective selection of potential mutant lines.
Collapse
Affiliation(s)
- Trung Huy Ngo
- College of Pharmacy, Yeungnam University, Gyeongsan-si 38541, Gyeongsangbuk-do, Korea
| | - Jisu Park
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si 56212, Jeollabuk-do, Korea
| | - Yeong Deuk Jo
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si 56212, Jeollabuk-do, Korea
- College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134, Chungcheongnam-do, Korea
| | - Chang Hyun Jin
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si 56212, Jeollabuk-do, Korea
| | - Chan-Hun Jung
- Jeonju AgroBio-Materials Institute, Jeonju-si 54810, Jeollabuk-do, Korea
| | - Bomi Nam
- Institute of Natural Cosmetic Industry for Namwon, Namwon-si 55801, Jeollabuk-do, Korea
| | - Ah-Reum Han
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si 56212, Jeollabuk-do, Korea
| | - Joo-Won Nam
- College of Pharmacy, Yeungnam University, Gyeongsan-si 38541, Gyeongsangbuk-do, Korea
| |
Collapse
|
26
|
NAUREEN ZAKIRA, DHULI KRISTJANA, DONATO KEVIN, AQUILANTI BARBARA, VELLUTI VALERIA, MATERA GIUSEPPINA, IACONELLI AMERIGO, BERTELLI MATTEO. Foods of the Mediterranean diet: tomato, olives, chili pepper, wheat flour and wheat germ. JOURNAL OF PREVENTIVE MEDICINE AND HYGIENE 2022; 63:E4-E11. [PMID: 36479499 PMCID: PMC9710402 DOI: 10.15167/2421-4248/jpmh2022.63.2s3.2740] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Mediterranean people, which follows a diet rich in minimally-processed plant-based foods, are believed to live longer and healthier lives than many other populations in the Western world. Epidemiological and clinical data suggest that the Mediterranean diet has beneficial effects for several chronic diseases, such as cardiovascular diseases, obesity, cancer and diabetes. Although the mechanisms of action of the Mediterranean diet are not completely clear, the synergistic effects of a number of its components and their bioactive phytochemicals exert antioxidant, anti-inflammatory, anti-microbial and anti-cancer effects. The Mediterranean diet includes daily consumption of whole cereals, fruit, vegetables and legumes in moderate proportions, weekly consumption of white meat in low to moderate proportions and occasionally sweets and chocolates in small amounts. Since olive oil is the main lipids source, it has special significance for health. Healthy fruit and vegetables, rich in phytochemicals, are a major proportion of this diet and contribute to the overall nutritional value and bioactivity of its components. Here we review the nutritional and health benefits of wheat germ, tomatoes, olives and chili pepper, items at the base of Mediterranean diet food pyramid that provides beneficial molecules, such as polyphenols, vitamins and flavonoids, and exert anti-inflammatory, anti-microbial and anti-oxidative actions.
Collapse
Affiliation(s)
| | - KRISTJANA DHULI
- MAGI’s Lab, Rovereto (TN), Italy
- Correspondence: Kristjana Dhuli, MAGI’s Lab, Rovereto (TN), 38068, Italy. E-mail:
| | | | - BARBARA AQUILANTI
- UOSD Medicina Bariatrica, Fondazione Policlinico Agostino Gemelli IRCCS, Rome, Italy
| | - VALERIA VELLUTI
- UOSD Medicina Bariatrica, Fondazione Policlinico Agostino Gemelli IRCCS, Rome, Italy
| | - GIUSEPPINA MATERA
- UOSD Medicina Bariatrica, Fondazione Policlinico Agostino Gemelli IRCCS, Rome, Italy
| | - AMERIGO IACONELLI
- UOSD Medicina Bariatrica, Fondazione Policlinico Agostino Gemelli IRCCS, Rome, Italy
| | - MATTEO BERTELLI
- MAGI Euregio, Bolzano, Italy
- MAGI’s Lab, Rovereto (TN), Italy
- MAGISNAT, Peachtree Corners (GA), USA
| |
Collapse
|
27
|
Faria-Silva C, de Sousa M, Carvalheiro MC, Simões P, Simões S. Alpha-tomatine and the two sides of the same coin: An anti-nutritional glycoalkaloid with potential in human health. Food Chem 2022; 391:133261. [DOI: 10.1016/j.foodchem.2022.133261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 04/20/2022] [Accepted: 05/17/2022] [Indexed: 01/10/2023]
|
28
|
Liu S, Grierson D, Xi W. Biosynthesis, distribution, nutritional and organoleptic properties of bitter compounds in fruit and vegetables. Crit Rev Food Sci Nutr 2022; 64:1934-1953. [PMID: 36099178 DOI: 10.1080/10408398.2022.2119930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Compounds that confer a bitter taste on fruits and vegetables (FAVs) play crucial roles in both plant defense and health promotion. This review details the current knowledge of the distribution, properties (toxicity, pharmacological effects and receptors) and environmental plant responses relating to the biosynthesis, catabolism and transcriptional regulation of 53 bitter plant metabolites in diverse species of FAVs. Some bitter compounds, such as flavonoids, are common in all plant species and make a minor contribution to bitter flavor, but many are synthesized only in specific taxa. They make major contributions to the bitter taste of the corresponding species and some also have significant pharmacological effects. Levels of bitter metabolites are genetically determined, but various environmental cues can affect their final concentration during preharvest development and postharvest storage processes. Molecular approaches are helping to unravel the mechanisms of biosynthesis and regulation of bitter compounds in diverse crop species. This review not only discusses the theoretical basis for utilizing breeding programs and other agricultural technologies to produce FAVs with improved safety, favorable taste and healthier profiles, but also suggests new directions for the utilization of bitter compounds in FAVs for the development of natural pesticides and health-promoting medicines.
Collapse
Affiliation(s)
- Shengyu Liu
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Donald Grierson
- Plant & Crop Sciences Division, School of Biosciences, University of Nottingham, Loughborough, UK
| | - Wanpeng Xi
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Ministry of Education, Key Laboratory of Horticulture Science for Southern Mountainous Regions, Chongqing, China
| |
Collapse
|
29
|
Echeverría C, Martin A, Simon F, Salas CO, Nazal M, Varela D, Pérez-Castro RA, Santibanez JF, Valdés-Valdés RO, Forero-Doria O, Echeverría J. In Vivo and in vitro antitumor activity of tomatine in hepatocellular carcinoma. Front Pharmacol 2022; 13:1003264. [PMID: 36160442 PMCID: PMC9501894 DOI: 10.3389/fphar.2022.1003264] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/12/2022] [Indexed: 11/25/2022] Open
Abstract
Background: There is abundant ethnopharmacological evidence the uses of regarding Solanum species as antitumor and anticancer agents. Glycoalkaloids are among the molecules with antiproliferative activity reported in these species. Purpose: To evaluate the anticancer effect of the Solanum glycoalkaloid tomatine in hepatocellular carcinoma (HCC) in vitro (HepG2 cells) and in vivo models. Methods: The resazurin reduction assay was performed to detect the effect of tomatine on cell viability in human HepG2 cell lines. Programmed cell death was investigated by means of cellular apoptosis assays using Annexin V. The expression of cancer related proteins was detected by Western blotting (WB). Reactive oxygen species (ROS) and calcium were determined by 2,7-dichlorodihydrofluorescein diacetate and Fluo-4, respectively. Intrahepatic HepG2 xenograft mouse model was used to elucidate the effect of tomatine on tumor growth in vivo. Results and Discussion: Tomatine reduced HepG2 cell viability and induced the early apoptosis phase of cell death, consistently with caspase-3, -7, Bcl-2 family, and P53 proteins activation. Furthermore, tomatine increased intracellular ROS and cytosolic Ca+2 levels. Moreover, the NSG mouse xenograft model showed that treating mice with tomatine inhibited HepG2 tumor growth. Conclusion: Tomatine inhibits in vitro and in vivo HCC tumorigenesis in part via modulation of p53, Ca+2, and ROS signalling. Thus, the results suggest the potential cancer therapeutic use of tomatine in HCC patients.
Collapse
Affiliation(s)
- Cesar Echeverría
- Facultad de Medicina, Universidad de Atacama, Copiapó, Chile
- *Correspondence: Cesar Echeverría, ; Javier Echeverría,
| | - Aldo Martin
- Facultad de Medicina, Universidad de Atacama, Copiapó, Chile
| | - Felipe Simon
- Faculty of Life Science, Universidad Andres Bello, Santiago, Chile
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Cristian O. Salas
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mariajesus Nazal
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Diego Varela
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Ramón A. Pérez-Castro
- In vivo Tumor Biology Research Facility, Centro Oncológico, Universidad Católica Del Maule, Talca, Chile
- Laboratorio de Investigaciones Biomédicas, Facultad de Medicina, Universidad Católica Del Maule, Talca, Chile
| | - Juan F. Santibanez
- Group for Molecular Oncology, University of Belgrade, Institute for Medical Research, National Institute of Republic of Serbia, Belgrade, Serbia
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O’Higgins, Santiago, Chile
| | - Ricardo O. Valdés-Valdés
- In vivo Tumor Biology Research Facility, Centro Oncológico, Universidad Católica Del Maule, Talca, Chile
| | - Oscar Forero-Doria
- Departamento de Ciencias Del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Javier Echeverría
- Departamento de Ciencias Del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- *Correspondence: Cesar Echeverría, ; Javier Echeverría,
| |
Collapse
|
30
|
Ghosh S, Sarkar T, Chakraborty R, Shariati MA, Simal-Gandara J. Nature's palette: An emerging frontier for coloring dairy products. Crit Rev Food Sci Nutr 2022; 64:1508-1552. [PMID: 36066466 DOI: 10.1080/10408398.2022.2117785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Consumers all across the world are looking for the most delectable and appealing foods, while also demanding products that are safer, more nutritious, and healthier. Substitution of synthetic colorants with natural colorants has piqued consumer and market interest in recent years. Due to increasing demand, extensive research has been conducted to find natural and safe food additives, such as natural pigments, that may have health benefits. Natural colorants are made up of a variety of pigments, many of which have significant biological potential. Because of the promising health advantages, natural colorants are gaining immense interest in the dairy industry. This review goes over the use of various natural colorants in dairy products which can provide desirable color as well as positive health impacts. The purpose of this review is to provide an in-depth look into the field of food (natural or synthetic) colorants applied in dairy products as well as their potential health benefits, safety, general trends, and future prospects in food science and technology. In this paper, we listed a plethora of applications of natural colorants in various milk-based products.
Collapse
Affiliation(s)
- Susmita Ghosh
- Department of Food Technology and Biochemical Engineering, Jadavpur University, Kolkata, India
| | - Tanmay Sarkar
- Malda Polytechnic, West Bengal State Council of Technical Education, Government of West Bengal, Malda, India
| | - Runu Chakraborty
- Department of Food Technology and Biochemical Engineering, Jadavpur University, Kolkata, India
| | - Mohammad Ali Shariati
- Research Department, K. G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University), Moscow, Russian Federation
- Department of Scientific Research, Russian State Agrarian University - Moscow Timiryazev Agricultural Academy, Moscow, Russian Federation
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Analytical Chemistry and Food Science Department, Faculty of Science, Universidade de Vigo, Ourense, E32004, Spain
| |
Collapse
|
31
|
Bioactive Compounds and Their Impact on Protein Modification in Human Cells. Int J Mol Sci 2022; 23:ijms23137424. [PMID: 35806429 PMCID: PMC9266987 DOI: 10.3390/ijms23137424] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 02/07/2023] Open
Abstract
Reactive oxygen species (ROS) represent a group of molecules with a signaling role that are involved in regulating human cell proliferation and differentiation. Increased ROS concentrations are often associated with the local nonspecific oxidation of biological macromolecules, especially proteins and lipids. Free radicals, in general, may randomly damage protein molecules through the formation of protein-centered radicals as intermediates that, in turn, decay into several end oxidation products. Malondialdehyde (MDA), a marker of free-radical-mediated lipid oxidation and cell membrane damage, forms adducts with proteins in a nonspecific manner, leading to the loss of their function. In our study, we utilized U-937 cells as a model system to unveil the effect of four selected bioactive compounds (chlorogenic acid, oleuropein, tomatine, and tyrosol) to reduce oxidative stress associated with adduct formation in differentiating cells. The purity of the compounds under study was confirmed by an HPLC analysis. The cellular integrity and changes in the morphology of differentiated U-937 cells were confirmed with confocal microscopy, and no significant toxicity was found in the presence of bioactive compounds. From the Western blot analysis, a reduction in the MDA adduct formation was observed in cells treated with compounds that underlaid the beneficial effects of the compounds tested.
Collapse
|
32
|
Hsieh MJ, Huang CY, Kiefer R, Lee SD, Maurya N, Velmurugan BK. Cardiovascular Disease and Possible Ways in Which Lycopene Acts as an Efficient Cardio-Protectant against Different Cardiovascular Risk Factors. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103235. [PMID: 35630709 PMCID: PMC9147660 DOI: 10.3390/molecules27103235] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 11/16/2022]
Abstract
Foods rich in antioxidants such as lycopene have a major role in maintaining cardiac health. Lycopene, 80% of which can be obtained by consuming a common vegetable such as tomato, can prevent the disturbances that contribute to cardiovascular disease (CVD). The present work begins with a brief introduction to CVD and lycopene and its various properties such as bioavailability, pharmacokinetics, etc. In this review, the potential cardio-protective effects of lycopene that reduce the progression of CVD and thrombotic complications are detailed. Further, the protective effects of lycopene including in vitro, in vivo and clinical trials conducted on lycopene for CVD protective effects are explained. Finally, the controversial aspect of lycopene as a protective agent against CVD and toxicity are also mentioned.
Collapse
Affiliation(s)
- Ming-Ju Hsieh
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 50006, Taiwan;
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 40227, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Chih-Yang Huang
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung 41354, Taiwan;
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970473, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien 970302, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung 40402, Taiwan
| | - Rudolf Kiefer
- Conducting Polymers in Composites and Applications Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 758307, Vietnam;
| | - Shin-Da Lee
- Department of Physical Therapy, Asia University, Taichung 41354, Taiwan
- Department of Physical Therapy, Graduate Institute of Rehabilitation Science, China Medical University, Taichung 406040, Taiwan
- School of Rehabilitation Medicine, Weifang Medical University, Weifang 261053, China
- Correspondence: (S.-D.L.); (B.K.V.); Tel.: +886-4-22053366 (ext. 7300) (S.-D.L.); +84-028-377-55-058 (B.K.V.); Fax: +886-4-22065051 (S.-D.L.); +84-028-37-755-055 (B.K.V.)
| | - Nancy Maurya
- Botany Department, Government Science College, Pandhurna, Chhindwara, M.P., Pandhurna 480334, India;
| | - Bharath Kumar Velmurugan
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 758307, Vietnam
- Correspondence: (S.-D.L.); (B.K.V.); Tel.: +886-4-22053366 (ext. 7300) (S.-D.L.); +84-028-377-55-058 (B.K.V.); Fax: +886-4-22065051 (S.-D.L.); +84-028-37-755-055 (B.K.V.)
| |
Collapse
|
33
|
Butts CA, Hedderley DI, Martell S, Dinnan H, Middlemiss-Kraak S, Bunn BJ, McGhie TK, Lill RE. Influence of oral administration of kukoamine A on blood pressure in a rat hypertension model. PLoS One 2022; 17:e0267567. [PMID: 35522680 PMCID: PMC9075663 DOI: 10.1371/journal.pone.0267567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 04/11/2022] [Indexed: 11/19/2022] Open
Abstract
The benefits of lowering blood pressure (BP) are well established for the prevention of cardiovascular disease. While there are a number of pharmaceuticals available for lowering BP, there is considerable interest in using dietary modifications, lifestyle and behaviour changes as alternative strategies. Kukoamines, caffeic acid derivatives of polyamines present in solanaceous plants, have been reported to reduce BP. We investigated the effect of orally administered synthetic kukoamine A on BP in the Spontaneously Hypertensive Rat (SHR) laboratory animal model of hypertension. Prior to the hypertension study, we determined the safety of the synthetic kukoamine A in a single oral dose (5 or 10 mg kg-1 bodyweight) 14-day observational study in mice. No negative effects of the oral administration of kukoamine A were observed. We subsequently investigated the effect of daily oral doses of kukoamine A (0, 5, 10 mg kg-1 bodyweight) for 35 days using the SHR rat model of hypertension. The normotensive control Wistar Kyoto (WKY) strain was used to provide a baseline for normal BP in rats. We observed no effect of orally administered synthetic kukoamine A on arterial hypertension in this laboratory animal model of hypertension.
Collapse
Affiliation(s)
- Christine A. Butts
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
- * E-mail:
| | - Duncan I. Hedderley
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| | - Sheridan Martell
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| | - Hannah Dinnan
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| | | | - Barry J. Bunn
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| | - Tony K. McGhie
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| | - Ross E. Lill
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| |
Collapse
|
34
|
Felice F, Cesare MM, Fredianelli L, De Leo M, Conti V, Braca A, Di Stefano R. Effect of Tomato Peel Extract Grown under Drought Stress Condition in a Sarcopenia Model. Molecules 2022; 27:molecules27082563. [PMID: 35458760 PMCID: PMC9031685 DOI: 10.3390/molecules27082563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 11/16/2022] Open
Abstract
Tomatoes and their derivates represent an important source of natural biologically active components. The present study aims to investigate the protective effect of tomato peel extracts, grown in normal (RED-Ctr) or in drought stress (RED-Ds) conditions, on an experimental model of sarcopenia. The phenolic profile and total polyphenols content (TPC) of RED-Ctr and RED-Ds were determined by Ultra High-Performance Liquid Chromatography (UHPLC) analyses coupled to electrospray ionization high-resolution mass spectrometry (ESI-HR-MS). Human skeletal muscle myoblasts (HSMM) were differentiated in myotubes, and sarcopenia was induced by dexamethasone (DEXA) treatment. Differentiation and sarcopenia were evaluated by both real-time PCR and immunofluorescent techniques. Data show that myosin heavy chain 2 (MYH2), troponin T (TNNT1), and miogenin (MYOG) were expressed in differentiated myotubes. 5 μg Gallic Acid Equivalent (GAE/mL) of TPC from RED-Ds extract significantly reduced muscle atrophy induced by DEXA. Moreover, Forkhead BoxO1 (FOXO1) expression, involved in cell atrophy, was significantly decreased by RED-Ds extract. The protective effect of tomato peel extracts depended on their qualitative polyphenolic composition, resulting effectively in the in vitro model of sarcopenia.
Collapse
Affiliation(s)
- Francesca Felice
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, 56100 Pisa, Italy;
- Correspondence:
| | - Maria Michela Cesare
- Department of Life Sciences, University of Siena, Via P.A. Mattioli 4, 53100 Siena, Italy; (M.M.C.); (V.C.)
| | - Luca Fredianelli
- Institute for Chemical-Physical Processes of the Italian Research Council (CNR-IPCF), Via Moruzzi 1, 56100 Pisa, Italy;
| | - Marinella De Leo
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (M.D.L.); (A.B.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, 56100 Pisa, Italy
- CISUP, Centre for Instrumentation Sharing, University of Pisa, 56126 Pisa, Italy
| | - Veronica Conti
- Department of Life Sciences, University of Siena, Via P.A. Mattioli 4, 53100 Siena, Italy; (M.M.C.); (V.C.)
| | - Alessandra Braca
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (M.D.L.); (A.B.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, 56100 Pisa, Italy
- CISUP, Centre for Instrumentation Sharing, University of Pisa, 56126 Pisa, Italy
| | - Rossella Di Stefano
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, 56100 Pisa, Italy;
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (M.D.L.); (A.B.)
| |
Collapse
|
35
|
Fathi M, Tanha T, Saeedyan S. Influence of dietary lycopene on growth performance, antioxidant status, blood parameters and mortality in broiler chicken with cold-induced ascites. Arch Anim Nutr 2022; 76:50-60. [PMID: 35255752 DOI: 10.1080/1745039x.2022.2046451] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The aim of this study was to determine the effects of dietary lycopene supplementation on growth performance and antioxidant status of broiler chickens exposed to cold environment to induce ascites. Three hundred male chickens were exposed full-day to cold stress (CT, 10°C) starting from day 15 of age until the end of experiment at day 42, while a positive control group (NT, 100 birds) was kept under normal temperature (23-25°C). The CT groups (three treatments and five replicates of 20 birds) were as follows: negative control (basal diet, CT) and CT + 200 or 400 mg lycopene per kg diet from 15 to 42 d of age. Results showed that CT without lycopene supplementation caused a reduction of feed intake and weight gain and increased the feed conversion ratio. Supplementation of lycopene during CT restored the performance to levels of the positive control, lowered the index of right ventricles/total ventricles and ascites mortality. Birds reared under CT had lower serum activities of superoxide dismutase (SOD), glutathione peroxidase (GPx) and higher malondialdehyde (MDA) concentration than birds reared under the NT environment. With lycopene supplementation, serum MDA level significantly decreased and the activity of SOD and GPx increased. Blood concentration of haematocrit, haemoglobin and red blood cells were decreased by the highest lycopene supplementation to a level comparable to NT. Moreover, increasing dietary lycopene level suppressed serum concentrations of cholesterol and enhanced high-density lipoproteins levels in blood. In conclusion, lycopene supplementation alleviates adverse effects of cold stress on performance through modulating activity of antioxidant enzymes in broiler chickens.
Collapse
Affiliation(s)
- Mokhtar Fathi
- Department of Animal Science, College of Agriculture, Payam Noor University, Tehran, Iran
| | - Timour Tanha
- Department of Animal Science, College of Agriculture, Payam Noor University, Tehran, Iran
| | | |
Collapse
|
36
|
Sueiro RA, Leiro JM, Blanco-Abad V, Raaijmakers J, de Bruijn I, Dirks RPH, Lamas J. Plant- and Bacteria-Derived Compounds with Anti-Philasterides dicentrarchi Activity. Pathogens 2022; 11:pathogens11020267. [PMID: 35215209 PMCID: PMC8880129 DOI: 10.3390/pathogens11020267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 02/01/2023] Open
Abstract
Philasterides dicentrarchi is a scuticociliate that causes high mortalities in farmed fish. Although vaccination is an effective method to prevent scuticociliatosis caused by the homologous serotype, a universal vaccine has not been developed yet. Many compounds have been shown to be toxic to this ciliate species; moreover, most of them are toxic to aquatic life and cannot be used to prevent the disease. We have evaluated the toxicity to P. dicentrarchi of several compounds of natural origin to be used to reduce parasite levels in the seawater. Ciliates were exposed to several compound concentrations, and the mortality was determined at several incubation times. Tomatine, plumbagin and 2′,4′-dihydroxychalcone displayed the highest anticiliate activity, with a dose-dependent response. The effects of these compounds on the EPC cell line were also evaluated, finding that 2′,4′-dihydroxychalcone displayed the lowest toxicity to fish cells. At 7.54 μM, 2′,4′-dihydroxychalcone inhibited 50% parasite growth but only killed about 10% of EPC cells after 24 h incubation. Finally, we evaluated the toxicity of Pseudomonas H6 surfactant (PS) to P. dicentrarchi, finding that PS was toxic to the ciliate but showed lower toxicity to EPC cells. At a concentration of 7.8 μg/mL (LC50 for the ciliate after 3 h incubation), PS killed 14.9% of EPC cells. We conclude that 2′,4′-dihydroxychalcone, and PS could be used to reduce parasite levels in seawater, thus decreasing the risk of scuticociliatosis infection in cultured fish.
Collapse
Affiliation(s)
- Rosa Ana Sueiro
- Laboratory of Parasitology, Department of Microbiology and Parasitology, Institute of Research on Chemical and Biological Analysis, Campus Vida, University of Santiago de Compostela, E-15782 Santiago de Compostela, Spain; (R.A.S.); (J.M.L.)
| | - José Manuel Leiro
- Laboratory of Parasitology, Department of Microbiology and Parasitology, Institute of Research on Chemical and Biological Analysis, Campus Vida, University of Santiago de Compostela, E-15782 Santiago de Compostela, Spain; (R.A.S.); (J.M.L.)
| | - Verónica Blanco-Abad
- Department of Functional Biology, Institute of Aquaculture, Campus Vida, University of Santiago de Compostela, E-15782 Santiago de Compostela, Spain;
| | - Jos Raaijmakers
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB Wageningen, The Netherlands; (J.R.); (I.d.B.)
| | - Irene de Bruijn
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB Wageningen, The Netherlands; (J.R.); (I.d.B.)
| | - Ron P. H. Dirks
- Future Genomics Technologies, Leiden BioScience Park, Sylviusweg 74, 2333 BE Leiden, The Netherlands;
| | - Jesús Lamas
- Department of Functional Biology, Institute of Aquaculture, Campus Vida, University of Santiago de Compostela, E-15782 Santiago de Compostela, Spain;
- Correspondence: ; Tel.:+34-881-816951
| |
Collapse
|
37
|
Przybylska S, Tokarczyk G. Lycopene in the Prevention of Cardiovascular Diseases. Int J Mol Sci 2022; 23:1957. [PMID: 35216071 PMCID: PMC8880080 DOI: 10.3390/ijms23041957] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/01/2022] [Accepted: 02/07/2022] [Indexed: 02/04/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of human mortality worldwide. Oxidative stress and inflammation are pathophysiological processes involved in the development of CVD. That is why bioactive food ingredients, including lycopene, are so important in their prevention, which seems to be a compound increasingly promoted in the diet of people with cardiovascular problems. Lycopene present in tomatoes and tomato products is responsible not only for their red color but also for health-promoting properties. It is characterized by a high antioxidant potential, the highest among carotenoid pigments. Mainly for this reason, epidemiological studies show a number of favorable properties between the consumption of lycopene in the diet and a reduced risk of cardiovascular disease. While there is also some controversy in research into its protective effects on the cardiovascular system, growing evidence supports its beneficial role for the heart, endothelium, blood vessels, and health. The mechanisms of action of lycopene are now being discovered and may explain some of the contradictions observed in the literature. This review aims to present the current knowledge in recent years on the preventive role of lycopene cardiovascular disorders.
Collapse
Affiliation(s)
- Sylwia Przybylska
- Department of Fish, Plant and Gastronomy Technology, West Pomeranian University of Technology in Szczecin, 71-459 Szczecin, Poland;
| | | |
Collapse
|
38
|
Tomatoes: An Extensive Review of the Associated Health Impacts of Tomatoes and Factors That Can Affect Their Cultivation. BIOLOGY 2022; 11:biology11020239. [PMID: 35205105 PMCID: PMC8869745 DOI: 10.3390/biology11020239] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 02/01/2023]
Abstract
Simple Summary The research outlined in this review paper discusses potential health benefits associated with a diet enriched with tomatoes and tomato products. This includes details of previous studies investigating the anticancer properties of tomatoes, protection against cardiovascular and neurodegenerative diseases and diabetes, maintenance of a healthy gut microbiome, and improved skin health, fertility, immune response, and exercise recovery. The specific parts of a tomato fruit that contribute these health benefits are also outlined. The potential disadvantages to a tomato-rich diet are detailed, especially the consumption of supplements that contain compounds found in tomatoes, such as lycopene. This review also discusses how the cultivation of tomato plants can affect the nutritional value of the fruit harvested. Different environmental growing conditions such as light intensity, growing media, and temperature are explained in terms of the impact they have on the quality of fruit, its nutrient content, and hence the potential health benefits acquired from eating the fruit. Abstract This review outlines the health benefits associated with the regular consumption of tomatoes and tomato products. The first section provides a detailed account of the horticultural techniques that can impact the quality of the fruit and its nutritional properties, including water availability, light intensity, temperature, and growing media. The next section provides information on the components of tomato that are likely to contribute to its health effects. The review then details some of the health benefits associated with tomato consumption, including anticancer properties, cardiovascular and neurodegenerative diseases and skin health. This review also discusses the impact tomatoes can have on the gut microbiome and associated health benefits, including reducing the risk of inflammatory bowel diseases. Other health benefits of eating tomatoes are also discussed in relation to effects on diabetes, the immune response, exercise recovery, and fertility. Finally, this review also addresses the negative effects that can occur as a result of overconsumption of tomato products and lycopene supplements.
Collapse
|
39
|
Ostreikova TO, Kalinkina OV, Bogomolov NG, Chernykh IV. Glycoalkaloids of Plants in the Family Solanaceae (Nightshade) as Potential Drugs. Pharm Chem J 2022; 56:948-957. [PMID: 36277854 PMCID: PMC9579588 DOI: 10.1007/s11094-022-02731-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Indexed: 11/05/2022]
Abstract
Worldwide interest in medicinal plants and related drugs is growing because of the increased spectrum of new synthetic drugs. In this context, secondary plant metabolites are most significant. This review analyzes data on the structures and biosyntheses of metabolites such as glycoalkaloids; methods for their extraction from plants of the family Solanaceae, particularly potato S. tuberosum; their qualitative and quantitative analysis; biological activity; and toxicity. This information could be useful in the selection of methods for sample preparation and extraction of glycoalkaloids during the search for new plant sources with prospects of creating effective and safe pharmacological agents.
Collapse
Affiliation(s)
- T. O. Ostreikova
- grid.445664.10000 0004 0562 7304I. P. Pavlov Ryazan State Medical University, Ministry of Health of the Russian Federation, 8 Vysokovol’tnaya St, Ryazan, 390026 Russia
| | - O. V. Kalinkina
- grid.445664.10000 0004 0562 7304I. P. Pavlov Ryazan State Medical University, Ministry of Health of the Russian Federation, 8 Vysokovol’tnaya St, Ryazan, 390026 Russia
| | - N. G. Bogomolov
- grid.445664.10000 0004 0562 7304I. P. Pavlov Ryazan State Medical University, Ministry of Health of the Russian Federation, 8 Vysokovol’tnaya St, Ryazan, 390026 Russia
| | - I. V. Chernykh
- grid.445664.10000 0004 0562 7304I. P. Pavlov Ryazan State Medical University, Ministry of Health of the Russian Federation, 8 Vysokovol’tnaya St, Ryazan, 390026 Russia
| |
Collapse
|
40
|
Abstract
Tomato processing leads to the production of considerable amounts of residues, mainly in the form of tomato skins, seeds and vascular tissues, which still contain bioactive molecules of interest for food, pharmaceutical and nutraceutical industries. These include carotenoids, such as lycopene and β-carotene, tocopherols and sitosterols, among others. Supercritical fluid extraction is well positioned for the valorization of tomato residues prior to disposal, because it remains an environmentally safe extraction process, especially when using carbon dioxide as the solvent. In this article, we provide an extensive literature overview of the research on the supercritical fluid extraction of tomato residues. We start by identifying the most relevant extractables present in tomatoes (e.g., lycopene) and their main bioactivities. Then, the main aspects affecting the extraction performance are covered, starting with the differences between tomato matrixes (e.g., seeds, skins and pulp) and possible pretreatments to enhance extraction (e.g., milling, drying and enzymatic digestion). Finally, the effects of extraction conditions, such as pressure, temperature, cosolvent, flow rate and time, are discussed.
Collapse
|
41
|
Bailly C. The steroidal alkaloids α-tomatine and tomatidine: Panorama of their mode of action and pharmacological properties. Steroids 2021; 176:108933. [PMID: 34695457 DOI: 10.1016/j.steroids.2021.108933] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 10/03/2021] [Accepted: 10/14/2021] [Indexed: 01/04/2023]
Abstract
The steroidal glycoalkaloid α-tomatine (αTM) and its aglycone tomatidine (TD) are abundant in the skin of unripe green tomato and present in tomato leaves and flowers. They mainly serve as defensive agents to protect the plant against infections by insects, bacteria, parasites, viruses, and fungi. In addition, the two products display a range of pharmacological properties potentially useful to treat various human diseases. We have analyzed all known pharmacological activities of αTM and TD, and the corresponding molecular targets and pathways impacted by these two steroidal alkaloids. In experimental models, αTM displays anticancer effects, particularly strong against androgen-independent prostate cancer, as well as robust antifungal effects. αTM is a potent cholesterol binder, useful as a vaccine adjuvant to improve delivery of protein antigens or therapeutic oligonucleotides. TD is a much less cytotoxic compound, able to restrict the spread of certain viruses (such as dengue, chikungunya and porcine epidemic diarrhea viruses) and to provide cardio and neuro-protective effects toward human cells. Both αTM and TD exhibit marked anti-inflammatory activities. They proceed through multiple signaling pathways and protein targets, including the sterol C24 methyltransferase Erg6 and vitamin D receptor, both directly targeted by TD. αTM is a powerful regulator of the NFkB/ERK signaling pathway implicated in various diseases. Collectively, the analysis shed light on the multitargeted action of αTM/TD and their usefulness as chemo-preventive or chemotherapeutic agents. A novel medicinal application for αTM is proposed.
Collapse
|
42
|
Almeida PV, Rodrigues RP, Gaspar MC, Braga MEM, Quina MJ. Integrated management of residues from tomato production: Recovery of value-added compounds and biogas production in the biorefinery context. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 299:113505. [PMID: 34454202 DOI: 10.1016/j.jenvman.2021.113505] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 07/30/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
The biorefinery approach must be boosted in the management of agro-residues in the future. The present study aims to investigate the valorization of tomato production residues, namely rotten tomato (unfit for consumption - RT), green tomato (GT), and tomato branches (TB). The assessment involves the recovery of value-added compounds through the extraction process followed by biogas production through anaerobic digestion. A thorough characterization of the three residues (RT, GT, and TB) was carried out, including the identification of volatile compounds by solid-phase microextraction (SPME) and gas chromatography/mass spectrometry (GC/MS). The volatiles analysis revealed the presence of flavor enhancer compounds and molecules with insecticidal properties. A solid-liquid extraction with ethanol allowed the recovery of value-added compounds in the extracts, in particular phenolic compounds, β-carotene, and lycopene, which contributed to the antioxidant activity. RT and TB extracts were found to be richer in total phenolic compounds (~27 mg GAE/gdb dry basis) and exhibited higher antioxidant activity (IC50 = 0.911 and 0.745 mg/mL). The tomato branches extract had the highest concentration of carotenoids with 37.23 and 3.08 mg/kgdb of β-carotene and lycopene, respectively. The biochemical methane potential (BMP) was assessed in sealed reactors operating in anaerobic conditions for all the raw (RT, GT, and TB) and extracted substrates waste (RTe, GTe, and TBe). While the BMP of RT and GT was in the range of 232-285 mL CH4/g VS, a lower value of 141 mL CH4/g VS was obtained for TB. The methane production for each pair of raw and extracted substrates (RT/RTe, GT/GTe, and TB/TBe) was considered statistically similar at a 95 % confidence level. Overall, the value-added compounds recovery through ethanolic extraction did not compromise the methane production of the materials.
Collapse
Affiliation(s)
- P V Almeida
- University of Coimbra, CIEPQPF, Department of Chemical Engineering, Rua Sílvio Lima, Pólo II, Pinhal de Marrocos, 3030-790, Coimbra, Portugal
| | - R P Rodrigues
- University of Coimbra, CIEPQPF, Department of Chemical Engineering, Rua Sílvio Lima, Pólo II, Pinhal de Marrocos, 3030-790, Coimbra, Portugal
| | - M C Gaspar
- University of Coimbra, CIEPQPF, Department of Chemical Engineering, Rua Sílvio Lima, Pólo II, Pinhal de Marrocos, 3030-790, Coimbra, Portugal
| | - M E M Braga
- University of Coimbra, CIEPQPF, Department of Chemical Engineering, Rua Sílvio Lima, Pólo II, Pinhal de Marrocos, 3030-790, Coimbra, Portugal.
| | - M J Quina
- University of Coimbra, CIEPQPF, Department of Chemical Engineering, Rua Sílvio Lima, Pólo II, Pinhal de Marrocos, 3030-790, Coimbra, Portugal.
| |
Collapse
|
43
|
Fam VW, Charoenwoodhipong P, Sivamani RK, Holt RR, Keen CL, Hackman RM. Plant-Based Foods for Skin Health: A Narrative Review. J Acad Nutr Diet 2021; 122:614-629. [PMID: 34728412 DOI: 10.1016/j.jand.2021.10.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 10/06/2021] [Accepted: 10/27/2021] [Indexed: 12/29/2022]
Abstract
The potential role of plant-based foods in the promotion of skin health is an emerging area of nutrition research. Plant-based foods are rich in bioactive compounds, including vitamin C, vitamin E, beta carotene, polyphenols, and phenolic acids, which can contribute to oxidant defense, lower inflammation, and promote structural support of the skin. Epidemiological studies have associated higher intakes of select fruits and vegetables with positive skin health. Beneficial effects of certain fruits, vegetables, nuts, legumes, and polyphenolic-rich beverages on the skin have been reported, with each of these providing a unique phytochemical composition. Although most studies use extracts, this review will focus on data from whole foods and minimally processed products. Collectively, the evidence to date suggests a promising future for plant-based dietary interventions that promote skin barrier health and function. However, additional research is required to address issues such as the optimal quality and duration of intake as well as potential mechanisms. Studies in the above areas will help formulate specific targeted dietary recommendations.
Collapse
Affiliation(s)
- Vivien W Fam
- Department of Nutrition, University of California Davis, Davis, California; Zen Dermatology, Sacramento, California.
| | | | - Raja K Sivamani
- Zen Dermatology, Sacramento, California; Department of Dermatology, University of California Davis, Sacramento, California; Department of Biological Sciences, California State University, Sacramento, California; College of Medicine, California Northstate University, Elk Grove, California; Pacific Skin Institute, Sacramento, California
| | - Roberta R Holt
- Department of Nutrition, University of California Davis, Davis, California
| | - Carl L Keen
- Department of Nutrition, University of California Davis, Davis, California; Department of Internal Medicine, University of California Davis, Sacramento, California
| | - Robert M Hackman
- Department of Nutrition, University of California Davis, Davis, California
| |
Collapse
|
44
|
Kurina AB, Solovieva AE, Khrapalova IA, Artemyeva AM. Biochemical composition of tomato fruits of various colors. Vavilovskii Zhurnal Genet Selektsii 2021; 25:514-527. [PMID: 34595374 PMCID: PMC8453365 DOI: 10.18699/vj21.058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/30/2021] [Accepted: 04/02/2021] [Indexed: 12/04/2022] Open
Abstract
Tomato (Lycopersicon esculentum Mill.) is an economically important and widely cultivated vegetable
crop that is consumed both fresh and processed. The nutritional value of tomato fruits is related to the content
of carotenoids,
polyphenols, sugars, organic acids, minerals and vitamins. Currently, there is a growing interest
in the qualitative and quantitative increase in the content of health-promoting compounds in tomato fruits. VIR
Lycopersicon (Tourn.) Mill. genetic resources collection includes 7678 accessions of one cultivated and nine wild
species, which in turn provides ample opportunities for searching for information on the variability of the content
of biologically active substances and searching for sources with a high content of them in the gene pool.
Our work presents the results of the study of 70 accessions of cultivated and wild tomato on the main biochemical
characteristics: the content of dry matter, ascorbic acid, sugars, carotenoids, chlorophylls and anthocyanins.
As the basis for the selection of accessions for the study, accessions with various colors of fruits, including new
accessions with varying content of anthocyanin, were taken. As a result of this study, the amplitude of variability
in the content of dry matter (3.72–8.88 and 9.62–11.33 %), sugars (1.50–5.65 and 2.20–2.70 %), ascorbic acid
(12.40–35.56 and 23.62– 28.14 mg/100 g), titratable acidity (0.14–0.46 and 0.33–0.48 %), chlorophylls (0.14–5.11
and 2.95–4.57 mg/100 g), carotenoids (0.97–99.86 and 1.03–10.06 mg/100 g) and anthocyanins (3.00–588.86 and
84.31–152.71 mg/100 g) in the fruits of cultivated and wild tomatoes, respectively, was determined. We have determined
correlations between the content of dry matter and monosaccharides (r = 0.40, p ≤ 0.05), total sugars
(r = 0.37, p ≤ 0.05) and ascorbic acid (r = 0.32, p ≤ 0.05); the content of ascorbic acid and carotenoids (r = 0.25,
p ≤ 0.05). A high dependence of the content of chlorophyll a and b among themselves (r = 0.89, p ≤ 0.05), as well
as between the content of chlorophyll b and anthocyanins (r = 0.47, p ≤ 0.05), the content of β-carotene (r = 0.26,
p ≤ 0.05) and the content of monosaccharides (r = –0.29, p ≤ 0.05) has been noted. We have identif ied tomato accessions
with a high content of individual chemical substances, as well as with a complex of traits that can be used
as sources in breeding for a high content of dry matter, sugars, ascorbic acid, pigments and anthocyanins.
Collapse
Affiliation(s)
- A B Kurina
- Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), St. Petersburg, Russia
| | - A E Solovieva
- Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), St. Petersburg, Russia
| | - I A Khrapalova
- Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), St. Petersburg, Russia
| | - A M Artemyeva
- Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), St. Petersburg, Russia
| |
Collapse
|
45
|
Ferreira-Santos P, Carrón R, Montero MJ, Sevilla MÁ. The antihypertensive and antihypertrophic effect of lycopene is not affected by and is independent of age. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
46
|
Functional, Flavor and Visual Traits of Hydroponically Produced Tomato Fruit in Relation to Substrate, Plant Training System and Harvesting Time. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7090311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Currently, a great portion of tomatoes is produced by soilless cultivation systems and the substrate selection among the various materials is one of the most important factors affecting yield and quality traits. On the other hand, grafting has been successfully used in soilless systems to ensure long-term cultivation. However, due to the high cost of grafted seedlings, plant training systems are sought. Given the fact that most literature refers to studies intended to mainly reveal production differences among treatments and the quality aspect was secondary, the present study was focused on the evaluation of tomato fruit functionality, flavor and visual traits. Tomato plants cv ‘Beef Bang F1’ were cultivated in a glasshouse hydroponic culture in four substrates: rockwool slabs, perlite in sacks, pumice in sacks and pumice in 9 L pots. The type of cultivated plants used were self-rooted or grafted onto ‘Defensor’ trained in single and double stems. Tomato fruit were harvested three times during the season (6 June, 31 July, 6 November). The fruit quality was measured based on visual (average fruit mass, and Minolta color values), flavor (dry mass, soluble solids content, titratable acidity, pH, flesh firmness) as well as functional traits (total phenolic content, ascorbic acid, lycopene, β-carotene, total carotenoid content and antioxidant capacity). Harvest time was the most important factor followed in many of these cases by the substrate (flavor and functional traits), as well as in certain cases by the plant grafting/training (flavor traits and antioxidants) or by both in some flavor traits and antioxidants. Correlation of color values with lycopene, though significant, was weak. Each individual harvest time revealed the rise in different parameters. Pumice, whether used in pot or in sack, enhanced the visual and flavor attributes the most, self-rooted plants and mid-summer harvest resulted in the highest tomato fruit quality.
Collapse
|
47
|
Wang Y, Zhang L, Lyu X, Li Y, Ahsan A, Feng Z, Zhang X. Tomatidine provides mitophagy-independent neuroprotection after ischemic injury. FEBS Open Bio 2021; 11:2647-2654. [PMID: 34347928 PMCID: PMC8409302 DOI: 10.1002/2211-5463.13265] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/09/2021] [Accepted: 08/03/2021] [Indexed: 11/28/2022] Open
Abstract
Cerebral ischemia is one of the leading causes of human mortality and disability worldwide. The treatment of cerebral ischemia is refractory due to its short therapeutic window and lack of effective clinical drugs. Mitophagy, the autophagic elimination of damaged mitochondria, attenuates neuronal injury in cerebral ischemia, indicating the potential of mitophagy inducers as therapies for cerebral ischemia. We previously determined that, by enhancing autophagy flux, the steroidal alkaloid tomatidine can function as a neuroprotective agent against ischemic injury. However, its effects on mitophagy remain unknown. For this purpose, neuroblastoma cell lines Neuro-2a and SH-SY5Y were subjected to ischemic injury induced by oxygen-glucose deprivation/reperfusion (OGD/R) and then treated with tomatidine. OGD/R induced a general decrease of cellular contents, and this study revealed that tomatidine had no impact on mitophagy. In addition, tomatidine did not affect mitochondrial contents, including translocase of outer mitochondrial membrane 20 and voltage-dependent anion channel 1, in either OGD/R-treated or intact SH-SY5H cells. Our results indicate that tomatidine exhibits its neuroprotective effects by enhancing autophagy, but in a potentially mitophagy-independent manner, and provide insights for further investigation into its mechanism(s) and potential therapeutic use against cerebral ischemia.
Collapse
Affiliation(s)
- Yu‐ting Wang
- Department of AnesthesiologySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouChina
| | - Li‐na Zhang
- Department of AnesthesiologySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouChina
| | - Xiao‐cui Lyu
- Department of AnesthesiologySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouChina
| | - Yue Li
- Institute of Pharmacology and ToxicologyKey Laboratory of Medical Neurobiology of the Ministry of Health of ChinaCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
| | - Anil Ahsan
- Institute of Pharmacology and ToxicologyKey Laboratory of Medical Neurobiology of the Ministry of Health of ChinaCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
| | - Zikai Feng
- Institute of Pharmacology and ToxicologyKey Laboratory of Medical Neurobiology of the Ministry of Health of ChinaCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
| | - Xiangnan Zhang
- Institute of Pharmacology and ToxicologyKey Laboratory of Medical Neurobiology of the Ministry of Health of ChinaCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
| |
Collapse
|
48
|
Tomato (Solanum lycopersicum L.) seed: A review on bioactives and biomedical activities. Biomed Pharmacother 2021; 142:112018. [PMID: 34449317 DOI: 10.1016/j.biopha.2021.112018] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/30/2021] [Accepted: 08/07/2021] [Indexed: 02/07/2023] Open
Abstract
The processing of tomato fruit into puree, juices, ketchup, sauces, and dried powders generates a significant amount of waste in the form of tomato pomace, which includes seeds and skin. Tomato processing by-products, particularly seeds, are reservoirs of health-promoting macromolecules, such as proteins (bioactive peptides), carotenoids (lycopene), polysaccharides (pectin), phytochemicals (flavonoids), and vitamins (α-tocopherol). Health-promoting properties make these bioactive components suitable candidates for the development of novel food and nutraceutical products. This review comprehensively demonstrates the bioactive compounds of tomato seeds along with diverse biomedical activities of tomato seed extract (TSE) for treating cardiovascular ailments, neurological disorders, and act as antioxidant, anticancer, and antimicrobial agent. Utilization of bioactive components can improve the economic feasibility of the tomato processing industry and may help to reduce the environmental pollution generated by tomato by-products.
Collapse
|
49
|
Scientometric and Methodological Analysis of the Recent Literature on the Health-Related Effects of Tomato and Tomato Products. Foods 2021; 10:foods10081905. [PMID: 34441682 PMCID: PMC8393598 DOI: 10.3390/foods10081905] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 12/12/2022] Open
Abstract
The health benefits of tomato, a vegetable consumed daily in human diets, have received great attention in the scientific community, and a great deal of experiments have tested their utility against several diseases. Herein, we present a scientometric analysis of recent works aimed to estimate the biological effects of tomato, focusing on bibliographic metadata, type of testers, target systems, and methods of analysis. A remarkably variable array of strategies was reported, including testers obtained by standard and special tomatoes, and the use of in vitro and in vivo targets, both healthy and diseased. In vitro, 21 normal and 36 cancer human cell lines derived from 13 different organs were used. The highest cytotoxic effects were reported on cancer blood cells. In vivo, more experiments were carried out with murine than with human systems, addressing healthy individuals, as well as stressed and diseased patients. Multivariate analysis showed that publications in journals indexed in the agriculture category were associated with the use of fresh tomatoes; conversely, medicine and pharmacology journals were associated with the use of purified and formulate testers. Studies conducted in the United States of America preferentially adopted in vivo systems and formulates, combined with blood and tissue analysis. Researchers in Italy, China, India, and Great Britain mostly carried out in vitro research using fresh tomatoes. Gene expression and proteomic analyses were associated with China and India. The emerging scenario evidences the somewhat dichotomic approaches of plant geneticists and agronomists and that of cell biologists and medicine researchers. A higher integration between these two scientific communities would be desirable to foster the assessment of the benefits of tomatoes to human health.
Collapse
|
50
|
Bharadwaj R, Kumar SR, Sharma A, Sathishkumar R. Plant Metabolic Gene Clusters: Evolution, Organization, and Their Applications in Synthetic Biology. FRONTIERS IN PLANT SCIENCE 2021; 12:697318. [PMID: 34490002 PMCID: PMC8418127 DOI: 10.3389/fpls.2021.697318] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/05/2021] [Indexed: 05/21/2023]
Abstract
Plants are a remarkable source of high-value specialized metabolites having significant physiological and ecological functions. Genes responsible for synthesizing specialized metabolites are often clustered together for a coordinated expression, which is commonly observed in bacteria and filamentous fungi. Similar to prokaryotic gene clustering, plants do have gene clusters encoding enzymes involved in the biosynthesis of specialized metabolites. More than 20 gene clusters involved in the biosynthesis of diverse metabolites have been identified across the plant kingdom. Recent studies demonstrate that gene clusters are evolved through gene duplications and neofunctionalization of primary metabolic pathway genes. Often, these clusters are tightly regulated at nucleosome level. The prevalence of gene clusters related to specialized metabolites offers an attractive possibility of an untapped source of highly useful biomolecules. Accordingly, the identification and functional characterization of novel biosynthetic pathways in plants need to be worked out. In this review, we summarize insights into the evolution of gene clusters and discuss the organization and importance of specific gene clusters in the biosynthesis of specialized metabolites. Regulatory mechanisms which operate in some of the important gene clusters have also been briefly described. Finally, we highlight the importance of gene clusters to develop future metabolic engineering or synthetic biology strategies for the heterologous production of novel metabolites.
Collapse
Affiliation(s)
- Revuru Bharadwaj
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Sarma R. Kumar
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Ashutosh Sharma
- Tecnologico de Monterrey, Centre of Bioengineering, Querétaro, Mexico
| | - Ramalingam Sathishkumar
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| |
Collapse
|