1
|
Bytof G, Suesse-Herrmann O, Holtmann M, Falenski JA, Theurillat V, Eisenbrand G. Glyphosate losses through various stages of coffee production and consequences for human exposure. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2025; 42:59-74. [PMID: 39556115 DOI: 10.1080/19440049.2024.2427667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/26/2024] [Accepted: 10/28/2024] [Indexed: 11/19/2024]
Abstract
Green coffee beans, rejected for commercial use because of glyphosate contamination, were examined to monitor their glyphosate levels from harvest, through roasting, until various coffee extractions. The green beans, Arabica and Robusta, exhibited glyphosate levels above the EU-MRL (0.14-0.21 mg/kg), representing a worst-case scenario. The beans were roasted to different degrees and subsequently used for different coffee preparations. As a result of roasting (>200 °C), glyphosate contents were reduced, frequently by more than 73%. Remarkably, up to 9% of initial glyphosate was removed together with the silverskin, already at lower temperatures. Filtered and instant coffee beverages prepared from respective coffee samples resulted in virtually quantitative glyphosate transfer. Glyphosate transfer was significantly less for espresso, and ristretto, apparently due to the reduced amounts of water used for extraction. Aminomethylphosphonic acid (AMPA) was not detectable on any process level, confirming that AMPA is not a thermal glyphosate degradation product. In conclusion, compelling evidence is provided that glyphosate contamination becomes considerably reduced during roasting, whereas beverage preparation contributes at best to a minor further reduction. In consequence, even unusually high initial glyphosate loads in green beans are strongly reduced by the roasting process, resulting in a final cup content of <0.4 µg.
Collapse
|
2
|
Cosgun G, Gungor KK, Balci-Torun F, Sahin S, Torun M. Design of encapsulation method for chlorogenic acid and caffeine in coffee waste by-product. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:1720-1735. [PMID: 36694947 DOI: 10.1002/pca.3207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
INTRODUCTION Coffee silver skin (CSS) is a thin covering over green coffee seeds inside coffee cherry. It is a good source of bioactive compounds like chlorogenic acid and caffeine. It is produced as a by-product of the roasting process. OBJECTIVE The goal of this study is to apply spray drying method to encapsulate 5-O-caffeoylquinic acid (chlorogenic acid) and caffeine extracted from CSS. METHODS The main-plots for optimisation were feed solid concentration (2.5, 5, 10°Bx), and the sub-plots of the whole-plot were carrier material type (maltodextrin, modified starch, arabic gum) and inlet air temperature (130, 160, 190°C). Responses included were drying yield, chlorogenic acid concentration, caffeine content, Carr index, and solubility values. RESULTS Suitable conditions were spray drying inlet temperature of 190°C, extract concentration of 10°Bx, and wall material composition [modified starch/arabic gum (MS:AG)] 10.5:9.5. As the feeding CSS extract concentration increased, the amount of chlorogenic acid and caffeine in the final powder increased, while the powder's flow characteristics improved. CONCLUSIONS The concentration stage might be used to produce free-flowing powdered particles with good bioactive retention for use in the food processing industry.
Collapse
Affiliation(s)
- Gulderen Cosgun
- Faculty of Engineering, Department of Food Engineering, Akdeniz University, Antalya, Turkey
| | - Keziban Kubra Gungor
- Faculty of Engineering, Department of Food Engineering, Akdeniz University, Antalya, Turkey
| | - Ferhan Balci-Torun
- Faculty of Tourism, Department of Gastronomy and Culinary Art, Akdeniz University, Antalya, Turkey
| | - Selin Sahin
- Faculty of Engineering, Chemical Engineering Department, Istanbul University - Cerrahpasa, Istanbul, Turkey
| | - Mehmet Torun
- Faculty of Engineering, Department of Food Engineering, Akdeniz University, Antalya, Turkey
| |
Collapse
|
3
|
Francioso O, Schiavon M, Nardi S, Castellani D, Ferrari E, Estrada MTR, Della Lucia MC, Zuffi V, Ertani A. Mitigation of Salt Stress in Lactuca sativa L. var. Gentile Rossa Using Microalgae as Priming Agents. PLANTS (BASEL, SWITZERLAND) 2024; 13:3311. [PMID: 39683104 DOI: 10.3390/plants13233311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/15/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024]
Abstract
Using renewable biomass in agriculture, particularly microalgae as a biostimulant, offers economic and environmental sustainability benefits by reducing costs, improving nutrient cycling, and enhancing water use efficiency. Microalgae contain bioactive compounds that boost crop tolerance to environmental stresses, including salinity. Saline soils, characterized by elevated sodium chloride (NaCl) levels, negatively impact many crops, resulting in low productivity and high remediation costs. Therefore, this study evaluates the biostimulant properties of a microalgae-based commercial preparation (MR) on lettuce (Lactuca sativa L.) plants grown hydroponically and exposed to saline stress. The extract was chemically characterized through elemental analysis, lipid composition (gas chromatography with flame ionization detector-GC-FID), the determination of functional groups (Fourier Transformed Infrared-FT-IR), structure (1H,13C Nuclear Magnetic Resonance-NMR), with their hormone-like activity also assessed. Lettuce plants were treated with or without the microalgae blend, in combination with 0, 50 mM, or 100 mM NaCl. The contents of nutrients, soluble proteins, chlorophylls, and phenols, as well as the lipid peroxidation, antioxidants and root traits of lettuce plants, were estimated. The microalgae applied to salt-stressed plants resulted in a significant increase in biomass, protein, and chlorophyll contents. Additionally, significant effects on the secondary metabolism and mitigation of salinity stress were observed in terms of increased phenol content and the activity of antioxidant enzymes, as well as decreased lipid peroxidation. The potassium (K+) content was increased significantly in plants treated with 100 mM NaCl after addition of microalgae, while the content of sodium (Na+) was concurrently reduced. In conclusion, our results demonstrate that using microalgae can be a potent approach for improving the cultivation of Lactuca sativa L. under saline stress conditions.
Collapse
Affiliation(s)
- Ornella Francioso
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, Viale G. Fanin 40, 40127 Bologna, Italy
| | - Michela Schiavon
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Largo Paolo Braccini 2, Grugliasco, 10095 Turin, Italy
| | - Serenella Nardi
- Department of Agronomy, Animals, Food, Natural Resources and Environment (DAFNAE), University of Padova, Viale dell'Università 16, Legnaro, 35020 Padova, Italy
| | - Davide Castellani
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, Viale G. Fanin 40, 40127 Bologna, Italy
- Department of Agronomy, Animals, Food, Natural Resources and Environment (DAFNAE), University of Padova, Viale dell'Università 16, Legnaro, 35020 Padova, Italy
| | - Erika Ferrari
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy
| | - Maria Teresa Rodriguez Estrada
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, Viale G. Fanin 40, 40127 Bologna, Italy
| | - Maria Cristina Della Lucia
- Department of Agronomy, Animals, Food, Natural Resources and Environment (DAFNAE), University of Padova, Viale dell'Università 16, Legnaro, 35020 Padova, Italy
| | - Veronica Zuffi
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, Viale G. Fanin 40, 40127 Bologna, Italy
| | - Andrea Ertani
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Largo Paolo Braccini 2, Grugliasco, 10095 Turin, Italy
| |
Collapse
|
4
|
Ganjali S, Cardenia V, Bonciolini A, Santos RD, Al-Rasadi K, Sahebkar A. Lipidomic profiling in patients with familial hypercholesterolemia: Abnormalities in glycerolipids and oxysterols. Clin Biochem 2024; 131-132:110812. [PMID: 39197573 DOI: 10.1016/j.clinbiochem.2024.110812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/21/2024] [Accepted: 08/24/2024] [Indexed: 09/01/2024]
Abstract
OBJECTIVES AND AIM This study aimed to identify precise biomarkers and develop targeted therapeutic strategies for preventing premature atherosclerotic cardiovascular disease in patients with familial hypercholesterolemia (FH) by investigating the quantitative and qualitative abnormalities in the metabolic network of lipids in these patients using an advanced lipidomics platform. DESIGN & METHODS The study population comprised 18 homozygous (HoFH), 18 heterozygous (HeFH) FH patients, and 20 healthy controls. Cholesterol oxidation products (oxysterol, COPs) and main lipid classes were determined using gas chromatography-mass spectrometry. Results were expressed as percentages of total fat matter for lipid classes and percentages of total COPs for oxysterols. The principal component analysis (PCA) was also carried out, to highlight the correlation between studied parameters and groups investigated. RESULTS Patients (both HoFH and HeFH) showed lower content of free fatty acids (FFAs) and greater values of triacylglycerols (TAGs) in comparison to controls. HoFH showed lower monoacylglycerols (P<0.01) and higher free cholesterol (FC) (P<0.05) when compared to HeFH and controls. The total content of COPs ranged from 1.96 to 4.25 mg/dL, from 2.27 to 4.05 mg/dL, and from 0.79 to 4.12 mg/dL in healthy controls, HoFH and HeFH groups, respectively, with no significant differences between patients and controls. In general, the 7α-hydroxycholesterol (7α-HC) was greater than other COPs. However, no significant differences were found between the three studied groups. Moreover, an opposite trend was observed between 7α-HC and 7-ketocholesterol (7-KC). Additionally, when PCA was carried out, the first two PCs explained 92.13 % of the total variance, of which the PC1 describes 53.94 % of variance mainly correlated to TAGs, diacylglycerols (DAGs), and 7-KC. On the other hand, the PC2 was correlated primarily for FFAs, FC and esterified sterols (E-STE). CONCLUSIONS In conclusion, abnormal levels of TAGs, DAGs and 7-KC were associated with HeFH while HoFH was associated with the abnormal amount of E-STE.
Collapse
Affiliation(s)
- Shiva Ganjali
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, Australia
| | - Vladimiro Cardenia
- Department of Agricultural, Forest and Food Sciences, University of Turin, 10095 Grugliasco, Italy
| | - Ambra Bonciolini
- Department of Agricultural, Forest and Food Sciences, University of Turin, 10095 Grugliasco, Italy
| | - Raul D Santos
- Lipid Clinic Heart Institute (InCor) University of Sao Paulo Medical School Hospital, Sao Paulo, Brazil
| | - Khalid Al-Rasadi
- Medical Research Centre, Sultan Qaboos University, Muscat, Oman; Department of Biochemistry, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Amirhossein Sahebkar
- Biotechnology Research Centre, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Applied Biomedical Research Centre, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Blanco-Morales V, Mercatante D, Faubel N, Miedes D, Mandrioli M, Rodriguez-Estrada MT, Garcia-Llatas G. Lipolysis and Sterol Stability and Bioaccessibility of Wholemeal Rye Bread Enriched with Plant Sterols Subjected to Adult and Elderly Digestion Conditions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16976-16987. [PMID: 39037854 PMCID: PMC11299168 DOI: 10.1021/acs.jafc.4c03104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 07/24/2024]
Abstract
This study evaluated the impact of different digestion conditions (adult and senior) on lipolysis and bioaccessibility of plant sterols (PS) and phytosterol oxidation products (POPs) in PS-enriched wholemeal rye bread. Under adult digestion conditions, the addition of gastric lipase (GL) reduced lipolysis products (by 6.1% for free fatty acids and 11.7% for monoacylglycerols) and the bioaccessibility of PS by 6.7%, compared to the control. In digestion with both GL and cholesterol esterase (CE), these reductions were 12.9, 20.1, and 11.3%, respectively. Both modifications (GL and GL + CE) increased the bioaccessibility of POPs by 4.5-4.0%. When simulating the elderly digestion, the modified gastric and intestinal phases did not alter PS bioaccessibility but decreased POPs bioaccessibility by 21.8% compared to control, along with reduced lipolysis. Incorporating GL and CE thus approached physiological conditions and influenced lipid digestion. Elderly simulated digestion conditions resulted in a positive outcome by maintaining PS bioaccessibility while reducing potentially harmful POPs.
Collapse
Affiliation(s)
- Virginia Blanco-Morales
- Nutrition
and Food Science Area, Faculty of Pharmacy and Food Sciences, University of Valencia, Avda. Vicente Andrés Estellés s/n,
Burjassot, 46100 Valencia, Spain
| | - Dario Mercatante
- Department
of Agricultural and Food Sciences, Alma
Mater Studiorum-Università di Bologna, Viale Fanin 40, Bologna 40127, Italy
| | - Nerea Faubel
- Nutrition
and Food Science Area, Faculty of Pharmacy and Food Sciences, University of Valencia, Avda. Vicente Andrés Estellés s/n,
Burjassot, 46100 Valencia, Spain
| | - Diego Miedes
- Nutrition
and Food Science Area, Faculty of Pharmacy and Food Sciences, University of Valencia, Avda. Vicente Andrés Estellés s/n,
Burjassot, 46100 Valencia, Spain
| | - Mara Mandrioli
- Department
of Agricultural and Food Sciences, Alma
Mater Studiorum-Università di Bologna, Viale Fanin 40, Bologna 40127, Italy
| | - Maria Teresa Rodriguez-Estrada
- Department
of Agricultural and Food Sciences, Alma
Mater Studiorum-Università di Bologna, Viale Fanin 40, Bologna 40127, Italy
| | - Guadalupe Garcia-Llatas
- Nutrition
and Food Science Area, Faculty of Pharmacy and Food Sciences, University of Valencia, Avda. Vicente Andrés Estellés s/n,
Burjassot, 46100 Valencia, Spain
| |
Collapse
|
6
|
Mandrioli M, Poggi GM, Cai G, Faleri C, Maccaferri M, Tuberosa R, Aloisi I, Toschi TG, Corneti S. Lipids and Fatty Acid Composition Reveal Differences between Durum Wheat Landraces and Modern Cultivars. PLANTS (BASEL, SWITZERLAND) 2024; 13:1817. [PMID: 38999657 PMCID: PMC11244281 DOI: 10.3390/plants13131817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/14/2024]
Abstract
Durum wheat (Triticum turgidum L. ssp. durum) landraces, traditional local varieties representing an intermediate stage in domestication, are gaining attention due to their high genetic variability and performance in challenging environments. While major kernel metabolites have been examined, limited research has been conducted on minor bioactive components like lipids, despite their nutritional benefits. To address this, we analyzed twenty-two tetraploid accessions, comprising modern elite cultivars and landraces, to (i) verify if the selection process for yield-related traits carried out during the Green Revolution has influenced lipid amount and composition; (ii) uncover the extent of lipid compositional variability, giving evidence that lipid fingerprinting effectively identifies evolutionary signatures; and (iii) identify genotypes interesting for breeding programs to improve yield and nutrition. Interestingly, total fat did not correlate with kernel weight, indicating lipid composition as a promising trait for selection. Tri- and di-acylglycerol were the major lipid components along with free fatty acids, and their relative content varied significantly among genotypes. In particular, landraces belonging to T. turanicum and carthlicum ecotypes differed significantly in total lipid and fatty acid profiles. Our findings provide evidence that landraces can be a genetically relevant source of lipid variability, with potential to be exploited for improving wheat nutritional quality.
Collapse
Affiliation(s)
- Mara Mandrioli
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum, University of Bologna, 40127 Bologna, Italy
| | - Giovanni Maria Poggi
- Council for Agricultural Research and Economics (CREA), Research Centre for Agriculture and Environment, 40128 Bologna, Italy
| | - Giampiero Cai
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Claudia Faleri
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Marco Maccaferri
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum, University of Bologna, 40127 Bologna, Italy
| | - Roberto Tuberosa
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum, University of Bologna, 40127 Bologna, Italy
| | - Iris Aloisi
- Department of Biological, Geological and Environmental Sciences (BiGeA), Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
| | - Tullia Gallina Toschi
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum, University of Bologna, 40127 Bologna, Italy
| | - Simona Corneti
- Department of Biological, Geological and Environmental Sciences (BiGeA), Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
7
|
Granata S, Canistro D, Vivarelli F, Morosini C, Rullo L, Mercatante D, Rodriguez-Estrada MT, Baracca A, Sgarbi G, Solaini G, Ghini S, Fagiolino I, Sangiorgi S, Paolini M. Potential Harm of IQOS Smoke to Rat Liver. Int J Mol Sci 2023; 24:12462. [PMID: 37569836 PMCID: PMC10419033 DOI: 10.3390/ijms241512462] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/24/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
The Food and Drug Administration has recently classified the IQOS electronic cigarette as a modified-risk tobacco product. However, IQOS cigarettes still release various harmful constituents typical of conventional cigarettes (CCs), although the concentrations are markedly lower. Here, we investigated the damaging effects of IQOS smoking on the liver. Male Sprague Dawley rats were exposed, whole body, 5 days/week for 4 weeks to IQOS smoke (4 sticks/day), and hepatic xenobiotic metabolism, redox homeostasis and lipidomic profile were investigated. IQOS boosted reactive radicals and generated oxidative stress. Exposure decreased cellular reserves of total glutathione (GSH) but not GSH-dependent antioxidant enzymes. Catalase and xanthine oxidase were greater in the exposed group, as were various hepatic CYP-dependent monooxygenases (CYP2B1/2, CYP1A1, CYP2A1, CYP2E1-linked). Respiratory chain activity was unaltered, while the number of liver mitochondria was increased. IQOS exposure had an impact on the hepatic lipid profile. With regard to the expression of some MAP kinases commonly activated by CC smoking, IQOS increased the p-p38/p38 ratio, while erythroid nuclear transcription factor 2 (Nrf2) was negatively affected. Our data suggest that IQOS significantly impairs liver function, supporting the precautionary stance taken by the WHO toward the use of these devices, especially by young people and pregnant women.
Collapse
Affiliation(s)
- Silvia Granata
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (S.G.); (D.C.); (C.M.); (L.R.); (S.G.); (S.S.); (M.P.)
- Department of Medicine and Surgery, University of Milan–Bicocca, Via Cadore 48, 20900 Monza, Italy
| | - Donatella Canistro
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (S.G.); (D.C.); (C.M.); (L.R.); (S.G.); (S.S.); (M.P.)
| | - Fabio Vivarelli
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (S.G.); (D.C.); (C.M.); (L.R.); (S.G.); (S.S.); (M.P.)
| | - Camilla Morosini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (S.G.); (D.C.); (C.M.); (L.R.); (S.G.); (S.S.); (M.P.)
| | - Laura Rullo
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (S.G.); (D.C.); (C.M.); (L.R.); (S.G.); (S.S.); (M.P.)
| | - Dario Mercatante
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, Viale Giuseppe Fanin, 40-50, 40127 Bologna, Italy; (D.M.); (M.T.R.-E.)
| | - Maria Teresa Rodriguez-Estrada
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, Viale Giuseppe Fanin, 40-50, 40127 Bologna, Italy; (D.M.); (M.T.R.-E.)
- Inter-Departmental Centre for Agri-Food Industrial Research, Alma Mater Studiorum, University of Bologna, Via Quinto Bucci 336, 47521 Cesena, Italy
| | - Alessandra Baracca
- Laboratory of Biochemistry and Mitochondrial Pathophysiology, Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio, 48, 40126 Bologna, Italy; (A.B.); (G.S.); (G.S.)
| | - Gianluca Sgarbi
- Laboratory of Biochemistry and Mitochondrial Pathophysiology, Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio, 48, 40126 Bologna, Italy; (A.B.); (G.S.); (G.S.)
| | - Giancarlo Solaini
- Laboratory of Biochemistry and Mitochondrial Pathophysiology, Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio, 48, 40126 Bologna, Italy; (A.B.); (G.S.); (G.S.)
| | - Severino Ghini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (S.G.); (D.C.); (C.M.); (L.R.); (S.G.); (S.S.); (M.P.)
| | - Ivan Fagiolino
- Gruppo CSA—S.p.A., Via al Torrente 22, 47923 Rimini, Italy;
| | - Stefano Sangiorgi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (S.G.); (D.C.); (C.M.); (L.R.); (S.G.); (S.S.); (M.P.)
| | - Moreno Paolini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (S.G.); (D.C.); (C.M.); (L.R.); (S.G.); (S.S.); (M.P.)
| |
Collapse
|
8
|
Goyal N, Jerold F. Biocosmetics: technological advances and future outlook. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:25148-25169. [PMID: 34825334 PMCID: PMC8616574 DOI: 10.1007/s11356-021-17567-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 11/12/2021] [Indexed: 04/16/2023]
Abstract
The paper provides an overview of biocosmetics, which has tremendous potential for growth and is attracting huge business opportunities. It emphasizes the immediate need to replace conventional fossil-based ingredients in cosmetics with natural, safe, and effective ingredients. It assembles recent technologies viable in the production/extraction of the bioactive ingredient, product development, and formulation processes, its rapid and smooth delivery to the target site, and fosters bio-based cosmetic packaging. It further explores industries that can be a trailblazer in supplying raw material for extraction of bio-based ingredients for cosmetics, creating biodegradable packaging, or weaving innovation in fashion clothing. Lastly, the paper discusses what it takes to become the first generation of a circular economy and supports the implementation of strict regulatory guidelines for any cosmetic sold globally.
Collapse
Affiliation(s)
- Nishu Goyal
- Department of Chemical Engineering, University of Petroleum and Energy Studies, Dehradun, 248007, India.
| | - Frankline Jerold
- Department of Chemical Engineering, University of Petroleum and Energy Studies, Dehradun, 248007, India
| |
Collapse
|
9
|
Chlorogenic Acids and Caffeine from Coffee By-Products: A Review on Skincare Applications. COSMETICS 2023. [DOI: 10.3390/cosmetics10010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Upcycling is a modern trend in the cosmetic sector, focusing on by-products reuse and waste reduction. Consumers are more aware of the origin of cosmetic products and their environmental impact, promoting the upcycling phenomenon. Converting these raw materials into products of higher quality or value contributes to the final product’s sustainability. In fact, several agri-food by-products that are typically discarded have generated great interest, due to their value-added compounds with high functionality and/or bioactivity. Coffee is well known as a cosmetic ingredient, particularly due to the presence of phenolic compounds, such as chlorogenic acids, and caffeine. Caffeine is widely used in cosmetic formulations due to its photoprotector and anti-aging properties, as well as lipolytic action in cellulitis, and hair regrowth. Chlorogenic acids are powerful antioxidants and exhibit anti-aging and photoprotector abilities. Coffee by-products, such as coffee beans, possess these bioactive compounds and other chemical characteristics that can provide functional properties in cosmetic formulations. Coffee silverskin and spent coffee grounds are high-volume by-products of the coffee industry. Their use has been explored in different cosmetic formulations demonstrating safety, stability, acceptability as well as skin improvement, thus supporting their valorization as natural and sustainable new ingredients in skincare products.
Collapse
|
10
|
Tura M, Mandrioli M, Valli E, Toschi TG. Quality indexes and composition of 13 commercial hemp seed oils. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.105112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
11
|
Giordano M, Bertolino M, Belviso S, Ghirardello D, Zeppa G. Effects of Species, Post-Harvest Treatment, and Roasting on Fibre, Volatile Compounds, and Polyphenol Contents in Coffee Silverskin. Foods 2022; 11:foods11193132. [PMID: 36230210 PMCID: PMC9563964 DOI: 10.3390/foods11193132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/18/2022] Open
Abstract
Although coffee silverskin (CS) has recently been used as a food ingredient, no knowledge has been reported on the effects of species or different post-harvest treatments on its chemical composition. Therefore, the fibre, volatile compounds, phenolic acid content, and antioxidant capacity of CS samples obtained at three roasting intensities (light, medium, and dark) from the Coffea arabica and C. canephora species, each subjected to a washing or a sun-drying (“natural”) post-harvest treatment, were studied. Obtained results showed that the chemical composition of CS is due to species, roasting, post-harvest treatment, and interaction. In particular, natural Arabica CS showed the highest content of volatile compounds of Maillard and varietal origin, whereas washed Arabica CS showed the highest content of soluble dietary fibre and chlorogenic derivatives. Pyrroles, sulphur compounds, and pyridines contents were higher in Canephora CS than in Arabica CS. The dark-roasted washed Arabica CS showed the highest content of 5-O- and 3-O-caffeoylquinic acids, while the natural Arabica CS highlighted the highest antioxidant capacity. The effect of post-harvest treatments seemed to be emphasised in Arabica CS, independent of roasting, which did not significantly affect the antioxidant capacity of CS from either species.
Collapse
|
12
|
Ultrasound and Microwave-assisted Extraction of Proteins from Coffee Green Beans: Effects of Process Variables on the Protein Integrity. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02907-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractThe demand for proteins is constantly increasing and green extraction methodologies are needed to achieve environmental sustainability goals. The recovery of the by-products of the agri-food chain has also become a priority from a circular economy perspective. Some by-products are still little exploited for the extraction of proteins, such as coffee by-products. In this work, various innovative extraction technologies were applied to recover the protein fraction from the non-compliant coffee green beans (CGB), using a methodological approach that allowed to correlate the process parameters with the final quality of the extracted proteins. The ultrasound-assisted extraction (UAE) technique has been shown to have a minor impact on the quality of the proteins, thanks to the possibility of refrigerating the system, while the microwave-assisted extraction (MAE) shows a certain degree of degradation due to the high temperatures reached. The results indicate that strict temperature control is required during alkaline extraction to preserve the quality of the protein fraction.
Collapse
|
13
|
Nolasco A, Squillante J, Esposito F, Velotto S, Romano R, Aponte M, Giarra A, Toscanesi M, Montella E, Cirillo T. Coffee Silverskin: Chemical and Biological Risk Assessment and Health Profile for Its Potential Use in Functional Foods. Foods 2022; 11:2834. [PMID: 36140962 PMCID: PMC9498437 DOI: 10.3390/foods11182834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/23/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
The coffee supply chain is characterized by a complex network with many critical and unsustainable points producing a huge amount of waste products. Among these, coffee silverskin (CS), the only by-product of the coffee roasting phase, has an interesting chemical profile that suggests potential use as a food ingredient. However, few data on its safety are available. For this reason, the purpose of the study was to assess the occurrence of chemical and biological contaminants in CS, and the resulting risk due to its potential consumption. Essential, toxic, and rare earth elements, polycyclic aromatic hydrocarbons (PAHs), process contaminants, ochratoxin A (OTA), and pesticides residues were analyzed in three classes of samples (Coffea arabica CS, Coffea robusta CS, and their blend). Furthermore, total mesophilic bacteria count (TMBC) at 30 °C, Enterobacteriaceae, yeasts, and molds was evaluated. The risk assessment was based upon the hazard index (HI) and lifetime cancer risk (LTCR). In all varieties and blends, rare earth elements, pesticides, process contaminants, OTA, and PAHs were not detected except for chrysene, phenanthrene, and fluoranthene, which were reported at low concentrations only in the arabica CS sample. Among essential and toxic elements, As was usually the most representative in all samples. Microorganisms reported a low load, although arabica and robusta CS showed lower contamination than mixed CS. Instead, the risk assessment based on the potential consumption of CS as a food ingredient did not show either non-carcinogenic or carcinogenic risk. Overall, this study provides adequate evidence to support the safety of this by-product for its potential use in functional foods.
Collapse
Affiliation(s)
- Agata Nolasco
- Department of Agricultural Sciences, University of Naples Federico II, Via Università, Portici, 100-80055 Naples, Italy
| | - Jonathan Squillante
- Department of Agricultural Sciences, University of Naples Federico II, Via Università, Portici, 100-80055 Naples, Italy
| | - Francesco Esposito
- Department of Public Health, University of Naples Federico II, Via Sergio Pansini, 5-80131 Naples, Italy
| | - Salvatore Velotto
- Department of Promotion of Human Sciences and the Quality of Life, University of Study of Roma “San Raffaele”, Via di Val Cannuta, 247-00166 Roma, Italy
| | - Raffaele Romano
- Department of Agricultural Sciences, University of Naples Federico II, Via Università, Portici, 100-80055 Naples, Italy
| | - Maria Aponte
- Department of Agricultural Sciences, University of Naples Federico II, Via Università, Portici, 100-80055 Naples, Italy
| | - Antonella Giarra
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia, 21-80126 Naples, Italy
| | - Maria Toscanesi
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia, 21-80126 Naples, Italy
| | - Emma Montella
- Department of Public Health, University of Naples Federico II, Via Sergio Pansini, 5-80131 Naples, Italy
| | - Teresa Cirillo
- Department of Agricultural Sciences, University of Naples Federico II, Via Università, Portici, 100-80055 Naples, Italy
| |
Collapse
|
14
|
Jiamjariyatam R, Samosorn S, Dolsophon K, Tantayotai P, Lorliam W, Krajangsang S. Development of Cascara Tea from Coffee Cherry Pulp. JOURNAL OF CULINARY SCIENCE & TECHNOLOGY 2022. [DOI: 10.1080/15428052.2022.2106336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
| | - Siritron Samosorn
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, Bangkok, Thailand
| | - Kulvadee Dolsophon
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, Bangkok, Thailand
| | - Prapakorn Tantayotai
- Department of Microbiology, Faculty of Science, Srinakharinwirot University, Bangkok, Thailand
| | - Wanlapa Lorliam
- Department of Microbiology, Faculty of Science, Srinakharinwirot University, Bangkok, Thailand
| | - Sukhumaporn Krajangsang
- Department of Microbiology, Faculty of Science, Srinakharinwirot University, Bangkok, Thailand
| |
Collapse
|
15
|
Valorization of Coffee Silverskin through Subcritical Water Extraction: An Optimization Based on T-CQA Using Response Surface Methodology. SUSTAINABILITY 2022. [DOI: 10.3390/su14148435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Coffee silverskin (CS) is the only byproduct of the roasting process for coffee beans and is rich in phenolic compounds with various bioactivities. This study proposes a valorization option for bioactive compounds (T-CQA) based on a subcritical water extraction (SWE) technique, which is known for its high efficiency and feasibility for use on an industrial scale. The use of water as a sole solvent requires a minimum number of cleaning steps and renders the extract safe for further applications, such as in either the cosmetic or food industry. Response surface methodology with a Box–Behnken design is effectively used to optimize and explain the individual and interactive process variables (i.e., extraction temperature, extraction time, and solid–liquid ratio) on the T-CQA content obtained from coffee silverskin by the SWE technique. The final model exhibits a precise prediction of the experimental data obtained for the maximum T-CQA content. Under the optimum conditions, the CS extract is found to contain a higher content of T-CQA and TPC than that reported previously. For antioxidant activity, up to 26.12 ± 3.27 mg Trolox equivalent/g CS is obtained.
Collapse
|
16
|
Semeniuc CA, Mandrioli M, Socaci BS, Socaciu MI, Fogarasi M, Podar AS, Michiu D, Jimborean AM, Mureşan V, Ionescu SR, Toschi TG. Changes in lipid composition and oxidative status during ripening of Gouda-type cheese as influenced by addition of lavender flower powder. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2022.105427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Younes A, Li M, Karboune S. Cocoa bean shells: a review into the chemical profile, the bioactivity and the biotransformation to enhance their potential applications in foods. Crit Rev Food Sci Nutr 2022; 63:9111-9135. [PMID: 35467453 DOI: 10.1080/10408398.2022.2065659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
During processing, cocoa bean shells (CBS) are de-hulled from the bean and discarded as waste. Undermined by its chemical and bioactive composition, CBS is abundant in dietary fiber and phenolic compounds that may serve the valorization purpose of this by-product material into prebiotic and functional ingredients. In addition, the cell-wall components of CBS can be combined through enzymatic feruloylation to obtain feruloylated oligo- and polysaccharides (FOs), further enhancing the techno-functional properties. FOs have attracted scientific attention due to their prebiotic, antimicrobial, anti-inflammatory and antioxidant functions inherent to their structural features. This review covers the chemical and bioactive compositions of CBS as well as their modifications upon cocoa processing. Physical, chemical, and enzymatic approaches to extract and bio-transform bioactive components from the cell wall matrix of CBS were also discussed. Although nonspecific to CBS, studies were compiled to investigate efforts done to extract and produce feruloylated oligo- and polysaccharides from the cell wall materials.
Collapse
Affiliation(s)
- Amalie Younes
- Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, Montreal, Québec, Canada
| | - Mingqin Li
- Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, Montreal, Québec, Canada
| | - Salwa Karboune
- Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, Montreal, Québec, Canada
| |
Collapse
|
18
|
Nzekoue FK, Borsetta G, Navarini L, Abouelenein D, Xiao J, Sagratini G, Vittori S, Caprioli G, Angeloni S. Coffee silverskin: Characterization of B-vitamins, macronutrients, minerals and phytosterols. Food Chem 2022; 372:131188. [PMID: 34624779 DOI: 10.1016/j.foodchem.2021.131188] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/06/2021] [Accepted: 09/16/2021] [Indexed: 02/08/2023]
Abstract
The present study assessed the nutritional composition of coffee silverskin (CSS) obtained from arabica roasted coffee. Following validated analytical methods, CSS resulted to be a high source of proteins (14.2 g/100 g) and dietary fibers (51.5 g/100 g). Moreover, the mineral analysis revealed high contents of calcium (1.1 g/100 g) and potassium (1.0 g/100 g). To date, this study provided the widest mineral profile of CSS with 30 minerals targeted including 23 microminerals with high levels of iron (238.0 mg/kg), manganese (46.7 mg/kg), copper (37.9 mg/kg), and zinc (31.9 mg/kg). Moreover, vitamins B2 (0.18-0.2 mg/kg) and B3 (2.5-3.1 mg/kg) were studied and reported for the first time in CSS. β-sitosterol (77.1 mg/kg), campesterol, stigmasterol, and Δ5-avenasterol, were also observed from the phytosterol analysis of CSS with a total level of 98.4 mg/kg. This rich nutritional profile highlights the potential values of CSS for innovative reuses in bioactive ingredients development.
Collapse
Affiliation(s)
| | - Germana Borsetta
- School of Pharmacy, University of Camerino, via Sant' Agostino 1, 62032 Camerino, Italy
| | | | - Doaa Abouelenein
- School of Pharmacy, University of Camerino, via Sant' Agostino 1, 62032 Camerino, Italy; Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, E-32004 Ourense, Spain; School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China
| | - Gianni Sagratini
- School of Pharmacy, University of Camerino, via Sant' Agostino 1, 62032 Camerino, Italy
| | - Sauro Vittori
- School of Pharmacy, University of Camerino, via Sant' Agostino 1, 62032 Camerino, Italy; RICH - Research and Innovation Coffee Hub, via E. Betti 1, I-62020 Belforte del Chienti (MC), Italy
| | - Giovanni Caprioli
- School of Pharmacy, University of Camerino, via Sant' Agostino 1, 62032 Camerino, Italy.
| | - Simone Angeloni
- School of Pharmacy, University of Camerino, via Sant' Agostino 1, 62032 Camerino, Italy; RICH - Research and Innovation Coffee Hub, via E. Betti 1, I-62020 Belforte del Chienti (MC), Italy
| |
Collapse
|
19
|
Vimercati WC, Araújo C, Macedo LL, Pimenta CJ. Optimal extraction condition for the recovery of bioactive compounds and antioxidants from coffee silverskin. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Cintia Araújo
- Department of Food Science Federal University of Lavras Lavras Minas Gerais Brazil
| | | | - Carlos José Pimenta
- Department of Food Science Federal University of Lavras Lavras Minas Gerais Brazil
| |
Collapse
|
20
|
Zhang Z, Malik MZ, Khan A, Ali N, Malik S, Bilal M. Environmental impacts of hazardous waste, and management strategies to reconcile circular economy and eco-sustainability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150856. [PMID: 34627923 DOI: 10.1016/j.scitotenv.2021.150856] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/22/2021] [Accepted: 10/03/2021] [Indexed: 06/13/2023]
Abstract
The rise in living standards and the continuous development in the global economy led to the depletion of resources and increased waste generation per capita. This waste might posture a significant threat to human health or the environmental matrices (water, air, soil) when inadequately treated, transported, stored, or managed/disposed of. Therefore, effective waste management in an economically viable and environmentally friendly way has become meaningful. Prominent technology is the need of the day for circular economy and sustainable development to reduce the speed of depletion in resources and produce an alternative means for the future demands in the different sectors of science and technology. In order to meet the potential requirements for energy production or producing secondary raw material, solid waste may be the prime source. The activities of living organisms convert waste products in one form or another in which electronic waste (e-waste) is a modern-day problem that is growing by leaps and bounds. The disposal protocols of the e-waste management need to be given proper attention to avoid its hazardous impacts. The e-waste is obtained from any equipment or devices that run by electricity or batteries like laptops, palmtops, computers, televisions, mobile phones, digital video discs (DVD), and many more. E-waste is one of the rapidly growing causes of world pollution today. Plenty of research is available in the scientific literature, which shows different approaches being set up and followed to manage and dispose of waste products. These strategies to manage waste products designed by the states all over the globe revolves around minimal production, authentic techniques for the management of waste produced, reuse and recycling, etc. The virtual survey of the available literature on waste management shows that it lacks specificity regarding the management of waste products parallel to ecological sustainability. The presented review covers the sources, potential environmental impacts, and highlights the importance of waste management strategies to provide the latest and updated knowledge. The review also put forward the countermeasures that need to be taken on national and International levels addressing the sensitive issue of waste management.
Collapse
Affiliation(s)
- Zhen Zhang
- Zhejiang Provincial Key Laboratory of Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang Province 318000, China
| | - Muhammad Zeeshan Malik
- School of Electronics and Information Engineering, Taizhou University, Taizhou 318000, Zhejiang, China.
| | - Adnan Khan
- Institute of Chemical Sciences, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Nisar Ali
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Center for Deep Utilization Technology of Rock-salt Resource, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Sumeet Malik
- Institute of Chemical Sciences, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| |
Collapse
|
21
|
McDonald K, Langenbahn HJ, Miller JD, McMullin DR. Phytosterol oxidation products from coffee silverskin. J Food Sci 2022; 87:728-737. [DOI: 10.1111/1750-3841.16042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/09/2021] [Accepted: 12/21/2021] [Indexed: 12/01/2022]
Affiliation(s)
| | | | - J. David Miller
- Department of Chemistry Carleton University Ottawa Ontario Canada
| | | |
Collapse
|
22
|
Tritsch N, Steger MC, Segatz V, Blumenthal P, Rigling M, Schwarz S, Zhang Y, Franke H, Lachenmeier DW. Risk Assessment of Caffeine and Epigallocatechin Gallate in Coffee Leaf Tea. Foods 2022; 11:263. [PMID: 35159415 PMCID: PMC8834188 DOI: 10.3390/foods11030263] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 02/07/2023] Open
Abstract
Coffee leaf tea is prepared as an infusion of dried leaves of Coffea spp. in hot water. It is a traditional beverage in some coffee-producing countries and has been authorized in 2020 within the European Union (EU) according to its novel food regulation. This article reviews current knowledge on the safety of coffee leaf tea. From the various ingredients contained in coffee leaves, only two were highlighted as possibly hazardous to human health, namely, caffeine and epigallocatechin gallate (EGCG), with maximum limits implemented in EU legislation, which is why this article focuses on these two substances. While the caffeine content is comparable to that of roasted coffee beans and subject to strong fluctuations in relation to the age of the leaves, climate, coffee species, and variety, a maximum of 1-3 cups per day may be recommended. The EGCG content is typically absent or below the intake of 800 mg/day classified as hepatotoxic by the European Food Safety Authority (EFSA), so this compound is suggested as toxicologically uncritical. Depending on selection and processing (age of the leaves, drying, fermentation, roasting, etc.), coffee leaf tea may exhibit a wide variety of flavors, and its full potential is currently almost unexplored. As a coffee by-product, it is certainly interesting to increase the income of coffee farmers. Our review has shown that coffee leaf tea is not assumed to exhibit risks for the consumer, apart from the well-known risk of caffeine inherent to all coffee-related beverages. This conclusion is corroborated by the history of its safe use in several countries around the world.
Collapse
Affiliation(s)
- Nadine Tritsch
- Postgraduate Study of Toxicology and Environmental Toxicology, Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, Härtelstraße 16-18, 04107 Leipzig, Germany; (N.T.); (H.F.)
- Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Strasse 3, 76187 Karlsruhe, Germany;
| | - Marc C. Steger
- Coffee Consulate, Hans-Thoma-Strasse 20, 68163 Mannheim, Germany; (M.C.S.); (P.B.); (S.S.)
- Department of Flavor Chemistry, University of Hohenheim, Fruwirthstrasse 12, 70599 Stuttgart, Germany; (M.R.); (Y.Z.)
| | - Valerie Segatz
- Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Strasse 3, 76187 Karlsruhe, Germany;
- Hochschule für Angewandte Wissenschaften Coburg, Friedrich-Streib-Strasse 2, 96450 Coburg, Germany
| | - Patrik Blumenthal
- Coffee Consulate, Hans-Thoma-Strasse 20, 68163 Mannheim, Germany; (M.C.S.); (P.B.); (S.S.)
| | - Marina Rigling
- Department of Flavor Chemistry, University of Hohenheim, Fruwirthstrasse 12, 70599 Stuttgart, Germany; (M.R.); (Y.Z.)
| | - Steffen Schwarz
- Coffee Consulate, Hans-Thoma-Strasse 20, 68163 Mannheim, Germany; (M.C.S.); (P.B.); (S.S.)
| | - Yanyan Zhang
- Department of Flavor Chemistry, University of Hohenheim, Fruwirthstrasse 12, 70599 Stuttgart, Germany; (M.R.); (Y.Z.)
| | - Heike Franke
- Postgraduate Study of Toxicology and Environmental Toxicology, Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, Härtelstraße 16-18, 04107 Leipzig, Germany; (N.T.); (H.F.)
| | - Dirk W. Lachenmeier
- Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Strasse 3, 76187 Karlsruhe, Germany;
| |
Collapse
|
23
|
Hall RD, Trevisan F, de Vos RCH. Coffee berry and green bean chemistry - Opportunities for improving cup quality and crop circularity. Food Res Int 2022; 151:110825. [PMID: 34980376 DOI: 10.1016/j.foodres.2021.110825] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 11/04/2022]
Abstract
Coffee cup quality is primarily determined by the type and variety of green beans chosen and the roasting regime used. Furthermore, green coffee beans are not only the starting point for the production of all coffee beverages but also are a major source of revenue for many sub-tropical countries. Green bean quality is directly related to its biochemical composition which is influenced by genetic and environmental factors. Post-harvest, on-farm processing methods are now particularly recognised as being influential to bean chemistry and final cup quality. However, research on green coffee has been limited and results are fragmented. Despite this, there are already indications that multiple factors play a role in determining green coffee chemistry - including plant cultivation/fruit ripening issues and ending with farmer practices and post-harvest storage conditions. Here, we provide the first overview of the knowledge determined so far specifically for pre-factory, green coffee composition. In addition, the potential of coffee waste biomass in a biobased economy context for the delivery of useful bioactives is described as this is becoming a topic of growing relevance within the coffee industry. We draw attention to a general lack of consistency in experimentation and reporting and call for a more intensive and united effort to build up our knowledge both of green bean composition and also how perturbations in genetic and environmental factors impact bean chemistry, crop sustainability and ultimately, cup quality.
Collapse
Affiliation(s)
- Robert D Hall
- Laboratory of Plant Physiology, Wageningen University & Research, P.O. Box 16, 6700 AA Wageningen, the Netherlands; Business Unit Bioscience, Wageningen University & Research, P.O. Box 16, 6700 AA Wageningen, the Netherlands.
| | - Fabio Trevisan
- Laboratory of Plant Physiology, Wageningen University & Research, P.O. Box 16, 6700 AA Wageningen, the Netherlands
| | - Ric C H de Vos
- Business Unit Bioscience, Wageningen University & Research, P.O. Box 16, 6700 AA Wageningen, the Netherlands
| |
Collapse
|
24
|
Barbieri S, Mercatante D, Balzan S, Esposto S, Cardenia V, Servili M, Novelli E, Taticchi A, Rodriguez-Estrada MT. Improved Oxidative Stability and Sensory Quality of Beef Hamburgers Enriched with a Phenolic Extract from Olive Vegetation Water. Antioxidants (Basel) 2021; 10:antiox10121969. [PMID: 34943072 PMCID: PMC8750197 DOI: 10.3390/antiox10121969] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/02/2021] [Accepted: 12/05/2021] [Indexed: 12/11/2022] Open
Abstract
This study aims at evaluating the effect of a phenol-rich extract obtained from the concentration and purification of olive mill wastewaters (added at a ratio of 87.5 and 175 mg of phenols/kg meat) on the stability and sensory quality of beef hamburgers packed under modified atmosphere and stored under alternating exposure to fluorescent light at 4 ± 2 °C for 9 days. The hamburgers were sampled at different times (0, 6, and 9 days) and grilled at 200 °C. After 9 days, more than 56% of the added phenols in the raw burgers and more than 20% the grilled ones were retained. The results show that both concentrations of phenolic extract proved to effectively reduce primary and secondary lipid oxidation, as well as cholesterol oxidation products (COPs), during the shelf-life of raw hamburgers. Peroxide value, thiobarbituric acid reactive substances, and total COPs were up to 1.4-, 4.5-, and 8.8-fold lower in phenol-enriched raw hamburgers, respectively, than in the control samples; a similar trend was noted also in phenol-enriched cooked hamburgers (1.3-, 5.7-, and 4-fold lower). The sensory analysis also confirmed the effectiveness of the addition of phenolic extract, resulting in a positive effect on the red color intensity (raw product) and thus reducing browning during storage.
Collapse
Affiliation(s)
- Sara Barbieri
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, 40127 Bologna, Italy;
| | - Dario Mercatante
- Department of Agricultural and Food Sciences, Alma Mater Studiorum-University of Bologna, 40127 Bologna, Italy; (D.M.); (M.T.R.-E.)
| | - Stefania Balzan
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020 Legnaro, Italy; (S.B.); (E.N.)
| | - Sonia Esposto
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06126 Perugia, Italy; (S.E.); (M.S.)
| | - Vladimiro Cardenia
- Department of Agricultural, Forest and Food Sciences, University of Turin, 10095 Grugliasco, Italy;
| | - Maurizio Servili
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06126 Perugia, Italy; (S.E.); (M.S.)
| | - Enrico Novelli
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020 Legnaro, Italy; (S.B.); (E.N.)
| | - Agnese Taticchi
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06126 Perugia, Italy; (S.E.); (M.S.)
- Correspondence: ; Tel.: +39-075-585-7909
| | - Maria Teresa Rodriguez-Estrada
- Department of Agricultural and Food Sciences, Alma Mater Studiorum-University of Bologna, 40127 Bologna, Italy; (D.M.); (M.T.R.-E.)
- Interdepartmental Centre for Industrial Agrofood Research, Alma Mater Studiorum-University of Bologna, 47521 Cesena, Italy
| |
Collapse
|
25
|
Socas-Rodríguez B, Álvarez-Rivera G, Valdés A, Ibáñez E, Cifuentes A. Food by-products and food wastes: are they safe enough for their valorization? Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
26
|
Gottstein V, Bernhardt M, Dilger E, Keller J, Breitling-Utzmann CM, Schwarz S, Kuballa T, Lachenmeier DW, Bunzel M. Coffee Silver Skin: Chemical Characterization with Special Consideration of Dietary Fiber and Heat-Induced Contaminants. Foods 2021; 10:foods10081705. [PMID: 34441483 PMCID: PMC8392354 DOI: 10.3390/foods10081705] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/14/2021] [Accepted: 07/19/2021] [Indexed: 02/07/2023] Open
Abstract
Coffee silver skin is produced in large amounts as a by-product during the coffee roasting process. In this study, coffee silver skin of the species Coffea arabica L. and Coffea canephora Pierre ex A. Froehner as well as silver skin pellets produced in the coffee industry were characterized with respect to both nutritional value and potential heat-induced contaminants. Enzymatic-gravimetric/chromatographic determination of the dietary fiber content showed values ranging from 59 to 67 g/100 g with a comparably high portion of soluble fiber, whereas low molecular weight soluble fiber was not detected. Compositional and methylation analysis indicated the presence of cellulose and xylans in the insoluble dietary fiber fraction, whereas pectic polysaccharides dominate the soluble dietary fiber fraction. The protein content as determined by the Kjeldahl method was in the range of 18 to 22 g/100 g, and all essential amino acids were present in coffee silver skin; whereas fat contents were low, high ash contents were determined. Elemental analysis by inductively coupled plasma mass spectrometry (ICP-MS) showed the presence of macroelements in large amounts, whereas toxic mineral elements were only detected in trace amounts or being absent. Acrylamide was quantified with levels of 24–161 µg/kg. Although 5-hydroxymethylfurfural was detected, its concentration was below the limit of determination. Furfuryl alcohol was not detected.
Collapse
Affiliation(s)
- Vera Gottstein
- Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Straße 3, 76187 Karlsruhe, Germany; (V.G.); (E.D.); (T.K.); (D.W.L.)
- Department of Food Chemistry and Phytochemistry, Karlsruhe Institute of Technology (KIT), Adenauerring 20A, 76131 Karlsruhe, Germany; (M.B.); (J.K.)
| | - Mara Bernhardt
- Department of Food Chemistry and Phytochemistry, Karlsruhe Institute of Technology (KIT), Adenauerring 20A, 76131 Karlsruhe, Germany; (M.B.); (J.K.)
| | - Elena Dilger
- Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Straße 3, 76187 Karlsruhe, Germany; (V.G.); (E.D.); (T.K.); (D.W.L.)
| | - Judith Keller
- Department of Food Chemistry and Phytochemistry, Karlsruhe Institute of Technology (KIT), Adenauerring 20A, 76131 Karlsruhe, Germany; (M.B.); (J.K.)
| | | | - Steffen Schwarz
- Coffee Consulate, Hans-Thoma-Stasse 20, 68163 Mannheim, Germany;
| | - Thomas Kuballa
- Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Straße 3, 76187 Karlsruhe, Germany; (V.G.); (E.D.); (T.K.); (D.W.L.)
- Department of Food Chemistry and Phytochemistry, Karlsruhe Institute of Technology (KIT), Adenauerring 20A, 76131 Karlsruhe, Germany; (M.B.); (J.K.)
| | - Dirk W. Lachenmeier
- Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Straße 3, 76187 Karlsruhe, Germany; (V.G.); (E.D.); (T.K.); (D.W.L.)
| | - Mirko Bunzel
- Department of Food Chemistry and Phytochemistry, Karlsruhe Institute of Technology (KIT), Adenauerring 20A, 76131 Karlsruhe, Germany; (M.B.); (J.K.)
- Correspondence: ; Tel.: +49-721-608-42936
| |
Collapse
|
27
|
Abstract
In recent years, the circular economy and sustainability have gained attention in the food industry aimed at recycling food industrial waste and residues. For example, several plant-based materials are nowadays used in packaging and biofuel production. Among them, by-products and waste from coffee processing constitute a largely available, low cost, good quality resource. Coffee production includes many steps, in which by-products are generated including coffee pulp, coffee husks, silver skin and spent coffee. This review aims to analyze the reasons why coffee waste can be considered as a valuable source in recycling strategies for the sustainable production of bio-based chemicals, materials and fuels. It addresses the most recent advances in monomer, polymer and plastic filler productions and applications based on the development of viable biorefinery technologies. The exploration of strategies to unlock the potential of this biomass for fuel productions is also revised. Coffee by-products valorization is a clear example of waste biorefinery. Future applications in areas such as biomedicine, food packaging and material technology should be taken into consideration. However, further efforts in techno-economic analysis and the assessment of the feasibility of valorization processes on an industrial scale are needed.
Collapse
|
28
|
Mota D, Barbosa M, Schneider J, Lima Á, Pereira M, Krause L, Soares CM. Potential Use of Crude Coffee Silverskin Oil in Integrated Bioprocess for Fatty Acids Production. J AM OIL CHEM SOC 2021. [DOI: 10.1002/aocs.12472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Danyelle Mota
- Post‐graduation in Industrial Biotechnology Tiradentes University (UNIT) Av. Murilo Dantas 300 Aracaju Sergipe 49032‐490 Brazil
- Laboratory of Bioprocess Engineering and Laboratory of Food Research Institute of Technology and Research Av. Murilo Dantas 300 Aracaju Sergipe 49032‐490 Brazil
| | - Milson Barbosa
- Post‐graduation in Industrial Biotechnology Tiradentes University (UNIT) Av. Murilo Dantas 300 Aracaju Sergipe 49032‐490 Brazil
- Laboratory of Bioprocess Engineering and Laboratory of Food Research Institute of Technology and Research Av. Murilo Dantas 300 Aracaju Sergipe 49032‐490 Brazil
| | - Jaderson Schneider
- Post‐graduation in Industrial Biotechnology Tiradentes University (UNIT) Av. Murilo Dantas 300 Aracaju Sergipe 49032‐490 Brazil
- Laboratory of Bioprocess Engineering and Laboratory of Food Research Institute of Technology and Research Av. Murilo Dantas 300 Aracaju Sergipe 49032‐490 Brazil
| | - Álvaro Lima
- Post‐graduation in Industrial Biotechnology Tiradentes University (UNIT) Av. Murilo Dantas 300 Aracaju Sergipe 49032‐490 Brazil
- Laboratory of Bioprocess Engineering and Laboratory of Food Research Institute of Technology and Research Av. Murilo Dantas 300 Aracaju Sergipe 49032‐490 Brazil
| | - Matheus Pereira
- CICECO—Aveiro Institute of Materials, Department of Chemistry University of Aveiro Aveiro 3810‐193 Portugal
| | - Laiza Krause
- Post‐graduation in Industrial Biotechnology Tiradentes University (UNIT) Av. Murilo Dantas 300 Aracaju Sergipe 49032‐490 Brazil
- Laboratory of Bioprocess Engineering and Laboratory of Food Research Institute of Technology and Research Av. Murilo Dantas 300 Aracaju Sergipe 49032‐490 Brazil
| | - Cleide Mara Soares
- Post‐graduation in Industrial Biotechnology Tiradentes University (UNIT) Av. Murilo Dantas 300 Aracaju Sergipe 49032‐490 Brazil
- Laboratory of Bioprocess Engineering and Laboratory of Food Research Institute of Technology and Research Av. Murilo Dantas 300 Aracaju Sergipe 49032‐490 Brazil
| |
Collapse
|
29
|
|
30
|
Oliveira G, Passos CP, Ferreira P, Coimbra MA, Gonçalves I. Coffee By-Products and Their Suitability for Developing Active Food Packaging Materials. Foods 2021; 10:foods10030683. [PMID: 33806924 PMCID: PMC8005104 DOI: 10.3390/foods10030683] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 01/30/2023] Open
Abstract
The coffee industry generates a wide variety of by-products derived from green coffee processing (pulp, mucilage, parchment, and husk) and roasting (silverskin and spent coffee grounds). All these fractions are simply discarded, despite their high potential value. Given their polysaccharide-rich composition, along with a significant number of other active biomolecules, coffee by-products are being considered for use in the production of plastics, in line with the notion of the circular economy. This review highlights the chemical composition of coffee by-products and their fractionation, evaluating their potential for use either as polymeric matrices or additives for developing plastic materials. Coffee by-product-derived molecules can confer antioxidant and antimicrobial activities upon plastic materials, as well as surface hydrophobicity, gas impermeability, and increased mechanical resistance, suitable for the development of active food packaging. Overall, this review aims to identify sustainable and eco-friendly strategies for valorizing coffee by-products while offering suitable raw materials for biodegradable plastic formulations, emphasizing their application in the food packaging sector.
Collapse
Affiliation(s)
- Gonçalo Oliveira
- CICECO–Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal; (G.O.); (P.F.)
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (C.P.P.); (M.A.C.)
| | - Cláudia P. Passos
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (C.P.P.); (M.A.C.)
| | - Paula Ferreira
- CICECO–Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal; (G.O.); (P.F.)
| | - Manuel A. Coimbra
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (C.P.P.); (M.A.C.)
| | - Idalina Gonçalves
- CICECO–Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal; (G.O.); (P.F.)
- Correspondence:
| |
Collapse
|
31
|
Hejna A. Potential applications of by-products from the coffee industry in polymer technology - Current state and perspectives. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 121:296-330. [PMID: 33406477 DOI: 10.1016/j.wasman.2020.12.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/09/2020] [Accepted: 12/12/2020] [Indexed: 06/12/2023]
Abstract
Coffee is one of the most popular beverages in the world, and its popularity is continuously growing, which can be expressed by almost doubling production over the last three decades. Cultivation, processing, roasting, and brewing coffee are known for many years. These processes generate significant amounts of by-products since coffee bean stands for around 50% of the coffee cherry. Therefore, considering the current pro-ecological trends, it is essential to develop the utilization methods for the other 50% of the coffee cherry. Among the possibilities, much attention is drawn to polymer chemistry and technology. This industry branch may efficiently consume different types of lignocellulosic materials to use them as fillers for polymer composites or as intermediate sources of particular chemical compounds. Moreover, due to their chemical composition, coffee industry by-products may be used as additives modifying the oxidation resistance, antimicrobial, or antifungal properties of polymeric materials. These issues should be considered especially important in the case of biodegradable polymers, whose popularity is growing over the last years. This paper summarizes the literature reports related to the generation and composition of the coffee industry by-products, as well as the attempts of their incorporation into polymer technology. Moreover, potential directions of research based on the possibilities offered by the coffee industry by-products are presented.
Collapse
Affiliation(s)
- Aleksander Hejna
- Department of Polymer Technology, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland.
| |
Collapse
|
32
|
Coffee Silverskin as a Multifunctional Waste Filler for High-Density Polyethylene Green Composites. JOURNAL OF COMPOSITES SCIENCE 2021. [DOI: 10.3390/jcs5020044] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This work aims to describe the coffee silverskin effect as a lignocellulosic waste filler for high-density polyethylene (HDPE) composites development. The main task was to determine various modification effects resulting from the complex chemical composition of coffee silverskin containing compounds with potential antioxidative properties, including caffeine, polyphenols, tannins, or melanoidins. The processing, thermal, physicochemical, and thermomechanical properties of the HDPE-based composites with different filler content (1–20 wt%) were evaluated. Comprehensively realized thermomechanical analysis revealed the filler’s reinforcing effects on the HDPE matrix while defining problems with obtaining adequate adhesion in the interfacial area. At the same time, studies have shown a very beneficial effect of the silverskin addition on the thermal properties of composites, that even the smallest addition allows for a significant increase in the thermooxidative resistance of HDPE composites assessed using the oxidation induction time from 20 min for HDPE up to 140 min for the composites with 20 wt% of the filler. The obtained research results allow classifying the coffee silverskin waste filler, not only as a filler intended for the production of composites with a high degree of filling but also as an additive that significantly changes the properties of polyethylene in the case of using low concentrations. This can have a very beneficial impact on the development of novel wood polymer (WPC) and natural fiber composites (NFC).
Collapse
|
33
|
Oliveira G, Gonçalves I, Barra A, Nunes C, Ferreira P, Coimbra MA. Coffee silverskin and starch-rich potato washing slurries as raw materials for elastic, antioxidant, and UV-protective biobased films. Food Res Int 2020; 138:109733. [PMID: 33292966 DOI: 10.1016/j.foodres.2020.109733] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 06/18/2020] [Accepted: 09/09/2020] [Indexed: 12/17/2022]
Abstract
Food processing wastes together with the perishable foodstuff loss promote environmental and societal concerns. Food byproducts can have value as a source of functional molecules for developing active packaging without food waste, under a circular economy. Nevertheless, the often-associated extraction/chemical processes compromise the sustainability of food byproducts reusability. In this work, coffee silverskin (CS) and starch, recovered from coffee roasting and potato industries, respectively, were together gelatinized to form in-situ films. Targeting to fit with the food application requirements, it is important to understand the influence of crude CS amount (1%, 5%, and 10% w/w of dry starch weight) on potato starch-based film properties. CS conferred a brownish coloration to the films, maintaining their transparency. The films colour intensity, antioxidant activity, and water tolerance were directly related with the CS dosage. Moreover, as high the CS amount, higher the elasticity, stretchability, and UV radiation absorption of the pristine films. These data emphasized that CS molecules extracted during gelatinization prevented the starch-starch hydrogen bonding and conferred functional and barrier properties. Overall, adding crude CS during potato starch gelatinization revealed to be an efficient strategy to tune the performance of potato starch-based films, opening an opportunity for valorising coffee roasting and potato byproducts.
Collapse
Affiliation(s)
- Gonçalo Oliveira
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Idalina Gonçalves
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Ana Barra
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Cláudia Nunes
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Paula Ferreira
- CICECO - Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Manuel A Coimbra
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
34
|
Synthesis of Dietetic Structured Lipids from Spent Coffee Grounds Crude Oil Catalyzed by Commercial Immobilized Lipases and Immobilized Rhizopus oryzae Lipase on Biochar and Hybrid Support. Processes (Basel) 2020. [DOI: 10.3390/pr8121542] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was the valorization of coffee industry residues, namely spent coffee grounds (SCG) as a source of oil, and silverskin (CS) as a source of both oil and biomass, under the concept of the circular economy. Therefore, crude oil from SCG was used to produce low-calorie structured lipids (SL) for food and pharmaceutical industries, and CS to produce biochar by pyrolysis for biotechnological uses. SL were obtained by acidolysis with caprylic or capric acid, or interesterification with ethyl caprylate or ethyl caprate, in solvent-free media, catalyzed by immobilized sn-1,3 regioselective lipases. Silverskin biochar (BIO) was directly used as enzyme carrier or to produce hybrid organic-silica (HB) supports for enzyme immobilization. Rhizopus oryzae lipase (ROL) immobilized on Amberlite (AMB), silica (SIL), BIO or HB, and the commercial immobilized Thermomyces lanuginosus (Lipozyme TL IM) and Rhizomucor miehei (Lipozyme RM IM) lipases were tested. Lipozyme RM IM showed better results in SL production than Lipozyme TLIM or ROL on BIO, SIL or HB. About 90% triacylglycerol conversion was attained after 7 h acidolysis or interesterification. Lipozyme RM IM was more stable in interesterification (80% and 65% activity with ethyl caprylate or ethyl caprate) than in acidolysis (first-order decay) after 10 reuses.
Collapse
|
35
|
Cantele C, Bertolino M, Bakro F, Giordano M, Jędryczka M, Cardenia V. Antioxidant Effects of Hemp ( Cannabis sativa L.) Inflorescence Extract in Stripped Linseed Oil. Antioxidants (Basel) 2020; 9:E1131. [PMID: 33202647 PMCID: PMC7697792 DOI: 10.3390/antiox9111131] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 02/07/2023] Open
Abstract
The ability of hemp (Cannabis sativa L.) inflorescence extract to counteract lipid oxidation was studied in stripped linseed oil. The ethanolic extract was characterized in terms of terpenes (6.00 mg/mL), cannabidiol (4.99% w/w), phenolic compounds (1.80 mg gallic acid equivalents (GAE)/mL), antiradical, and metal ion-chelating activities (50% effective concentration (EC50) of 2.47 mg/mL and 0.39 mg/mL, respectively). The stripped linseed oil, used as control (CO), was mixed with hemp extract (HO) or α-tocopherol (EO) at a ratio of 0.6% (w/w) and stored for 7 days in darkness at 40 °C. Hemp extract reduced the oxidation and lipolysis processes. At the end of the storage, HO showed a significantly higher level of α-linolenic acid (ALA; 26.64 g/100 g), lower peroxide value (PV) (21.19 meq O2/kg oil), and lower hexanal content (7.67 mmol/kg oil) than those found in the control. In contrast, EO showed a marked lipolysis (the free fatty acids increased by 42.57%) and a noticeable oxidation, since the ALA content decreased by 2.10% and a PV of 50 meq O2/kg oil was observed. This study demonstrates that hemp inflorescences can be used as a source of natural antioxidants in vegetable oils and lipid products to retard their oxidation, especially those characterized by a high degree of unsaturation.
Collapse
Affiliation(s)
- Carolina Cantele
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Grugliasco (TO) 10095, Italy; (C.C.); (M.B.); (M.G.)
| | - Marta Bertolino
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Grugliasco (TO) 10095, Italy; (C.C.); (M.B.); (M.G.)
| | - Fatema Bakro
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszynska Str. 34, 60-479 Poznan, Poland; (F.B.); (M.J.)
| | - Manuela Giordano
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Grugliasco (TO) 10095, Italy; (C.C.); (M.B.); (M.G.)
| | - Małgorzata Jędryczka
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszynska Str. 34, 60-479 Poznan, Poland; (F.B.); (M.J.)
| | - Vladimiro Cardenia
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Grugliasco (TO) 10095, Italy; (C.C.); (M.B.); (M.G.)
| |
Collapse
|
36
|
Quality Changes during Frozen Storage of Mechanical-Separated Flesh Obtained from an Underutilized Crustacean. Foods 2020; 9:foods9101485. [PMID: 33080879 PMCID: PMC7603036 DOI: 10.3390/foods9101485] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/08/2020] [Accepted: 10/15/2020] [Indexed: 11/21/2022] Open
Abstract
Despite their high nutritional value, high quantities of fish caught in the Adriatic Sea are underused or discarded for their insignificant economic value. Mechanical separation of flesh represents an opportunity for developing innovative semi-finished products, even if it can promote an increased quality degradation rate. The aim of this study was to evaluate physico-chemical modifications of mechanically separated mantis shrimp flesh during deep-freezing storage. Flesh samples obtained using a belt-drum separator, frozen and vacuum-packed, were stored at 3 temperatures (industrial: −26 °C; domestic: −18 °C and abuse: −10 °C) for 12 months. During storage, qualitative (color, water content, pH, fatty acids (FA) and lipid oxidation) were evaluated. Fish freshness parameters (e.g., trimethylamine (TMA), dimethylamine (DMA) and amino acids) were assessed using nuclear magnetic resonance (1H-NMR). The mechanical separation process accelerated the initial oxidation phenomena, promoting color alterations, compared to manual separation. The main degradation phenomena during storage were significantly affected by temperature and were related to changes in luminosity, oxidation of n-3 polyunsaturated fatty acids (PUFA), increased lipolysis with release of free FA, production of TMA and DMA by residual enzymatic activity, and changes in amino acids due to proteolysis. The inter-disciplinary approach permitted important findings to be made, in terms of the extent of different degradative phenomena, bound to processing and storage conditions of mechanically separated mantis flesh.
Collapse
|
37
|
Zhang Z, Poojary MM, Choudhary A, Rai DK, Lund MN, Tiwari BK. Ultrasound processing of coffee silver skin, brewer's spent grain and potato peel wastes for phenolic compounds and amino acids: a comparative study. Journal of Food Science and Technology 2020; 58:2273-2282. [PMID: 33967324 DOI: 10.1007/s13197-020-04738-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/11/2020] [Accepted: 08/14/2020] [Indexed: 10/23/2022]
Abstract
Awareness towards utilizing food-processing by-products are increasing in health as well as environmental purview. Coffee silver skin (CSS), potato peel (PP) and brewer's spent grain (BSG) are voluminous by-products in their respective processing industries. The present study compared these three by-products for their prospective utilization in producing polyphenols-rich aqueous extracts by using ultrasound-assisted extractions (UAE). A probe-type sonicator was used for ultrasound treatments. The total phenolic contents in the extracts were assessed by Folin-Ciocalteu assay, while the phenolic profiles of the extract was characterized by LC-Q-TOF mass spectrometry. The microstructure of the samples after UAE was evaluated by scanning electron microscopy (SEM). Ultrasound treatment enhanced the rate of extraction and recovered 2.79, 2.12 and 0.66 mg gallic acid equivalents/g of TPC from CSS, PP and BSG, respectively in 30 min, which correspond to recoveries of 97.6%, 84.5% and 84.6%, respectively, compared to conventional solid-liquid extractions carried out for 24 h. The extraction yield was dependent on the particle size of the raw materials and the highest yield was obtained from the materials with 100-250 µm particle size. The SEM imaging revealed that ultrasound treatment caused prominent tissue damage. Extracts contained mainly hydroxycinnamic acid derivatives of phenolic acids. PP and CSS had the highest amounts of umami free amino acids (0.13 mg/g in each), while BSG contained the highest amount of essential amino acids (92 mg/g). The present work shows that CSS, PP and BSG are good sources of polyphenols and UAE can be employed to enhance the extraction efficiency as means of a green approach.
Collapse
Affiliation(s)
- Zhihang Zhang
- Food Chemistry and Technology, Teagasc Food Research Centre, Ashtown, Dublin, D15 KN3K Ireland
| | - Mahesha M Poojary
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| | - Alka Choudhary
- Food Biosciences, Teagasc Food Research Centre, Ashtown, Dublin, D15 KN3K Ireland
| | - Dilip K Rai
- Food Biosciences, Teagasc Food Research Centre, Ashtown, Dublin, D15 KN3K Ireland
| | - Marianne N Lund
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Brijesh K Tiwari
- Food Chemistry and Technology, Teagasc Food Research Centre, Ashtown, Dublin, D15 KN3K Ireland
| |
Collapse
|
38
|
Iriondo-DeHond A, Iriondo-DeHond M, del Castillo MD. Applications of Compounds from Coffee Processing By-Products. Biomolecules 2020; 10:E1219. [PMID: 32825719 PMCID: PMC7564712 DOI: 10.3390/biom10091219] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/14/2020] [Accepted: 08/18/2020] [Indexed: 12/11/2022] Open
Abstract
To obtain the coffee beverage, approximately 90% of the edible parts of the coffee cherry are discarded as agricultural waste or by-products (cascara or husk, parchment, mucilage, silverskin and spent coffee grounds). These by-products are a potential source of nutrients and non-nutrient health-promoting compounds, which can be used as a whole ingredient or as an enriched extract of a specific compound. The chemical composition of by-products also determines food safety of the novel ingredients. To ensure the food safety of coffee by-products to be used as novel ingredients for the general consumer population, pesticides, mycotoxins, acrylamide and gluten must be analyzed. According with the priorities proposed by the Food Agriculture Organization of the United Nations (FAO) to maximize the benefit for the environment, society and economy, food waste generation should be avoided in the first place. In this context, the valorization of food waste can be carried out through an integrated bio-refinery approach to produce nutrients and bioactive molecules for pharmaceutical, cosmetic, food and non-food applications. The present research is an updated literature review of the definition of coffee by-products, their composition, safety and those food applications which have been proposed or made commercially available to date based on their chemical composition.
Collapse
Affiliation(s)
- Amaia Iriondo-DeHond
- Food Bioscience Group, Department of Bioactivity and Food Analysis, Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), Calle Nicolás Cabrera, 9, 28049 Madrid, Spain;
| | - Maite Iriondo-DeHond
- Food Quality Group, Department of Agricultural and Food Research, Instituto Madrileño de Investigación y Desarrollo Rural, Agrario y Alimentario (IMIDRA), N-II km 38, 28800 Alcalá de Henares, Spain;
| | - María Dolores del Castillo
- Food Bioscience Group, Department of Bioactivity and Food Analysis, Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), Calle Nicolás Cabrera, 9, 28049 Madrid, Spain;
| |
Collapse
|
39
|
Evaluation of the Use of a Coffee Industry By-Product in a Cereal-Based Extruded Food Product. Foods 2020; 9:foods9081008. [PMID: 32727015 PMCID: PMC7466283 DOI: 10.3390/foods9081008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 12/12/2022] Open
Abstract
The evaluation of by-products to be added to food products is complex, as the residues must be analyzed to demonstrate their potential use as safe foods, as well as to propose the appropriate process and product for recycling. Since coffee is a very popular beverage worldwide, the coffee industry is responsible for generating large amounts of by-products, which include the coffee silverskin (CS), the only by-product of the roasting process. In this work, its characterization and food safety were evaluated by chemical composition assays, microbiological determinations, aflatoxin measurements and acute toxicity tests. The results showed that CS is safe for use in food, in addition to providing dietary fiber, protein and bioactive compounds. An extruded cereal-based ready-to-eat food product was developed through an extreme vertices mixture design, producing an extruded food product being a source of protein and with a high fiber content. Up to 15% of CS was incorporated in the extruded product. This work contributes to the establishment of routes for the valorization of CS; nevertheless, further research is necessary to demonstrate the sustainability of this food industry by-product.
Collapse
|
40
|
Angeloni S, Scortichini S, Fiorini D, Sagratini G, Vittori S, Neiens SD, Steinhaus M, Zheljazkov VD, Maggi F, Caprioli G. Characterization of Odor-Active Compounds, Polyphenols, and Fatty Acids in Coffee Silverskin. Molecules 2020; 25:molecules25132993. [PMID: 32629998 PMCID: PMC7411821 DOI: 10.3390/molecules25132993] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 06/27/2020] [Accepted: 06/29/2020] [Indexed: 12/31/2022] Open
Abstract
For the first time the volatile fraction of coffee silverskin has been studied focusing on odor-active compounds detected by gas chromatography-olfactometry/flame ionization detector (GC-O/FID) system. Two approaches, namely headspace (HS) analysis by solid-phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS) and odor-active compounds analysis by gas chromatography-olfactometry/flame ionization detector (GC-O/FID), have been employed to fully characterize the aroma profile of this by-product. This work also provided an entire characterization of the bioactive compounds present in coffee silverskin, including alkaloids, chlorogenic acids, phenolic acids, flavonoids, and secoiridoids, by using different extraction procedures and high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) system. Coffee silverskin was shown to be a good source of caffeine and chlorogenic acids but also of phenolic acids and flavonoids. In addition, the fatty acid composition of the coffee silverskin was established by GC-FID system. The results from this research could contribute to the development of innovative applications and reuses of coffee silverskin, an interesting resource with a high potential to be tapped by the food and nutraceutical sector, and possibly also in the cosmetics and perfumery.
Collapse
Affiliation(s)
- Simone Angeloni
- School of Pharmacy, University of Camerino, via Sant’ Agostino 1, I-62032 Camerino (MC), Italy; (S.A.); (G.S.); (S.V.); (G.C.)
- International Hub for Coffee Research and Innovation, 62020 Belforte del Chienti (MC), Italy
| | - Serena Scortichini
- School of Science and Technology, Chemistry Division, University of Camerino, V. S. Agostino 1, I-62032 Camerino (MC), Italy; (S.S.); (D.F.)
| | - Dennis Fiorini
- School of Science and Technology, Chemistry Division, University of Camerino, V. S. Agostino 1, I-62032 Camerino (MC), Italy; (S.S.); (D.F.)
| | - Gianni Sagratini
- School of Pharmacy, University of Camerino, via Sant’ Agostino 1, I-62032 Camerino (MC), Italy; (S.A.); (G.S.); (S.V.); (G.C.)
| | - Sauro Vittori
- School of Pharmacy, University of Camerino, via Sant’ Agostino 1, I-62032 Camerino (MC), Italy; (S.A.); (G.S.); (S.V.); (G.C.)
| | - Silva D. Neiens
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Straße 34, 85354 Freising, Germany; (S.D.N.); (M.S.)
| | - Martin Steinhaus
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Straße 34, 85354 Freising, Germany; (S.D.N.); (M.S.)
| | - Valtcho D. Zheljazkov
- Department of Crop and Soil Science, 431A Crop Science Building, 3050 SW Campus Way, Oregon State University, Corvallis, OR 97331, USA;
| | - Filippo Maggi
- School of Pharmacy, University of Camerino, via Sant’ Agostino 1, I-62032 Camerino (MC), Italy; (S.A.); (G.S.); (S.V.); (G.C.)
- Correspondence: ; Tel.: +39-0737404506
| | - Giovanni Caprioli
- School of Pharmacy, University of Camerino, via Sant’ Agostino 1, I-62032 Camerino (MC), Italy; (S.A.); (G.S.); (S.V.); (G.C.)
| |
Collapse
|
41
|
Klingel T, Kremer JI, Gottstein V, Rajcic de Rezende T, Schwarz S, Lachenmeier DW. A Review of Coffee By-Products Including Leaf, Flower, Cherry, Husk, Silver Skin, and Spent Grounds as Novel Foods within the European Union. Foods 2020; 9:E665. [PMID: 32455549 PMCID: PMC7278860 DOI: 10.3390/foods9050665] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/07/2020] [Accepted: 05/14/2020] [Indexed: 02/06/2023] Open
Abstract
The coffee plant Coffea spp. offers much more than the well-known drink made from the roasted coffee bean. During its cultivation and production, a wide variety of by-products are accrued, most of which are currently unused, thermally recycled, or used as animal feed. The aim of this review is to provide an overview of novel coffee products in the food sector and their current legal classification in the European Union (EU). For this purpose, we have reviewed the literature on the composition and safety of coffee flowers, leaves, pulp, husk, parchment, green coffee, silver skin, and spent coffee grounds. Some of these products have a history of consumption in Europe (green coffee), while others have already been used as traditional food in non-EU-member countries (coffee leaves, notification currently pending), or an application for authorization as novel food has already been submitted (husks, flour from spent coffee grounds). For the other products, toxicity and/or safety data appear to be lacking, necessitating further studies to fulfill the requirements of novel food applications.
Collapse
Affiliation(s)
- Tizian Klingel
- Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Strasse 3, 76187 Karlsruhe, Germany; (T.K.); (J.I.K.); (V.G.); (T.R.d.R.)
| | - Jonathan I. Kremer
- Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Strasse 3, 76187 Karlsruhe, Germany; (T.K.); (J.I.K.); (V.G.); (T.R.d.R.)
| | - Vera Gottstein
- Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Strasse 3, 76187 Karlsruhe, Germany; (T.K.); (J.I.K.); (V.G.); (T.R.d.R.)
| | - Tabata Rajcic de Rezende
- Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Strasse 3, 76187 Karlsruhe, Germany; (T.K.); (J.I.K.); (V.G.); (T.R.d.R.)
| | - Steffen Schwarz
- Coffee Consulate, Hans-Thoma-Strasse 20, 68163 Mannheim, Germany;
| | - Dirk W. Lachenmeier
- Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Strasse 3, 76187 Karlsruhe, Germany; (T.K.); (J.I.K.); (V.G.); (T.R.d.R.)
| |
Collapse
|
42
|
Zaid AN, Al Ramahi R. Depigmentation and Anti-aging Treatment by Natural Molecules. Curr Pharm Des 2020; 25:2292-2312. [PMID: 31269882 DOI: 10.2174/1381612825666190703153730] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 06/20/2019] [Indexed: 11/22/2022]
Abstract
Natural molecules are becoming more accepted choices as cosmetic agents, many products in the market today claim to include natural components. Plants include many substances that could be of a value in the whitening of the skin and working as anti-aging agents. A wide range of articles related to natural skin whitening and anti-aging agents have been reviewed. Many plant-derived and natural molecules have shown to affect melanin synthesis by different mechanisms, examples include Arbutin, Ramulus mori extract, Licorice extract, Glabridin, Liquiritin, Kojic acid, Methyl gentisate, Aloesin, Azelaic acid, Vitamin C, Thioctic acid, Soya bean extracts, Niacinamide, α and β-hydroxy acids, Lactic acid, Chamomile extract, and Ellagic acid. Some of the widely used natural anti-aging products as natural antioxidants, collagen, hyaluronic acid, and coenzyme Q can counteract the effects of reactive oxygen species in skin cells and have anti-aging properties on the skin. It was concluded that many natural products including antioxidants can prevent UV-induced skin damage and have whitening and anti-aging effects. It is very important to develop and stabilize appropriate methods for the evaluation of the whitening and anti-aging capacity of natural products and their exact mechanism of action to ensure real efficacy based on evidence-based studies. The attention should be oriented on the formulations and the development of an appropriate vehicle to ensure suitable absorption of these natural products in addition to evaluating the suitable concentration of these molecules required having the desired effects without causing harmful side effects.
Collapse
Affiliation(s)
- Abdel Naser Zaid
- Pharmacy Department, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestinian Territory, Occupied
| | - Rowa' Al Ramahi
- Pharmacy Department, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestinian Territory, Occupied
| |
Collapse
|
43
|
Rios MB, Iriondo-DeHond A, Iriondo-DeHond M, Herrera T, Velasco D, Gómez-Alonso S, Callejo MJ, del Castillo MD. Effect of Coffee Cascara Dietary Fiber on the Physicochemical, Nutritional and Sensory Properties of a Gluten-Free Bread Formulation. Molecules 2020; 25:E1358. [PMID: 32192041 PMCID: PMC7144097 DOI: 10.3390/molecules25061358] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/10/2020] [Accepted: 03/13/2020] [Indexed: 02/07/2023] Open
Abstract
This study aimed to assess the physicochemical, nutritional and sensory properties of gluten-free breads containing isolated coffee cascara dietary fiber (ICCDF) as a food ingredient. ICCDF was obtained by aqueous extraction. The oil and water holding capacity and the nutritional profile of the novel ingredient were determined. Its safety was certificated by analysis of ochratoxin A, caffeine and gluten. Gluten-free bread formulations were prepared enriching a commercial bakery premix in rice protein (8%) and ICCDF (3% and 4.5%). Nutritional profile of the novel gluten-free breads (dietary fiber, protein, amino acids, lipids, fatty acid profile and resistant starch), as well as bread volume, crumb density, moisture, firmness, elasticity and color intensity were determined. A sensory quantitative descriptive analysis of the breads was conducted using eight trained panelists. New breads showed significantly higher (p < 0.05) content of dietary fiber and protein than the control bread. The addition of ICCDF allowed increasing dough yield, a less crumb firmness and a higher crumb elasticity. The nutrition claims "source of protein and high in dietary fiber" were assigned to the new formulations. In conclusion, a certificated gluten-free bread with improved nutritional and physicochemical properties and good sensorial profile was obtained.
Collapse
Affiliation(s)
- Maria Belen Rios
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), Calle Nicolás Cabrera, 9, 28049 Madrid, Spain; (M.B.R.); (A.I.-D.); (T.H.)
| | - Amaia Iriondo-DeHond
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), Calle Nicolás Cabrera, 9, 28049 Madrid, Spain; (M.B.R.); (A.I.-D.); (T.H.)
| | - Maite Iriondo-DeHond
- Instituto Madrileño de Investigación y Desarrollo Rural, Agrario y Alimentario (IMIDRA), N-II km 38, 28800 Alcalá de Henares, Spain;
| | - Teresa Herrera
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), Calle Nicolás Cabrera, 9, 28049 Madrid, Spain; (M.B.R.); (A.I.-D.); (T.H.)
| | - Diego Velasco
- Departamento de Química y Tecnología de Alimentos, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas (ETSIAAB), Universidad Politécnica de Madrid (UPM), Avenida Puerta de Hierro, nº 2, 4, 28040 Madrid, Spain; (D.V.); (M.J.C.)
| | - Sergio Gómez-Alonso
- Universidad de Castilla-La Mancha, Instituto Regional de Investigación Científica Aplicada (IRICA), Av. Camilo José Cela s/n, 13071 Ciudad Real, Spain;
| | - María Jesús Callejo
- Departamento de Química y Tecnología de Alimentos, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas (ETSIAAB), Universidad Politécnica de Madrid (UPM), Avenida Puerta de Hierro, nº 2, 4, 28040 Madrid, Spain; (D.V.); (M.J.C.)
| | - Maria Dolores del Castillo
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), Calle Nicolás Cabrera, 9, 28049 Madrid, Spain; (M.B.R.); (A.I.-D.); (T.H.)
| |
Collapse
|
44
|
Truzzi C, Giorgini E, Annibaldi A, Antonucci M, Illuminati S, Scarponi G, Riolo P, Isidoro N, Conti C, Zarantoniello M, Cipriani R, Olivotto I. Fatty acids profile of black soldier fly (Hermetia illucens): Influence of feeding substrate based on coffee-waste silverskin enriched with microalgae. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2019.114309] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
45
|
Iriondo-DeHond A, Rios MB, Herrera T, Rodriguez-Bertos A, Nuñez F, San Andres MI, Sanchez-Fortun S, del Castillo MD. Coffee Silverskin Extract: Nutritional Value, Safety and Effect on Key Biological Functions. Nutrients 2019; 11:E2693. [PMID: 31703400 PMCID: PMC6893552 DOI: 10.3390/nu11112693] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 10/31/2019] [Accepted: 11/04/2019] [Indexed: 12/29/2022] Open
Abstract
This study aimed to complete the scientific basis for the validation of a coffee silverskin extract (CSE) as a novel food ingredient according to European legislation. Nutritional value, safety, effects on biochemical biomarkers and excretion of short chain fatty acids (SCFAs) in vivo of CSE were assessed. Proteins, amino acids, fat, fatty acids, fiber, simple sugars and micronutrients were analyzed. For the first time, toxicological and physiological effects were evaluated in vivo by a repeated-dose study in healthy Wistar rats. Hormone secretion, antioxidant (enzymatic and no-enzymatic) and anti-inflammatory biomarkers, and dietary fiber fermentability of CSE (analysis of SCFAs in feces) were studied in biological samples. This unique research confirms the feasibility of CSE as a human dietary supplement with several nutrition claims: "source of proteins (16%), potassium, magnesium, calcium and vitamin C, low in fat (0.44%) and high in fiber (22%)". This is the first report demonstrating that its oral administration (1 g/kg) for 28 days is innocuous. Hormone secretion, antioxidant or anti-inflammatory biomarkers were not affected in heathy animals. Total SCFAs derived from CSE fiber fermentation were significantly higher (p < 0.05) in male treated rats compared to male control rats. All the new information pinpoints CSE as a natural, sustainable and safe food ingredient containing fermentable fiber able to produce SCFAs with beneficial effects on gut microbiota.
Collapse
Affiliation(s)
- Amaia Iriondo-DeHond
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), Calle Nicolas Cabrera 9, 28049 Madrid, Spain; (A.I.-D.); (M.B.R.); (T.H.)
| | - Maria Belen Rios
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), Calle Nicolas Cabrera 9, 28049 Madrid, Spain; (A.I.-D.); (M.B.R.); (T.H.)
| | - Teresa Herrera
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), Calle Nicolas Cabrera 9, 28049 Madrid, Spain; (A.I.-D.); (M.B.R.); (T.H.)
| | - Antonio Rodriguez-Bertos
- Department of Internal Medicine and Animal Surgery, School of Veterinary Sciences, Health Surveillance Center (VISAVET), Complutense University, Puerta de Hierro Ave, 28040 Madrid, Spain;
- Facultad de Veterinaria, Universidad Complutense de Madrid, Av. Puerta de Hierro, s/n, 28040 Madrid, Spain; (M.I.S.A.); (S.S.-F.)
| | - Fernando Nuñez
- Centro de Biología Molecular Severo Ochoa (CBMSO, CSIC-UAM), Calle Nicolás Cabrera, 1, 28049 Madrid, Spain;
| | - Manuel Ignacio San Andres
- Facultad de Veterinaria, Universidad Complutense de Madrid, Av. Puerta de Hierro, s/n, 28040 Madrid, Spain; (M.I.S.A.); (S.S.-F.)
| | - Sebastian Sanchez-Fortun
- Facultad de Veterinaria, Universidad Complutense de Madrid, Av. Puerta de Hierro, s/n, 28040 Madrid, Spain; (M.I.S.A.); (S.S.-F.)
| | - Maria Dolores del Castillo
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), Calle Nicolas Cabrera 9, 28049 Madrid, Spain; (A.I.-D.); (M.B.R.); (T.H.)
| |
Collapse
|
46
|
Kuczyńska A, Cardenia V, Ogrodowicz P, Kempa M, Rodriguez-Estrada MT, Mikołajczak K. Effects of multiple abiotic stresses on lipids and sterols profile in barley leaves (Hordeum vulgare L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 141:215-224. [PMID: 31181509 DOI: 10.1016/j.plaphy.2019.05.033] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/15/2019] [Accepted: 05/29/2019] [Indexed: 05/03/2023]
Abstract
Plants are usually exposed to several types of abiotic stress in regular field conditions. The lipid profile of barley homozygous lines exposed to drought, heat, salinity, and their combinations, was investigated in the present study. Free fatty acids, free sterols, and diacylglycerols were the most abundant classes (∼8.0% of plant material). The genetic background significantly impacted the lipid composition rather than the treatments, and diacylglycerols were the only lipid class affected by salinity (1.84 mg/100 mg plant tissue; ∼33% reduction). However, the genotype × treatment interaction analysis revealed that the lipid and sterol compositions depended on both genotype and environment. Our results suggest that inborn stress tolerance in barley is manifested by enhanced accumulation of most lipids, mainly sterols, especially in heat/drought-stressed plants. In addition, expression of the LTP2 gene may be indirectly involved in the abiotic stress reaction of barley by mediating intracellular transport of some lipid classes.
Collapse
Affiliation(s)
- Anetta Kuczyńska
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszynska Str. 34, Poznan, 60-479, Poland.
| | - Vladimiro Cardenia
- Department of Agricultural, Forest and Food Sciences DISAFA, University of Turin, Largo Braccini 2, 10095, Grugliasco, Italy.
| | - Piotr Ogrodowicz
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszynska Str. 34, Poznan, 60-479, Poland.
| | - Michał Kempa
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszynska Str. 34, Poznan, 60-479, Poland.
| | | | - Krzysztof Mikołajczak
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszynska Str. 34, Poznan, 60-479, Poland.
| |
Collapse
|
47
|
Wen L, Zhang Z, Rai D, Sun D, Tiwari BK. Ultrasound‐assisted extraction (UAE) of bioactive compounds from coffee silverskin: Impact on phenolic content, antioxidant activity, and morphological characteristics. J FOOD PROCESS ENG 2019. [DOI: 10.1111/jfpe.13191] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Le Wen
- Food Refrigeration and Computerized Food Technology (FRCFT), School of Biosystems and Food Engineering, Agriculture & Food Science Centre, University College Dublin (UCD)National University of Ireland Dublin Ireland
- Teagasc Food Research Centre Ashtown Ireland
| | | | - Dilip Rai
- Teagasc Food Research Centre Ashtown Ireland
| | - Da‐Wen Sun
- Food Refrigeration and Computerized Food Technology (FRCFT), School of Biosystems and Food Engineering, Agriculture & Food Science Centre, University College Dublin (UCD)National University of Ireland Dublin Ireland
| | | |
Collapse
|
48
|
Guglielmetti A, Fernandez-Gomez B, Zeppa G, Del Castillo MD. Nutritional Quality, Potential Health Promoting Properties and Sensory Perception of an Improved Gluten-Free Bread Formulation Containing Inulin, Rice Protein and Bioactive Compounds Extracted from Coffee Byproducts. POL J FOOD NUTR SCI 2019. [DOI: 10.31883/pjfns-2019-0012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
49
|
|
50
|
Bessada SMF, Alves RC, Costa ASG, Nunes MA, Oliveira MBPP. Coffea canephora silverskin from different geographical origins: A comparative study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 645:1021-1028. [PMID: 30248827 DOI: 10.1016/j.scitotenv.2018.07.201] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 06/18/2018] [Accepted: 07/16/2018] [Indexed: 06/08/2023]
Abstract
Coffee silverskin is the major by-product of coffee roasting. Among all the coffee by-products, it is a relatively stable product due to its low moisture content. Currently, silverskin is used as direct fuel (e.g. firelighters), for composting and soil fertilization. As it is a natural source of several bioactive compounds that can be extracted and further used for food or dermocosmetic purposes, the valorization of this by-product is of utmost importance, having in view the sustainability and circular economy principles. The aim of this work was to evaluate, for the first time, the influence of different geographical origins (Brazil, Uganda, Vietnam, Cameroon, Indonesia, and India) on the chemical composition of silverskin obtained from Coffea canephora beans. Different parameters were analysed, including ashes, protein, soluble and insoluble fiber, and total lipid amounts; vitamin E, fatty acid and phenolics profiles (by HPLC-DAD-FLD, GC-FID, and HPLC-DAD, respectively); caffeine, 5‑caffeoylquinic acid and hydroxymethyfurfural contents (by HPLC-DAD); and antioxidant profile (total phenolics and flavonoids contents, DPPH inhibition, and Ferric Reducing Antioxidant Power). Significant differences (p < 0.05) were found between the samples, especially regarding the fatty acid profile and the antioxidant composition. For instance, the Brazilian silverskin was the richest in total lipids and vitamin E, while the Indian silverskin was the poorest in phenolics and antioxidant activity, and presented a higher relative percentage of saturated fatty acids. A Principal Component Analysis allowed to group the studied samples according to their geographical proximity.
Collapse
Affiliation(s)
- Sílvia M F Bessada
- REQUIMTE/LAQV, Departamento of Chemical Sciences, Faculty of Pharmacy of University of Porto, R. Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Rita C Alves
- REQUIMTE/LAQV, Departamento of Chemical Sciences, Faculty of Pharmacy of University of Porto, R. Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Anabela S G Costa
- REQUIMTE/LAQV, Departamento of Chemical Sciences, Faculty of Pharmacy of University of Porto, R. Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - M Antónia Nunes
- REQUIMTE/LAQV, Departamento of Chemical Sciences, Faculty of Pharmacy of University of Porto, R. Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - M Beatriz P P Oliveira
- REQUIMTE/LAQV, Departamento of Chemical Sciences, Faculty of Pharmacy of University of Porto, R. Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| |
Collapse
|