1
|
Liu X, Yang X, Zhang J, Hou H, Li X, Ding X. Preparation, separation and identification of novel hypocholesterolemic peptides from wheat germ: An in vitro and in silico study. Food Chem 2025; 469:142624. [PMID: 39732072 DOI: 10.1016/j.foodchem.2024.142624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 12/19/2024] [Accepted: 12/21/2024] [Indexed: 12/30/2024]
Abstract
The aim of this study was to prepare, isolate, and identify hypocholesterolemic peptides from wheat germ protein and explore their efficacy. Wheat germ protein was hydrolyzed using four commercial enzymes. Hydrolysate, with the highest in vitro hypocholesterolemic activity was isolated using ultrafiltration and macroporous resin. The fractions with highest binding affinity to sodium taurocholate were evaluated for cholesterol-lowering activity and resistance to digestion using Caco-2 monolayers. Fraction III had the highest cholesterol-lowering activity, reducing the subcutaneous transport and absorption of cholesterol and resisted digestion. Nano-LC-MS/MS and molecular docking were used to identify cholesterol-lowering peptides from Fraction III. Three cholesterol-lowering peptides, FAAGAPP, GAGDIPGGIG, and GPVPDTGIFS, were identified. These peptides exhibited cholesterol micelle solubility, specifically by 76.2 %, 68.3 %, and 64.7 %, respectively. In summary, wheat germ peptides exhibited significant cholesterol-lowering activity in vitro, suggesting their potential for application in functional foods.
Collapse
Affiliation(s)
- Xiao Liu
- Engineering and Technology Center for Grain Processing of Shandong Province, Key Laboratory of Food Nutrition and Healthy in Universities of Shandong, Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Avenue, Tai'an 271018, China
| | - Xiaofang Yang
- Internal-medicine Department, Shouguang People's Hospital, 3173 Jiankang Street, Shouguang 262700, China
| | - Jinli Zhang
- Engineering and Technology Center for Grain Processing of Shandong Province, Key Laboratory of Food Nutrition and Healthy in Universities of Shandong, Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Avenue, Tai'an 271018, China
| | - Hanxue Hou
- Engineering and Technology Center for Grain Processing of Shandong Province, Key Laboratory of Food Nutrition and Healthy in Universities of Shandong, Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Avenue, Tai'an 271018, China
| | - Xiangyang Li
- School of Engineering, Ludong University, Hongqi Middle Road, Zhifu District, Yantai 264025, China
| | - Xiuzhen Ding
- Engineering and Technology Center for Grain Processing of Shandong Province, Key Laboratory of Food Nutrition and Healthy in Universities of Shandong, Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Avenue, Tai'an 271018, China.
| |
Collapse
|
2
|
Luo B, Zhong S, Wang X, Guo P, Hou Y, Di W. Management of blood lipids in post-kidney transplant patients: a systematic review and network meta-analysis. Front Pharmacol 2024; 15:1440875. [PMID: 39439889 PMCID: PMC11493609 DOI: 10.3389/fphar.2024.1440875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024] Open
Abstract
Introduction The primary objective of this systematic review was to provide an overview of the efficacy and safety of various lipid-lowering therapies in patients post-kidney transplant (PKT), given the limited existing literature. Considering the restricted number of available studies, this work aimed to summarize the existing evidence regarding the effectiveness of different lipid-lowering treatments in PKT patients. The effects of various lipid-lowering therapeutic regimens on lipid levels were compared, and their safety was assessed, with the heterogeneity of treatment protocols acknowledged. Material and Methods Randomized controlled trials investigating different treatment regimens (DTRs) for regulating lipid levels in PKT patients were systematically retrieved from PubMed, Cochrane Library, and Embase, from inception to March 2024. Literature quality was assessed employing the Cochrane risk of bias assessment tool. Data analysis and graphical representation were performed employing RevMan5.3 and Stata 20.0. The surface under the cumulative ranking area (SUCRA) compared the effects of DTRs on lipid profiles, incidence of adverse events, and all-cause mortality in PKT patients. Results Fifteen studies were included, comprising 5,768 PKT patients and involving 9 treatment regimens. The results revealed that, for changes in high-density lipoprotein cholesterol (HDL-C), the SUCRA rankings from highest to lowest among PKT patients receiving DTRs were statins + ezetimibe (70%), placebo (61.5%), fibrates (57.2%), statins (44.1%), and fish oil (17.3%). Regarding changes in low-DL-C (LDL-C), the SUCRA rankings from highest to lowest among PKT patients receiving DTRs were statins (68.2%), statins + ezetimibe (67.5%), fish oil (53.4%), fibrates (34.5%), and placebo (26.5%). For the change in total cholesterol (TC) levels, a network meta-analysis (NMA) revealed that among PKT patients receiving DTRs, the SUCRA rankings from highest to lowest for TC change were statins + ezetimibe (97.6%), proprotein convertase subtilisin/kexin type 9 inhibitors (PCSK9 inhibitors) (74.3%), fish oil (64.3%), statins (61.6%), fibrates (47.2%), placebo (31.6%), calcineurin phosphatase inhibitors (11.9%), and immunosuppressants (11.4%). Regarding the change in triglyceride (TG) levels, a NMA showed that among PKT patients receiving DTRs, the SUCRA rankings from highest to lowest for TG change were fibrates (99.9%), statins (68.9%), PCSK9 inhibitors (66.6%), statins + ezetimibe (55.1%), placebo (49.2%), fish oil (45.0%), immunosuppressants (7.8%), and calcineurin phosphatase inhibitors (7.6%). For the occurrence of kidney transplant failure, a NMA revealed that among PKT patients receiving DTRs, the SUCRA rankings from highest to lowest for reducing the incidence of kidney transplant failure were PCSK9 inhibitors (69.0%), calcineurin phosphatase inhibitors (63.0%), statins (61.5%), placebo (55.1%), steroids (51.8%), immunosuppressants (27.1%), and fibrates (22.5%). Regarding all-cause mortality, a NMA showed that among PKT patients receiving DTRs, the SUCRA rankings from highest to lowest for reducing all-cause mortality were PCSK9 inhibitors (90.5%), statins (55.8%), and placebo (3.7%). Conclusion In reducing lipid levels in PKT patients, combination therapy with statins and ezetimibe demonstrated notable advantages and higher effectiveness. PCSK9 inhibitors exhibited greater advantages in reducing adverse events and mortality rates in PKT patients, with higher safety.
Collapse
Affiliation(s)
- Bohan Luo
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Organ Transplantation Center, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Shan Zhong
- Organ Transplantation Center, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Xiaoxiao Wang
- Organ Transplantation Center, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Pu Guo
- Organ Transplantation Center, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yifu Hou
- Organ Transplantation Center, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Wenjia Di
- Organ Transplantation Center, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Liou JW, Chen PY, Gao WY, Yen JH. Natural phytochemicals as small-molecule proprotein convertase subtilisin/kexin type 9 inhibitors. Tzu Chi Med J 2024; 36:360-369. [PMID: 39421488 PMCID: PMC11483095 DOI: 10.4103/tcmj.tcmj_46_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/01/2024] [Accepted: 06/03/2024] [Indexed: 10/19/2024] Open
Abstract
A decrease in the levels of low-density lipoprotein receptors (LDLRs) leads to the accumulation of LDL cholesterol (LDL-C) in the bloodstream, resulting in hypercholesterolemia and atherosclerotic cardiovascular diseases. Increasing the expression level or inducing the activity of LDLR in hepatocytes can effectively control hypercholesterolemia. Proprotein convertase subtilisin/kexin type 9 (PCSK9) protein, primarily produced in the liver, promotes the degradation of LDLR. Inhibiting the expression and/or function of PCSK9 can increase the levels of LDLR on the surface of hepatocytes and promote LDL-C clearance from the plasma. Thus, targeting PCSK9 represents a new strategy for developing preventive and therapeutic interventions for hypercholesterolemia. Currently, monoclonal antibodies are used as PCSK9 inhibitors in clinical practice. However, the need for oral and affordable anti-PCSK9 medications limits the perspective of choosing PCSK9 inhibitors for clinical usage. Emerging research reports have demonstrated that natural phytochemicals have efficacy in maintaining cholesterol stability and regulating lipid metabolism. Developing novel natural phytochemical PCSK9 inhibitors can serve as a starting point for developing small-molecule drugs to reduce plasma LDL-C levels in patients. In this review, we summarize the current literature on the critical role of PCSK9 in controlling LDLR degradation and hypercholesterolemia, and we discuss the results of studies attempting to develop PCSK9 inhibitors, with an emphasis on the inhibitory effects of natural phytochemicals on PCSK9. Furthermore, we provide insight into the mechanisms of action by which the reported phytochemicals exert their potential PCSK9 inhibitory effects against hypercholesterolemia.
Collapse
Affiliation(s)
- Je-Wen Liou
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Pei-Yi Chen
- Laboratory of Medical Genetics, Genetic Counseling Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| | - Wan-Yun Gao
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | - Jui-Hung Yen
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
4
|
Cho KH, Bahuguna A, Kim JE, Lee SH. Efficacy Assessment of Five Policosanol Brands and Damage to Vital Organs in Hyperlipidemic Zebrafish by Six-Week Supplementation: Highlighting the Toxicity of Red Yeast Rice and Safety of Cuban Policosanol (Raydel ®). Pharmaceuticals (Basel) 2024; 17:714. [PMID: 38931381 PMCID: PMC11206962 DOI: 10.3390/ph17060714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Policosanol is a mixture of long-chain aliphatic alcohols (LCAAs) derived from various plant and insect origins that are marketed by various companies with distinct formulations and brand names. Policosanols offer several beneficial effects to treat dyslipidemia and hypertension; however, a comprehensive functionality comparison of various policosanol brands has yet to be thoroughly explored. In the present study five distinct policosanol brands from different origins and countries, Raydel-policosanol, Australia (PCO1), Solgar-policosanol, USA (PCO2), NutrioneLife-monacosanol, South Korea (PCO3), Mothernest-policosanol, Australia (PCO4), and Peter & John-policosanol, New Zealand (PCO5) were compared via dietary supplementation (1% in diet, final wt/wt) to zebrafish for six weeks to investigate their impact on survivability, blood lipid profile, and functionality of vital organs under the influence of a high-cholesterol diet (HCD, final 4%, wt/wt). The results revealed that policosanol brands (PCO1-PCO5) had a substantial preventive effect against HCD-induced zebrafish body weight elevation and hyperlipidemia by alleviating total cholesterol (TC) and triglycerides (TG) in blood. Other than PCO3, all the brands significantly reduced the HCD's elevated low-density lipoprotein cholesterol (LDL-C). On the contrary, only PCO1 displayed a significant elevation in high-density lipoprotein cholesterol (HDL-C) level against the consumption of HCD. The divergent effect of PCO1-PCO5 against HCD-induced hepatic damage biomarkers, aspartate aminotransferase (AST) and alanine aminotransferase (ALT), was observed. PCO1, PCO2, and PCO4 efficiently curtailed the AST and ALT levels; however, PCO3 and PCO5 potentially aggravated the HCD's elevated plasma AST and ALT levels. Consistently, the hepatic histology outcome revealed the least effectiveness of PCO3 and PCO5 against HCD-induced liver damage. On the contrary, PCO1 exhibited a substantial hepatoprotective role by curtailing HCD-induced fatty liver changes, cellular senescent, reactive oxygen species (ROS), and interleukin-6 (IL-6) production. Likewise, the histological outcome from the kidney, testis, and ovary revealed the significant curative effect of PCO1 against the HCD-induced adverse effects. PCO2-PCO5 showed diverse and unequal results, with the least effective being PCO3, followed by PCO5 towards HCD-induced kidney, testis, and ovary damage. The multivariate interpretation based on principal component analysis (PCA) and hierarchical cluster analysis (HCA) validated the superiority of PCO1 over other policosanol brands against the clinical manifestation associated with HCD. Conclusively, different brands displayed distinct impacts against HCD-induced adverse effects, signifying the importance of policosanol formulation and the presence of aliphatic alcohols on the functionality of policosanol products.
Collapse
Affiliation(s)
- Kyung-Hyun Cho
- Raydel Research Institute, Medical Innovation Complex, Daegu 41061, Republic of Korea
| | | | | | | |
Collapse
|
5
|
Chaiyasut C, Sivamaruthi BS, Thangaleela S, Sisubalan N, Bharathi M, Khongtan S, Kesika P, Sirilun S, Choeisoongnern T, Peerajan S, Fukngoen P, Sittiprapaporn P, Rungseevijitprapa W. Influence of Lactobacillus rhamnosus Supplementation on the Glycaemic Index, Lipid Profile, and Microbiome of Healthy Elderly Subjects: A Preliminary Randomized Clinical Trial. Foods 2024; 13:1293. [PMID: 38731665 PMCID: PMC11083618 DOI: 10.3390/foods13091293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 05/13/2024] Open
Abstract
Aging is a time-dependent complex biological process of organisms with gradual deterioration of the anatomical and physiological functions. The role of gut microbiota is inevitable in the aging process. Probiotic interventions improve gut homeostasis and support healthy aging by enhancing beneficial species and microbial biodiversity in older adults. The present preliminary clinical trial delves into the impact of an 8-week Lactobacillus rhamnosus intervention (10 × 109 CFU per day) on the glycaemic index, lipid profile, and microbiome of elderly subjects. Body weight, body fat, fasting blood glucose, total cholesterol, triglyceride, high-density lipoprotein, and low-density lipoprotein (LDL) are assessed at baseline (Week 0) and after treatment (Week 8) in placebo and probiotic groups. Gaussian regression analysis highlights a significant improvement in LDL cholesterol in the probiotic group (p = 0.045). Microbiome analysis reveals numeric changes in taxonomic abundance at various levels. At the phylum level, Proteobacteria increases its relative frequency (RF) from 14.79 ± 5.58 at baseline to 23.46 ± 8.02 at 8 weeks, though statistically insignificant (p = 0.100). Compared to the placebo group, probiotic supplementations significantly increased the proteobacteria abundance. Genus-level analysis indicates changes in the abundance of several microbes, including Escherichia-Shigella, Akkermansia, and Bacteroides, but only Butyricimonas showed a statistically significant level of reduction in its abundance. Probiotic supplementations significantly altered the Escherichia-Shigella and Sutterella abundance compared to the placebo group. At the species level, Bacteroides vulgatus substantially increases after probiotic treatment (p = 0.021). Alpha and beta diversity assessments depict subtle shifts in microbial composition. The study has limitations, including a small sample size, short study duration, single-strain probiotic use, and lack of long-term follow-up. Despite these constraints, the study provides valuable preliminary insights into the multifaceted impact of L. rhamnosus on elderly subjects. Further detailed studies are required to define the beneficial effect of L. rhamnosus on the health status of elderly subjects.
Collapse
Affiliation(s)
- Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (C.C.); (B.S.S.); (N.S.); (P.K.)
| | - Bhagavathi Sundaram Sivamaruthi
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (C.C.); (B.S.S.); (N.S.); (P.K.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Subramanian Thangaleela
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (C.C.); (B.S.S.); (N.S.); (P.K.)
| | - Natarajan Sisubalan
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (C.C.); (B.S.S.); (N.S.); (P.K.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Muruganantham Bharathi
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (C.C.); (B.S.S.); (N.S.); (P.K.)
| | - Suchanat Khongtan
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (C.C.); (B.S.S.); (N.S.); (P.K.)
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Periyanaina Kesika
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (C.C.); (B.S.S.); (N.S.); (P.K.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sasithorn Sirilun
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (C.C.); (B.S.S.); (N.S.); (P.K.)
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Thiwanya Choeisoongnern
- Neuropsychological Research Laboratory, Neuroscience Research Center, School of Anti-Aging and Regenerative Medicine, Mae Fah Luang University, Bangkok 10110, Thailand
| | | | - Pranom Fukngoen
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (C.C.); (B.S.S.); (N.S.); (P.K.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Phakkharawat Sittiprapaporn
- Neuropsychological Research Laboratory, Neuroscience Research Center, School of Anti-Aging and Regenerative Medicine, Mae Fah Luang University, Bangkok 10110, Thailand
| | - Wandee Rungseevijitprapa
- Department of Pharmaceutical Chemistry and Technology, Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
- School of Cosmetic Science, Mae Fah Luang University, Muang District, Chiang Rai 57100, Thailand
| |
Collapse
|
6
|
Weerawatanakorn M, Kamchonemenukool S, Koh YC, Pan MH. Exploring Phytochemical Mechanisms in the Prevention of Cholesterol Dysregulation: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6833-6849. [PMID: 38517334 PMCID: PMC11018292 DOI: 10.1021/acs.jafc.3c09924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/05/2024] [Accepted: 03/09/2024] [Indexed: 03/23/2024]
Abstract
Although cholesterol plays a key role in many physiological processes, its dysregulation can lead to several metabolic diseases. Statins are a group of drugs widely used to lower cholesterol levels and cardiovascular risk but may lead to several side effects in some patients. Therefore, the development of a plant-based therapeutic adjuvant with cholesterol-lowering activity is desirable. The maintenance of cholesterol homeostasis encompasses multiple steps, including biosynthesis and metabolism, uptake and transport, and bile acid metabolism; issues arising in any of these processes could contribute to the etiology of cholesterol-related diseases. An increasing body of evidence strongly indicates the benefits of phytochemicals for cholesterol regulation; traditional Chinese medicines prove beneficial in some disease models, although more scientific investigations are needed to confirm their effectiveness. One of the main functions of cholesterol is bile acid biosynthesis, where most bile acids are recycled back to the liver. The composition of bile acid is partly modulated by gut microbes and could be harmful to the liver. In this regard, the reshaping effect of phytochemicals on gut microbiota has been widely reported in the literature for its significance. Therefore, we reviewed studies conducted over the past 5 years elucidating the regulatory effects of phytochemicals or herbal medicines on cholesterol metabolism. In addition, their effects on the recomposition of gut microbiota and bile acid metabolism due to modulation are discussed. This review aims to provide novel insights into the treatment of cholesterol dysregulation and the anticipated development of natural-based compounds in the near and far future.
Collapse
Affiliation(s)
- Monthana Weerawatanakorn
- Department
of Agro-Industry, Naresuan University, 99 Moo 9, Thapho, Muang, Phitsanulok 65000, Thailand
- Centre
of Excellence in Fats and Oils, Naresuan
University Science Park, 99 M 9, Thapho, Muang, Phitsanulok 65000, Thailand
| | - Sudthida Kamchonemenukool
- Department
of Agro-Industry, Naresuan University, 99 Moo 9, Thapho, Muang, Phitsanulok 65000, Thailand
| | - Yen-Chun Koh
- Institute
of Food Science and Technology, National
Taiwan University, Taipei 10617, Taiwan
| | - Min-Hsiung Pan
- Institute
of Food Science and Technology, National
Taiwan University, Taipei 10617, Taiwan
- Department
of Medical Research, China Medical University Hospital, China Medical University, Taichung City 40447, Taiwan
- Department
of Health and Nutrition Biotechnology, Asia
University, Taichung City 41354, Taiwan
| |
Collapse
|
7
|
He WS, Zhao L, Yang H, Rui J, Li J, Chen ZY. Novel Synthesis of Phytosterol Ferulate Using Acidic Ionic Liquids as a Catalyst and Its Hypolipidemic Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2309-2320. [PMID: 38252882 PMCID: PMC10835726 DOI: 10.1021/acs.jafc.3c09148] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/27/2023] [Accepted: 01/10/2024] [Indexed: 01/24/2024]
Abstract
Phytosterol ferulate (PF) is quantitively low in rice, corn, wheat, oats, barley, and millet, but it is potentially effective in reducing plasma lipids. In this study, PF was synthesized for the first time using acidic ionic liquids as a catalyst. The product was purified, characterized using Fourier transform infrared, mass spectroscopy, and nuclear magnetic resonance, and ultimately confirmed as the desired PF compound. The conversion of phytosterol surpassed an impressive 99% within just 2 h, with a selectivity for PF exceeding 83%. Plasma lipid-lowering activity of PF was further investigated by using C57BL/6J mice fed a high-fat diet as a model. Supplementation of 0.5% PF into diet resulted in significant reductions in plasma total cholesterol, triacylglycerols, and nonhigh-density lipoprotein cholesterol by 13.7, 16.9, and 46.3%, respectively. This was accompanied by 55.8 and 36.3% reductions in hepatic cholesterol and total lipids, respectively, and a 22.9% increase in fecal cholesterol excretion. Interestingly, PF demonstrated a higher lipid-lowering activity than that of its substrates, a physical mixture of phytosterols and ferulic acid. In conclusion, an efficient synthesis of PF was achieved for the first time, and PF had the great potential to be developed as a lipid-lowering dietary supplement.
Collapse
Affiliation(s)
- Wen-Sen He
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
- School of Life Sciences, The Chinese University of Hong Kong, Shatin ,Hong Kong, China
| | - Liying Zhao
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Haonan Yang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Jiaxin Rui
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Jie Li
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Zhen-Yu Chen
- School of Life Sciences, The Chinese University of Hong Kong, Shatin ,Hong Kong, China
| |
Collapse
|
8
|
Cui N, Wang M, Zou Q, Wang Z, Jiang S, Chen X, Zha Y, Xiang L, Zhao L. Water-potassium coupling at different growth stages improved kiwifruit (Actinidia spp.) quality and water/potassium productivity without yield loss in the humid areas of South China. AGRICULTURAL WATER MANAGEMENT 2023; 289:108552. [DOI: 10.1016/j.agwat.2023.108552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
9
|
He Z, Zhu H, Liu J, Kwek E, Ma KY, Chen ZY. Mangiferin alleviates trimethylamine- N-oxide (TMAO)-induced atherogenesis and modulates gut microbiota in mice. Food Funct 2023; 14:9212-9225. [PMID: 37781894 DOI: 10.1039/d3fo02791k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Trimethylamine-N-oxide (TMAO), originating from dietary trimethylamine-containing nutrients such as choline, has been recognized as a risk factor for atherosclerosis. Mangiferin is a bioactive xanthone initially extracted from mango (Mangifera indica). The present study aimed to investigate the effect of mangiferin on TMAO-induced atherogenesis in mice fed a high-choline diet. Female ApoE-/- mice were randomly divided into three groups and fed either a control diet, a high-choline diet with 1% free choline, or an experimental diet with 1% free choline plus 0.5% mangiferin for 15 weeks. Our results showed that a high-choline diet elevated plasma TMAO levels, accelerated atherogenesis, promoted cholesterol accumulation, and reduced the generation of short-chain fatty acids (SCFAs) by gut microbes. Mangiferin alleviated inflammation, and lowered plasma total cholesterol levels by facilitating the elimination of neutral and acidic sterols in feces, resulting in a 16.7-29.0% reduction in aortic atherosclerotic lesions. Notably, mangiferin could favorably remodel the composition of the gut microbiota by fostering the growth of the beneficial taxa Akkermansia, Parabacteroides, and Bifidobacteriaceae, while reducing the relative abundance of the pathogenic genus Helicobacter. This modulation led to a decrease in plasma lipopolysaccharide levels, enhanced the production of total SCFAs by gut microbes, and reduced susceptibility to atherosclerosis. In conclusion, mangiferin exhibited its ability to alleviate TMAO-induced atherosclerosis through its anti-inflammatory, cholesterol-lowering, and gut microbial modulatory activities.
Collapse
Affiliation(s)
- Zouyan He
- School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China.
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, NT, China.
| | - Hanyue Zhu
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, NT, China.
- School of Food Science and Engineering/South China Food Safety Research Center, Foshan University, Foshan, Guangdong, China
| | - Jianhui Liu
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, 210023, China
| | - Erika Kwek
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, NT, China.
| | - Ka Ying Ma
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, NT, China.
| | - Zhen-Yu Chen
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, NT, China.
| |
Collapse
|
10
|
de Miranda AM, da Silva LECM, Santiago MDSA, Rodrigues DM, Aldana Mejía JA, Perobelli JE, Vieira MJF, Bastos JK. Brazilian green propolis extracts modulate cholesterol homeostasis in a preclinical guinea pig model: an in vitro and in vivo study. Food Funct 2023; 14:2022-2033. [PMID: 36723264 DOI: 10.1039/d2fo03457c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Green propolis produced by Apis melífera bees, having Baccharis dracunculifolia D.C. (Asteraceae) as the primary botanical source, has been used in traditional medicine to treat numerous disorders. However, studies evaluating propolis' potential in treating cardiovascular diseases via its effects on cholesterol metabolism are lacking. Therefore, this study investigated the effects of green propolis extracts on lipid metabolism in hypercholesterolemic guinea pigs. Chemical characterization of ethanolic extracts of green propolis samples was undertaken using HPLC. The in vitro characterization included an evaluation of the antioxidant capacity of the hydroalcoholic extract of green propolis (DPPH and FRAP assays) and its ability to act as an inhibitor of the HMG-CoA reductase enzyme. In vivo, we investigated the effect of the hydroalcoholic extract of green propolis on lipid metabolism in hypercholesterolemic guinea pigs. Results obtained validated previous reports of significant antioxidant activity. HPLC analysis confirmed that coumaric acid, artepillin C, and baccharin were the most common and abundant compounds in green propolis samples among the studied compounds. Furthermore, the compounds in these extracts acted as effective HMG-CoA reductase inhibitors in vitro. In vivo assays demonstrated that a hypercholesterolemic diet significantly reduced serum levels of the HDL cholesterol fraction. Simvastatin and propolis hydroalcoholic extracts promoted a significant increase in HDL cholesterol, suggesting that these extracts can improve the serum lipid profile of hypercholesterolemic guinea pigs. Results obtained in this study provide a perspective on the possible hypocholesterolemic effect of green propolis, suggesting that it can improve the serum lipid profile in hypercholesterolemic guinea pigs.
Collapse
Affiliation(s)
- Aline Mayrink de Miranda
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | | | | | - Débora Munhoz Rodrigues
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Jennyfer Andrea Aldana Mejía
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Juliana Elaine Perobelli
- Laboratory of Experimental Toxicology, Instituto do Mar, Universidade Federal de São Paulo, Santos, São Paulo, Brazil
| | - Maria José Fonseca Vieira
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Jairo Kenupp Bastos
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
11
|
Effect of 4-Week Consumption of Soy Kori-tofu on Cardiometabolic Health Markers: A Double-Blind Randomized Controlled Cross-Over Trial in Adults with Mildly Elevated Cholesterol Levels. Nutrients 2022; 15:nu15010049. [PMID: 36615709 PMCID: PMC9824620 DOI: 10.3390/nu15010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/08/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Kori-tofu is a frozen soy tofu, and soy consumption is associated with positive effects on cardiometabolic health markers. We aimed to assess the potential of Kori-tofu to improve cardiometabolic health outcomes in humans by repetitive daily consumption. In a double-blind randomized controlled cross-over trial, 45 subjects aged 40-70 years with (mildly) elevated cholesterol levels, received a four week Kori-tofu intervention or whey protein control intervention with a four week wash-out period in between. Cardiometabolic biomarkers were measured before and after both interventions. A significant decrease in total, low-density lipids (LDL), and high-density lipids (HDL) cholesterol, Hemoglobin A1c (HbA1c), fructosamine and systolic blood pressure was observed within the Kori-tofu intervention. However, many of these findings were also observed in the control intervention. Only adiponectin changes were different between treatments but did not change significantly within interventions. Improvements in cardiometabolic markers within the Kori-tofu intervention point toward potential beneficial health effects. Due to the lack of significant effects as compared to control, there is, however, currently no substantiating evidence to claim that Kori-tofu has beneficial effects on cardiometabolic health.
Collapse
|
12
|
Wang Y, Zhao J, Li Q, Liu J, Sun Y, Zhang K, Fan M, Qian H, Li Y, Wang L. L-Arabinose improves hypercholesterolemia via regulating bile acid metabolism in high-fat-high-sucrose diet-fed mice. Nutr Metab (Lond) 2022; 19:30. [PMID: 35428331 PMCID: PMC9013033 DOI: 10.1186/s12986-022-00662-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/29/2022] [Indexed: 11/10/2022] Open
Abstract
Background Hypercholesterolemia is closely associated with an increased risk of cardiovascular diseases. l-Arabinose exhibited hypocholesterolemia properties, but underlying mechanisms have not been sufficiently investigated. This study aimed to elucidate the mechanisms of l-arabinose on hypocholesterolemia involving the enterohepatic circulation of bile acids. Methods Thirty six-week-old male mice were randomly divided into three groups: the control group and the high-fat-high-sucrose diet (HFHSD)-fed group were gavaged with distilled water, and the l-arabinose-treated group were fed HFHSD and received 400 mg/kg/day l-arabinose for 12 weeks. Serum and liver biochemical parameters, serum and fecal bile acid, cholesterol and bile acid metabolism-related gene and protein expressions in the liver and small intestine were analyzed. Results l-Arabinose supplementation significantly reduced body weight gain, lowered circulating low-density lipoprotein cholesterol (LDL-C) while increasing high-density lipoprotein cholesterol (HDL-C) levels, and efficiently alleviated hepatic inflammation and lipid accumulations in HFHSD-fed mice. l-Arabinose inhibited cholesterol synthesis via downregulation of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR). Additionally, l-arabinose might facilitate reverse cholesterol transport, evidenced by the increased mRNA expressions of low-density lipoprotein receptor (LDL-R) and scavenger receptor class B type 1 (SR-B1). Furthermore, l-arabinose modulated ileal reabsorption of bile acids mainly through downregulation of ileal bile acid-binding protein (I-BABP) and apical sodium-dependent bile acid transporter (ASBT), resulting in the promotion of hepatic synthesis of bile acids via upregulation of cholesterol-7α-hydroxylase (CYP7A1). Conclusions l-Arabinose supplementation exhibits hypocholesterolemic effects in HFHSD-fed mice primarily due to regulation of bile acid metabolism-related pathways. Supplementary Information The online version contains supplementary material available at 10.1186/s12986-022-00662-8.
Collapse
Affiliation(s)
- Yu Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Jiajia Zhao
- College of Cooking Science and Technology, Jiangsu College of Tourism, Yangzhou, 225000, China
| | - Qiang Li
- China National Institute of Standardization, No. 4 Zhichun Road, Haidian District, Beijing, China
| | - Jinxin Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Yujie Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Kuiliang Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Mingcong Fan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Haifeng Qian
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Yan Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
| | - Li Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
13
|
Arnaboldi L, Corsini A, Bellosta S. Artichoke and bergamot extracts: a new opportunity for the management of dyslipidemia and related risk factors. Minerva Med 2022; 113:141-157. [PMID: 35313442 DOI: 10.23736/s0026-4806.21.07950-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The relationship between low LDL-C (cholesterol associated with low-density lipoprotein) and a lower relative risk of developing cardiovascular disease (CVD) has been widely demonstrated. Although from a pharmacological point of view, statins, ezetimibe and PCSK inhibitors, alone or in combination are the front and center of the therapeutic approaches for reducing LDL-C and its CV consequences, in recent years nutraceuticals and functional foods have increasingly been considered as a valid support in the reduction of LDL-C, especially in patients with mild/moderate hyperlipidemia - therefore not requiring pharmacological treatment - or in patients intolerant to statins or other drugs. An approach also shared by the European Atherosclerosis Society (EAS). Of the various active ingredients with hypolipidemic properties, we include the artichoke (Cynara cardunculus, Cynara scolymus) and the bergamot (Citrus bergamia) which, thanks essentially to the significant presence of polyphenols in their extracts, can exert this action associated with a number of other complementary inflammation and oxidation benefits. In light of these evidence, this review aimed to describe the effects of artichoke and bergamot in modifying the lipid and inflammatory parameters described in in vitro, in vivo and clinical studies. The available data support the use of standardized compositions of artichoke and bergamot extracts, alone or in combination, in the treatment of mild to moderate dyslipidemia, in patients suffering from metabolic syndrome, hepatic steatosis, or intolerant to common hypolipidemic treatments.
Collapse
|
14
|
Zhang R, Han Y, McClements DJ, Xu D, Chen S. Production, Characterization, Delivery, and Cholesterol-Lowering Mechanism of Phytosterols: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2483-2494. [PMID: 35170307 DOI: 10.1021/acs.jafc.1c07390] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Phytosterols are natural plant-based bioactive compounds that can lower blood cholesterol levels and help prevent cardiovascular diseases. Consequently, they are being utilized in functional foods, supplements, and pharmaceutical products designed to improve human health. This paper summarizes different approaches to isolate, purify, and characterize phytosterols. It also discusses the hypolipidemic mechanisms of phytosterols and their impact on cholesterol transportation. Phytosterols have a low water-solubility, poor chemical stability, and limited bioavailability, which limits their utilization and efficacy in functional foods. Strategies are therefore being developed to overcome these shortcomings. Colloidal delivery systems, such as emulsions, oleogels, liposomes, and nanoparticles, have been shown to be effective at improving the water-dispersibility, stability, and bioavailability of phytosterols. These delivery systems can be used to incorporate phytosterols into a broader range of cholesterol-lowering functional foods and beverages. We also discuses several issues that need to be addressed before these phytosterol delivery systems can find widespread commercial utilization.
Collapse
Affiliation(s)
- Ruyi Zhang
- School of Public Health, Wuhan University, Wuhan 430071, China
| | - Yahong Han
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China
| | - David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Duoxia Xu
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University, Beijing 100048, China
| | - Shuai Chen
- School of Public Health, Wuhan University, Wuhan 430071, China
| |
Collapse
|
15
|
Wang W, Zhu F, Wu L, Han S, Wu X. Trends in Nutritional Biomarkers by Demographic Characteristics Across 14 Years Among US Adults. Front Nutr 2022; 8:737102. [PMID: 35096920 PMCID: PMC8793029 DOI: 10.3389/fnut.2021.737102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Understanding trend in nutritional status is crucial to inform national health priorities to improve diets and reduce related diseases. The present study aimed to analyze trends in the concentrations of all measured nutritional biomarkers and their status among US adults across 14 years. Methods: Trends on the concentrations of nutritional biomarkers and nutritional status evaluated by the prevalence of deficiency, inadequacy, excess, and dyslipidemia were analyzed among US adults in 7 cross-sectional National Health and Nutrition Examination Surveys (NHANES 2003–2016) and by age, sex, race/ethnicity, and socioeconomic status. Results: A total of 38,505 participants (weighted mean age of 47.2 years, 51.4% women) were included in the present study. Across 14 years, increased trends were found in red blood cell (RBC) folate, serum vitamin B12, vitamin D and albumin, the prevalence of iodine deficiency, vitamin B6 inadequacy, and hypophosphatemia, whereas decreased trends were observed in serum vitamin E, phosphorus, total calcium, total protein, apolipoprotein B (Apo B), low-density-lipoprotein cholesterol (LDL-C), triglyceride (TG), total cholesterol (TC), blood lead, cadmium, mercury, and the prevalence of vitamin C deficiency, vitamin D inadequacy, iodine excess, and dyslipidemia with elevated LDL-C, TC, TG, and lowered HDL/LDL. Non-Hispanic blacks (NHB) and participants with low socioeconomic status were accounted for the poor nutritional status of most biomarkers compared to their comparts. Conclusion: Most nutritional biomarkers and their status were improved among US adults from 2003 to 2016, but some specific populations should be paid much attention to improve their nutritional status, especially for NHB and participants with low socioeconomic status.
Collapse
Affiliation(s)
- Wenjie Wang
- Chronic Disease Research Institute, School of Public Health, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fangzhou Zhu
- Department of Nutrition and Food Hygiene, The National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China
| | - Lanlan Wu
- Department of Clinical Nutrition, Union Shenzhen Hospital of Huazhong University of Science and Technology, Shenzhen, China
| | - Shan Han
- Luohu Center for Disease Control and Prevention, Shenzhen, China
| | - Xiaoyan Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Guilin Medical University, Guilin, China
- *Correspondence: Xiaoyan Wu
| |
Collapse
|
16
|
Fragrant rapeseed oil consumption prevents blood cholesterol accumulation via promoting fecal bile excretion and reducing oxidative stress in high cholesterol diet fed rats. J Funct Foods 2022. [DOI: 10.1016/j.jff.2021.104893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
17
|
Turgut R, Kartal M, Akkol EK, Demirbolat İ, Taştan H. Development of Cholesterol-Lowering and Detox Formulations Using Bentonite and Herbal Ingredients. Front Pharmacol 2021; 12:775789. [PMID: 34938189 PMCID: PMC8685422 DOI: 10.3389/fphar.2021.775789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/16/2021] [Indexed: 11/17/2022] Open
Abstract
Detoxification enzymes involved in human metabolism works to minimize the potential xenobiotic-induced damage constantly. Studies have revealed that toxin accumulation plays an important role in the etiology of cardiovascular disease. This study has been designed to provide evidence of medicinal use of bentonite, turmeric (Curcuma longa L.), grape (Vitis vinifera L.) seed, flaxseed (Linum usitatissimum L.), and psyllium (Plantago ovata L.) as detoxification and cholesterol-lowering agents using a hypercholesterolemic model in mice. The potential hypocholesterolemic effects and detoxification ability of these ingredients were evaluated at the same time: Total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, triglyceride, glucose, aspartate aminotransferase, alanine aminotransferase, malondialdehyde, plasma total antioxidant activity, nitric acid, leptin levels and glutathione, glutathione peroxidase, lipid peroxidation, superoxide dismutase and catalase values were measured. It was determined that GBTF group (grape seed extract, bentonite, turmeric, and flaxseed), GBTP group (grape seed extract, bentonite, turmeric, and psyllium), and GBT group (grape seed extract, bentonite, and turmeric) of the tested materials decreased the serum total cholesterol concentration by 64.8, 57.5, and 48.9%, respectively, in mice fed a high cholesterol diet. In addition, it was determined that some detoxification parameters such as superoxide dismutase, catalase, glutathione, and glutathione peroxidase were statistically significantly reversed in GBTF, GBTP, and GBT groups. Flaxseed, psyllium, and bentonite clay did not show significant effects in reducing total cholesterol; however, GBTF, GBTP, and GBT groups interventions had a significant effect in reducing total cholesterol levels. Moreover, it was observed that adding flaxseed or psyllium to the GBT group increased the cholesterol-lowering effect. Therefore, it can be thought that this significant effect is due to the synergistic effect of the raw materials. When the results obtained were evaluated, it was seen that the cholesterol-lowering and detoxification effects of the combinations were higher than from the effect of natural material used alone. As a result, combinations of some of these ingredients have a positive effect on reducing the risk of cardiovascular disease.
Collapse
Affiliation(s)
- Rana Turgut
- Department of Pharmacognosy, Health Sciences Institute, Bezmialem Vakif University, Istanbul, Turkey
| | - Murat Kartal
- Department of Pharmacognosy, Faculty of Pharmacy, Bezmialem Vakif University, Istanbul, Turkey
| | - Esra Küpeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - İlker Demirbolat
- Bezmialem Center of Education, Practice, and Research in Phytotherapy, Bezmialem Vakif University, Istanbul, Turkey
| | - Hakkı Taştan
- Department of Biology, Faculty of Science, Gazi University, Ankara, Turkey
| |
Collapse
|
18
|
Dong X, Li Y, Yang K, Zhang L, Xue Y, Yu S, Liu X, Tu R, Qiao D, Luo Z, Liu X, Wang Y, Li W, Wang C. Associations of spicy food flavour and intake frequency with blood lipid levels and risk of abnormal serum lipid levels in Chinese rural population: a cross-sectional study. Public Health Nutr 2021; 24:6201-6210. [PMID: 33913411 PMCID: PMC11148618 DOI: 10.1017/s1368980021001853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE The purpose of the current study was to investigate associations between spicy food intake and serum lipids levels in Chinese rural population. DESIGN Information on spicy food flavour and intake frequency was obtained using a two-item questionnaire survey. Dietary data were collected using a validated thirteen-item FFQ. Fasting blood samples were collected and measured for total cholesterol (TC), TAG, HDL-cholesterol and LDL-cholesterol. Multivariate linear and logistic regression models were employed to examine the relationship between spicy food and serum lipids levels according to the spicy food flavour and intake frequency, respectively. SETTING A cross-sectional study in Henan Province. PARTICIPANTS 38 238 participants aged 18-79 years old. RESULTS Spicy flavour and intake frequency were consistently associated with decreased TC and non-HDL-cholesterol levels but mildly associated with elevated TAG levels. Each level increment in spicy flavour was inversely associated with high TC (OR: 0·91; 95 % CI 0·88, 0·93) and high non-HDL-cholesterol (OR: 0·88; 95 % CI 0·85, 0·91) but positively associated with high TAG (OR: 1·04; 95 % CI 1·01, 1·07). Similarly, 1-d increment in spicy food intake frequency was also inversely associated with high TC (OR: 0·92; 95 % CI 0·91, 0·94) and high non-HDL-cholesterol (OR: 0·91; 95 % CI 0·89, 0·93) but positively associated with high TAG (OR: 1·04; 95 % CI 1·02, 1·06). CONCLUSIONS Spicy food intake was mildly associated with increased risk of abnormal TAG level, significantly associated with decreased risk of abnormal TC and non-HDL levels. Spicy food intake may be contribute to the management of lipid levels.
Collapse
Affiliation(s)
- Xiaokang Dong
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, HA450001, People's Republic of China
| | - Yuqian Li
- Department of Clinical Pharmacology, School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, HA, People's Republic of China
| | - Kaili Yang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, HA450001, People's Republic of China
| | - Lulu Zhang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, HA450001, People's Republic of China
| | - Yuan Xue
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, HA, People's Republic of China
| | - Songcheng Yu
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, HA, People's Republic of China
| | - Xiaotian Liu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, HA450001, People's Republic of China
| | - Runqi Tu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, HA450001, People's Republic of China
- Department of Preventive Medicine, Henan University of Chinese Medicine, Zhengzhou, HA, People's Republic of China
| | - Dou Qiao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, HA450001, People's Republic of China
| | - Zhicheng Luo
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, HA450001, People's Republic of China
| | - Xue Liu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, HA450001, People's Republic of China
| | - Yan Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, HA450001, People's Republic of China
| | - Wenjie Li
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, HA, People's Republic of China
| | - Chongjian Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, HA450001, People's Republic of China
| |
Collapse
|
19
|
Zhao Y, He Z, Hao W, Zhu H, Liu J, Ma KY, He WS, Chen ZY. Cholesterol-lowering activity of protocatechuic acid is mediated by increasing the excretion of bile acids and modulating gut microbiota and producing short-chain fatty acids. Food Funct 2021; 12:11557-11567. [PMID: 34709262 DOI: 10.1039/d1fo02906a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The present study aimed to investigate the effects of protocatechuic acid (PCA) on plasma lipid profiles and associated mechanisms with a focus on reshaping gut microbiota. Twenty-four male hamsters were randomly divided into three groups receiving a high-cholesterol diet (HCD) and two HCD diets containing 0.5% (PL) and 1% (PH) PCA, respectively. Feeding PL and PH diets for six weeks significantly reduced plasma total cholesterol by 18% and 24%, respectively. PL and PH diets also significantly lowered plasma non-HDL cholesterol by 37% and 44%, respectively. This was accompanied by an increase in fecal short-chain fatty acids (SCFAs) and fecal bile acids with up-regulation on gene of cholesterol 7α-hydroxylase and down-regulation of 3-hydroxy-3-methylglutaryl-CoA reductase in the liver. Dietary PCA supplementation decreased hepatic lipid accumulation, whereas it increased fecal excretion of lipids. The 16S rRNA analysis found that dietary PCA significantly reduced the ratio of Firmicutes to Bacteroidetes and increased the relative abundance of Bacteroidales S24-7, whereas it reduced the abundance of Lactobacillaceae. It was concluded that dietary PCA favorably modulated plasma lipid profiles and prevented the accumulation of hepatic cholesterol and lipid disposition. Such effect was mediated at least partially by increasing gut production of SCFAs and fecal excretion of bile acids via modulating the gut microbiome.
Collapse
Affiliation(s)
- Yimin Zhao
- Food & Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China.
| | - Zouyan He
- Food & Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China.
| | - Wangjun Hao
- Food & Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China.
| | - Hanyue Zhu
- Food & Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China.
| | - Jianhui Liu
- Food & Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China.
| | - Ka Ying Ma
- Food & Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China.
| | - Wen-Sen He
- Food & Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China.
| | - Zhen-Yu Chen
- Food & Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China.
| |
Collapse
|
20
|
Tang JJ, Zhao N, Gao YQ, Han R, Wang XY, Tian JM, Gao JM. Phytosterol profiles and iridoids of the edible Eucommia ulmoides Oliver seeds and their anti-inflammatory potential. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101295] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Proanthocyanidins and Where to Find Them: A Meta-Analytic Approach to Investigate Their Chemistry, Biosynthesis, Distribution, and Effect on Human Health. Antioxidants (Basel) 2021; 10:antiox10081229. [PMID: 34439477 PMCID: PMC8389005 DOI: 10.3390/antiox10081229] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/22/2022] Open
Abstract
Proanthocyanidins (PACs) are a class of polyphenolic compounds that are attracting considerable interest in the nutraceutical field due to their potential health benefits. However, knowledge about the chemistry, biosynthesis, and distribution of PACs is limited. This review summarizes the main chemical characteristics and biosynthetic pathways and the main analytical methods aimed at their identification and quantification in raw plant matrices. Furthermore, meta-analytic approaches were used to identify the main plant sources in which PACs were contained and to investigate their potential effect on human health. In particular, a cluster analysis identified PACs in 35 different plant families and 60 different plant parts normally consumed in the human diet. On the other hand, a literature search, coupled with forest plot analyses, highlighted how PACs can be actively involved in both local and systemic effects. Finally, the potential mechanisms of action through which PACs may impact human health were investigated, focusing on their systemic hypoglycemic and lipid-lowering effects and their local anti-inflammatory actions on the intestinal epithelium. Overall, this review may be considered a complete report in which chemical, biosynthetic, ecological, and pharmacological aspects of PACs are discussed.
Collapse
|
22
|
The Effect of Probiotics on Health Outcomes in the Elderly: A Systematic Review of Randomized, Placebo-Controlled Studies. Microorganisms 2021; 9:microorganisms9061344. [PMID: 34205818 PMCID: PMC8234958 DOI: 10.3390/microorganisms9061344] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 12/21/2022] Open
Abstract
Increasing evidence suggests that probiotic supplementation may be efficacious in counteracting age-related shifts in gut microbiota composition and diversity, thereby impacting health outcomes and promoting healthy aging. However, randomized controlled trials (RCTs) with probiotics in healthy older adults have utilized a wide variety of strains and focused on several different outcomes with conflicting results. Therefore, a systematic review was conducted to determine which outcomes have been investigated in randomized controlled trials with probiotic supplementation in healthy older adults and what has been the effect of these interventions. For inclusion, studies reporting on randomized controlled trials with probiotic and synbiotic supplements in healthy older adults (defined as minimum age of 60 years) were considered. Studies reporting clinical trials in specific patient groups or unhealthy participants were excluded. In addition to assessment of eligibility and data extraction, each study was examined for risk of bias and quality assessment was performed by two independent reviewers. Due to the heterogeneity of outcomes, strains, study design, duration, and methodology, we did not perform any meta-analyses and instead provided a narrative overview of the outcomes examined. Of 1997 potentially eligible publications, 17 studies were included in this review. The risk of bias was low, although several studies failed to adequately describe random sequence generation, allocation concealment, and blinding. The overall study quality was high; however, many studies did not include sample calculations, and the majority of studies had a small sample size. The main outcomes examined in the trials included microbiota composition, immune-related measurements, digestive health, general well-being, cognitive function, and lipid and other biomarkers. The most commonly assessed outcome with the most consistent effect was microbiota composition; all but one study with this outcome showed significant effects on gut microbiota composition in healthy older adults. Overall, probiotic supplementation had modest effects on markers of humoral immunity, immune cell population levels and activity, as well as the incidence and duration of the common cold and other infections with some conflicting results. Digestive health, general-well-being, cognitive function, and lipid and other biomarkers were investigated in a very small number of studies; therefore, the impact on these outcomes remains inconclusive. Probiotics appear to be efficacious in modifying gut microbiota composition in healthy older adults and have moderate effects on immune function. However, the effect of probiotic supplementation on other health outcomes remains inconclusive, highlighting the need for more well-designed, sufficiently-powered studies to investigate if and the mechanisms by which probiotics impact healthy aging.
Collapse
|
23
|
Rutin and Quercetin Decrease Cholesterol in HepG2 Cells but Not Plasma Cholesterol in Hamsters by Oral Administration. Molecules 2021; 26:molecules26123766. [PMID: 34205604 PMCID: PMC8234066 DOI: 10.3390/molecules26123766] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/16/2021] [Accepted: 06/16/2021] [Indexed: 11/18/2022] Open
Abstract
Rutin (R) and quercetin (Q) are two widespread dietary flavonoids. Previous studies regarding the plasma cholesterol-lowering activity of R and Q generated inconsistent results. The present study was therefore carried out to investigate the effects of R and Q on cholesterol metabolism in both HepG2 cells and hypercholesterolemia hamsters. Results from HepG2 cell experiments demonstrate that both R and Q decreased cholesterol at doses of 5 and 10 µM. R and Q up-regulated both the mRNA and protein expression of sterol regulatory element binding protein 2 (SREBP2), low-density lipoprotein receptor (LDLR), and liver X receptor alpha (LXRα). The immunofluorescence study revealed that R and Q increased the LDLR expression, while only Q improved LDL-C uptake in HepG2 cells. Results from hypercholesterolemia hamsters fed diets containing R (5.5 g/kg diet) and Q (2.5 g/kg diet) for 8 weeks demonstrate that both R and Q had no effect on plasma total cholesterol. In the liver, only Q reduced cholesterol significantly. The discrepancy between the in vitro and in vivo studies was probably due to a poor bioavailability of flavonoids in the intestine. It was therefore concluded that R and Q were effective in reducing cholesterol in HepG2 cells in vitro, whereas in vivo, the oral administration of the two flavonoids had little effect on plasma cholesterol in hamsters.
Collapse
|
24
|
Bergh C, Landberg R, Andersson K, Heyman-Lindén L, Rascón A, Magnuson A, Khalili P, Kåregren A, Nilsson J, Pirazzi C, Erlinge D, Fröbert O. Effects of Bilberry and Oat intake on lipids, inflammation and exercise capacity after Acute Myocardial Infarction (BIOAMI): study protocol for a randomized, double-blind, placebo-controlled trial. Trials 2021; 22:338. [PMID: 33971938 PMCID: PMC8112057 DOI: 10.1186/s13063-021-05287-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 04/22/2021] [Indexed: 12/21/2022] Open
Abstract
Background Bilberries from Sweden, rich in polyphenols, have shown cholesterol-lowering effects in small studies, and the cholesterol-lowering properties of oats, with abundant beta-glucans and potentially bioactive phytochemicals, are well established. Both may provide cardiometabolic benefits following acute myocardial infarction (AMI), but large studies of adequate statistical power and appropriate duration are needed to confirm clinically relevant treatment effects. No previous study has evaluated the potential additive or synergistic effects of bilberry combined with oats on cardiometabolic risk factors. Our primary objective is to assess cardioprotective effects of diet supplementation with dried bilberry or with bioprocessed oat bran, with a secondary explorative objective of assessing their combination, compared with a neutral isocaloric reference supplement, initiated within 5 days following percutaneous coronary intervention (PCI) for AMI. Methods The effects of Bilberry and Oat intake on lipids, inflammation and exercise capacity after Acute Myocardial Infarction (BIOAMI) trial is a double-blind, randomized, placebo-controlled clinical trial. A total of 900 patients will be randomized post-PCI to one of four dietary intervention arms. After randomization, subjects will receive beverages with bilberry powder (active), beverages with high-fiber bioprocessed oat bran (active), beverages with bilberry and oats combined (active), or reference beverages containing no active bilberry or active oats, for consumption twice daily during a 3-month intervention. The primary endpoint is the difference in LDL cholesterol change between the intervention groups after 3 months. The major secondary endpoint is exercise capacity at 3 months. Other secondary endpoints include plasma concentrations of biochemical markers of inflammation, metabolomics, and gut microbiota composition after 3 months. Discussion Controlling hyperlipidemia and inflammation is critical to preventing new cardiovascular events, but novel pharmacological treatments for these conditions are expensive and associated with negative side effects. If bilberry and/or oat, in addition to standard medical therapy, can lower LDL cholesterol and inflammation more than standard therapy alone, this could be a cost-effective and safe dietary strategy for secondary prevention after AMI. Trial registration ClinicalTrials.gov NCT03620266. Registered on August 8, 2018. Supplementary Information The online version contains supplementary material available at 10.1186/s13063-021-05287-5.
Collapse
Affiliation(s)
- Cecilia Bergh
- Clinical Epidemiology and Biostatistics, School of Medical Sciences, Örebro University, 701 85, Örebro, Sweden.
| | - Rikard Landberg
- Department of Biology and Biological Engineering, Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden.,Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Kristina Andersson
- Department of Experimental Medical Science, Lund University, Lund, Sweden.,Glucanova AB, Lund, Sweden
| | - Lovisa Heyman-Lindén
- Molecular Nutrition, Department of Experimental Medical Science, Lund University, Lund, Sweden.,Berry Lab AB, Lund, Sweden
| | - Ana Rascón
- Glucanova AB, Lund, Sweden.,Department of Food Technology, Engineering and Nutrition, Lund University, Lund, Sweden
| | - Anders Magnuson
- Clinical Epidemiology and Biostatistics, School of Medical Sciences, Örebro University, 701 85, Örebro, Sweden
| | - Payam Khalili
- Department of Cardiology and Acute Internal Medicine, Central Hospital, Karlstad, Sweden
| | - Amra Kåregren
- Department of Medicine, Hospital Region Västmanland, Västerås, Sweden
| | - Johan Nilsson
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Carlo Pirazzi
- Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - David Erlinge
- Department of Cardiology, Clinical Sciences, Lund University, Lund, Sweden
| | - Ole Fröbert
- Department of Cardiology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|
25
|
Amirpoor A, Zavar R, Amerizadeh A, Asgary S, Moradi S, Farzaei MH, Masoumi G, Sadeghi M. Effect of Beetroot Consumption on Serum Lipid Profile: A Systematic Review and Meta-Analysis. Curr Probl Cardiol 2021; 47:100887. [PMID: 34154819 DOI: 10.1016/j.cpcardiol.2021.100887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 05/02/2021] [Indexed: 11/03/2022]
Abstract
Beetroot has recently become very popular among people as a medicinal superfood that decreases blood pressure and improves athletes' performance. The present meta-analysis aimed to investigate the effect of beetroot consumption on serum lipid profile. A literature search was conducted covering PubMed, ISI Web of Science, Scopus, and Google scholar of English human subject randomized clinical trials (RCT) up to December 2020. Pooled results showed that beetroot consumption had no significant effect on any of the variables. The mean difference (95% CI) between intervention and control groups for TC was 1.25 (-0.03, 2.53), for TG -0.47 (-1.16, 0.21), for HDL 0.54 (-0.13, 1.21) and for LDL was -0.48(-1.04, 0.09). Subgroup analysis by the health condition of subjects, the form of beetroot consumption, and type of intervention showed no significant differences. It can be concluded that beetroot cannot be categorized as an effective supplementation for adjustment of lipid profile.
Collapse
Affiliation(s)
- Afshin Amirpoor
- Department of Cardiology, Chamran Cardiovascular Medical and Research Hospital Isfahan, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reihaneh Zavar
- Department of Cardiology, Chamran Cardiovascular Medical and Research Hospital Isfahan, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Atefeh Amerizadeh
- Cardiac Department, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sedigheh Asgary
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sajjad Moradi
- Nutritional Sciences Department, School of Nutritional Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Hosein Farzaei
- Nutritional Sciences Department, School of Nutritional Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Gholamreza Masoumi
- Department of Cardiology, Chamran Cardiovascular Medical and Research Hospital Isfahan, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Masoumeh Sadeghi
- Cardiac Rehabilitation Research Centre, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
26
|
Sipeniece E, Mišina I, Qian Y, Grygier A, Sobieszczańska N, Sahu PK, Rudzińska M, Patel KS, Górnaś P. Fatty Acid Profile and Squalene, Tocopherol, Carotenoid, Sterol Content of Seven Selected Consumed Legumes. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2021; 76:53-59. [PMID: 33404889 DOI: 10.1007/s11130-020-00875-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 11/28/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
Legume seeds (Fabaceae) of seven species Cyamopsis tetragonoloba (guar), Glycine max (soybean), Lablab purpureus (lablab-bean), Macrotyloma uniflorum (kulthi bean), Phaseolus vulgaris (common bean), Trigonella foenum-graecum (fenugreek) and Vigna unguiculata (cowpea) were studied. The oil yield ranged from 1.2 to 20.2% dw, in the lablab-bean and soybean, respectively. The polyunsaturated fatty acids (PUFA) constituted the largest part (46-78%) of total fatty acids in studied legumes. γ-Tocopherol was the predominant tocopherol (T) homologue (61-95%) in most of the tested legumes with the exception of fenugreek (α-T, 97%) and cowpea (γ-T and δ-T, nearly equal). The β-sitosterol was the main sterol (51-56%) in most legumes. While in cowpea, lablab-bean and kulthi bean the main sterols were β-sitosterol and Δ5-stigmasterol (28-37% and 14-42%, respectively). Squalene was detected only in kulthi bean and lablab-bean (58 and 284 mg/100 g oil). The total concentration of carotenoids, tocochromanols, and sterols in the studied legumes was 0.2-9.2, 12.4-276.0, and 350-8,542 mg/100 g oil, respectively. Based on the levels of minor lipophilic compounds of this study, C. tetragonoloba, T. foenum-graecum and G. max seem to have a better nutritional value compared to P. vulgaris, V. unguiculata, L. purpureus, and M. uniflorum.
Collapse
Affiliation(s)
- Elise Sipeniece
- Institute of Horticulture, Graudu 1, Dobele, LV-3701, Latvia
| | - Inga Mišina
- Institute of Horticulture, Graudu 1, Dobele, LV-3701, Latvia
| | - Ying Qian
- Institute of Food Technology of Plant Origin, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624, Poznań, Poland
| | - Anna Grygier
- Institute of Food Technology of Plant Origin, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624, Poznań, Poland
| | - Natalia Sobieszczańska
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, 60-627, Poznań, Poland
| | - Pravin Kumar Sahu
- School of Studies in Chemistry/Environmental Science, Pt. Ravishankar Shukla University, 492010, Raipur, CG, India
| | - Magdalena Rudzińska
- Institute of Food Technology of Plant Origin, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624, Poznań, Poland
| | - Khageshwar Singh Patel
- Amity University, State Highway 9, Raipur Baloda-Bazar Road, Tilda, Raipur, CG, 493225, India
| | - Paweł Górnaś
- Institute of Horticulture, Graudu 1, Dobele, LV-3701, Latvia.
| |
Collapse
|
27
|
Ebadi S, Azlan A. Nutritional Composition and Role of Non-centrifugal Sugar (NCS) in Human Health. CURRENT NUTRITION & FOOD SCIENCE 2021. [DOI: 10.2174/1573401316999200728184917] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Non-centrifugal sugar (NCS) has several traditional names such as brown sugar (Europe
& North America), Gula Melaka (Malaysia), Jaggery and Gur (India), Kokuto (Japan), Panela
(Colombia) and Muscovado (Philippines). It is obtained by boiling down the sugarcane juice until
its water content evaporates. NCS has various benefits for our health as it is anti-diabetic, anti-cariogenic,
antioxidant and has radical scavenging activity due to the presence of vitamins, minerals,
phenolic acids and flavonoid components as well as total antioxidant capacity. This review provides
a general overview of the nutritional composition and health outcomes of NCS compared to
refined sugar based on literature published in scientific journals. The NCS can be considered as a
nutraceutical and functional food. However, more scientific research will be needed to confirm the
outcomes and increase awareness, which could then encourage more usage of this product in sugar-
based food.
Collapse
Affiliation(s)
- Samarghand Ebadi
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Azrina Azlan
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| |
Collapse
|
28
|
Lage NN, Carvalho MMDF, Guerra JFC, Lopes JMM, Pereira RR, Rabelo ACS, Arruda VM, Pereira MDFA, Layosa MA, Noratto GD, Lima WGD, Silva ME, Pedrosa ML. Jaboticaba ( Myrciaria cauliflora) Peel Supplementation Prevents Hepatic Steatosis Through Hypolipidemic Effects and Cholesterol Metabolism Modulation in Diet-Induced NAFLD Rat Model. J Med Food 2021; 24:968-977. [PMID: 33523759 DOI: 10.1089/jmf.2020.0141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Jaboticaba (Myrciaria cauliflora), a Brazilian fruit, is a good source of dietary fiber and phenolic compounds, which are concentrated mainly in the peel. These compounds have been considered promising in prevention and treatment of hypercholesterolemia and hepatic steatosis. In this study, we investigated the effects of 4% jaboticaba peel powder (JPP) supplementation on cholesterol metabolism and hepatic steatosis in livers of rats fed a high-fat (HF) diet. The rats were fed a standard AIN-93M (control) diet or an HF diet containing 32% lard and 1% cholesterol, both with and without 4% JPP. The M. cauliflora peel composition revealed a low-lipid high-fiber content and phenolic compounds. The phenolic compounds in JPP, tentatively identified by high-performance liquid chromatography and mass spectrometry (HPLC-MS/MS) analysis, were confirmed to contain phenolic acids, flavonoids, and anthocyanins. Moreover, JPP presented significant antioxidant activity in vitro and was not cytotoxic to HepG2 cells, as determined by the lactate dehydrogenase (LDH) assay. After 6 weeks of treatment, our results showed that JPP supplementation increased lipid excretion in feces, reduced serum levels of total cholesterol and nonhigh-density lipoprotein cholesterol, decreased serum aspartate aminotransferase (AST) activity, and attenuated hepatic steatosis severity in rats fed the HF diet. Furthermore, JPP treatment downregulated expression of ACAT-1, LXR-α, CYP7A1, and ABCG5 genes. Therefore, jaboticaba peel may represent a viable dietary strategy to prevent nonalcoholic fatty liver disease as the JPP treatment alleviated hepatic steatosis through improvement of serum lipid profiles and modulation of mRNA expression of genes involved in cholesterol metabolism.
Collapse
Affiliation(s)
- Nara Nunes Lage
- Research Center in Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| | | | | | | | - Renata Rebeca Pereira
- Research Center in Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| | | | - Vinícius Marques Arruda
- Undergraduate Program in Biotechnology, Federal University of Uberlândia, Patos de Minas, Brazil
| | | | - Marjorie Anne Layosa
- Department of Nutrition and Food Science, Texas A&M University, College Station, Texas, USA
| | - Giuliana D Noratto
- Department of Nutrition and Food Science, Texas A&M University, College Station, Texas, USA
| | - Wanderson Geraldo de Lima
- Research Center in Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil.,Department of Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Marcelo Eustáquio Silva
- Research Center in Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil.,Department of Foods, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Maria Lúcia Pedrosa
- Research Center in Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil.,Department of Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| |
Collapse
|
29
|
He Z, Kwek E, Hao W, Zhu H, Liu J, Ma KY, Chen ZY. Hawthorn fruit extract reduced trimethylamine-N-oxide (TMAO)-exacerbated atherogenesis in mice via anti-inflammation and anti-oxidation. Nutr Metab (Lond) 2021; 18:6. [PMID: 33413490 PMCID: PMC7789617 DOI: 10.1186/s12986-020-00535-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023] Open
Abstract
Background Trimethylamine-N-oxide (TMAO) is an independent risk factor for atherosclerosis. Consumption of hawthorn fruit is believed to be cardio-protective, yet whether it is able to suppress the TMAO-induced atherosclerosis remains unexplored. The present study was to investigate the effects of hawthorn fruit extract (HFE) on TMAO-exacerbated atherogenesis.
Methods Five groups of male Apolipoprotein E knock-out (ApoE−/−) mice were fed a low-fat diet (LFD), a Western high-fat diet (WD), or one of the three WDs containing 0.2% TMAO (WD + TMAO), 0.2% TMAO plus 1% HFE (WD + TMAO + L-HFE), or 0.2% TMAO plus 2% HFE (WD + TMAO + H-HFE), respectively. After 12-weeks of intervention, plasma levels of TMAO, lipid profile, inflammatory biomarkers, and antioxidant enzyme activities were measured. Atherosclerotic lesions in the thoracic aorta and aortic sinus were evaluated. The sterols and fatty acids in the liver and feces were extracted and measured. Hepatic expressions of inflammatory biomarkers and antioxidant enzymes were analyzed. Results Dietary TMAO accelerated atherogenesis, exacerbated inflammation, and reduced antioxidant capacities in the plasma and the liver. TMAO promoted hepatic cholesterol accumulation by inhibiting fecal excretion of acidic sterols. HFE could dose-dependently reduce the TMAO-aggravated atherosclerosis and inflammation. HFE was also able to reverse the TMAO-induced reduction in antioxidant capacity by up-regulating the expression of antioxidant enzymes including superoxide dismutase 1 (SOD1), SOD2, glutathione peroxidase 3 (GSH-Px3), and catalase (CAT) in the liver. Moreover, the hepatic cholesterol content was lowered by HFE via enhanced fecal excretion of neutral and acidic sterols. Conclusions The present results indicated that HFE was able to reduce the TMAO-exacerbated atherogenesis by attenuating inflammation and improving antioxidant capacity at least in mice. Graphic abstract ![]()
Collapse
Affiliation(s)
- Zouyan He
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China.,School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Erika Kwek
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Wangjun Hao
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Hanyue Zhu
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Jianhui Liu
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China.,College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, 210023, China
| | - Ka Ying Ma
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Zhen-Yu Chen
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| |
Collapse
|
30
|
Laser light as a promising approach to improve the nutritional value, antioxidant capacity and anti-inflammatory activity of flavonoid-rich buckwheat sprouts. Food Chem 2020; 345:128788. [PMID: 33340896 DOI: 10.1016/j.foodchem.2020.128788] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/06/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022]
Abstract
Buckwheat sprouts are rich in several nutrients such as antioxidant flavonoids that have a positive impact on human health. Although there are several studies reported the positive impact of laser light on crop plants, no studies have applied laser light to enhance the nutritive values of buckwheat sprouts. Herein, the contents of health-promoting minerals, metabolites and enzymes as well as the antioxidant and anti-inflammatory activities were determined in laser-treated (He-Ne laser, 632 nm, 5 mW) common buckwheat (CBW) and tartarybuckwheat (TBW) sprouts. Out of 49 targeted minerals, vitamins, pigments and antioxidants, more than 35 parameters were significantly increased in CBW and/or TBW sprouts by laser light treatment. Also, laser light boosted the antioxidant capacity and anti-inflammatory activities through inhibiting cyclooxygenase-2 and lipoxygenase activities, particularly in TBW sprouts. Accordingly, laser light could be recommended as a promising method to improve the nutritional and health-promoting values of buckwheat sprouts.
Collapse
|
31
|
Zhao Y, He Z, Hao W, Zhu H, Liang N, Liu J, Zhang C, Ma KY, He WS, Yang Y, Chen ZY. Vinegars but not acetic acid are effective in reducing plasma cholesterol in hamsters fed a high-cholesterol diet. Food Funct 2020; 11:2163-2172. [PMID: 32076695 DOI: 10.1039/c9fo02630d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The present study compares the effect of two types of vinegars, Balsamic vinegar of Modena (BV) and Chinese Shanxi vinegar (SV), with acetic acid on plasma cholesterol using hamsters as a model. Hamsters (n = 40) were divided into five groups (n = 8 each) with two control groups being fed a low-cholesterol diet (LCD) or a high-cholesterol diet containing 0.2% cholesterol (HCD). The three experimental groups were given a HCD diet and gavaged with 8 ml of BV, SV, and acetic acid solution (AC) per kg body weight, respectively. Acetic acid in BV, SV, and AC solutions was adjusted with water to be 20 mg ml-1. The whole experiment lasted for 9 weeks. Plasma total cholesterol (TC) in BV and SV groups but not in the AC group was reduced by 17% and 20%, respectively, compared with that in HCD hamsters. BV and SV significantly reduced cholesterol in the liver and increased the fecal excretion of neutral sterols and bile acids. Real-time PCR analysis demonstrated that BV and SV significantly up-regulated the mRNA of cholesterol 7 alpha-hydroxylase (CYP7A1) in the liver. In conclusion, BV and SV but not AC were effective in reducing plasma TC and non-HDL-C concentrations at least in hypercholesterolemic hamsters.
Collapse
Affiliation(s)
- Yimin Zhao
- School of Public Health (Shen Zhen), Sun Yat-sen University, Guangzhou, Guangdong Province, China and Food & Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China.
| | - Zouyan He
- Food & Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China.
| | - Wangjun Hao
- Food & Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China.
| | - Hanyue Zhu
- Food & Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China.
| | - Ning Liang
- Food & Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China.
| | - Jianhui Liu
- Food & Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China.
| | - Chengnan Zhang
- Food & Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China.
| | - Ka Ying Ma
- Food & Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China.
| | - Wen-Sen He
- Food & Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China.
| | - Yan Yang
- School of Public Health (Shen Zhen), Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Zhen-Yu Chen
- Food & Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China.
| |
Collapse
|
32
|
Hao W, Kwek E, He Z, Zhu H, Liu J, Zhao Y, Ma KY, He WS, Chen ZY. Ursolic acid alleviates hypercholesterolemia and modulates the gut microbiota in hamsters. Food Funct 2020; 11:6091-6103. [PMID: 32568327 DOI: 10.1039/d0fo00829j] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ursolic acid (UA) is a triterpenoid acid widely abundant in fruits and vegetables such as apple, blueberry and cranberry. The present study was carried out to investigate the effect of UA supplementation in diet on blood cholesterol, intestinal cholesterol absorption and gut microbiota in hypercholesterolemic hamsters. A total of thirty-two hamsters were randomly assigned to four groups and given a non-cholesterol diet (NCD), a high-cholesterol diet containing 0.1% cholesterol (HCD), an HCD diet containing 0.2% UA (UAL), or an HCD diet containing 0.4% UA (UAH) for 6 weeks. Results showed that UA supplementation reduced plasma cholesterol by 15-16% and inhibited intestinal cholesterol absorption by 2.6-9.2%. The in vitro micellar cholesterol solubility experiment clearly demonstrated that UA could displace 40% cholesterol from micelles. In addition, UA decreased the ratio of Firmicutes to Bacteroidetes, whereas it enhanced the growth of short chain fatty acid (SCFA)-producing bacteria in the intestine. In conclusion, UA possessed a cholesterol-lowering activity and could favorably modulate the gut microbiota.
Collapse
Affiliation(s)
- Wangjun Hao
- School of Life Sciences, Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Zheng K, Guo K, Xu J, Liu W, Chen J, Xu C, Chen L. Study on the interaction between catechin and cholesterol by the density functional theory. OPEN CHEM 2020. [DOI: 10.1515/chem-2020-0038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractCatechin – a natural polyphenol substance – has excellent antioxidant properties for the treatment of diseases, especially for cholesterol lowering. Catechin can reduce cholesterol content in micelles by forming insoluble precipitation with cholesterol, thereby reducing the absorption of cholesterol in the intestine. In this study, to better understand the molecular mechanism of catechin and cholesterol, we studied the interaction between typical catechins and cholesterol by the density functional theory. Results show that the adsorption energies between the four catechins and cholesterol are obviously stronger than that of cholesterol themselves, indicating that catechin has an advantage in reducing cholesterol micelle formation. Moreover, it is found that the molecular interactions of the complexes are mainly due to charge transfer of the aromatic rings of the catechins as well as the hydrogen bond interactions. Unlike the intuitive understanding of a complex formed by hydrogen bond interaction, which is positively correlated with the number of hydrogen bonds, the most stable complexes (epicatechin–cholesterol or epigallocatechin–cholesterol) have only one but stronger hydrogen bond, due to charge transfer of the aromatic rings of catechins.
Collapse
Affiliation(s)
- Kaiwen Zheng
- Department of Optical Engineering, Zhejiang A&F University, Lin’an 311300, China
| | - Kai Guo
- Department of Optical Engineering, Zhejiang A&F University, Lin’an 311300, China
| | - Jing Xu
- Department of Optical Engineering, Zhejiang A&F University, Lin’an 311300, China
| | - Wei Liu
- Department of Optical Engineering, Zhejiang A&F University, Lin’an 311300, China
| | - Junlang Chen
- Department of Optical Engineering, Zhejiang A&F University, Lin’an 311300, China
| | - Can Xu
- Key Lab for Magnetism and Magnetic Materials of Ministry of Education, Lanzhou University, Lanzhou 730000, China
| | - Liang Chen
- Department of Optical Engineering, Zhejiang A&F University, Lin’an 311300, China
| |
Collapse
|
34
|
Huang W, Chung HY, Xuan W, Wang G, Li Y. The cholesterol-lowering activity of miracle fruit (Synsepalum dulcificum). J Food Biochem 2020; 44:e13185. [PMID: 32162705 DOI: 10.1111/jfbc.13185] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 02/11/2020] [Accepted: 02/24/2020] [Indexed: 11/28/2022]
Abstract
Miracle fruit (Synsepalum dulcificum) is famous for its uniqueness of modifying sour taste to sweetness. However, its cholesterol-lowering activity has not been reported. This study investigated the effect of S. dulcificum on the compositional changes of plasma lipids in hamsters fed a high-cholesterol control diet. Six groups of hamsters were fed either a control diet or one of the five experimental diets containing 2% ethanol extract of leaves, 2% water extract of leaves, 2% ethanolic extract of seeds (ES), 2% water extract of seeds, or 2% dry pulp. Results showed that ES decreased the plasma total cholesterol (TC). Two triterpenoids (lupeol acetate and β-amyrin acetate) were isolated from the ES and they added to a diet could decrease TC by 15%-20% in hamsters. It was concluded that ES showed potent TC-lowering activity and triterpenoid was one of the active components of ES. PRACTICAL APPLICATIONS: In recent years, people are more interested in phytochemicals from functional foods treated for hyperlipidemia because they possessed fewer side effects than the synthetic drugs. The triterpenoids isolated from the miracle fruit may be promising candidates for the development of cholesterol-lowering agent, especially for patients whose blood cholesterol level and body weight are high. Meanwhile, the miracle fruit have a good potential as cholesterol-lowering functional food or a natural source of cholesterol-lowering agent.
Collapse
Affiliation(s)
- Weihuan Huang
- Department of Developmental & Regenerative Biology, Jinan University, Guangzhou, P.R. China.,Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, P.R. China
| | - Hau Yin Chung
- Food and Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, P.R. China
| | - Wensheng Xuan
- Guangdong Landfriend Biological Co., Ltd, Jiangmen, China
| | - Guocai Wang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, P.R. China
| | - Yaolan Li
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, P.R. China
| |
Collapse
|
35
|
Monshi FI, Khan N, Kimura K, Suzuki S, Yamamoto Y, Katsube-Tanaka T. Structure and diversity of 13S globulin zero-repeat subunit, the trypsin-resistant storage protein of common buckwheat ( Fagopyrum esculentum M.) seeds. BREEDING SCIENCE 2020; 70:118-127. [PMID: 32351311 PMCID: PMC7180142 DOI: 10.1270/jsbbs.19017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 08/25/2019] [Indexed: 06/11/2023]
Abstract
The zero-repeat subunit of 13S globulin, which lacks tandem repeat inserts, is trypsin-resistant and suggested to show higher allergenicity than the other subunits in common buckwheat (Fagopyrum esculentum Moench). To evaluate allelic variations and find novel alleles, the diversity of the zero-repeat genes was examined for two Japanese elite cultivars and 15 Pakistani landraces. The results demonstrated that two new alleles GlbNA1 and GlbNC1, plus three additional new alleles GlbNA2, GlbNA3, and GlbND, were identified besides the already-known GlbNA, GlbNB, and GlbNC alleles. In the Pakistani landraces, GlbNA was the most dominant allele (0.60-0.88 of allele frequency) in all except one landrace, where GlbNB was the most dominant allele (0.50 of allele frequency). Similar to GlbNC, the alleles GlbNA2 and GlbNA3 had extra ~200 bp MITE-like sequences around the stop codon. Secondary structure predictions of a sense strand demonstrated that the extra ~200 bp sequences of GlbNC, GlbNA2, and GlbNA3 can form rigid hairpin structures with free energies of -78.95, -67.06, and -29.90 kcal/mol, respectively. These structures may affect proper transcription and/or translation. In the GlbNC homozygous line, no transcript of a zero-repeat gene was detected, suggesting the material would be useful for developing hypoallergenic buckwheat.
Collapse
Affiliation(s)
- Fakhrul Islam Monshi
- Graduate School of Agriculture, Kyoto University, Kitashirakawa, Kyoto 606-8502, Japan
- Faculty of Agriculture, Sylhet Agricultural University, Sylhet-3100, Bangladesh
| | - Nadar Khan
- Graduate School of Agriculture, Kyoto University, Kitashirakawa, Kyoto 606-8502, Japan
| | - Kohtaro Kimura
- Graduate School of Agriculture, Kyoto University, Kitashirakawa, Kyoto 606-8502, Japan
| | - Seita Suzuki
- Graduate School of Agriculture, Kyoto University, Kitashirakawa, Kyoto 606-8502, Japan
| | - Yuka Yamamoto
- Graduate School of Agriculture, Kyoto University, Kitashirakawa, Kyoto 606-8502, Japan
| | | |
Collapse
|
36
|
Hao W, Zhu H, Chen J, Kwek E, He Z, Liu J, Ma N, Ma KY, Chen ZY. Wild Melon Seed Oil Reduces Plasma Cholesterol and Modulates Gut Microbiota in Hypercholesterolemic Hamsters. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:2071-2081. [PMID: 31984735 DOI: 10.1021/acs.jafc.9b07302] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Wild melon (Cucumis melo var. agrestis) seed oil (CO) contains 71.3% polyunsaturated fatty acids. The present study investigated the effects of CO on blood cholesterol and gut microbiota. Hamsters (n = 32) were randomly divided into four groups and given one of four diets, namely noncholesterol diet (NCD), high-cholesterol diet containing 0.1% cholesterol (HCD), HCD containing 4.75% CO (COL), and HCD containing 9.5% CO (COH) for 6 weeks. CO supplementation at 9.5% in the diet reduced plasma cholesterol by 24% and enhanced the excretion of fecal bile acids by 150%. CO supplementation upregulated the gene expression of hepatic cholesterol 7α-hydroxylase (CYP7A1). In addition, supplementation of CO in the diet remarkably increased the production of fecal short-chain fatty acids and favorably altered the relative abundances of Eubacteriaceae, Clostridiales_vadinBB60_group, Ruminococcaceae, Streptococcaceae, and Desulfovibrionaceae at a family level. It was concluded that CO could reduce plasma cholesterol via promoting the excretion of fecal acidic sterols and modulating gut microbiota.
Collapse
Affiliation(s)
- Wangjun Hao
- School of Life Sciences , Chinese University of Hong Kong , Shatin, NT , Hong Kong , China
| | - Hanyue Zhu
- School of Life Sciences , Chinese University of Hong Kong , Shatin, NT , Hong Kong , China
- Department of Food Science , Foshan University , Foshan , Guangdong Province 528231 , China
| | - Jingnan Chen
- College of Food Science and Technology , Henan University of Technology , Zhengzhou 450001 , China
| | - Erika Kwek
- School of Life Sciences , Chinese University of Hong Kong , Shatin, NT , Hong Kong , China
| | - Zouyan He
- School of Life Sciences , Chinese University of Hong Kong , Shatin, NT , Hong Kong , China
| | - Jianhui Liu
- School of Life Sciences , Chinese University of Hong Kong , Shatin, NT , Hong Kong , China
| | - Ning Ma
- School of Life Sciences , Chinese University of Hong Kong , Shatin, NT , Hong Kong , China
- College of Food Science and Engineering , Nanjing University of Finance and Economics , Nanjing 210023 , China
| | - Ka Ying Ma
- School of Life Sciences , Chinese University of Hong Kong , Shatin, NT , Hong Kong , China
| | - Zhen-Yu Chen
- School of Life Sciences , Chinese University of Hong Kong , Shatin, NT , Hong Kong , China
| |
Collapse
|
37
|
Coreta-Gomes FM, Lopes GR, Passos CP, Vaz IM, Machado F, Geraldes CFGC, Moreno MJ, Nyström L, Coimbra MA. In Vitro Hypocholesterolemic Effect of Coffee Compounds. Nutrients 2020; 12:E437. [PMID: 32050463 PMCID: PMC7071201 DOI: 10.3390/nu12020437] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 01/27/2020] [Accepted: 02/02/2020] [Indexed: 02/06/2023] Open
Abstract
(1) Background: Cholesterol bioaccessibility is an indicator of cholesterol that is available for absorption and therefore can be a measure of hypocholesterolemic potential. In this work, the effect of commercial espresso coffee and coffee extracts on cholesterol solubility are studied in an in vitro model composed by glycodeoxycholic bile salt, as a measure of its bioaccessibility. (2) Methods: Polysaccharide extracts from coffees obtained with different extraction conditions were purified by selective precipitation with ethanol, and their sugars content were characterized by GC-FID. Hexane extraction allowed us to obtain the coffee lipids. Espresso coffee samples and extracts were tested regarding their concentration dependence on the solubility of labeled 13C-4 cholesterol by bile salt micelles, using quantitative 13C NMR. (3) Results and Discussion: Espresso coffee and coffee extracts were rich in polysaccharides, mainly arabinogalactans and galactomannans. These polysaccharides decrease cholesterol solubility and, simultaneously, the bile salts' concentration. Coffee lipid extracts were also found to decrease cholesterol solubility, although not affecting bile salt concentration. (4) Conclusions: Coffee soluble fiber, composed by the arabinogalactans and galactomannans, showed to sequester bile salts from the solution, leading to a decrease in cholesterol bioaccessibility. Coffee lipids also decrease cholesterol bioaccessibility, although the mechanism of action identified is the co-solubilization in the bile salt micelles. The effect of both polysaccharides and lipids showed to be additive, representing the overall effect observed in a typical espresso coffee. The effect of polysaccharides and lipids on cholesterol bioaccessibility should be accounted on the formulation of hypocholesterolemic food ingredients.
Collapse
Affiliation(s)
- Filipe Manuel Coreta-Gomes
- LAQV-REQUIMTE, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal; (G.R.L.); (C.P.P.); (I.M.V.); (F.M.); (M.A.C.)
- Coimbra Chemistry Center, University of Coimbra, Rua Larga Largo D. Dinis, 3004-535 Coimbra, Portugal; (C.F.G.C.G.); (M.J.M.)
| | - Guido R. Lopes
- LAQV-REQUIMTE, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal; (G.R.L.); (C.P.P.); (I.M.V.); (F.M.); (M.A.C.)
| | - Cláudia P. Passos
- LAQV-REQUIMTE, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal; (G.R.L.); (C.P.P.); (I.M.V.); (F.M.); (M.A.C.)
| | - Inês M. Vaz
- LAQV-REQUIMTE, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal; (G.R.L.); (C.P.P.); (I.M.V.); (F.M.); (M.A.C.)
| | - Fernanda Machado
- LAQV-REQUIMTE, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal; (G.R.L.); (C.P.P.); (I.M.V.); (F.M.); (M.A.C.)
| | - Carlos F. G. C. Geraldes
- Coimbra Chemistry Center, University of Coimbra, Rua Larga Largo D. Dinis, 3004-535 Coimbra, Portugal; (C.F.G.C.G.); (M.J.M.)
- Department of Life Sciences, Faculty of Science and Technology, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Maria João Moreno
- Coimbra Chemistry Center, University of Coimbra, Rua Larga Largo D. Dinis, 3004-535 Coimbra, Portugal; (C.F.G.C.G.); (M.J.M.)
- Chemistry Department, University of Coimbra, Faculty of Science and Technology, Rua Larga Largo D. Dinis, 3004-535 Coimbra, Portugal
| | - Laura Nyström
- ETH Zurich, Institute of Food, Nutrition and Health, Schmelzbergstrasse 9, CH-8092 Zurich, Switzerland;
| | - Manuel A. Coimbra
- LAQV-REQUIMTE, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal; (G.R.L.); (C.P.P.); (I.M.V.); (F.M.); (M.A.C.)
| |
Collapse
|
38
|
Bile acid-binding capacity of lobster shell-derived chitin, chitosan and chitooligosaccharides. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2019.100476] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
39
|
He WS, Li L, Rui J, Li J, Sun Y, Cui D, Xu B. Tomato seed oil attenuates hyperlipidemia and modulates gut microbiota in C57BL/6J mice. Food Funct 2020; 11:4275-4290. [DOI: 10.1039/d0fo00133c] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
TSO can significantly improve fatty acid metabolism and cholesterol metabolism, thereby inhibiting obesity and hypercholesterolemia. TSO can favorably modulate the gut microbiota.
Collapse
Affiliation(s)
- Wen-Sen He
- School of Food and Biological Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| | - Lingling Li
- School of Food and Biological Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| | - Jiaxin Rui
- School of Food and Biological Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| | - Junjie Li
- School of Food and Biological Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| | - Yuying Sun
- School of Food and Biological Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| | - Dandan Cui
- School of Food and Biological Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| | - Bin Xu
- School of Food and Biological Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| |
Collapse
|
40
|
Ressaissi A, Attia N, Pacheco R, Falé PL, Serralheiro MLM. Cholesterol transporter proteins in HepG2 cells can be modulated by phenolic compounds present in Opuntia ficus-indica aqueous solutions. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103674] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
41
|
Feng K, Zhu X, Liu G, Kan Q, Chen T, Chen Y, Cao Y. Dietary citrus peel essential oil ameliorates hypercholesterolemia and hepatic steatosis by modulating lipid and cholesterol homeostasis. Food Funct 2020; 11:7217-7230. [DOI: 10.1039/d0fo00810a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Integration of lipidomics and gene expression analysis provided new insights into in-depth mechanistic understanding of the effects of dietary CPEO.
Collapse
Affiliation(s)
- Konglong Feng
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods
- College of Food Sciences
- South China Agricultural University
- Guangzhou
- China
| | - Xiaoai Zhu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods
- College of Food Sciences
- South China Agricultural University
- Guangzhou
- China
| | - Guo Liu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods
- College of Food Sciences
- South China Agricultural University
- Guangzhou
- China
| | - Qixin Kan
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods
- College of Food Sciences
- South China Agricultural University
- Guangzhou
- China
| | - Tong Chen
- Shenzhen Agricultural Product Quality Safety Inspection Testing Center
- Shenzhen
- China
| | - Yunjiao Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods
- College of Food Sciences
- South China Agricultural University
- Guangzhou
- China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods
- College of Food Sciences
- South China Agricultural University
- Guangzhou
- China
| |
Collapse
|
42
|
Wang SH, Wang WW, Zhang HJ, Wang J, Chen Y, Wu SG, Qi GH. Conjugated linoleic acid regulates lipid metabolism through the expression of selected hepatic genes in laying hens. Poult Sci 2019; 98:4632-4639. [PMID: 30951597 DOI: 10.3382/ps/pez161] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 03/12/2019] [Indexed: 01/09/2023] Open
Abstract
The effect of dietary conjugated linoleic acid (CLA) supplementation on lipid metabolism in laying hens was investigated. A total of 360 eighteen-wk-old Hy-Line Brown layers were randomly divided into 4 groups that consisted of 6 replicates with 15 birds each. Birds were fed basal diets with 0, 1%, 2%, and 4% CLA addition. The experiment lasted for 56 D after a 7-D adaptation period. Results showed that dietary CLA addition linearly reduced (P < 0.05) abdominal fat percentage but linearly increased (P < 0.05) relative liver weight of layers on day 56. A linear reduction (P < 0.05) in serum low-density lipoprotein cholesterol (LDL-C) level and a linear elevation (P < 0.05) in the ratio of serum high-density lipoprotein cholesterol level to LDL-C level of layers on both days 28 and 56 were observed with dietary CLA addition, which also linearly decreased (P < 0.05) cholesterol content in the liver of layers on day 56 as well as in eggs on both days 28 and 56. Besides, there were linear reductions (P < 0.05) in the gene expression and contents of hepatic 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) and cholesterol 7 alpha hydroxylase 1 (CYP7A1), along with a linear increase (P < 0.05) in the gene expression and content of hepatic low-density lipoprotein receptor (LDLR) in layers responded to dietary CLA addition. In conclusion, dietary CLA supplementation decreased the accumulation of lipids including abdominal fat and cholesterol in the liver and egg of laying hens, probably by upregulating hepatic LDLR expression and downregulating hepatic HMGR and CYP7A1 expression.
Collapse
Affiliation(s)
- Sheng-Hui Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Wei-Wei Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Hai-Jun Zhang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Jing Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Yu Chen
- Beijing Stockbreeding Station, Beijing 100026, P. R. China
| | - Shu-Geng Wu
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Guang-Hai Qi
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| |
Collapse
|
43
|
He Z, Hao W, Kwek E, Lei L, Liu J, Zhu H, Ma KY, Zhao Y, Ho HM, He WS, Chen ZY. Fish Oil Is More Potent than Flaxseed Oil in Modulating Gut Microbiota and Reducing Trimethylamine- N-oxide-Exacerbated Atherogenesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:13635-13647. [PMID: 31736303 DOI: 10.1021/acs.jafc.9b06753] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Trimethylamine-N-oxide (TMAO) is a risk factor for atherosclerosis. We compared the potency of fish oil with flaxseed oil in reducing TMAO-exacerbated atherogenesis. Five groups of ApoE-/- mice were given one of five diets, namely, a low-fat diet, a Western high fat diet (WD), a WD plus 0.2% TMAO, and two WDs containing 0.2% TMAO with 50% lard being replaced by flaxseed oil or fish oil. TMAO accelerated atherosclerosis and disturbed cholesterol homeostasis. Compared with flaxseed oil, fish oil was more effective in inhibiting TMAO-induced atherogenesis by lowering plasma cholesterol and inflammatory cytokines. Both oils could reverse TMAO-induced decrease in fecal acidic sterols. Fish oil promoted fecal output of neutral sterols and downregulated hepatic cholesterol biosynthesis. Fish oil was more effective than flaxseed oil in promoting the growth of short-chain fatty acid-producing bacteria and lowering microbial generation of lipopolysaccharide. In conclusion, fish oil is more potent than flaxseed oil to ameliorate TMAO-exacerbated atherogenesis.
Collapse
Affiliation(s)
- Zouyan He
- Food & Nutritional Sciences Programme, School of Life Sciences , The Chinese University of Hong Kong , Shatin , NT, Hong Kong , China
| | - Wangjun Hao
- Food & Nutritional Sciences Programme, School of Life Sciences , The Chinese University of Hong Kong , Shatin , NT, Hong Kong , China
| | - Erika Kwek
- Food & Nutritional Sciences Programme, School of Life Sciences , The Chinese University of Hong Kong , Shatin , NT, Hong Kong , China
| | - Lin Lei
- Food & Nutritional Sciences Programme, School of Life Sciences , The Chinese University of Hong Kong , Shatin , NT, Hong Kong , China
- College of Food Science , Southwest University , Chongqing 400715 , China
| | - Jianhui Liu
- Food & Nutritional Sciences Programme, School of Life Sciences , The Chinese University of Hong Kong , Shatin , NT, Hong Kong , China
| | - Hanyue Zhu
- Food & Nutritional Sciences Programme, School of Life Sciences , The Chinese University of Hong Kong , Shatin , NT, Hong Kong , China
| | - Ka Ying Ma
- Food & Nutritional Sciences Programme, School of Life Sciences , The Chinese University of Hong Kong , Shatin , NT, Hong Kong , China
| | - Yimin Zhao
- Food & Nutritional Sciences Programme, School of Life Sciences , The Chinese University of Hong Kong , Shatin , NT, Hong Kong , China
| | - Hing Man Ho
- School of Chinese Medicine , Hong Kong Baptist University , Kowloon Tong , Hong Kong , China
| | - Wen-Sen He
- Food & Nutritional Sciences Programme, School of Life Sciences , The Chinese University of Hong Kong , Shatin , NT, Hong Kong , China
- School of Food and Biological Engineering , Jiangsu University , 301 Xuefu Road , Zhenjiang 212013 , Jiangsu , China
| | - Zhen-Yu Chen
- Food & Nutritional Sciences Programme, School of Life Sciences , The Chinese University of Hong Kong , Shatin , NT, Hong Kong , China
| |
Collapse
|
44
|
Yang Y, Sun Q, Xu X, Yang X, Gao Y, Sun X, Zhao Y, Ding Z, Ge W, Cheng R, Zhang J. Oral Administration of Succinoglycan Riclin Improves Diet-Induced Hypercholesterolemia in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:13307-13317. [PMID: 31679333 DOI: 10.1021/acs.jafc.9b06034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Epidemiological studies have demonstrated that hypercholesterolemia is associated with an elevated risk of atherosclerosis and cardiovascular diseases. In addition to the available cholesterol-lowering drugs, nutritionally balanced diets containing functional foods have attracted much interest as potential candidates to improve hypercholesterolemia. In the study, we demonstrated that dietary succinoglycan riclin effectively alleviated diet-induced hypercholesterolemia. Compared with the high-cholesterol-diet (HCD) group, the high-riclin group significantly decreased levels of the serum total cholesterol, low-density lipoprotein cholesterol (LDL-C), and hepatic cholesterol (34, 40, and 51%, respectively), consequently improving hepatic steatosis and reducing proinflammatory cytokine expressions. 1H nuclear magnetic resonance (NMR)-based lipidomics and metabolomics analyses revealed that the riclin group partially reversed metabolic profile changes induced by the HCD, approaching that of the normal diet (ND) group. Riclin has no direct effects on cholesterol metabolism-related gene expression among the three HCD model groups. Basically, riclin increased the solution viscosity and interfered in the process of bile acid-cholesterol emulsification, decreasing cholesterol digestion and promoting cholesterol and bile acid excretion in the feces. These results suggested potential therapeutic utility of succinoglycan riclin as a food additive for people suffering from hypercholesterolemia and related diseases.
Collapse
Affiliation(s)
- Yunxia Yang
- Center for Molecular Metabolism , Nanjing University of Science and Technology , Nanjing 210094 , China
| | - Qi Sun
- Center for Molecular Metabolism , Nanjing University of Science and Technology , Nanjing 210094 , China
| | - Xi Xu
- Center for Molecular Metabolism , Nanjing University of Science and Technology , Nanjing 210094 , China
| | - Xiao Yang
- Center for Molecular Metabolism , Nanjing University of Science and Technology , Nanjing 210094 , China
| | - Yan Gao
- Center for Molecular Metabolism , Nanjing University of Science and Technology , Nanjing 210094 , China
| | - Xiaqing Sun
- Center for Molecular Metabolism , Nanjing University of Science and Technology , Nanjing 210094 , China
| | - Yang Zhao
- Center for Molecular Metabolism , Nanjing University of Science and Technology , Nanjing 210094 , China
| | - Zhao Ding
- Center for Molecular Metabolism , Nanjing University of Science and Technology , Nanjing 210094 , China
| | - Wenhao Ge
- Center for Molecular Metabolism , Nanjing University of Science and Technology , Nanjing 210094 , China
| | - Rui Cheng
- Center for Molecular Metabolism , Nanjing University of Science and Technology , Nanjing 210094 , China
| | - Jianfa Zhang
- Center for Molecular Metabolism , Nanjing University of Science and Technology , Nanjing 210094 , China
| |
Collapse
|
45
|
Apple phlorizin reduce plasma cholesterol by down-regulating hepatic HMG-CoA reductase and enhancing the excretion of fecal sterols. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
46
|
Fidelis M, de Moura C, Kabbas Junior T, Pap N, Mattila P, Mäkinen S, Putnik P, Bursać Kovačević D, Tian Y, Yang B, Granato D. Fruit Seeds as Sources of Bioactive Compounds: Sustainable Production of High Value-Added Ingredients from By-Products within Circular Economy. Molecules 2019; 24:E3854. [PMID: 31731548 PMCID: PMC6864632 DOI: 10.3390/molecules24213854] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/14/2019] [Accepted: 10/18/2019] [Indexed: 11/24/2022] Open
Abstract
The circular economy is an umbrella concept that applies different mechanisms aiming to minimize waste generation, thus decoupling economic growth from natural resources. Each year, an estimated one-third of all food produced is wasted; this is equivalent to 1.3 billion tons of food, which is worth around US$1 trillion or even $2.6 trillion when social and economic costs are included. In the fruit and vegetable sector, 45% of the total produced amount is lost in the production (post-harvest, processing, and distribution) and consumption chains. Therefore, it is necessary to find new technological and environmentally friendly solutions to utilize fruit wastes as new raw materials to develop and scale up the production of high value-added products and ingredients. Considering that the production and consumption of fruits has increased in the last years and following the need to find the sustainable use of different fruit side streams, this work aimed to describe the chemical composition and bioactivity of different fruit seeds consumed worldwide. A comprehensive focus is given on the extraction techniques of water-soluble and lipophilic compounds and in vitro/in vivo functionalities, and the link between chemical composition and observed activity is holistically explained.
Collapse
Affiliation(s)
- Marina Fidelis
- MSc in Food Science and Technology, Ponta Grossa 84035010, Brazil;
| | - Cristiane de Moura
- Graduate Program in Chemistry, State University of Ponta Grossa, Avenida Carlos Cavalcanti, 4748, Ponta Grossa 84030900, Brazil; (C.d.M.); (T.K.J.)
| | - Tufy Kabbas Junior
- Graduate Program in Chemistry, State University of Ponta Grossa, Avenida Carlos Cavalcanti, 4748, Ponta Grossa 84030900, Brazil; (C.d.M.); (T.K.J.)
| | - Nora Pap
- Food Processing and Quality, Innovative Food System, Production Systems Unit, Natural Resources Institute Finland (Luke), Tietotie 2, FI-02150 Espoo, Finland; (N.P.); (P.M.); (S.M.)
| | - Pirjo Mattila
- Food Processing and Quality, Innovative Food System, Production Systems Unit, Natural Resources Institute Finland (Luke), Tietotie 2, FI-02150 Espoo, Finland; (N.P.); (P.M.); (S.M.)
| | - Sari Mäkinen
- Food Processing and Quality, Innovative Food System, Production Systems Unit, Natural Resources Institute Finland (Luke), Tietotie 2, FI-02150 Espoo, Finland; (N.P.); (P.M.); (S.M.)
| | - Predrag Putnik
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (P.P.); (D.B.K.)
| | - Danijela Bursać Kovačević
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (P.P.); (D.B.K.)
| | - Ye Tian
- Food Chemistry and Food Development Unit, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland; (Y.T.); (B.Y.)
| | - Baoru Yang
- Food Chemistry and Food Development Unit, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland; (Y.T.); (B.Y.)
| | - Daniel Granato
- Food Processing and Quality, Innovative Food System, Production Systems Unit, Natural Resources Institute Finland (Luke), Tietotie 2, FI-02150 Espoo, Finland; (N.P.); (P.M.); (S.M.)
| |
Collapse
|
47
|
Nielsen E, Temporiti MEE, Cella R. Improvement of phytochemical production by plant cells and organ culture and by genetic engineering. PLANT CELL REPORTS 2019; 38:1199-1215. [PMID: 31055622 DOI: 10.1007/s00299-019-02415-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 04/25/2019] [Indexed: 06/09/2023]
Abstract
Plants display an amazing ability to synthesize a vast array of secondary metabolites that are an inexhaustible source of phytochemicals, bioactive molecules some of which impact the human health. Phytochemicals present in medicinal herbs and spices have long been used as natural remedies against illness. Plant tissue culture represents an alternative to whole plants as a source of phytochemicals. This approach spares agricultural land that can be used for producing food and other raw materials, thus favoring standardized phytochemical production regardless of climatic adversities and political events. Over the past 20 years, different strategies have been developed to increase the synthesis and the extraction of phytochemicals from tissue culture often obtaining remarkable results. Moreover, the availability of genomics and metabolomics tools, along with improved recombinant methods related to the ability to overexpress, silence or disrupt one or more genes of the pathway of interest promise to open new exciting possibilities of metabolic engineering. This review provides a general framework of the cellular and molecular tools developed so far to enhance the yield of phytochemicals. Additionally, some emerging topics such as the culture of cambial meristemoid cells, the selection of plant cell following the expression of genes encoding human target proteins, and the bioextraction of phytochemicals from plant material have been addressed. Altogether, the herein described techniques and results are expected to improve metabolic engineering tools aiming at improving the production of phytochemicals of pharmaceutical and nutraceutical interest.
Collapse
Affiliation(s)
- Erik Nielsen
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, 27100, Pavia, Italy.
| | | | - Rino Cella
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, 27100, Pavia, Italy
| |
Collapse
|
48
|
Cao C, Wu R, Zhu X, Li Y, Li M, An F, Wu J. Ameliorative effect of Lactobacillus plantarum WW-fermented soy extract on rat fatty liver via the PPAR signaling pathway. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103439] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
49
|
He WS, Li L, Wang H, Rui J, Cui D. Synthesis and cholesterol-reducing potential of water-soluble phytosterol derivative. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103428] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
50
|
Guo WL, Shi FF, Li L, Xu JX, Chen M, Wu L, Hong JL, Qian M, Bai WD, Liu B, Zhang YY, Ni L, Rao PF, Lv XC. Preparation of a novel Grifola frondosa polysaccharide-chromium (III) complex and its hypoglycemic and hypolipidemic activities in high fat diet and streptozotocin-induced diabetic mice. Int J Biol Macromol 2019; 131:81-88. [DOI: 10.1016/j.ijbiomac.2019.03.042] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 02/28/2019] [Accepted: 03/06/2019] [Indexed: 12/18/2022]
|